xref: /linux/security/selinux/ss/services.c (revision dfc349402de8e95f6a42e8341e9ea193b718eee3)
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26  *
27  *  Added support for bounds domain and audit messaged on masked permissions
28  *
29  * Copyright (C) 2008, 2009 NEC Corporation
30  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
31  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
32  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
33  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
34  *	This program is free software; you can redistribute it and/or modify
35  *	it under the terms of the GNU General Public License as published by
36  *	the Free Software Foundation, version 2.
37  */
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/string.h>
41 #include <linux/spinlock.h>
42 #include <linux/rcupdate.h>
43 #include <linux/errno.h>
44 #include <linux/in.h>
45 #include <linux/sched.h>
46 #include <linux/audit.h>
47 #include <linux/mutex.h>
48 #include <linux/selinux.h>
49 #include <net/netlabel.h>
50 
51 #include "flask.h"
52 #include "avc.h"
53 #include "avc_ss.h"
54 #include "security.h"
55 #include "context.h"
56 #include "policydb.h"
57 #include "sidtab.h"
58 #include "services.h"
59 #include "conditional.h"
60 #include "mls.h"
61 #include "objsec.h"
62 #include "netlabel.h"
63 #include "xfrm.h"
64 #include "ebitmap.h"
65 #include "audit.h"
66 
67 extern void selnl_notify_policyload(u32 seqno);
68 unsigned int policydb_loaded_version;
69 
70 int selinux_policycap_netpeer;
71 int selinux_policycap_openperm;
72 
73 /*
74  * This is declared in avc.c
75  */
76 extern const struct selinux_class_perm selinux_class_perm;
77 
78 static DEFINE_RWLOCK(policy_rwlock);
79 
80 static struct sidtab sidtab;
81 struct policydb policydb;
82 int ss_initialized;
83 
84 /*
85  * The largest sequence number that has been used when
86  * providing an access decision to the access vector cache.
87  * The sequence number only changes when a policy change
88  * occurs.
89  */
90 static u32 latest_granting;
91 
92 /* Forward declaration. */
93 static int context_struct_to_string(struct context *context, char **scontext,
94 				    u32 *scontext_len);
95 
96 static int context_struct_compute_av(struct context *scontext,
97 				     struct context *tcontext,
98 				     u16 tclass,
99 				     u32 requested,
100 				     struct av_decision *avd);
101 /*
102  * Return the boolean value of a constraint expression
103  * when it is applied to the specified source and target
104  * security contexts.
105  *
106  * xcontext is a special beast...  It is used by the validatetrans rules
107  * only.  For these rules, scontext is the context before the transition,
108  * tcontext is the context after the transition, and xcontext is the context
109  * of the process performing the transition.  All other callers of
110  * constraint_expr_eval should pass in NULL for xcontext.
111  */
112 static int constraint_expr_eval(struct context *scontext,
113 				struct context *tcontext,
114 				struct context *xcontext,
115 				struct constraint_expr *cexpr)
116 {
117 	u32 val1, val2;
118 	struct context *c;
119 	struct role_datum *r1, *r2;
120 	struct mls_level *l1, *l2;
121 	struct constraint_expr *e;
122 	int s[CEXPR_MAXDEPTH];
123 	int sp = -1;
124 
125 	for (e = cexpr; e; e = e->next) {
126 		switch (e->expr_type) {
127 		case CEXPR_NOT:
128 			BUG_ON(sp < 0);
129 			s[sp] = !s[sp];
130 			break;
131 		case CEXPR_AND:
132 			BUG_ON(sp < 1);
133 			sp--;
134 			s[sp] &= s[sp+1];
135 			break;
136 		case CEXPR_OR:
137 			BUG_ON(sp < 1);
138 			sp--;
139 			s[sp] |= s[sp+1];
140 			break;
141 		case CEXPR_ATTR:
142 			if (sp == (CEXPR_MAXDEPTH-1))
143 				return 0;
144 			switch (e->attr) {
145 			case CEXPR_USER:
146 				val1 = scontext->user;
147 				val2 = tcontext->user;
148 				break;
149 			case CEXPR_TYPE:
150 				val1 = scontext->type;
151 				val2 = tcontext->type;
152 				break;
153 			case CEXPR_ROLE:
154 				val1 = scontext->role;
155 				val2 = tcontext->role;
156 				r1 = policydb.role_val_to_struct[val1 - 1];
157 				r2 = policydb.role_val_to_struct[val2 - 1];
158 				switch (e->op) {
159 				case CEXPR_DOM:
160 					s[++sp] = ebitmap_get_bit(&r1->dominates,
161 								  val2 - 1);
162 					continue;
163 				case CEXPR_DOMBY:
164 					s[++sp] = ebitmap_get_bit(&r2->dominates,
165 								  val1 - 1);
166 					continue;
167 				case CEXPR_INCOMP:
168 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
169 								    val2 - 1) &&
170 						   !ebitmap_get_bit(&r2->dominates,
171 								    val1 - 1));
172 					continue;
173 				default:
174 					break;
175 				}
176 				break;
177 			case CEXPR_L1L2:
178 				l1 = &(scontext->range.level[0]);
179 				l2 = &(tcontext->range.level[0]);
180 				goto mls_ops;
181 			case CEXPR_L1H2:
182 				l1 = &(scontext->range.level[0]);
183 				l2 = &(tcontext->range.level[1]);
184 				goto mls_ops;
185 			case CEXPR_H1L2:
186 				l1 = &(scontext->range.level[1]);
187 				l2 = &(tcontext->range.level[0]);
188 				goto mls_ops;
189 			case CEXPR_H1H2:
190 				l1 = &(scontext->range.level[1]);
191 				l2 = &(tcontext->range.level[1]);
192 				goto mls_ops;
193 			case CEXPR_L1H1:
194 				l1 = &(scontext->range.level[0]);
195 				l2 = &(scontext->range.level[1]);
196 				goto mls_ops;
197 			case CEXPR_L2H2:
198 				l1 = &(tcontext->range.level[0]);
199 				l2 = &(tcontext->range.level[1]);
200 				goto mls_ops;
201 mls_ops:
202 			switch (e->op) {
203 			case CEXPR_EQ:
204 				s[++sp] = mls_level_eq(l1, l2);
205 				continue;
206 			case CEXPR_NEQ:
207 				s[++sp] = !mls_level_eq(l1, l2);
208 				continue;
209 			case CEXPR_DOM:
210 				s[++sp] = mls_level_dom(l1, l2);
211 				continue;
212 			case CEXPR_DOMBY:
213 				s[++sp] = mls_level_dom(l2, l1);
214 				continue;
215 			case CEXPR_INCOMP:
216 				s[++sp] = mls_level_incomp(l2, l1);
217 				continue;
218 			default:
219 				BUG();
220 				return 0;
221 			}
222 			break;
223 			default:
224 				BUG();
225 				return 0;
226 			}
227 
228 			switch (e->op) {
229 			case CEXPR_EQ:
230 				s[++sp] = (val1 == val2);
231 				break;
232 			case CEXPR_NEQ:
233 				s[++sp] = (val1 != val2);
234 				break;
235 			default:
236 				BUG();
237 				return 0;
238 			}
239 			break;
240 		case CEXPR_NAMES:
241 			if (sp == (CEXPR_MAXDEPTH-1))
242 				return 0;
243 			c = scontext;
244 			if (e->attr & CEXPR_TARGET)
245 				c = tcontext;
246 			else if (e->attr & CEXPR_XTARGET) {
247 				c = xcontext;
248 				if (!c) {
249 					BUG();
250 					return 0;
251 				}
252 			}
253 			if (e->attr & CEXPR_USER)
254 				val1 = c->user;
255 			else if (e->attr & CEXPR_ROLE)
256 				val1 = c->role;
257 			else if (e->attr & CEXPR_TYPE)
258 				val1 = c->type;
259 			else {
260 				BUG();
261 				return 0;
262 			}
263 
264 			switch (e->op) {
265 			case CEXPR_EQ:
266 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
267 				break;
268 			case CEXPR_NEQ:
269 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
270 				break;
271 			default:
272 				BUG();
273 				return 0;
274 			}
275 			break;
276 		default:
277 			BUG();
278 			return 0;
279 		}
280 	}
281 
282 	BUG_ON(sp != 0);
283 	return s[0];
284 }
285 
286 /*
287  * security_dump_masked_av - dumps masked permissions during
288  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
289  */
290 static int dump_masked_av_helper(void *k, void *d, void *args)
291 {
292 	struct perm_datum *pdatum = d;
293 	char **permission_names = args;
294 
295 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
296 
297 	permission_names[pdatum->value - 1] = (char *)k;
298 
299 	return 0;
300 }
301 
302 static void security_dump_masked_av(struct context *scontext,
303 				    struct context *tcontext,
304 				    u16 tclass,
305 				    u32 permissions,
306 				    const char *reason)
307 {
308 	struct common_datum *common_dat;
309 	struct class_datum *tclass_dat;
310 	struct audit_buffer *ab;
311 	char *tclass_name;
312 	char *scontext_name = NULL;
313 	char *tcontext_name = NULL;
314 	char *permission_names[32];
315 	int index, length;
316 	bool need_comma = false;
317 
318 	if (!permissions)
319 		return;
320 
321 	tclass_name = policydb.p_class_val_to_name[tclass - 1];
322 	tclass_dat = policydb.class_val_to_struct[tclass - 1];
323 	common_dat = tclass_dat->comdatum;
324 
325 	/* init permission_names */
326 	if (common_dat &&
327 	    hashtab_map(common_dat->permissions.table,
328 			dump_masked_av_helper, permission_names) < 0)
329 		goto out;
330 
331 	if (hashtab_map(tclass_dat->permissions.table,
332 			dump_masked_av_helper, permission_names) < 0)
333 		goto out;
334 
335 	/* get scontext/tcontext in text form */
336 	if (context_struct_to_string(scontext,
337 				     &scontext_name, &length) < 0)
338 		goto out;
339 
340 	if (context_struct_to_string(tcontext,
341 				     &tcontext_name, &length) < 0)
342 		goto out;
343 
344 	/* audit a message */
345 	ab = audit_log_start(current->audit_context,
346 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
347 	if (!ab)
348 		goto out;
349 
350 	audit_log_format(ab, "op=security_compute_av reason=%s "
351 			 "scontext=%s tcontext=%s tclass=%s perms=",
352 			 reason, scontext_name, tcontext_name, tclass_name);
353 
354 	for (index = 0; index < 32; index++) {
355 		u32 mask = (1 << index);
356 
357 		if ((mask & permissions) == 0)
358 			continue;
359 
360 		audit_log_format(ab, "%s%s",
361 				 need_comma ? "," : "",
362 				 permission_names[index]
363 				 ? permission_names[index] : "????");
364 		need_comma = true;
365 	}
366 	audit_log_end(ab);
367 out:
368 	/* release scontext/tcontext */
369 	kfree(tcontext_name);
370 	kfree(scontext_name);
371 
372 	return;
373 }
374 
375 /*
376  * security_boundary_permission - drops violated permissions
377  * on boundary constraint.
378  */
379 static void type_attribute_bounds_av(struct context *scontext,
380 				     struct context *tcontext,
381 				     u16 tclass,
382 				     u32 requested,
383 				     struct av_decision *avd)
384 {
385 	struct context lo_scontext;
386 	struct context lo_tcontext;
387 	struct av_decision lo_avd;
388 	struct type_datum *source
389 		= policydb.type_val_to_struct[scontext->type - 1];
390 	struct type_datum *target
391 		= policydb.type_val_to_struct[tcontext->type - 1];
392 	u32 masked = 0;
393 
394 	if (source->bounds) {
395 		memset(&lo_avd, 0, sizeof(lo_avd));
396 
397 		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
398 		lo_scontext.type = source->bounds;
399 
400 		context_struct_compute_av(&lo_scontext,
401 					  tcontext,
402 					  tclass,
403 					  requested,
404 					  &lo_avd);
405 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
406 			return;		/* no masked permission */
407 		masked = ~lo_avd.allowed & avd->allowed;
408 	}
409 
410 	if (target->bounds) {
411 		memset(&lo_avd, 0, sizeof(lo_avd));
412 
413 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
414 		lo_tcontext.type = target->bounds;
415 
416 		context_struct_compute_av(scontext,
417 					  &lo_tcontext,
418 					  tclass,
419 					  requested,
420 					  &lo_avd);
421 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
422 			return;		/* no masked permission */
423 		masked = ~lo_avd.allowed & avd->allowed;
424 	}
425 
426 	if (source->bounds && target->bounds) {
427 		memset(&lo_avd, 0, sizeof(lo_avd));
428 		/*
429 		 * lo_scontext and lo_tcontext are already
430 		 * set up.
