1 /* 2 * Implementation of the security services. 3 * 4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil> 5 * James Morris <jmorris@redhat.com> 6 * 7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> 8 * 9 * Support for enhanced MLS infrastructure. 10 * Support for context based audit filters. 11 * 12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com> 13 * 14 * Added conditional policy language extensions 15 * 16 * Updated: Hewlett-Packard <paul.moore@hp.com> 17 * 18 * Added support for NetLabel 19 * Added support for the policy capability bitmap 20 * 21 * Updated: Chad Sellers <csellers@tresys.com> 22 * 23 * Added validation of kernel classes and permissions 24 * 25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com> 26 * 27 * Added support for bounds domain and audit messaged on masked permissions 28 * 29 * Updated: Guido Trentalancia <guido@trentalancia.com> 30 * 31 * Added support for runtime switching of the policy type 32 * 33 * Copyright (C) 2008, 2009 NEC Corporation 34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P. 35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc. 36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC 37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 38 * This program is free software; you can redistribute it and/or modify 39 * it under the terms of the GNU General Public License as published by 40 * the Free Software Foundation, version 2. 41 */ 42 #include <linux/kernel.h> 43 #include <linux/slab.h> 44 #include <linux/string.h> 45 #include <linux/spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/errno.h> 48 #include <linux/in.h> 49 #include <linux/sched.h> 50 #include <linux/audit.h> 51 #include <linux/mutex.h> 52 #include <linux/selinux.h> 53 #include <linux/flex_array.h> 54 #include <net/netlabel.h> 55 56 #include "flask.h" 57 #include "avc.h" 58 #include "avc_ss.h" 59 #include "security.h" 60 #include "context.h" 61 #include "policydb.h" 62 #include "sidtab.h" 63 #include "services.h" 64 #include "conditional.h" 65 #include "mls.h" 66 #include "objsec.h" 67 #include "netlabel.h" 68 #include "xfrm.h" 69 #include "ebitmap.h" 70 #include "audit.h" 71 72 extern void selnl_notify_policyload(u32 seqno); 73 74 int selinux_policycap_netpeer; 75 int selinux_policycap_openperm; 76 77 static DEFINE_RWLOCK(policy_rwlock); 78 79 static struct sidtab sidtab; 80 struct policydb policydb; 81 int ss_initialized; 82 83 /* 84 * The largest sequence number that has been used when 85 * providing an access decision to the access vector cache. 86 * The sequence number only changes when a policy change 87 * occurs. 88 */ 89 static u32 latest_granting; 90 91 /* Forward declaration. */ 92 static int context_struct_to_string(struct context *context, char **scontext, 93 u32 *scontext_len); 94 95 static void context_struct_compute_av(struct context *scontext, 96 struct context *tcontext, 97 u16 tclass, 98 struct av_decision *avd); 99 100 struct selinux_mapping { 101 u16 value; /* policy value */ 102 unsigned num_perms; 103 u32 perms[sizeof(u32) * 8]; 104 }; 105 106 static struct selinux_mapping *current_mapping; 107 static u16 current_mapping_size; 108 109 static int selinux_set_mapping(struct policydb *pol, 110 struct security_class_mapping *map, 111 struct selinux_mapping **out_map_p, 112 u16 *out_map_size) 113 { 114 struct selinux_mapping *out_map = NULL; 115 size_t size = sizeof(struct selinux_mapping); 116 u16 i, j; 117 unsigned k; 118 bool print_unknown_handle = false; 119 120 /* Find number of classes in the input mapping */ 121 if (!map) 122 return -EINVAL; 123 i = 0; 124 while (map[i].name) 125 i++; 126 127 /* Allocate space for the class records, plus one for class zero */ 128 out_map = kcalloc(++i, size, GFP_ATOMIC); 129 if (!out_map) 130 return -ENOMEM; 131 132 /* Store the raw class and permission values */ 133 j = 0; 134 while (map[j].name) { 135 struct security_class_mapping *p_in = map + (j++); 136 struct selinux_mapping *p_out = out_map + j; 137 138 /* An empty class string skips ahead */ 139 if (!strcmp(p_in->name, "")) { 140 p_out->num_perms = 0; 141 continue; 142 } 143 144 p_out->value = string_to_security_class(pol, p_in->name); 145 if (!p_out->value) { 146 printk(KERN_INFO 147 "SELinux: Class %s not defined in policy.\n", 148 p_in->name); 149 if (pol->reject_unknown) 150 goto err; 151 p_out->num_perms = 0; 152 print_unknown_handle = true; 153 continue; 154 } 155 156 k = 0; 157 while (p_in->perms && p_in->perms[k]) { 158 /* An empty permission string skips ahead */ 159 if (!*p_in->perms[k]) { 160 k++; 161 continue; 162 } 163 p_out->perms[k] = string_to_av_perm(pol, p_out->value, 164 p_in->perms[k]); 165 if (!p_out->perms[k]) { 166 printk(KERN_INFO 167 "SELinux: Permission %s in class %s not defined in policy.\n", 168 p_in->perms[k], p_in->name); 169 if (pol->reject_unknown) 170 goto err; 171 print_unknown_handle = true; 172 } 173 174 k++; 175 } 176 p_out->num_perms = k; 177 } 178 179 if (print_unknown_handle) 180 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n", 181 pol->allow_unknown ? "allowed" : "denied"); 182 183 *out_map_p = out_map; 184 *out_map_size = i; 185 return 0; 186 err: 187 kfree(out_map); 188 return -EINVAL; 189 } 190 191 /* 192 * Get real, policy values from mapped values 193 */ 194 195 static u16 unmap_class(u16 tclass) 196 { 197 if (tclass < current_mapping_size) 198 return current_mapping[tclass].value; 199 200 return tclass; 201 } 202 203 static void map_decision(u16 tclass, struct av_decision *avd, 204 int allow_unknown) 205 { 206 if (tclass < current_mapping_size) { 207 unsigned i, n = current_mapping[tclass].num_perms; 208 u32 result; 209 210 for (i = 0, result = 0; i < n; i++) { 211 if (avd->allowed & current_mapping[tclass].perms[i]) 212 result |= 1<<i; 213 if (allow_unknown && !current_mapping[tclass].perms[i]) 214 result |= 1<<i; 215 } 216 avd->allowed = result; 217 218 for (i = 0, result = 0; i < n; i++) 219 if (avd->auditallow & current_mapping[tclass].perms[i]) 220 result |= 1<<i; 221 avd->auditallow = result; 222 223 for (i = 0, result = 0; i < n; i++) { 224 if (avd->auditdeny & current_mapping[tclass].perms[i]) 225 result |= 1<<i; 226 if (!allow_unknown && !current_mapping[tclass].perms[i]) 227 result |= 1<<i; 228 } 229 /* 230 * In case the kernel has a bug and requests a permission 231 * between num_perms and the maximum permission number, we 232 * should audit that denial 233 */ 234 for (; i < (sizeof(u32)*8); i++) 235 result |= 1<<i; 236 avd->auditdeny = result; 237 } 238 } 239 240 int security_mls_enabled(void) 241 { 242 return policydb.mls_enabled; 243 } 244 245 /* 246 * Return the boolean value of a constraint expression 247 * when it is applied to the specified source and target 248 * security contexts. 249 * 250 * xcontext is a special beast... It is used by the validatetrans rules 251 * only. For these rules, scontext is the context before the transition, 252 * tcontext is the context after the transition, and xcontext is the context 253 * of the process performing the transition. All other callers of 254 * constraint_expr_eval should pass in NULL for xcontext. 255 */ 256 static int constraint_expr_eval(struct context *scontext, 257 struct context *tcontext, 258 struct context *xcontext, 259 struct constraint_expr *cexpr) 260 { 261 u32 val1, val2; 262 struct context *c; 263 struct role_datum *r1, *r2; 264 struct mls_level *l1, *l2; 265 struct constraint_expr *e; 266 int s[CEXPR_MAXDEPTH]; 267 int sp = -1; 268 269 for (e = cexpr; e; e = e->next) { 270 switch (e->expr_type) { 271 case CEXPR_NOT: 272 BUG_ON(sp < 0); 273 s[sp] = !s[sp]; 274 break; 275 case CEXPR_AND: 276 BUG_ON(sp < 1); 277 sp--; 278 s[sp] &= s[sp + 1]; 279 break; 280 case CEXPR_OR: 281 BUG_ON(sp < 1); 282 sp--; 283 s[sp] |= s[sp + 1]; 284 break; 285 case CEXPR_ATTR: 286 if (sp == (CEXPR_MAXDEPTH - 1)) 287 return 0; 288 switch (e->attr) { 289 case CEXPR_USER: 290 val1 = scontext->user; 291 val2 = tcontext->user; 292 break; 293 case CEXPR_TYPE: 294 val1 = scontext->type; 295 val2 = tcontext->type; 296 break; 297 case CEXPR_ROLE: 298 val1 = scontext->role; 299 val2 = tcontext->role; 300 r1 = policydb.role_val_to_struct[val1 - 1]; 301 r2 = policydb.role_val_to_struct[val2 - 1]; 302 switch (e->op) { 303 case CEXPR_DOM: 304 s[++sp] = ebitmap_get_bit(&r1->dominates, 305 val2 - 1); 306 continue; 307 case CEXPR_DOMBY: 308 s[++sp] = ebitmap_get_bit(&r2->dominates, 309 val1 - 1); 310 continue; 311 case CEXPR_INCOMP: 312 s[++sp] = (!ebitmap_get_bit(&r1->dominates, 313 val2 - 1) && 314 !ebitmap_get_bit(&r2->dominates, 315 val1 - 1)); 316 continue; 317 default: 318 break; 319 } 320 break; 321 case CEXPR_L1L2: 322 l1 = &(scontext->range.level[0]); 323 l2 = &(tcontext->range.level[0]); 324 goto mls_ops; 325 case CEXPR_L1H2: 326 l1 = &(scontext->range.level[0]); 327 l2 = &(tcontext->range.level[1]); 328 goto mls_ops; 329 case CEXPR_H1L2: 330 l1 = &(scontext->range.level[1]); 331 l2 = &(tcontext->range.level[0]); 332 goto mls_ops; 333 case CEXPR_H1H2: 334 l1 = &(scontext->range.level[1]); 335 l2 = &(tcontext->range.level[1]); 336 goto mls_ops; 337 case CEXPR_L1H1: 338 l1 = &(scontext->range.level[0]); 339 l2 = &(scontext->range.level[1]); 340 goto mls_ops; 341 case CEXPR_L2H2: 342 l1 = &(tcontext->range.level[0]); 343 l2 = &(tcontext->range.level[1]); 344 goto mls_ops; 345 mls_ops: 346 switch (e->op) { 347 case CEXPR_EQ: 348 s[++sp] = mls_level_eq(l1, l2); 349 continue; 350 case CEXPR_NEQ: 351 s[++sp] = !mls_level_eq(l1, l2); 352 continue; 353 case CEXPR_DOM: 354 s[++sp] = mls_level_dom(l1, l2); 355 continue; 356 case CEXPR_DOMBY: 357 s[++sp] = mls_level_dom(l2, l1); 358 continue; 359 case CEXPR_INCOMP: 360 s[++sp] = mls_level_incomp(l2, l1); 361 continue; 362 default: 363 BUG(); 364 return 0; 365 } 366 break; 367 default: 368 BUG(); 369 return 0; 370 } 371 372 switch (e->op) { 373 case CEXPR_EQ: 374 s[++sp] = (val1 == val2); 375 break; 376 case CEXPR_NEQ: 377 s[++sp] = (val1 != val2); 378 break; 379 default: 380 BUG(); 381 return 0; 382 } 383 break; 384 case CEXPR_NAMES: 385 if (sp == (CEXPR_MAXDEPTH-1)) 386 return 0; 387 c = scontext; 388 if (e->attr & CEXPR_TARGET) 389 c = tcontext; 390 else if (e->attr & CEXPR_XTARGET) { 391 c = xcontext; 392 if (!c) { 393 BUG(); 394 return 0; 395 } 396 } 397 if (e->attr & CEXPR_USER) 398 val1 = c->user; 399 else if (e->attr & CEXPR_ROLE) 400 val1 = c->role; 401 else if (e->attr & CEXPR_TYPE) 402 val1 = c->type; 403 else { 404 BUG(); 405 return 0; 406 } 407 408 switch (e->op) { 409 case CEXPR_EQ: 410 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1); 411 break; 412 case CEXPR_NEQ: 413 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1); 414 break; 415 default: 416 BUG(); 417 return 0; 418 } 419 break; 420 default: 421 BUG(); 422 return 0; 423 } 424 } 425 426 BUG_ON(sp != 0); 427 return s[0]; 428 } 429 430 /* 431 * security_dump_masked_av - dumps masked permissions during 432 * security_compute_av due to RBAC, MLS/Constraint and Type bounds. 433 */ 434 static int dump_masked_av_helper(void *k, void *d, void *args) 435 { 436 struct perm_datum *pdatum = d; 437 char **permission_names = args; 438 439 BUG_ON(pdatum->value < 1 || pdatum->value > 32); 440 441 permission_names[pdatum->value - 1] = (char *)k; 442 443 return 0; 444 } 445 446 static void security_dump_masked_av(struct context *scontext, 447 struct context *tcontext, 448 u16 tclass, 449 u32 permissions, 450 const char *reason) 451 { 452 struct common_datum *common_dat; 453 struct class_datum *tclass_dat; 454 struct audit_buffer *ab; 455 char *tclass_name; 456 char *scontext_name = NULL; 457 char *tcontext_name = NULL; 458 char *permission_names[32]; 459 int index; 460 u32 length; 461 bool need_comma = false; 462 463 if (!permissions) 464 return; 465 466 tclass_name = policydb.p_class_val_to_name[tclass - 1]; 467 tclass_dat = policydb.class_val_to_struct[tclass - 1]; 468 common_dat = tclass_dat->comdatum; 469 470 /* init permission_names */ 471 if (common_dat && 472 hashtab_map(common_dat->permissions.table, 473 dump_masked_av_helper, permission_names) < 0) 474 goto out; 475 476 if (hashtab_map(tclass_dat->permissions.table, 477 dump_masked_av_helper, permission_names) < 0) 478 goto out; 479 480 /* get scontext/tcontext in text form */ 481 if (context_struct_to_string(scontext, 482 &scontext_name, &length) < 0) 483 goto out; 484 485 if (context_struct_to_string(tcontext, 486 &tcontext_name, &length) < 0) 487 goto out; 488 489 /* audit a message */ 490 ab = audit_log_start(current->audit_context, 491 GFP_ATOMIC, AUDIT_SELINUX_ERR); 492 if (!ab) 493 goto out; 494 495 audit_log_format(ab, "op=security_compute_av reason=%s " 496 "scontext=%s tcontext=%s tclass=%s perms=", 497 reason, scontext_name, tcontext_name, tclass_name); 498 499 for (index = 0; index < 32; index++) { 500 u32 mask = (1 << index); 501 502 if ((mask & permissions) == 0) 503 continue; 504 505 audit_log_format(ab, "%s%s", 506 need_comma ? "," : "", 507 permission_names[index] 508 ? permission_names[index] : "????"); 509 need_comma = true; 510 } 511 audit_log_end(ab); 512 out: 513 /* release scontext/tcontext */ 514 kfree(tcontext_name); 515 kfree(scontext_name); 516 517 return; 518 } 519 520 /* 521 * security_boundary_permission - drops violated permissions 522 * on boundary constraint. 523 */ 524 static void type_attribute_bounds_av(struct context *scontext, 525 struct context *tcontext, 526 u16 tclass, 527 struct av_decision *avd) 528 { 529 struct context lo_scontext; 530 struct context lo_tcontext; 531 struct av_decision lo_avd; 532 struct type_datum *source 533 = policydb.type_val_to_struct[scontext->type - 1]; 534 struct type_datum *target 535 = policydb.type_val_to_struct[tcontext->type - 1]; 536 u32 masked = 0; 537 538 if (source->bounds) { 539 memset(&lo_avd, 0, sizeof(lo_avd)); 540 541 memcpy(&lo_scontext, scontext, sizeof(lo_scontext)); 542 lo_scontext.type = source->bounds; 543 544 context_struct_compute_av(&lo_scontext, 545 tcontext, 546 tclass, 547 &lo_avd); 548 if ((lo_avd.allowed & avd->allowed) == avd->allowed) 549 return; /* no masked permission */ 550 masked = ~lo_avd.allowed & avd->allowed; 551 } 552 553 if (target->bounds) { 554 memset(&lo_avd, 0, sizeof(lo_avd)); 555 556 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext)); 557 lo_tcontext.type = target->bounds; 558 559 context_struct_compute_av(scontext, 560 &lo_tcontext, 561 tclass, 562 &lo_avd); 563 if ((lo_avd.allowed & avd->allowed) == avd->allowed) 564 return; /* no masked permission */ 565 masked = ~lo_avd.allowed & avd->allowed; 566 } 567 568 if (source->bounds && target->bounds) { 569 memset(&lo_avd, 0, sizeof(lo_avd)); 570 /* 571 * lo_scontext and lo_tcontext are already 572 * set up. 573 */ 574 575 context_struct_compute_av(&lo_scontext, 576 &lo_tcontext, 577 tclass, 578 &lo_avd); 579 if ((lo_avd.allowed & avd->allowed) == avd->allowed) 580 return; /* no masked permission */ 581 masked = ~lo_avd.allowed & avd->allowed; 582 } 583 584 if (masked) { 585 /* mask violated permissions */ 586 avd->allowed &= ~masked; 587 588 /* audit masked permissions */ 589 security_dump_masked_av(scontext, tcontext, 590 tclass, masked, "bounds"); 591 } 592 } 593 594 /* 595 * Compute access vectors based on a context structure pair for 596 * the permissions in a particular class. 597 */ 598 static void context_struct_compute_av(struct context *scontext, 599 struct context *tcontext, 600 u16 tclass, 601 struct av_decision *avd) 602 { 603 struct constraint_node *constraint; 604 struct role_allow *ra; 605 struct avtab_key avkey; 606 struct avtab_node *node; 607 struct class_datum *tclass_datum; 608 struct ebitmap *sattr, *tattr; 609 struct ebitmap_node *snode, *tnode; 610 unsigned int i, j; 611 612 avd->allowed = 0; 613 avd->auditallow = 0; 614 avd->auditdeny = 0xffffffff; 615 616 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) { 617 if (printk_ratelimit()) 618 printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass); 619 return; 620 } 621 622 tclass_datum = policydb.class_val_to_struct[tclass - 1]; 623 624 /* 625 * If a specific type enforcement rule was defined for 626 * this permission check, then use it. 627 */ 628 avkey.target_class = tclass; 629 avkey.specified = AVTAB_AV; 630 sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1); 631 BUG_ON(!sattr); 632 tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1); 633 BUG_ON(!tattr); 634 ebitmap_for_each_positive_bit(sattr, snode, i) { 635 ebitmap_for_each_positive_bit(tattr, tnode, j) { 636 avkey.source_type = i + 1; 637 avkey.target_type = j + 1; 638 for (node = avtab_search_node(&policydb.te_avtab, &avkey); 639 node; 640 node = avtab_search_node_next(node, avkey.specified)) { 641 if (node->key.specified == AVTAB_ALLOWED) 642 avd->allowed |= node->datum.data; 643 else if (node->key.specified == AVTAB_AUDITALLOW) 644 avd->auditallow |= node->datum.data; 645 else if (node->key.specified == AVTAB_AUDITDENY) 646 avd->auditdeny &= node->datum.data; 647 } 648 649 /* Check conditional av table for additional permissions */ 650 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd); 651 652 } 653 } 654 655 /* 656 * Remove any permissions prohibited by a constraint (this includes 657 * the MLS policy). 658 */ 659 constraint = tclass_datum->constraints; 660 while (constraint) { 661 if ((constraint->permissions & (avd->allowed)) && 662 !constraint_expr_eval(scontext, tcontext, NULL, 663 constraint->expr)) { 664 avd->allowed &= ~(constraint->permissions); 665 } 666 constraint = constraint->next; 667 } 668 669 /* 670 * If checking process transition permission and the 671 * role is changing, then check the (current_role, new_role) 672 * pair. 673 */ 674 if (tclass == policydb.process_class && 675 (avd->allowed & policydb.process_trans_perms) && 676 scontext->role != tcontext->role) { 677 for (ra = policydb.role_allow; ra; ra = ra->next) { 678 if (scontext->role == ra->role && 679 tcontext->role == ra->new_role) 680 break; 681 } 682 if (!ra) 683 avd->allowed &= ~policydb.process_trans_perms; 684 } 685 686 /* 687 * If the given source and target types have boundary 688 * constraint, lazy checks have to mask any violated 689 * permission and notice it to userspace via audit. 