xref: /linux/security/selinux/ss/services.c (revision d67b569f5f620c0fb95d5212642746b7ba9d29e4)
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *           James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *
11  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
12  *
13  * 	Added conditional policy language extensions
14  *
15  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
17  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
18  *	This program is free software; you can redistribute it and/or modify
19  *  	it under the terms of the GNU General Public License as published by
20  *	the Free Software Foundation, version 2.
21  */
22 #include <linux/kernel.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/spinlock.h>
26 #include <linux/errno.h>
27 #include <linux/in.h>
28 #include <linux/sched.h>
29 #include <linux/audit.h>
30 #include <asm/semaphore.h>
31 #include "flask.h"
32 #include "avc.h"
33 #include "avc_ss.h"
34 #include "security.h"
35 #include "context.h"
36 #include "policydb.h"
37 #include "sidtab.h"
38 #include "services.h"
39 #include "conditional.h"
40 #include "mls.h"
41 
42 extern void selnl_notify_policyload(u32 seqno);
43 unsigned int policydb_loaded_version;
44 
45 static DEFINE_RWLOCK(policy_rwlock);
46 #define POLICY_RDLOCK read_lock(&policy_rwlock)
47 #define POLICY_WRLOCK write_lock_irq(&policy_rwlock)
48 #define POLICY_RDUNLOCK read_unlock(&policy_rwlock)
49 #define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock)
50 
51 static DECLARE_MUTEX(load_sem);
52 #define LOAD_LOCK down(&load_sem)
53 #define LOAD_UNLOCK up(&load_sem)
54 
55 static struct sidtab sidtab;
56 struct policydb policydb;
57 int ss_initialized = 0;
58 
59 /*
60  * The largest sequence number that has been used when
61  * providing an access decision to the access vector cache.
62  * The sequence number only changes when a policy change
63  * occurs.
64  */
65 static u32 latest_granting = 0;
66 
67 /* Forward declaration. */
68 static int context_struct_to_string(struct context *context, char **scontext,
69 				    u32 *scontext_len);
70 
71 /*
72  * Return the boolean value of a constraint expression
73  * when it is applied to the specified source and target
74  * security contexts.
75  *
76  * xcontext is a special beast...  It is used by the validatetrans rules
77  * only.  For these rules, scontext is the context before the transition,
78  * tcontext is the context after the transition, and xcontext is the context
79  * of the process performing the transition.  All other callers of
80  * constraint_expr_eval should pass in NULL for xcontext.
81  */
82 static int constraint_expr_eval(struct context *scontext,
83 				struct context *tcontext,
84 				struct context *xcontext,
85 				struct constraint_expr *cexpr)
86 {
87 	u32 val1, val2;
88 	struct context *c;
89 	struct role_datum *r1, *r2;
90 	struct mls_level *l1, *l2;
91 	struct constraint_expr *e;
92 	int s[CEXPR_MAXDEPTH];
93 	int sp = -1;
94 
95 	for (e = cexpr; e; e = e->next) {
96 		switch (e->expr_type) {
97 		case CEXPR_NOT:
98 			BUG_ON(sp < 0);
99 			s[sp] = !s[sp];
100 			break;
101 		case CEXPR_AND:
102 			BUG_ON(sp < 1);
103 			sp--;
104 			s[sp] &= s[sp+1];
105 			break;
106 		case CEXPR_OR:
107 			BUG_ON(sp < 1);
108 			sp--;
109 			s[sp] |= s[sp+1];
110 			break;
111 		case CEXPR_ATTR:
112 			if (sp == (CEXPR_MAXDEPTH-1))
113 				return 0;
114 			switch (e->attr) {
115 			case CEXPR_USER:
116 				val1 = scontext->user;
117 				val2 = tcontext->user;
118 				break;
119 			case CEXPR_TYPE:
120 				val1 = scontext->type;
121 				val2 = tcontext->type;
122 				break;
123 			case CEXPR_ROLE:
124 				val1 = scontext->role;
125 				val2 = tcontext->role;
126 				r1 = policydb.role_val_to_struct[val1 - 1];
127 				r2 = policydb.role_val_to_struct[val2 - 1];
128 				switch (e->op) {
129 				case CEXPR_DOM:
130 					s[++sp] = ebitmap_get_bit(&r1->dominates,
131 								  val2 - 1);
132 					continue;
133 				case CEXPR_DOMBY:
134 					s[++sp] = ebitmap_get_bit(&r2->dominates,
135 								  val1 - 1);
136 					continue;
137 				case CEXPR_INCOMP:
138 					s[++sp] = ( !ebitmap_get_bit(&r1->dominates,
139 								     val2 - 1) &&
140 						    !ebitmap_get_bit(&r2->dominates,
141 								     val1 - 1) );
142 					continue;
143 				default:
144 					break;
145 				}
146 				break;
147 			case CEXPR_L1L2:
148 				l1 = &(scontext->range.level[0]);
149 				l2 = &(tcontext->range.level[0]);
150 				goto mls_ops;
151 			case CEXPR_L1H2:
152 				l1 = &(scontext->range.level[0]);
153 				l2 = &(tcontext->range.level[1]);
154 				goto mls_ops;
155 			case CEXPR_H1L2:
156 				l1 = &(scontext->range.level[1]);
157 				l2 = &(tcontext->range.level[0]);
158 				goto mls_ops;
159 			case CEXPR_H1H2:
160 				l1 = &(scontext->range.level[1]);
161 				l2 = &(tcontext->range.level[1]);
162 				goto mls_ops;
163 			case CEXPR_L1H1:
164 				l1 = &(scontext->range.level[0]);
165 				l2 = &(scontext->range.level[1]);
166 				goto mls_ops;
167 			case CEXPR_L2H2:
168 				l1 = &(tcontext->range.level[0]);
169 				l2 = &(tcontext->range.level[1]);
170 				goto mls_ops;
171 mls_ops:
172 			switch (e->op) {
173 			case CEXPR_EQ:
174 				s[++sp] = mls_level_eq(l1, l2);
175 				continue;
176 			case CEXPR_NEQ:
177 				s[++sp] = !mls_level_eq(l1, l2);
178 				continue;
179 			case CEXPR_DOM:
180 				s[++sp] = mls_level_dom(l1, l2);
181 				continue;
182 			case CEXPR_DOMBY:
183 				s[++sp] = mls_level_dom(l2, l1);
184 				continue;
185 			case CEXPR_INCOMP:
186 				s[++sp] = mls_level_incomp(l2, l1);
187 				continue;
188 			default:
189 				BUG();
190 				return 0;
191 			}
192 			break;
193 			default:
194 				BUG();
195 				return 0;
196 			}
197 
198 			switch (e->op) {
199 			case CEXPR_EQ:
200 				s[++sp] = (val1 == val2);
201 				break;
202 			case CEXPR_NEQ:
203 				s[++sp] = (val1 != val2);
204 				break;
205 			default:
206 				BUG();
207 				return 0;
208 			}
209 			break;
210 		case CEXPR_NAMES:
211 			if (sp == (CEXPR_MAXDEPTH-1))
212 				return 0;
213 			c = scontext;
214 			if (e->attr & CEXPR_TARGET)
215 				c = tcontext;
216 			else if (e->attr & CEXPR_XTARGET) {
217 				c = xcontext;
218 				if (!c) {
219 					BUG();
220 					return 0;
221 				}
222 			}
223 			if (e->attr & CEXPR_USER)
224 				val1 = c->user;
225 			else if (e->attr & CEXPR_ROLE)
226 				val1 = c->role;
227 			else if (e->attr & CEXPR_TYPE)
228 				val1 = c->type;
229 			else {
230 				BUG();
231 				return 0;
232 			}
233 
234 			switch (e->op) {
235 			case CEXPR_EQ:
236 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
237 				break;
238 			case CEXPR_NEQ:
239 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
240 				break;
241 			default:
242 				BUG();
243 				return 0;
244 			}
245 			break;
246 		default:
247 			BUG();
248 			return 0;
249 		}
250 	}
251 
252 	BUG_ON(sp != 0);
253 	return s[0];
254 }
255 
256 /*
257  * Compute access vectors based on a context structure pair for
258  * the permissions in a particular class.