431 		 */
432 
433 		context_struct_compute_av(&lo_scontext,
434 					  &lo_tcontext,
435 					  tclass,
436 					  requested,
437 					  &lo_avd);
438 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
439 			return;		/* no masked permission */
440 		masked = ~lo_avd.allowed & avd->allowed;
441 	}
442 
443 	if (masked) {
444 		/* mask violated permissions */
445 		avd->allowed &= ~masked;
446 
447 		/* audit masked permissions */
448 		security_dump_masked_av(scontext, tcontext,
449 					tclass, masked, "bounds");
450 	}
451 }
452 
453 /*
454  * Compute access vectors based on a context structure pair for
455  * the permissions in a particular class.
456  */
457 static int context_struct_compute_av(struct context *scontext,
458 				     struct context *tcontext,
459 				     u16 tclass,
460 				     u32 requested,
461 				     struct av_decision *avd)
462 {
463 	struct constraint_node *constraint;
464 	struct role_allow *ra;
465 	struct avtab_key avkey;
466 	struct avtab_node *node;
467 	struct class_datum *tclass_datum;
468 	struct ebitmap *sattr, *tattr;
469 	struct ebitmap_node *snode, *tnode;
470 	const struct selinux_class_perm *kdefs = &selinux_class_perm;
471 	unsigned int i, j;
472 
473 	/*
474 	 * Remap extended Netlink classes for old policy versions.
475 	 * Do this here rather than socket_type_to_security_class()
476 	 * in case a newer policy version is loaded, allowing sockets
477 	 * to remain in the correct class.
478 	 */
479 	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
480 		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
481 		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
482 			tclass = SECCLASS_NETLINK_SOCKET;
483 
484 	/*
485 	 * Initialize the access vectors to the default values.
486 	 */
487 	avd->allowed = 0;
488 	avd->auditallow = 0;
489 	avd->auditdeny = 0xffffffff;
490 	avd->seqno = latest_granting;
491 	avd->flags = 0;
492 
493 	/*
494 	 * Check for all the invalid cases.
495 	 * - tclass 0
496 	 * - tclass > policy and > kernel
497 	 * - tclass > policy but is a userspace class
498 	 * - tclass > policy but we do not allow unknowns
499 	 */
500 	if (unlikely(!tclass))
501 		goto inval_class;
502 	if (unlikely(tclass > policydb.p_classes.nprim))
503 		if (tclass > kdefs->cts_len ||
504 		    !kdefs->class_to_string[tclass] ||
505 		    !policydb.allow_unknown)
506 			goto inval_class;
507 
508 	/*
509 	 * Kernel class and we allow unknown so pad the allow decision
510 	 * the pad will be all 1 for unknown classes.
511 	 */
512 	if (tclass <= kdefs->cts_len && policydb.allow_unknown)
513 		avd->allowed = policydb.undefined_perms[tclass - 1];
514 
515 	/*
516 	 * Not in policy. Since decision is completed (all 1 or all 0) return.
517 	 */
518 	if (unlikely(tclass > policydb.p_classes.nprim))
519 		return 0;
520 
521 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
522 
523 	/*
524 	 * If a specific type enforcement rule was defined for
525 	 * this permission check, then use it.
526 	 */
527 	avkey.target_class = tclass;
528 	avkey.specified = AVTAB_AV;
529 	sattr = &policydb.type_attr_map[scontext->type - 1];
530 	tattr = &policydb.type_attr_map[tcontext->type - 1];
531 	ebitmap_for_each_positive_bit(sattr, snode, i) {
532 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
533 			avkey.source_type = i + 1;
534 			avkey.target_type = j + 1;
535 			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
536 			     node;
537 			     node = avtab_search_node_next(node, avkey.specified)) {
538 				if (node->key.specified == AVTAB_ALLOWED)
539 					avd->allowed |= node->datum.data;
540 				else if (node->key.specified == AVTAB_AUDITALLOW)
541 					avd->auditallow |= node->datum.data;
542 				else if (node->key.specified == AVTAB_AUDITDENY)
543 					avd->auditdeny &= node->datum.data;
544 			}
545 
546 			/* Check conditional av table for additional permissions */
547 			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
548 
549 		}
550 	}
551 
552 	/*
553 	 * Remove any permissions prohibited by a constraint (this includes
554 	 * the MLS policy).
555 	 */
556 	constraint = tclass_datum->constraints;
557 	while (constraint) {
558 		if ((constraint->permissions & (avd->allowed)) &&
559 		    !constraint_expr_eval(scontext, tcontext, NULL,
560 					  constraint->expr)) {
561 			avd->allowed &= ~(constraint->permissions);
562 		}
563 		constraint = constraint->next;
564 	}
565 
566 	/*
567 	 * If checking process transition permission and the
568 	 * role is changing, then check the (current_role, new_role)
569 	 * pair.
570 	 */
571 	if (tclass == SECCLASS_PROCESS &&
572 	    (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
573 	    scontext->role != tcontext->role) {
574 		for (ra = policydb.role_allow; ra; ra = ra->next) {
575 			if (scontext->role == ra->role &&
576 			    tcontext->role == ra->new_role)
577 				break;
578 		}
579 		if (!ra)
580 			avd->allowed &= ~(PROCESS__TRANSITION |
581 					  PROCESS__DYNTRANSITION);
582 	}
583 
584 	/*
585 	 * If the given source and target types have boundary
586 	 * constraint, lazy checks have to mask any violated
587 	 * permission and notice it to userspace via audit.
588 	 */
589 	type_attribute_bounds_av(scontext, tcontext,
590 				 tclass, requested, avd);
591 
592 	return 0;
593 
594 inval_class:
595 	if (!tclass || tclass > kdefs->cts_len ||
596 	    !kdefs->class_to_string[tclass]) {
597 		if (printk_ratelimit())
598 			printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
599 			       __func__, tclass);
600 		return -EINVAL;
601 	}
602 
603 	/*
604 	 * Known to the kernel, but not to the policy.
605 	 * Handle as a denial (allowed is 0).
606 	 */
607 	return 0;
608 }
609 
610 static int security_validtrans_handle_fail(struct context *ocontext,
611 					   struct context *ncontext,
612 					   struct context *tcontext,
613 					   u16 tclass)
614 {
615 	char *o = NULL, *n = NULL, *t = NULL;
616 	u32 olen, nlen, tlen;
617 
618 	if (context_struct_to_string(ocontext, &o, &olen) < 0)
619 		goto out;
620 	if (context_struct_to_string(ncontext, &n, &nlen) < 0)
621 		goto out;
622 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
623 		goto out;
624 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
625 		  "security_validate_transition:  denied for"
626 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
627 		  o, n, t, policydb.p_class_val_to_name[tclass-1]);
628 out:
629 	kfree(o);
630 	kfree(n);
631 	kfree(t);
632 
633 	if (!selinux_enforcing)
634 		return 0;
635 	return -EPERM;
636 }
637 
638 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
639 				 u16 tclass)
640 {
641 	struct context *ocontext;
642 	struct context *ncontext;
643 	struct context *tcontext;
644 	struct class_datum *tclass_datum;
645 	struct constraint_node *constraint;
646 	int rc = 0;
647 
648 	if (!ss_initialized)
649 		return 0;
650 
651 	read_lock(&policy_rwlock);
652 
653 	/*
654 	 * Remap extended Netlink classes for old policy versions.
655 	 * Do this here rather than socket_type_to_security_class()
656 	 * in case a newer policy version is loaded, allowing sockets
657 	 * to remain in the correct class.
658 	 */
659 	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
660 		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
661 		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
662 			tclass = SECCLASS_NETLINK_SOCKET;
663 
664 	if (!tclass || tclass > policydb.p_classes.nprim) {
665 		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
666 			__func__, tclass);
667 		rc = -EINVAL;
668 		goto out;
669 	}
670 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
671 
672 	ocontext = sidtab_search(&sidtab, oldsid);
673 	if (!ocontext) {
674 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
675 			__func__, oldsid);
676 		rc = -EINVAL;
677 		goto out;
678 	}
679 
680 	ncontext = sidtab_search(&sidtab, newsid);
681 	if (!ncontext) {
682 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
683 			__func__, newsid);
684 		rc = -EINVAL;
685 		goto out;
686 	}
687 
688 	tcontext = sidtab_search(&sidtab, tasksid);
689 	if (!tcontext) {
690 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
691 			__func__, tasksid);
692 		rc = -EINVAL;
693 		goto out;
694 	}
695 
696 	constraint = tclass_datum->validatetrans;
697 	while (constraint) {
698 		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
699 					  constraint->expr)) {
700 			rc = security_validtrans_handle_fail(ocontext, ncontext,
701 							     tcontext, tclass);
702 			goto out;
703 		}
704 		constraint = constraint->next;
705 	}
706 
707 out:
708 	read_unlock(&policy_rwlock);
709 	return rc;
710 }
711 
712 /*
713  * security_bounded_transition - check whether the given
714  * transition is directed to bounded, or not.
715  * It returns 0, if @newsid is bounded by @oldsid.
716  * Otherwise, it returns error code.
717  *
718  * @oldsid : current security identifier
719  * @newsid : destinated security identifier
720  */
721 int security_bounded_transition(u32 old_sid, u32 new_sid)
722 {
723 	struct context *old_context, *new_context;
724 	struct type_datum *type;
725 	int index;
726 	int rc = -EINVAL;
727 
728 	read_lock(&policy_rwlock);
729 
730 	old_context = sidtab_search(&sidtab, old_sid);
731 	if (!old_context) {
732 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
733 		       __func__, old_sid);
734 		goto out;
735 	}
736 
737 	new_context = sidtab_search(&sidtab, new_sid);
738 	if (!new_context) {
739 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
740 		       __func__, new_sid);
741 		goto out;
742 	}
743 
744 	/* type/domain unchaned */
745 	if (old_context->type == new_context->type) {
746 		rc = 0;
747 		goto out;
748 	}
749 
750 	index = new_context->type;
751 	while (true) {
752 		type = policydb.type_val_to_struct[index - 1];
753 		BUG_ON(!type);
754 
755 		/* not bounded anymore */
756 		if (!type->bounds) {
757 			rc = -EPERM;
758 			break;
759 		}
760 
761 		/* @newsid is bounded by @oldsid */
762 		if (type->bounds == old_context->type) {
763 			rc = 0;
764 			break;
765 		}
766 		index = type->bounds;
767 	}
768 
769 	if (rc) {
770 		char *old_name = NULL;
771 		char *new_name = NULL;
772 		int length;
773 
774 		if (!context_struct_to_string(old_context,
775 					      &old_name, &length) &&
776 		    !context_struct_to_string(new_context,
777 					      &new_name, &length)) {
778 			audit_log(current->audit_context,
779 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
780 				  "op=security_bounded_transition "
781 				  "result=denied "
782 				  "oldcontext=%s newcontext=%s",
783 				  old_name, new_name);
784 		}
785 		kfree(new_name);
786 		kfree(old_name);
787 	}
788 out:
789 	read_unlock(&policy_rwlock);
790 
791 	return rc;
792 }
793 
794 
795 /**
796  * security_compute_av - Compute access vector decisions.
797  * @ssid: source security identifier
798  * @tsid: target security identifier
799  * @tclass: target security class
800  * @requested: requested permissions
801  * @avd: access vector decisions
802  *
803  * Compute a set of access vector decisions based on the
804  * SID pair (@ssid, @tsid) for the permissions in @tclass.
