1 /* 2 * Apple Onboard Audio driver for tas codec 3 * 4 * Copyright 2006 Johannes Berg <johannes@sipsolutions.net> 5 * 6 * GPL v2, can be found in COPYING. 7 * 8 * Open questions: 9 * - How to distinguish between 3004 and versions? 10 * 11 * FIXMEs: 12 * - This codec driver doesn't honour the 'connected' 13 * property of the aoa_codec struct, hence if 14 * it is used in machines where not everything is 15 * connected it will display wrong mixer elements. 16 * - Driver assumes that the microphone is always 17 * monaureal and connected to the right channel of 18 * the input. This should also be a codec-dependent 19 * flag, maybe the codec should have 3 different 20 * bits for the three different possibilities how 21 * it can be hooked up... 22 * But as long as I don't see any hardware hooked 23 * up that way... 24 * - As Apple notes in their code, the tas3004 seems 25 * to delay the right channel by one sample. You can 26 * see this when for example recording stereo in 27 * audacity, or recording the tas output via cable 28 * on another machine (use a sinus generator or so). 29 * I tried programming the BiQuads but couldn't 30 * make the delay work, maybe someone can read the 31 * datasheet and fix it. The relevant Apple comment 32 * is in AppleTAS3004Audio.cpp lines 1637 ff. Note 33 * that their comment describing how they program 34 * the filters sucks... 35 * 36 * Other things: 37 * - this should actually register *two* aoa_codec 38 * structs since it has two inputs. Then it must 39 * use the prepare callback to forbid running the 40 * secondary output on a different clock. 41 * Also, whatever bus knows how to do this must 42 * provide two soundbus_dev devices and the fabric 43 * must be able to link them correctly. 44 * 45 * I don't even know if Apple ever uses the second 46 * port on the tas3004 though, I don't think their 47 * i2s controllers can even do it. OTOH, they all 48 * derive the clocks from common clocks, so it 49 * might just be possible. The framework allows the 50 * codec to refine the transfer_info items in the 51 * usable callback, so we can simply remove the 52 * rates the second instance is not using when it 53 * actually is in use. 54 * Maybe we'll need to make the sound busses have 55 * a 'clock group id' value so the codec can 56 * determine if the two outputs can be driven at 57 * the same time. But that is likely overkill, up 58 * to the fabric to not link them up incorrectly, 59 * and up to the hardware designer to not wire 60 * them up in some weird unusable way. 61 */ 62 #include <stddef.h> 63 #include <linux/i2c.h> 64 #include <asm/pmac_low_i2c.h> 65 #include <asm/prom.h> 66 #include <linux/delay.h> 67 #include <linux/module.h> 68 #include <linux/mutex.h> 69 #include <linux/slab.h> 70 71 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); 72 MODULE_LICENSE("GPL"); 73 MODULE_DESCRIPTION("tas codec driver for snd-aoa"); 74 75 #include "tas.h" 76 #include "tas-gain-table.h" 77 #include "tas-basstreble.h" 78 #include "../aoa.h" 79 #include "../soundbus/soundbus.h" 80 81 #define PFX "snd-aoa-codec-tas: " 82 83 84 struct tas { 85 struct aoa_codec codec; 86 struct i2c_client *i2c; 87 u32 mute_l:1, mute_r:1 , 88 controls_created:1 , 89 drc_enabled:1, 90 hw_enabled:1; 91 u8 cached_volume_l, cached_volume_r; 92 u8 mixer_l[3], mixer_r[3]; 93 u8 bass, treble; 94 u8 acr; 95 int drc_range; 96 /* protects hardware access against concurrency from 97 * userspace when hitting controls and during 98 * codec init/suspend/resume */ 99 struct mutex mtx; 100 }; 101 102 static int tas_reset_init(struct tas *tas); 103 104 static struct tas *codec_to_tas(struct aoa_codec *codec) 105 { 106 return container_of(codec, struct tas, codec); 107 } 108 109 static inline