1 /* 2 * Implementation of the security services. 3 * 4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil> 5 * James Morris <jmorris@redhat.com> 6 * 7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> 8 * 9 * Support for enhanced MLS infrastructure. 10 * Support for context based audit filters. 11 * 12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com> 13 * 14 * Added conditional policy language extensions 15 * 16 * Updated: Hewlett-Packard <paul@paul-moore.com> 17 * 18 * Added support for NetLabel 19 * Added support for the policy capability bitmap 20 * 21 * Updated: Chad Sellers <csellers@tresys.com> 22 * 23 * Added validation of kernel classes and permissions 24 * 25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com> 26 * 27 * Added support for bounds domain and audit messaged on masked permissions 28 * 29 * Updated: Guido Trentalancia <guido@trentalancia.com> 30 * 31 * Added support for runtime switching of the policy type 32 * 33 * Copyright (C) 2008, 2009 NEC Corporation 34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P. 35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc. 36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC 37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 38 * This program is free software; you can redistribute it and/or modify 39 * it under the terms of the GNU General Public License as published by 40 * the Free Software Foundation, version 2. 41 */ 42 #include <linux/kernel.h> 43 #include <linux/slab.h> 44 #include <linux/string.h> 45 #include <linux/spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/errno.h> 48 #include <linux/in.h> 49 #include <linux/sched.h> 50 #include <linux/audit.h> 51 #include <linux/mutex.h> 52 #include <linux/selinux.h> 53 #include <linux/flex_array.h> 54 #include <linux/vmalloc.h> 55 #include <net/netlabel.h> 56 57 #include "flask.h" 58 #include "avc.h" 59 #include "avc_ss.h" 60 #include "security.h" 61 #include "context.h" 62 #include "policydb.h" 63 #include "sidtab.h" 64 #include "services.h" 65 #include "conditional.h" 66 #include "mls.h" 67 #include "objsec.h" 68 #include "netlabel.h" 69 #include "xfrm.h" 70 #include "ebitmap.h" 71 #include "audit.h" 72 73 int selinux_policycap_netpeer; 74 int selinux_policycap_openperm; 75 int selinux_policycap_alwaysnetwork; 76 77 static DEFINE_RWLOCK(policy_rwlock); 78 79 static struct sidtab sidtab; 80 struct policydb policydb; 81 int ss_initialized; 82 83 /* 84 * The largest sequence number that has been used when 85 * providing an access decision to the access vector cache. 86 * The sequence number only changes when a policy change 87 * occurs. 88 */ 89 static u32 latest_granting; 90 91 /* Forward declaration. */ 92 static int context_struct_to_string(struct context *context, char **scontext, 93 u32 *scontext_len); 94 95 static void context_struct_compute_av(struct context *scontext, 96 struct context *tcontext, 97 u16 tclass, 98 struct av_decision *avd); 99 100 struct selinux_mapping { 101 u16 value; /* policy value */ 102 unsigned num_perms; 103 u32 perms[sizeof(u32) * 8]; 104 }; 105 106 static struct selinux_mapping *current_mapping; 107 static u16 current_mapping_size; 108 109 static int selinux_set_mapping(struct policydb *pol, 110 struct security_class_mapping *map, 111 struct selinux_mapping **out_map_p, 112 u16 *out_map_size) 113 { 114 struct selinux_mapping *out_map = NULL; 115 size_t size = sizeof(struct selinux_mapping); 116 u16 i, j; 117 unsigned k; 118 bool print_unknown_handle = false; 119 120 /* Find number of classes in the input mapping */ 121 if (!map) 122 return -EINVAL; 123 i = 0; 124 while (map[i].name) 125 i++; 126 127 /* Allocate space for the class records, plus one for class zero */ 128 out_map = kcalloc(++i, size, GFP_ATOMIC); 129 if (!out_map) 130 return -ENOMEM; 131 132 /* Store the raw class and permission values */ 133 j = 0; 134 while (map[j].name) { 135 struct security_class_mapping *p_in = map + (j++); 136 struct selinux_mapping *p_out = out_map + j; 137 138 /* An empty class string skips ahead */ 139 if (!strcmp(p_in->name, "")) { 140 p_out->num_perms = 0; 141 continue; 142 } 143 144 p_out->value = string_to_security_class(pol, p_in->name); 145 if (!p_out->value) { 146 printk(KERN_INFO 147 "SELinux: Class %s not defined in policy.\n", 148 p_in->name); 149 if (pol->reject_unknown) 150 goto err; 151 p_out->num_perms = 0; 152 print_unknown_handle = true; 153 continue; 154 } 155 156 k = 0; 157 while (p_in->perms && p_in->perms[k]) { 158 /* An empty permission string skips ahead */ 159 if (!*p_in->perms[k]) { 160 k++; 161 continue; 162 } 163 p_out->perms[k] = string_to_av_perm(pol, p_out->value, 164 p_in->perms[k]); 165 if (!p_out->perms[k]) { 166 printk(KERN_INFO 167 "SELinux: Permission %s in class %s not defined in policy.\n", 168 p_in->perms[k], p_in->name); 169 if (pol->reject_unknown) 170 goto err; 171 print_unknown_handle = true; 172 } 173 174 k++; 175 } 176 p_out->num_perms = k; 177 } 178 179 if (print_unknown_handle) 180 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n", 181 pol->allow_unknown ? "allowed" : "denied"); 182 183 *out_map_p = out_map; 184 *out_map_size = i; 185 return 0; 186 err: 187 kfree(out_map); 188 return -EINVAL; 189 } 190 191 /* 192 * Get real, policy values from mapped values 193 */ 194 195 static u16 unmap_class(u16 tclass) 196 { 197 if (tclass < current_mapping_size) 198 return current_mapping[tclass].value; 199 200 return tclass; 201 } 202 203 /* 204 * Get kernel value for class from its policy value 205 */ 206 static u16 map_class(u16 pol_value) 207 { 208 u16 i; 209 210 for (i = 1; i < current_mapping_size; i++) { 211 if (current_mapping[i].value == pol_value) 212 return i; 213 } 214 215 return SECCLASS_NULL; 216 } 217 218 static void map_decision(u16 tclass, struct av_decision *avd, 219 int allow_unknown) 220 { 221 if (tclass < current_mapping_size) { 222 unsigned i, n = current_mapping[tclass].num_perms; 223 u32 result; 224 225 for (i = 0, result = 0; i < n; i++) { 226 if (avd->allowed & current_mapping[tclass].perms[i]) 227 result |= 1<<i; 228 if (allow_unknown && !current_mapping[tclass].perms[i]) 229 result |= 1<<i; 230 } 231 avd->allowed = result; 232 233 for (i = 0, result = 0; i < n; i++) 234 if (avd->auditallow & current_mapping[tclass].perms[i]) 235 result |= 1<<i; 236 avd->auditallow = result; 237 238 for (i = 0, result = 0; i < n; i++) { 239 if (avd->auditdeny & current_mapping[tclass].perms[i]) 240 result |= 1<<i; 241 if (!allow_unknown && !current_mapping[tclass].perms[i]) 242 result |= 1<<i; 243 } 244 /* 245 * In case the kernel has a bug and requests a permission 246 * between num_perms and the maximum permission number, we 247 * should audit that denial 248 */ 249 for (; i < (sizeof(u32)*8); i++) 250 result |= 1<<i; 251 avd->auditdeny = result; 252 } 253 } 254 255 int security_mls_enabled(void) 256 { 257 return policydb.mls_enabled; 258 } 259 260 /* 261 * Return the boolean value of a constraint expression 262 * when it is applied to the specified source and target 263 * security contexts. 264 * 265 * xcontext is a special beast... It is used by the validatetrans rules 266 * only. For these rules, scontext is the context before the transition, 267 * tcontext is the context after the transition, and xcontext is the context 268 * of the process performing the transition. All other callers of 269 * constraint_expr_eval should pass in NULL for xcontext. 270 */ 271 static int constraint_expr_eval(struct context *scontext, 272 struct context *tcontext, 273 struct context *xcontext, 274 struct constraint_expr *cexpr) 275 { 276 u32 val1, val2; 277 struct context *c; 278 struct role_datum *r1, *r2; 279 struct mls_level *l1, *l2; 280 struct constraint_expr *e; 281 int s[CEXPR_MAXDEPTH]; 282 int sp = -1; 283 284 for (e = cexpr; e; e = e->next) { 285 switch (e->expr_type) { 286 case CEXPR_NOT: 287 BUG_ON(sp < 0); 288 s[sp] = !s[sp]; 289 break; 290 case CEXPR_AND: 291 BUG_ON(sp < 1); 292 sp--; 293 s[sp] &= s[sp + 1]; 294 break; 295 case CEXPR_OR: 296 BUG_ON(sp < 1); 297 sp--; 298 s[sp] |= s[sp + 1]; 299 break; 300 case CEXPR_ATTR: 301 if (sp == (CEXPR_MAXDEPTH - 1)) 302 return 0; 303 switch (e->attr) { 304 case CEXPR_USER: 305 val1 = scontext->user; 306 val2 = tcontext->user; 307 break; 308 case CEXPR_TYPE: 309 val1 = scontext->type; 310 val2 = tcontext->type; 311 break; 312 case CEXPR_ROLE: 313 val1 = scontext->role; 314 val2 = tcontext->role; 315 r1 = policydb.role_val_to_struct[val1 - 1]; 316 r2 = policydb.role_val_to_struct[val2 - 1]; 317 switch (e->op) { 318 case CEXPR_DOM: 319 s[++sp] = ebitmap_get_bit(&r1->dominates, 320 val2 - 1); 321 continue; 322 case CEXPR_DOMBY: 323 s[++sp] = ebitmap_get_bit(&r2->dominates, 324 val1 - 1); 325 continue; 326 case CEXPR_INCOMP: 327 s[++sp] = (!ebitmap_get_bit(&r1->dominates, 328 val2 - 1) && 329 !ebitmap_get_bit(&r2->dominates, 330 val1 - 1)); 331 continue; 332 default: 333 break; 334 } 335 break; 336 case CEXPR_L1L2: 337 l1 = &(scontext->range.level[0]); 338 l2 = &(tcontext->range.level[0]); 339 goto mls_ops; 340 case CEXPR_L1H2: 341 l1 = &(scontext->range.level[0]); 342 l2 = &(tcontext->range.level[1]); 343 goto mls_ops; 344 case CEXPR_H1L2: 345 l1 = &(scontext->range.level[1]); 346 l2 = &(tcontext->range.level[0]); 347 goto mls_ops; 348 case CEXPR_H1H2: 349 l1 = &(scontext->range.level[1]); 350 l2 = &(tcontext->range.level[1]); 351 goto mls_ops; 352 case CEXPR_L1H1: 353 l1 = &(scontext->range.level[0]); 354 l2 = &(scontext->range.level[1]); 355 goto mls_ops; 356 case CEXPR_L2H2: 357 l1 = &(tcontext->range.level[0]); 358 l2 = &(tcontext->range.level[1]); 359 goto mls_ops; 360 mls_ops: 361 switch (e->op) { 362 case CEXPR_EQ: 363 s[++sp] = mls_level_eq(l1, l2); 364 continue; 365 case CEXPR_NEQ: 366 s[++sp] = !mls_level_eq(l1, l2); 367 continue; 368 case CEXPR_DOM: 369 s[++sp] = mls_level_dom(l1, l2); 370 continue; 371 case CEXPR_DOMBY: 372 s[++sp] = mls_level_dom(l2, l1); 373 continue; 374 case CEXPR_INCOMP: 375 s[++sp] = mls_level_incomp(l2, l1); 376 continue; 377 default: 378 BUG(); 379 return 0; 380 } 381 break; 382 default: 383 BUG(); 384 return 0; 385 } 386 387 switch (e->op) { 388 case CEXPR_EQ: 389 s[++sp] = (val1 == val2); 390 break; 391 case CEXPR_NEQ: 392 s[++sp] = (val1 != val2); 393 break; 394 default: 395 BUG(); 396 return 0; 397 } 398 break; 399 case CEXPR_NAMES: 400 if (sp == (CEXPR_MAXDEPTH-1)) 401 return 0; 402 c = scontext; 403 if (e->attr & CEXPR_TARGET) 404 c = tcontext; 405 else if (e->attr & CEXPR_XTARGET) { 406 c = xcontext; 407 if (!c) { 408 BUG(); 409 return 0; 410 } 411 } 412 if (e->attr & CEXPR_USER) 413 val1 = c->user; 414 else if (e->attr & CEXPR_ROLE) 415 val1 = c->role; 416 else if (e->attr & CEXPR_TYPE) 417 val1 = c->type; 418 else { 419 BUG(); 420 return 0; 421 } 422 423 switch (e->op) { 424 case CEXPR_EQ: 425 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1); 426 break; 427 case CEXPR_NEQ: 428 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1); 429 break; 430 default: 431 BUG(); 432 return 0; 433 } 434 break; 435 default: 436 BUG(); 437 return 0; 438 } 439 } 440 441 BUG_ON(sp != 0); 442 return s[0]; 443 } 444 445 /* 446 * security_dump_masked_av - dumps masked permissions during 447 * security_compute_av due to RBAC, MLS/Constraint and Type bounds. 