805  * Return -%EINVAL if any of the parameters are invalid or %0
806  * if the access vector decisions were computed successfully.
807  */
808 int security_compute_av(u32 ssid,
809 			u32 tsid,
810 			u16 tclass,
811 			u32 requested,
812 			struct av_decision *avd)
813 {
814 	struct context *scontext = NULL, *tcontext = NULL;
815 	int rc = 0;
816 
817 	if (!ss_initialized) {
818 		avd->allowed = 0xffffffff;
819 		avd->auditallow = 0;
820 		avd->auditdeny = 0xffffffff;
821 		avd->seqno = latest_granting;
822 		return 0;
823 	}
824 
825 	read_lock(&policy_rwlock);
826 
827 	scontext = sidtab_search(&sidtab, ssid);
828 	if (!scontext) {
829 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
830 		       __func__, ssid);
831 		rc = -EINVAL;
832 		goto out;
833 	}
834 	tcontext = sidtab_search(&sidtab, tsid);
835 	if (!tcontext) {
836 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
837 		       __func__, tsid);
838 		rc = -EINVAL;
839 		goto out;
840 	}
841 
842 	rc = context_struct_compute_av(scontext, tcontext, tclass,
843 				       requested, avd);
844 
845 	/* permissive domain? */
846 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
847 	    avd->flags |= AVD_FLAGS_PERMISSIVE;
848 out:
849 	read_unlock(&policy_rwlock);
850 	return rc;
851 }
852 
853 /*
854  * Write the security context string representation of
855  * the context structure `context' into a dynamically
856  * allocated string of the correct size.  Set `*scontext'
857  * to point to this string and set `*scontext_len' to
858  * the length of the string.
859  */
860 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
861 {
862 	char *scontextp;
863 
864 	*scontext = NULL;
865 	*scontext_len = 0;
866 
867 	if (context->len) {
868 		*scontext_len = context->len;
869 		*scontext = kstrdup(context->str, GFP_ATOMIC);
870 		if (!(*scontext))
871 			return -ENOMEM;
872 		return 0;
873 	}
874 
875 	/* Compute the size of the context. */
876 	*scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
877 	*scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
878 	*scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
879 	*scontext_len += mls_compute_context_len(context);
880 
881 	/* Allocate space for the context; caller must free this space. */
882 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
883 	if (!scontextp)
884 		return -ENOMEM;
885 	*scontext = scontextp;
886 
887 	/*
888 	 * Copy the user name, role name and type name into the context.
889 	 */
890 	sprintf(scontextp, "%s:%s:%s",
891 		policydb.p_user_val_to_name[context->user - 1],
892 		policydb.p_role_val_to_name[context->role - 1],
893 		policydb.p_type_val_to_name[context->type - 1]);
894 	scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
895 		     1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
896 		     1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
897 
898 	mls_sid_to_context(context, &scontextp);
899 
900 	*scontextp = 0;
901 
902 	return 0;
903 }
904 
905 #include "initial_sid_to_string.h"
906 
907 const char *security_get_initial_sid_context(u32 sid)
908 {
909 	if (unlikely(sid > SECINITSID_NUM))
910 		return NULL;
911 	return initial_sid_to_string[sid];
912 }
913 
914 static int security_sid_to_context_core(u32 sid, char **scontext,
915 					u32 *scontext_len, int force)
916 {
917 	struct context *context;
918 	int rc = 0;
919 
920 	*scontext = NULL;
921 	*scontext_len  = 0;
922 
923 	if (!ss_initialized) {
924 		if (sid <= SECINITSID_NUM) {
925 			char *scontextp;
926 
927 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
928 			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
929 			if (!scontextp) {
930 				rc = -ENOMEM;
931 				goto out;
932 			}
933 			strcpy(scontextp, initial_sid_to_string[sid]);
934 			*scontext = scontextp;
935 			goto out;
936 		}
937 		printk(KERN_ERR "SELinux: %s:  called before initial "
938 		       "load_policy on unknown SID %d\n", __func__, sid);
939 		rc = -EINVAL;
940 		goto out;
941 	}
942 	read_lock(&policy_rwlock);
943 	if (force)
944 		context = sidtab_search_force(&sidtab, sid);
945 	else
946 		context = sidtab_search(&sidtab, sid);
947 	if (!context) {
948 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
949 			__func__, sid);
950 		rc = -EINVAL;
951 		goto out_unlock;
952 	}
953 	rc = context_struct_to_string(context, scontext, scontext_len);
954 out_unlock:
955 	read_unlock(&policy_rwlock);
956 out:
957 	return rc;
958 
959 }
960 
961 /**
962  * security_sid_to_context - Obtain a context for a given SID.
963  * @sid: security identifier, SID
964  * @scontext: security context
965  * @scontext_len: length in bytes
966  *
967  * Write the string representation of the context associated with @sid
968  * into a dynamically allocated string of the correct size.  Set @scontext
969  * to point to this string and set @scontext_len to the length of the string.
970  */
971 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
972 {
973 	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
974 }
975 
976 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
977 {
978 	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
979 }
980 
981 /*
982  * Caveat:  Mutates scontext.
983  */
984 static int string_to_context_struct(struct policydb *pol,
985 				    struct sidtab *sidtabp,
986 				    char *scontext,
987 				    u32 scontext_len,
988 				    struct context *ctx,
989 				    u32 def_sid)
990 {
991 	struct role_datum *role;
992 	struct type_datum *typdatum;
993 	struct user_datum *usrdatum;
994 	char *scontextp, *p, oldc;
995 	int rc = 0;
996 
997 	context_init(ctx);
998 
999 	/* Parse the security context. */
1000 
1001 	rc = -EINVAL;
1002 	scontextp = (char *) scontext;
1003 
1004 	/* Extract the user. */
1005 	p = scontextp;
1006 	while (*p && *p != ':')
1007 		p++;
1008 
1009 	if (*p == 0)
1010 		goto out;
1011 
1012 	*p++ = 0;
1013 
1014 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1015 	if (!usrdatum)
1016 		goto out;
1017 
1018 	ctx->user = usrdatum->value;
1019 
1020 	/* Extract role. */
1021 	scontextp = p;
1022 	while (*p && *p != ':')
1023 		p++;
1024 
1025 	if (*p == 0)
1026 		goto out;
1027 
1028 	*p++ = 0;
1029 
1030 	role = hashtab_search(pol->p_roles.table, scontextp);
1031 	if (!role)
1032 		goto out;
1033 	ctx->role = role->value;
1034 
1035 	/* Extract type. */
1036 	scontextp = p;
1037 	while (*p && *p != ':')
1038 		p++;
1039 	oldc = *p;
1040 	*p++ = 0;
1041 
1042 	typdatum = hashtab_search(pol->p_types.table, scontextp);
1043 	if (!typdatum || typdatum->attribute)
1044 		goto out;
1045 
1046 	ctx->type = typdatum->value;
1047 
1048 	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1049 	if (rc)
1050 		goto out;
1051 
1052 	if ((p - scontext) < scontext_len) {
1053 		rc = -EINVAL;
1054 		goto out;
1055 	}
1056 
1057 	/* Check the validity of the new context. */
1058 	if (!policydb_context_isvalid(pol, ctx)) {
1059 		rc = -EINVAL;
1060 		goto out;
1061 	}
1062 	rc = 0;
1063 out:
1064 	if (rc)
1065 		context_destroy(ctx);
1066 	return rc;
1067 }
1068 
1069 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1070 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1071 					int force)
1072 {
1073 	char *scontext2, *str = NULL;
1074 	struct context context;
1075 	int rc = 0;
1076 
1077 	if (!ss_initialized) {
1078 		int i;
1079 
1080 		for (i = 1; i < SECINITSID_NUM; i++) {
1081 			if (!strcmp(initial_sid_to_string[i], scontext)) {
1082 				*sid = i;
1083 				return 0;
1084 			}
1085 		}
1086 		*sid = SECINITSID_KERNEL;
1087 		return 0;
1088 	}
1089 	*sid = SECSID_NULL;
1090 
1091 	/* Copy the string so that we can modify the copy as we parse it. */
1092 	scontext2 = kmalloc(scontext_len+1, gfp_flags);
1093 	if (!scontext2)
1094 		return -ENOMEM;
1095 	memcpy(scontext2, scontext, scontext_len);
1096 	scontext2[scontext_len] = 0;
1097 
1098 	if (force) {
1099 		/* Save another copy for storing in uninterpreted form */
1100 		str = kstrdup(scontext2, gfp_flags);
1101 		if (!str) {
1102 			kfree(scontext2);
1103 			return -ENOMEM;
1104 		}
1105 	}
1106 
1107 	read_lock(&policy_rwlock);
1108 	rc = string_to_context_struct(&policydb, &sidtab,
1109 				      scontext2, scontext_len,
1110 				      &context, def_sid);
1111 	if (rc == -EINVAL && force) {
1112 		context.str = str;
1113 		context.len = scontext_len;
1114 		str = NULL;
1115 	} else if (rc)
1116 		goto out;
1117 	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1118 	context_destroy(&context);
1119 out:
1120 	read_unlock(&policy_rwlock);
1121 	kfree(scontext2);
1122 	kfree(str);
1123 	return rc;
1124 }
1125 
1126 /**
1127  * security_context_to_sid - Obtain a SID for a given security context.
1128  * @scontext: security context
1129  * @scontext_len: length in bytes
1130  * @sid: security identifier, SID
1131  *
1132  * Obtains a SID associated with the security context that
1133  * has the string representation specified by @scontext.
1134  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1135  * memory is available, or 0 on success.
1136  */
1137 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1138 {
1139 	return security_context_to_sid_core(scontext, scontext_len,
1140 					    sid, SECSID_NULL, GFP_KERNEL, 0);
1141 }
1142 
1143 /**
1144  * security_context_to_sid_default - Obtain a SID for a given security context,
1145  * falling back to specified default if needed.
1146  *
1147  * @scontext: security context
1148  * @scontext_len: length in bytes
1149  * @sid: security identifier, SID
1150  * @def_sid: default SID to assign on error
1151  *
1152  * Obtains a SID associated with the security context that
1153  * has the string representation specified by @scontext.
1154  * The default SID is passed to the MLS layer to be used to allow
1155  * kernel labeling of the MLS field if the MLS field is not present
1156  * (for upgrading to MLS without full relabel).
1157  * Implicitly forces adding of the context even if it cannot be mapped yet.
1158  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1159  * memory is available, or 0 on success.