int tas_write_reg(struct tas *tas, u8 reg, u8 len, u8 *data) 110 { 111 if (len == 1) 112 return i2c_smbus_write_byte_data(tas->i2c, reg, *data); 113 else 114 return i2c_smbus_write_i2c_block_data(tas->i2c, reg, len, data); 115 } 116 117 static void tas3004_set_drc(struct tas *tas) 118 { 119 unsigned char val[6]; 120 121 if (tas->drc_enabled) 122 val[0] = 0x50; /* 3:1 above threshold */ 123 else 124 val[0] = 0x51; /* disabled */ 125 val[1] = 0x02; /* 1:1 below threshold */ 126 if (tas->drc_range > 0xef) 127 val[2] = 0xef; 128 else if (tas->drc_range < 0) 129 val[2] = 0x00; 130 else 131 val[2] = tas->drc_range; 132 val[3] = 0xb0; 133 val[4] = 0x60; 134 val[5] = 0xa0; 135 136 tas_write_reg(tas, TAS_REG_DRC, 6, val); 137 } 138 139 static void tas_set_treble(struct tas *tas) 140 { 141 u8 tmp; 142 143 tmp = tas3004_treble(tas->treble); 144 tas_write_reg(tas, TAS_REG_TREBLE, 1, &tmp); 145 } 146 147 static void tas_set_bass(struct tas *tas) 148 { 149 u8 tmp; 150 151 tmp = tas3004_bass(tas->bass); 152 tas_write_reg(tas, TAS_REG_BASS, 1, &tmp); 153 } 154 155 static void tas_set_volume(struct tas *tas) 156 { 157 u8 block[6]; 158 int tmp; 159 u8 left, right; 160 161 left = tas->cached_volume_l; 162 right = tas->cached_volume_r; 163 164 if (left > 177) left = 177; 165 if (right > 177) right = 177; 166 167 if (tas->mute_l) left = 0; 168 if (tas->mute_r) right = 0; 169 170 /* analysing the volume and mixer tables shows 171 * that they are similar enough when we shift 172 * the mixer table down by 4 bits. The error 173 * is miniscule, in just one item the error 174 * is 1, at a value of 0x07f17b (mixer table 175 * value is 0x07f17a) */ 176 tmp = tas_gaintable[left]; 177 block[0] = tmp>>20; 178 block[1] = tmp>>12; 179 block[2] = tmp>>4; 180 tmp = tas_gaintable[right]; 181 block[3] = tmp>>20; 182 block[4] = tmp>>12; 183 block[5] = tmp>>4; 184 tas_write_reg(tas, TAS_REG_VOL, 6, block); 185 } 186 187 static void tas_set_mixer(struct tas *tas) 188 { 189 u8 block[9]; 190 int tmp, i; 191 u8 val; 192 193 for (i=0;i<3;i++) { 194 val = tas->mixer_l[i]; 195 if (val > 177) val = 177; 196 tmp = tas_gaintable[val]; 197 block[3*i+0] = tmp>>16; 198 block[3*i+1] = tmp>>8; 199 block[3*i+2] = tmp; 200 } 201 tas_write_reg(tas, TAS_REG_LMIX, 9, block); 202 203 for (i=0;i<3;i++) { 204 val = tas->mixer_r[i]; 205 if (val > 177) val = 177; 206 tmp = tas_gaintable[val]; 207 block[3*i+0] = tmp>>16; 208 block[3*i+1] = tmp>>8; 209 block[3*i+2] = tmp; 210 } 211 tas_write_reg(tas, TAS_REG_RMIX, 9, block); 212 } 213 214 /* alsa stuff */ 215 216 static int tas_dev_register(struct snd_device *dev) 217 { 218 return 0; 219 } 220 221 static struct snd_device_ops ops = { 222 .dev_register = tas_dev_register, 223 }; 224 225 static int tas_snd_vol_info(struct snd_kcontrol *kcontrol, 226 struct snd_ctl_elem_info *uinfo) 227 { 228 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 229 uinfo->count = 2; 230 uinfo->value.integer.min = 0; 231 uinfo->value.integer.max = 177; 232 return 0; 233 } 234 235 static int tas_snd_vol_get(struct snd_kcontrol *kcontrol, 236 struct snd_ctl_elem_value *ucontrol) 237 { 238 struct tas *tas = snd_kcontrol_chip(kcontrol); 239 240 mutex_lock(&tas->mtx); 241 ucontrol->value.integer.value[0] = tas->cached_volume_l; 242 ucontrol->value.integer.value[1] = tas->cached_volume_r; 243 mutex_unlock(&tas->mtx); 244 return 0; 245 } 246 247 static int tas_snd_vol_put(struct snd_kcontrol *kcontrol, 248 struct snd_ctl_elem_value *ucontrol) 249 { 250 struct tas *tas = snd_kcontrol_chip(kcontrol); 251 252 if (ucontrol->value.integer.value[0] < 0 || 253 ucontrol->value.integer.value[0] > 177) 254 return -EINVAL; 255 if (ucontrol->value.integer.value[1] < 0 || 256 ucontrol->value.integer.value[1] > 177) 257 return -EINVAL; 258 259 mutex_lock(&tas->mtx); 260 if (tas->cached_volume_l == ucontrol->value.integer.value[0] 261 && tas->cached_volume_r == ucontrol->value.integer.value[1]) { 262 mutex_unlock(&tas->mtx); 263 return 0; 264 } 265 266 tas->cached_volume_l = ucontrol->value.integer.value[0]; 267 tas->cached_volume_r = ucontrol->value.integer.value[1]; 268 if (tas->hw_enabled) 269 tas_set_volume(tas); 270 mutex_unlock(&tas->mtx); 271 return 1; 272 } 273 274 static struct snd_kcontrol_new volume_control = { 275 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 276 .name = "Master Playback Volume", 277 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 278 .info = tas_snd_vol_info, 279 .get = tas_snd_vol_get, 280 .put = tas_snd_vol_put, 281 }; 282 283 #define tas_snd_mute_info snd_ctl_boolean_stereo_info 284 285 static int tas_snd_mute_get(struct snd_kcontrol *kcontrol, 286 struct snd_ctl_elem_value *ucontrol) 287 { 288 struct tas *tas = snd_kcontrol_chip(kcontrol); 289 290 mutex_lock(&tas->mtx); 291 ucontrol->value.integer.value[0] = !tas->mute_l; 292 ucontrol->value.integer.value[1] = !tas->mute_r; 293 mutex_unlock(&tas->mtx); 294 return 0; 295 } 296 297 static int tas_snd_mute_put(struct snd_kcontrol *kcontrol, 298 struct snd_ctl_elem_value *ucontrol) 299 { 300 struct tas *tas = snd_kcontrol_chip(kcontrol); 301 302 mutex_lock(&tas->mtx); 303 if (tas->mute_l == !ucontrol->value.integer.value[0] 304 && tas->mute_r == !ucontrol->value.integer.value[1]) { 305 mutex_unlock(&tas->mtx); 306 return 0; 307 } 308 309 tas->mute_l = !ucontrol->value.integer.value[0]; 310 tas->mute_r = !ucontrol->value.integer.value[1]; 311 if (tas->hw_enabled) 312 tas_set_volume(tas); 313 mutex_unlock(&tas->mtx); 314 return 1; 315 } 316 317 static struct snd_kcontrol_new mute_control = { 318 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 319 .name = "Master Playback Switch", 320 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 321 .info = tas_snd_mute_info, 322 .get = tas_snd_mute_get, 323 .put = tas_snd_mute_put, 324 }; 325 326 static int tas_snd_mixer_info(struct snd_kcontrol *kcontrol, 327 struct snd_ctl_elem_info *uinfo) 328 { 329 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 330 uinfo->count = 2; 331 uinfo->value.integer.min = 0; 332 uinfo->value.integer.max = 177; 333 return 0; 334 } 335 336 static int tas_snd_mixer_get(struct snd_kcontrol *kcontrol, 337 struct snd_ctl_elem_value *ucontrol) 338 { 339 struct tas *tas = snd_kcontrol_chip(kcontrol); 340 int idx = kcontrol->private_value; 341 342 mutex_lock(&tas->mtx); 343 ucontrol->value.integer.value[0] = tas->mixer_l[idx]; 344 ucontrol->value.integer.value[1] = tas->mixer_r[idx]; 345 mutex_unlock(&tas->mtx); 346 347 return 0; 348 } 349 350 static int tas_snd_mixer_put(struct snd_kcontrol *kcontrol, 351 struct snd_ctl_elem_value *ucontrol) 352 { 353 struct tas *tas = snd_kcontrol_chip(kcontrol); 354 int idx = kcontrol->private_value; 355 356 mutex_lock(&tas->mtx); 357 if (tas->mixer_l[idx] == ucontrol->value.integer.value[0] 358 && tas->mixer_r[idx] == ucontrol->value.integer.value[1]) { 359 mutex_unlock(&tas->mtx); 360 return 0; 361 } 362 363 tas->mixer_l[idx] = ucontrol->value.integer.value[0]; 364 tas->mixer_r[idx] = ucontrol->value.integer.value[1]; 365 366 if (tas->hw_enabled) 367 tas_set_mixer(tas); 368 mutex_unlock(&tas->mtx); 369 return 1; 370 } 371 372 #define MIXER_CONTROL(n,descr,idx) \ 373 static struct snd_kcontrol_new n##_control = { \ 374 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 375 .name = descr " Playback Volume", \ 376 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \ 377 .info = tas_snd_mixer_info, \ 378 .get = tas_snd_mixer_get, \ 379 .put = tas_snd_mixer_put, \ 380 .private_value = idx, \ 