448 */ 449 static int dump_masked_av_helper(void *k, void *d, void *args) 450 { 451 struct perm_datum *pdatum = d; 452 char **permission_names = args; 453 454 BUG_ON(pdatum->value < 1 || pdatum->value > 32); 455 456 permission_names[pdatum->value - 1] = (char *)k; 457 458 return 0; 459 } 460 461 static void security_dump_masked_av(struct context *scontext, 462 struct context *tcontext, 463 u16 tclass, 464 u32 permissions, 465 const char *reason) 466 { 467 struct common_datum *common_dat; 468 struct class_datum *tclass_dat; 469 struct audit_buffer *ab; 470 char *tclass_name; 471 char *scontext_name = NULL; 472 char *tcontext_name = NULL; 473 char *permission_names[32]; 474 int index; 475 u32 length; 476 bool need_comma = false; 477 478 if (!permissions) 479 return; 480 481 tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1); 482 tclass_dat = policydb.class_val_to_struct[tclass - 1]; 483 common_dat = tclass_dat->comdatum; 484 485 /* init permission_names */ 486 if (common_dat && 487 hashtab_map(common_dat->permissions.table, 488 dump_masked_av_helper, permission_names) < 0) 489 goto out; 490 491 if (hashtab_map(tclass_dat->permissions.table, 492 dump_masked_av_helper, permission_names) < 0) 493 goto out; 494 495 /* get scontext/tcontext in text form */ 496 if (context_struct_to_string(scontext, 497 &scontext_name, &length) < 0) 498 goto out; 499 500 if (context_struct_to_string(tcontext, 501 &tcontext_name, &length) < 0) 502 goto out; 503 504 /* audit a message */ 505 ab = audit_log_start(current->audit_context, 506 GFP_ATOMIC, AUDIT_SELINUX_ERR); 507 if (!ab) 508 goto out; 509 510 audit_log_format(ab, "op=security_compute_av reason=%s " 511 "scontext=%s tcontext=%s tclass=%s perms=", 512 reason, scontext_name, tcontext_name, tclass_name); 513 514 for (index = 0; index < 32; index++) { 515 u32 mask = (1 << index); 516 517 if ((mask & permissions) == 0) 518 continue; 519 520 audit_log_format(ab, "%s%s", 521 need_comma ? "," : "", 522 permission_names[index] 523 ? permission_names[index] : "????"); 524 need_comma = true; 525 } 526 audit_log_end(ab); 527 out: 528 /* release scontext/tcontext */ 529 kfree(tcontext_name); 530 kfree(scontext_name); 531 532 return; 533 } 534 535 /* 536 * security_boundary_permission - drops violated permissions 537 * on boundary constraint. 538 */ 539 static void type_attribute_bounds_av(struct context *scontext, 540 struct context *tcontext, 541 u16 tclass, 542 struct av_decision *avd) 543 { 544 struct context lo_scontext; 545 struct context lo_tcontext; 546 struct av_decision lo_avd; 547 struct type_datum *source; 548 struct type_datum *target; 549 u32 masked = 0; 550 551 source = flex_array_get_ptr(policydb.type_val_to_struct_array, 552 scontext->type - 1); 553 BUG_ON(!source); 554 555 target = flex_array_get_ptr(policydb.type_val_to_struct_array, 556 tcontext->type - 1); 557 BUG_ON(!target); 558 559 if (source->bounds) { 560 memset(&lo_avd, 0, sizeof(lo_avd)); 561 562 memcpy(&lo_scontext, scontext, sizeof(lo_scontext)); 563 lo_scontext.type = source->bounds; 564 565 context_struct_compute_av(&lo_scontext, 566 tcontext, 567 tclass, 568 &lo_avd); 569 if ((lo_avd.allowed & avd->allowed) == avd->allowed) 570 return; /* no masked permission */ 571 masked = ~lo_avd.allowed & avd->allowed; 572 } 573 574 if (target->bounds) { 575 memset(&lo_avd, 0, sizeof(lo_avd)); 576 577 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext)); 578 lo_tcontext.type = target->bounds; 579 580 context_struct_compute_av(scontext, 581 &lo_tcontext, 582 tclass, 583 &lo_avd); 584 if ((lo_avd.allowed & avd->allowed) == avd->allowed) 585 return; /* no masked permission */ 586 masked = ~lo_avd.allowed & avd->allowed; 587 } 588 589 if (source->bounds && target->bounds) { 590 memset(&lo_avd, 0, sizeof(lo_avd)); 591 /* 592 * lo_scontext and lo_tcontext are already 593 * set up. 594 */ 595 596 context_struct_compute_av(&lo_scontext, 597 &lo_tcontext, 598 tclass, 599 &lo_avd); 600 if ((lo_avd.allowed & avd->allowed) == avd->allowed) 601 return; /* no masked permission */ 602 masked = ~lo_avd.allowed & avd->allowed; 603 } 604 605 if (masked) { 606 /* mask violated permissions */ 607 avd->allowed &= ~masked; 608 609 /* audit masked permissions */ 610 security_dump_masked_av(scontext, tcontext, 611 tclass, masked, "bounds"); 612 } 613 } 614 615 /* 616 * Compute access vectors based on a context structure pair for 617 * the permissions in a particular class. 618 */ 619 static void context_struct_compute_av(struct context *scontext, 620 struct context *tcontext, 621 u16 tclass, 622 struct av_decision *avd) 623 { 624 struct constraint_node *constraint; 625 struct role_allow *ra; 626 struct avtab_key avkey; 627 struct avtab_node *node; 628 struct class_datum *tclass_datum; 629 struct ebitmap *sattr, *tattr; 630 struct ebitmap_node *snode, *tnode; 631 unsigned int i, j; 632 633 avd->allowed = 0; 634 avd->auditallow = 0; 635 avd->auditdeny = 0xffffffff; 636 637 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) { 638 if (printk_ratelimit()) 639 printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass); 640 return; 641 } 642 643 tclass_datum = policydb.class_val_to_struct[tclass - 1]; 644 645 /* 646 * If a specific type enforcement rule was defined for 647 * this permission check, then use it. 648 */ 649 avkey.target_class = tclass; 650 avkey.specified = AVTAB_AV; 651 sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1); 652 BUG_ON(!sattr); 653 tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1); 654 BUG_ON(!tattr); 655 ebitmap_for_each_positive_bit(sattr, snode, i) { 656 ebitmap_for_each_positive_bit(tattr, tnode, j) { 657 avkey.source_type = i + 1; 658 avkey.target_type = j + 1; 659 for (node = avtab_search_node(&policydb.te_avtab, &avkey); 660 node; 661 node = avtab_search_node_next(node, avkey.specified)) { 662 if (node->key.specified == AVTAB_ALLOWED) 663 avd->allowed |= node->datum.data; 664 else if (node->key.specified == AVTAB_AUDITALLOW) 665 avd->auditallow |= node->datum.data; 666 else if (node->key.specified == AVTAB_AUDITDENY) 667 avd->auditdeny &= node->datum.data; 668 } 669 670 /* Check conditional av table for additional permissions */ 671 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd); 672 673 } 674 } 675 676 /* 677 * Remove any permissions prohibited by a constraint (this includes 678 * the MLS policy). 679 */ 680 constraint = tclass_datum->constraints; 681 while (constraint) { 682 if ((constraint->permissions & (avd->allowed)) && 683 !constraint_expr_eval(scontext, tcontext, NULL, 684 constraint->expr)) { 685 avd->allowed &= ~(constraint->permissions); 686 } 687 constraint = constraint->next; 688 } 689 690 /* 691 * If checking process transition permission and the 692 * role is changing, then check the (current_role, new_role) 693 * pair. 694 */ 695 if (tclass == policydb.process_class && 696 (avd->allowed & policydb.process_trans_perms) && 697 scontext->role != tcontext->role) { 698 for (ra = policydb.role_allow; ra; ra = ra->next) { 699 if (scontext->role == ra->role && 700 tcontext->role == ra->new_role) 701 break; 702 } 703 if (!ra) 704 avd->allowed &= ~policydb.process_trans_perms; 705 } 706 707 /* 708 * If the given source and target types have boundary 709 * constraint, lazy checks have to mask any violated 710 * permission and notice it to userspace via audit. 711 */ 712 type_attribute_bounds_av(scontext, tcontext, 713 tclass, avd); 714 } 715 716 static int security_validtrans_handle_fail(struct context *ocontext, 717 struct context *ncontext, 718 struct context *tcontext, 719 u16 tclass) 720 { 721 char *o = NULL, *n = NULL, *t = NULL; 722 u32 olen, nlen, tlen; 723 724 if (context_struct_to_string(ocontext, &o, &olen)) 725 goto out; 726 if (context_struct_to_string(ncontext, &n, &nlen)) 727 goto out; 728 if (context_struct_to_string(tcontext, &t, &tlen)) 729 goto out; 730 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR, 731 "security_validate_transition: denied for" 732 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s", 733 o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1)); 734 out: 735 kfree(o); 736 kfree(n); 737 kfree(t); 738 739 if (!selinux_enforcing) 740 return 0; 741 return -EPERM; 742 } 743 744 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid, 745 u16 orig_tclass) 746 { 747 struct context *ocontext; 748 struct context *ncontext; 749 struct context *tcontext; 750 struct class_datum *tclass_datum; 751 struct constraint_node *constraint; 752 u16 tclass; 753 int rc = 0; 754 755 if (!ss_initialized) 756 return 0; 757 758 read_lock(&policy_rwlock); 759 760 tclass = unmap_class(orig_tclass); 761 762 if (!tclass || tclass > policydb.p_classes.nprim) { 763 printk(KERN_ERR "SELinux: %s: unrecognized class %d\n", 764 __func__, tclass); 765 rc = -EINVAL; 766 goto out; 767 } 768 tclass_datum = policydb.class_val_to_struct[tclass - 1]; 769 770 ocontext = sidtab_search(&sidtab, oldsid); 771 if (!ocontext) { 772 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 773 __func__, oldsid); 774 rc = -EINVAL; 775 goto out; 776 } 777 778 ncontext = sidtab_search(&sidtab, newsid); 779 if (!ncontext) { 780 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 781 __func__, newsid); 782 rc = -EINVAL; 783 goto out; 784 } 785 786 tcontext = sidtab_search(&sidtab, tasksid); 787 if (!tcontext) { 788 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 789 __func__, tasksid); 790 rc = -EINVAL; 791 goto out; 792 } 793 794 constraint = tclass_datum->validatetrans; 795 while (constraint) { 796 if (!constraint_expr_eval(ocontext, ncontext, tcontext, 797 constraint->expr)) { 798 rc = security_validtrans_handle_fail(ocontext, ncontext, 799 tcontext, tclass); 800 goto out; 801 } 802 constraint = constraint->next; 803 } 804 805 out: 806 read_unlock(&policy_rwlock); 807 return rc; 808 } 809 810 /* 811 * security_bounded_transition - check whether the given 812 * transition is directed to bounded, or not. 813 * It returns 0, if @newsid is bounded by @oldsid. 