xref: /linux/security/selinux/ss/services.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *           James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  * 	Added conditional policy language extensions
15  *
16  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
17  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
18  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
19  *	This program is free software; you can redistribute it and/or modify
20  *  	it under the terms of the GNU General Public License as published by
21  *	the Free Software Foundation, version 2.
22  */
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/spinlock.h>
27 #include <linux/errno.h>
28 #include <linux/in.h>
29 #include <linux/sched.h>
30 #include <linux/audit.h>
31 #include <linux/mutex.h>
32 
33 #include "flask.h"
34 #include "avc.h"
35 #include "avc_ss.h"
36 #include "security.h"
37 #include "context.h"
38 #include "policydb.h"
39 #include "sidtab.h"
40 #include "services.h"
41 #include "conditional.h"
42 #include "mls.h"
43 
44 extern void selnl_notify_policyload(u32 seqno);
45 unsigned int policydb_loaded_version;
46 
47 static DEFINE_RWLOCK(policy_rwlock);
48 #define POLICY_RDLOCK read_lock(&policy_rwlock)
49 #define POLICY_WRLOCK write_lock_irq(&policy_rwlock)
50 #define POLICY_RDUNLOCK read_unlock(&policy_rwlock)
51 #define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock)
52 
53 static DEFINE_MUTEX(load_mutex);
54 #define LOAD_LOCK mutex_lock(&load_mutex)
55 #define LOAD_UNLOCK mutex_unlock(&load_mutex)
56 
57 static struct sidtab sidtab;
58 struct policydb policydb;
59 int ss_initialized = 0;
60 
61 /*
62  * The largest sequence number that has been used when
63  * providing an access decision to the access vector cache.
64  * The sequence number only changes when a policy change
65  * occurs.
66  */
67 static u32 latest_granting = 0;
68 
69 /* Forward declaration. */
70 static int context_struct_to_string(struct context *context, char **scontext,
71 				    u32 *scontext_len);
72 
73 /*
74  * Return the boolean value of a constraint expression
75  * when it is applied to the specified source and target
76  * security contexts.
77  *
78  * xcontext is a special beast...  It is used by the validatetrans rules
79  * only.  For these rules, scontext is the context before the transition,
80  * tcontext is the context after the transition, and xcontext is the context
81  * of the process performing the transition.  All other callers of
82  * constraint_expr_eval should pass in NULL for xcontext.
83  */
84 static int constraint_expr_eval(struct context *scontext,
85 				struct context *tcontext,
86 				struct context *xcontext,
87 				struct constraint_expr *cexpr)
88 {
89 	u32 val1, val2;
90 	struct context *c;
91 	struct role_datum *r1, *r2;
92 	struct mls_level *l1, *l2;
93 	struct constraint_expr *e;
94 	int s[CEXPR_MAXDEPTH];
95 	int sp = -1;
96 
97 	for (e = cexpr; e; e = e->next) {
98 		switch (e->expr_type) {
99 		case CEXPR_NOT:
100 			BUG_ON(sp < 0);
101 			s[sp] = !s[sp];
102 			break;
103 		case CEXPR_AND:
104 			BUG_ON(sp < 1);
105 			sp--;
106 			s[sp] &= s[sp+1];
107 			break;
108 		case CEXPR_OR:
109 			BUG_ON(sp < 1);
110 			sp--;
111 			s[sp] |= s[sp+1];
112 			break;
113 		case CEXPR_ATTR:
114 			if (sp == (CEXPR_MAXDEPTH-1))
115 				return 0;
116 			switch (e->attr) {
117 			case CEXPR_USER:
118 				val1 = scontext->user;
119 				val2 = tcontext->user;
120 				break;
121 			case CEXPR_TYPE:
122 				val1 = scontext->type;
123 				val2 = tcontext->type;
124 				break;
125 			case CEXPR_ROLE:
126 				val1 = scontext->role;
127 				val2 = tcontext->role;
128 				r1 = policydb.role_val_to_struct[val1 - 1];
129 				r2 = policydb.role_val_to_struct[val2 - 1];
130 				switch (e->op) {
131 				case CEXPR_DOM:
132 					s[++sp] = ebitmap_get_bit(&r1->dominates,
133 								  val2 - 1);
134 					continue;
135 				case CEXPR_DOMBY:
136 					s[++sp] = ebitmap_get_bit(&r2->dominates,
137 								  val1 - 1);
138 					continue;
139 				case CEXPR_INCOMP:
140 					s[++sp] = ( !ebitmap_get_bit(&r1->dominates,
141 								     val2 - 1) &&
142 						    !ebitmap_get_bit(&r2->dominates,
143 								     val1 - 1) );
144 					continue;
145 				default:
146 					break;
147 				}
148 				break;
149 			case CEXPR_L1L2:
150 				l1 = &(scontext->range.level[0]);
151 				l2 = &(tcontext->range.level[0]);
152 				goto mls_ops;
153 			case CEXPR_L1H2:
154 				l1 = &(scontext->range.level[0]);
155 				l2 = &(tcontext->range.level[1]);
156 				goto mls_ops;
157 			case CEXPR_H1L2:
158 				l1 = &(scontext->range.level[1]);
159 				l2 = &(tcontext->range.level[0]);
160 				goto mls_ops;
161 			case CEXPR_H1H2:
162 				l1 = &(scontext->range.level[1]);
163 				l2 = &(tcontext->range.level[1]);
164 				goto mls_ops;
165 			case CEXPR_L1H1:
166 				l1 = &(scontext->range.level[0]);
167 				l2 = &(scontext->range.level[1]);
168 				goto mls_ops;
169 			case CEXPR_L2H2:
170 				l1 = &(tcontext->range.level[0]);
171 				l2 = &(tcontext->range.level[1]);
172 				goto mls_ops;
173 mls_ops:
174 			switch (e->op) {
175 			case CEXPR_EQ:
176 				s[++sp] = mls_level_eq(l1, l2);
177 				continue;
178 			case CEXPR_NEQ:
179 				s[++sp] = !mls_level_eq(l1, l2);
180 				continue;
181 			case CEXPR_DOM:
182 				s[++sp] = mls_level_dom(l1, l2);
183 				continue;
184 			case CEXPR_DOMBY:
185 				s[++sp] = mls_level_dom(l2, l1);
186 				continue;
187 			case CEXPR_INCOMP:
188 				s[++sp] = mls_level_incomp(l2, l1);
189 				continue;
190 			default:
191 				BUG();
192 				return 0;
193 			}
194 			break;
195 			default:
196 				BUG();
197 				return 0;
198 			}
199 
200 			switch (e->op) {
201 			case CEXPR_EQ:
202 				s[++sp] = (val1 == val2);
203 				break;
204 			case CEXPR_NEQ:
205 				s[++sp] = (val1 != val2);
206 				break;
207 			default:
208 				BUG();
209 				return 0;
210 			}
211 			break;
212 		case CEXPR_NAMES:
213 			if (sp == (CEXPR_MAXDEPTH-1))
214 				return 0;
215 			c = scontext;
216 			if (e->attr & CEXPR_TARGET)
217 				c = tcontext;
218 			else if (e->attr & CEXPR_XTARGET) {
219 				c = xcontext;
220 				if (!c) {
221 					BUG();
222 					return 0;
223 				}
224 			}
225 			if (e->attr & CEXPR_USER)
226 				val1 = c->user;
227 			else if (e->attr & CEXPR_ROLE)
228 				val1 = c->role;
229 			else if (e->attr & CEXPR_TYPE)
230 				val1 = c->type;
231 			else {
232 				BUG();
233 				return 0;
234 			}
235 
236 			switch (e->op) {
237 			case CEXPR_EQ:
238 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
239 				break;
240 			case CEXPR_NEQ:
241 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
242 				break;
243 			default:
244 				BUG();
245 				return 0;
246 			}
247 			break;
248 		default:
249 			BUG();
250 			return 0;
251 		}
252 	}
253 
254 	BUG_ON(sp != 0);
255 	return s[0];
256 }
257 
258 /*
259  * Compute access vectors based on a context structure pair for
260  * the permissions in a particular class.