381 } 382 383 MIXER_CONTROL(pcm1, "PCM", 0); 384 MIXER_CONTROL(monitor, "Monitor", 2); 385 386 static int tas_snd_drc_range_info(struct snd_kcontrol *kcontrol, 387 struct snd_ctl_elem_info *uinfo) 388 { 389 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 390 uinfo->count = 1; 391 uinfo->value.integer.min = 0; 392 uinfo->value.integer.max = TAS3004_DRC_MAX; 393 return 0; 394 } 395 396 static int tas_snd_drc_range_get(struct snd_kcontrol *kcontrol, 397 struct snd_ctl_elem_value *ucontrol) 398 { 399 struct tas *tas = snd_kcontrol_chip(kcontrol); 400 401 mutex_lock(&tas->mtx); 402 ucontrol->value.integer.value[0] = tas->drc_range; 403 mutex_unlock(&tas->mtx); 404 return 0; 405 } 406 407 static int tas_snd_drc_range_put(struct snd_kcontrol *kcontrol, 408 struct snd_ctl_elem_value *ucontrol) 409 { 410 struct tas *tas = snd_kcontrol_chip(kcontrol); 411 412 if (ucontrol->value.integer.value[0] < 0 || 413 ucontrol->value.integer.value[0] > TAS3004_DRC_MAX) 414 return -EINVAL; 415 416 mutex_lock(&tas->mtx); 417 if (tas->drc_range == ucontrol->value.integer.value[0]) { 418 mutex_unlock(&tas->mtx); 419 return 0; 420 } 421 422 tas->drc_range = ucontrol->value.integer.value[0]; 423 if (tas->hw_enabled) 424 tas3004_set_drc(tas); 425 mutex_unlock(&tas->mtx); 426 return 1; 427 } 428 429 static struct snd_kcontrol_new drc_range_control = { 430 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 431 .name = "DRC Range", 432 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 433 .info = tas_snd_drc_range_info, 434 .get = tas_snd_drc_range_get, 435 .put = tas_snd_drc_range_put, 436 }; 437 438 #define tas_snd_drc_switch_info snd_ctl_boolean_mono_info 439 440 static int tas_snd_drc_switch_get(struct snd_kcontrol *kcontrol, 441 struct snd_ctl_elem_value *ucontrol) 442 { 443 struct tas *tas = snd_kcontrol_chip(kcontrol); 444 445 mutex_lock(&tas->mtx); 446 ucontrol->value.integer.value[0] = tas->drc_enabled; 447 mutex_unlock(&tas->mtx); 448 return 0; 449 } 450 451 static int tas_snd_drc_switch_put(struct snd_kcontrol *kcontrol, 452 struct snd_ctl_elem_value *ucontrol) 453 { 454 struct tas *tas = snd_kcontrol_chip(kcontrol); 455 456 mutex_lock(&tas->mtx); 457 if (tas->drc_enabled == ucontrol->value.integer.value[0]) { 458 mutex_unlock(&tas->mtx); 459 return 0; 460 } 461 462 tas->drc_enabled = !!ucontrol->value.integer.value[0]; 463 if (tas->hw_enabled) 464 tas3004_set_drc(tas); 465 mutex_unlock(&tas->mtx); 466 return 1; 467 } 468 469 static struct snd_kcontrol_new drc_switch_control = { 470 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 471 .name = "DRC Range Switch", 472 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 473 .info = tas_snd_drc_switch_info, 474 .get = tas_snd_drc_switch_get, 475 .put = tas_snd_drc_switch_put, 476 }; 477 478 static int tas_snd_capture_source_info(struct snd_kcontrol *kcontrol, 479 struct snd_ctl_elem_info *uinfo) 480 { 481 static char *texts[] = { "Line-In", "Microphone" }; 482 483 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 484 uinfo->count = 1; 485 uinfo->value.enumerated.items = 2; 486 if (uinfo->value.enumerated.item > 1) 487 uinfo->value.enumerated.item = 1; 488 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); 489 return 0; 490 } 491 492 static int tas_snd_capture_source_get(struct snd_kcontrol *kcontrol, 493 struct snd_ctl_elem_value *ucontrol) 494 { 495 struct tas *tas = snd_kcontrol_chip(kcontrol); 496 497 mutex_lock(&tas->mtx); 498 ucontrol->value.enumerated.item[0] = !!