259  */
260 static int context_struct_compute_av(struct context *scontext,
261 				     struct context *tcontext,
262 				     u16 tclass,
263 				     u32 requested,
264 				     struct av_decision *avd)
265 {
266 	struct constraint_node *constraint;
267 	struct role_allow *ra;
268 	struct avtab_key avkey;
269 	struct avtab_datum *avdatum;
270 	struct class_datum *tclass_datum;
271 
272 	/*
273 	 * Remap extended Netlink classes for old policy versions.
274 	 * Do this here rather than socket_type_to_security_class()
275 	 * in case a newer policy version is loaded, allowing sockets
276 	 * to remain in the correct class.
277 	 */
278 	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
279 		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
280 		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
281 			tclass = SECCLASS_NETLINK_SOCKET;
282 
283 	if (!tclass || tclass > policydb.p_classes.nprim) {
284 		printk(KERN_ERR "security_compute_av:  unrecognized class %d\n",
285 		       tclass);
286 		return -EINVAL;
287 	}
288 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
289 
290 	/*
291 	 * Initialize the access vectors to the default values.
292 	 */
293 	avd->allowed = 0;
294 	avd->decided = 0xffffffff;
295 	avd->auditallow = 0;
296 	avd->auditdeny = 0xffffffff;
297 	avd->seqno = latest_granting;
298 
299 	/*
300 	 * If a specific type enforcement rule was defined for
301 	 * this permission check, then use it.
302 	 */
303 	avkey.source_type = scontext->type;
304 	avkey.target_type = tcontext->type;
305 	avkey.target_class = tclass;
306 	avdatum = avtab_search(&policydb.te_avtab, &avkey, AVTAB_AV);
307 	if (avdatum) {
308 		if (avdatum->specified & AVTAB_ALLOWED)
309 			avd->allowed = avtab_allowed(avdatum);
310 		if (avdatum->specified & AVTAB_AUDITDENY)
311 			avd->auditdeny = avtab_auditdeny(avdatum);
312 		if (avdatum->specified & AVTAB_AUDITALLOW)
313 			avd->auditallow = avtab_auditallow(avdatum);
314 	}
315 
316 	/* Check conditional av table for additional permissions */
317 	cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
318 
319 	/*
320 	 * Remove any permissions prohibited by a constraint (this includes
321 	 * the MLS policy).
322 	 */
323 	constraint = tclass_datum->constraints;
324 	while (constraint) {
325 		if ((constraint->permissions & (avd->allowed)) &&
326 		    !constraint_expr_eval(scontext, tcontext, NULL,
327 					  constraint->expr)) {
328 			avd->allowed = (avd->allowed) & ~(constraint->permissions);
329 		}
330 		constraint = constraint->next;
331 	}
332 
333 	/*
334 	 * If checking process transition permission and the
335 	 * role is changing, then check the (current_role, new_role)
336 	 * pair.
337 	 */
338 	if (tclass == SECCLASS_PROCESS &&
339 	    (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
340 	    scontext->role != tcontext->role) {
341 		for (ra = policydb.role_allow; ra; ra = ra->next) {
342 			if (scontext->role == ra->role &&
343 			    tcontext->role == ra->new_role)
344 				break;
345 		}
346 		if (!ra)
347 			avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
348 			                                PROCESS__DYNTRANSITION);
349 	}
350 
351 	return 0;
352 }
353 
354 static int security_validtrans_handle_fail(struct context *ocontext,
355                                            struct context *ncontext,
356                                            struct context *tcontext,
357                                            u16 tclass)
358 {
359 	char *o = NULL, *n = NULL, *t = NULL;
360 	u32 olen, nlen, tlen;
361 
362 	if (context_struct_to_string(ocontext, &o, &olen) < 0)
363 		goto out;
364 	if (context_struct_to_string(ncontext, &n, &nlen) < 0)
365 		goto out;
366 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
367 		goto out;
368 	audit_log(current->audit_context, AUDIT_SELINUX_ERR,
369 	          "security_validate_transition:  denied for"
370 	          " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
371 	          o, n, t, policydb.p_class_val_to_name[tclass-1]);
372 out:
373 	kfree(o);
374 	kfree(n);
375 	kfree(t);
376 
377 	if (!selinux_enforcing)
378 		return 0;
379 	return -EPERM;
380 }
381 
382 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
383                                  u16 tclass)
384 {
385 	struct context *ocontext;
386 	struct context *ncontext;
387 	struct context *tcontext;
388 	struct class_datum *tclass_datum;
389 	struct constraint_node *constraint;
390 	int rc = 0;
391 
392 	if (!ss_initialized)
393 		return 0;
394 
395 	POLICY_RDLOCK;
396 
397 	/*
398 	 * Remap extended Netlink classes for old policy versions.
399 	 * Do this here rather than socket_type_to_security_class()
400 	 * in case a newer policy version is loaded, allowing sockets
401 	 * to remain in the correct class.
402 	 */
403 	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
404 		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
405 		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
406 			tclass = SECCLASS_NETLINK_SOCKET;
407 
408 	if (!tclass || tclass > policydb.p_classes.nprim) {
409 		printk(KERN_ERR "security_validate_transition:  "
410 		       "unrecognized class %d\n", tclass);
411 		rc = -EINVAL;
412 		goto out;
413 	}
414 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
415 
416 	ocontext = sidtab_search(&sidtab, oldsid);
417 	if (!ocontext) {
418 		printk(KERN_ERR "security_validate_transition: "
419 		       " unrecognized SID %d\n", oldsid);
420 		rc = -EINVAL;
421 		goto out;
422 	}
423 
424 	ncontext = sidtab_search(&sidtab, newsid);
425 	if (!ncontext) {
426 		printk(KERN_ERR "security_validate_transition: "
427 		       " unrecognized SID %d\n", newsid);
428 		rc = -EINVAL;
429 		goto out;
430 	}
431 
432 	tcontext = sidtab_search(&sidtab, tasksid);
433 	if (!tcontext) {
434 		printk(KERN_ERR "security_validate_transition: "
435 		       " unrecognized SID %d\n", tasksid);
436 		rc = -EINVAL;
437 		goto out;
438 	}
439 
440 	constraint = tclass_datum->validatetrans;
441 	while (constraint) {
442 		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
443 		                          constraint->expr)) {
444 			rc = security_validtrans_handle_fail(ocontext, ncontext,
445 			                                     tcontext, tclass);
446 			goto out;
447 		}
448 		constraint = constraint->next;
449 	}
450 
451 out:
452 	POLICY_RDUNLOCK;
453 	return rc;
454 }
455 
456 /**
457  * security_compute_av - Compute access vector decisions.