261  */
262 static int context_struct_compute_av(struct context *scontext,
263 				     struct context *tcontext,
264 				     u16 tclass,
265 				     u32 requested,
266 				     struct av_decision *avd)
267 {
268 	struct constraint_node *constraint;
269 	struct role_allow *ra;
270 	struct avtab_key avkey;
271 	struct avtab_node *node;
272 	struct class_datum *tclass_datum;
273 	struct ebitmap *sattr, *tattr;
274 	struct ebitmap_node *snode, *tnode;
275 	unsigned int i, j;
276 
277 	/*
278 	 * Remap extended Netlink classes for old policy versions.
279 	 * Do this here rather than socket_type_to_security_class()
280 	 * in case a newer policy version is loaded, allowing sockets
281 	 * to remain in the correct class.
282 	 */
283 	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
284 		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
285 		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
286 			tclass = SECCLASS_NETLINK_SOCKET;
287 
288 	if (!tclass || tclass > policydb.p_classes.nprim) {
289 		printk(KERN_ERR "security_compute_av:  unrecognized class %d\n",
290 		       tclass);
291 		return -EINVAL;
292 	}
293 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
294 
295 	/*
296 	 * Initialize the access vectors to the default values.
297 	 */
298 	avd->allowed = 0;
299 	avd->decided = 0xffffffff;
300 	avd->auditallow = 0;
301 	avd->auditdeny = 0xffffffff;
302 	avd->seqno = latest_granting;
303 
304 	/*
305 	 * If a specific type enforcement rule was defined for
306 	 * this permission check, then use it.
307 	 */
308 	avkey.target_class = tclass;
309 	avkey.specified = AVTAB_AV;
310 	sattr = &policydb.type_attr_map[scontext->type - 1];
311 	tattr = &policydb.type_attr_map[tcontext->type - 1];
312 	ebitmap_for_each_bit(sattr, snode, i) {
313 		if (!ebitmap_node_get_bit(snode, i))
314 			continue;
315 		ebitmap_for_each_bit(tattr, tnode, j) {
316 			if (!ebitmap_node_get_bit(tnode, j))
317 				continue;
318 			avkey.source_type = i + 1;
319 			avkey.target_type = j + 1;
320 			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
321 			     node != NULL;
322 			     node = avtab_search_node_next(node, avkey.specified)) {
323 				if (node->key.specified == AVTAB_ALLOWED)
324 					avd->allowed |= node->datum.data;
325 				else if (node->key.specified == AVTAB_AUDITALLOW)
326 					avd->auditallow |= node->datum.data;
327 				else if (node->key.specified == AVTAB_AUDITDENY)
328 					avd->auditdeny &= node->datum.data;
329 			}
330 
331 			/* Check conditional av table for additional permissions */
332 			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
333 
334 		}
335 	}
336 
337 	/*
338 	 * Remove any permissions prohibited by a constraint (this includes
339 	 * the MLS policy).
340 	 */
341 	constraint = tclass_datum->constraints;
342 	while (constraint) {
343 		if ((constraint->permissions & (avd->allowed)) &&
344 		    !constraint_expr_eval(scontext, tcontext, NULL,
345 					  constraint->expr)) {
346 			avd->allowed = (avd->allowed) & ~(constraint->permissions);
347 		}
348 		constraint = constraint->next;
349 	}
350 
351 	/*
352 	 * If checking process transition permission and the
353 	 * role is changing, then check the (current_role, new_role)
354 	 * pair.
355 	 */
356 	if (tclass == SECCLASS_PROCESS &&
357 	    (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
358 	    scontext->role != tcontext->role) {
359 		for (ra = policydb.role_allow; ra; ra = ra->next) {
360 			if (scontext->role == ra->role &&
361 			    tcontext->role == ra->new_role)
362 				break;
363 		}
364 		if (!ra)
365 			avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
366 			                                PROCESS__DYNTRANSITION);
367 	}
368 
369 	return 0;
370 }
371 
372 static int security_validtrans_handle_fail(struct context *ocontext,
373                                            struct context *ncontext,
374                                            struct context *tcontext,
375                                            u16 tclass)
376 {
377 	char *o = NULL, *n = NULL, *t = NULL;
378 	u32 olen, nlen, tlen;
379 
380 	if (context_struct_to_string(ocontext, &o, &olen) < 0)
381 		goto out;
382 	if (context_struct_to_string(ncontext, &n, &nlen) < 0)
383 		goto out;
384 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
385 		goto out;
386 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
387 	          "security_validate_transition:  denied for"
388 	          " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
389 	          o, n, t, policydb.p_class_val_to_name[tclass-1]);
390 out:
391 	kfree(o);
392 	kfree(n);
393 	kfree(t);
394 
395 	if (!selinux_enforcing)
396 		return 0;
397 	return -EPERM;
398 }
399 
400 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
401                                  u16 tclass)
402 {
403 	struct context *ocontext;
404 	struct context *ncontext;
405 	struct context *tcontext;
406 	struct class_datum *tclass_datum;
407 	struct constraint_node *constraint;
408 	int rc = 0;
409 
410 	if (!ss_initialized)
411 		return 0;
412 
413 	POLICY_RDLOCK;
414 
415 	/*
416 	 * Remap extended Netlink classes for old policy versions.
417 	 * Do this here rather than socket_type_to_security_class()
418 	 * in case a newer policy version is loaded, allowing sockets
419 	 * to remain in the correct class.
420 	 */
421 	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
422 		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
423 		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
424 			tclass = SECCLASS_NETLINK_SOCKET;
425 
426 	if (!tclass || tclass > policydb.p_classes.nprim) {
427 		printk(KERN_ERR "security_validate_transition:  "
428 		       "unrecognized class %d\n", tclass);
429 		rc = -EINVAL;
430 		goto out;
431 	}
432 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
433 
434 	ocontext = sidtab_search(&sidtab, oldsid);
435 	if (!ocontext) {
436 		printk(KERN_ERR "security_validate_transition: "
437 		       " unrecognized SID %d\n", oldsid);
438 		rc = -EINVAL;
439 		goto out;
440 	}
441 
442 	ncontext = sidtab_search(&sidtab, newsid);
443 	if (!ncontext) {
444 		printk(KERN_ERR "security_validate_transition: "
445 		       " unrecognized SID %d\n", newsid);
446 		rc = -EINVAL;
447 		goto out;
448 	}
449 
450 	tcontext = sidtab_search(&sidtab, tasksid);
451 	if (!tcontext) {
452 		printk(KERN_ERR "security_validate_transition: "
453 		       " unrecognized SID %d\n", tasksid);
454 		rc = -EINVAL;
455 		goto out;
456 	}
457 
458 	constraint = tclass_datum->validatetrans;
459 	while (constraint) {
460 		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
461 		                          constraint->expr)) {
462 			rc = security_validtrans_handle_fail(ocontext, ncontext,
463 			                                     tcontext, tclass);
464 			goto out;
465 		}
466 		constraint = constraint->next;
467 	}
468 
469 out:
470 	POLICY_RDUNLOCK;
471 	return rc;
472 }
473 
474 /**
475  * security_compute_av - Compute access vector decisions.
476  * @ssid: source security identifier
477  * @tsid: target security identifier
478  * @tclass: target security class
479  * @requested: requested permissions
480  * @avd: access vector decisions
481  *
482  * Compute a set of access vector decisions based on the
483  * SID pair (@ssid, @tsid) for the permissions in @tclass.
484  * Return -%EINVAL if any of the parameters are invalid or %0
485  * if the access vector decisions were computed successfully.