1160  */
1161 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1162 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1163 {
1164 	return security_context_to_sid_core(scontext, scontext_len,
1165 					    sid, def_sid, gfp_flags, 1);
1166 }
1167 
1168 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1169 				  u32 *sid)
1170 {
1171 	return security_context_to_sid_core(scontext, scontext_len,
1172 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1173 }
1174 
1175 static int compute_sid_handle_invalid_context(
1176 	struct context *scontext,
1177 	struct context *tcontext,
1178 	u16 tclass,
1179 	struct context *newcontext)
1180 {
1181 	char *s = NULL, *t = NULL, *n = NULL;
1182 	u32 slen, tlen, nlen;
1183 
1184 	if (context_struct_to_string(scontext, &s, &slen) < 0)
1185 		goto out;
1186 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
1187 		goto out;
1188 	if (context_struct_to_string(newcontext, &n, &nlen) < 0)
1189 		goto out;
1190 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1191 		  "security_compute_sid:  invalid context %s"
1192 		  " for scontext=%s"
1193 		  " tcontext=%s"
1194 		  " tclass=%s",
1195 		  n, s, t, policydb.p_class_val_to_name[tclass-1]);
1196 out:
1197 	kfree(s);
1198 	kfree(t);
1199 	kfree(n);
1200 	if (!selinux_enforcing)
1201 		return 0;
1202 	return -EACCES;
1203 }
1204 
1205 static int security_compute_sid(u32 ssid,
1206 				u32 tsid,
1207 				u16 tclass,
1208 				u32 specified,
1209 				u32 *out_sid)
1210 {
1211 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1212 	struct role_trans *roletr = NULL;
1213 	struct avtab_key avkey;
1214 	struct avtab_datum *avdatum;
1215 	struct avtab_node *node;
1216 	int rc = 0;
1217 
1218 	if (!ss_initialized) {
1219 		switch (tclass) {
1220 		case SECCLASS_PROCESS:
1221 			*out_sid = ssid;
1222 			break;
1223 		default:
1224 			*out_sid = tsid;
1225 			break;
1226 		}
1227 		goto out;
1228 	}
1229 
1230 	context_init(&newcontext);
1231 
1232 	read_lock(&policy_rwlock);
1233 
1234 	scontext = sidtab_search(&sidtab, ssid);
1235 	if (!scontext) {
1236 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1237 		       __func__, ssid);
1238 		rc = -EINVAL;
1239 		goto out_unlock;
1240 	}
1241 	tcontext = sidtab_search(&sidtab, tsid);
1242 	if (!tcontext) {
1243 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1244 		       __func__, tsid);
1245 		rc = -EINVAL;
1246 		goto out_unlock;
1247 	}
1248 
1249 	/* Set the user identity. */
1250 	switch (specified) {
1251 	case AVTAB_TRANSITION:
1252 	case AVTAB_CHANGE:
1253 		/* Use the process user identity. */
1254 		newcontext.user = scontext->user;
1255 		break;
1256 	case AVTAB_MEMBER:
1257 		/* Use the related object owner. */
1258 		newcontext.user = tcontext->user;
1259 		break;
1260 	}
1261 
1262 	/* Set the role and type to default values. */
1263 	switch (tclass) {
1264 	case SECCLASS_PROCESS:
1265 		/* Use the current role and type of process. */
1266 		newcontext.role = scontext->role;
1267 		newcontext.type = scontext->type;
1268 		break;
1269 	default:
1270 		/* Use the well-defined object role. */
1271 		newcontext.role = OBJECT_R_VAL;
1272 		/* Use the type of the related object. */
1273 		newcontext.type = tcontext->type;
1274 	}
1275 
1276 	/* Look for a type transition/member/change rule. */
1277 	avkey.source_type = scontext->type;
1278 	avkey.target_type = tcontext->type;
1279 	avkey.target_class = tclass;
1280 	avkey.specified = specified;
1281 	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1282 
1283 	/* If no permanent rule, also check for enabled conditional rules */
1284 	if (!avdatum) {
1285 		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1286 		for (; node; node = avtab_search_node_next(node, specified)) {
1287 			if (node->key.specified & AVTAB_ENABLED) {
1288 				avdatum = &node->datum;
1289 				break;
1290 			}
1291 		}
1292 	}
1293 
1294 	if (avdatum) {
1295 		/* Use the type from the type transition/member/change rule. */
1296 		newcontext.type = avdatum->data;
1297 	}
1298 
1299 	/* Check for class-specific changes. */
1300 	switch (tclass) {
1301 	case SECCLASS_PROCESS:
1302 		if (specified & AVTAB_TRANSITION) {
1303 			/* Look for a role transition rule. */
1304 			for (roletr = policydb.role_tr; roletr;
1305 			     roletr = roletr->next) {
1306 				if (roletr->role == scontext->role &&
1307 				    roletr->type == tcontext->type) {
1308 					/* Use the role transition rule. */
1309 					newcontext.role = roletr->new_role;
1310 					break;
1311 				}
1312 			}
1313 		}
1314 		break;
1315 	default:
1316 		break;
1317 	}
1318 
1319 	/* Set the MLS attributes.
1320 	   This is done last because it may allocate memory. */
1321 	rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
1322 	if (rc)
1323 		goto out_unlock;
1324 
1325 	/* Check the validity of the context. */
1326 	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1327 		rc = compute_sid_handle_invalid_context(scontext,
1328 							tcontext,
1329 							tclass,
1330 							&newcontext);
1331 		if (rc)
1332 			goto out_unlock;
1333 	}
1334 	/* Obtain the sid for the context. */
1335 	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1336 out_unlock:
1337 	read_unlock(&policy_rwlock);
1338 	context_destroy(&newcontext);
1339 out:
1340 	return rc;
1341 }
1342 
1343 /**
1344  * security_transition_sid - Compute the SID for a new subject/object.
1345  * @ssid: source security identifier
1346  * @tsid: target security identifier
1347  * @tclass: target security class
1348  * @out_sid: security identifier for new subject/object
1349  *
1350  * Compute a SID to use for labeling a new subject or object in the
1351  * class @tclass based on a SID pair (@ssid, @tsid).
1352  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1353  * if insufficient memory is available, or %0 if the new SID was
1354  * computed successfully.
1355  */
1356 int security_transition_sid(u32 ssid,
1357 			    u32 tsid,
1358 			    u16 tclass,
1359 			    u32 *out_sid)
1360 {
1361 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
1362 }
1363 
1364 /**
1365  * security_member_sid - Compute the SID for member selection.
1366  * @ssid: source security identifier
1367  * @tsid: target security identifier
1368  * @tclass: target security class
1369  * @out_sid: security identifier for selected member
1370  *
1371  * Compute a SID to use when selecting a member of a polyinstantiated
1372  * object of class @tclass based on a SID pair (@ssid, @tsid).
1373  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1374  * if insufficient memory is available, or %0 if the SID was
1375  * computed successfully.
1376  */
1377 int security_member_sid(u32 ssid,
1378 			u32 tsid,
1379 			u16 tclass,
1380 			u32 *out_sid)
1381 {
1382 	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1383 }
1384 
1385 /**
1386  * security_change_sid - Compute the SID for object relabeling.
1387  * @ssid: source security identifier
1388  * @tsid: target security identifier
1389  * @tclass: target security class
1390  * @out_sid: security identifier for selected member
1391  *
1392  * Compute a SID to use for relabeling an object of class @tclass
1393  * based on a SID pair (@ssid, @tsid).
1394  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1395  * if insufficient memory is available, or %0 if the SID was
1396  * computed successfully.
1397  */
1398 int security_change_sid(u32 ssid,
1399 			u32 tsid,
1400 			u16 tclass,
1401 			u32 *out_sid)
1402 {
1403 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1404 }
1405 
1406 /*
1407  * Verify that each kernel class that is defined in the
1408  * policy is correct
1409  */
1410 static int validate_classes(struct policydb *p)
1411 {
1412 	int i, j;
1413 	struct class_datum *cladatum;
1414 	struct perm_datum *perdatum;
1415 	u32 nprim, tmp, common_pts_len, perm_val, pol_val;
1416 	u16 class_val;
1417 	const struct selinux_class_perm *kdefs = &selinux_class_perm;
1418 	const char *def_class, *def_perm, *pol_class;
1419 	struct symtab *perms;
1420 	bool print_unknown_handle = 0;
1421 
1422 	if (p->allow_unknown) {
1423 		u32 num_classes = kdefs->cts_len;
1424 		p->undefined_perms = kcalloc(num_classes, sizeof(u32), GFP_KERNEL);
1425 		if (!p->undefined_perms)
1426 			return -ENOMEM;
1427 	}
1428 
1429 	for (i = 1; i < kdefs->cts_len; i++) {
1430 		def_class = kdefs->class_to_string[i];
1431 		if (!def_class)
1432 			continue;
1433 		if (i > p->p_classes.nprim) {
1434 			printk(KERN_INFO
1435 			       "SELinux:  class %s not defined in policy\n",
1436 			       def_class);
1437 			if (p->reject_unknown)
1438 				return -EINVAL;
1439 			if (p->allow_unknown)
1440 				p->undefined_perms[i-1] = ~0U;
1441 			print_unknown_handle = 1;
1442 			continue;
1443 		}
1444 		pol_class = p->p_class_val_to_name[i-1];
1445 		if (strcmp(pol_class, def_class)) {
1446 			printk(KERN_ERR
1447 			       "SELinux:  class %d is incorrect, found %s but should be %s\n",
1448 			       i, pol_class, def_class);
1449 			return -EINVAL;
1450 		}
1451 	}
1452 	for (i = 0; i < kdefs->av_pts_len; i++) {
1453 		class_val = kdefs->av_perm_to_string[i].tclass;
1454 		perm_val = kdefs->av_perm_to_string[i].value;
1455 		def_perm = kdefs->av_perm_to_string[i].name;
1456 		if (class_val > p->p_classes.nprim)
1457 			continue;
1458 		pol_class = p->p_class_val_to_name[class_val-1];
1459 		cladatum = hashtab_search(p->p_classes.table, pol_class);
1460 		BUG_ON(!cladatum);
1461 		perms = &cladatum->permissions;
1462 		nprim = 1 << (perms->nprim - 1);
1463 		if (perm_val > nprim) {
1464 			printk(KERN_INFO
1465 			       "SELinux:  permission %s in class %s not defined in policy\n",
1466 			       def_perm, pol_class);
1467 			if (p->reject_unknown)
1468 				return -EINVAL;
1469 			if (p->allow_unknown)
1470 				p->undefined_perms[class_val-1] |= perm_val;
1471 			print_unknown_handle = 1;
1472 			continue;
1473 		}
1474 		perdatum = hashtab_search(perms->table, def_perm);
1475 		if (perdatum == NULL) {
1476 			printk(KERN_ERR
1477 			       "SELinux:  permission %s in class %s not found in policy, bad policy\n",
1478 			       def_perm, pol_class);
1479 			return -EINVAL;
1480 		}
1481 		pol_val = 1 << (perdatum->value - 1);
1482 		if (pol_val != perm_val) {
1483 			printk(KERN_ERR
1484 			       "SELinux:  permission %s in class %s has incorrect value\n",
1485 			       def_perm, pol_class);
1486 			return -EINVAL;
1487 		}
1488 	}
1489 	for (i = 0; i < kdefs->av_inherit_len; i++) {
1490 		class_val = kdefs->av_inherit[i].tclass;
1491 		if (class_val > p->p_classes.nprim)
1492 			continue;
1493 		pol_class = p->p_class_val_to_name[class_val-1];
1494 		cladatum = hashtab_search(p->p_classes.table, pol_class);
1495 		BUG_ON(!cladatum);
1496 		if (!cladatum->comdatum) {
1497 			printk(KERN_ERR
1498 			       "SELinux:  class %s should have an inherits clause but does not\n",
1499 			       pol_class);
1500 			return -EINVAL;
1501 		}
1502 		tmp = kdefs->av_inherit[i].common_base;
1503 		common_pts_len = 0;
1504 		while (!(tmp & 0x01)) {
1505 			common_pts_len++;
1506 			tmp >>= 1;
1507 		}
1508 		perms = &cladatum->comdatum->permissions;
1509 		for (j = 0; j < common_pts_len; j++) {
1510 			def_perm = kdefs->av_inherit[i].common_pts[j];
1511 			if (j >= perms->nprim) {
1512 				printk(KERN_INFO
1513 				       "SELinux:  permission %s in class %s not defined in policy\n",
1514 				       def_perm, pol_class);
1515 				if (p->reject_unknown)
1516 					return -EINVAL;
1517 				if (p->allow_unknown)
1518 					p->undefined_perms[class_val-1] |= (1 << j);
1519 				print_unknown_handle = 1;
1520 				continue;
1521 			}
1522 			perdatum = hashtab_search(perms->table, def_perm);
1523 			if (perdatum == NULL) {
1524 				printk(KERN_ERR
1525 				       "SELinux:  permission %s in class %s not found in policy, bad policy\n",
1526 				       def_perm, pol_class);
1527 				return -EINVAL;
1528 			}
1529 			if (perdatum->value != j + 1) {
1530 				printk(KERN_ERR
1531 				       "SELinux:  permission %s in class %s has incorrect value\n",
1532 				       def_perm, pol_class);
1533 				return -EINVAL;
1534 			}
1535 		}
1536 	}
1537 	if (print_unknown_handle)
1538 		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
1539 			(security_get_allow_unknown() ? "allowed" : "denied"));
1540 	return 0;
1541 }
1542 
1543 /* Clone the SID into the new SID table. */
1544 static int clone_sid(u32 sid,
1545 		     struct context *context,
1546 		     void *arg)
1547 {
1548 	struct sidtab *s = arg;
1549 
1550 	return sidtab_insert(s, sid, context);
1551 }
1552 
1553 static inline int convert_context_handle_invalid_context(struct context *context)
1554 {
1555 	int rc = 0;
1556 
1557 	if (selinux_enforcing) {
1558 		rc = -EINVAL;
1559 	} else {
1560 		char *s;
1561 		u32 len;
1562 
1563 		if (!context_struct_to_string(context, &s, &len)) {
1564 			printk(KERN_WARNING
1565 		       "SELinux:  Context %s would be invalid if enforcing\n",
1566 			       s);
1567 			kfree(s);
1568 		}
1569 	}
1570 	return rc;
1571 }
1572 
1573 struct convert_context_args {
1574 	struct policydb *oldp;
1575 	struct policydb *newp;
1576 };
1577 
1578 /*
1579  * Convert the values in the security context
1580  * structure `c' from the values specified
1581  * in the policy `p->oldp' to the values specified
1582  * in the policy `p->newp'.  Verify that the
1583  * context is valid under the new policy.
