xref: /linux/security/selinux/xfrm.c (revision 8e07e0e3964ca4e23ce7b68e2096fe660a888942)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Security-Enhanced Linux (SELinux) security module
4  *
5  *  This file contains the SELinux XFRM hook function implementations.
6  *
7  *  Authors:  Serge Hallyn <sergeh@us.ibm.com>
8  *	      Trent Jaeger <jaegert@us.ibm.com>
9  *
10  *  Updated: Venkat Yekkirala <vyekkirala@TrustedCS.com>
11  *
12  *           Granular IPSec Associations for use in MLS environments.
13  *
14  *  Copyright (C) 2005 International Business Machines Corporation
15  *  Copyright (C) 2006 Trusted Computer Solutions, Inc.
16  */
17 
18 /*
19  * USAGE:
20  * NOTES:
21  *   1. Make sure to enable the following options in your kernel config:
22  *	CONFIG_SECURITY=y
23  *	CONFIG_SECURITY_NETWORK=y
24  *	CONFIG_SECURITY_NETWORK_XFRM=y
25  *	CONFIG_SECURITY_SELINUX=m/y
26  * ISSUES:
27  *   1. Caching packets, so they are not dropped during negotiation
28  *   2. Emulating a reasonable SO_PEERSEC across machines
29  *   3. Testing addition of sk_policy's with security context via setsockopt
30  */
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/security.h>
34 #include <linux/types.h>
35 #include <linux/slab.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/skbuff.h>
39 #include <linux/xfrm.h>
40 #include <net/xfrm.h>
41 #include <net/checksum.h>
42 #include <net/udp.h>
43 #include <linux/atomic.h>
44 
45 #include "avc.h"
46 #include "objsec.h"
47 #include "xfrm.h"
48 
49 /* Labeled XFRM instance counter */
50 atomic_t selinux_xfrm_refcount __read_mostly = ATOMIC_INIT(0);
51 
52 /*
53  * Returns true if the context is an LSM/SELinux context.
54  */
55 static inline int selinux_authorizable_ctx(struct xfrm_sec_ctx *ctx)
56 {
57 	return (ctx &&
58 		(ctx->ctx_doi == XFRM_SC_DOI_LSM) &&
59 		(ctx->ctx_alg == XFRM_SC_ALG_SELINUX));
60 }
61 
62 /*
63  * Returns true if the xfrm contains a security blob for SELinux.
64  */
65 static inline int selinux_authorizable_xfrm(struct xfrm_state *x)
66 {
67 	return selinux_authorizable_ctx(x->security);
68 }
69 
70 /*
71  * Allocates a xfrm_sec_state and populates it using the supplied security
72  * xfrm_user_sec_ctx context.
73  */
74 static int selinux_xfrm_alloc_user(struct xfrm_sec_ctx **ctxp,
75 				   struct xfrm_user_sec_ctx *uctx,
76 				   gfp_t gfp)
77 {
78 	int rc;
79 	const struct task_security_struct *tsec = selinux_cred(current_cred());
80 	struct xfrm_sec_ctx *ctx = NULL;
81 	u32 str_len;
82 
83 	if (ctxp == NULL || uctx == NULL ||
84 	    uctx->ctx_doi != XFRM_SC_DOI_LSM ||
85 	    uctx->ctx_alg != XFRM_SC_ALG_SELINUX)
86 		return -EINVAL;
87 
88 	str_len = uctx->ctx_len;
89 	if (str_len >= PAGE_SIZE)
90 		return -ENOMEM;
91 
92 	ctx = kmalloc(struct_size(ctx, ctx_str, str_len + 1), gfp);
93 	if (!ctx)
94 		return -ENOMEM;
95 
96 	ctx->ctx_doi = XFRM_SC_DOI_LSM;
97 	ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
98 	ctx->ctx_len = str_len;
99 	memcpy(ctx->ctx_str, &uctx[1], str_len);
100 	ctx->ctx_str[str_len] = '\0';
101 	rc = security_context_to_sid(ctx->ctx_str, str_len,
102 				     &ctx->ctx_sid, gfp);
103 	if (rc)
104 		goto err;
105 
106 	rc = avc_has_perm(tsec->sid, ctx->ctx_sid,
107 			  SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT, NULL);
108 	if (rc)
109 		goto err;
110 
111 	*ctxp = ctx;
112 	atomic_inc(&selinux_xfrm_refcount);
113 	return 0;
114 
115 err:
116 	kfree(ctx);
117 	return rc;
118 }
119 
120 /*
121  * Free the xfrm_sec_ctx structure.