486  */
487 int security_compute_av(u32 ssid,
488 			u32 tsid,
489 			u16 tclass,
490 			u32 requested,
491 			struct av_decision *avd)
492 {
493 	struct context *scontext = NULL, *tcontext = NULL;
494 	int rc = 0;
495 
496 	if (!ss_initialized) {
497 		avd->allowed = 0xffffffff;
498 		avd->decided = 0xffffffff;
499 		avd->auditallow = 0;
500 		avd->auditdeny = 0xffffffff;
501 		avd->seqno = latest_granting;
502 		return 0;
503 	}
504 
505 	POLICY_RDLOCK;
506 
507 	scontext = sidtab_search(&sidtab, ssid);
508 	if (!scontext) {
509 		printk(KERN_ERR "security_compute_av:  unrecognized SID %d\n",
510 		       ssid);
511 		rc = -EINVAL;
512 		goto out;
513 	}
514 	tcontext = sidtab_search(&sidtab, tsid);
515 	if (!tcontext) {
516 		printk(KERN_ERR "security_compute_av:  unrecognized SID %d\n",
517 		       tsid);
518 		rc = -EINVAL;
519 		goto out;
520 	}
521 
522 	rc = context_struct_compute_av(scontext, tcontext, tclass,
523 				       requested, avd);
524 out:
525 	POLICY_RDUNLOCK;
526 	return rc;
527 }
528 
529 /*
530  * Write the security context string representation of
531  * the context structure `context' into a dynamically
532  * allocated string of the correct size.  Set `*scontext'
533  * to point to this string and set `*scontext_len' to
534  * the length of the string.
535  */
536 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
537 {
538 	char *scontextp;
539 
540 	*scontext = NULL;
541 	*scontext_len = 0;
542 
543 	/* Compute the size of the context. */
544 	*scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
545 	*scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
546 	*scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
547 	*scontext_len += mls_compute_context_len(context);
548 
549 	/* Allocate space for the context; caller must free this space. */
550 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
551 	if (!scontextp) {
552 		return -ENOMEM;
553 	}
554 	*scontext = scontextp;
555 
556 	/*
557 	 * Copy the user name, role name and type name into the context.
558 	 */
559 	sprintf(scontextp, "%s:%s:%s",
560 		policydb.p_user_val_to_name[context->user - 1],
561 		policydb.p_role_val_to_name[context->role - 1],
562 		policydb.p_type_val_to_name[context->type - 1]);
563 	scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
564 	             1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
565 	             1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
566 
567 	mls_sid_to_context(context, &scontextp);
568 
569 	*scontextp = 0;
570 
571 	return 0;
572 }
573 
574 #include "initial_sid_to_string.h"
575 
576 /**
577  * security_sid_to_context - Obtain a context for a given SID.
578  * @sid: security identifier, SID
579  * @scontext: security context
580  * @scontext_len: length in bytes
581  *
582  * Write the string representation of the context associated with @sid
583  * into a dynamically allocated string of the correct size.  Set @scontext
584  * to point to this string and set @scontext_len to the length of the string.
585  */
586 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
587 {
588 	struct context *context;
589 	int rc = 0;
590 
591 	if (!ss_initialized) {
592 		if (sid <= SECINITSID_NUM) {
593 			char *scontextp;
594 
595 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
596 			scontextp = kmalloc(*scontext_len,GFP_ATOMIC);
597 			if (!scontextp) {
598 				rc = -ENOMEM;
599 				goto out;
600 			}
601 			strcpy(scontextp, initial_sid_to_string[sid]);
602 			*scontext = scontextp;
603 			goto out;
604 		}
605 		printk(KERN_ERR "security_sid_to_context:  called before initial "
606 		       "load_policy on unknown SID %d\n", sid);
607 		rc = -EINVAL;
608 		goto out;
609 	}
610 	POLICY_RDLOCK;
611 	context = sidtab_search(&sidtab, sid);
612 	if (!context) {
613 		printk(KERN_ERR "security_sid_to_context:  unrecognized SID "
614 		       "%d\n", sid);
615 		rc = -EINVAL;
616 		goto out_unlock;
617 	}
618 	rc = context_struct_to_string(context, scontext, scontext_len);
619 out_unlock:
620 	POLICY_RDUNLOCK;
621 out:
622 	return rc;
623 
624 }
625 
626 static int security_context_to_sid_core(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
627 {
628 	char *scontext2;
629 	struct context context;
630 	struct role_datum *role;
631 	struct type_datum *typdatum;
632 	struct user_datum *usrdatum;
633 	char *scontextp, *p, oldc;
634 	int rc = 0;
635 
636 	if (!ss_initialized) {
637 		int i;
638 
639 		for (i = 1; i < SECINITSID_NUM; i++) {
640 			if (!strcmp(initial_sid_to_string[i], scontext)) {
641 				*sid = i;
642 				goto out;
643 			}
644 		}
645 		*sid = SECINITSID_KERNEL;
646 		goto out;
647 	}
648 	*sid = SECSID_NULL;
649 
650 	/* Copy the string so that we can modify the copy as we parse it.
651 	   The string should already by null terminated, but we append a
652 	   null suffix to the copy to avoid problems with the existing
653 	   attr package, which doesn't view the null terminator as part
654 	   of the attribute value. */
655 	scontext2 = kmalloc(scontext_len+1,GFP_KERNEL);
656 	if (!scontext2) {
657 		rc = -ENOMEM;
658 		goto out;
659 	}
660 	memcpy(scontext2, scontext, scontext_len);
661 	scontext2[scontext_len] = 0;
662 
663 	context_init(&context);
664 	*sid = SECSID_NULL;
665 
666 	POLICY_RDLOCK;
667 
668 	/* Parse the security context. */
669 
670 	rc = -EINVAL;
671 	scontextp = (char *) scontext2;
672 
673 	/* Extract the user. */
674 	p = scontextp;
675 	while (*p && *p != ':')
676 		p++;
677 
678 	if (*p == 0)
679 		goto out_unlock;
680 
681 	*p++ = 0;
682 
683 	usrdatum = hashtab_search(policydb.p_users.table, scontextp);
684 	if (!usrdatum)
685 		goto out_unlock;
686 
687 	context.user = usrdatum->value;
688 
689 	/* Extract role. */
690 	scontextp = p;
691 	while (*p && *p != ':')
692 		p++;
693 
694 	if (*p == 0)
695 		goto out_unlock;
696 
697 	*p++ = 0;
698 
699 	role = hashtab_search(policydb.p_roles.table, scontextp);
700 	if (!role)
701 		goto out_unlock;
702 	context.role = role->value;
703 
704 	/* Extract type. */
705 	scontextp = p;
706 	while (*p && *p != ':')
707 		p++;
708 	oldc = *p;
709 	*p++ = 0;
710 
711 	typdatum = hashtab_search(policydb.p_types.table, scontextp);
712 	if (!typdatum)
713 		goto out_unlock;
714 
715 	context.type = typdatum->value;
716 
717 	rc = mls_context_to_sid(oldc, &p, &context, &sidtab, def_sid);
718 	if (rc)
719 		goto out_unlock;
720 
721 	if ((p - scontext2) < scontext_len) {
722 		rc = -EINVAL;
723 		goto out_unlock;
724 	}
725 
726 	/* Check the validity of the new context. */
727 	if (!policydb_context_isvalid(&policydb, &context)) {
728 		rc = -EINVAL;
729 		goto out_unlock;
730 	}
731 	/* Obtain the new sid. */
732 	rc = sidtab_context_to_sid(&sidtab, &context, sid);
733 out_unlock:
734 	POLICY_RDUNLOCK;
735 	context_destroy(&context);
736 	kfree(scontext2);
737 out:
738 	return rc;
739 }
740 
741 /**
742  * security_context_to_sid - Obtain a SID for a given security context.
743  * @scontext: security context
744  * @scontext_len: length in bytes
745  * @sid: security identifier, SID
746  *
747  * Obtains a SID associated with the security context that
748  * has the string representation specified by @scontext.
749  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
750  * memory is available, or 0 on success.
751  */
752 int security_context_to_sid(char *scontext, u32 scontext_len, u32 *sid)
753 {
754 	return security_context_to_sid_core(scontext, scontext_len,
755 	                                    sid, SECSID_NULL);
756 }
757 
758 /**
759  * security_context_to_sid_default - Obtain a SID for a given security context,
760  * falling back to specified default if needed.
761  *
762  * @scontext: security context
763  * @scontext_len: length in bytes
764  * @sid: security identifier, SID
765  * @def_sid: default SID to assign on errror
766  *
767  * Obtains a SID associated with the security context that
768  * has the string representation specified by @scontext.
769  * The default SID is passed to the MLS layer to be used to allow
770  * kernel labeling of the MLS field if the MLS field is not present
771  * (for upgrading to MLS without full relabel).