458  * @ssid: source security identifier
459  * @tsid: target security identifier
460  * @tclass: target security class
461  * @requested: requested permissions
462  * @avd: access vector decisions
463  *
464  * Compute a set of access vector decisions based on the
465  * SID pair (@ssid, @tsid) for the permissions in @tclass.
466  * Return -%EINVAL if any of the parameters are invalid or %0
467  * if the access vector decisions were computed successfully.
468  */
469 int security_compute_av(u32 ssid,
470 			u32 tsid,
471 			u16 tclass,
472 			u32 requested,
473 			struct av_decision *avd)
474 {
475 	struct context *scontext = NULL, *tcontext = NULL;
476 	int rc = 0;
477 
478 	if (!ss_initialized) {
479 		avd->allowed = 0xffffffff;
480 		avd->decided = 0xffffffff;
481 		avd->auditallow = 0;
482 		avd->auditdeny = 0xffffffff;
483 		avd->seqno = latest_granting;
484 		return 0;
485 	}
486 
487 	POLICY_RDLOCK;
488 
489 	scontext = sidtab_search(&sidtab, ssid);
490 	if (!scontext) {
491 		printk(KERN_ERR "security_compute_av:  unrecognized SID %d\n",
492 		       ssid);
493 		rc = -EINVAL;
494 		goto out;
495 	}
496 	tcontext = sidtab_search(&sidtab, tsid);
497 	if (!tcontext) {
498 		printk(KERN_ERR "security_compute_av:  unrecognized SID %d\n",
499 		       tsid);
500 		rc = -EINVAL;
501 		goto out;
502 	}
503 
504 	rc = context_struct_compute_av(scontext, tcontext, tclass,
505 				       requested, avd);
506 out:
507 	POLICY_RDUNLOCK;
508 	return rc;
509 }
510 
511 /*
512  * Write the security context string representation of
513  * the context structure `context' into a dynamically
514  * allocated string of the correct size.  Set `*scontext'
515  * to point to this string and set `*scontext_len' to
516  * the length of the string.
517  */
518 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
519 {
520 	char *scontextp;
521 
522 	*scontext = NULL;
523 	*scontext_len = 0;
524 
525 	/* Compute the size of the context. */
526 	*scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
527 	*scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
528 	*scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
529 	*scontext_len += mls_compute_context_len(context);
530 
531 	/* Allocate space for the context; caller must free this space. */
532 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
533 	if (!scontextp) {
534 		return -ENOMEM;
535 	}
536 	*scontext = scontextp;
537 
538 	/*
539 	 * Copy the user name, role name and type name into the context.
540 	 */
541 	sprintf(scontextp, "%s:%s:%s",
542 		policydb.p_user_val_to_name[context->user - 1],
543 		policydb.p_role_val_to_name[context->role - 1],
544 		policydb.p_type_val_to_name[context->type - 1]);
545 	scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
546 	             1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
547 	             1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
548 
549 	mls_sid_to_context(context, &scontextp);
550 
551 	*scontextp = 0;
552 
553 	return 0;
554 }
555 
556 #include "initial_sid_to_string.h"
557 
558 /**
559  * security_sid_to_context - Obtain a context for a given SID.
560  * @sid: security identifier, SID
561  * @scontext: security context
562  * @scontext_len: length in bytes
563  *
564  * Write the string representation of the context associated with @sid
565  * into a dynamically allocated string of the correct size.  Set @scontext
566  * to point to this string and set @scontext_len to the length of the string.
567  */
568 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
569 {
570 	struct context *context;
571 	int rc = 0;
572 
573 	if (!ss_initialized) {
574 		if (sid <= SECINITSID_NUM) {
575 			char *scontextp;
576 
577 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
578 			scontextp = kmalloc(*scontext_len,GFP_ATOMIC);
579 			strcpy(scontextp, initial_sid_to_string[sid]);
580 			*scontext = scontextp;
581 			goto out;
582 		}
583 		printk(KERN_ERR "security_sid_to_context:  called before initial "
584 		       "load_policy on unknown SID %d\n", sid);
585 		rc = -EINVAL;
586 		goto out;
587 	}
588 	POLICY_RDLOCK;
589 	context = sidtab_search(&sidtab, sid);
590 	if (!context) {
591 		printk(KERN_ERR "security_sid_to_context:  unrecognized SID "
592 		       "%d\n", sid);
593 		rc = -EINVAL;
594 		goto out_unlock;
595 	}
596 	rc = context_struct_to_string(context, scontext, scontext_len);
597 out_unlock:
598 	POLICY_RDUNLOCK;
599 out:
600 	return rc;
601 
602 }
603 
604 /**
605  * security_context_to_sid - Obtain a SID for a given security context.
606  * @scontext: security context
607  * @scontext_len: length in bytes
608  * @sid: security identifier, SID
609  *
610  * Obtains a SID associated with the security context that
611  * has the string representation specified by @scontext.
612  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
613  * memory is available, or 0 on success.
614  */
615 int security_context_to_sid(char *scontext, u32 scontext_len, u32 *sid)
616 {
617 	char *scontext2;
618 	struct context context;
619 	struct role_datum *role;
620 	struct type_datum *typdatum;
621 	struct user_datum *usrdatum;
622 	char *scontextp, *p, oldc;
623 	int rc = 0;
624 
625 	if (!ss_initialized) {
626 		int i;
627 
628 		for (i = 1; i < SECINITSID_NUM; i++) {
629 			if (!strcmp(initial_sid_to_string[i], scontext)) {
630 				*sid = i;
631 				goto out;
632 			}
633 		}
634 		*sid = SECINITSID_KERNEL;
635 		goto out;
636 	}
637 	*sid = SECSID_NULL;
638 
639 	/* Copy the string so that we can modify the copy as we parse it.