122  */
123 static void selinux_xfrm_free(struct xfrm_sec_ctx *ctx)
124 {
125 	if (!ctx)
126 		return;
127 
128 	atomic_dec(&selinux_xfrm_refcount);
129 	kfree(ctx);
130 }
131 
132 /*
133  * Authorize the deletion of a labeled SA or policy rule.
134  */
135 static int selinux_xfrm_delete(struct xfrm_sec_ctx *ctx)
136 {
137 	const struct task_security_struct *tsec = selinux_cred(current_cred());
138 
139 	if (!ctx)
140 		return 0;
141 
142 	return avc_has_perm(tsec->sid, ctx->ctx_sid,
143 			    SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT,
144 			    NULL);
145 }
146 
147 /*
148  * LSM hook implementation that authorizes that a flow can use a xfrm policy
149  * rule.
150  */
151 int selinux_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
152 {
153 	int rc;
154 
155 	/* All flows should be treated as polmatch'ing an otherwise applicable
156 	 * "non-labeled" policy. This would prevent inadvertent "leaks". */
157 	if (!ctx)
158 		return 0;
159 
160 	/* Context sid is either set to label or ANY_ASSOC */
161 	if (!selinux_authorizable_ctx(ctx))
162 		return -EINVAL;
163 
164 	rc = avc_has_perm(fl_secid, ctx->ctx_sid,
165 			  SECCLASS_ASSOCIATION, ASSOCIATION__POLMATCH, NULL);
166 	return (rc == -EACCES ? -ESRCH : rc);
167 }
168 
169 /*
170  * LSM hook implementation that authorizes that a state matches
171  * the given policy, flow combo.
172  */
173 int selinux_xfrm_state_pol_flow_match(struct xfrm_state *x,
174 				      struct xfrm_policy *xp,
175 				      const struct flowi_common *flic)
176 {
177 	u32 state_sid;
178 	u32 flic_sid;
179 
180 	if (!xp->security)
181 		if (x->security)
182 			/* unlabeled policy and labeled SA can't match */
183 			return 0;
184 		else
185 			/* unlabeled policy and unlabeled SA match all flows */
186 			return 1;
187 	else
188 		if (!x->security)
189 			/* unlabeled SA and labeled policy can't match */
190 			return 0;
191 		else
192 			if (!selinux_authorizable_xfrm(x))
193 				/* Not a SELinux-labeled SA */
194 				return 0;
195 
196 	state_sid = x->security->ctx_sid;
197 	flic_sid = flic->flowic_secid;
198 
199 	if (flic_sid != state_sid)
200 		return 0;
201 
202 	/* We don't need a separate SA Vs. policy polmatch check since the SA
203 	 * is now of the same label as the flow and a flow Vs. policy polmatch
204 	 * check had already happened in selinux_xfrm_policy_lookup() above. */
205 	return (avc_has_perm(flic_sid, state_sid,
206 			     SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO,
207 			     NULL) ? 0 : 1);
208 }
209 
210 static u32 selinux_xfrm_skb_sid_egress(struct sk_buff *skb)
211 {
212 	struct dst_entry *dst = skb_dst(skb);
213 	struct xfrm_state *x;
214 
215 	if (dst == NULL)
216 		return SECSID_NULL;
217 	x = dst->xfrm;
218 	if (x == NULL || !selinux_authorizable_xfrm(x))
219 		return SECSID_NULL;
220 
221 	return x->security->ctx_sid;
222 }
223 
224 static int selinux_xfrm_skb_sid_ingress(struct sk_buff *skb,
225 					u32 *sid, int ckall)
226 {
227 	u32 sid_session = SECSID_NULL;
228 	struct sec_path *sp = skb_sec_path(skb);
229 
230 	if (sp) {
231 		int i;
232 
233 		for (i = sp->len - 1; i >= 0; i--) {
234 			struct xfrm_state *x = sp->xvec[i];
235 			if (selinux_authorizable_xfrm(x)) {
236 				struct xfrm_sec_ctx *ctx = x->security;
237 
238 				if (sid_session == SECSID_NULL) {
239 					sid_session = ctx->ctx_sid;
240 					if (!ckall)
241 						goto out;
242 				} else if (sid_session != ctx->ctx_sid) {
243 					*sid = SECSID_NULL;
244 					return -EINVAL;
245 				}
246 			}
247 		}
248 	}
249 
250 out:
251 	*sid = sid_session;
252 	return 0;
253 }
254 
255 /*
256  * LSM hook implementation that checks and/or returns the xfrm sid for the
257  * incoming packet.