1584  */
1585 static int convert_context(u32 key,
1586 			   struct context *c,
1587 			   void *p)
1588 {
1589 	struct convert_context_args *args;
1590 	struct context oldc;
1591 	struct role_datum *role;
1592 	struct type_datum *typdatum;
1593 	struct user_datum *usrdatum;
1594 	char *s;
1595 	u32 len;
1596 	int rc;
1597 
1598 	args = p;
1599 
1600 	if (c->str) {
1601 		struct context ctx;
1602 		s = kstrdup(c->str, GFP_KERNEL);
1603 		if (!s) {
1604 			rc = -ENOMEM;
1605 			goto out;
1606 		}
1607 		rc = string_to_context_struct(args->newp, NULL, s,
1608 					      c->len, &ctx, SECSID_NULL);
1609 		kfree(s);
1610 		if (!rc) {
1611 			printk(KERN_INFO
1612 		       "SELinux:  Context %s became valid (mapped).\n",
1613 			       c->str);
1614 			/* Replace string with mapped representation. */
1615 			kfree(c->str);
1616 			memcpy(c, &ctx, sizeof(*c));
1617 			goto out;
1618 		} else if (rc == -EINVAL) {
1619 			/* Retain string representation for later mapping. */
1620 			rc = 0;
1621 			goto out;
1622 		} else {
1623 			/* Other error condition, e.g. ENOMEM. */
1624 			printk(KERN_ERR
1625 		       "SELinux:   Unable to map context %s, rc = %d.\n",
1626 			       c->str, -rc);
1627 			goto out;
1628 		}
1629 	}
1630 
1631 	rc = context_cpy(&oldc, c);
1632 	if (rc)
1633 		goto out;
1634 
1635 	rc = -EINVAL;
1636 
1637 	/* Convert the user. */
1638 	usrdatum = hashtab_search(args->newp->p_users.table,
1639 				  args->oldp->p_user_val_to_name[c->user - 1]);
1640 	if (!usrdatum)
1641 		goto bad;
1642 	c->user = usrdatum->value;
1643 
1644 	/* Convert the role. */
1645 	role = hashtab_search(args->newp->p_roles.table,
1646 			      args->oldp->p_role_val_to_name[c->role - 1]);
1647 	if (!role)
1648 		goto bad;
1649 	c->role = role->value;
1650 
1651 	/* Convert the type. */
1652 	typdatum = hashtab_search(args->newp->p_types.table,
1653 				  args->oldp->p_type_val_to_name[c->type - 1]);
1654 	if (!typdatum)
1655 		goto bad;
1656 	c->type = typdatum->value;
1657 
1658 	rc = mls_convert_context(args->oldp, args->newp, c);
1659 	if (rc)
1660 		goto bad;
1661 
1662 	/* Check the validity of the new context. */
1663 	if (!policydb_context_isvalid(args->newp, c)) {
1664 		rc = convert_context_handle_invalid_context(&oldc);
1665 		if (rc)
1666 			goto bad;
1667 	}
1668 
1669 	context_destroy(&oldc);
1670 	rc = 0;
1671 out:
1672 	return rc;
1673 bad:
1674 	/* Map old representation to string and save it. */
1675 	if (context_struct_to_string(&oldc, &s, &len))
1676 		return -ENOMEM;
1677 	context_destroy(&oldc);
1678 	context_destroy(c);
1679 	c->str = s;
1680 	c->len = len;
1681 	printk(KERN_INFO
1682 	       "SELinux:  Context %s became invalid (unmapped).\n",
1683 	       c->str);
1684 	rc = 0;
1685 	goto out;
1686 }
1687 
1688 static void security_load_policycaps(void)
1689 {
1690 	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1691 						  POLICYDB_CAPABILITY_NETPEER);
1692 	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1693 						  POLICYDB_CAPABILITY_OPENPERM);
1694 }
1695 
1696 extern void selinux_complete_init(void);
1697 static int security_preserve_bools(struct policydb *p);
1698 
1699 /**
1700  * security_load_policy - Load a security policy configuration.
1701  * @data: binary policy data
1702  * @len: length of data in bytes
1703  *
1704  * Load a new set of security policy configuration data,
1705  * validate it and convert the SID table as necessary.
1706  * This function will flush the access vector cache after
1707  * loading the new policy.
1708  */
1709 int security_load_policy(void *data, size_t len)
1710 {
1711 	struct policydb oldpolicydb, newpolicydb;
1712 	struct sidtab oldsidtab, newsidtab;
1713 	struct convert_context_args args;
1714 	u32 seqno;
1715 	int rc = 0;
1716 	struct policy_file file = { data, len }, *fp = &file;
1717 
1718 	if (!ss_initialized) {
1719 		avtab_cache_init();
1720 		if (policydb_read(&policydb, fp)) {
1721 			avtab_cache_destroy();
1722 			return -EINVAL;
1723 		}
1724 		if (policydb_load_isids(&policydb, &sidtab)) {
1725 			policydb_destroy(&policydb);
1726 			avtab_cache_destroy();
1727 			return -EINVAL;
1728 		}
1729 		/* Verify that the kernel defined classes are correct. */
1730 		if (validate_classes(&policydb)) {
1731 			printk(KERN_ERR
1732 			       "SELinux:  the definition of a class is incorrect\n");
1733 			sidtab_destroy(&sidtab);
1734 			policydb_destroy(&policydb);
1735 			avtab_cache_destroy();
1736 			return -EINVAL;
1737 		}
1738 		security_load_policycaps();
1739 		policydb_loaded_version = policydb.policyvers;
1740 		ss_initialized = 1;
1741 		seqno = ++latest_granting;
1742 		selinux_complete_init();
1743 		avc_ss_reset(seqno);
1744 		selnl_notify_policyload(seqno);
1745 		selinux_netlbl_cache_invalidate();
1746 		selinux_xfrm_notify_policyload();
1747 		return 0;
1748 	}
1749 
1750 #if 0
1751 	sidtab_hash_eval(&sidtab, "sids");
1752 #endif
1753 
1754 	if (policydb_read(&newpolicydb, fp))
1755 		return -EINVAL;
1756 
1757 	if (sidtab_init(&newsidtab)) {
1758 		policydb_destroy(&newpolicydb);
1759 		return -ENOMEM;
1760 	}
1761 
1762 	/* Verify that the kernel defined classes are correct. */
1763 	if (validate_classes(&newpolicydb)) {
1764 		printk(KERN_ERR
1765 		       "SELinux:  the definition of a class is incorrect\n");
1766 		rc = -EINVAL;
1767 		goto err;
1768 	}
1769 
1770 	rc = security_preserve_bools(&newpolicydb);
1771 	if (rc) {
1772 		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1773 		goto err;
1774 	}
1775 
1776 	/* Clone the SID table. */
1777 	sidtab_shutdown(&sidtab);
1778 	if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1779 		rc = -ENOMEM;
1780 		goto err;
1781 	}
1782 
1783 	/*
1784 	 * Convert the internal representations of contexts
1785 	 * in the new SID table.
1786 	 */
1787 	args.oldp = &policydb;
1788 	args.newp = &newpolicydb;
1789 	rc = sidtab_map(&newsidtab, convert_context, &args);
1790 	if (rc)
1791 		goto err;
1792 
1793 	/* Save the old policydb and SID table to free later. */
1794 	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1795 	sidtab_set(&oldsidtab, &sidtab);
1796 
1797 	/* Install the new policydb and SID table. */
1798 	write_lock_irq(&policy_rwlock);
1799 	memcpy(&policydb, &newpolicydb, sizeof policydb);
1800 	sidtab_set(&sidtab, &newsidtab);
1801 	security_load_policycaps();
1802 	seqno = ++latest_granting;
1803 	policydb_loaded_version = policydb.policyvers;
1804 	write_unlock_irq(&policy_rwlock);
1805 
1806 	/* Free the old policydb and SID table. */
1807 	policydb_destroy(&oldpolicydb);
1808 	sidtab_destroy(&oldsidtab);
1809 
1810 	avc_ss_reset(seqno);
1811 	selnl_notify_policyload(seqno);
1812 	selinux_netlbl_cache_invalidate();
1813 	selinux_xfrm_notify_policyload();
1814 
1815 	return 0;
1816 
1817 err:
1818 	sidtab_destroy(&newsidtab);
1819 	policydb_destroy(&newpolicydb);
1820 	return rc;
1821 
1822 }
1823 
1824 /**
1825  * security_port_sid - Obtain the SID for a port.
1826  * @protocol: protocol number
1827  * @port: port number
1828  * @out_sid: security identifier
1829  */
1830 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1831 {
1832 	struct ocontext *c;
1833 	int rc = 0;
1834 
1835 	read_lock(&policy_rwlock);
1836 
1837 	c = policydb.ocontexts[OCON_PORT];
1838 	while (c) {
1839 		if (c->u.port.protocol == protocol &&
1840 		    c->u.port.low_port <= port &&
1841 		    c->u.port.high_port >= port)
1842 			break;
1843 		c = c->next;
1844 	}
1845 
1846 	if (c) {
1847 		if (!c->sid[0]) {
1848 			rc = sidtab_context_to_sid(&sidtab,
1849 						   &c->context[0],
1850 						   &c->sid[0]);
1851 			if (rc)
1852 				goto out;
1853 		}
1854 		*out_sid = c->sid[0];
1855 	} else {
1856 		*out_sid = SECINITSID_PORT;
1857 	}
1858 
1859 out:
1860 	read_unlock(&policy_rwlock);
1861 	return rc;
1862 }
1863 
1864 /**
1865  * security_netif_sid - Obtain the SID for a network interface.
1866  * @name: interface name
1867  * @if_sid: interface SID
1868  */
1869 int security_netif_sid(char *name, u32 *if_sid)
1870 {
1871 	int rc = 0;
1872 	struct ocontext *c;
1873 
1874 	read_lock(&policy_rwlock);
1875 
1876 	c = policydb.ocontexts[OCON_NETIF];
1877 	while (c) {
1878 		if (strcmp(name, c->u.name) == 0)
1879 			break;
1880 		c = c->next;
1881 	}
1882 
1883 	if (c) {
1884 		if (!c->sid[0] || !c->sid[1]) {
1885 			rc = sidtab_context_to_sid(&sidtab,
1886 						  &c->context[0],
1887 						  &c->sid[0]);
1888 			if (rc)
1889 				goto out;
1890 			rc = sidtab_context_to_sid(&sidtab,
1891 						   &c->context[1],
1892 						   &c->sid[1]);
1893 			if (rc)
1894 				goto out;
1895 		}
1896 		*if_sid = c->sid[0];
1897 	} else
1898 		*if_sid = SECINITSID_NETIF;
1899 
1900 out:
1901 	read_unlock(&policy_rwlock);
1902 	return rc;
1903 }
1904 
1905 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1906 {
1907 	int i, fail = 0;
1908 
1909 	for (i = 0; i < 4; i++)
1910 		if (addr[i] != (input[i] & mask[i])) {
1911 			fail = 1;
1912 			break;
1913 		}
1914 
1915 	return !fail;
1916 }
1917 
1918 /**
1919  * security_node_sid - Obtain the SID for a node (host).