640 	   The string should already by null terminated, but we append a
641 	   null suffix to the copy to avoid problems with the existing
642 	   attr package, which doesn't view the null terminator as part
643 	   of the attribute value. */
644 	scontext2 = kmalloc(scontext_len+1,GFP_KERNEL);
645 	if (!scontext2) {
646 		rc = -ENOMEM;
647 		goto out;
648 	}
649 	memcpy(scontext2, scontext, scontext_len);
650 	scontext2[scontext_len] = 0;
651 
652 	context_init(&context);
653 	*sid = SECSID_NULL;
654 
655 	POLICY_RDLOCK;
656 
657 	/* Parse the security context. */
658 
659 	rc = -EINVAL;
660 	scontextp = (char *) scontext2;
661 
662 	/* Extract the user. */
663 	p = scontextp;
664 	while (*p && *p != ':')
665 		p++;
666 
667 	if (*p == 0)
668 		goto out_unlock;
669 
670 	*p++ = 0;
671 
672 	usrdatum = hashtab_search(policydb.p_users.table, scontextp);
673 	if (!usrdatum)
674 		goto out_unlock;
675 
676 	context.user = usrdatum->value;
677 
678 	/* Extract role. */
679 	scontextp = p;
680 	while (*p && *p != ':')
681 		p++;
682 
683 	if (*p == 0)
684 		goto out_unlock;
685 
686 	*p++ = 0;
687 
688 	role = hashtab_search(policydb.p_roles.table, scontextp);
689 	if (!role)
690 		goto out_unlock;
691 	context.role = role->value;
692 
693 	/* Extract type. */
694 	scontextp = p;
695 	while (*p && *p != ':')
696 		p++;
697 	oldc = *p;
698 	*p++ = 0;
699 
700 	typdatum = hashtab_search(policydb.p_types.table, scontextp);
701 	if (!typdatum)
702 		goto out_unlock;
703 
704 	context.type = typdatum->value;
705 
706 	rc = mls_context_to_sid(oldc, &p, &context);
707 	if (rc)
708 		goto out_unlock;
709 
710 	if ((p - scontext2) < scontext_len) {
711 		rc = -EINVAL;
712 		goto out_unlock;
713 	}
714 
715 	/* Check the validity of the new context. */
716 	if (!policydb_context_isvalid(&policydb, &context)) {
717 		rc = -EINVAL;
718 		goto out_unlock;
719 	}
720 	/* Obtain the new sid. */
721 	rc = sidtab_context_to_sid(&sidtab, &context, sid);
722 out_unlock:
723 	POLICY_RDUNLOCK;
724 	context_destroy(&context);
725 	kfree(scontext2);
726 out:
727 	return rc;
728 }
729 
730 static int compute_sid_handle_invalid_context(
731 	struct context *scontext,
732 	struct context *tcontext,
733 	u16 tclass,
734 	struct context *newcontext)
735 {
736 	char *s = NULL, *t = NULL, *n = NULL;
737 	u32 slen, tlen, nlen;
738 
739 	if (context_struct_to_string(scontext, &s, &slen) < 0)
740 		goto out;
741 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
742 		goto out;
743 	if (context_struct_to_string(newcontext, &n, &nlen) < 0)
744 		goto out;
745 	audit_log(current->audit_context, AUDIT_SELINUX_ERR,
746 		  "security_compute_sid:  invalid context %s"
747 		  " for scontext=%s"
748 		  " tcontext=%s"
749 		  " tclass=%s",
750 		  n, s, t, policydb.p_class_val_to_name[tclass-1]);
751 out:
752 	kfree(s);
753 	kfree(t);
754 	kfree(n);
755 	if (!selinux_enforcing)
756 		return 0;
757 	return -EACCES;
758 }
759 
760 static int security_compute_sid(u32 ssid,
761 				u32 tsid,
762 				u16 tclass,
763 				u32 specified,
764 				u32 *out_sid)
765 {
766 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
767 	struct role_trans *roletr = NULL;
768 	struct avtab_key avkey;
769 	struct avtab_datum *avdatum;
770 	struct avtab_node *node;
771 	unsigned int type_change = 0;
772 	int rc = 0;
773 
774 	if (!ss_initialized) {
775 		switch (tclass) {
776 		case SECCLASS_PROCESS:
777 			*out_sid = ssid;
778 			break;
779 		default:
780 			*out_sid = tsid;
781 			break;
782 		}
783 		goto out;
784 	}
785 
786 	POLICY_RDLOCK;
787 
788 	scontext = sidtab_search(&sidtab, ssid);
789 	if (!scontext) {
790 		printk(KERN_ERR "security_compute_sid:  unrecognized SID %d\n",
791 		       ssid);
792 		rc = -EINVAL;
793 		goto out_unlock;
794 	}
795 	tcontext = sidtab_search(&sidtab, tsid);
796 	if (!tcontext) {
797 		printk(KERN_ERR "security_compute_sid:  unrecognized SID %d\n",
798 		       tsid);
799 		rc = -EINVAL;
800 		goto out_unlock;
801 	}
802 
803 	context_init(&newcontext);
804 
805 	/* Set the user identity. */
806 	switch (specified) {
807 	case AVTAB_TRANSITION:
808 	case AVTAB_CHANGE:
809 		/* Use the process user identity. */
810 		newcontext.user = scontext->user;
811 		break;
812 	case AVTAB_MEMBER:
813 		/* Use the related object owner. */
814 		newcontext.user = tcontext->user;
815 		break;
816 	}
817 
818 	/* Set the role and type to default values. */
819 	switch (tclass) {
820 	case SECCLASS_PROCESS:
821 		/* Use the current role and type of process. */
822 		newcontext.role = scontext->role;
823 		newcontext.type = scontext->type;
824 		break;
825 	default:
826 		/* Use the well-defined object role. */
827 		newcontext.role = OBJECT_R_VAL;
828 		/* Use the type of the related object. */
829 		newcontext.type = tcontext->type;
830 	}
831 
832 	/* Look for a type transition/member/change rule. */
833 	avkey.source_type = scontext->type;
834 	avkey.target_type = tcontext->type;
835 	avkey.target_class = tclass;
836 	avdatum = avtab_search(&policydb.te_avtab, &avkey, AVTAB_TYPE);
837 
838 	/* If no permanent rule, also check for enabled conditional rules */
839 	if(!avdatum) {
840 		node = avtab_search_node(&policydb.te_cond_avtab, &avkey, specified);
841 		for (; node != NULL; node = avtab_search_node_next(node, specified)) {
842 			if (node->datum.specified & AVTAB_ENABLED) {
843 				avdatum = &node->datum;
844 				break;
845 			}
846 		}
847 	}
848 
849 	type_change = (avdatum && (avdatum->specified & specified));
850 	if (type_change) {
851 		/* Use the type from the type transition/member/change rule. */
852 		switch (specified) {
853 		case AVTAB_TRANSITION:
854 			newcontext.type = avtab_transition(avdatum);
855 			break;
856 		case AVTAB_MEMBER:
857 			newcontext.type = avtab_member(avdatum);
858 			break;
859 		case AVTAB_CHANGE:
860 			newcontext.type = avtab_change(avdatum);
861 			break;
862 		}
863 	}
864 
865 	/* Check for class-specific changes. */
866 	switch (tclass) {
867 	case SECCLASS_PROCESS:
868 		if (specified & AVTAB_TRANSITION) {
869 			/* Look for a role transition rule. */
870 			for (roletr = policydb.role_tr; roletr;
871 			     roletr = roletr->next) {
872 				if (roletr->role == scontext->role &&
873 				    roletr->type == tcontext->type) {
874 					/* Use the role transition rule. */
875 					newcontext.role = roletr->new_role;
876 					break;
877 				}
878 			}
879 		}
880 		break;
881 	default:
882 		break;
883 	}
884 
885 	/* Set the MLS attributes.