772  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
773  * memory is available, or 0 on success.
774  */
775 int security_context_to_sid_default(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
776 {
777 	return security_context_to_sid_core(scontext, scontext_len,
778 	                                    sid, def_sid);
779 }
780 
781 static int compute_sid_handle_invalid_context(
782 	struct context *scontext,
783 	struct context *tcontext,
784 	u16 tclass,
785 	struct context *newcontext)
786 {
787 	char *s = NULL, *t = NULL, *n = NULL;
788 	u32 slen, tlen, nlen;
789 
790 	if (context_struct_to_string(scontext, &s, &slen) < 0)
791 		goto out;
792 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
793 		goto out;
794 	if (context_struct_to_string(newcontext, &n, &nlen) < 0)
795 		goto out;
796 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
797 		  "security_compute_sid:  invalid context %s"
798 		  " for scontext=%s"
799 		  " tcontext=%s"
800 		  " tclass=%s",
801 		  n, s, t, policydb.p_class_val_to_name[tclass-1]);
802 out:
803 	kfree(s);
804 	kfree(t);
805 	kfree(n);
806 	if (!selinux_enforcing)
807 		return 0;
808 	return -EACCES;
809 }
810 
811 static int security_compute_sid(u32 ssid,
812 				u32 tsid,
813 				u16 tclass,
814 				u32 specified,
815 				u32 *out_sid)
816 {
817 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
818 	struct role_trans *roletr = NULL;
819 	struct avtab_key avkey;
820 	struct avtab_datum *avdatum;
821 	struct avtab_node *node;
822 	int rc = 0;
823 
824 	if (!ss_initialized) {
825 		switch (tclass) {
826 		case SECCLASS_PROCESS:
827 			*out_sid = ssid;
828 			break;
829 		default:
830 			*out_sid = tsid;
831 			break;
832 		}
833 		goto out;
834 	}
835 
836 	POLICY_RDLOCK;
837 
838 	scontext = sidtab_search(&sidtab, ssid);
839 	if (!scontext) {
840 		printk(KERN_ERR "security_compute_sid:  unrecognized SID %d\n",
841 		       ssid);
842 		rc = -EINVAL;
843 		goto out_unlock;
844 	}
845 	tcontext = sidtab_search(&sidtab, tsid);
846 	if (!tcontext) {
847 		printk(KERN_ERR "security_compute_sid:  unrecognized SID %d\n",
848 		       tsid);
849 		rc = -EINVAL;
850 		goto out_unlock;
851 	}
852 
853 	context_init(&newcontext);
854 
855 	/* Set the user identity. */
856 	switch (specified) {
857 	case AVTAB_TRANSITION:
858 	case AVTAB_CHANGE:
859 		/* Use the process user identity. */
860 		newcontext.user = scontext->user;
861 		break;
862 	case AVTAB_MEMBER:
863 		/* Use the related object owner. */
864 		newcontext.user = tcontext->user;
865 		break;
866 	}
867 
868 	/* Set the role and type to default values. */
869 	switch (tclass) {
870 	case SECCLASS_PROCESS:
871 		/* Use the current role and type of process. */
872 		newcontext.role = scontext->role;
873 		newcontext.type = scontext->type;
874 		break;
875 	default:
876 		/* Use the well-defined object role. */
877 		newcontext.role = OBJECT_R_VAL;
878 		/* Use the type of the related object. */
879 		newcontext.type = tcontext->type;
880 	}
881 
882 	/* Look for a type transition/member/change rule. */
883 	avkey.source_type = scontext->type;
884 	avkey.target_type = tcontext->type;
885 	avkey.target_class = tclass;
886 	avkey.specified = specified;
887 	avdatum = avtab_search(&policydb.te_avtab, &avkey);
888 
889 	/* If no permanent rule, also check for enabled conditional rules */
890 	if(!avdatum) {
891 		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
892 		for (; node != NULL; node = avtab_search_node_next(node, specified)) {
893 			if (node->key.specified & AVTAB_ENABLED) {
894 				avdatum = &node->datum;
895 				break;
896 			}
897 		}
898 	}
899 
900 	if (avdatum) {
901 		/* Use the type from the type transition/member/change rule. */
902 		newcontext.type = avdatum->data;
903 	}
904 
905 	/* Check for class-specific changes. */
906 	switch (tclass) {
907 	case SECCLASS_PROCESS:
908 		if (specified & AVTAB_TRANSITION) {
909 			/* Look for a role transition rule. */
910 			for (roletr = policydb.role_tr; roletr;
911 			     roletr = roletr->next) {
912 				if (roletr->role == scontext->role &&
913 				    roletr->type == tcontext->type) {
914 					/* Use the role transition rule. */
915 					newcontext.role = roletr->new_role;
916 					break;
917 				}
918 			}
919 		}
920 		break;
921 	default:
922 		break;
923 	}
924 
925 	/* Set the MLS attributes.
926 	   This is done last because it may allocate memory. */
927 	rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
928 	if (rc)
929 		goto out_unlock;
930 
931 	/* Check the validity of the context. */
932 	if (!policydb_context_isvalid(&policydb, &newcontext)) {
933 		rc = compute_sid_handle_invalid_context(scontext,
934 							tcontext,
935 							tclass,
936 							&newcontext);
937 		if (rc)
938 			goto out_unlock;
939 	}
940 	/* Obtain the sid for the context. */
941 	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
942 out_unlock:
943 	POLICY_RDUNLOCK;
944 	context_destroy(&newcontext);
945 out:
946 	return rc;
947 }
948 
949 /**
950  * security_transition_sid - Compute the SID for a new subject/object.
951  * @ssid: source security identifier
952  * @tsid: target security identifier
953  * @tclass: target security class
954  * @out_sid: security identifier for new subject/object
955  *
956  * Compute a SID to use for labeling a new subject or object in the
957  * class @tclass based on a SID pair (@ssid, @tsid).
958  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
959  * if insufficient memory is available, or %0 if the new SID was
960  * computed successfully.
961  */
962 int security_transition_sid(u32 ssid,
963 			    u32 tsid,
964 			    u16 tclass,
965 			    u32 *out_sid)
966 {
967 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
968 }
969 
970 /**
971  * security_member_sid - Compute the SID for member selection.
972  * @ssid: source security identifier
973  * @tsid: target security identifier
974  * @tclass: target security class
975  * @out_sid: security identifier for selected member
976  *
977  * Compute a SID to use when selecting a member of a polyinstantiated
978  * object of class @tclass based on a SID pair (@ssid, @tsid).
979  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
980  * if insufficient memory is available, or %0 if the SID was
981  * computed successfully.
982  */
983 int security_member_sid(u32 ssid,
984 			u32 tsid,
985 			u16 tclass,
986 			u32 *out_sid)
987 {
988 	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
989 }
990 
991 /**
992  * security_change_sid - Compute the SID for object relabeling.
993  * @ssid: source security identifier
994  * @tsid: target security identifier
995  * @tclass: target security class
996  * @out_sid: security identifier for selected member
997  *
998  * Compute a SID to use for relabeling an object of class @tclass
999  * based on a SID pair (@ssid, @tsid).
1000  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1001  * if insufficient memory is available, or %0 if the SID was
1002  * computed successfully.
1003  */
1004 int security_change_sid(u32 ssid,
1005 			u32 tsid,
1006 			u16 tclass,
1007 			u32 *out_sid)
1008 {
1009 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1010 }
1011 
1012 /*
1013  * Verify that each permission that is defined under the
1014  * existing policy is still defined with the same value
1015  * in the new policy.
1016  */
1017 static int validate_perm(void *key, void *datum, void *p)
1018 {
1019 	struct hashtab *h;
1020 	struct perm_datum *perdatum, *perdatum2;
1021 	int rc = 0;
1022 
1023 
1024 	h = p;
1025 	perdatum = datum;
1026 
1027 	perdatum2 = hashtab_search(h, key);
1028 	if (!perdatum2) {
1029 		printk(KERN_ERR "security:  permission %s disappeared",
1030 		       (char *)key);
1031 		rc = -ENOENT;
1032 		goto out;
1033 	}
1034 	if (perdatum->value != perdatum2->value) {
1035 		printk(KERN_ERR "security:  the value of permission %s changed",
1036 		       (char *)key);
1037 		rc = -EINVAL;
1038 	}
1039 out:
1040 	return rc;
1041 }
1042 
1043 /*
1044  * Verify that each class that is defined under the
1045  * existing policy is still defined with the same
1046  * attributes in the new policy.