690 */ 691 type_attribute_bounds_av(scontext, tcontext, 692 tclass, avd); 693 } 694 695 static int security_validtrans_handle_fail(struct context *ocontext, 696 struct context *ncontext, 697 struct context *tcontext, 698 u16 tclass) 699 { 700 char *o = NULL, *n = NULL, *t = NULL; 701 u32 olen, nlen, tlen; 702 703 if (context_struct_to_string(ocontext, &o, &olen) < 0) 704 goto out; 705 if (context_struct_to_string(ncontext, &n, &nlen) < 0) 706 goto out; 707 if (context_struct_to_string(tcontext, &t, &tlen) < 0) 708 goto out; 709 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR, 710 "security_validate_transition: denied for" 711 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s", 712 o, n, t, policydb.p_class_val_to_name[tclass-1]); 713 out: 714 kfree(o); 715 kfree(n); 716 kfree(t); 717 718 if (!selinux_enforcing) 719 return 0; 720 return -EPERM; 721 } 722 723 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid, 724 u16 orig_tclass) 725 { 726 struct context *ocontext; 727 struct context *ncontext; 728 struct context *tcontext; 729 struct class_datum *tclass_datum; 730 struct constraint_node *constraint; 731 u16 tclass; 732 int rc = 0; 733 734 if (!ss_initialized) 735 return 0; 736 737 read_lock(&policy_rwlock); 738 739 tclass = unmap_class(orig_tclass); 740 741 if (!tclass || tclass > policydb.p_classes.nprim) { 742 printk(KERN_ERR "SELinux: %s: unrecognized class %d\n", 743 __func__, tclass); 744 rc = -EINVAL; 745 goto out; 746 } 747 tclass_datum = policydb.class_val_to_struct[tclass - 1]; 748 749 ocontext = sidtab_search(&sidtab, oldsid); 750 if (!ocontext) { 751 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 752 __func__, oldsid); 753 rc = -EINVAL; 754 goto out; 755 } 756 757 ncontext = sidtab_search(&sidtab, newsid); 758 if (!ncontext) { 759 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 760 __func__, newsid); 761 rc = -EINVAL; 762 goto out; 763 } 764 765 tcontext = sidtab_search(&sidtab, tasksid); 766 if (!tcontext) { 767 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 768 __func__, tasksid); 769 rc = -EINVAL; 770 goto out; 771 } 772 773 constraint = tclass_datum->validatetrans; 774 while (constraint) { 775 if (!constraint_expr_eval(ocontext, ncontext, tcontext, 776 constraint->expr)) { 777 rc = security_validtrans_handle_fail(ocontext, ncontext, 778 tcontext, tclass); 779 goto out; 780 } 781 constraint = constraint->next; 782 } 783 784 out: 785 read_unlock(&policy_rwlock); 786 return rc; 787 } 788 789 /* 790 * security_bounded_transition - check whether the given 791 * transition is directed to bounded, or not. 792 * It returns 0, if @newsid is bounded by @oldsid. 793 * Otherwise, it returns error code. 794 * 795 * @oldsid : current security identifier 796 * @newsid : destinated security identifier 797 */ 798 int security_bounded_transition(u32 old_sid, u32 new_sid) 799 { 800 struct context *old_context, *new_context; 801 struct type_datum *type; 802 int index; 803 int rc = -EINVAL; 804 805 read_lock(&policy_rwlock); 806 807 old_context = sidtab_search(&sidtab, old_sid); 808 if (!old_context) { 809 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n", 810 __func__, old_sid); 811 goto out; 812 } 813 814 new_context = sidtab_search(&sidtab, new_sid); 815 if (!new_context) { 816 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n", 817 __func__, new_sid); 818 goto out; 819 } 820 821 /* type/domain unchanged */ 822 if (old_context->type == new_context->type) { 823 rc = 0; 824 goto out; 825 } 826 827 index = new_context->type; 828 while (true) { 829 type = policydb.type_val_to_struct[index - 1]; 830 BUG_ON(!type); 831 832 /* not bounded anymore */ 833 if (!type->bounds) { 834 rc = -EPERM; 835 break; 836 } 837 838 /* @newsid is bounded by @oldsid */ 839 if (type->bounds == old_context->type) { 840 rc = 0; 841 break; 842 } 843 index = type->bounds; 844 } 845 846 if (rc) { 847 char *old_name = NULL; 848 char *new_name = NULL; 849 u32 length; 850 851 if (!context_struct_to_string(old_context, 852 &old_name, &length) && 853 !context_struct_to_string(new_context, 854 &new_name, &length)) { 855 audit_log(current->audit_context, 856 GFP_ATOMIC, AUDIT_SELINUX_ERR, 857 "op=security_bounded_transition " 858 "result=denied " 859 "oldcontext=%s newcontext=%s", 860 old_name, new_name); 861 } 862 kfree(new_name); 863 kfree(old_name); 864 } 865 out: 866 read_unlock(&policy_rwlock); 867 868 return rc; 869 } 870 871 static void avd_init(struct av_decision *avd) 872 { 873 avd->allowed = 0; 874 avd->auditallow = 0; 875 avd->auditdeny = 0xffffffff; 876 avd->seqno = latest_granting; 877 avd->flags = 0; 878 } 879 880 881 /** 882 * security_compute_av - Compute access vector decisions. 883 * @ssid: source security identifier 884 * @tsid: target security identifier 885 * @tclass: target security class 886 * @avd: access vector decisions 887 * 888 * Compute a set of access vector decisions based on the 889 * SID pair (@ssid, @tsid) for the permissions in @tclass. 890 */ 891 void security_compute_av(u32 ssid, 892 u32 tsid, 893 u16 orig_tclass, 894 struct av_decision *avd) 895 { 896 u16 tclass; 897 struct context *scontext = NULL, *tcontext = NULL; 898 899 read_lock(&policy_rwlock); 900 avd_init(avd); 901 if (!ss_initialized) 902 goto allow; 903 904 scontext = sidtab_search(&sidtab, ssid); 905 if (!scontext) { 906 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 907 __func__, ssid); 908 goto out; 909 } 910 911 /* permissive domain? */ 912 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type)) 913 avd->flags |= AVD_FLAGS_PERMISSIVE; 914 915 tcontext = sidtab_search(&sidtab, tsid); 916 if (!tcontext) { 917 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 918 __func__, tsid); 919 goto out; 920 } 921 922 tclass = unmap_class(orig_tclass); 923 if (unlikely(orig_tclass && !tclass)) { 924 if (policydb.allow_unknown) 925 goto allow; 926 goto out; 927 } 928 context_struct_compute_av(scontext, tcontext, tclass, avd); 929 map_decision(orig_tclass, avd, policydb.allow_unknown); 930 out: 931 read_unlock(&policy_rwlock); 932 return; 933 allow: 934 avd->allowed = 0xffffffff; 935 goto out; 936 } 937 938 void security_compute_av_user(u32 ssid, 939 u32 tsid, 940 u16 tclass, 941 struct av_decision *avd) 942 { 943 struct context *scontext = NULL, *tcontext = NULL; 944 945 read_lock(&policy_rwlock); 946 avd_init(avd); 947 if (!ss_initialized) 948 goto allow; 949 950 scontext = sidtab_search(&sidtab, ssid); 951 if (!scontext) { 952 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 953 __func__, ssid); 954 goto out; 955 } 956 957 /* permissive domain? */ 958 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type)) 959 avd->flags |= AVD_FLAGS_PERMISSIVE; 960 961 tcontext = sidtab_search(&sidtab, tsid); 962 if (!tcontext) { 963 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 964 __func__, tsid); 965 goto out; 966 } 967 968 if (unlikely(!tclass)) { 969 if (policydb.allow_unknown) 970 goto allow; 971 goto out; 972 } 973 974 context_struct_compute_av(scontext, tcontext, tclass, avd); 975 out: 976 read_unlock(&policy_rwlock); 977 return; 978 allow: 979 avd->allowed = 0xffffffff; 980 goto out; 981 } 982 983 /* 984 * Write the security context string representation of 985 * the context structure `context' into a dynamically 986 * allocated string of the correct size. Set `*scontext' 987 * to point to this string and set `*scontext_len' to 988 * the length of the string. 989 */ 990 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len) 991 { 992 char *scontextp; 993 994 *scontext = NULL; 995 *scontext_len = 0; 996 997 if (context->len) { 998 *scontext_len = context->len; 999 *scontext = kstrdup(context->str, GFP_ATOMIC); 1000 if (!(*scontext)) 1001 return -ENOMEM; 1002 return 0; 1003 } 1004 1005 /* Compute the size of the context. */ 1006 *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1; 1007 *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1; 1008 *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1; 1009 *scontext_len += mls_compute_context_len(context); 1010 1011 /* Allocate space for the context; caller must free this space. */ 1012 scontextp = kmalloc(*scontext_len, GFP_ATOMIC); 1013 if (!scontextp) 1014 return -ENOMEM; 1015 *scontext = scontextp; 1016 1017 /* 1018 * Copy the user name, role name and type name into the context. 