886 	   This is done last because it may allocate memory. */
887 	rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
888 	if (rc)
889 		goto out_unlock;
890 
891 	/* Check the validity of the context. */
892 	if (!policydb_context_isvalid(&policydb, &newcontext)) {
893 		rc = compute_sid_handle_invalid_context(scontext,
894 							tcontext,
895 							tclass,
896 							&newcontext);
897 		if (rc)
898 			goto out_unlock;
899 	}
900 	/* Obtain the sid for the context. */
901 	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
902 out_unlock:
903 	POLICY_RDUNLOCK;
904 	context_destroy(&newcontext);
905 out:
906 	return rc;
907 }
908 
909 /**
910  * security_transition_sid - Compute the SID for a new subject/object.
911  * @ssid: source security identifier
912  * @tsid: target security identifier
913  * @tclass: target security class
914  * @out_sid: security identifier for new subject/object
915  *
916  * Compute a SID to use for labeling a new subject or object in the
917  * class @tclass based on a SID pair (@ssid, @tsid).
918  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
919  * if insufficient memory is available, or %0 if the new SID was
920  * computed successfully.
921  */
922 int security_transition_sid(u32 ssid,
923 			    u32 tsid,
924 			    u16 tclass,
925 			    u32 *out_sid)
926 {
927 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
928 }
929 
930 /**
931  * security_member_sid - Compute the SID for member selection.
932  * @ssid: source security identifier
933  * @tsid: target security identifier
934  * @tclass: target security class
935  * @out_sid: security identifier for selected member
936  *
937  * Compute a SID to use when selecting a member of a polyinstantiated
938  * object of class @tclass based on a SID pair (@ssid, @tsid).
939  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
940  * if insufficient memory is available, or %0 if the SID was
941  * computed successfully.
942  */
943 int security_member_sid(u32 ssid,
944 			u32 tsid,
945 			u16 tclass,
946 			u32 *out_sid)
947 {
948 	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
949 }
950 
951 /**
952  * security_change_sid - Compute the SID for object relabeling.
953  * @ssid: source security identifier
954  * @tsid: target security identifier
955  * @tclass: target security class
956  * @out_sid: security identifier for selected member
957  *
958  * Compute a SID to use for relabeling an object of class @tclass
959  * based on a SID pair (@ssid, @tsid).
960  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
961  * if insufficient memory is available, or %0 if the SID was
962  * computed successfully.
963  */
964 int security_change_sid(u32 ssid,
965 			u32 tsid,
966 			u16 tclass,
967 			u32 *out_sid)
968 {
969 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
970 }
971 
972 /*
973  * Verify that each permission that is defined under the
974  * existing policy is still defined with the same value
975  * in the new policy.
976  */
977 static int validate_perm(void *key, void *datum, void *p)
978 {
979 	struct hashtab *h;
980 	struct perm_datum *perdatum, *perdatum2;
981 	int rc = 0;
982 
983 
984 	h = p;
985 	perdatum = datum;
986 
987 	perdatum2 = hashtab_search(h, key);
988 	if (!perdatum2) {
989 		printk(KERN_ERR "security:  permission %s disappeared",
990 		       (char *)key);
991 		rc = -ENOENT;
992 		goto out;
993 	}
994 	if (perdatum->value != perdatum2->value) {
995 		printk(KERN_ERR "security:  the value of permission %s changed",
996 		       (char *)key);
997 		rc = -EINVAL;
998 	}
999 out:
1000 	return rc;
1001 }
1002 
1003 /*
1004  * Verify that each class that is defined under the
1005  * existing policy is still defined with the same
1006  * attributes in the new policy.
1007  */
1008 static int validate_class(void *key, void *datum, void *p)
1009 {
1010 	struct policydb *newp;
1011 	struct class_datum *cladatum, *cladatum2;
1012 	int rc;
1013 
1014 	newp = p;
1015 	cladatum = datum;
1016 
1017 	cladatum2 = hashtab_search(newp->p_classes.table, key);
1018 	if (!cladatum2) {
1019 		printk(KERN_ERR "security:  class %s disappeared\n",
1020 		       (char *)key);
1021 		rc = -ENOENT;
1022 		goto out;
1023 	}
1024 	if (cladatum->value != cladatum2->value) {
1025 		printk(KERN_ERR "security:  the value of class %s changed\n",
1026 		       (char *)key);
1027 		rc = -EINVAL;
1028 		goto out;
1029 	}
1030 	if ((cladatum->comdatum && !cladatum2->comdatum) ||
1031 	    (!cladatum->comdatum && cladatum2->comdatum)) {
1032 		printk(KERN_ERR "security:  the inherits clause for the access "
1033 		       "vector definition for class %s changed\n", (char *)key);
1034 		rc = -EINVAL;
1035 		goto out;
1036 	}
1037 	if (cladatum->comdatum) {
1038 		rc = hashtab_map(cladatum->comdatum->permissions.table, validate_perm,
1039 		                 cladatum2->comdatum->permissions.table);
1040 		if (rc) {
1041 			printk(" in the access vector definition for class "
1042 			       "%s\n", (char *)key);
1043 			goto out;
1044 		}
1045 	}
1046 	rc = hashtab_map(cladatum->permissions.table, validate_perm,
1047 	                 cladatum2->permissions.table);
1048 	if (rc)
1049 		printk(" in access vector definition for class %s\n",
1050 		       (char *)key);
1051 out:
1052 	return rc;
1053 }
1054 
1055 /* Clone the SID into the new SID table. */
1056 static int clone_sid(u32 sid,
1057 		     struct context *context,
1058 		     void *arg)
1059 {
1060 	struct sidtab *s = arg;
1061 
1062 	return sidtab_insert(s, sid, context);
1063 }
1064 
1065 static inline int convert_context_handle_invalid_context(struct context *context)
1066 {
1067 	int rc = 0;
1068 
1069 	if (selinux_enforcing) {
1070 		rc = -EINVAL;
1071 	} else {
1072 		char *s;
1073 		u32 len;
1074 
1075 		context_struct_to_string(context, &s, &len);
1076 		printk(KERN_ERR "security:  context %s is invalid\n", s);
1077 		kfree(s);
1078 	}
1079 	return rc;
1080 }
1081 
1082 struct convert_context_args {
1083 	struct policydb *oldp;
1084 	struct policydb *newp;
1085 };
1086 
1087 /*
1088  * Convert the values in the security context
1089  * structure `c' from the values specified
1090  * in the policy `p->oldp' to the values specified
1091  * in the policy `p->newp'.  Verify that the
1092  * context is valid under the new policy.