(tas->acr & TAS_ACR_INPUT_B); 499 mutex_unlock(&tas->mtx); 500 return 0; 501 } 502 503 static int tas_snd_capture_source_put(struct snd_kcontrol *kcontrol, 504 struct snd_ctl_elem_value *ucontrol) 505 { 506 struct tas *tas = snd_kcontrol_chip(kcontrol); 507 int oldacr; 508 509 if (ucontrol->value.enumerated.item[0] > 1) 510 return -EINVAL; 511 mutex_lock(&tas->mtx); 512 oldacr = tas->acr; 513 514 /* 515 * Despite what the data sheet says in one place, the 516 * TAS_ACR_B_MONAUREAL bit forces mono output even when 517 * input A (line in) is selected. 518 */ 519 tas->acr &= ~(TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL); 520 if (ucontrol->value.enumerated.item[0]) 521 tas->acr |= TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL | 522 TAS_ACR_B_MON_SEL_RIGHT; 523 if (oldacr == tas->acr) { 524 mutex_unlock(&tas->mtx); 525 return 0; 526 } 527 if (tas->hw_enabled) 528 tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr); 529 mutex_unlock(&tas->mtx); 530 return 1; 531 } 532 533 static struct snd_kcontrol_new capture_source_control = { 534 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 535 /* If we name this 'Input Source', it properly shows up in 536 * alsamixer as a selection, * but it's shown under the 537 * 'Playback' category. 538 * If I name it 'Capture Source', it shows up in strange 539 * ways (two bools of which one can be selected at a 540 * time) but at least it's shown in the 'Capture' 541 * category. 542 * I was told that this was due to backward compatibility, 543 * but I don't understand then why the mangling is *not* 544 * done when I name it "Input Source"..... 545 */ 546 .name = "Capture Source", 547 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 548 .info = tas_snd_capture_source_info, 549 .get = tas_snd_capture_source_get, 550 .put = tas_snd_capture_source_put, 551 }; 552 553 static int tas_snd_treble_info(struct snd_kcontrol *kcontrol, 554 struct snd_ctl_elem_info *uinfo) 555 { 556 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 557 uinfo->count = 1; 558 uinfo->value.integer.min = TAS3004_TREBLE_MIN; 559 uinfo->value.integer.max = TAS3004_TREBLE_MAX; 560 return 0; 561 } 562 563 static int tas_snd_treble_get(struct snd_kcontrol *kcontrol, 564 struct snd_ctl_elem_value *ucontrol) 565 { 566 struct tas *tas = snd_kcontrol_chip(kcontrol); 567 568 mutex_lock(&tas->mtx); 569 ucontrol->value.integer.value[0] = tas->treble; 570 mutex_unlock(&tas->mtx); 571 return 0; 572 } 573 574 static int tas_snd_treble_put(struct snd_kcontrol *kcontrol, 575 struct snd_ctl_elem_value *ucontrol) 576 { 577 struct tas *tas = snd_kcontrol_chip(kcontrol); 578 579 if (ucontrol->value.integer.value[0] < TAS3004_TREBLE_MIN || 580 ucontrol->value.integer.value[0] > TAS3004_TREBLE_MAX) 581 return -EINVAL; 582 mutex_lock(&tas->mtx); 583 if (tas->treble == ucontrol->value.integer.value[0]) { 584 mutex_unlock(&tas->mtx); 585 return 0; 586 } 587 588 tas->treble = ucontrol->value.integer.value[0]; 589 if (tas->hw_enabled) 590 tas_set_treble(tas); 591 mutex_unlock(&tas->mtx); 592 return 1; 593 } 594 595 static struct snd_kcontrol_new treble_control = { 596 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 597 .name = "Treble", 598 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 599 .info = tas_snd_treble_info, 600 .get = tas_snd_treble_get, 601 .put = tas_snd_treble_put, 602 }; 603 604 static int tas_snd_bass_info(struct snd_kcontrol *kcontrol, 605 struct snd_ctl_elem_info *uinfo) 606 { 607 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 608 uinfo->count = 1; 609 uinfo->value.integer.min = TAS3004_BASS_MIN; 610 uinfo->value.integer.max = TAS3004_BASS_MAX; 611 return 0; 612 } 613 614 static int tas_snd_bass_get(struct snd_kcontrol *kcontrol, 615 struct snd_ctl_elem_value *ucontrol) 616 { 617 struct tas *tas = snd_kcontrol_chip(kcontrol); 618 619 mutex_lock(&tas->mtx); 620 ucontrol->value.integer.value[0] = tas->bass; 621 mutex_unlock(&tas->mtx); 622 return 0; 623 } 624 625 static int