1047  */
1048 static int validate_class(void *key, void *datum, void *p)
1049 {
1050 	struct policydb *newp;
1051 	struct class_datum *cladatum, *cladatum2;
1052 	int rc;
1053 
1054 	newp = p;
1055 	cladatum = datum;
1056 
1057 	cladatum2 = hashtab_search(newp->p_classes.table, key);
1058 	if (!cladatum2) {
1059 		printk(KERN_ERR "security:  class %s disappeared\n",
1060 		       (char *)key);
1061 		rc = -ENOENT;
1062 		goto out;
1063 	}
1064 	if (cladatum->value != cladatum2->value) {
1065 		printk(KERN_ERR "security:  the value of class %s changed\n",
1066 		       (char *)key);
1067 		rc = -EINVAL;
1068 		goto out;
1069 	}
1070 	if ((cladatum->comdatum && !cladatum2->comdatum) ||
1071 	    (!cladatum->comdatum && cladatum2->comdatum)) {
1072 		printk(KERN_ERR "security:  the inherits clause for the access "
1073 		       "vector definition for class %s changed\n", (char *)key);
1074 		rc = -EINVAL;
1075 		goto out;
1076 	}
1077 	if (cladatum->comdatum) {
1078 		rc = hashtab_map(cladatum->comdatum->permissions.table, validate_perm,
1079 		                 cladatum2->comdatum->permissions.table);
1080 		if (rc) {
1081 			printk(" in the access vector definition for class "
1082 			       "%s\n", (char *)key);
1083 			goto out;
1084 		}
1085 	}
1086 	rc = hashtab_map(cladatum->permissions.table, validate_perm,
1087 	                 cladatum2->permissions.table);
1088 	if (rc)
1089 		printk(" in access vector definition for class %s\n",
1090 		       (char *)key);
1091 out:
1092 	return rc;
1093 }
1094 
1095 /* Clone the SID into the new SID table. */
1096 static int clone_sid(u32 sid,
1097 		     struct context *context,
1098 		     void *arg)
1099 {
1100 	struct sidtab *s = arg;
1101 
1102 	return sidtab_insert(s, sid, context);
1103 }
1104 
1105 static inline int convert_context_handle_invalid_context(struct context *context)
1106 {
1107 	int rc = 0;
1108 
1109 	if (selinux_enforcing) {
1110 		rc = -EINVAL;
1111 	} else {
1112 		char *s;
1113 		u32 len;
1114 
1115 		context_struct_to_string(context, &s, &len);
1116 		printk(KERN_ERR "security:  context %s is invalid\n", s);
1117 		kfree(s);
1118 	}
1119 	return rc;
1120 }
1121 
1122 struct convert_context_args {
1123 	struct policydb *oldp;
1124 	struct policydb *newp;
1125 };
1126 
1127 /*
1128  * Convert the values in the security context
1129  * structure `c' from the values specified
1130  * in the policy `p->oldp' to the values specified
1131  * in the policy `p->newp'.  Verify that the
1132  * context is valid under the new policy.
1133  */
1134 static int convert_context(u32 key,
1135 			   struct context *c,
1136 			   void *p)
1137 {
1138 	struct convert_context_args *args;
1139 	struct context oldc;
1140 	struct role_datum *role;
1141 	struct type_datum *typdatum;
1142 	struct user_datum *usrdatum;
1143 	char *s;
1144 	u32 len;
1145 	int rc;
1146 
1147 	args = p;
1148 
1149 	rc = context_cpy(&oldc, c);
1150 	if (rc)
1151 		goto out;
1152 
1153 	rc = -EINVAL;
1154 
1155 	/* Convert the user. */
1156 	usrdatum = hashtab_search(args->newp->p_users.table,
1157 	                          args->oldp->p_user_val_to_name[c->user - 1]);
1158 	if (!usrdatum) {
1159 		goto bad;
1160 	}
1161 	c->user = usrdatum->value;
1162 
1163 	/* Convert the role. */
1164 	role = hashtab_search(args->newp->p_roles.table,
1165 	                      args->oldp->p_role_val_to_name[c->role - 1]);
1166 	if (!role) {
1167 		goto bad;
1168 	}
1169 	c->role = role->value;
1170 
1171 	/* Convert the type. */
1172 	typdatum = hashtab_search(args->newp->p_types.table,
1173 	                          args->oldp->p_type_val_to_name[c->type - 1]);
1174 	if (!typdatum) {
1175 		goto bad;
1176 	}
1177 	c->type = typdatum->value;
1178 
1179 	rc = mls_convert_context(args->oldp, args->newp, c);
1180 	if (rc)
1181 		goto bad;
1182 
1183 	/* Check the validity of the new context. */
1184 	if (!policydb_context_isvalid(args->newp, c)) {
1185 		rc = convert_context_handle_invalid_context(&oldc);
1186 		if (rc)
1187 			goto bad;
1188 	}
1189 
1190 	context_destroy(&oldc);
1191 out:
1192 	return rc;
1193 bad:
1194 	context_struct_to_string(&oldc, &s, &len);
1195 	context_destroy(&oldc);
1196 	printk(KERN_ERR "security:  invalidating context %s\n", s);
1197 	kfree(s);
1198 	goto out;
1199 }
1200 
1201 extern void selinux_complete_init(void);
1202 
1203 /**
1204  * security_load_policy - Load a security policy configuration.
1205  * @data: binary policy data
1206  * @len: length of data in bytes
1207  *
1208  * Load a new set of security policy configuration data,
1209  * validate it and convert the SID table as necessary.
1210  * This function will flush the access vector cache after
1211  * loading the new policy.
1212  */
1213 int security_load_policy(void *data, size_t len)
1214 {
1215 	struct policydb oldpolicydb, newpolicydb;
1216 	struct sidtab oldsidtab, newsidtab;
1217 	struct convert_context_args args;
1218 	u32 seqno;
1219 	int rc = 0;
1220 	struct policy_file file = { data, len }, *fp = &file;
1221 
1222 	LOAD_LOCK;
1223 
1224 	if (!ss_initialized) {
1225 		avtab_cache_init();
1226 		if (policydb_read(&policydb, fp)) {
1227 			LOAD_UNLOCK;
1228 			avtab_cache_destroy();
1229 			return -EINVAL;
1230 		}
1231 		if (policydb_load_isids(&policydb, &sidtab)) {
1232 			LOAD_UNLOCK;
1233 			policydb_destroy(&policydb);
1234 			avtab_cache_destroy();
1235 			return -EINVAL;
1236 		}
1237 		policydb_loaded_version = policydb.policyvers;
1238 		ss_initialized = 1;
1239 		seqno = ++latest_granting;
1240 		LOAD_UNLOCK;
1241 		selinux_complete_init();
1242 		avc_ss_reset(seqno);
1243 		selnl_notify_policyload(seqno);
1244 		return 0;
1245 	}
1246 
1247 #if 0
1248 	sidtab_hash_eval(&sidtab, "sids");
1249 #endif
1250 
1251 	if (policydb_read(&newpolicydb, fp)) {
1252 		LOAD_UNLOCK;
1253 		return -EINVAL;
1254 	}
1255 
1256 	sidtab_init(&newsidtab);
1257 
1258 	/* Verify that the existing classes did not change. */
1259 	if (hashtab_map(policydb.p_classes.table, validate_class, &newpolicydb)) {
1260 		printk(KERN_ERR "security:  the definition of an existing "
1261 		       "class changed\n");
1262 		rc = -EINVAL;
1263 		goto err;
1264 	}
1265 
1266 	/* Clone the SID table. */
1267 	sidtab_shutdown(&sidtab);
1268 	if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1269 		rc = -ENOMEM;
1270 		goto err;
1271 	}
1272 
1273 	/* Convert the internal representations of contexts
1274 	   in the new SID table and remove invalid SIDs. */
1275 	args.oldp = &policydb;
1276 	args.newp = &newpolicydb;
1277 	sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1278 
1279 	/* Save the old policydb and SID table to free later. */
1280 	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1281 	sidtab_set(&oldsidtab, &sidtab);
1282 
1283 	/* Install the new policydb and SID table. */
1284 	POLICY_WRLOCK;
1285 	memcpy(&policydb, &newpolicydb, sizeof policydb);
1286 	sidtab_set(&sidtab, &newsidtab);
1287 	seqno = ++latest_granting;
1288 	policydb_loaded_version = policydb.policyvers;
1289 	POLICY_WRUNLOCK;
1290 	LOAD_UNLOCK;
1291 
1292 	/* Free the old policydb and SID table. */
1293 	policydb_destroy(&oldpolicydb);
1294 	sidtab_destroy(&oldsidtab);
1295 
1296 	avc_ss_reset(seqno);
1297 	selnl_notify_policyload(seqno);
1298 
1299 	return 0;
1300 
1301 err:
1302 	LOAD_UNLOCK;
1303 	sidtab_destroy(&newsidtab);
1304 	policydb_destroy(&newpolicydb);
1305 	return rc;
1306 
1307 }
1308 
1309 /**
1310  * security_port_sid - Obtain the SID for a port.