1093  */
1094 static int convert_context(u32 key,
1095 			   struct context *c,
1096 			   void *p)
1097 {
1098 	struct convert_context_args *args;
1099 	struct context oldc;
1100 	struct role_datum *role;
1101 	struct type_datum *typdatum;
1102 	struct user_datum *usrdatum;
1103 	char *s;
1104 	u32 len;
1105 	int rc;
1106 
1107 	args = p;
1108 
1109 	rc = context_cpy(&oldc, c);
1110 	if (rc)
1111 		goto out;
1112 
1113 	rc = -EINVAL;
1114 
1115 	/* Convert the user. */
1116 	usrdatum = hashtab_search(args->newp->p_users.table,
1117 	                          args->oldp->p_user_val_to_name[c->user - 1]);
1118 	if (!usrdatum) {
1119 		goto bad;
1120 	}
1121 	c->user = usrdatum->value;
1122 
1123 	/* Convert the role. */
1124 	role = hashtab_search(args->newp->p_roles.table,
1125 	                      args->oldp->p_role_val_to_name[c->role - 1]);
1126 	if (!role) {
1127 		goto bad;
1128 	}
1129 	c->role = role->value;
1130 
1131 	/* Convert the type. */
1132 	typdatum = hashtab_search(args->newp->p_types.table,
1133 	                          args->oldp->p_type_val_to_name[c->type - 1]);
1134 	if (!typdatum) {
1135 		goto bad;
1136 	}
1137 	c->type = typdatum->value;
1138 
1139 	rc = mls_convert_context(args->oldp, args->newp, c);
1140 	if (rc)
1141 		goto bad;
1142 
1143 	/* Check the validity of the new context. */
1144 	if (!policydb_context_isvalid(args->newp, c)) {
1145 		rc = convert_context_handle_invalid_context(&oldc);
1146 		if (rc)
1147 			goto bad;
1148 	}
1149 
1150 	context_destroy(&oldc);
1151 out:
1152 	return rc;
1153 bad:
1154 	context_struct_to_string(&oldc, &s, &len);
1155 	context_destroy(&oldc);
1156 	printk(KERN_ERR "security:  invalidating context %s\n", s);
1157 	kfree(s);
1158 	goto out;
1159 }
1160 
1161 extern void selinux_complete_init(void);
1162 
1163 /**
1164  * security_load_policy - Load a security policy configuration.
1165  * @data: binary policy data
1166  * @len: length of data in bytes
1167  *
1168  * Load a new set of security policy configuration data,
1169  * validate it and convert the SID table as necessary.
1170  * This function will flush the access vector cache after
1171  * loading the new policy.
1172  */
1173 int security_load_policy(void *data, size_t len)
1174 {
1175 	struct policydb oldpolicydb, newpolicydb;
1176 	struct sidtab oldsidtab, newsidtab;
1177 	struct convert_context_args args;
1178 	u32 seqno;
1179 	int rc = 0;
1180 	struct policy_file file = { data, len }, *fp = &file;
1181 
1182 	LOAD_LOCK;
1183 
1184 	if (!ss_initialized) {
1185 		avtab_cache_init();
1186 		if (policydb_read(&policydb, fp)) {
1187 			LOAD_UNLOCK;
1188 			avtab_cache_destroy();
1189 			return -EINVAL;
1190 		}
1191 		if (policydb_load_isids(&policydb, &sidtab)) {
1192 			LOAD_UNLOCK;
1193 			policydb_destroy(&policydb);
1194 			avtab_cache_destroy();
1195 			return -EINVAL;
1196 		}
1197 		policydb_loaded_version = policydb.policyvers;
1198 		ss_initialized = 1;
1199 		seqno = ++latest_granting;
1200 		LOAD_UNLOCK;
1201 		selinux_complete_init();
1202 		avc_ss_reset(seqno);
1203 		selnl_notify_policyload(seqno);
1204 		return 0;
1205 	}
1206 
1207 #if 0
1208 	sidtab_hash_eval(&sidtab, "sids");
1209 #endif
1210 
1211 	if (policydb_read(&newpolicydb, fp)) {
1212 		LOAD_UNLOCK;
1213 		return -EINVAL;
1214 	}
1215 
1216 	sidtab_init(&newsidtab);
1217 
1218 	/* Verify that the existing classes did not change. */
1219 	if (hashtab_map(policydb.p_classes.table, validate_class, &newpolicydb)) {
1220 		printk(KERN_ERR "security:  the definition of an existing "
1221 		       "class changed\n");
1222 		rc = -EINVAL;
1223 		goto err;
1224 	}
1225 
1226 	/* Clone the SID table. */
1227 	sidtab_shutdown(&sidtab);
1228 	if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1229 		rc = -ENOMEM;
1230 		goto err;
1231 	}
1232 
1233 	/* Convert the internal representations of contexts
1234 	   in the new SID table and remove invalid SIDs. */
1235 	args.oldp = &policydb;
1236 	args.newp = &newpolicydb;
1237 	sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1238 
1239 	/* Save the old policydb and SID table to free later. */
1240 	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1241 	sidtab_set(&oldsidtab, &sidtab);
1242 
1243 	/* Install the new policydb and SID table. */
1244 	POLICY_WRLOCK;
1245 	memcpy(&policydb, &newpolicydb, sizeof policydb);
1246 	sidtab_set(&sidtab, &newsidtab);
1247 	seqno = ++latest_granting;
1248 	policydb_loaded_version = policydb.policyvers;
1249 	POLICY_WRUNLOCK;
1250 	LOAD_UNLOCK;
1251 
1252 	/* Free the old policydb and SID table. */
1253 	policydb_destroy(&oldpolicydb);
1254 	sidtab_destroy(&oldsidtab);
1255 
1256 	avc_ss_reset(seqno);
1257 	selnl_notify_policyload(seqno);
1258 
1259 	return 0;
1260 
1261 err:
1262 	LOAD_UNLOCK;
1263 	sidtab_destroy(&newsidtab);
1264 	policydb_destroy(&newpolicydb);
1265 	return rc;
1266 
1267 }
1268 
1269 /**
1270  * security_port_sid - Obtain the SID for a port.
1271  * @domain: communication domain aka address family
1272  * @type: socket type
1273  * @protocol: protocol number
1274  * @port: port number
1275  * @out_sid: security identifier
1276  */
1277 int security_port_sid(u16 domain,
1278 		      u16 type,
1279 		      u8 protocol,
1280 		      u16 port,
1281 		      u32 *out_sid)
1282 {
1283 	struct ocontext *c;
1284 	int rc = 0;
1285 
1286 	POLICY_RDLOCK;
1287 
1288 	c = policydb.ocontexts[OCON_PORT];
1289 	while (c) {
1290 		if (c->u.port.protocol == protocol &&
1291 		    c->u.port.low_port <= port &&
1292 		    c->u.port.high_port >= port)
1293 			break;
1294 		c = c->next;
1295 	}
1296 
1297 	if (c) {
1298 		if (!c->sid[0]) {
1299 			rc = sidtab_context_to_sid(&sidtab,
1300 						   &c->context[0],
1301 						   &c->sid[0]);
1302 			if (rc)
1303 				goto out;
1304 		}
1305 		*out_sid = c->sid[0];
1306 	} else {
1307 		*out_sid = SECINITSID_PORT;
1308 	}
1309 
1310 out:
1311 	POLICY_RDUNLOCK;
1312 	return rc;
1313 }
1314 
1315 /**
1316  * security_netif_sid - Obtain the SID for a network interface.