814 * Otherwise, it returns error code. 815 * 816 * @oldsid : current security identifier 817 * @newsid : destinated security identifier 818 */ 819 int security_bounded_transition(u32 old_sid, u32 new_sid) 820 { 821 struct context *old_context, *new_context; 822 struct type_datum *type; 823 int index; 824 int rc; 825 826 read_lock(&policy_rwlock); 827 828 rc = -EINVAL; 829 old_context = sidtab_search(&sidtab, old_sid); 830 if (!old_context) { 831 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n", 832 __func__, old_sid); 833 goto out; 834 } 835 836 rc = -EINVAL; 837 new_context = sidtab_search(&sidtab, new_sid); 838 if (!new_context) { 839 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n", 840 __func__, new_sid); 841 goto out; 842 } 843 844 rc = 0; 845 /* type/domain unchanged */ 846 if (old_context->type == new_context->type) 847 goto out; 848 849 index = new_context->type; 850 while (true) { 851 type = flex_array_get_ptr(policydb.type_val_to_struct_array, 852 index - 1); 853 BUG_ON(!type); 854 855 /* not bounded anymore */ 856 rc = -EPERM; 857 if (!type->bounds) 858 break; 859 860 /* @newsid is bounded by @oldsid */ 861 rc = 0; 862 if (type->bounds == old_context->type) 863 break; 864 865 index = type->bounds; 866 } 867 868 if (rc) { 869 char *old_name = NULL; 870 char *new_name = NULL; 871 u32 length; 872 873 if (!context_struct_to_string(old_context, 874 &old_name, &length) && 875 !context_struct_to_string(new_context, 876 &new_name, &length)) { 877 audit_log(current->audit_context, 878 GFP_ATOMIC, AUDIT_SELINUX_ERR, 879 "op=security_bounded_transition " 880 "result=denied " 881 "oldcontext=%s newcontext=%s", 882 old_name, new_name); 883 } 884 kfree(new_name); 885 kfree(old_name); 886 } 887 out: 888 read_unlock(&policy_rwlock); 889 890 return rc; 891 } 892 893 static void avd_init(struct av_decision *avd) 894 { 895 avd->allowed = 0; 896 avd->auditallow = 0; 897 avd->auditdeny = 0xffffffff; 898 avd->seqno = latest_granting; 899 avd->flags = 0; 900 } 901 902 903 /** 904 * security_compute_av - Compute access vector decisions. 905 * @ssid: source security identifier 906 * @tsid: target security identifier 907 * @tclass: target security class 908 * @avd: access vector decisions 909 * 910 * Compute a set of access vector decisions based on the 911 * SID pair (@ssid, @tsid) for the permissions in @tclass. 912 */ 913 void security_compute_av(u32 ssid, 914 u32 tsid, 915 u16 orig_tclass, 916 struct av_decision *avd) 917 { 918 u16 tclass; 919 struct context *scontext = NULL, *tcontext = NULL; 920 921 read_lock(&policy_rwlock); 922 avd_init(avd); 923 if (!ss_initialized) 924 goto allow; 925 926 scontext = sidtab_search(&sidtab, ssid); 927 if (!scontext) { 928 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 929 __func__, ssid); 930 goto out; 931 } 932 933 /* permissive domain? */ 934 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type)) 935 avd->flags |= AVD_FLAGS_PERMISSIVE; 936 937 tcontext = sidtab_search(&sidtab, tsid); 938 if (!tcontext) { 939 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 940 __func__, tsid); 941 goto out; 942 } 943 944 tclass = unmap_class(orig_tclass); 945 if (unlikely(orig_tclass && !tclass)) { 946 if (policydb.allow_unknown) 947 goto allow; 948 goto out; 949 } 950 context_struct_compute_av(scontext, tcontext, tclass, avd); 951 map_decision(orig_tclass, avd, policydb.allow_unknown); 952 out: 953 read_unlock(&policy_rwlock); 954 return; 955 allow: 956 avd->allowed = 0xffffffff; 957 goto out; 958 } 959 960 void security_compute_av_user(u32 ssid, 961 u32 tsid, 962 u16 tclass, 963 struct av_decision *avd) 964 { 965 struct context *scontext = NULL, *tcontext = NULL; 966 967 read_lock(&policy_rwlock); 968 avd_init(avd); 969 if (!ss_initialized) 970 goto allow; 971 972 scontext = sidtab_search(&sidtab, ssid); 973 if (!scontext) { 974 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 975 __func__, ssid); 976 goto out; 977 } 978 979 /* permissive domain? */ 980 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type)) 981 avd->flags |= AVD_FLAGS_PERMISSIVE; 982 983 tcontext = sidtab_search(&sidtab, tsid); 984 if (!tcontext) { 985 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 986 __func__, tsid); 987 goto out; 988 } 989 990 if (unlikely(!tclass)) { 991 if (policydb.allow_unknown) 992 goto allow; 993 goto out; 994 } 995 996 context_struct_compute_av(scontext, tcontext, tclass, avd); 997 out: 998 read_unlock(&policy_rwlock); 999 return; 1000 allow: 1001 avd->allowed = 0xffffffff; 1002 goto out; 1003 } 1004 1005 /* 1006 * Write the security context string representation of 1007 * the context structure `context' into a dynamically 1008 * allocated string of the correct size. Set `*scontext' 1009 * to point to this string and set `*scontext_len' to 1010 * the length of the string. 1011 */ 1012 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len) 1013 { 1014 char *scontextp; 1015 1016 if (scontext) 1017 *scontext = NULL; 1018 *scontext_len = 0; 1019 1020 if (context->len) { 1021 *scontext_len = context->len; 1022 if (scontext) { 1023 *scontext = kstrdup(context->str, GFP_ATOMIC); 1024 if (!(*scontext)) 1025 return -ENOMEM; 1026 } 1027 return 0; 1028 } 1029 1030 /* Compute the size of the context. */ 1031 *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1; 1032 *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1; 1033 *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1; 1034 *scontext_len += mls_compute_context_len(context); 1035 1036 if (!scontext) 1037 return 0; 1038 1039 /* Allocate space for the context; caller must free this space. */ 1040 scontextp = kmalloc(*scontext_len, GFP_ATOMIC); 1041 if (!scontextp) 1042 return -ENOMEM; 1043 *scontext = scontextp; 1044 1045 /* 1046 * Copy the user name, role name and type name into the context. 1047 */ 1048 sprintf(scontextp, "%s:%s:%s", 1049 sym_name(&policydb, SYM_USERS, context->user - 1), 1050 sym_name(&policydb, SYM_ROLES, context->role - 1), 1051 sym_name(&policydb, SYM_TYPES, context->type - 1)); 1052 scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1053 1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1054 1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)); 1055 1056 mls_sid_to_context(context, &scontextp); 1057 1058 *scontextp = 0; 1059 1060 return 0; 1061 } 1062 1063 #include "initial_sid_to_string.h" 1064 1065 const char *security_get_initial_sid_context(u32 sid) 1066 { 1067 if (unlikely(sid > SECINITSID_NUM)) 1068 return NULL; 1069 return initial_sid_to_string[sid]; 1070 } 1071 1072 static int security_sid_to_context_core(u32 sid, char **scontext, 1073 u32 *scontext_len, int force) 1074 { 1075 struct context *context; 1076 int rc = 0; 1077 1078 if (scontext) 1079 *scontext = NULL; 1080 *scontext_len = 0; 1081 1082 if (!ss_initialized) { 1083 if (sid <= SECINITSID_NUM) { 1084 char *scontextp; 1085 1086 *scontext_len = strlen(initial_sid_to_string[sid]) + 1; 1087 if (!scontext) 1088 goto out; 1089 scontextp = kmalloc(*scontext_len, GFP_ATOMIC); 1090 if (!scontextp) { 1091 rc = -ENOMEM; 1092 goto out; 1093 } 1094 strcpy(scontextp, initial_sid_to_string[sid]); 1095 *scontext = scontextp; 1096 goto out; 1097 } 1098 printk(KERN_ERR "SELinux: %s: called before initial " 1099 "load_policy on unknown SID %d\n", __func__, sid); 1100 rc = -EINVAL; 1101 goto out; 1102 } 1103 read_lock(&policy_rwlock); 1104 if (force) 1105 context = sidtab_search_force(&sidtab, sid); 1106 else 1107 context = sidtab_search(&sidtab, sid); 1108 if (!context) { 1109 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1110 __func__, sid); 1111 rc = -EINVAL; 1112 goto out_unlock; 1113 } 1114 rc = context_struct_to_string(context, scontext, scontext_len); 1115 out_unlock: 1116 read_unlock(&policy_rwlock); 1117 out: 1118 return rc; 1119 1120 } 1121 1122 /** 1123 * security_sid_to_context - Obtain a context for a given SID. 1124 * @sid: security identifier, SID 1125 * @scontext: security context 1126 * @scontext_len: length in bytes 1127 * 1128 * Write the string representation of the context associated with @sid 1129 * into a dynamically allocated string of the correct size. Set @scontext 1130 * to point to this string and set @scontext_len to the length of the string. 1131 */ 1132 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len) 1133 { 1134 return security_sid_to_context_core(sid, scontext, scontext_len, 0); 1135 } 1136 1137 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len) 1138 { 1139 return security_sid_to_context_core(sid, scontext, scontext_len, 1); 1140 } 1141 1142 /* 1143 * Caveat: Mutates scontext. 1144 */ 1145 static int string_to_context_struct(struct policydb *pol, 1146 struct sidtab *sidtabp, 1147 char *scontext, 1148 u32 scontext_len, 1149 struct context *ctx, 1150 u32 def_sid) 1151 { 1152 struct role_datum *role; 1153 struct type_datum *typdatum; 1154 struct user_datum *usrdatum; 1155 char *scontextp, *p, oldc; 1156 int rc = 0; 1157 1158 context_init(ctx); 1159 1160 /* Parse the security context. */ 1161 1162 rc = -EINVAL; 1163 scontextp = (char *) scontext; 1164 1165 /* Extract the user. */ 1166 p = scontextp; 1167 while (*p && *p != ':') 1168 p++; 1169 1170 if (*p == 0) 1171 goto out; 1172 1173 *p++ = 0; 1174 1175 usrdatum = hashtab_search(pol->p_users.table, scontextp); 1176 if (!usrdatum) 1177 goto out; 1178 1179 ctx->user = usrdatum->value; 1180 1181 /* Extract role. */ 1182 scontextp = p; 1183 while (*p && *p != ':') 1184 p++; 1185 1186 if (*p == 0) 1187 goto out; 1188 1189 *p++ = 0; 1190 1191 role = hashtab_search(pol->p_roles.table, scontextp); 1192 if (!role) 1193 goto out; 1194 ctx->role = role->value; 1195 1196 /* Extract type. */ 1197 scontextp = p; 1198 while (*p && *p != ':') 1199 p++; 1200 oldc = *p; 1201 *p++ = 0; 1202 1203 typdatum = hashtab_search(pol->p_types.table, scontextp); 1204 if (!typdatum || typdatum->attribute) 1205 goto out; 1206 1207 ctx->type = typdatum->value; 1208 1209 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid); 1210 if (rc) 1211 goto out; 1212 1213 rc = -EINVAL; 1214 if ((p - scontext) < scontext_len) 1215 goto out; 1216 1217 /* Check the validity of the new context. */ 1218 if (!policydb_context_isvalid(pol, ctx)) 1219 goto out; 1220 rc = 0; 1221 out: 1222 if (rc) 1223 context_destroy(ctx); 1224 return rc; 1225 } 1226 1227 static int security_context_to_sid_core(const char *scontext, u32 scontext_len, 1228 u32 *sid, u32 def_sid, gfp_t gfp_flags, 1229 int force) 1230 { 1231 char *scontext2, *str = NULL; 1232 struct context context; 1233 int rc = 0; 1234 1235 if (!ss_initialized) { 1236 int i; 1237 1238 for (i = 1; i < SECINITSID_NUM; i++) { 1239 if (!strcmp(initial_sid_to_string[i], scontext)) { 1240 *sid = i; 1241 return 0; 1242 } 1243 } 1244 *sid = SECINITSID_KERNEL; 1245 return 0; 1246 } 1247 *sid = SECSID_NULL; 1248 1249 /* Copy the string so that we can modify the copy as we parse it. */ 1250 scontext2 = kmalloc(scontext_len + 1, gfp_flags); 1251 if (!scontext2) 1252 return -ENOMEM; 1253 memcpy(scontext2, scontext, scontext_len); 1254 scontext2[scontext_len] = 0; 1255 1256 if (force) { 1257 /* Save another copy for storing in uninterpreted form */ 1258 rc = -ENOMEM; 1259 str = kstrdup(scontext2, gfp_flags); 1260 if (!str) 1261 goto out; 1262 } 1263 1264 read_lock(&policy_rwlock); 1265 rc = string_to_context_struct(&policydb, &sidtab, scontext2, 1266 scontext_len, &context, def_sid); 1267 if (rc == -EINVAL && force) { 1268 context.str = str; 1269 context.len = scontext_len; 1270 str = NULL; 1271 } else if (rc) 1272 goto out_unlock; 1273 rc = sidtab_context_to_sid(&sidtab, &context, sid); 1274 context_destroy(&context); 1275 out_unlock: 1276 read_unlock(&policy_rwlock); 1277 out: 1278 kfree(scontext2); 1279 kfree(str); 1280 return rc; 1281 } 1282 1283 /** 1284 * security_context_to_sid - Obtain a SID for a given security context. 