1019 */ 1020 sprintf(scontextp, "%s:%s:%s", 1021 policydb.p_user_val_to_name[context->user - 1], 1022 policydb.p_role_val_to_name[context->role - 1], 1023 policydb.p_type_val_to_name[context->type - 1]); 1024 scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1025 1 + strlen(policydb.p_role_val_to_name[context->role - 1]) + 1026 1 + strlen(policydb.p_type_val_to_name[context->type - 1]); 1027 1028 mls_sid_to_context(context, &scontextp); 1029 1030 *scontextp = 0; 1031 1032 return 0; 1033 } 1034 1035 #include "initial_sid_to_string.h" 1036 1037 const char *security_get_initial_sid_context(u32 sid) 1038 { 1039 if (unlikely(sid > SECINITSID_NUM)) 1040 return NULL; 1041 return initial_sid_to_string[sid]; 1042 } 1043 1044 static int security_sid_to_context_core(u32 sid, char **scontext, 1045 u32 *scontext_len, int force) 1046 { 1047 struct context *context; 1048 int rc = 0; 1049 1050 *scontext = NULL; 1051 *scontext_len = 0; 1052 1053 if (!ss_initialized) { 1054 if (sid <= SECINITSID_NUM) { 1055 char *scontextp; 1056 1057 *scontext_len = strlen(initial_sid_to_string[sid]) + 1; 1058 scontextp = kmalloc(*scontext_len, GFP_ATOMIC); 1059 if (!scontextp) { 1060 rc = -ENOMEM; 1061 goto out; 1062 } 1063 strcpy(scontextp, initial_sid_to_string[sid]); 1064 *scontext = scontextp; 1065 goto out; 1066 } 1067 printk(KERN_ERR "SELinux: %s: called before initial " 1068 "load_policy on unknown SID %d\n", __func__, sid); 1069 rc = -EINVAL; 1070 goto out; 1071 } 1072 read_lock(&policy_rwlock); 1073 if (force) 1074 context = sidtab_search_force(&sidtab, sid); 1075 else 1076 context = sidtab_search(&sidtab, sid); 1077 if (!context) { 1078 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1079 __func__, sid); 1080 rc = -EINVAL; 1081 goto out_unlock; 1082 } 1083 rc = context_struct_to_string(context, scontext, scontext_len); 1084 out_unlock: 1085 read_unlock(&policy_rwlock); 1086 out: 1087 return rc; 1088 1089 } 1090 1091 /** 1092 * security_sid_to_context - Obtain a context for a given SID. 1093 * @sid: security identifier, SID 1094 * @scontext: security context 1095 * @scontext_len: length in bytes 1096 * 1097 * Write the string representation of the context associated with @sid 1098 * into a dynamically allocated string of the correct size. Set @scontext 1099 * to point to this string and set @scontext_len to the length of the string. 1100 */ 1101 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len) 1102 { 1103 return security_sid_to_context_core(sid, scontext, scontext_len, 0); 1104 } 1105 1106 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len) 1107 { 1108 return security_sid_to_context_core(sid, scontext, scontext_len, 1); 1109 } 1110 1111 /* 1112 * Caveat: Mutates scontext. 1113 */ 1114 static int string_to_context_struct(struct policydb *pol, 1115 struct sidtab *sidtabp, 1116 char *scontext, 1117 u32 scontext_len, 1118 struct context *ctx, 1119 u32 def_sid) 1120 { 1121 struct role_datum *role; 1122 struct type_datum *typdatum; 1123 struct user_datum *usrdatum; 1124 char *scontextp, *p, oldc; 1125 int rc = 0; 1126 1127 context_init(ctx); 1128 1129 /* Parse the security context. */ 1130 1131 rc = -EINVAL; 1132 scontextp = (char *) scontext; 1133 1134 /* Extract the user. */ 1135 p = scontextp; 1136 while (*p && *p != ':') 1137 p++; 1138 1139 if (*p == 0) 1140 goto out; 1141 1142 *p++ = 0; 1143 1144 usrdatum = hashtab_search(pol->p_users.table, scontextp); 1145 if (!usrdatum) 1146 goto out; 1147 1148 ctx->user = usrdatum->value; 1149 1150 /* Extract role. */ 1151 scontextp = p; 1152 while (*p && *p != ':') 1153 p++; 1154 1155 if (*p == 0) 1156 goto out; 1157 1158 *p++ = 0; 1159 1160 role = hashtab_search(pol->p_roles.table, scontextp); 1161 if (!role) 1162 goto out; 1163 ctx->role = role->value; 1164 1165 /* Extract type. */ 1166 scontextp = p; 1167 while (*p && *p != ':') 1168 p++; 1169 oldc = *p; 1170 *p++ = 0; 1171 1172 typdatum = hashtab_search(pol->p_types.table, scontextp); 1173 if (!typdatum || typdatum->attribute) 1174 goto out; 1175 1176 ctx->type = typdatum->value; 1177 1178 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid); 1179 if (rc) 1180 goto out; 1181 1182 if ((p - scontext) < scontext_len) { 1183 rc = -EINVAL; 1184 goto out; 1185 } 1186 1187 /* Check the validity of the new context. */ 1188 if (!policydb_context_isvalid(pol, ctx)) { 1189 rc = -EINVAL; 1190 goto out; 1191 } 1192 rc = 0; 1193 out: 1194 if (rc) 1195 context_destroy(ctx); 1196 return rc; 1197 } 1198 1199 static int security_context_to_sid_core(const char *scontext, u32 scontext_len, 1200 u32 *sid, u32 def_sid, gfp_t gfp_flags, 1201 int force) 1202 { 1203 char *scontext2, *str = NULL; 1204 struct context context; 1205 int rc = 0; 1206 1207 if (!ss_initialized) { 1208 int i; 1209 1210 for (i = 1; i < SECINITSID_NUM; i++) { 1211 if (!strcmp(initial_sid_to_string[i], scontext)) { 1212 *sid = i; 1213 return 0; 1214 } 1215 } 1216 *sid = SECINITSID_KERNEL; 1217 return 0; 1218 } 1219 *sid = SECSID_NULL; 1220 1221 /* Copy the string so that we can modify the copy as we parse it. */ 1222 scontext2 = kmalloc(scontext_len + 1, gfp_flags); 1223 if (!scontext2) 1224 return -ENOMEM; 1225 memcpy(scontext2, scontext, scontext_len); 1226 scontext2[scontext_len] = 0; 1227 1228 if (force) { 1229 /* Save another copy for storing in uninterpreted form */ 1230 str = kstrdup(scontext2, gfp_flags); 1231 if (!str) { 1232 kfree(scontext2); 1233 return -ENOMEM; 1234 } 1235 } 1236 1237 read_lock(&policy_rwlock); 1238 rc = string_to_context_struct(&policydb, &sidtab, 1239 scontext2, scontext_len, 1240 &context, def_sid); 1241 if (rc == -EINVAL && force) { 1242 context.str = str; 1243 context.len = scontext_len; 1244 str = NULL; 1245 } else if (rc) 1246 goto out; 1247 rc = sidtab_context_to_sid(&sidtab, &context, sid); 1248 context_destroy(&context); 1249 out: 1250 read_unlock(&policy_rwlock); 1251 kfree(scontext2); 1252 kfree(str); 1253 return rc; 1254 } 1255 1256 /** 1257 * security_context_to_sid - Obtain a SID for a given security context. 1258 * @scontext: security context 1259 * @scontext_len: length in bytes 1260 * @sid: security identifier, SID 1261 * 1262 * Obtains a SID associated with the security context that 1263 * has the string representation specified by @scontext. 1264 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient 1265 * memory is available, or 0 on success. 1266 */ 1267 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid) 1268 { 1269 return security_context_to_sid_core(scontext, scontext_len, 1270 sid, SECSID_NULL, GFP_KERNEL, 0); 1271 } 1272 1273 /** 1274 * security_context_to_sid_default - Obtain a SID for a given security context, 1275 * falling back to specified default if needed. 1276 * 1277 * @scontext: security context 1278 * @scontext_len: length in bytes 1279 * @sid: security identifier, SID 1280 * @def_sid: default SID to assign on error 1281 * 1282 * Obtains a SID associated with the security context that 1283 * has the string representation specified by @scontext. 1284 * The default SID is passed to the MLS layer to be used to allow 1285 * kernel labeling of the MLS field if the MLS field is not present 1286 * (for upgrading to MLS without full relabel). 1287 * Implicitly forces adding of the context even if it cannot be mapped yet. 1288 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient 1289 * memory is available, or 0 on success. 1290 */ 1291 int security_context_to_sid_default(const char *scontext, u32 scontext_len, 1292 u32 *sid, u32 def_sid, gfp_t gfp_flags) 1293 { 1294 return security_context_to_sid_core(scontext, scontext_len, 1295 sid, def_sid, gfp_flags, 1); 1296 } 1297 1298 int security_context_to_sid_force(const char *scontext, u32 scontext_len, 1299 u32 *sid) 1300 { 1301 return security_context_to_sid_core(scontext, scontext_len, 1302 sid, SECSID_NULL, GFP_KERNEL, 1); 1303 } 1304 1305 static int compute_sid_handle_invalid_context( 1306 struct context *scontext, 1307 struct context *tcontext, 1308 u16 tclass, 1309 struct context *newcontext) 1310 { 1311 char *s = NULL, *t = NULL, *n = NULL; 1312 u32 slen, tlen, nlen; 1313 1314 if (context_struct_to_string(scontext, &s, &slen) < 0) 1315 goto out; 1316 if (context_struct_to_string(tcontext, &t, &tlen) < 0) 1317 goto out; 1318 if (context_struct_to_string(newcontext, &n, &nlen) < 0) 1319 goto out; 1320 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR, 1321 "security_compute_sid: invalid context %s" 1322 " for scontext=%s" 1323 " tcontext=%s" 1324 " tclass=%s", 1325 n, s, t, policydb.p_class_val_to_name[tclass-1]); 1326 out: 1327 kfree(s); 1328 kfree(t); 1329 kfree(n); 1330 if (!selinux_enforcing) 1331 return 0; 1332 return -EACCES; 1333 } 1334 1335 static int security_compute_sid(u32 ssid, 1336 u32 tsid, 1337 u16 orig_tclass, 1338 u32 specified, 1339 u32 *out_sid, 1340 bool kern) 1341 { 1342 struct context *scontext = NULL, *tcontext = NULL, newcontext; 1343 struct role_trans *roletr = NULL; 1344 struct avtab_key avkey; 1345 struct avtab_datum *avdatum; 1346 struct avtab_node *node; 1347 u16 tclass; 1348 int rc = 0; 1349 1350 if (!ss_initialized) { 1351 switch (orig_tclass) { 1352 case SECCLASS_PROCESS: /* kernel value */ 1353 *out_sid = ssid; 1354 break; 1355 default: 1356 *out_sid = tsid; 1357 break; 1358 } 1359 goto out; 1360 } 1361 1362 context_init(&newcontext); 1363 1364 read_lock(&policy_rwlock); 1365 1366 if (kern) 1367 tclass = unmap_class(orig_tclass); 1368 else 1369 tclass = orig_tclass; 1370 1371 scontext = sidtab_search(&sidtab, ssid); 1372 if (!scontext) { 1373 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1374 __func__, ssid); 1375 rc = -EINVAL; 1376 goto out_unlock; 1377 } 1378 tcontext = sidtab_search(&sidtab, tsid); 1379 if (!tcontext) { 1380 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1381 __func__, tsid); 1382 rc = -EINVAL; 1383 goto out_unlock; 1384 } 1385 1386 /* Set the user identity. */ 1387 switch (specified) { 1388 case AVTAB_TRANSITION: 1389 case AVTAB_CHANGE: 1390 /* Use the process user identity. */ 1391 newcontext.user = scontext->user; 1392 break; 1393 case AVTAB_MEMBER: 1394 /* Use the related object owner. */ 1395 newcontext.user = tcontext->user; 1396 break; 1397 } 1398 1399 /* Set the role and type to default values. */ 1400 if (tclass == policydb.process_class) { 1401 /* Use the current role and type of process. */ 1402 newcontext.role = scontext->role; 1403 newcontext.type = scontext->type; 1404 } else { 1405 /* Use the well-defined object role. */ 1406 newcontext.role = OBJECT_R_VAL; 1407 /* Use the type of the related object. */ 1408 newcontext.type = tcontext->type; 1409 } 1410 1411 /* Look for a type transition/member/change rule. */ 1412 avkey.source_type = scontext->type; 1413 avkey.target_type = tcontext->type; 1414 avkey.target_class = tclass; 1415 avkey.specified = specified; 1416 avdatum = avtab_search(&policydb.te_avtab, &avkey); 1417 1418 /* If no permanent rule, also check for enabled conditional rules */ 1419 if (!avdatum) { 1420 node = avtab_search_node(&policydb.te_cond_avtab, &avkey); 1421 for (; node; node = avtab_search_node_next(node, specified)) { 1422 if (node->key.specified & AVTAB_ENABLED) { 1423 avdatum = &node->datum; 1424 break; 1425 } 1426 } 1427 } 1428 1429 if (avdatum) { 1430 /* Use the type from the type transition/member/change rule. */ 1431 newcontext.type = avdatum->data; 1432 } 1433 1434 /* Check for class-specific changes. */ 1435 if (tclass == policydb.process_class) { 1436 if (specified & AVTAB_TRANSITION) { 1437 /* Look for a role transition rule. */ 1438 for (roletr = policydb.role_tr; roletr; 1439 roletr = roletr->next) { 1440 if (roletr->role == scontext->role && 1441 roletr->type == tcontext->type) { 1442 /* Use the role transition rule. */ 1443 newcontext.role = roletr->new_role; 1444 break; 1445 } 1446 } 1447 } 1448 } 1449 1450 /* Set the MLS attributes. 1451 This is done last because it may allocate memory. */ 1452 rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext); 1453 if (rc) 1454 goto out_unlock; 1455 1456 /* Check the validity of the context. */ 1457 if (!policydb_context_isvalid(&policydb, &newcontext)) { 1458 rc = compute_sid_handle_invalid_context(scontext, 1459 tcontext, 1460 tclass, 1461 &newcontext); 1462 if (rc) 1463 goto out_unlock; 1464 } 1465 /* Obtain the sid for the context. */ 1466 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid); 1467 out_unlock: 1468 read_unlock(&policy_rwlock); 1469 context_destroy(&newcontext); 1470 out: 1471 return rc; 1472 } 1473 1474 /** 1475 * security_transition_sid - Compute the SID for a new subject/object. 1476 * @ssid: source security identifier 1477 * @tsid: target security identifier 1478 * @tclass: target security class 1479 * @out_sid: security identifier for new subject/object 1480 * 1481 * Compute a SID to use for labeling a new subject or object in the 1482 * class @tclass based on a SID pair (@ssid, @tsid). 1483 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1484 * if insufficient memory is available, or %0 if the new SID was 1485 * computed successfully. 1486 */ 1487 int security_transition_sid(u32 ssid, 1488 u32 tsid, 1489 u16 tclass, 1490 u32 *out_sid) 1491 { 1492 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, 1493 out_sid, true); 1494 } 1495 1496 int security_transition_sid_user(u32 ssid, 1497 u32 tsid, 1498 u16 tclass, 1499 u32 *out_sid) 1500 { 1501 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, 1502 out_sid, false); 1503 } 1504 1505 /** 1506 * security_member_sid - Compute the SID for member selection. 1507 * @ssid: source security identifier 1508 * @tsid: target security identifier 1509 * @tclass: target security class 1510 * @out_sid: security identifier for selected member 1511 * 1512 * Compute a SID to use when selecting a member of a polyinstantiated 1513 * object of class @tclass based on a SID pair (@ssid, @tsid). 1514 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1515 * if insufficient memory is available, or %0 if the SID was 1516 * computed successfully. 1517 */ 1518 int security_member_sid(u32 ssid, 1519 u32 tsid, 1520 u16 tclass, 1521 u32 *out_sid) 1522 { 1523 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid, 1524 false); 1525 } 1526 1527 /** 1528 * security_change_sid - Compute the SID for object relabeling. 1529 * @ssid: source security identifier 1530 * @tsid: target security identifier 1531 * @tclass: target security class 1532 * @out_sid: security identifier for selected member 1533 * 1534 * Compute a SID to use for relabeling an object of class @tclass 1535 * based on a SID pair (@ssid, @tsid). 1536 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1537 * if insufficient memory is available, or %0 if the SID was 1538 * computed successfully. 1539 */ 1540 int security_change_sid(u32 ssid, 1541 u32 tsid, 1542 u16 tclass, 1543 u32 *out_sid) 1544 { 1545 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid, 1546 false); 1547 } 1548 1549 /* Clone the SID into the new SID table. */ 1550 static int clone_sid(u32 sid, 1551 struct context *context, 1552 void *arg) 1553 { 1554 struct sidtab *s = arg; 1555 1556 if (sid > SECINITSID_NUM) 1557 return sidtab_insert(s, sid, context); 1558 else 1559 return 0; 1560 } 1561 1562 static inline int convert_context_handle_invalid_context(struct context *context) 1563 { 1564 int rc = 0; 1565 1566 if (selinux_enforcing) { 1567 rc = -EINVAL; 1568 } else { 1569 char *s; 1570 u32 len; 1571 1572 if (!context_struct_to_string(context, &s, &len)) { 1573 printk(KERN_WARNING 1574 "SELinux: Context %s would be invalid if enforcing\n", 1575 s); 1576 kfree(s); 1577 } 1578 } 1579 return rc; 1580 } 1581 1582 struct convert_context_args { 1583 struct policydb *oldp; 1584 struct policydb *newp; 1585 }; 1586 1587 /* 1588 * Convert the values in the security context 1589 * structure `c' from the values specified 1590 * in the policy `p->oldp' to the values specified 1591 * in the policy `p->newp'. Verify that the 1592 * context is valid under the new policy. 1593 */ 1594 static int convert_context(u32 key, 1595 struct context *c, 1596 void *p) 1597 { 1598 struct convert_context_args *args; 1599 struct context oldc; 1600 struct ocontext *oc; 1601 struct mls_range *range; 1602 struct role_datum *role; 1603 struct type_datum *typdatum; 1604 struct user_datum *usrdatum; 1605 char *s; 1606 u32 len; 1607 int rc = 0; 1608 1609 if (key <= SECINITSID_NUM) 1610 goto out; 1611 1612 args = p; 1613 1614 if (c->str) { 1615 struct context ctx; 1616 s = kstrdup(c->str, GFP_KERNEL); 1617 if (!s) { 1618 rc = -ENOMEM; 1619 goto out; 1620 } 1621 rc = string_to_context_struct(args->newp, NULL, s, 1622 c->len, &ctx, SECSID_NULL); 1623 kfree(s); 1624 if (!rc) { 1625 printk(KERN_INFO 1626 "SELinux: Context %s became valid (mapped).\n", 1627 c->str); 1628 /* Replace string with mapped representation. */ 1629 kfree(c->str); 1630 memcpy(c, &ctx, sizeof(*c)); 1631 goto out; 1632 } else if (rc == -EINVAL) { 1633 /* Retain string representation for later mapping. */ 1634 rc = 0; 1635 goto out; 1636 } else { 1637 /* Other error condition, e.g. ENOMEM. */ 1638 printk(KERN_ERR 1639 "SELinux: Unable to map context %s, rc = %d.\n", 1640 c->str, -rc); 1641 goto out; 1642 } 1643 } 1644 1645 rc = context_cpy(&oldc, c); 1646 if (rc) 1647 goto out; 1648 1649 rc = -EINVAL; 1650 1651 /* Convert the user. */ 1652 usrdatum = hashtab_search(args->newp->p_users.table, 1653 args->oldp->p_user_val_to_name[c->user - 1]); 1654 if (!usrdatum) 1655 goto bad; 1656 c->user = usrdatum->value; 1657 1658 /* Convert the role. */ 1659 role = hashtab_search(args->newp->p_roles.table, 1660 args->oldp->p_role_val_to_name[c->role - 1]); 1661 if (!role) 1662 goto bad; 1663 c->role = role->value; 1664 1665 /* Convert the type. */ 1666 typdatum = hashtab_search(args->newp->p_types.table, 1667 args->oldp->p_type_val_to_name[c->type - 1]); 1668 if (!typdatum) 1669 goto bad; 1670 c->type = typdatum->value; 1671 1672 /* Convert the MLS fields if dealing with MLS policies */ 1673 if (args->oldp->mls_enabled && args->newp->mls_enabled) { 1674 rc = mls_convert_context(args->oldp, args->newp, c); 1675 if (rc) 1676 goto bad; 1677 } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) { 1678 /* 1679 * Switching between MLS and non-MLS policy: 1680 * free any storage used by the MLS fields in the 1681 * context for all existing entries in the sidtab. 