1317  * @name: interface name
1318  * @if_sid: interface SID
1319  * @msg_sid: default SID for received packets
1320  */
1321 int security_netif_sid(char *name,
1322 		       u32 *if_sid,
1323 		       u32 *msg_sid)
1324 {
1325 	int rc = 0;
1326 	struct ocontext *c;
1327 
1328 	POLICY_RDLOCK;
1329 
1330 	c = policydb.ocontexts[OCON_NETIF];
1331 	while (c) {
1332 		if (strcmp(name, c->u.name) == 0)
1333 			break;
1334 		c = c->next;
1335 	}
1336 
1337 	if (c) {
1338 		if (!c->sid[0] || !c->sid[1]) {
1339 			rc = sidtab_context_to_sid(&sidtab,
1340 						  &c->context[0],
1341 						  &c->sid[0]);
1342 			if (rc)
1343 				goto out;
1344 			rc = sidtab_context_to_sid(&sidtab,
1345 						   &c->context[1],
1346 						   &c->sid[1]);
1347 			if (rc)
1348 				goto out;
1349 		}
1350 		*if_sid = c->sid[0];
1351 		*msg_sid = c->sid[1];
1352 	} else {
1353 		*if_sid = SECINITSID_NETIF;
1354 		*msg_sid = SECINITSID_NETMSG;
1355 	}
1356 
1357 out:
1358 	POLICY_RDUNLOCK;
1359 	return rc;
1360 }
1361 
1362 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1363 {
1364 	int i, fail = 0;
1365 
1366 	for(i = 0; i < 4; i++)
1367 		if(addr[i] != (input[i] & mask[i])) {
1368 			fail = 1;
1369 			break;
1370 		}
1371 
1372 	return !fail;
1373 }
1374 
1375 /**
1376  * security_node_sid - Obtain the SID for a node (host).
1377  * @domain: communication domain aka address family
1378  * @addrp: address
1379  * @addrlen: address length in bytes
1380  * @out_sid: security identifier
1381  */
1382 int security_node_sid(u16 domain,
1383 		      void *addrp,
1384 		      u32 addrlen,
1385 		      u32 *out_sid)
1386 {
1387 	int rc = 0;
1388 	struct ocontext *c;
1389 
1390 	POLICY_RDLOCK;
1391 
1392 	switch (domain) {
1393 	case AF_INET: {
1394 		u32 addr;
1395 
1396 		if (addrlen != sizeof(u32)) {
1397 			rc = -EINVAL;
1398 			goto out;
1399 		}
1400 
1401 		addr = *((u32 *)addrp);
1402 
1403 		c = policydb.ocontexts[OCON_NODE];
1404 		while (c) {
1405 			if (c->u.node.addr == (addr & c->u.node.mask))
1406 				break;
1407 			c = c->next;
1408 		}
1409 		break;
1410 	}
1411 
1412 	case AF_INET6:
1413 		if (addrlen != sizeof(u64) * 2) {
1414 			rc = -EINVAL;
1415 			goto out;
1416 		}
1417 		c = policydb.ocontexts[OCON_NODE6];
1418 		while (c) {
1419 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1420 						c->u.node6.mask))
1421 				break;
1422 			c = c->next;
1423 		}
1424 		break;
1425 
1426 	default:
1427 		*out_sid = SECINITSID_NODE;
1428 		goto out;
1429 	}
1430 
1431 	if (c) {
1432 		if (!c->sid[0]) {
1433 			rc = sidtab_context_to_sid(&sidtab,
1434 						   &c->context[0],
1435 						   &c->sid[0]);
1436 			if (rc)
1437 				goto out;
1438 		}
1439 		*out_sid = c->sid[0];
1440 	} else {
1441 		*out_sid = SECINITSID_NODE;
1442 	}
1443 
1444 out:
1445 	POLICY_RDUNLOCK;
1446 	return rc;
1447 }
1448 
1449 #define SIDS_NEL 25
1450 
1451 /**
1452  * security_get_user_sids - Obtain reachable SIDs for a user.
1453  * @fromsid: starting SID
1454  * @username: username
1455  * @sids: array of reachable SIDs for user
1456  * @nel: number of elements in @sids
1457  *
1458  * Generate the set of SIDs for legal security contexts
1459  * for a given user that can be reached by @fromsid.
1460  * Set *@sids to point to a dynamically allocated
1461  * array containing the set of SIDs.  Set *@nel to the
1462  * number of elements in the array.
1463  */
1464 
1465 int security_get_user_sids(u32 fromsid,
1466 	                   char *username,
1467 			   u32 **sids,
1468 			   u32 *nel)
1469 {
1470 	struct context *fromcon, usercon;
1471 	u32 *mysids, *mysids2, sid;
1472 	u32 mynel = 0, maxnel = SIDS_NEL;
1473 	struct user_datum *user;
1474 	struct role_datum *role;
1475 	struct av_decision avd;
1476 	int rc = 0, i, j;
1477 
1478 	if (!ss_initialized) {
1479 		*sids = NULL;
1480 		*nel = 0;
1481 		goto out;
1482 	}
1483 
1484 	POLICY_RDLOCK;
1485 
1486 	fromcon = sidtab_search(&sidtab, fromsid);
1487 	if (!fromcon) {
1488 		rc = -EINVAL;
1489 		goto out_unlock;
1490 	}
1491 
1492 	user = hashtab_search(policydb.p_users.table, username);
1493 	if (!user) {
1494 		rc = -EINVAL;
1495 		goto out_unlock;
1496 	}
1497 	usercon.user = user->value;
1498 
1499 	mysids = kmalloc(maxnel*sizeof(*mysids), GFP_ATOMIC);
1500 	if (!mysids) {
1501 		rc = -ENOMEM;
1502 		goto out_unlock;
1503 	}
1504 	memset(mysids, 0, maxnel*sizeof(*mysids));
1505 
1506 	for (i = ebitmap_startbit(&user->roles); i < ebitmap_length(&user->roles); i++) {
1507 		if (!ebitmap_get_bit(&user->roles, i))
1508 			continue;
1509 		role = policydb.role_val_to_struct[i];
1510 		usercon.role = i+1;
1511 		for (j = ebitmap_startbit(&role->types); j < ebitmap_length(&role->types); j++) {
1512 			if (!ebitmap_get_bit(&role->types, j))
1513 				continue;
1514 			usercon.type = j+1;
1515 
1516 			if (mls_setup_user_range(fromcon, user, &usercon))
1517 				continue;
1518 
1519 			rc = context_struct_compute_av(fromcon, &usercon,
1520 						       SECCLASS_PROCESS,
1521 						       PROCESS__TRANSITION,
1522 						       &avd);
1523 			if (rc ||  !(avd.allowed & PROCESS__TRANSITION))
1524 				continue;
1525 			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1526 			if (rc) {
1527 				kfree(mysids);
1528 				goto out_unlock;
1529 			}
1530 			if (mynel < maxnel) {
1531 				mysids[mynel++] = sid;
1532 			} else {
1533 				maxnel += SIDS_NEL;
1534 				mysids2 = kmalloc(maxnel*sizeof(*mysids2), GFP_ATOMIC);
1535 				if (!mysids2) {
1536 					rc = -ENOMEM;
1537 					kfree(mysids);
1538 					goto out_unlock;
1539 				}
1540 				memset(mysids2, 0, maxnel*sizeof(*mysids2));
1541 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1542 				kfree(mysids);
1543 				mysids = mysids2;
1544 				mysids[mynel++] = sid;
1545 			}
1546 		}
1547 	}
1548 
1549 	*sids = mysids;
1550 	*nel = mynel;
1551 
1552 out_unlock:
1553 	POLICY_RDUNLOCK;
1554 out:
1555 	return rc;
1556 }
1557 
1558 /**
1559  * security_genfs_sid - Obtain a SID for a file in a filesystem
1560  * @fstype: filesystem type
1561  * @path: path from root of mount
1562  * @sclass: file security class
1563  * @sid: SID for path
1564  *
1565  * Obtain a SID to use for a file in a filesystem that
1566  * cannot support xattr or use a fixed labeling behavior like
1567  * transition SIDs or task SIDs.