1285 * @scontext: security context 1286 * @scontext_len: length in bytes 1287 * @sid: security identifier, SID 1288 * 1289 * Obtains a SID associated with the security context that 1290 * has the string representation specified by @scontext. 1291 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient 1292 * memory is available, or 0 on success. 1293 */ 1294 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid) 1295 { 1296 return security_context_to_sid_core(scontext, scontext_len, 1297 sid, SECSID_NULL, GFP_KERNEL, 0); 1298 } 1299 1300 /** 1301 * security_context_to_sid_default - Obtain a SID for a given security context, 1302 * falling back to specified default if needed. 1303 * 1304 * @scontext: security context 1305 * @scontext_len: length in bytes 1306 * @sid: security identifier, SID 1307 * @def_sid: default SID to assign on error 1308 * 1309 * Obtains a SID associated with the security context that 1310 * has the string representation specified by @scontext. 1311 * The default SID is passed to the MLS layer to be used to allow 1312 * kernel labeling of the MLS field if the MLS field is not present 1313 * (for upgrading to MLS without full relabel). 1314 * Implicitly forces adding of the context even if it cannot be mapped yet. 1315 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient 1316 * memory is available, or 0 on success. 1317 */ 1318 int security_context_to_sid_default(const char *scontext, u32 scontext_len, 1319 u32 *sid, u32 def_sid, gfp_t gfp_flags) 1320 { 1321 return security_context_to_sid_core(scontext, scontext_len, 1322 sid, def_sid, gfp_flags, 1); 1323 } 1324 1325 int security_context_to_sid_force(const char *scontext, u32 scontext_len, 1326 u32 *sid) 1327 { 1328 return security_context_to_sid_core(scontext, scontext_len, 1329 sid, SECSID_NULL, GFP_KERNEL, 1); 1330 } 1331 1332 static int compute_sid_handle_invalid_context( 1333 struct context *scontext, 1334 struct context *tcontext, 1335 u16 tclass, 1336 struct context *newcontext) 1337 { 1338 char *s = NULL, *t = NULL, *n = NULL; 1339 u32 slen, tlen, nlen; 1340 1341 if (context_struct_to_string(scontext, &s, &slen)) 1342 goto out; 1343 if (context_struct_to_string(tcontext, &t, &tlen)) 1344 goto out; 1345 if (context_struct_to_string(newcontext, &n, &nlen)) 1346 goto out; 1347 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR, 1348 "security_compute_sid: invalid context %s" 1349 " for scontext=%s" 1350 " tcontext=%s" 1351 " tclass=%s", 1352 n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1)); 1353 out: 1354 kfree(s); 1355 kfree(t); 1356 kfree(n); 1357 if (!selinux_enforcing) 1358 return 0; 1359 return -EACCES; 1360 } 1361 1362 static void filename_compute_type(struct policydb *p, struct context *newcontext, 1363 u32 stype, u32 ttype, u16 tclass, 1364 const char *objname) 1365 { 1366 struct filename_trans ft; 1367 struct filename_trans_datum *otype; 1368 1369 /* 1370 * Most filename trans rules are going to live in specific directories 1371 * like /dev or /var/run. This bitmap will quickly skip rule searches 1372 * if the ttype does not contain any rules. 1373 */ 1374 if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype)) 1375 return; 1376 1377 ft.stype = stype; 1378 ft.ttype = ttype; 1379 ft.tclass = tclass; 1380 ft.name = objname; 1381 1382 otype = hashtab_search(p->filename_trans, &ft); 1383 if (otype) 1384 newcontext->type = otype->otype; 1385 } 1386 1387 static int security_compute_sid(u32 ssid, 1388 u32 tsid, 1389 u16 orig_tclass, 1390 u32 specified, 1391 const char *objname, 1392 u32 *out_sid, 1393 bool kern) 1394 { 1395 struct class_datum *cladatum = NULL; 1396 struct context *scontext = NULL, *tcontext = NULL, newcontext; 1397 struct role_trans *roletr = NULL; 1398 struct avtab_key avkey; 1399 struct avtab_datum *avdatum; 1400 struct avtab_node *node; 1401 u16 tclass; 1402 int rc = 0; 1403 bool sock; 1404 1405 if (!ss_initialized) { 1406 switch (orig_tclass) { 1407 case SECCLASS_PROCESS: /* kernel value */ 1408 *out_sid = ssid; 1409 break; 1410 default: 1411 *out_sid = tsid; 1412 break; 1413 } 1414 goto out; 1415 } 1416 1417 context_init(&newcontext); 1418 1419 read_lock(&policy_rwlock); 1420 1421 if (kern) { 1422 tclass = unmap_class(orig_tclass); 1423 sock = security_is_socket_class(orig_tclass); 1424 } else { 1425 tclass = orig_tclass; 1426 sock = security_is_socket_class(map_class(tclass)); 1427 } 1428 1429 scontext = sidtab_search(&sidtab, ssid); 1430 if (!scontext) { 1431 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1432 __func__, ssid); 1433 rc = -EINVAL; 1434 goto out_unlock; 1435 } 1436 tcontext = sidtab_search(&sidtab, tsid); 1437 if (!tcontext) { 1438 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1439 __func__, tsid); 1440 rc = -EINVAL; 1441 goto out_unlock; 1442 } 1443 1444 if (tclass && tclass <= policydb.p_classes.nprim) 1445 cladatum = policydb.class_val_to_struct[tclass - 1]; 1446 1447 /* Set the user identity. */ 1448 switch (specified) { 1449 case AVTAB_TRANSITION: 1450 case AVTAB_CHANGE: 1451 if (cladatum && cladatum->default_user == DEFAULT_TARGET) { 1452 newcontext.user = tcontext->user; 1453 } else { 1454 /* notice this gets both DEFAULT_SOURCE and unset */ 1455 /* Use the process user identity. */ 1456 newcontext.user = scontext->user; 1457 } 1458 break; 1459 case AVTAB_MEMBER: 1460 /* Use the related object owner. */ 1461 newcontext.user = tcontext->user; 1462 break; 1463 } 1464 1465 /* Set the role to default values. */ 1466 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) { 1467 newcontext.role = scontext->role; 1468 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) { 1469 newcontext.role = tcontext->role; 1470 } else { 1471 if ((tclass == policydb.process_class) || (sock == true)) 1472 newcontext.role = scontext->role; 1473 else 1474 newcontext.role = OBJECT_R_VAL; 1475 } 1476 1477 /* Set the type to default values. */ 1478 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) { 1479 newcontext.type = scontext->type; 1480 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) { 1481 newcontext.type = tcontext->type; 1482 } else { 1483 if ((tclass == policydb.process_class) || (sock == true)) { 1484 /* Use the type of process. */ 1485 newcontext.type = scontext->type; 1486 } else { 1487 /* Use the type of the related object. */ 1488 newcontext.type = tcontext->type; 1489 } 1490 } 1491 1492 /* Look for a type transition/member/change rule. */ 1493 avkey.source_type = scontext->type; 1494 avkey.target_type = tcontext->type; 1495 avkey.target_class = tclass; 1496 avkey.specified = specified; 1497 avdatum = avtab_search(&policydb.te_avtab, &avkey); 1498 1499 /* If no permanent rule, also check for enabled conditional rules */ 1500 if (!avdatum) { 1501 node = avtab_search_node(&policydb.te_cond_avtab, &avkey); 1502 for (; node; node = avtab_search_node_next(node, specified)) { 1503 if (node->key.specified & AVTAB_ENABLED) { 1504 avdatum = &node->datum; 1505 break; 1506 } 1507 } 1508 } 1509 1510 if (avdatum) { 1511 /* Use the type from the type transition/member/change rule. */ 1512 newcontext.type = avdatum->data; 1513 } 1514 1515 /* if we have a objname this is a file trans check so check those rules */ 1516 if (objname) 1517 filename_compute_type(&policydb, &newcontext, scontext->type, 1518 tcontext->type, tclass, objname); 1519 1520 /* Check for class-specific changes. */ 1521 if (specified & AVTAB_TRANSITION) { 1522 /* Look for a role transition rule. */ 1523 for (roletr = policydb.role_tr; roletr; roletr = roletr->next) { 1524 if ((roletr->role == scontext->role) && 1525 (roletr->type == tcontext->type) && 1526 (roletr->tclass == tclass)) { 1527 /* Use the role transition rule. */ 1528 newcontext.role = roletr->new_role; 1529 break; 1530 } 1531 } 1532 } 1533 1534 /* Set the MLS attributes. 1535 This is done last because it may allocate memory. */ 1536 rc = mls_compute_sid(scontext, tcontext, tclass, specified, 1537 &newcontext, sock); 1538 if (rc) 1539 goto out_unlock; 1540 1541 /* Check the validity of the context. */ 1542 if (!policydb_context_isvalid(&policydb, &newcontext)) { 1543 rc = compute_sid_handle_invalid_context(scontext, 1544 tcontext, 1545 tclass, 1546 &newcontext); 1547 if (rc) 1548 goto out_unlock; 1549 } 1550 /* Obtain the sid for the context. */ 1551 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid); 1552 out_unlock: 1553 read_unlock(&policy_rwlock); 1554 context_destroy(&newcontext); 1555 out: 1556 return rc; 1557 } 1558 1559 /** 1560 * security_transition_sid - Compute the SID for a new subject/object. 1561 * @ssid: source security identifier 1562 * @tsid: target security identifier 1563 * @tclass: target security class 1564 * @out_sid: security identifier for new subject/object 1565 * 1566 * Compute a SID to use for labeling a new subject or object in the 1567 * class @tclass based on a SID pair (@ssid, @tsid). 1568 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1569 * if insufficient memory is available, or %0 if the new SID was 1570 * computed successfully. 1571 */ 1572 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass, 1573 const struct qstr *qstr, u32 *out_sid) 1574 { 1575 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, 1576 qstr ? qstr->name : NULL, out_sid, true); 1577 } 1578 1579 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass, 1580 const char *objname, u32 *out_sid) 1581 { 1582 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, 1583 objname, out_sid, false); 1584 } 1585 1586 /** 1587 * security_member_sid - Compute the SID for member selection. 