1311  * @domain: communication domain aka address family
1312  * @type: socket type
1313  * @protocol: protocol number
1314  * @port: port number
1315  * @out_sid: security identifier
1316  */
1317 int security_port_sid(u16 domain,
1318 		      u16 type,
1319 		      u8 protocol,
1320 		      u16 port,
1321 		      u32 *out_sid)
1322 {
1323 	struct ocontext *c;
1324 	int rc = 0;
1325 
1326 	POLICY_RDLOCK;
1327 
1328 	c = policydb.ocontexts[OCON_PORT];
1329 	while (c) {
1330 		if (c->u.port.protocol == protocol &&
1331 		    c->u.port.low_port <= port &&
1332 		    c->u.port.high_port >= port)
1333 			break;
1334 		c = c->next;
1335 	}
1336 
1337 	if (c) {
1338 		if (!c->sid[0]) {
1339 			rc = sidtab_context_to_sid(&sidtab,
1340 						   &c->context[0],
1341 						   &c->sid[0]);
1342 			if (rc)
1343 				goto out;
1344 		}
1345 		*out_sid = c->sid[0];
1346 	} else {
1347 		*out_sid = SECINITSID_PORT;
1348 	}
1349 
1350 out:
1351 	POLICY_RDUNLOCK;
1352 	return rc;
1353 }
1354 
1355 /**
1356  * security_netif_sid - Obtain the SID for a network interface.
1357  * @name: interface name
1358  * @if_sid: interface SID
1359  * @msg_sid: default SID for received packets
1360  */
1361 int security_netif_sid(char *name,
1362 		       u32 *if_sid,
1363 		       u32 *msg_sid)
1364 {
1365 	int rc = 0;
1366 	struct ocontext *c;
1367 
1368 	POLICY_RDLOCK;
1369 
1370 	c = policydb.ocontexts[OCON_NETIF];
1371 	while (c) {
1372 		if (strcmp(name, c->u.name) == 0)
1373 			break;
1374 		c = c->next;
1375 	}
1376 
1377 	if (c) {
1378 		if (!c->sid[0] || !c->sid[1]) {
1379 			rc = sidtab_context_to_sid(&sidtab,
1380 						  &c->context[0],
1381 						  &c->sid[0]);
1382 			if (rc)
1383 				goto out;
1384 			rc = sidtab_context_to_sid(&sidtab,
1385 						   &c->context[1],
1386 						   &c->sid[1]);
1387 			if (rc)
1388 				goto out;
1389 		}
1390 		*if_sid = c->sid[0];
1391 		*msg_sid = c->sid[1];
1392 	} else {
1393 		*if_sid = SECINITSID_NETIF;
1394 		*msg_sid = SECINITSID_NETMSG;
1395 	}
1396 
1397 out:
1398 	POLICY_RDUNLOCK;
1399 	return rc;
1400 }
1401 
1402 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1403 {
1404 	int i, fail = 0;
1405 
1406 	for(i = 0; i < 4; i++)
1407 		if(addr[i] != (input[i] & mask[i])) {
1408 			fail = 1;
1409 			break;
1410 		}
1411 
1412 	return !fail;
1413 }
1414 
1415 /**
1416  * security_node_sid - Obtain the SID for a node (host).
1417  * @domain: communication domain aka address family
1418  * @addrp: address
1419  * @addrlen: address length in bytes
1420  * @out_sid: security identifier
1421  */
1422 int security_node_sid(u16 domain,
1423 		      void *addrp,
1424 		      u32 addrlen,
1425 		      u32 *out_sid)
1426 {
1427 	int rc = 0;
1428 	struct ocontext *c;
1429 
1430 	POLICY_RDLOCK;
1431 
1432 	switch (domain) {
1433 	case AF_INET: {
1434 		u32 addr;
1435 
1436 		if (addrlen != sizeof(u32)) {
1437 			rc = -EINVAL;
1438 			goto out;
1439 		}
1440 
1441 		addr = *((u32 *)addrp);
1442 
1443 		c = policydb.ocontexts[OCON_NODE];
1444 		while (c) {
1445 			if (c->u.node.addr == (addr & c->u.node.mask))
1446 				break;
1447 			c = c->next;
1448 		}
1449 		break;
1450 	}
1451 
1452 	case AF_INET6:
1453 		if (addrlen != sizeof(u64) * 2) {
1454 			rc = -EINVAL;
1455 			goto out;
1456 		}
1457 		c = policydb.ocontexts[OCON_NODE6];
1458 		while (c) {
1459 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1460 						c->u.node6.mask))
1461 				break;
1462 			c = c->next;
1463 		}
1464 		break;
1465 
1466 	default:
1467 		*out_sid = SECINITSID_NODE;
1468 		goto out;
1469 	}
1470 
1471 	if (c) {
1472 		if (!c->sid[0]) {
1473 			rc = sidtab_context_to_sid(&sidtab,
1474 						   &c->context[0],
1475 						   &c->sid[0]);
1476 			if (rc)
1477 				goto out;
1478 		}
1479 		*out_sid = c->sid[0];
1480 	} else {
1481 		*out_sid = SECINITSID_NODE;
1482 	}
1483 
1484 out:
1485 	POLICY_RDUNLOCK;
1486 	return rc;
1487 }
1488 
1489 #define SIDS_NEL 25
1490 
1491 /**
1492  * security_get_user_sids - Obtain reachable SIDs for a user.
1493  * @fromsid: starting SID
1494  * @username: username
1495  * @sids: array of reachable SIDs for user
1496  * @nel: number of elements in @sids
1497  *
1498  * Generate the set of SIDs for legal security contexts
1499  * for a given user that can be reached by @fromsid.
1500  * Set *@sids to point to a dynamically allocated
1501  * array containing the set of SIDs.  Set *@nel to the
1502  * number of elements in the array.