tas_snd_bass_put(struct snd_kcontrol *kcontrol, 626 struct snd_ctl_elem_value *ucontrol) 627 { 628 struct tas *tas = snd_kcontrol_chip(kcontrol); 629 630 if (ucontrol->value.integer.value[0] < TAS3004_BASS_MIN || 631 ucontrol->value.integer.value[0] > TAS3004_BASS_MAX) 632 return -EINVAL; 633 mutex_lock(&tas->mtx); 634 if (tas->bass == ucontrol->value.integer.value[0]) { 635 mutex_unlock(&tas->mtx); 636 return 0; 637 } 638 639 tas->bass = ucontrol->value.integer.value[0]; 640 if (tas->hw_enabled) 641 tas_set_bass(tas); 642 mutex_unlock(&tas->mtx); 643 return 1; 644 } 645 646 static struct snd_kcontrol_new bass_control = { 647 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 648 .name = "Bass", 649 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 650 .info = tas_snd_bass_info, 651 .get = tas_snd_bass_get, 652 .put = tas_snd_bass_put, 653 }; 654 655 static struct transfer_info tas_transfers[] = { 656 { 657 /* input */ 658 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE, 659 .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 660 .transfer_in = 1, 661 }, 662 { 663 /* output */ 664 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE, 665 .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 666 .transfer_in = 0, 667 }, 668 {} 669 }; 670 671 static int tas_usable(struct codec_info_item *cii, 672 struct transfer_info *ti, 673 struct transfer_info *out) 674 { 675 return 1; 676 } 677 678 static int tas_reset_init(struct tas *tas) 679 { 680 u8 tmp; 681 682 tas->codec.gpio->methods->all_amps_off(tas->codec.gpio); 683 msleep(5); 684 tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0); 685 msleep(5); 686 tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 1); 687 msleep(20); 688 tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0); 689 msleep(10); 690 tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio); 691 692 tmp = TAS_MCS_SCLK64 | TAS_MCS_SPORT_MODE_I2S | TAS_MCS_SPORT_WL_24BIT; 693 if (tas_write_reg(tas, TAS_REG_MCS, 1, &tmp)) 694 goto outerr; 695 696 tas->acr |= TAS_ACR_ANALOG_PDOWN; 697 if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr)) 698 goto outerr; 699 700 tmp = 0; 701 if (tas_write_reg(tas, TAS_REG_MCS2, 1, &tmp)) 702 goto outerr; 703 704 tas3004_set_drc(tas); 705 706 /* Set treble & bass to 0dB */ 707 tas->treble = TAS3004_TREBLE_ZERO; 708 tas->bass = TAS3004_BASS_ZERO; 709 tas_set_treble(tas); 710 tas_set_bass(tas); 711 712 tas->acr &= ~TAS_ACR_ANALOG_PDOWN; 713 if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr)) 714 goto outerr; 715 716 return 0; 717 outerr: 718 return -ENODEV; 719 } 720 721 static int tas_switch_clock(struct codec_info_item *cii, enum clock_switch clock) 722 { 723 struct tas *tas = cii->codec_data; 724 725 switch(clock) { 726 case CLOCK_SWITCH_PREPARE_SLAVE: 727 /* Clocks are going away, mute mute mute */ 728 tas->codec.gpio->methods->all_amps_off(tas->codec.gpio); 729 tas->hw_enabled = 0; 730 break; 731 case CLOCK_SWITCH_SLAVE: 732 /* Clocks are back, re-init the codec */ 733 mutex_lock(&tas->mtx); 734 tas_reset_init(tas); 735 tas_set_volume(tas); 736 tas_set_mixer(tas); 737 tas->hw_enabled = 1; 738 tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio); 739 mutex_unlock(&tas->mtx); 740 break; 741 default: 742 /* doesn't happen as of now */ 743 return -EINVAL; 744 } 745 return 0; 746 } 747 748 #ifdef CONFIG_PM 749 /* we are controlled via i2c and assume that is always up 750 * If that wasn't the case, we'd have to suspend once 751 * our i2c device is suspended, and then take note of that! */ 752 static int tas_suspend(struct tas *tas) 753 { 754 mutex_lock(&tas->mtx); 755 tas->hw_enabled = 0; 756 tas->acr |= TAS_ACR_ANALOG_PDOWN; 757 tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr); 758 