1588 * @ssid: source security identifier 1589 * @tsid: target security identifier 1590 * @tclass: target security class 1591 * @out_sid: security identifier for selected member 1592 * 1593 * Compute a SID to use when selecting a member of a polyinstantiated 1594 * object of class @tclass based on a SID pair (@ssid, @tsid). 1595 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1596 * if insufficient memory is available, or %0 if the SID was 1597 * computed successfully. 1598 */ 1599 int security_member_sid(u32 ssid, 1600 u32 tsid, 1601 u16 tclass, 1602 u32 *out_sid) 1603 { 1604 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL, 1605 out_sid, false); 1606 } 1607 1608 /** 1609 * security_change_sid - Compute the SID for object relabeling. 1610 * @ssid: source security identifier 1611 * @tsid: target security identifier 1612 * @tclass: target security class 1613 * @out_sid: security identifier for selected member 1614 * 1615 * Compute a SID to use for relabeling an object of class @tclass 1616 * based on a SID pair (@ssid, @tsid). 1617 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1618 * if insufficient memory is available, or %0 if the SID was 1619 * computed successfully. 1620 */ 1621 int security_change_sid(u32 ssid, 1622 u32 tsid, 1623 u16 tclass, 1624 u32 *out_sid) 1625 { 1626 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL, 1627 out_sid, false); 1628 } 1629 1630 /* Clone the SID into the new SID table. */ 1631 static int clone_sid(u32 sid, 1632 struct context *context, 1633 void *arg) 1634 { 1635 struct sidtab *s = arg; 1636 1637 if (sid > SECINITSID_NUM) 1638 return sidtab_insert(s, sid, context); 1639 else 1640 return 0; 1641 } 1642 1643 static inline int convert_context_handle_invalid_context(struct context *context) 1644 { 1645 char *s; 1646 u32 len; 1647 1648 if (selinux_enforcing) 1649 return -EINVAL; 1650 1651 if (!context_struct_to_string(context, &s, &len)) { 1652 printk(KERN_WARNING "SELinux: Context %s would be invalid if enforcing\n", s); 1653 kfree(s); 1654 } 1655 return 0; 1656 } 1657 1658 struct convert_context_args { 1659 struct policydb *oldp; 1660 struct policydb *newp; 1661 }; 1662 1663 /* 1664 * Convert the values in the security context 1665 * structure `c' from the values specified 1666 * in the policy `p->oldp' to the values specified 1667 * in the policy `p->newp'. Verify that the 1668 * context is valid under the new policy. 1669 */ 1670 static int convert_context(u32 key, 1671 struct context *c, 1672 void *p) 1673 { 1674 struct convert_context_args *args; 1675 struct context oldc; 1676 struct ocontext *oc; 1677 struct mls_range *range; 1678 struct role_datum *role; 1679 struct type_datum *typdatum; 1680 struct user_datum *usrdatum; 1681 char *s; 1682 u32 len; 1683 int rc = 0; 1684 1685 if (key <= SECINITSID_NUM) 1686 goto out; 1687 1688 args = p; 1689 1690 if (c->str) { 1691 struct context ctx; 1692 1693 rc = -ENOMEM; 1694 s = kstrdup(c->str, GFP_KERNEL); 1695 if (!s) 1696 goto out; 1697 1698 rc = string_to_context_struct(args->newp, NULL, s, 1699 c->len, &ctx, SECSID_NULL); 1700 kfree(s); 1701 if (!rc) { 1702 printk(KERN_INFO "SELinux: Context %s became valid (mapped).\n", 1703 c->str); 1704 /* Replace string with mapped representation. */ 1705 kfree(c->str); 1706 memcpy(c, &ctx, sizeof(*c)); 1707 goto out; 1708 } else if (rc == -EINVAL) { 1709 /* Retain string representation for later mapping. */ 1710 rc = 0; 1711 goto out; 1712 } else { 1713 /* Other error condition, e.g. ENOMEM. */ 1714 printk(KERN_ERR "SELinux: Unable to map context %s, rc = %d.\n", 1715 c->str, -rc); 1716 goto out; 1717 } 1718 } 1719 1720 rc = context_cpy(&oldc, c); 1721 if (rc) 1722 goto out; 1723 1724 /* Convert the user. */ 1725 rc = -EINVAL; 1726 usrdatum = hashtab_search(args->newp->p_users.table, 1727 sym_name(args->oldp, SYM_USERS, c->user - 1)); 1728 if (!usrdatum) 1729 goto bad; 1730 c->user = usrdatum->value; 1731 1732 /* Convert the role. */ 1733 rc = -EINVAL; 1734 role = hashtab_search(args->newp->p_roles.table, 1735 sym_name(args->oldp, SYM_ROLES, c->role - 1)); 1736 if (!role) 1737 goto bad; 1738 c->role = role->value; 1739 1740 /* Convert the type. */ 1741 rc = -EINVAL; 1742 typdatum = hashtab_search(args->newp->p_types.table, 1743 sym_name(args->oldp, SYM_TYPES, c->type - 1)); 1744 if (!typdatum) 1745 goto bad; 1746 c->type = typdatum->value; 1747 1748 /* Convert the MLS fields if dealing with MLS policies */ 1749 if (args->oldp->mls_enabled && args->newp->mls_enabled) { 1750 rc = mls_convert_context(args->oldp, args->newp, c); 1751 if (rc) 1752 goto bad; 1753 } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) { 1754 /* 1755 * Switching between MLS and non-MLS policy: 1756 * free any storage used by the MLS fields in the 1757 * context for all existing entries in the sidtab. 1758 */ 1759 mls_context_destroy(c); 1760 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) { 1761 /* 1762 * Switching between non-MLS and MLS policy: 1763 * ensure that the MLS fields of the context for all 1764 * existing entries in the sidtab are filled in with a 1765 * suitable default value, likely taken from one of the 1766 * initial SIDs. 1767 */ 1768 oc = args->newp->ocontexts[OCON_ISID]; 1769 while (oc && oc->sid[0] != SECINITSID_UNLABELED) 1770 oc = oc->next; 1771 rc = -EINVAL; 1772 if (!oc) { 1773 printk(KERN_ERR "SELinux: unable to look up" 1774 " the initial SIDs list\n"); 1775 goto bad; 1776 } 1777 range = &oc->context[0].range; 1778 rc = mls_range_set(c, range); 1779 if (rc) 1780 goto bad; 1781 } 1782 1783 /* Check the validity of the new context. */ 1784 if (!policydb_context_isvalid(args->newp, c)) { 1785 rc = convert_context_handle_invalid_context(&oldc); 1786 if (rc) 1787 goto bad; 1788 } 1789 1790 context_destroy(&oldc); 1791 1792 rc = 0; 1793 out: 1794 return rc; 1795 bad: 1796 /* Map old representation to string and save it. */ 1797 rc = context_struct_to_string(&oldc, &s, &len); 1798 if (rc) 1799 return rc; 1800 context_destroy(&oldc); 1801 context_destroy(c); 1802 c->str = s; 1803 c->len = len; 1804 printk(KERN_INFO "SELinux: Context %s became invalid (unmapped).\n", 1805 c->str); 1806 rc = 0; 1807 goto out; 1808 } 1809 1810 static void security_load_policycaps(void) 1811 { 1812 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps, 1813 POLICYDB_CAPABILITY_NETPEER); 1814 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps, 1815 POLICYDB_CAPABILITY_OPENPERM); 1816 selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps, 1817 POLICYDB_CAPABILITY_ALWAYSNETWORK); 1818 } 1819 1820 static int security_preserve_bools(struct policydb *p); 1821 1822 /** 1823 * security_load_policy - Load a security policy configuration. 1824 * @data: binary policy data 1825 * @len: length of data in bytes 1826 * 1827 * Load a new set of security policy configuration data, 1828 * validate it and convert the SID table as necessary. 1829 * This function will flush the access vector cache after 1830 * loading the new policy. 1831 */ 1832 int security_load_policy(void *data, size_t len) 1833 { 1834 struct policydb *oldpolicydb, *newpolicydb; 1835 struct sidtab oldsidtab, newsidtab; 1836 struct selinux_mapping *oldmap, *map = NULL; 1837 struct convert_context_args args; 1838 u32 seqno; 1839 u16 map_size; 1840 int rc = 0; 1841 struct policy_file file = { data, len }, *fp = &file; 1842 1843 oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL); 1844 if (!oldpolicydb) { 1845 rc = -ENOMEM; 1846 goto out; 1847 } 1848 newpolicydb = oldpolicydb + 1; 1849 1850 if (!ss_initialized) { 1851 avtab_cache_init(); 1852 rc = policydb_read(&policydb, fp); 1853 if (rc) { 1854 avtab_cache_destroy(); 1855 goto out; 1856 } 1857 1858 policydb.len = len; 1859 rc = selinux_set_mapping(&policydb, secclass_map, 1860 ¤t_mapping, 1861 ¤t_mapping_size); 1862 if (rc) { 1863 policydb_destroy(&policydb); 1864 avtab_cache_destroy(); 1865 goto out; 1866 } 1867 1868 rc = policydb_load_isids(&policydb, &sidtab); 1869 if (rc) { 1870 policydb_destroy(&policydb); 1871 avtab_cache_destroy(); 1872 goto out; 1873 } 1874 1875 security_load_policycaps(); 1876 ss_initialized = 1; 1877 seqno = ++latest_granting; 1878 selinux_complete_init(); 1879 avc_ss_reset(seqno); 1880 selnl_notify_policyload(seqno); 1881 selinux_status_update_policyload(seqno); 1882 selinux_netlbl_cache_invalidate(); 1883 selinux_xfrm_notify_policyload(); 1884 goto out; 1885 } 1886 1887 #if 0 1888 sidtab_hash_eval(&sidtab, "sids"); 1889 #endif 1890 1891 rc = policydb_read(newpolicydb, fp); 1892 if (rc) 1893 goto out; 1894 1895 newpolicydb->len = len; 1896 /* If switching between different policy types, log MLS status */ 1897 if (policydb.mls_enabled && !newpolicydb->mls_enabled) 1898 printk(KERN_INFO "SELinux: Disabling MLS support...\n"); 1899 else if (!policydb.mls_enabled && newpolicydb->mls_enabled) 1900 printk(KERN_INFO "SELinux: Enabling MLS support...\n"); 1901 1902 rc = policydb_load_isids(newpolicydb, &newsidtab); 1903 if (rc) { 1904 printk(KERN_ERR "SELinux: unable to load the initial SIDs\n"); 1905 policydb_destroy(newpolicydb); 1906 goto out; 1907 } 1908 1909 rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size); 1910 if (rc) 1911 goto err; 1912 1913 rc = security_preserve_bools(newpolicydb); 1914 if (rc) { 1915 printk(KERN_ERR "SELinux: unable to preserve booleans\n"); 1916 goto err; 1917 } 1918 1919 /* Clone the SID table. */ 1920 sidtab_shutdown(&sidtab); 1921 1922 rc = sidtab_map(&sidtab, clone_sid, &newsidtab); 1923 if (rc) 1924 goto err; 1925 1926 /* 1927 * Convert the internal representations of contexts 1928 * in the new SID table. 