1503  */
1504 
1505 int security_get_user_sids(u32 fromsid,
1506 	                   char *username,
1507 			   u32 **sids,
1508 			   u32 *nel)
1509 {
1510 	struct context *fromcon, usercon;
1511 	u32 *mysids, *mysids2, sid;
1512 	u32 mynel = 0, maxnel = SIDS_NEL;
1513 	struct user_datum *user;
1514 	struct role_datum *role;
1515 	struct av_decision avd;
1516 	struct ebitmap_node *rnode, *tnode;
1517 	int rc = 0, i, j;
1518 
1519 	if (!ss_initialized) {
1520 		*sids = NULL;
1521 		*nel = 0;
1522 		goto out;
1523 	}
1524 
1525 	POLICY_RDLOCK;
1526 
1527 	fromcon = sidtab_search(&sidtab, fromsid);
1528 	if (!fromcon) {
1529 		rc = -EINVAL;
1530 		goto out_unlock;
1531 	}
1532 
1533 	user = hashtab_search(policydb.p_users.table, username);
1534 	if (!user) {
1535 		rc = -EINVAL;
1536 		goto out_unlock;
1537 	}
1538 	usercon.user = user->value;
1539 
1540 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
1541 	if (!mysids) {
1542 		rc = -ENOMEM;
1543 		goto out_unlock;
1544 	}
1545 
1546 	ebitmap_for_each_bit(&user->roles, rnode, i) {
1547 		if (!ebitmap_node_get_bit(rnode, i))
1548 			continue;
1549 		role = policydb.role_val_to_struct[i];
1550 		usercon.role = i+1;
1551 		ebitmap_for_each_bit(&role->types, tnode, j) {
1552 			if (!ebitmap_node_get_bit(tnode, j))
1553 				continue;
1554 			usercon.type = j+1;
1555 
1556 			if (mls_setup_user_range(fromcon, user, &usercon))
1557 				continue;
1558 
1559 			rc = context_struct_compute_av(fromcon, &usercon,
1560 						       SECCLASS_PROCESS,
1561 						       PROCESS__TRANSITION,
1562 						       &avd);
1563 			if (rc ||  !(avd.allowed & PROCESS__TRANSITION))
1564 				continue;
1565 			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1566 			if (rc) {
1567 				kfree(mysids);
1568 				goto out_unlock;
1569 			}
1570 			if (mynel < maxnel) {
1571 				mysids[mynel++] = sid;
1572 			} else {
1573 				maxnel += SIDS_NEL;
1574 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
1575 				if (!mysids2) {
1576 					rc = -ENOMEM;
1577 					kfree(mysids);
1578 					goto out_unlock;
1579 				}
1580 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1581 				kfree(mysids);
1582 				mysids = mysids2;
1583 				mysids[mynel++] = sid;
1584 			}
1585 		}
1586 	}
1587 
1588 	*sids = mysids;
1589 	*nel = mynel;
1590 
1591 out_unlock:
1592 	POLICY_RDUNLOCK;
1593 out:
1594 	return rc;
1595 }
1596 
1597 /**
1598  * security_genfs_sid - Obtain a SID for a file in a filesystem
1599  * @fstype: filesystem type
1600  * @path: path from root of mount
1601  * @sclass: file security class
1602  * @sid: SID for path
1603  *
1604  * Obtain a SID to use for a file in a filesystem that
1605  * cannot support xattr or use a fixed labeling behavior like
1606  * transition SIDs or task SIDs.
1607  */
1608 int security_genfs_sid(const char *fstype,
1609 	               char *path,
1610 		       u16 sclass,
1611 		       u32 *sid)
1612 {
1613 	int len;
1614 	struct genfs *genfs;
1615 	struct ocontext *c;
1616 	int rc = 0, cmp = 0;
1617 
1618 	POLICY_RDLOCK;
1619 
1620 	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
1621 		cmp = strcmp(fstype, genfs->fstype);
1622 		if (cmp <= 0)
1623 			break;
1624 	}
1625 
1626 	if (!genfs || cmp) {
1627 		*sid = SECINITSID_UNLABELED;
1628 		rc = -ENOENT;
1629 		goto out;
1630 	}
1631 
1632 	for (c = genfs->head; c; c = c->next) {
1633 		len = strlen(c->u.name);
1634 		if ((!c->v.sclass || sclass == c->v.sclass) &&
1635 		    (strncmp(c->u.name, path, len) == 0))
1636 			break;
1637 	}
1638 
1639 	if (!c) {
1640 		*sid = SECINITSID_UNLABELED;
1641 		rc = -ENOENT;
1642 		goto out;
1643 	}
1644 
1645 	if (!c->sid[0]) {
1646 		rc = sidtab_context_to_sid(&sidtab,
1647 					   &c->context[0],
1648 					   &c->sid[0]);
1649 		if (rc)
1650 			goto out;
1651 	}
1652 
1653 	*sid = c->sid[0];
1654 out:
1655 	POLICY_RDUNLOCK;
1656 	return rc;
1657 }
1658 
1659 /**
1660  * security_fs_use - Determine how to handle labeling for a filesystem.
1661  * @fstype: filesystem type
1662  * @behavior: labeling behavior
1663  * @sid: SID for filesystem (superblock)
1664  */
1665 int security_fs_use(
1666 	const char *fstype,
1667 	unsigned int *behavior,
1668 	u32 *sid)
1669 {
1670 	int rc = 0;
1671 	struct ocontext *c;
1672 
1673 	POLICY_RDLOCK;
1674 
1675 	c = policydb.ocontexts[OCON_FSUSE];
1676 	while (c) {
1677 		if (strcmp(fstype, c->u.name) == 0)
1678 			break;
1679 		c = c->next;
1680 	}
1681 
1682 	if (c) {
1683 		*behavior = c->v.behavior;
1684 		if (!c->sid[0]) {
1685 			rc = sidtab_context_to_sid(&sidtab,
1686 						   &c->context[0],
1687 						   &c->sid[0]);
1688 			if (rc)
1689 				goto out;
1690 		}
1691 		*sid = c->sid[0];
1692 	} else {
1693 		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
1694 		if (rc) {
1695 			*behavior = SECURITY_FS_USE_NONE;
1696 			rc = 0;
1697 		} else {
1698 			*behavior = SECURITY_FS_USE_GENFS;
1699 		}
1700 	}
1701 
1702 out:
1703 	POLICY_RDUNLOCK;
1704 	return rc;
1705 }
1706 
1707 int security_get_bools(int *len, char ***names, int **values)
1708 {
1709 	int i, rc = -ENOMEM;
1710 
1711 	POLICY_RDLOCK;
1712 	*names = NULL;
1713 	*values = NULL;
1714 
1715 	*len = policydb.p_bools.nprim;
1716 	if (!*len) {
1717 		rc = 0;
1718 		goto out;
1719 	}
1720 
1721        *names = kcalloc(*len, sizeof(char*), GFP_ATOMIC);
1722 	if (!*names)
1723 		goto err;
1724 
1725        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
1726 	if (!*values)
1727 		goto err;
1728 
1729 	for (i = 0; i < *len; i++) {
1730 		size_t name_len;
1731 		(*values)[i] = policydb.bool_val_to_struct[i]->state;
1732 		name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
1733                (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
1734 		if (!(*names)[i])
1735 			goto err;
1736 		strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
1737 		(*names)[i][name_len - 1] = 0;
1738 	}
1739 	rc = 0;
1740 out:
1741 	POLICY_RDUNLOCK;
1742 	return rc;
1743 err:
1744 	if (*names) {
1745 		for (i = 0; i < *len; i++)
1746 			kfree((*names)[i]);
1747 	}
1748 	kfree(*values);
1749 	goto out;
1750 }
1751 
1752 
1753 int security_set_bools(int len, int *values)
1754 {
1755 	int i, rc = 0;
1756 	int lenp, seqno = 0;
1757 	struct cond_node *cur;
1758 
1759 	POLICY_WRLOCK;
1760 
1761 	lenp = policydb.p_bools.nprim;
1762 	if (len != lenp) {
1763 		rc = -EFAULT;
1764 		goto out;
1765 	}
1766 
1767 	for (i = 0; i < len; i++) {
1768 		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
1769 			audit_log(current->audit_context, GFP_ATOMIC,
1770 				AUDIT_MAC_CONFIG_CHANGE,
1771 				"bool=%s val=%d old_val=%d auid=%u",
1772 				policydb.p_bool_val_to_name[i],
1773 				!!values[i],
1774 				policydb.bool_val_to_struct[i]->state,
1775 				audit_get_loginuid(current->audit_context));
1776 		}
1777 		if (values[i]) {
1778 			policydb.bool_val_to_struct[i]->state = 1;
1779 		} else {
1780 			policydb.bool_val_to_struct[i]->state = 0;
1781 		}
1782 	}
1783 
1784 	for (cur = policydb.cond_list; cur != NULL; cur = cur->next) {
1785 		rc = evaluate_cond_node(&policydb, cur);