1920  * @domain: communication domain aka address family
1921  * @addrp: address
1922  * @addrlen: address length in bytes
1923  * @out_sid: security identifier
1924  */
1925 int security_node_sid(u16 domain,
1926 		      void *addrp,
1927 		      u32 addrlen,
1928 		      u32 *out_sid)
1929 {
1930 	int rc = 0;
1931 	struct ocontext *c;
1932 
1933 	read_lock(&policy_rwlock);
1934 
1935 	switch (domain) {
1936 	case AF_INET: {
1937 		u32 addr;
1938 
1939 		if (addrlen != sizeof(u32)) {
1940 			rc = -EINVAL;
1941 			goto out;
1942 		}
1943 
1944 		addr = *((u32 *)addrp);
1945 
1946 		c = policydb.ocontexts[OCON_NODE];
1947 		while (c) {
1948 			if (c->u.node.addr == (addr & c->u.node.mask))
1949 				break;
1950 			c = c->next;
1951 		}
1952 		break;
1953 	}
1954 
1955 	case AF_INET6:
1956 		if (addrlen != sizeof(u64) * 2) {
1957 			rc = -EINVAL;
1958 			goto out;
1959 		}
1960 		c = policydb.ocontexts[OCON_NODE6];
1961 		while (c) {
1962 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1963 						c->u.node6.mask))
1964 				break;
1965 			c = c->next;
1966 		}
1967 		break;
1968 
1969 	default:
1970 		*out_sid = SECINITSID_NODE;
1971 		goto out;
1972 	}
1973 
1974 	if (c) {
1975 		if (!c->sid[0]) {
1976 			rc = sidtab_context_to_sid(&sidtab,
1977 						   &c->context[0],
1978 						   &c->sid[0]);
1979 			if (rc)
1980 				goto out;
1981 		}
1982 		*out_sid = c->sid[0];
1983 	} else {
1984 		*out_sid = SECINITSID_NODE;
1985 	}
1986 
1987 out:
1988 	read_unlock(&policy_rwlock);
1989 	return rc;
1990 }
1991 
1992 #define SIDS_NEL 25
1993 
1994 /**
1995  * security_get_user_sids - Obtain reachable SIDs for a user.
1996  * @fromsid: starting SID
1997  * @username: username
1998  * @sids: array of reachable SIDs for user
1999  * @nel: number of elements in @sids
2000  *
2001  * Generate the set of SIDs for legal security contexts
2002  * for a given user that can be reached by @fromsid.
2003  * Set *@sids to point to a dynamically allocated
2004  * array containing the set of SIDs.  Set *@nel to the
2005  * number of elements in the array.
2006  */
2007 
2008 int security_get_user_sids(u32 fromsid,
2009 			   char *username,
2010 			   u32 **sids,
2011 			   u32 *nel)
2012 {
2013 	struct context *fromcon, usercon;
2014 	u32 *mysids = NULL, *mysids2, sid;
2015 	u32 mynel = 0, maxnel = SIDS_NEL;
2016 	struct user_datum *user;
2017 	struct role_datum *role;
2018 	struct ebitmap_node *rnode, *tnode;
2019 	int rc = 0, i, j;
2020 
2021 	*sids = NULL;
2022 	*nel = 0;
2023 
2024 	if (!ss_initialized)
2025 		goto out;
2026 
2027 	read_lock(&policy_rwlock);
2028 
2029 	context_init(&usercon);
2030 
2031 	fromcon = sidtab_search(&sidtab, fromsid);
2032 	if (!fromcon) {
2033 		rc = -EINVAL;
2034 		goto out_unlock;
2035 	}
2036 
2037 	user = hashtab_search(policydb.p_users.table, username);
2038 	if (!user) {
2039 		rc = -EINVAL;
2040 		goto out_unlock;
2041 	}
2042 	usercon.user = user->value;
2043 
2044 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2045 	if (!mysids) {
2046 		rc = -ENOMEM;
2047 		goto out_unlock;
2048 	}
2049 
2050 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2051 		role = policydb.role_val_to_struct[i];
2052 		usercon.role = i+1;
2053 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2054 			usercon.type = j+1;
2055 
2056 			if (mls_setup_user_range(fromcon, user, &usercon))
2057 				continue;
2058 
2059 			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2060 			if (rc)
2061 				goto out_unlock;
2062 			if (mynel < maxnel) {
2063 				mysids[mynel++] = sid;
2064 			} else {
2065 				maxnel += SIDS_NEL;
2066 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2067 				if (!mysids2) {
2068 					rc = -ENOMEM;
2069 					goto out_unlock;
2070 				}
2071 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2072 				kfree(mysids);
2073 				mysids = mysids2;
2074 				mysids[mynel++] = sid;
2075 			}
2076 		}
2077 	}
2078 
2079 out_unlock:
2080 	read_unlock(&policy_rwlock);
2081 	if (rc || !mynel) {
2082 		kfree(mysids);
2083 		goto out;
2084 	}
2085 
2086 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2087 	if (!mysids2) {
2088 		rc = -ENOMEM;
2089 		kfree(mysids);
2090 		goto out;
2091 	}
2092 	for (i = 0, j = 0; i < mynel; i++) {
2093 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2094 					  SECCLASS_PROCESS,
2095 					  PROCESS__TRANSITION, AVC_STRICT,
2096 					  NULL);
2097 		if (!rc)
2098 			mysids2[j++] = mysids[i];
2099 		cond_resched();
2100 	}
2101 	rc = 0;
2102 	kfree(mysids);
2103 	*sids = mysids2;
2104 	*nel = j;
2105 out:
2106 	return rc;
2107 }
2108 
2109 /**
2110  * security_genfs_sid - Obtain a SID for a file in a filesystem
2111  * @fstype: filesystem type
2112  * @path: path from root of mount
2113  * @sclass: file security class
2114  * @sid: SID for path
2115  *
2116  * Obtain a SID to use for a file in a filesystem that
2117  * cannot support xattr or use a fixed labeling behavior like
2118  * transition SIDs or task SIDs.
2119  */
2120 int security_genfs_sid(const char *fstype,
2121 		       char *path,
2122 		       u16 sclass,
2123 		       u32 *sid)
2124 {
2125 	int len;
2126 	struct genfs *genfs;
2127 	struct ocontext *c;
2128 	int rc = 0, cmp = 0;
2129 
2130 	while (path[0] == '/' && path[1] == '/')
2131 		path++;
2132 
2133 	read_lock(&policy_rwlock);
2134 
2135 	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2136 		cmp = strcmp(fstype, genfs->fstype);
2137 		if (cmp <= 0)
2138 			break;
2139 	}
2140 
2141 	if (!genfs || cmp) {
2142 		*sid = SECINITSID_UNLABELED;
2143 		rc = -ENOENT;
2144 		goto out;
2145 	}
2146 
2147 	for (c = genfs->head; c; c = c->next) {
2148 		len = strlen(c->u.name);
2149 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2150 		    (strncmp(c->u.name, path, len) == 0))
2151 			break;
2152 	}
2153 
2154 	if (!c) {
2155 		*sid = SECINITSID_UNLABELED;
2156 		rc = -ENOENT;
2157 		goto out;
2158 	}
2159 
2160 	if (!c->sid[0]) {
2161 		rc = sidtab_context_to_sid(&sidtab,
2162 					   &c->context[0],
2163 					   &c->sid[0]);
2164 		if (rc)
2165 			goto out;
2166 	}
2167 
2168 	*sid = c->sid[0];
2169 out:
2170 	read_unlock(&policy_rwlock);
2171 	return rc;
2172 }
2173 
2174 /**
2175  * security_fs_use - Determine how to handle labeling for a filesystem.
2176  * @fstype: filesystem type
2177  * @behavior: labeling behavior
2178  * @sid: SID for filesystem (superblock)
2179  */
2180 int security_fs_use(
2181 	const char *fstype,
2182 	unsigned int *behavior,
2183 	u32 *sid)
2184 {
2185 	int rc = 0;
2186 	struct ocontext *c;
2187 
2188 	read_lock(&policy_rwlock);
2189 
2190 	c = policydb.ocontexts[OCON_FSUSE];
2191 	while (c) {
2192 		if (strcmp(fstype, c->u.name) == 0)
2193 			break;
2194 		c = c->next;
2195 	}
2196 
2197 	if (c) {
2198 		*behavior = c->v.behavior;
2199 		if (!c->sid[0]) {
2200 			rc = sidtab_context_to_sid(&sidtab,
2201 						   &c->context[0],
2202 						   &c->sid[0]);
2203 			if (rc)
2204 				goto out;
2205 		}
2206 		*sid = c->sid[0];
2207 	} else {
2208 		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2209 		if (rc) {
2210 			*behavior = SECURITY_FS_USE_NONE;
2211 			rc = 0;
2212 		} else {
2213 			*behavior = SECURITY_FS_USE_GENFS;
2214 		}
2215 	}
2216 
2217 out:
2218 	read_unlock(&policy_rwlock);
2219 	return rc;
2220 }
2221 
2222 int security_get_bools(int *len, char ***names, int **values)
2223 {
2224 	int i, rc = -ENOMEM;
2225 
2226 	read_lock(&policy_rwlock);
2227 	*names = NULL;
2228 	*values = NULL;
2229 
2230 	*len = policydb.p_bools.nprim;
2231 	if (!*len) {
2232 		rc = 0;
2233 		goto out;
2234 	}
2235 
2236        *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2237 	if (!*names)
2238 		goto err;
2239 
2240        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2241 	if (!*values)
2242 		goto err;
2243 
2244 	for (i = 0; i < *len; i++) {
2245 		size_t name_len;
2246 		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2247 		name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
2248 	       (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2249 		if (!(*names)[i])
2250 			goto err;
2251 		strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
2252 		(*names)[i][name_len - 1] = 0;
2253 	}
2254 	rc = 0;
2255 out:
2256 	read_unlock(&policy_rwlock);
2257 	return rc;
2258 err:
2259 	if (*names) {
2260 		for (i = 0; i < *len; i++)
2261 			kfree((*names)[i]);
2262 	}
2263 	kfree(*values);
2264 	goto out;
2265 }
2266 
2267 
2268 int security_set_bools(int len, int *values)
2269 {
2270 	int i, rc = 0;
2271 	int lenp, seqno = 0;
2272 	struct cond_node *cur;
2273 
2274 	write_lock_irq(&policy_rwlock);
2275 
2276 	lenp = policydb.p_bools.nprim;
2277 	if (len != lenp) {
2278 		rc = -EFAULT;
2279 		goto out;
2280 	}
2281 
2282 	for (i = 0; i < len; i++) {
2283 		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2284 			audit_log(current->audit_context, GFP_ATOMIC,
2285 				AUDIT_MAC_CONFIG_CHANGE,
2286 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2287 				policydb.p_bool_val_to_name[i],
2288 				!!values[i],
2289 				policydb.bool_val_to_struct[i]->state,
2290 				audit_get_loginuid(current),
2291 				audit_get_sessionid(current));
2292 		}
2293 		if (values[i])
2294 			policydb.bool_val_to_struct[i]->state = 1;
2295 		else
2296 			policydb.bool_val_to_struct[i]->state = 0;
2297 	}
2298 
2299 	for (cur = policydb.cond_list; cur; cur = cur->next) {
2300 		rc = evaluate_cond_node(&policydb, cur);
2301 		if (rc)
2302 			goto out;
2303 	}
2304 
2305 	seqno = ++latest_granting;
2306 
2307 out:
2308 	write_unlock_irq(&policy_rwlock);
2309 	if (!rc) {
2310 		avc_ss_reset(seqno);
2311 		selnl_notify_policyload(seqno);
2312 		selinux_xfrm_notify_policyload();
2313 	}
2314 	return rc;
2315 }
2316 
2317 int security_get_bool_value(int bool)
2318 {
2319 	int rc = 0;
2320 	int len;
2321 
2322 	read_lock(&policy_rwlock);
2323 
2324 	len = policydb.p_bools.nprim;
2325 	if (bool >= len) {
2326 		rc = -EFAULT;
2327 		goto out;
2328 	}
2329 
2330 	rc = policydb.bool_val_to_struct[bool]->state;
2331 out:
2332 	read_unlock(&policy_rwlock);
2333 	return rc;
2334 }
2335 
2336 static int security_preserve_bools(struct policydb *p)
2337 {
2338 	int rc, nbools = 0, *bvalues = NULL, i;
2339 	char **bnames = NULL;
2340 	struct cond_bool_datum *booldatum;
2341 	struct cond_node *cur;
2342 
2343 	rc = security_get_bools(&nbools, &bnames, &bvalues);
2344 	if (rc)
2345 		goto out;
2346 	for (i = 0; i < nbools; i++) {
2347 		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2348 		if (booldatum)
2349 			booldatum->state = bvalues[i];
2350 	}
2351 	for (cur = p->cond_list; cur; cur = cur->next) {
2352 		rc = evaluate_cond_node(p, cur);
2353 		if (rc)
2354 			goto out;
2355 	}
2356 
2357 out:
2358 	if (bnames) {
2359 		for (i = 0; i < nbools; i++)
2360 			kfree(bnames[i]);
2361 	}
2362 	kfree(bnames);
2363 	kfree(bvalues);
2364 	return rc;
2365 }
2366 
2367 /*
2368  * security_sid_mls_copy() - computes a new sid based on the given
2369  * sid and the mls portion of mls_sid.