1682 */ 1683 mls_context_destroy(c); 1684 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) { 1685 /* 1686 * Switching between non-MLS and MLS policy: 1687 * ensure that the MLS fields of the context for all 1688 * existing entries in the sidtab are filled in with a 1689 * suitable default value, likely taken from one of the 1690 * initial SIDs. 1691 */ 1692 oc = args->newp->ocontexts[OCON_ISID]; 1693 while (oc && oc->sid[0] != SECINITSID_UNLABELED) 1694 oc = oc->next; 1695 if (!oc) { 1696 printk(KERN_ERR "SELinux: unable to look up" 1697 " the initial SIDs list\n"); 1698 goto bad; 1699 } 1700 range = &oc->context[0].range; 1701 rc = mls_range_set(c, range); 1702 if (rc) 1703 goto bad; 1704 } 1705 1706 /* Check the validity of the new context. */ 1707 if (!policydb_context_isvalid(args->newp, c)) { 1708 rc = convert_context_handle_invalid_context(&oldc); 1709 if (rc) 1710 goto bad; 1711 } 1712 1713 context_destroy(&oldc); 1714 rc = 0; 1715 out: 1716 return rc; 1717 bad: 1718 /* Map old representation to string and save it. */ 1719 if (context_struct_to_string(&oldc, &s, &len)) 1720 return -ENOMEM; 1721 context_destroy(&oldc); 1722 context_destroy(c); 1723 c->str = s; 1724 c->len = len; 1725 printk(KERN_INFO 1726 "SELinux: Context %s became invalid (unmapped).\n", 1727 c->str); 1728 rc = 0; 1729 goto out; 1730 } 1731 1732 static void security_load_policycaps(void) 1733 { 1734 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps, 1735 POLICYDB_CAPABILITY_NETPEER); 1736 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps, 1737 POLICYDB_CAPABILITY_OPENPERM); 1738 } 1739 1740 extern void selinux_complete_init(void); 1741 static int security_preserve_bools(struct policydb *p); 1742 1743 /** 1744 * security_load_policy - Load a security policy configuration. 1745 * @data: binary policy data 1746 * @len: length of data in bytes 1747 * 1748 * Load a new set of security policy configuration data, 1749 * validate it and convert the SID table as necessary. 1750 * This function will flush the access vector cache after 1751 * loading the new policy. 1752 */ 1753 int security_load_policy(void *data, size_t len) 1754 { 1755 struct policydb oldpolicydb, newpolicydb; 1756 struct sidtab oldsidtab, newsidtab; 1757 struct selinux_mapping *oldmap, *map = NULL; 1758 struct convert_context_args args; 1759 u32 seqno; 1760 u16 map_size; 1761 int rc = 0; 1762 struct policy_file file = { data, len }, *fp = &file; 1763 1764 if (!ss_initialized) { 1765 avtab_cache_init(); 1766 rc = policydb_read(&policydb, fp); 1767 if (rc) { 1768 avtab_cache_destroy(); 1769 return rc; 1770 } 1771 1772 rc = selinux_set_mapping(&policydb, secclass_map, 1773 ¤t_mapping, 1774 ¤t_mapping_size); 1775 if (rc) { 1776 policydb_destroy(&policydb); 1777 avtab_cache_destroy(); 1778 return rc; 1779 } 1780 1781 rc = policydb_load_isids(&policydb, &sidtab); 1782 if (rc) { 1783 policydb_destroy(&policydb); 1784 avtab_cache_destroy(); 1785 return rc; 1786 } 1787 1788 security_load_policycaps(); 1789 ss_initialized = 1; 1790 seqno = ++latest_granting; 1791 selinux_complete_init(); 1792 avc_ss_reset(seqno); 1793 selnl_notify_policyload(seqno); 1794 selinux_netlbl_cache_invalidate(); 1795 selinux_xfrm_notify_policyload(); 1796 return 0; 1797 } 1798 1799 #if 0 1800 sidtab_hash_eval(&sidtab, "sids"); 1801 #endif 1802 1803 rc = policydb_read(&newpolicydb, fp); 1804 if (rc) 1805 return rc; 1806 1807 /* If switching between different policy types, log MLS status */ 1808 if (policydb.mls_enabled && !newpolicydb.mls_enabled) 1809 printk(KERN_INFO "SELinux: Disabling MLS support...\n"); 1810 else if (!policydb.mls_enabled && newpolicydb.mls_enabled) 1811 printk(KERN_INFO "SELinux: Enabling MLS support...\n"); 1812 1813 rc = policydb_load_isids(&newpolicydb, &newsidtab); 1814 if (rc) { 1815 printk(KERN_ERR "SELinux: unable to load the initial SIDs\n"); 1816 policydb_destroy(&newpolicydb); 1817 return rc; 1818 } 1819 1820 rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size); 1821 if (rc) 1822 goto err; 1823 1824 rc = security_preserve_bools(&newpolicydb); 1825 if (rc) { 1826 printk(KERN_ERR "SELinux: unable to preserve booleans\n"); 1827 goto err; 1828 } 1829 1830 /* Clone the SID table. */ 1831 sidtab_shutdown(&sidtab); 1832 1833 rc = sidtab_map(&sidtab, clone_sid, &newsidtab); 1834 if (rc) 1835 goto err; 1836 1837 /* 1838 * Convert the internal representations of contexts 1839 * in the new SID table. 1840 */ 1841 args.oldp = &policydb; 1842 args.newp = &newpolicydb; 1843 rc = sidtab_map(&newsidtab, convert_context, &args); 1844 if (rc) { 1845 printk(KERN_ERR "SELinux: unable to convert the internal" 1846 " representation of contexts in the new SID" 1847 " table\n"); 1848 goto err; 1849 } 1850 1851 /* Save the old policydb and SID table to free later. */ 1852 memcpy(&oldpolicydb, &policydb, sizeof policydb); 1853 sidtab_set(&oldsidtab, &sidtab); 1854 1855 /* Install the new policydb and SID table. */ 1856 write_lock_irq(&policy_rwlock); 1857 memcpy(&policydb, &newpolicydb, sizeof policydb); 1858 sidtab_set(&sidtab, &newsidtab); 1859 security_load_policycaps(); 1860 oldmap = current_mapping; 1861 current_mapping = map; 1862 current_mapping_size = map_size; 1863 seqno = ++latest_granting; 1864 write_unlock_irq(&policy_rwlock); 1865 1866 /* Free the old policydb and SID table. */ 1867 policydb_destroy(&oldpolicydb); 1868 sidtab_destroy(&oldsidtab); 1869 kfree(oldmap); 1870 1871 avc_ss_reset(seqno); 1872 selnl_notify_policyload(seqno); 1873 selinux_netlbl_cache_invalidate(); 1874 selinux_xfrm_notify_policyload(); 1875 1876 return 0; 1877 1878 err: 1879 kfree(map); 1880 sidtab_destroy(&newsidtab); 1881 policydb_destroy(&newpolicydb); 1882 return rc; 1883 1884 } 1885 1886 /** 1887 * security_port_sid - Obtain the SID for a port. 1888 * @protocol: protocol number 1889 * @port: port number 1890 * @out_sid: security identifier 1891 */ 1892 int security_port_sid(u8 protocol, u16 port, u32 *out_sid) 1893 { 1894 struct ocontext *c; 1895 int rc = 0; 1896 1897 read_lock(&policy_rwlock); 1898 1899 c = policydb.ocontexts[OCON_PORT]; 1900 while (c) { 1901 if (c->u.port.protocol == protocol && 1902 c->u.port.low_port <= port && 1903 c->u.port.high_port >= port) 1904 break; 1905 c = c->next; 1906 } 1907 1908 if (c) { 1909 if (!c->sid[0]) { 1910 rc = sidtab_context_to_sid(&sidtab, 1911 &c->context[0], 1912 &c->sid[0]); 1913 if (rc) 1914 goto out; 1915 } 1916 *out_sid = c->sid[0]; 1917 } else { 1918 *out_sid = SECINITSID_PORT; 1919 } 1920 1921 out: 1922 read_unlock(&policy_rwlock); 1923 return rc; 1924 } 1925 1926 /** 1927 * security_netif_sid - Obtain the SID for a network interface. 1928 * @name: interface name 1929 * @if_sid: interface SID 1930 */ 1931 int security_netif_sid(char *name, u32 *if_sid) 1932 { 1933 int rc = 0; 1934 struct ocontext *c; 1935 1936 read_lock(&policy_rwlock); 1937 1938 c = policydb.ocontexts[OCON_NETIF]; 1939 while (c) { 1940 if (strcmp(name, c->u.name) == 0) 1941 break; 1942 c = c->next; 1943 } 1944 1945 if (c) { 1946 if (!c->sid[0] || !c->sid[1]) { 1947 rc = sidtab_context_to_sid(&sidtab, 1948 &c->context[0], 1949 &c->sid[0]); 1950 if (rc) 1951 goto out; 1952 rc = sidtab_context_to_sid(&sidtab, 1953 &c->context[1], 1954 &c->sid[1]); 1955 if (rc) 1956 goto out; 1957 } 1958 *if_sid = c->sid[0]; 1959 } else 1960 *if_sid = SECINITSID_NETIF; 1961 1962 out: 1963 read_unlock(&policy_rwlock); 1964 return rc; 1965 } 1966 1967 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask) 1968 { 1969 int i, fail = 0; 1970 1971 for (i = 0; i < 4; i++) 1972 if (addr[i] != (input[i] & mask[i])) { 1973 fail = 1; 1974 break; 1975 } 1976 1977 return !fail; 1978 } 1979 1980 /** 1981 * security_node_sid - Obtain the SID for a node (host). 1982 * @domain: communication domain aka address family 1983 * @addrp: address 1984 * @addrlen: address length in bytes 1985 * @out_sid: security identifier 1986 */ 1987 int security_node_sid(u16 domain, 1988 void *addrp, 1989 u32 addrlen, 1990 u32 *out_sid) 1991 { 1992 int rc = 0; 1993 struct ocontext *c; 1994 1995 read_lock(&policy_rwlock); 1996 1997 switch (domain) { 1998 case AF_INET: { 1999 u32 addr; 2000 2001 if (addrlen != sizeof(u32)) { 2002 rc = -EINVAL; 2003 goto out; 2004 } 2005 2006 addr = *((u32 *)addrp); 2007 2008 c = policydb.ocontexts[OCON_NODE]; 2009 while (c) { 2010 if (c->u.node.addr == (addr & c->u.node.mask)) 2011 break; 2012 c = c->next; 2013 } 2014 break; 2015 } 2016 2017 case AF_INET6: 2018 if (addrlen != sizeof(u64) * 2) { 2019 rc = -EINVAL; 2020 goto out; 2021 } 2022 c = policydb.ocontexts[OCON_NODE6]; 2023 while (c) { 2024 if (match_ipv6_addrmask(addrp, c->u.node6.addr, 2025 c->u.node6.mask)) 2026 break; 2027 c = c->next; 2028 } 2029 break; 2030 2031 default: 2032 *out_sid = SECINITSID_NODE; 2033 goto out; 2034 } 2035 2036 if (c) { 2037 if (!c->sid[0]) { 2038 rc = sidtab_context_to_sid(&sidtab, 2039 &c->context[0], 2040 &c->sid[0]); 2041 if (rc) 2042 goto out; 2043 } 2044 *out_sid = c->sid[0]; 2045 } else { 2046 *out_sid = SECINITSID_NODE; 2047 } 2048 2049 out: 2050 read_unlock(&policy_rwlock); 2051 return rc; 2052 } 2053 2054 #define SIDS_NEL 25 2055 2056 /** 2057 * security_get_user_sids - Obtain reachable SIDs for a user. 2058 * @fromsid: starting SID 2059 * @username: username 2060 * @sids: array of reachable SIDs for user 2061 * @nel: number of elements in @sids 2062 * 2063 * Generate the set of SIDs for legal security contexts 2064 * for a given user that can be reached by @fromsid. 