1929 */ 1930 args.oldp = &policydb; 1931 args.newp = newpolicydb; 1932 rc = sidtab_map(&newsidtab, convert_context, &args); 1933 if (rc) { 1934 printk(KERN_ERR "SELinux: unable to convert the internal" 1935 " representation of contexts in the new SID" 1936 " table\n"); 1937 goto err; 1938 } 1939 1940 /* Save the old policydb and SID table to free later. */ 1941 memcpy(oldpolicydb, &policydb, sizeof(policydb)); 1942 sidtab_set(&oldsidtab, &sidtab); 1943 1944 /* Install the new policydb and SID table. */ 1945 write_lock_irq(&policy_rwlock); 1946 memcpy(&policydb, newpolicydb, sizeof(policydb)); 1947 sidtab_set(&sidtab, &newsidtab); 1948 security_load_policycaps(); 1949 oldmap = current_mapping; 1950 current_mapping = map; 1951 current_mapping_size = map_size; 1952 seqno = ++latest_granting; 1953 write_unlock_irq(&policy_rwlock); 1954 1955 /* Free the old policydb and SID table. */ 1956 policydb_destroy(oldpolicydb); 1957 sidtab_destroy(&oldsidtab); 1958 kfree(oldmap); 1959 1960 avc_ss_reset(seqno); 1961 selnl_notify_policyload(seqno); 1962 selinux_status_update_policyload(seqno); 1963 selinux_netlbl_cache_invalidate(); 1964 selinux_xfrm_notify_policyload(); 1965 1966 rc = 0; 1967 goto out; 1968 1969 err: 1970 kfree(map); 1971 sidtab_destroy(&newsidtab); 1972 policydb_destroy(newpolicydb); 1973 1974 out: 1975 kfree(oldpolicydb); 1976 return rc; 1977 } 1978 1979 size_t security_policydb_len(void) 1980 { 1981 size_t len; 1982 1983 read_lock(&policy_rwlock); 1984 len = policydb.len; 1985 read_unlock(&policy_rwlock); 1986 1987 return len; 1988 } 1989 1990 /** 1991 * security_port_sid - Obtain the SID for a port. 1992 * @protocol: protocol number 1993 * @port: port number 1994 * @out_sid: security identifier 1995 */ 1996 int security_port_sid(u8 protocol, u16 port, u32 *out_sid) 1997 { 1998 struct ocontext *c; 1999 int rc = 0; 2000 2001 read_lock(&policy_rwlock); 2002 2003 c = policydb.ocontexts[OCON_PORT]; 2004 while (c) { 2005 if (c->u.port.protocol == protocol && 2006 c->u.port.low_port <= port && 2007 c->u.port.high_port >= port) 2008 break; 2009 c = c->next; 2010 } 2011 2012 if (c) { 2013 if (!c->sid[0]) { 2014 rc = sidtab_context_to_sid(&sidtab, 2015 &c->context[0], 2016 &c->sid[0]); 2017 if (rc) 2018 goto out; 2019 } 2020 *out_sid = c->sid[0]; 2021 } else { 2022 *out_sid = SECINITSID_PORT; 2023 } 2024 2025 out: 2026 read_unlock(&policy_rwlock); 2027 return rc; 2028 } 2029 2030 /** 2031 * security_netif_sid - Obtain the SID for a network interface. 2032 * @name: interface name 2033 * @if_sid: interface SID 2034 */ 2035 int security_netif_sid(char *name, u32 *if_sid) 2036 { 2037 int rc = 0; 2038 struct ocontext *c; 2039 2040 read_lock(&policy_rwlock); 2041 2042 c = policydb.ocontexts[OCON_NETIF]; 2043 while (c) { 2044 if (strcmp(name, c->u.name) == 0) 2045 break; 2046 c = c->next; 2047 } 2048 2049 if (c) { 2050 if (!c->sid[0] || !c->sid[1]) { 2051 rc = sidtab_context_to_sid(&sidtab, 2052 &c->context[0], 2053 &c->sid[0]); 2054 if (rc) 2055 goto out; 2056 rc = sidtab_context_to_sid(&sidtab, 2057 &c->context[1], 2058 &c->sid[1]); 2059 if (rc) 2060 goto out; 2061 } 2062 *if_sid = c->sid[0]; 2063 } else 2064 *if_sid = SECINITSID_NETIF; 2065 2066 out: 2067 read_unlock(&policy_rwlock); 2068 return rc; 2069 } 2070 2071 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask) 2072 { 2073 int i, fail = 0; 2074 2075 for (i = 0; i < 4; i++) 2076 if (addr[i] != (input[i] & mask[i])) { 2077 fail = 1; 2078 break; 2079 } 2080 2081 return !fail; 2082 } 2083 2084 /** 2085 * security_node_sid - Obtain the SID for a node (host). 2086 * @domain: communication domain aka address family 2087 * @addrp: address 2088 * @addrlen: address length in bytes 2089 * @out_sid: security identifier 2090 */ 2091 int security_node_sid(u16 domain, 2092 void *addrp, 2093 u32 addrlen, 2094 u32 *out_sid) 2095 { 2096 int rc; 2097 struct ocontext *c; 2098 2099 read_lock(&policy_rwlock); 2100 2101 switch (domain) { 2102 case AF_INET: { 2103 u32 addr; 2104 2105 rc = -EINVAL; 2106 if (addrlen != sizeof(u32)) 2107 goto out; 2108 2109 addr = *((u32 *)addrp); 2110 2111 c = policydb.ocontexts[OCON_NODE]; 2112 while (c) { 2113 if (c->u.node.addr == (addr & c->u.node.mask)) 2114 break; 2115 c = c->next; 2116 } 2117 break; 2118 } 2119 2120 case AF_INET6: 2121 rc = -EINVAL; 2122 if (addrlen != sizeof(u64) * 2) 2123 goto out; 2124 c = policydb.ocontexts[OCON_NODE6]; 2125 while (c) { 2126 if (match_ipv6_addrmask(addrp, c->u.node6.addr, 2127 c->u.node6.mask)) 2128 break; 2129 c = c->next; 2130 } 2131 break; 2132 2133 default: 2134 rc = 0; 2135 *out_sid = SECINITSID_NODE; 2136 goto out; 2137 } 2138 2139 if (c) { 2140 if (!c->sid[0]) { 2141 rc = sidtab_context_to_sid(&sidtab, 2142 &c->context[0], 2143 &c->sid[0]); 2144 if (rc) 2145 goto out; 2146 } 2147 *out_sid = c->sid[0]; 2148 } else { 2149 *out_sid = SECINITSID_NODE; 2150 } 2151 2152 rc = 0; 2153 out: 2154 read_unlock(&policy_rwlock); 2155 return rc; 2156 } 2157 2158 #define SIDS_NEL 25 2159 2160 /** 2161 * security_get_user_sids - Obtain reachable SIDs for a user. 2162 * @fromsid: starting SID 2163 * @username: username 2164 * @sids: array of reachable SIDs for user 2165 * @nel: number of elements in @sids 2166 * 2167 * Generate the set of SIDs for legal security contexts 2168 * for a given user that can be reached by @fromsid. 2169 * Set *@sids to point to a dynamically allocated 2170 * array containing the set of SIDs. Set *@nel to the 2171 * number of elements in the array. 2172 */ 2173 2174 int security_get_user_sids(u32 fromsid, 2175 char *username, 2176 u32 **sids, 2177 u32 *nel) 2178 { 2179 struct context *fromcon, usercon; 2180 u32 *mysids = NULL, *mysids2, sid; 2181 u32 mynel = 0, maxnel = SIDS_NEL; 2182 struct user_datum *user; 2183 struct role_datum *role; 2184 struct ebitmap_node *rnode, *tnode; 2185 int rc = 0, i, j; 2186 2187 *sids = NULL; 2188 *nel = 0; 2189 2190 if (!ss_initialized) 2191 goto out; 2192 2193 read_lock(&policy_rwlock); 2194 2195 context_init(&usercon); 2196 2197 rc = -EINVAL; 2198 fromcon = sidtab_search(&sidtab, fromsid); 2199 if (!fromcon) 2200 goto out_unlock; 2201 2202 rc = -EINVAL; 2203 user = hashtab_search(policydb.p_users.table, username); 2204 if (!user) 2205 goto out_unlock; 2206 2207 usercon.user = user->value; 2208 2209 rc = -ENOMEM; 2210 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC); 2211 if (!mysids) 2212 goto out_unlock; 2213 2214 ebitmap_for_each_positive_bit(&user->roles, rnode, i) { 2215 role = policydb.role_val_to_struct[i]; 2216 usercon.role = i + 1; 2217 ebitmap_for_each_positive_bit(&role->types, tnode, j) { 2218 usercon.type = j + 1; 2219 2220 if (mls_setup_user_range(fromcon, user, &usercon)) 2221 continue; 2222 2223 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid); 2224 if (rc) 2225 goto out_unlock; 2226 if (mynel < maxnel) { 2227 mysids[mynel++] = sid; 2228 } else { 2229 rc = -ENOMEM; 2230 maxnel += SIDS_NEL; 2231 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC); 2232 if (!mysids2) 2233 goto out_unlock; 2234 memcpy(mysids2, mysids, mynel * sizeof(*mysids2)); 2235 kfree(mysids); 2236 mysids = mysids2; 2237 mysids[mynel++] = sid; 2238 } 2239 } 2240 } 2241 rc = 0; 2242 out_unlock: 2243 read_unlock(&policy_rwlock); 2244 if (rc || !mynel) { 2245 kfree(mysids); 2246 goto out; 2247 } 2248 2249 rc = -ENOMEM; 2250 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL); 2251 if (!mysids2) { 2252 kfree(mysids); 2253 goto out; 2254 } 2255 for (i = 0, j = 0; i < mynel; i++) { 2256 struct av_decision dummy_avd; 2257 rc = avc_has_perm_noaudit(fromsid, mysids[i], 2258 SECCLASS_PROCESS, /* kernel value */ 2259 PROCESS__TRANSITION, AVC_STRICT, 2260 &dummy_avd); 2261 if (!rc) 2262 mysids2[j++] = mysids[i]; 2263 cond_resched(); 2264 } 2265 rc = 0; 2266 kfree(mysids); 2267 *sids = mysids2; 2268 *nel = j; 2269 out: 2270 return rc; 2271 } 2272 2273 /** 2274 * security_genfs_sid - Obtain a SID for a file in a filesystem 2275 * @fstype: filesystem type 2276 * @path: path from root of mount 2277 * @sclass: file security class 2278 * @sid: SID for path 2279 * 2280 * Obtain a SID to use for a file in a filesystem that 2281 * cannot support xattr or use a fixed labeling behavior like 2282 * transition SIDs or task SIDs. 2283 */ 2284 int security_genfs_sid(const char *fstype, 2285 char *path, 2286 u16 orig_sclass, 2287 u32 *sid) 2288 { 2289 int len; 2290 u16 sclass; 2291 struct genfs *genfs; 2292 struct ocontext *c; 2293 int rc, cmp = 0; 2294 2295 while (path[0] == '/' && path[1] == '/') 2296 path++; 2297 2298 read_lock(&policy_rwlock); 2299 2300 sclass = unmap_class(orig_sclass); 2301 *sid = SECINITSID_UNLABELED; 2302 2303 for (genfs = policydb.genfs; genfs; genfs = genfs->next) { 2304 cmp = strcmp(fstype, genfs->fstype); 2305 if (cmp <= 0) 2306 break; 2307 } 2308 2309 rc = -ENOENT; 2310 if (!genfs || cmp) 2311 goto out; 2312 2313 for (c = genfs->head; c; c = c->next) { 2314 len = strlen(c->u.name); 2315 if ((!c->v.sclass || sclass == c->v.sclass) && 2316 (strncmp(c->u.name, path, len) == 0)) 2317 break; 2318 } 2319 2320 rc = -ENOENT; 2321 if (!c) 2322 goto out; 2323 2324 if (!c->sid[0]) { 2325 rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]); 2326 if (rc) 2327 goto out; 2328 } 2329 2330 *sid = c->sid[0]; 2331 rc = 0; 2332 out: 2333 read_unlock(&policy_rwlock); 2334 return rc; 2335 } 2336 2337 /** 2338 * security_fs_use - Determine how to handle labeling for a filesystem. 2339 * @sb: superblock in question 2340 */ 2341 int security_fs_use(struct super_block *sb) 2342 { 2343 int rc = 0; 2344 struct ocontext *c; 2345 struct superblock_security_struct *sbsec = sb->s_security; 2346 const char *fstype = sb->s_type->name; 2347 2348 read_lock(&policy_rwlock); 2349 2350 c = policydb.ocontexts[OCON_FSUSE]; 2351 while (c) { 2352 if (strcmp(fstype, c->u.name) == 0) 2353 break; 2354 c = c->next; 2355 } 2356 2357 if (c) { 2358 sbsec->behavior = c->v.behavior; 2359 if (!c->sid[0]) { 2360 rc = sidtab_context_to_sid(&sidtab, &c->context[0], 2361 &c->sid[0]); 2362 if (rc) 2363 goto out; 2364 } 2365 sbsec->sid = c->sid[0]; 2366 } else { 2367 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, &sbsec->sid); 2368 if (rc) { 2369 sbsec->behavior = SECURITY_FS_USE_NONE; 2370 rc = 0; 2371 } else { 2372 sbsec->behavior = SECURITY_FS_USE_GENFS; 2373 } 2374 } 2375 2376 out: 2377 read_unlock(&policy_rwlock); 2378 return rc; 2379 } 2380 2381 int security_get_bools(int *len, char ***names, int **values) 2382 { 2383 int i, rc; 2384 2385 read_lock(&policy_rwlock); 2386 *names = NULL; 2387 *values = NULL; 2388 2389 rc = 0; 2390 *len = policydb.p_bools.nprim; 2391 if (!*len) 2392 goto out; 2393 2394 rc = -ENOMEM; 2395 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC); 2396 if (!*names) 2397 goto err; 2398 2399 rc = -ENOMEM; 2400 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC); 2401 if (!*values) 2402 goto err; 2403 2404 for (i = 0; i < *len; i++) { 2405 size_t name_len; 2406 2407 (*values)[i] = policydb.bool_val_to_struct[i]->state; 2408 name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1; 2409 2410 rc = -ENOMEM; 2411 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC); 2412 if (!