2370  */
2371 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2372 {
2373 	struct context *context1;
2374 	struct context *context2;
2375 	struct context newcon;
2376 	char *s;
2377 	u32 len;
2378 	int rc = 0;
2379 
2380 	if (!ss_initialized || !selinux_mls_enabled) {
2381 		*new_sid = sid;
2382 		goto out;
2383 	}
2384 
2385 	context_init(&newcon);
2386 
2387 	read_lock(&policy_rwlock);
2388 	context1 = sidtab_search(&sidtab, sid);
2389 	if (!context1) {
2390 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2391 			__func__, sid);
2392 		rc = -EINVAL;
2393 		goto out_unlock;
2394 	}
2395 
2396 	context2 = sidtab_search(&sidtab, mls_sid);
2397 	if (!context2) {
2398 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2399 			__func__, mls_sid);
2400 		rc = -EINVAL;
2401 		goto out_unlock;
2402 	}
2403 
2404 	newcon.user = context1->user;
2405 	newcon.role = context1->role;
2406 	newcon.type = context1->type;
2407 	rc = mls_context_cpy(&newcon, context2);
2408 	if (rc)
2409 		goto out_unlock;
2410 
2411 	/* Check the validity of the new context. */
2412 	if (!policydb_context_isvalid(&policydb, &newcon)) {
2413 		rc = convert_context_handle_invalid_context(&newcon);
2414 		if (rc)
2415 			goto bad;
2416 	}
2417 
2418 	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2419 	goto out_unlock;
2420 
2421 bad:
2422 	if (!context_struct_to_string(&newcon, &s, &len)) {
2423 		audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2424 			  "security_sid_mls_copy: invalid context %s", s);
2425 		kfree(s);
2426 	}
2427 
2428 out_unlock:
2429 	read_unlock(&policy_rwlock);
2430 	context_destroy(&newcon);
2431 out:
2432 	return rc;
2433 }
2434 
2435 /**
2436  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2437  * @nlbl_sid: NetLabel SID
2438  * @nlbl_type: NetLabel labeling protocol type
2439  * @xfrm_sid: XFRM SID
2440  *
2441  * Description:
2442  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2443  * resolved into a single SID it is returned via @peer_sid and the function
2444  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2445  * returns a negative value.  A table summarizing the behavior is below:
2446  *
2447  *                                 | function return |      @sid
2448  *   ------------------------------+-----------------+-----------------
2449  *   no peer labels                |        0        |    SECSID_NULL
2450  *   single peer label             |        0        |    <peer_label>
2451  *   multiple, consistent labels   |        0        |    <peer_label>
2452  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2453  *
2454  */
2455 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2456 				 u32 xfrm_sid,
2457 				 u32 *peer_sid)
2458 {
2459 	int rc;
2460 	struct context *nlbl_ctx;
2461 	struct context *xfrm_ctx;
2462 
2463 	/* handle the common (which also happens to be the set of easy) cases
2464 	 * right away, these two if statements catch everything involving a
2465 	 * single or absent peer SID/label */
2466 	if (xfrm_sid == SECSID_NULL) {
2467 		*peer_sid = nlbl_sid;
2468 		return 0;
2469 	}
2470 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2471 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2472 	 * is present */
2473 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2474 		*peer_sid = xfrm_sid;
2475 		return 0;
2476 	}
2477 
2478 	/* we don't need to check ss_initialized here since the only way both
2479 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2480 	 * security server was initialized and ss_initialized was true */
2481 	if (!selinux_mls_enabled) {
2482 		*peer_sid = SECSID_NULL;
2483 		return 0;
2484 	}
2485 
2486 	read_lock(&policy_rwlock);
2487 
2488 	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2489 	if (!nlbl_ctx) {
2490 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2491 		       __func__, nlbl_sid);
2492 		rc = -EINVAL;
2493 		goto out_slowpath;
2494 	}
2495 	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2496 	if (!xfrm_ctx) {
2497 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2498 		       __func__, xfrm_sid);
2499 		rc = -EINVAL;
2500 		goto out_slowpath;
2501 	}
2502 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2503 
2504 out_slowpath:
2505 	read_unlock(&policy_rwlock);
2506 	if (rc == 0)
2507 		/* at present NetLabel SIDs/labels really only carry MLS
2508 		 * information so if the MLS portion of the NetLabel SID
2509 		 * matches the MLS portion of the labeled XFRM SID/label
2510 		 * then pass along the XFRM SID as it is the most
2511 		 * expressive */
2512 		*peer_sid = xfrm_sid;
2513 	else
2514 		*peer_sid = SECSID_NULL;
2515 	return rc;
2516 }
2517 
2518 static int get_classes_callback(void *k, void *d, void *args)
2519 {
2520 	struct class_datum *datum = d;
2521 	char *name = k, **classes = args;
2522 	int value = datum->value - 1;
2523 
2524 	classes[value] = kstrdup(name, GFP_ATOMIC);
2525 	if (!classes[value])
2526 		return -ENOMEM;
2527 
2528 	return 0;
2529 }
2530 
2531 int security_get_classes(char ***classes, int *nclasses)
2532 {
2533 	int rc = -ENOMEM;
2534 
2535 	read_lock(&policy_rwlock);
2536 
2537 	*nclasses = policydb.p_classes.nprim;
2538 	*classes = kcalloc(*nclasses, sizeof(*classes), GFP_ATOMIC);
2539 	if (!*classes)
2540 		goto out;
2541 
2542 	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2543 			*classes);
2544 	if (rc < 0) {
2545 		int i;
2546 		for (i = 0; i < *nclasses; i++)
2547 			kfree((*classes)[i]);
2548 		kfree(*classes);
2549 	}
2550 
2551 out:
2552 	read_unlock(&policy_rwlock);
2553 	return rc;
2554 }
2555 
2556 static int get_permissions_callback(void *k, void *d, void *args)
2557 {
2558 	struct perm_datum *datum = d;
2559 	char *name = k, **perms = args;
2560 	int value = datum->value - 1;
2561 
2562 	perms[value] = kstrdup(name, GFP_ATOMIC);
2563 	if (!perms[value])
2564 		return -ENOMEM;
2565 
2566 	return 0;
2567 }
2568 
2569 int security_get_permissions(char *class, char ***perms, int *nperms)
2570 {
2571 	int rc = -ENOMEM, i;
2572 	struct class_datum *match;
2573 
2574 	read_lock(&policy_rwlock);
2575 
2576 	match = hashtab_search(policydb.p_classes.table, class);
2577 	if (!match) {
2578 		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2579 			__func__, class);
2580 		rc = -EINVAL;
2581 		goto out;
2582 	}
2583 
2584 	*nperms = match->permissions.nprim;
2585 	*perms = kcalloc(*nperms, sizeof(*perms), GFP_ATOMIC);
2586 	if (!*perms)
2587 		goto out;
2588 
2589 	if (match->comdatum) {
2590 		rc = hashtab_map(match->comdatum->permissions.table,
2591 				get_permissions_callback, *perms);
2592 		if (rc < 0)
2593 			goto err;
2594 	}
2595 
2596 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2597 			*perms);
2598 	if (rc < 0)
2599 		goto err;
2600 
2601 out:
2602 	read_unlock(&policy_rwlock);
2603 	return rc;
2604 
2605 err:
2606 	read_unlock(&policy_rwlock);
2607 	for (i = 0; i < *nperms; i++)
2608 		kfree((*perms)[i]);
2609 	kfree(*perms);
2610 	return rc;
2611 }
2612 
2613 int security_get_reject_unknown(void)
2614 {
2615 	return policydb.reject_unknown;
2616 }
2617 
2618 int security_get_allow_unknown(void)
2619 {
2620 	return policydb.allow_unknown;
2621 }
2622 
2623 /**
2624  * security_policycap_supported - Check for a specific policy capability
2625  * @req_cap: capability
2626  *
2627  * Description:
2628  * This function queries the currently loaded policy to see if it supports the
2629  * capability specified by @req_cap.  Returns true (1) if the capability is
2630  * supported, false (0) if it isn't supported.