258  */
259 int selinux_xfrm_decode_session(struct sk_buff *skb, u32 *sid, int ckall)
260 {
261 	if (skb == NULL) {
262 		*sid = SECSID_NULL;
263 		return 0;
264 	}
265 	return selinux_xfrm_skb_sid_ingress(skb, sid, ckall);
266 }
267 
268 int selinux_xfrm_skb_sid(struct sk_buff *skb, u32 *sid)
269 {
270 	int rc;
271 
272 	rc = selinux_xfrm_skb_sid_ingress(skb, sid, 0);
273 	if (rc == 0 && *sid == SECSID_NULL)
274 		*sid = selinux_xfrm_skb_sid_egress(skb);
275 
276 	return rc;
277 }
278 
279 /*
280  * LSM hook implementation that allocs and transfers uctx spec to xfrm_policy.
281  */
282 int selinux_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
283 			      struct xfrm_user_sec_ctx *uctx,
284 			      gfp_t gfp)
285 {
286 	return selinux_xfrm_alloc_user(ctxp, uctx, gfp);
287 }
288 
289 /*
290  * LSM hook implementation that copies security data structure from old to new
291  * for policy cloning.
292  */
293 int selinux_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
294 			      struct xfrm_sec_ctx **new_ctxp)
295 {
296 	struct xfrm_sec_ctx *new_ctx;
297 
298 	if (!old_ctx)
299 		return 0;
300 
301 	new_ctx = kmemdup(old_ctx, sizeof(*old_ctx) + old_ctx->ctx_len,
302 			  GFP_ATOMIC);
303 	if (!new_ctx)
304 		return -ENOMEM;
305 	atomic_inc(&selinux_xfrm_refcount);
306 	*new_ctxp = new_ctx;
307 
308 	return 0;
309 }
310 
311 /*
312  * LSM hook implementation that frees xfrm_sec_ctx security information.
313  */
314 void selinux_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
315 {
316 	selinux_xfrm_free(ctx);
317 }
318 
319 /*
320  * LSM hook implementation that authorizes deletion of labeled policies.
321  */
322 int selinux_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
323 {
324 	return selinux_xfrm_delete(ctx);
325 }
326 
327 /*
328  * LSM hook implementation that allocates a xfrm_sec_state, populates it using
329  * the supplied security context, and assigns it to the xfrm_state.
330  */
331 int selinux_xfrm_state_alloc(struct xfrm_state *x,
332 			     struct xfrm_user_sec_ctx *uctx)
333 {
334 	return selinux_xfrm_alloc_user(&x->security, uctx, GFP_KERNEL);
335 }
336 
337 /*
338  * LSM hook implementation that allocates a xfrm_sec_state and populates based
339  * on a secid.