(*names)[i]) 2413 goto err; 2414 2415 strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len); 2416 (*names)[i][name_len - 1] = 0; 2417 } 2418 rc = 0; 2419 out: 2420 read_unlock(&policy_rwlock); 2421 return rc; 2422 err: 2423 if (*names) { 2424 for (i = 0; i < *len; i++) 2425 kfree((*names)[i]); 2426 } 2427 kfree(*values); 2428 goto out; 2429 } 2430 2431 2432 int security_set_bools(int len, int *values) 2433 { 2434 int i, rc; 2435 int lenp, seqno = 0; 2436 struct cond_node *cur; 2437 2438 write_lock_irq(&policy_rwlock); 2439 2440 rc = -EFAULT; 2441 lenp = policydb.p_bools.nprim; 2442 if (len != lenp) 2443 goto out; 2444 2445 for (i = 0; i < len; i++) { 2446 if (!!values[i] != policydb.bool_val_to_struct[i]->state) { 2447 audit_log(current->audit_context, GFP_ATOMIC, 2448 AUDIT_MAC_CONFIG_CHANGE, 2449 "bool=%s val=%d old_val=%d auid=%u ses=%u", 2450 sym_name(&policydb, SYM_BOOLS, i), 2451 !!values[i], 2452 policydb.bool_val_to_struct[i]->state, 2453 from_kuid(&init_user_ns, audit_get_loginuid(current)), 2454 audit_get_sessionid(current)); 2455 } 2456 if (values[i]) 2457 policydb.bool_val_to_struct[i]->state = 1; 2458 else 2459 policydb.bool_val_to_struct[i]->state = 0; 2460 } 2461 2462 for (cur = policydb.cond_list; cur; cur = cur->next) { 2463 rc = evaluate_cond_node(&policydb, cur); 2464 if (rc) 2465 goto out; 2466 } 2467 2468 seqno = ++latest_granting; 2469 rc = 0; 2470 out: 2471 write_unlock_irq(&policy_rwlock); 2472 if (!rc) { 2473 avc_ss_reset(seqno); 2474 selnl_notify_policyload(seqno); 2475 selinux_status_update_policyload(seqno); 2476 selinux_xfrm_notify_policyload(); 2477 } 2478 return rc; 2479 } 2480 2481 int security_get_bool_value(int bool) 2482 { 2483 int rc; 2484 int len; 2485 2486 read_lock(&policy_rwlock); 2487 2488 rc = -EFAULT; 2489 len = policydb.p_bools.nprim; 2490 if (bool >= len) 2491 goto out; 2492 2493 rc = policydb.bool_val_to_struct[bool]->state; 2494 out: 2495 read_unlock(&policy_rwlock); 2496 return rc; 2497 } 2498 2499 static int security_preserve_bools(struct policydb *p) 2500 { 2501 int rc, nbools = 0, *bvalues = NULL, i; 2502 char **bnames = NULL; 2503 struct cond_bool_datum *booldatum; 2504 struct cond_node *cur; 2505 2506 rc = security_get_bools(&nbools, &bnames, &bvalues); 2507 if (rc) 2508 goto out; 2509 for (i = 0; i < nbools; i++) { 2510 booldatum = hashtab_search(p->p_bools.table, bnames[i]); 2511 if (booldatum) 2512 booldatum->state = bvalues[i]; 2513 } 2514 for (cur = p->cond_list; cur; cur = cur->next) { 2515 rc = evaluate_cond_node(p, cur); 2516 if (rc) 2517 goto out; 2518 } 2519 2520 out: 2521 if (bnames) { 2522 for (i = 0; i < nbools; i++) 2523 kfree(bnames[i]); 2524 } 2525 kfree(bnames); 2526 kfree(bvalues); 2527 return rc; 2528 } 2529 2530 /* 2531 * security_sid_mls_copy() - computes a new sid based on the given 2532 * sid and the mls portion of mls_sid. 2533 */ 2534 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid) 2535 { 2536 struct context *context1; 2537 struct context *context2; 2538 struct context newcon; 2539 char *s; 2540 u32 len; 2541 int rc; 2542 2543 rc = 0; 2544 if (!ss_initialized || !policydb.mls_enabled) { 2545 *new_sid = sid; 2546 goto out; 2547 } 2548 2549 context_init(&newcon); 2550 2551 read_lock(&policy_rwlock); 2552 2553 rc = -EINVAL; 2554 context1 = sidtab_search(&sidtab, sid); 2555 if (!context1) { 2556 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2557 __func__, sid); 2558 goto out_unlock; 2559 } 2560 2561 rc = -EINVAL; 2562 context2 = sidtab_search(&sidtab, mls_sid); 2563 if (!context2) { 2564 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2565 __func__, mls_sid); 2566 goto out_unlock; 2567 } 2568 2569 newcon.user = context1->user; 2570 newcon.role = context1->role; 2571 newcon.type = context1->type; 2572 rc = mls_context_cpy(&newcon, context2); 2573 if (rc) 2574 goto out_unlock; 2575 2576 /* Check the validity of the new context. */ 2577 if (!policydb_context_isvalid(&policydb, &newcon)) { 2578 rc = convert_context_handle_invalid_context(&newcon); 2579 if (rc) { 2580 if (!context_struct_to_string(&newcon, &s, &len)) { 2581 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR, 2582 "security_sid_mls_copy: invalid context %s", s); 2583 kfree(s); 2584 } 2585 goto out_unlock; 2586 } 2587 } 2588 2589 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid); 2590 out_unlock: 2591 read_unlock(&policy_rwlock); 2592 context_destroy(&newcon); 2593 out: 2594 return rc; 2595 } 2596 2597 /** 2598 * security_net_peersid_resolve - Compare and resolve two network peer SIDs 2599 * @nlbl_sid: NetLabel SID 2600 * @nlbl_type: NetLabel labeling protocol type 2601 * @xfrm_sid: XFRM SID 2602 * 2603 * Description: 2604 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be 2605 * resolved into a single SID it is returned via @peer_sid and the function 2606 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function 2607 * returns a negative value. A table summarizing the behavior is below: 2608 * 2609 * | function return | @sid 2610 * ------------------------------+-----------------+----------------- 2611 * no peer labels | 0 | SECSID_NULL 2612 * single peer label | 0 | <peer_label> 2613 * multiple, consistent labels | 0 | <peer_label> 2614 * multiple, inconsistent labels | -<errno> | SECSID_NULL 2615 * 2616 */ 2617 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type, 2618 u32 xfrm_sid, 2619 u32 *peer_sid) 2620 { 2621 int rc; 2622 struct context *nlbl_ctx; 2623 struct context *xfrm_ctx; 2624 2625 *peer_sid = SECSID_NULL; 2626 2627 /* handle the common (which also happens to be the set of easy) cases 2628 * right away, these two if statements catch everything involving a 2629 * single or absent peer SID/label */ 2630 if (xfrm_sid == SECSID_NULL) { 2631 *peer_sid = nlbl_sid; 2632 return 0; 2633 } 2634 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label 2635 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label 2636 * is present */ 2637 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) { 2638 *peer_sid = xfrm_sid; 2639 return 0; 2640 } 2641 2642 /* we don't need to check ss_initialized here since the only way both 2643 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the 2644 * security server was initialized and ss_initialized was true */ 2645 if (!policydb.mls_enabled) 2646 return 0; 2647 2648 read_lock(&policy_rwlock); 2649 2650 rc = -EINVAL; 2651 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid); 2652 if (!nlbl_ctx) { 2653 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2654 __func__, nlbl_sid); 2655 goto out; 2656 } 2657 rc = -EINVAL; 2658 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid); 2659 if (!xfrm_ctx) { 2660 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2661 __func__, xfrm_sid); 2662 goto out; 2663 } 2664 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES); 2665 if (rc) 2666 goto out; 2667 2668 /* at present NetLabel SIDs/labels really only carry MLS 2669 * information so if the MLS portion of the NetLabel SID 2670 * matches the MLS portion of the labeled XFRM SID/label 2671 * then pass along the XFRM SID as it is the most 2672 * expressive */ 2673 *peer_sid = xfrm_sid; 2674 out: 2675 read_unlock(&policy_rwlock); 2676 return rc; 2677 } 2678 2679 static int get_classes_callback(void *k, void *d, void *args) 2680 { 2681 struct class_datum *datum = d; 2682 char *name = k, **classes = args; 2683 int value = datum->value - 1; 2684 2685 classes[value] = kstrdup(name, GFP_ATOMIC); 2686 if (!classes[value]) 2687 return -ENOMEM; 2688 2689 return 0; 2690 } 2691 2692 int security_get_classes(char ***classes, int *nclasses) 2693 { 2694 int rc; 2695 2696 read_lock(&policy_rwlock); 2697 2698 rc = -ENOMEM; 2699 *nclasses = policydb.p_classes.nprim; 2700 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC); 2701 if (!*classes) 2702 goto out; 2703 2704 rc = hashtab_map(policydb.p_classes.table, get_classes_callback, 2705 *classes); 2706 if (rc) { 2707 int i; 2708 for (i = 0; i < *nclasses; i++) 2709 kfree((*classes)[i]); 2710 kfree(*classes); 2711 } 2712 2713 out: 2714 read_unlock(&policy_rwlock); 2715 return rc; 2716 } 2717 2718 static int get_permissions_callback(void *k, void *d, void *args) 2719 { 2720 struct perm_datum *datum = d; 2721 char *name = k, **perms = args; 2722 int value = datum->value - 1; 2723 2724 perms[value] = kstrdup(name, GFP_ATOMIC); 2725 if (!perms[value]) 2726 return -ENOMEM; 2727 2728 return 0; 2729 } 2730 2731 int security_get_permissions(char *class, char ***perms, int *nperms) 2732 { 2733 int rc, i; 2734 struct class_datum *match; 2735 2736 read_lock(&policy_rwlock); 2737 2738 rc = -EINVAL; 2739 match = hashtab_search(policydb.p_classes.table, class); 2740 if (!match) { 2741 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n", 2742 __func__, class); 2743 goto out; 2744 } 2745 2746 rc = -ENOMEM; 2747 *nperms = match->permissions.nprim; 2748 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC); 2749 if (!*perms) 2750 goto out; 2751 2752 if (match->comdatum) { 2753 rc = hashtab_map(match->comdatum->permissions.table, 2754 get_permissions_callback, *perms); 2755 if (rc) 2756 goto err; 2757 } 2758 2759 rc = hashtab_map(match->permissions.table, get_permissions_callback, 2760 *perms); 2761 if (rc) 2762 goto err; 2763 2764 out: 2765 read_unlock(&policy_rwlock); 2766 return rc; 2767 2768 err: 2769 read_unlock(&policy_rwlock); 2770 for (i = 0; i < *nperms; i++) 2771 kfree((*perms)[i]); 2772 kfree(*perms); 2773 return rc; 2774 } 2775 2776 int security_get_reject_unknown(void) 2777 { 2778 return policydb.reject_unknown; 2779 } 2780 2781 int security_get_allow_unknown(void) 2782 { 2783 return policydb.allow_unknown; 2784 } 2785 2786 /** 2787 * security_policycap_supported - Check for a specific policy capability 2788 * @req_cap: capability 2789 * 2790 * Description: 2791 * This function queries the currently loaded policy to see if it supports the 2792 * capability specified by @req_cap. Returns true (1) if the capability is 2793 * supported, false (0) if it isn't supported. 