mutex_unlock(&tas->mtx); 759 return 0; 760 } 761 762 static int tas_resume(struct tas *tas) 763 { 764 /* reset codec */ 765 mutex_lock(&tas->mtx); 766 tas_reset_init(tas); 767 tas_set_volume(tas); 768 tas_set_mixer(tas); 769 tas->hw_enabled = 1; 770 mutex_unlock(&tas->mtx); 771 return 0; 772 } 773 774 static int _tas_suspend(struct codec_info_item *cii, pm_message_t state) 775 { 776 return tas_suspend(cii->codec_data); 777 } 778 779 static int _tas_resume(struct codec_info_item *cii) 780 { 781 return tas_resume(cii->codec_data); 782 } 783 #else /* CONFIG_PM */ 784 #define _tas_suspend NULL 785 #define _tas_resume NULL 786 #endif /* CONFIG_PM */ 787 788 static struct codec_info tas_codec_info = { 789 .transfers = tas_transfers, 790 /* in theory, we can drive it at 512 too... 791 * but so far the framework doesn't allow 792 * for that and I don't see much point in it. */ 793 .sysclock_factor = 256, 794 /* same here, could be 32 for just one 16 bit format */ 795 .bus_factor = 64, 796 .owner = THIS_MODULE, 797 .usable = tas_usable, 798 .switch_clock = tas_switch_clock, 799 .suspend = _tas_suspend, 800 .resume = _tas_resume, 801 }; 802 803 static int tas_init_codec(struct aoa_codec *codec) 804 { 805 struct tas *tas = codec_to_tas(codec); 806 int err; 807 808 if (!tas->codec.gpio || !tas->codec.gpio->methods) { 809 printk(KERN_ERR PFX "gpios not assigned!!\n"); 810 return -EINVAL; 811 } 812 813 mutex_lock(&tas->mtx); 814 if (tas_reset_init(tas)) { 815 printk(KERN_ERR PFX "tas failed to initialise\n"); 816 mutex_unlock(&tas->mtx); 817 return -ENXIO; 818 } 819 tas->hw_enabled = 1; 820 mutex_unlock(&tas->mtx); 821 822 if (tas->codec.soundbus_dev->attach_codec(tas->codec.soundbus_dev, 823 aoa_get_card(), 824 &tas_codec_info, tas)) { 825 printk(KERN_ERR PFX "error attaching tas to soundbus\n"); 826 return -ENODEV; 827 } 828 829 if (aoa_snd_device_new(SNDRV_DEV_LOWLEVEL, tas, &ops)) { 830 printk(KERN_ERR PFX "failed to create tas snd device!\n"); 831 return -ENODEV; 832 } 833 err = aoa_snd_ctl_add(snd_ctl_new1(&volume_control, tas)); 834 if (err) 835 goto error; 836 837 err = aoa_snd_ctl_add(snd_ctl_new1(&mute_control, tas)); 838 if (err) 839 goto error; 840 841 err = aoa_snd_ctl_add(snd_ctl_new1(&pcm1_control, tas)); 842 if (err) 843 goto error; 844 845 err = aoa_snd_ctl_add(snd_ctl_new1(&monitor_control, tas)); 846 if (err) 847 goto error; 848 849 err = aoa_snd_ctl_add(snd_ctl_new1(&capture_source_control, tas)); 850 if (err) 851 goto error; 852 853 err = aoa_snd_ctl_add(snd_ctl_new1(&drc_range_control, tas)); 854 if (err) 855 goto error; 856 857 err = aoa_snd_ctl_add(snd_ctl_new1(&drc_switch_control, tas)); 858 if (err) 859 goto error; 860 861 err = aoa_snd_ctl_add(snd_ctl_new1(&treble_control, tas)); 862 if (err) 863 goto error; 864 865 err = aoa_snd_ctl_add(snd_ctl_new1(&bass_control, tas)); 866 if (err) 867 goto error; 868 869 return 0; 870 error: 871 tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas); 872 snd_device_free(aoa_get_card(), tas); 873 return err; 874 } 875 876 static void tas_exit_codec(struct aoa_codec *codec) 877 { 878 struct tas *tas = codec_to_tas(codec); 879 880 if (!tas->codec.soundbus_dev) 881 return; 882 tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas); 883 } 884 885 886 static int tas_create(struct i2c_adapter *adapter, 887 struct device_node *node, 888 int addr) 889 { 890 struct i2c_board_info info; 891 struct i2c_client *client; 892 893 memset(&info, 0, sizeof(struct i2c_board_info)); 894 strlcpy(info.type, "aoa_codec_tas", I2C_NAME_SIZE); 895 info.addr = addr; 896 info.platform_data = node; 897 898 client = i2c_new_device(adapter, &info); 899 if (!client) 900 return -ENODEV; 901 /* 902 * We know the driver is already loaded, so the device should be 903 * already bound. If not it means binding failed, and then there 904 * is no point in keeping the device instantiated. 