340  */
341 int selinux_xfrm_state_alloc_acquire(struct xfrm_state *x,
342 				     struct xfrm_sec_ctx *polsec, u32 secid)
343 {
344 	int rc;
345 	struct xfrm_sec_ctx *ctx;
346 	char *ctx_str = NULL;
347 	u32 str_len;
348 
349 	if (!polsec)
350 		return 0;
351 
352 	if (secid == 0)
353 		return -EINVAL;
354 
355 	rc = security_sid_to_context(secid, &ctx_str,
356 				     &str_len);
357 	if (rc)
358 		return rc;
359 
360 	ctx = kmalloc(struct_size(ctx, ctx_str, str_len), GFP_ATOMIC);
361 	if (!ctx) {
362 		rc = -ENOMEM;
363 		goto out;
364 	}
365 
366 	ctx->ctx_doi = XFRM_SC_DOI_LSM;
367 	ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
368 	ctx->ctx_sid = secid;
369 	ctx->ctx_len = str_len;
370 	memcpy(ctx->ctx_str, ctx_str, str_len);
371 
372 	x->security = ctx;
373 	atomic_inc(&selinux_xfrm_refcount);
374 out:
375 	kfree(ctx_str);
376 	return rc;
377 }
378 
379 /*
380  * LSM hook implementation that frees xfrm_state security information.
381  */
382 void selinux_xfrm_state_free(struct xfrm_state *x)
383 {
384 	selinux_xfrm_free(x->security);
385 }
386 
387 /*
388  * LSM hook implementation that authorizes deletion of labeled SAs.
389  */
390 int selinux_xfrm_state_delete(struct xfrm_state *x)
391 {
392 	return selinux_xfrm_delete(x->security);
393 }
394 
395 /*
396  * LSM hook that controls access to unlabelled packets.  If
397  * a xfrm_state is authorizable (defined by macro) then it was
398  * already authorized by the IPSec process.  If not, then
399  * we need to check for unlabelled access since this may not have
400  * gone thru the IPSec process.
401  */
402 int selinux_xfrm_sock_rcv_skb(u32 sk_sid, struct sk_buff *skb,
403 			      struct common_audit_data *ad)
404 {
405 	int i;
406 	struct sec_path *sp = skb_sec_path(skb);
407 	u32 peer_sid = SECINITSID_UNLABELED;
408 
409 	if (sp) {
410 		for (i = 0; i < sp->len; i++) {
411 			struct xfrm_state *x = sp->xvec[i];
412 
413 			if (x && selinux_authorizable_xfrm(x)) {
414 				struct xfrm_sec_ctx *ctx = x->security;
415 				peer_sid = ctx->ctx_sid;
416 				break;
417 			}
418 		}
419 	}
420 
421 	/* This check even when there's no association involved is intended,
422 	 * according to Trent Jaeger, to make sure a process can't engage in
423 	 * non-IPsec communication unless explicitly allowed by policy. */
424 	return avc_has_perm(sk_sid, peer_sid,
425 			    SECCLASS_ASSOCIATION, ASSOCIATION__RECVFROM, ad);
426 }
427 
428 /*
429  * POSTROUTE_LAST hook's XFRM processing:
430  * If we have no security association, then we need to determine
431  * whether the socket is allowed to send to an unlabelled destination.
432  * If we do have a authorizable security association, then it has already been
433  * checked in the selinux_xfrm_state_pol_flow_match hook above.
434  */
435 int selinux_xfrm_postroute_last(u32 sk_sid, struct sk_buff *skb,
436 				struct common_audit_data *ad, u8 proto)
437 {
438 	struct dst_entry *dst;
439 
440 	switch (proto) {
441 	case IPPROTO_AH:
442 	case IPPROTO_ESP:
443 	case IPPROTO_COMP:
444 		/* We should have already seen this packet once before it
445 		 * underwent xfrm(s). No need to subject it to the unlabeled
446 		 * check. */
447 		return 0;
448 	default:
449 		break;
450 	}
451 
452 	dst = skb_dst(skb);
453 	if (dst) {
454 		struct dst_entry *iter;
455 
456 		for (iter = dst; iter != NULL; iter = xfrm_dst_child(iter)) {
457 			struct xfrm_state *x = iter->xfrm;
458 
459 			if (x && selinux_authorizable_xfrm(x))
460 				return 0;
461 		}
462 	}
463 
464 	/* This check even when there's no association involved is intended,
465 	 * according to Trent Jaeger, to make sure a process can't engage in
466 	 * non-IPsec communication unless explicitly allowed by policy. */
467 	return avc_has_perm(sk_sid, SECINITSID_UNLABELED,
468 			    SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO, ad);
469 }
470