2065 * Set *@sids to point to a dynamically allocated 2066 * array containing the set of SIDs. Set *@nel to the 2067 * number of elements in the array. 2068 */ 2069 2070 int security_get_user_sids(u32 fromsid, 2071 char *username, 2072 u32 **sids, 2073 u32 *nel) 2074 { 2075 struct context *fromcon, usercon; 2076 u32 *mysids = NULL, *mysids2, sid; 2077 u32 mynel = 0, maxnel = SIDS_NEL; 2078 struct user_datum *user; 2079 struct role_datum *role; 2080 struct ebitmap_node *rnode, *tnode; 2081 int rc = 0, i, j; 2082 2083 *sids = NULL; 2084 *nel = 0; 2085 2086 if (!ss_initialized) 2087 goto out; 2088 2089 read_lock(&policy_rwlock); 2090 2091 context_init(&usercon); 2092 2093 fromcon = sidtab_search(&sidtab, fromsid); 2094 if (!fromcon) { 2095 rc = -EINVAL; 2096 goto out_unlock; 2097 } 2098 2099 user = hashtab_search(policydb.p_users.table, username); 2100 if (!user) { 2101 rc = -EINVAL; 2102 goto out_unlock; 2103 } 2104 usercon.user = user->value; 2105 2106 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC); 2107 if (!mysids) { 2108 rc = -ENOMEM; 2109 goto out_unlock; 2110 } 2111 2112 ebitmap_for_each_positive_bit(&user->roles, rnode, i) { 2113 role = policydb.role_val_to_struct[i]; 2114 usercon.role = i + 1; 2115 ebitmap_for_each_positive_bit(&role->types, tnode, j) { 2116 usercon.type = j + 1; 2117 2118 if (mls_setup_user_range(fromcon, user, &usercon)) 2119 continue; 2120 2121 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid); 2122 if (rc) 2123 goto out_unlock; 2124 if (mynel < maxnel) { 2125 mysids[mynel++] = sid; 2126 } else { 2127 maxnel += SIDS_NEL; 2128 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC); 2129 if (!mysids2) { 2130 rc = -ENOMEM; 2131 goto out_unlock; 2132 } 2133 memcpy(mysids2, mysids, mynel * sizeof(*mysids2)); 2134 kfree(mysids); 2135 mysids = mysids2; 2136 mysids[mynel++] = sid; 2137 } 2138 } 2139 } 2140 2141 out_unlock: 2142 read_unlock(&policy_rwlock); 2143 if (rc || !mynel) { 2144 kfree(mysids); 2145 goto out; 2146 } 2147 2148 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL); 2149 if (!mysids2) { 2150 rc = -ENOMEM; 2151 kfree(mysids); 2152 goto out; 2153 } 2154 for (i = 0, j = 0; i < mynel; i++) { 2155 rc = avc_has_perm_noaudit(fromsid, mysids[i], 2156 SECCLASS_PROCESS, /* kernel value */ 2157 PROCESS__TRANSITION, AVC_STRICT, 2158 NULL); 2159 if (!rc) 2160 mysids2[j++] = mysids[i]; 2161 cond_resched(); 2162 } 2163 rc = 0; 2164 kfree(mysids); 2165 *sids = mysids2; 2166 *nel = j; 2167 out: 2168 return rc; 2169 } 2170 2171 /** 2172 * security_genfs_sid - Obtain a SID for a file in a filesystem 2173 * @fstype: filesystem type 2174 * @path: path from root of mount 2175 * @sclass: file security class 2176 * @sid: SID for path 2177 * 2178 * Obtain a SID to use for a file in a filesystem that 2179 * cannot support xattr or use a fixed labeling behavior like 2180 * transition SIDs or task SIDs. 2181 */ 2182 int security_genfs_sid(const char *fstype, 2183 char *path, 2184 u16 orig_sclass, 2185 u32 *sid) 2186 { 2187 int len; 2188 u16 sclass; 2189 struct genfs *genfs; 2190 struct ocontext *c; 2191 int rc = 0, cmp = 0; 2192 2193 while (path[0] == '/' && path[1] == '/') 2194 path++; 2195 2196 read_lock(&policy_rwlock); 2197 2198 sclass = unmap_class(orig_sclass); 2199 2200 for (genfs = policydb.genfs; genfs; genfs = genfs->next) { 2201 cmp = strcmp(fstype, genfs->fstype); 2202 if (cmp <= 0) 2203 break; 2204 } 2205 2206 if (!genfs || cmp) { 2207 *sid = SECINITSID_UNLABELED; 2208 rc = -ENOENT; 2209 goto out; 2210 } 2211 2212 for (c = genfs->head; c; c = c->next) { 2213 len = strlen(c->u.name); 2214 if ((!c->v.sclass || sclass == c->v.sclass) && 2215 (strncmp(c->u.name, path, len) == 0)) 2216 break; 2217 } 2218 2219 if (!c) { 2220 *sid = SECINITSID_UNLABELED; 2221 rc = -ENOENT; 2222 goto out; 2223 } 2224 2225 if (!c->sid[0]) { 2226 rc = sidtab_context_to_sid(&sidtab, 2227 &c->context[0], 2228 &c->sid[0]); 2229 if (rc) 2230 goto out; 2231 } 2232 2233 *sid = c->sid[0]; 2234 out: 2235 read_unlock(&policy_rwlock); 2236 return rc; 2237 } 2238 2239 /** 2240 * security_fs_use - Determine how to handle labeling for a filesystem. 2241 * @fstype: filesystem type 2242 * @behavior: labeling behavior 2243 * @sid: SID for filesystem (superblock) 2244 */ 2245 int security_fs_use( 2246 const char *fstype, 2247 unsigned int *behavior, 2248 u32 *sid) 2249 { 2250 int rc = 0; 2251 struct ocontext *c; 2252 2253 read_lock(&policy_rwlock); 2254 2255 c = policydb.ocontexts[OCON_FSUSE]; 2256 while (c) { 2257 if (strcmp(fstype, c->u.name) == 0) 2258 break; 2259 c = c->next; 2260 } 2261 2262 if (c) { 2263 *behavior = c->v.behavior; 2264 if (!c->sid[0]) { 2265 rc = sidtab_context_to_sid(&sidtab, 2266 &c->context[0], 2267 &c->sid[0]); 2268 if (rc) 2269 goto out; 2270 } 2271 *sid = c->sid[0]; 2272 } else { 2273 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid); 2274 if (rc) { 2275 *behavior = SECURITY_FS_USE_NONE; 2276 rc = 0; 2277 } else { 2278 *behavior = SECURITY_FS_USE_GENFS; 2279 } 2280 } 2281 2282 out: 2283 read_unlock(&policy_rwlock); 2284 return rc; 2285 } 2286 2287 int security_get_bools(int *len, char ***names, int **values) 2288 { 2289 int i, rc = -ENOMEM; 2290 2291 read_lock(&policy_rwlock); 2292 *names = NULL; 2293 *values = NULL; 2294 2295 *len = policydb.p_bools.nprim; 2296 if (!*len) { 2297 rc = 0; 2298 goto out; 2299 } 2300 2301 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC); 2302 if (!*names) 2303 goto err; 2304 2305 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC); 2306 if (!*values) 2307 goto err; 2308 2309 for (i = 0; i < *len; i++) { 2310 size_t name_len; 2311 (*values)[i] = policydb.bool_val_to_struct[i]->state; 2312 name_len = strlen(policydb.p_bool_val_to_name[i]) + 1; 2313 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC); 2314 if (!(*names)[i]) 2315 goto err; 2316 strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len); 2317 (*names)[i][name_len - 1] = 0; 2318 } 2319 rc = 0; 2320 out: 2321 read_unlock(&policy_rwlock); 2322 return rc; 2323 err: 2324 if (*names) { 2325 for (i = 0; i < *len; i++) 2326 kfree((*names)[i]); 2327 } 2328 kfree(*values); 2329 goto out; 2330 } 2331 2332 2333 int security_set_bools(int len, int *values) 2334 { 2335 int i, rc = 0; 2336 int lenp, seqno = 0; 2337 struct cond_node *cur; 2338 2339 write_lock_irq(&policy_rwlock); 2340 2341 lenp = policydb.p_bools.nprim; 2342 if (len != lenp) { 2343 rc = -EFAULT; 2344 goto out; 2345 } 2346 2347 for (i = 0; i < len; i++) { 2348 if (!!values[i] != policydb.bool_val_to_struct[i]->state) { 2349 audit_log(current->audit_context, GFP_ATOMIC, 2350 AUDIT_MAC_CONFIG_CHANGE, 2351 "bool=%s val=%d old_val=%d auid=%u ses=%u", 2352 policydb.p_bool_val_to_name[i], 2353 !!values[i], 2354 policydb.bool_val_to_struct[i]->state, 2355 audit_get_loginuid(current), 2356 audit_get_sessionid(current)); 2357 } 2358 if (values[i]) 2359 policydb.bool_val_to_struct[i]->state = 1; 2360 else 2361 policydb.bool_val_to_struct[i]->state = 0; 2362 } 2363 2364 for (cur = policydb.cond_list; cur; cur = cur->next) { 2365 rc = evaluate_cond_node(&policydb, cur); 2366 if (rc) 2367 goto out; 2368 } 2369 2370 seqno = ++latest_granting; 2371 2372 out: 2373 write_unlock_irq(&policy_rwlock); 2374 if (!rc) { 2375 avc_ss_reset(seqno); 2376 selnl_notify_policyload(seqno); 2377 selinux_xfrm_notify_policyload(); 2378 } 2379 return rc; 2380 } 2381 2382 int security_get_bool_value(int bool) 2383 { 2384 int rc = 0; 2385 int len; 2386 2387 read_lock(&policy_rwlock); 2388 2389 len = policydb.p_bools.nprim; 2390 if (bool >= len) { 2391 rc = -EFAULT; 2392 goto out; 2393 } 2394 2395 rc = policydb.bool_val_to_struct[bool]->state; 2396 out: 2397 read_unlock(&policy_rwlock); 2398 return rc; 2399 } 2400 2401 static int security_preserve_bools(struct policydb *p) 2402 { 2403 int rc, nbools = 0, *bvalues = NULL, i; 2404 char **bnames = NULL; 2405 struct cond_bool_datum *booldatum; 2406 struct cond_node *cur; 2407 2408 rc = security_get_bools(&nbools, &bnames, &bvalues); 2409 if (rc) 2410 goto out; 2411 for (i = 0; i < nbools; i++) { 2412 booldatum = hashtab_search(p->p_bools.table, bnames[i]); 2413 if (booldatum) 2414 booldatum->state = bvalues[i]; 2415 } 2416 for (cur = p->cond_list; cur; cur = cur->next) { 2417 rc = evaluate_cond_node(p, cur); 2418 if (rc) 2419 goto out; 2420 } 2421 2422 out: 2423 if (bnames) { 2424 for (i = 0; i < nbools; i++) 2425 kfree(bnames[i]); 2426 } 2427 kfree(bnames); 2428 kfree(bvalues); 2429 return rc; 2430 } 2431 2432 /* 2433 * security_sid_mls_copy() - computes a new sid based on the given 2434 * sid and the mls portion of mls_sid. 2435 */ 2436 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid) 2437 { 2438 struct context *context1; 