905 */ 906 if (!client->driver) { 907 i2c_unregister_device(client); 908 return -ENODEV; 909 } 910 911 /* 912 * Let i2c-core delete that device on driver removal. 913 * This is safe because i2c-core holds the core_lock mutex for us. 914 */ 915 list_add_tail(&client->detected, &client->driver->clients); 916 return 0; 917 } 918 919 static int tas_i2c_probe(struct i2c_client *client, 920 const struct i2c_device_id *id) 921 { 922 struct device_node *node = client->dev.platform_data; 923 struct tas *tas; 924 925 tas = kzalloc(sizeof(struct tas), GFP_KERNEL); 926 927 if (!tas) 928 return -ENOMEM; 929 930 mutex_init(&tas->mtx); 931 tas->i2c = client; 932 i2c_set_clientdata(client, tas); 933 934 /* seems that half is a saner default */ 935 tas->drc_range = TAS3004_DRC_MAX / 2; 936 937 strlcpy(tas->codec.name, "tas", MAX_CODEC_NAME_LEN); 938 tas->codec.owner = THIS_MODULE; 939 tas->codec.init = tas_init_codec; 940 tas->codec.exit = tas_exit_codec; 941 tas->codec.node = of_node_get(node); 942 943 if (aoa_codec_register(&tas->codec)) { 944 goto fail; 945 } 946 printk(KERN_DEBUG 947 "snd-aoa-codec-tas: tas found, addr 0x%02x on %s\n", 948 (unsigned int)client->addr, node->full_name); 949 return 0; 950 fail: 951 mutex_destroy(&tas->mtx); 952 kfree(tas); 953 return -EINVAL; 954 } 955 956 static int tas_i2c_attach(struct i2c_adapter *adapter) 957 { 958 struct device_node *busnode, *dev = NULL; 959 struct pmac_i2c_bus *bus; 960 961 bus = pmac_i2c_adapter_to_bus(adapter); 962 if (bus == NULL) 963 return -ENODEV; 964 busnode = pmac_i2c_get_bus_node(bus); 965 966 while ((dev = of_get_next_child(busnode, dev)) != NULL) { 967 if (of_device_is_compatible(dev, "tas3004")) { 968 const u32 *addr; 969 printk(KERN_DEBUG PFX "found tas3004\n"); 970 addr = of_get_property(dev, "reg", NULL); 971 if (!addr) 972 continue; 973 return tas_create(adapter, dev, ((*addr) >> 1) & 0x7f); 974 } 975 /* older machines have no 'codec' node with a 'compatible' 976 * property that says 'tas3004', they just have a 'deq' 977 * node without any such property... */ 978 if (strcmp(dev->name, "deq") == 0) { 979 const u32 *_addr; 980 u32 addr; 981 printk(KERN_DEBUG PFX "found 'deq' node\n"); 982 _addr = of_get_property(dev, "i2c-address", NULL); 983 if (!_addr) 984 continue; 985 addr = ((*_addr) >> 1) & 0x7f; 986 /* now, if the address doesn't match any of the two 987 * that a tas3004 can have, we cannot handle this. 988 * I doubt it ever happens but hey. */ 989 if (addr != 0x34 && addr != 0x35) 990 continue; 991 return tas_create(adapter, dev, addr); 992 } 993 } 994 return -ENODEV; 995 } 996 997 static int tas_i2c_remove(struct i2c_client *client) 998 { 999 struct tas *tas = i2c_get_clientdata(client); 1000 u8 tmp = TAS_ACR_ANALOG_PDOWN; 1001 1002 aoa_codec_unregister(&tas->codec); 1003 of_node_put(tas->codec.node); 1004 1005 /* power down codec chip */ 1006 tas_write_reg(tas, TAS_REG_ACR, 1, &tmp); 1007 1008 mutex_destroy(&tas->mtx); 1009 kfree(tas); 1010 return 0; 1011 } 1012 1013 static const struct i2c_device_id tas_i2c_id[] = { 1014 { "aoa_codec_tas", 0 }, 1015 { } 1016 }; 1017 1018 static struct i2c_driver tas_driver = { 1019 .driver = { 1020 .name = "aoa_codec_tas", 1021 .owner = THIS_MODULE, 1022 }, 1023 .attach_adapter = tas_i2c_attach, 1024 .probe = tas_i2c_probe, 1025 .remove = tas_i2c_remove, 1026 .id_table = tas_i2c_id, 1027 }; 1028 1029 static int __init tas_init(void) 1030 { 1031 return i2c_add_driver(&tas_driver); 1032 } 1033 1034 static void __exit tas_exit(void) 1035 { 1036 i2c_del_driver(&tas_driver); 1037 } 1038 1039 module_init(tas_init); 1040 module_exit(tas_exit); 1041