2794 * 2795 */ 2796 int security_policycap_supported(unsigned int req_cap) 2797 { 2798 int rc; 2799 2800 read_lock(&policy_rwlock); 2801 rc = ebitmap_get_bit(&policydb.policycaps, req_cap); 2802 read_unlock(&policy_rwlock); 2803 2804 return rc; 2805 } 2806 2807 struct selinux_audit_rule { 2808 u32 au_seqno; 2809 struct context au_ctxt; 2810 }; 2811 2812 void selinux_audit_rule_free(void *vrule) 2813 { 2814 struct selinux_audit_rule *rule = vrule; 2815 2816 if (rule) { 2817 context_destroy(&rule->au_ctxt); 2818 kfree(rule); 2819 } 2820 } 2821 2822 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule) 2823 { 2824 struct selinux_audit_rule *tmprule; 2825 struct role_datum *roledatum; 2826 struct type_datum *typedatum; 2827 struct user_datum *userdatum; 2828 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule; 2829 int rc = 0; 2830 2831 *rule = NULL; 2832 2833 if (!ss_initialized) 2834 return -EOPNOTSUPP; 2835 2836 switch (field) { 2837 case AUDIT_SUBJ_USER: 2838 case AUDIT_SUBJ_ROLE: 2839 case AUDIT_SUBJ_TYPE: 2840 case AUDIT_OBJ_USER: 2841 case AUDIT_OBJ_ROLE: 2842 case AUDIT_OBJ_TYPE: 2843 /* only 'equals' and 'not equals' fit user, role, and type */ 2844 if (op != Audit_equal && op != Audit_not_equal) 2845 return -EINVAL; 2846 break; 2847 case AUDIT_SUBJ_SEN: 2848 case AUDIT_SUBJ_CLR: 2849 case AUDIT_OBJ_LEV_LOW: 2850 case AUDIT_OBJ_LEV_HIGH: 2851 /* we do not allow a range, indicated by the presence of '-' */ 2852 if (strchr(rulestr, '-')) 2853 return -EINVAL; 2854 break; 2855 default: 2856 /* only the above fields are valid */ 2857 return -EINVAL; 2858 } 2859 2860 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL); 2861 if (!tmprule) 2862 return -ENOMEM; 2863 2864 context_init(&tmprule->au_ctxt); 2865 2866 read_lock(&policy_rwlock); 2867 2868 tmprule->au_seqno = latest_granting; 2869 2870 switch (field) { 2871 case AUDIT_SUBJ_USER: 2872 case AUDIT_OBJ_USER: 2873 rc = -EINVAL; 2874 userdatum = hashtab_search(policydb.p_users.table, rulestr); 2875 if (!userdatum) 2876 goto out; 2877 tmprule->au_ctxt.user = userdatum->value; 2878 break; 2879 case AUDIT_SUBJ_ROLE: 2880 case AUDIT_OBJ_ROLE: 2881 rc = -EINVAL; 2882 roledatum = hashtab_search(policydb.p_roles.table, rulestr); 2883 if (!roledatum) 2884 goto out; 2885 tmprule->au_ctxt.role = roledatum->value; 2886 break; 2887 case AUDIT_SUBJ_TYPE: 2888 case AUDIT_OBJ_TYPE: 2889 rc = -EINVAL; 2890 typedatum = hashtab_search(policydb.p_types.table, rulestr); 2891 if (!typedatum) 2892 goto out; 2893 tmprule->au_ctxt.type = typedatum->value; 2894 break; 2895 case AUDIT_SUBJ_SEN: 2896 case AUDIT_SUBJ_CLR: 2897 case AUDIT_OBJ_LEV_LOW: 2898 case AUDIT_OBJ_LEV_HIGH: 2899 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC); 2900 if (rc) 2901 goto out; 2902 break; 2903 } 2904 rc = 0; 2905 out: 2906 read_unlock(&policy_rwlock); 2907 2908 if (rc) { 2909 selinux_audit_rule_free(tmprule); 2910 tmprule = NULL; 2911 } 2912 2913 *rule = tmprule; 2914 2915 return rc; 2916 } 2917 2918 /* Check to see if the rule contains any selinux fields */ 2919 int selinux_audit_rule_known(struct audit_krule *rule) 2920 { 2921 int i; 2922 2923 for (i = 0; i < rule->field_count; i++) { 2924 struct audit_field *f = &rule->fields[i]; 2925 switch (f->type) { 2926 case AUDIT_SUBJ_USER: 2927 case AUDIT_SUBJ_ROLE: 2928 case AUDIT_SUBJ_TYPE: 2929 case AUDIT_SUBJ_SEN: 2930 case AUDIT_SUBJ_CLR: 2931 case AUDIT_OBJ_USER: 2932 case AUDIT_OBJ_ROLE: 2933 case AUDIT_OBJ_TYPE: 2934 case AUDIT_OBJ_LEV_LOW: 2935 case AUDIT_OBJ_LEV_HIGH: 2936 return 1; 2937 } 2938 } 2939 2940 return 0; 2941 } 2942 2943 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule, 2944 struct audit_context *actx) 2945 { 2946 struct context *ctxt; 2947 struct mls_level *level; 2948 struct selinux_audit_rule *rule = vrule; 2949 int match = 0; 2950 2951 if (unlikely(!rule)) { 2952 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n"); 2953 return -ENOENT; 2954 } 2955 2956 read_lock(&policy_rwlock); 2957 2958 if (rule->au_seqno < latest_granting) { 2959 match = -ESTALE; 2960 goto out; 2961 } 2962 2963 ctxt = sidtab_search(&sidtab, sid); 2964 if (unlikely(!ctxt)) { 2965 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n", 2966 sid); 2967 match = -ENOENT; 2968 goto out; 2969 } 2970 2971 /* a field/op pair that is not caught here will simply fall through 2972 without a match */ 2973 switch (field) { 2974 case AUDIT_SUBJ_USER: 2975 case AUDIT_OBJ_USER: 2976 switch (op) { 2977 case Audit_equal: 2978 match = (ctxt->user == rule->au_ctxt.user); 2979 break; 2980 case Audit_not_equal: 2981 match = (ctxt->user != rule->au_ctxt.user); 2982 break; 2983 } 2984 break; 2985 case AUDIT_SUBJ_ROLE: 2986 case AUDIT_OBJ_ROLE: 2987 switch (op) { 2988 case Audit_equal: 2989 match = (ctxt->role == rule->au_ctxt.role); 2990 break; 2991 case Audit_not_equal: 2992 match = (ctxt->role != rule->au_ctxt.role); 2993 break; 2994 } 2995 break; 2996 case AUDIT_SUBJ_TYPE: 2997 case AUDIT_OBJ_TYPE: 2998 switch (op) { 2999 case Audit_equal: 3000 match = (ctxt->type == rule->au_ctxt.type); 3001 break; 3002 case Audit_not_equal: 3003 match = (ctxt->type != rule->au_ctxt.type); 3004 break; 3005 } 3006 break; 3007 case AUDIT_SUBJ_SEN: 3008 case AUDIT_SUBJ_CLR: 3009 case AUDIT_OBJ_LEV_LOW: 3010 case AUDIT_OBJ_LEV_HIGH: 3011 level = ((field == AUDIT_SUBJ_SEN || 3012 field == AUDIT_OBJ_LEV_LOW) ? 3013 &ctxt->range.level[0] : &ctxt->range.level[1]); 3014 switch (op) { 3015 case Audit_equal: 3016 match = mls_level_eq(&rule->au_ctxt.range.level[0], 3017 level); 3018 break; 3019 case Audit_not_equal: 3020 match = !mls_level_eq(&rule->au_ctxt.range.level[0], 3021 level); 3022 break; 3023 case Audit_lt: 3024 match = (mls_level_dom(&rule->au_ctxt.range.level[0], 3025 level) && 3026 !mls_level_eq(&rule->au_ctxt.range.level[0], 3027 level)); 3028 break; 3029 case Audit_le: 3030 match = mls_level_dom(&rule->au_ctxt.range.level[0], 3031 level); 3032 break; 3033 case Audit_gt: 3034 match = (mls_level_dom(level, 3035 &rule->au_ctxt.range.level[0]) && 3036 !mls_level_eq(level, 3037 &rule->au_ctxt.range.level[0])); 3038 break; 3039 case Audit_ge: 3040 match = mls_level_dom(level, 3041 &rule->au_ctxt.range.level[0]); 3042 break; 3043 } 3044 } 3045 3046 out: 3047 read_unlock(&policy_rwlock); 3048 return match; 3049 } 3050 3051 static int (*aurule_callback)(void) = audit_update_lsm_rules; 3052 3053 static int aurule_avc_callback(u32 event) 3054 { 3055 int err = 0; 3056 3057 if (event == AVC_CALLBACK_RESET && aurule_callback) 3058 err = aurule_callback(); 3059 return err; 3060 } 3061 3062 static int __init aurule_init(void) 3063 { 3064 int err; 3065 3066 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET); 3067 if (err) 3068 panic("avc_add_callback() failed, error %d\n", err); 3069 3070 return err; 3071 } 3072 __initcall(aurule_init); 3073 3074 #ifdef CONFIG_NETLABEL 3075 /** 3076 * security_netlbl_cache_add - Add an entry to the NetLabel cache 3077 * @secattr: the NetLabel packet security attributes 3078 * @sid: the SELinux SID 3079 * 3080 * Description: 3081 * Attempt to cache the context in @ctx, which was derived from the packet in 3082 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has 3083 * already been initialized. 3084 * 3085 */ 3086 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr, 3087 u32 sid) 3088 { 3089 u32 *sid_cache; 3090 3091 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC); 3092 if (sid_cache == NULL) 3093 return; 3094 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC); 3095 if (secattr->cache == NULL) { 3096 kfree(sid_cache); 3097 return; 3098 } 3099 3100 *sid_cache = sid; 3101 secattr->cache->free = kfree; 3102 secattr->cache->data = sid_cache; 3103 secattr->flags |= NETLBL_SECATTR_CACHE; 3104 } 3105 3106 /** 3107 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID 3108 * @secattr: the NetLabel packet security attributes 3109 * @sid: the SELinux SID 3110 * 3111 * Description: 3112 * Convert the given NetLabel security attributes in @secattr into a 3113 * SELinux SID. If the @secattr field does not contain a full SELinux 3114 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the 3115 * 'cache' field of @secattr is set and the CACHE flag is set; this is to 3116 * allow the @secattr to be used by NetLabel to cache the secattr to SID 3117 * conversion for future lookups. Returns zero on success, negative values on 3118 * failure. 3119 * 3120 */ 3121 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr, 3122 u32 *sid) 3123 { 3124 int rc; 3125 struct context *ctx; 3126 struct context ctx_new; 3127 3128 if (!ss_initialized) { 3129 *sid = SECSID_NULL; 3130 return 0; 3131 } 3132 3133 read_lock(&policy_rwlock); 3134 3135 if (secattr->flags & NETLBL_SECATTR_CACHE) 3136 *sid = *(u32 *)secattr->cache->data; 3137 else if (secattr->flags & NETLBL_SECATTR_SECID) 3138 *sid = secattr->attr.secid; 3139 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) { 3140 rc = -EIDRM; 3141 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG); 3142 if (ctx == NULL) 3143 goto out; 3144 3145 context_init(&ctx_new); 3146 ctx_new.user = ctx->user; 3147 ctx_new.role = ctx->role; 3148 ctx_new.type = ctx->type; 3149 mls_import_netlbl_lvl(&ctx_new, secattr); 3150 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) { 3151 rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat, 3152 secattr->attr.mls.cat); 3153 if (rc) 3154 goto out; 3155 memcpy(&ctx_new.range.level[1].cat, 3156 &ctx_new.range.level[0].cat, 3157 sizeof(ctx_new.range.level[0].cat)); 3158 } 3159 rc = -EIDRM; 3160 if (!mls_context_isvalid(&policydb, &ctx_new)) 3161 goto out_free; 3162 3163 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid); 3164 if (rc) 3165 goto out_free; 3166 3167 security_netlbl_cache_add(secattr, *sid); 3168 3169 ebitmap_destroy(&ctx_new.range.level[0].cat); 3170 } else 3171 *sid = SECSID_NULL; 3172 3173 read_unlock(&policy_rwlock); 3174 return 0; 3175 out_free: 3176 ebitmap_destroy(&ctx_new.range.level[0].cat); 3177 out: 3178 read_unlock(&policy_rwlock); 3179 return rc; 3180 } 3181 3182 /** 3183 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr 3184 * @sid: the SELinux SID 3185 * @secattr: the NetLabel packet security attributes 3186 * 3187 * Description: 3188 * Convert the given SELinux SID in @sid into a NetLabel security attribute. 3189 * Returns zero on success, negative values on failure. 3190 * 3191 */ 3192 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr) 3193 { 3194 int rc; 3195 struct context *ctx; 3196 3197 if (!ss_initialized) 3198 return 0; 3199 3200 read_lock(&policy_rwlock); 3201 3202 rc = -ENOENT; 3203 ctx = sidtab_search(&sidtab, sid); 3204 if (ctx == NULL) 3205 goto out; 3206 3207 rc = -ENOMEM; 3208 secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1), 3209 GFP_ATOMIC); 3210 if (secattr->domain == NULL) 3211 goto out; 3212 3213 secattr->attr.secid = sid; 3214 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID; 3215 mls_export_netlbl_lvl(ctx, secattr); 3216 rc = mls_export_netlbl_cat(ctx, secattr); 3217 out: 3218 read_unlock(&policy_rwlock); 3219 return rc; 3220 } 3221 #endif /* CONFIG_NETLABEL */ 3222 3223 /** 3224 * security_read_policy - read the policy. 3225 * @data: binary policy data 3226 * @len: length of data in bytes 3227 * 3228 */ 3229 int security_read_policy(void **data, size_t *len) 3230 { 3231 int rc; 3232 struct policy_file fp; 3233 3234 if (!ss_initialized) 3235 return -EINVAL; 3236 3237 *len = security_policydb_len(); 3238 3239 *data = vmalloc_user(*len); 3240 if (!*data) 3241 return -ENOMEM; 3242 3243 fp.data = *data; 3244 fp.len = *len; 3245 3246 read_lock(&policy_rwlock); 3247 rc = policydb_write(&policydb, &fp); 3248 read_unlock(&policy_rwlock); 3249 3250 if (rc) 3251 return rc; 3252 3253 *len = (unsigned long)fp.data - (unsigned long)*data; 3254 return 0; 3255 3256 } 3257