1786 		if (rc)
1787 			goto out;
1788 	}
1789 
1790 	seqno = ++latest_granting;
1791 
1792 out:
1793 	POLICY_WRUNLOCK;
1794 	if (!rc) {
1795 		avc_ss_reset(seqno);
1796 		selnl_notify_policyload(seqno);
1797 	}
1798 	return rc;
1799 }
1800 
1801 int security_get_bool_value(int bool)
1802 {
1803 	int rc = 0;
1804 	int len;
1805 
1806 	POLICY_RDLOCK;
1807 
1808 	len = policydb.p_bools.nprim;
1809 	if (bool >= len) {
1810 		rc = -EFAULT;
1811 		goto out;
1812 	}
1813 
1814 	rc = policydb.bool_val_to_struct[bool]->state;
1815 out:
1816 	POLICY_RDUNLOCK;
1817 	return rc;
1818 }
1819 
1820 struct selinux_audit_rule {
1821 	u32 au_seqno;
1822 	struct context au_ctxt;
1823 };
1824 
1825 void selinux_audit_rule_free(struct selinux_audit_rule *rule)
1826 {
1827 	if (rule) {
1828 		context_destroy(&rule->au_ctxt);
1829 		kfree(rule);
1830 	}
1831 }
1832 
1833 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr,
1834                             struct selinux_audit_rule **rule)
1835 {
1836 	struct selinux_audit_rule *tmprule;
1837 	struct role_datum *roledatum;
1838 	struct type_datum *typedatum;
1839 	struct user_datum *userdatum;
1840 	int rc = 0;
1841 
1842 	*rule = NULL;
1843 
1844 	if (!ss_initialized)
1845 		return -ENOTSUPP;
1846 
1847 	switch (field) {
1848 	case AUDIT_SE_USER:
1849 	case AUDIT_SE_ROLE:
1850 	case AUDIT_SE_TYPE:
1851 		/* only 'equals' and 'not equals' fit user, role, and type */
1852 		if (op != AUDIT_EQUAL && op != AUDIT_NOT_EQUAL)
1853 			return -EINVAL;
1854 		break;
1855 	case AUDIT_SE_SEN:
1856 	case AUDIT_SE_CLR:
1857 		/* we do not allow a range, indicated by the presense of '-' */
1858 		if (strchr(rulestr, '-'))
1859 			return -EINVAL;
1860 		break;
1861 	default:
1862 		/* only the above fields are valid */
1863 		return -EINVAL;
1864 	}
1865 
1866 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
1867 	if (!tmprule)
1868 		return -ENOMEM;
1869 
1870 	context_init(&tmprule->au_ctxt);
1871 
1872 	POLICY_RDLOCK;
1873 
1874 	tmprule->au_seqno = latest_granting;
1875 
1876 	switch (field) {
1877 	case AUDIT_SE_USER:
1878 		userdatum = hashtab_search(policydb.p_users.table, rulestr);
1879 		if (!userdatum)
1880 			rc = -EINVAL;
1881 		else
1882 			tmprule->au_ctxt.user = userdatum->value;
1883 		break;
1884 	case AUDIT_SE_ROLE:
1885 		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
1886 		if (!roledatum)
1887 			rc = -EINVAL;
1888 		else
1889 			tmprule->au_ctxt.role = roledatum->value;
1890 		break;
1891 	case AUDIT_SE_TYPE:
1892 		typedatum = hashtab_search(policydb.p_types.table, rulestr);
1893 		if (!typedatum)
1894 			rc = -EINVAL;
1895 		else
1896 			tmprule->au_ctxt.type = typedatum->value;
1897 		break;
1898 	case AUDIT_SE_SEN:
1899 	case AUDIT_SE_CLR:
1900 		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
1901 		break;
1902 	}
1903 
1904 	POLICY_RDUNLOCK;
1905 
1906 	if (rc) {
1907 		selinux_audit_rule_free(tmprule);
1908 		tmprule = NULL;
1909 	}
1910 
1911 	*rule = tmprule;
1912 
1913 	return rc;
1914 }
1915 
1916 int selinux_audit_rule_match(u32 ctxid, u32 field, u32 op,
1917                              struct selinux_audit_rule *rule,
1918                              struct audit_context *actx)
1919 {
1920 	struct context *ctxt;
1921 	struct mls_level *level;
1922 	int match = 0;
1923 
1924 	if (!rule) {
1925 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1926 		          "selinux_audit_rule_match: missing rule\n");
1927 		return -ENOENT;
1928 	}
1929 
1930 	POLICY_RDLOCK;
1931 
1932 	if (rule->au_seqno < latest_granting) {
1933 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1934 		          "selinux_audit_rule_match: stale rule\n");
1935 		match = -ESTALE;
1936 		goto out;
1937 	}
1938 
1939 	ctxt = sidtab_search(&sidtab, ctxid);
1940 	if (!ctxt) {
1941 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1942 		          "selinux_audit_rule_match: unrecognized SID %d\n",
1943 		          ctxid);
1944 		match = -ENOENT;
1945 		goto out;
1946 	}
1947 
1948 	/* a field/op pair that is not caught here will simply fall through
1949 	   without a match */
1950 	switch (field) {
1951 	case AUDIT_SE_USER:
1952 		switch (op) {
1953 		case AUDIT_EQUAL:
1954 			match = (ctxt->user == rule->au_ctxt.user);
1955 			break;
1956 		case AUDIT_NOT_EQUAL:
1957 			match = (ctxt->user != rule->au_ctxt.user);
1958 			break;
1959 		}
1960 		break;
1961 	case AUDIT_SE_ROLE:
1962 		switch (op) {
1963 		case AUDIT_EQUAL:
1964 			match = (ctxt->role == rule->au_ctxt.role);
1965 			break;
1966 		case AUDIT_NOT_EQUAL:
1967 			match = (ctxt->role != rule->au_ctxt.role);
1968 			break;
1969 		}
1970 		break;
1971 	case AUDIT_SE_TYPE:
1972 		switch (op) {
1973 		case AUDIT_EQUAL:
1974 			match = (ctxt->type == rule->au_ctxt.type);
1975 			break;
1976 		case AUDIT_NOT_EQUAL:
1977 			match = (ctxt->type != rule->au_ctxt.type);
1978 			break;
1979 		}
1980 		break;
1981 	case AUDIT_SE_SEN:
1982 	case AUDIT_SE_CLR:
1983 		level = (field == AUDIT_SE_SEN ?
1984 		         &ctxt->range.level[0] : &ctxt->range.level[1]);
1985 		switch (op) {
1986 		case AUDIT_EQUAL:
1987 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
1988 			                     level);
1989 			break;
1990 		case AUDIT_NOT_EQUAL:
1991 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
1992 			                      level);
1993 			break;
1994 		case AUDIT_LESS_THAN:
1995 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
1996 			                       level) &&
1997 			         !mls_level_eq(&rule->au_ctxt.range.level[0],
1998 			                       level));
1999 			break;
2000 		case AUDIT_LESS_THAN_OR_EQUAL:
2001 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
2002 			                      level);
2003 			break;
2004 		case AUDIT_GREATER_THAN:
2005 			match = (mls_level_dom(level,
2006 			                      &rule->au_ctxt.range.level[0]) &&
2007 			         !mls_level_eq(level,
2008 			                       &rule->au_ctxt.range.level[0]));
2009 			break;
2010 		case AUDIT_GREATER_THAN_OR_EQUAL:
2011 			match = mls_level_dom(level,
2012 			                      &rule->au_ctxt.range.level[0]);
2013 			break;
2014 		}
2015 	}
2016 
2017 out:
2018 	POLICY_RDUNLOCK;
2019 	return match;
2020 }
2021 
2022 static int (*aurule_callback)(void) = NULL;
2023 
2024 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2025                                u16 class, u32 perms, u32 *retained)
2026 {
2027 	int err = 0;
2028 
2029 	if (event == AVC_CALLBACK_RESET && aurule_callback)
2030 		err = aurule_callback();
2031 	return err;
2032 }
2033 
2034 static int __init aurule_init(void)
2035 {
2036 	int err;
2037 
2038 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2039 	                       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2040 	if (err)
2041 		panic("avc_add_callback() failed, error %d\n", err);
2042 
2043 	return err;
2044 }
2045 __initcall(aurule_init);
2046 
2047 void selinux_audit_set_callback(int (*callback)(void))
2048 {
2049 	aurule_callback = callback;
2050 }
2051