1568  */
1569 int security_genfs_sid(const char *fstype,
1570 	               char *path,
1571 		       u16 sclass,
1572 		       u32 *sid)
1573 {
1574 	int len;
1575 	struct genfs *genfs;
1576 	struct ocontext *c;
1577 	int rc = 0, cmp = 0;
1578 
1579 	POLICY_RDLOCK;
1580 
1581 	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
1582 		cmp = strcmp(fstype, genfs->fstype);
1583 		if (cmp <= 0)
1584 			break;
1585 	}
1586 
1587 	if (!genfs || cmp) {
1588 		*sid = SECINITSID_UNLABELED;
1589 		rc = -ENOENT;
1590 		goto out;
1591 	}
1592 
1593 	for (c = genfs->head; c; c = c->next) {
1594 		len = strlen(c->u.name);
1595 		if ((!c->v.sclass || sclass == c->v.sclass) &&
1596 		    (strncmp(c->u.name, path, len) == 0))
1597 			break;
1598 	}
1599 
1600 	if (!c) {
1601 		*sid = SECINITSID_UNLABELED;
1602 		rc = -ENOENT;
1603 		goto out;
1604 	}
1605 
1606 	if (!c->sid[0]) {
1607 		rc = sidtab_context_to_sid(&sidtab,
1608 					   &c->context[0],
1609 					   &c->sid[0]);
1610 		if (rc)
1611 			goto out;
1612 	}
1613 
1614 	*sid = c->sid[0];
1615 out:
1616 	POLICY_RDUNLOCK;
1617 	return rc;
1618 }
1619 
1620 /**
1621  * security_fs_use - Determine how to handle labeling for a filesystem.
1622  * @fstype: filesystem type
1623  * @behavior: labeling behavior
1624  * @sid: SID for filesystem (superblock)
1625  */
1626 int security_fs_use(
1627 	const char *fstype,
1628 	unsigned int *behavior,
1629 	u32 *sid)
1630 {
1631 	int rc = 0;
1632 	struct ocontext *c;
1633 
1634 	POLICY_RDLOCK;
1635 
1636 	c = policydb.ocontexts[OCON_FSUSE];
1637 	while (c) {
1638 		if (strcmp(fstype, c->u.name) == 0)
1639 			break;
1640 		c = c->next;
1641 	}
1642 
1643 	if (c) {
1644 		*behavior = c->v.behavior;
1645 		if (!c->sid[0]) {
1646 			rc = sidtab_context_to_sid(&sidtab,
1647 						   &c->context[0],
1648 						   &c->sid[0]);
1649 			if (rc)
1650 				goto out;
1651 		}
1652 		*sid = c->sid[0];
1653 	} else {
1654 		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
1655 		if (rc) {
1656 			*behavior = SECURITY_FS_USE_NONE;
1657 			rc = 0;
1658 		} else {
1659 			*behavior = SECURITY_FS_USE_GENFS;
1660 		}
1661 	}
1662 
1663 out:
1664 	POLICY_RDUNLOCK;
1665 	return rc;
1666 }
1667 
1668 int security_get_bools(int *len, char ***names, int **values)
1669 {
1670 	int i, rc = -ENOMEM;
1671 
1672 	POLICY_RDLOCK;
1673 	*names = NULL;
1674 	*values = NULL;
1675 
1676 	*len = policydb.p_bools.nprim;
1677 	if (!*len) {
1678 		rc = 0;
1679 		goto out;
1680 	}
1681 
1682 	*names = (char**)kmalloc(sizeof(char*) * *len, GFP_ATOMIC);
1683 	if (!*names)
1684 		goto err;
1685 	memset(*names, 0, sizeof(char*) * *len);
1686 
1687 	*values = (int*)kmalloc(sizeof(int) * *len, GFP_ATOMIC);
1688 	if (!*values)
1689 		goto err;
1690 
1691 	for (i = 0; i < *len; i++) {
1692 		size_t name_len;
1693 		(*values)[i] = policydb.bool_val_to_struct[i]->state;
1694 		name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
1695 		(*names)[i] = (char*)kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
1696 		if (!(*names)[i])
1697 			goto err;
1698 		strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
1699 		(*names)[i][name_len - 1] = 0;
1700 	}
1701 	rc = 0;
1702 out:
1703 	POLICY_RDUNLOCK;
1704 	return rc;
1705 err:
1706 	if (*names) {
1707 		for (i = 0; i < *len; i++)
1708 			kfree((*names)[i]);
1709 	}
1710 	kfree(*values);
1711 	goto out;
1712 }
1713 
1714 
1715 int security_set_bools(int len, int *values)
1716 {
1717 	int i, rc = 0;
1718 	int lenp, seqno = 0;
1719 	struct cond_node *cur;
1720 
1721 	POLICY_WRLOCK;
1722 
1723 	lenp = policydb.p_bools.nprim;
1724 	if (len != lenp) {
1725 		rc = -EFAULT;
1726 		goto out;
1727 	}
1728 
1729 	printk(KERN_INFO "security: committed booleans { ");
1730 	for (i = 0; i < len; i++) {
1731 		if (values[i]) {
1732 			policydb.bool_val_to_struct[i]->state = 1;
1733 		} else {
1734 			policydb.bool_val_to_struct[i]->state = 0;
1735 		}
1736 		if (i != 0)
1737 			printk(", ");
1738 		printk("%s:%d", policydb.p_bool_val_to_name[i],
1739 		       policydb.bool_val_to_struct[i]->state);
1740 	}
1741 	printk(" }\n");
1742 
1743 	for (cur = policydb.cond_list; cur != NULL; cur = cur->next) {
1744 		rc = evaluate_cond_node(&policydb, cur);
1745 		if (rc)
1746 			goto out;
1747 	}
1748 
1749 	seqno = ++latest_granting;
1750 
1751 out:
1752 	POLICY_WRUNLOCK;
1753 	if (!rc) {
1754 		avc_ss_reset(seqno);
1755 		selnl_notify_policyload(seqno);
1756 	}
1757 	return rc;
1758 }
1759 
1760 int security_get_bool_value(int bool)
1761 {
1762 	int rc = 0;
1763 	int len;
1764 
1765 	POLICY_RDLOCK;
1766 
1767 	len = policydb.p_bools.nprim;
1768 	if (bool >= len) {
1769 		rc = -EFAULT;
1770 		goto out;
1771 	}
1772 
1773 	rc = policydb.bool_val_to_struct[bool]->state;
1774 out:
1775 	POLICY_RDUNLOCK;
1776 	return rc;
1777 }
1778