2631  *
2632  */
2633 int security_policycap_supported(unsigned int req_cap)
2634 {
2635 	int rc;
2636 
2637 	read_lock(&policy_rwlock);
2638 	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2639 	read_unlock(&policy_rwlock);
2640 
2641 	return rc;
2642 }
2643 
2644 struct selinux_audit_rule {
2645 	u32 au_seqno;
2646 	struct context au_ctxt;
2647 };
2648 
2649 void selinux_audit_rule_free(void *vrule)
2650 {
2651 	struct selinux_audit_rule *rule = vrule;
2652 
2653 	if (rule) {
2654 		context_destroy(&rule->au_ctxt);
2655 		kfree(rule);
2656 	}
2657 }
2658 
2659 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2660 {
2661 	struct selinux_audit_rule *tmprule;
2662 	struct role_datum *roledatum;
2663 	struct type_datum *typedatum;
2664 	struct user_datum *userdatum;
2665 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2666 	int rc = 0;
2667 
2668 	*rule = NULL;
2669 
2670 	if (!ss_initialized)
2671 		return -EOPNOTSUPP;
2672 
2673 	switch (field) {
2674 	case AUDIT_SUBJ_USER:
2675 	case AUDIT_SUBJ_ROLE:
2676 	case AUDIT_SUBJ_TYPE:
2677 	case AUDIT_OBJ_USER:
2678 	case AUDIT_OBJ_ROLE:
2679 	case AUDIT_OBJ_TYPE:
2680 		/* only 'equals' and 'not equals' fit user, role, and type */
2681 		if (op != Audit_equal && op != Audit_not_equal)
2682 			return -EINVAL;
2683 		break;
2684 	case AUDIT_SUBJ_SEN:
2685 	case AUDIT_SUBJ_CLR:
2686 	case AUDIT_OBJ_LEV_LOW:
2687 	case AUDIT_OBJ_LEV_HIGH:
2688 		/* we do not allow a range, indicated by the presense of '-' */
2689 		if (strchr(rulestr, '-'))
2690 			return -EINVAL;
2691 		break;
2692 	default:
2693 		/* only the above fields are valid */
2694 		return -EINVAL;
2695 	}
2696 
2697 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2698 	if (!tmprule)
2699 		return -ENOMEM;
2700 
2701 	context_init(&tmprule->au_ctxt);
2702 
2703 	read_lock(&policy_rwlock);
2704 
2705 	tmprule->au_seqno = latest_granting;
2706 
2707 	switch (field) {
2708 	case AUDIT_SUBJ_USER:
2709 	case AUDIT_OBJ_USER:
2710 		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2711 		if (!userdatum)
2712 			rc = -EINVAL;
2713 		else
2714 			tmprule->au_ctxt.user = userdatum->value;
2715 		break;
2716 	case AUDIT_SUBJ_ROLE:
2717 	case AUDIT_OBJ_ROLE:
2718 		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2719 		if (!roledatum)
2720 			rc = -EINVAL;
2721 		else
2722 			tmprule->au_ctxt.role = roledatum->value;
2723 		break;
2724 	case AUDIT_SUBJ_TYPE:
2725 	case AUDIT_OBJ_TYPE:
2726 		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2727 		if (!typedatum)
2728 			rc = -EINVAL;
2729 		else
2730 			tmprule->au_ctxt.type = typedatum->value;
2731 		break;
2732 	case AUDIT_SUBJ_SEN:
2733 	case AUDIT_SUBJ_CLR:
2734 	case AUDIT_OBJ_LEV_LOW:
2735 	case AUDIT_OBJ_LEV_HIGH:
2736 		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2737 		break;
2738 	}
2739 
2740 	read_unlock(&policy_rwlock);
2741 
2742 	if (rc) {
2743 		selinux_audit_rule_free(tmprule);
2744 		tmprule = NULL;
2745 	}
2746 
2747 	*rule = tmprule;
2748 
2749 	return rc;
2750 }
2751 
2752 /* Check to see if the rule contains any selinux fields */
2753 int selinux_audit_rule_known(struct audit_krule *rule)
2754 {
2755 	int i;
2756 
2757 	for (i = 0; i < rule->field_count; i++) {
2758 		struct audit_field *f = &rule->fields[i];
2759 		switch (f->type) {
2760 		case AUDIT_SUBJ_USER:
2761 		case AUDIT_SUBJ_ROLE:
2762 		case AUDIT_SUBJ_TYPE:
2763 		case AUDIT_SUBJ_SEN:
2764 		case AUDIT_SUBJ_CLR:
2765 		case AUDIT_OBJ_USER:
2766 		case AUDIT_OBJ_ROLE:
2767 		case AUDIT_OBJ_TYPE:
2768 		case AUDIT_OBJ_LEV_LOW:
2769 		case AUDIT_OBJ_LEV_HIGH:
2770 			return 1;
2771 		}
2772 	}
2773 
2774 	return 0;
2775 }
2776 
2777 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2778 			     struct audit_context *actx)
2779 {
2780 	struct context *ctxt;
2781 	struct mls_level *level;
2782 	struct selinux_audit_rule *rule = vrule;
2783 	int match = 0;
2784 
2785 	if (!rule) {
2786 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2787 			  "selinux_audit_rule_match: missing rule\n");
2788 		return -ENOENT;
2789 	}
2790 
2791 	read_lock(&policy_rwlock);
2792 
2793 	if (rule->au_seqno < latest_granting) {
2794 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2795 			  "selinux_audit_rule_match: stale rule\n");
2796 		match = -ESTALE;
2797 		goto out;
2798 	}
2799 
2800 	ctxt = sidtab_search(&sidtab, sid);
2801 	if (!ctxt) {
2802 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2803 			  "selinux_audit_rule_match: unrecognized SID %d\n",
2804 			  sid);
2805 		match = -ENOENT;
2806 		goto out;
2807 	}
2808 
2809 	/* a field/op pair that is not caught here will simply fall through
2810 	   without a match */
2811 	switch (field) {
2812 	case AUDIT_SUBJ_USER:
2813 	case AUDIT_OBJ_USER:
2814 		switch (op) {
2815 		case Audit_equal:
2816 			match = (ctxt->user == rule->au_ctxt.user);
2817 			break;
2818 		case Audit_not_equal:
2819 			match = (ctxt->user != rule->au_ctxt.user);
2820 			break;
2821 		}
2822 		break;
2823 	case AUDIT_SUBJ_ROLE:
2824 	case AUDIT_OBJ_ROLE:
2825 		switch (op) {
2826 		case Audit_equal:
2827 			match = (ctxt->role == rule->au_ctxt.role);
2828 			break;
2829 		case Audit_not_equal:
2830 			match = (ctxt->role != rule->au_ctxt.role);
2831 			break;
2832 		}
2833 		break;
2834 	case AUDIT_SUBJ_TYPE:
2835 	case AUDIT_OBJ_TYPE:
2836 		switch (op) {
2837 		case Audit_equal:
2838 			match = (ctxt->type == rule->au_ctxt.type);
2839 			break;
2840 		case Audit_not_equal:
2841 			match = (ctxt->type != rule->au_ctxt.type);
2842 			break;
2843 		}
2844 		break;
2845 	case AUDIT_SUBJ_SEN:
2846 	case AUDIT_SUBJ_CLR:
2847 	case AUDIT_OBJ_LEV_LOW:
2848 	case AUDIT_OBJ_LEV_HIGH:
2849 		level = ((field == AUDIT_SUBJ_SEN ||
2850 			  field == AUDIT_OBJ_LEV_LOW) ?
2851 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
2852 		switch (op) {
2853 		case Audit_equal:
2854 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
2855 					     level);
2856 			break;
2857 		case Audit_not_equal:
2858 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2859 					      level);
2860 			break;
2861 		case Audit_lt:
2862 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2863 					       level) &&
2864 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
2865 					       level));
2866 			break;
2867 		case Audit_le:
2868 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
2869 					      level);
2870 			break;
2871 		case Audit_gt:
2872 			match = (mls_level_dom(level,
2873 					      &rule->au_ctxt.range.level[0]) &&
2874 				 !mls_level_eq(level,
2875 					       &rule->au_ctxt.range.level[0]));
2876 			break;
2877 		case Audit_ge:
2878 			match = mls_level_dom(level,
2879 					      &rule->au_ctxt.range.level[0]);
2880 			break;
2881 		}
2882 	}
2883 
2884 out:
2885 	read_unlock(&policy_rwlock);
2886 	return match;
2887 }
2888 
2889 static int (*aurule_callback)(void) = audit_update_lsm_rules;
2890 
2891 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2892 			       u16 class, u32 perms, u32 *retained)
2893 {
2894 	int err = 0;
2895 
2896 	if (event == AVC_CALLBACK_RESET && aurule_callback)
2897 		err = aurule_callback();
2898 	return err;
2899 }
2900 
2901 static int __init aurule_init(void)
2902 {
2903 	int err;
2904 
2905 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2906 			       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2907 	if (err)
2908 		panic("avc_add_callback() failed, error %d\n", err);
2909 
2910 	return err;
2911 }
2912 __initcall(aurule_init);
2913 
2914 #ifdef CONFIG_NETLABEL
2915 /**
2916  * security_netlbl_cache_add - Add an entry to the NetLabel cache
2917  * @secattr: the NetLabel packet security attributes
2918  * @sid: the SELinux SID
2919  *
2920  * Description:
2921  * Attempt to cache the context in @ctx, which was derived from the packet in
2922  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
2923  * already been initialized.
2924  *
2925  */
2926 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
2927 				      u32 sid)
2928 {
2929 	u32 *sid_cache;
2930 
2931 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
2932 	if (sid_cache == NULL)
2933 		return;
2934 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
2935 	if (secattr->cache == NULL) {
2936 		kfree(sid_cache);
2937 		return;
2938 	}
2939 
2940 	*sid_cache = sid;
2941 	secattr->cache->free = kfree;
2942 	secattr->cache->data = sid_cache;
2943 	secattr->flags |= NETLBL_SECATTR_CACHE;
2944 }
2945 
2946 /**
2947  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2948  * @secattr: the NetLabel packet security attributes
2949  * @sid: the SELinux SID
2950  *
2951  * Description:
2952  * Convert the given NetLabel security attributes in @secattr into a
2953  * SELinux SID.  If the @secattr field does not contain a full SELinux
2954  * SID/context then use SECINITSID_NETMSG as the foundation.  If possibile the
2955  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
2956  * allow the @secattr to be used by NetLabel to cache the secattr to SID
2957  * conversion for future lookups.  Returns zero on success, negative values on
2958  * failure.
2959  *
2960  */
2961 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
2962 				   u32 *sid)
2963 {
2964 	int rc = -EIDRM;
2965 	struct context *ctx;
2966 	struct context ctx_new;
2967 
2968 	if (!ss_initialized) {
2969 		*sid = SECSID_NULL;
2970 		return 0;
2971 	}
2972 
2973 	read_lock(&policy_rwlock);
2974 
2975 	if (secattr->flags & NETLBL_SECATTR_CACHE) {
2976 		*sid = *(u32 *)secattr->cache->data;
2977 		rc = 0;
2978 	} else if (secattr->flags & NETLBL_SECATTR_SECID) {
2979 		*sid = secattr->attr.secid;
2980 		rc = 0;
2981 	} else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
2982 		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
2983 		if (ctx == NULL)
2984 			goto netlbl_secattr_to_sid_return;
2985 
2986 		context_init(&ctx_new);
2987 		ctx_new.user = ctx->user;
2988 		ctx_new.role = ctx->role;
2989 		ctx_new.type = ctx->type;
2990 		mls_import_netlbl_lvl(&ctx_new, secattr);
2991 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
2992 			if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
2993 						  secattr->attr.mls.cat) != 0)
2994 				goto netlbl_secattr_to_sid_return;
2995 			memcpy(&ctx_new.range.level[1].cat,
2996 			       &ctx_new.range.level[0].cat,
2997 			       sizeof(ctx_new.range.level[0].cat));
2998 		}
2999 		if (mls_context_isvalid(&policydb, &ctx_new) != 1)
3000 			goto netlbl_secattr_to_sid_return_cleanup;
3001 
3002 		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3003 		if (rc != 0)
3004 			goto netlbl_secattr_to_sid_return_cleanup;
3005 
3006 		security_netlbl_cache_add(secattr, *sid);
3007 
3008 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3009 	} else {
3010 		*sid = SECSID_NULL;
3011 		rc = 0;
3012 	}
3013 
3014 netlbl_secattr_to_sid_return:
3015 	read_unlock(&policy_rwlock);
3016 	return rc;
3017 netlbl_secattr_to_sid_return_cleanup:
3018 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3019 	goto netlbl_secattr_to_sid_return;
3020 }
3021 
3022 /**
3023  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3024  * @sid: the SELinux SID
3025  * @secattr: the NetLabel packet security attributes
3026  *
3027  * Description:
3028  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3029  * Returns zero on success, negative values on failure.
3030  *
3031  */
3032 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3033 {
3034 	int rc;
3035 	struct context *ctx;
3036 
3037 	if (!ss_initialized)
3038 		return 0;
3039 
3040 	read_lock(&policy_rwlock);
3041 	ctx = sidtab_search(&sidtab, sid);
3042 	if (ctx == NULL) {
3043 		rc = -ENOENT;
3044 		goto netlbl_sid_to_secattr_failure;
3045 	}
3046 	secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
3047 				  GFP_ATOMIC);
3048 	if (secattr->domain == NULL) {
3049 		rc = -ENOMEM;
3050 		goto netlbl_sid_to_secattr_failure;
3051 	}
3052 	secattr->attr.secid = sid;
3053 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3054 	mls_export_netlbl_lvl(ctx, secattr);
3055 	rc = mls_export_netlbl_cat(ctx, secattr);
3056 	if (rc != 0)
3057 		goto netlbl_sid_to_secattr_failure;
3058 	read_unlock(&policy_rwlock);
3059 
3060 	return 0;
3061 
3062 netlbl_sid_to_secattr_failure:
3063 	read_unlock(&policy_rwlock);
3064 	return rc;
3065 }
3066 #endif /* CONFIG_NETLABEL */
3067