2439 struct context *context2; 2440 struct context newcon; 2441 char *s; 2442 u32 len; 2443 int rc = 0; 2444 2445 if (!ss_initialized || !policydb.mls_enabled) { 2446 *new_sid = sid; 2447 goto out; 2448 } 2449 2450 context_init(&newcon); 2451 2452 read_lock(&policy_rwlock); 2453 context1 = sidtab_search(&sidtab, sid); 2454 if (!context1) { 2455 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2456 __func__, sid); 2457 rc = -EINVAL; 2458 goto out_unlock; 2459 } 2460 2461 context2 = sidtab_search(&sidtab, mls_sid); 2462 if (!context2) { 2463 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2464 __func__, mls_sid); 2465 rc = -EINVAL; 2466 goto out_unlock; 2467 } 2468 2469 newcon.user = context1->user; 2470 newcon.role = context1->role; 2471 newcon.type = context1->type; 2472 rc = mls_context_cpy(&newcon, context2); 2473 if (rc) 2474 goto out_unlock; 2475 2476 /* Check the validity of the new context. */ 2477 if (!policydb_context_isvalid(&policydb, &newcon)) { 2478 rc = convert_context_handle_invalid_context(&newcon); 2479 if (rc) 2480 goto bad; 2481 } 2482 2483 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid); 2484 goto out_unlock; 2485 2486 bad: 2487 if (!context_struct_to_string(&newcon, &s, &len)) { 2488 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR, 2489 "security_sid_mls_copy: invalid context %s", s); 2490 kfree(s); 2491 } 2492 2493 out_unlock: 2494 read_unlock(&policy_rwlock); 2495 context_destroy(&newcon); 2496 out: 2497 return rc; 2498 } 2499 2500 /** 2501 * security_net_peersid_resolve - Compare and resolve two network peer SIDs 2502 * @nlbl_sid: NetLabel SID 2503 * @nlbl_type: NetLabel labeling protocol type 2504 * @xfrm_sid: XFRM SID 2505 * 2506 * Description: 2507 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be 2508 * resolved into a single SID it is returned via @peer_sid and the function 2509 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function 2510 * returns a negative value. A table summarizing the behavior is below: 2511 * 2512 * | function return | @sid 2513 * ------------------------------+-----------------+----------------- 2514 * no peer labels | 0 | SECSID_NULL 2515 * single peer label | 0 | <peer_label> 2516 * multiple, consistent labels | 0 | <peer_label> 2517 * multiple, inconsistent labels | -<errno> | SECSID_NULL 2518 * 2519 */ 2520 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type, 2521 u32 xfrm_sid, 2522 u32 *peer_sid) 2523 { 2524 int rc; 2525 struct context *nlbl_ctx; 2526 struct context *xfrm_ctx; 2527 2528 /* handle the common (which also happens to be the set of easy) cases 2529 * right away, these two if statements catch everything involving a 2530 * single or absent peer SID/label */ 2531 if (xfrm_sid == SECSID_NULL) { 2532 *peer_sid = nlbl_sid; 2533 return 0; 2534 } 2535 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label 2536 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label 2537 * is present */ 2538 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) { 2539 *peer_sid = xfrm_sid; 2540 return 0; 2541 } 2542 2543 /* we don't need to check ss_initialized here since the only way both 2544 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the 2545 * security server was initialized and ss_initialized was true */ 2546 if (!policydb.mls_enabled) { 2547 *peer_sid = SECSID_NULL; 2548 return 0; 2549 } 2550 2551 read_lock(&policy_rwlock); 2552 2553 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid); 2554 if (!nlbl_ctx) { 2555 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2556 __func__, nlbl_sid); 2557 rc = -EINVAL; 2558 goto out_slowpath; 2559 } 2560 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid); 2561 if (!xfrm_ctx) { 2562 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2563 __func__, xfrm_sid); 2564 rc = -EINVAL; 2565 goto out_slowpath; 2566 } 2567 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES); 2568 2569 out_slowpath: 2570 read_unlock(&policy_rwlock); 2571 if (rc == 0) 2572 /* at present NetLabel SIDs/labels really only carry MLS 2573 * information so if the MLS portion of the NetLabel SID 2574 * matches the MLS portion of the labeled XFRM SID/label 2575 * then pass along the XFRM SID as it is the most 2576 * expressive */ 2577 *peer_sid = xfrm_sid; 2578 else 2579 *peer_sid = SECSID_NULL; 2580 return rc; 2581 } 2582 2583 static int get_classes_callback(void *k, void *d, void *args) 2584 { 2585 struct class_datum *datum = d; 2586 char *name = k, **classes = args; 2587 int value = datum->value - 1; 2588 2589 classes[value] = kstrdup(name, GFP_ATOMIC); 2590 if (!classes[value]) 2591 return -ENOMEM; 2592 2593 return 0; 2594 } 2595 2596 int security_get_classes(char ***classes, int *nclasses) 2597 { 2598 int rc = -ENOMEM; 2599 2600 read_lock(&policy_rwlock); 2601 2602 *nclasses = policydb.p_classes.nprim; 2603 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC); 2604 if (!*classes) 2605 goto out; 2606 2607 rc = hashtab_map(policydb.p_classes.table, get_classes_callback, 2608 *classes); 2609 if (rc < 0) { 2610 int i; 2611 for (i = 0; i < *nclasses; i++) 2612 kfree((*classes)[i]); 2613 kfree(*classes); 2614 } 2615 2616 out: 2617 read_unlock(&policy_rwlock); 2618 return rc; 2619 } 2620 2621 static int get_permissions_callback(void *k, void *d, void *args) 2622 { 2623 struct perm_datum *datum = d; 2624 char *name = k, **perms = args; 2625 int value = datum->value - 1; 2626 2627 perms[value] = kstrdup(name, GFP_ATOMIC); 2628 if (!perms[value]) 2629 return -ENOMEM; 2630 2631 return 0; 2632 } 2633 2634 int security_get_permissions(char *class, char ***perms, int *nperms) 2635 { 2636 int rc = -ENOMEM, i; 2637 struct class_datum *match; 2638 2639 read_lock(&policy_rwlock); 2640 2641 match = hashtab_search(policydb.p_classes.table, class); 2642 if (!match) { 2643 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n", 2644 __func__, class); 2645 rc = -EINVAL; 2646 goto out; 2647 } 2648 2649 *nperms = match->permissions.nprim; 2650 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC); 2651 if (!*perms) 2652 goto out; 2653 2654 if (match->comdatum) { 2655 rc = hashtab_map(match->comdatum->permissions.table, 2656 get_permissions_callback, *perms); 2657 if (rc < 0) 2658 goto err; 2659 } 2660 2661 rc = hashtab_map(match->permissions.table, get_permissions_callback, 2662 *perms); 2663 if (rc < 0) 2664 goto err; 2665 2666 out: 2667 read_unlock(&policy_rwlock); 2668 return rc; 2669 2670 err: 2671 read_unlock(&policy_rwlock); 2672 for (i = 0; i < *nperms; i++) 2673 kfree((*perms)[i]); 2674 kfree(*perms); 2675 return rc; 2676 } 2677 2678 int security_get_reject_unknown(void) 2679 { 2680 return policydb.reject_unknown; 2681 } 2682 2683 int security_get_allow_unknown(void) 2684 { 2685 return policydb.allow_unknown; 2686 } 2687 2688 /** 2689 * security_policycap_supported - Check for a specific policy capability 2690 * @req_cap: capability 2691 * 2692 * Description: 2693 * This function queries the currently loaded policy to see if it supports the 2694 * capability specified by @req_cap. Returns true (1) if the capability is 2695 * supported, false (0) if it isn't supported. 2696 * 2697 */ 2698 int security_policycap_supported(unsigned int req_cap) 2699 { 2700 int rc; 2701 2702 read_lock(&policy_rwlock); 2703 rc = ebitmap_get_bit(&policydb.policycaps, req_cap); 2704 read_unlock(&policy_rwlock); 2705 2706 return rc; 2707 } 2708 2709 struct selinux_audit_rule { 2710 u32 au_seqno; 2711 struct context au_ctxt; 2712 }; 2713 2714 void selinux_audit_rule_free(void *vrule) 2715 { 2716 struct selinux_audit_rule *rule = vrule; 2717 2718 if (rule) { 2719 context_destroy(&rule->au_ctxt); 2720 kfree(rule); 2721 } 2722 } 2723 2724 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule) 2725 { 2726 struct selinux_audit_rule *tmprule; 2727 struct role_datum *roledatum; 2728 struct type_datum *typedatum; 2729 struct user_datum *userdatum; 2730 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule; 2731 int rc = 0; 2732 2733 *rule = NULL; 2734 2735 if (!ss_initialized) 2736 return -EOPNOTSUPP; 2737 2738 switch (field) { 2739 case AUDIT_SUBJ_USER: 2740 case AUDIT_SUBJ_ROLE: 2741 case AUDIT_SUBJ_TYPE: 2742 case AUDIT_OBJ_USER: 2743 case AUDIT_OBJ_ROLE: 2744 case AUDIT_OBJ_TYPE: 2745 /* only 'equals' and 'not equals' fit user, role, and type */ 2746 if (op != Audit_equal && op != Audit_not_equal) 2747 return -EINVAL; 2748 break; 2749 case AUDIT_SUBJ_SEN: 2750 case AUDIT_SUBJ_CLR: 2751 case AUDIT_OBJ_LEV_LOW: 2752 case AUDIT_OBJ_LEV_HIGH: 2753 /* we do not allow a range, indicated by the presense of '-' */ 2754 if (strchr(rulestr, '-')) 2755 return -EINVAL; 2756 break; 2757 default: 2758 /* only the above fields are valid */ 2759 return -EINVAL; 2760 } 2761 2762 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL); 2763 if (!tmprule) 2764 return -ENOMEM; 2765 2766 context_init(&tmprule->au_ctxt); 2767 2768 read_lock(&policy_rwlock); 2769 2770 tmprule->au_seqno = latest_granting; 2771 2772 switch (field) { 2773 case AUDIT_SUBJ_USER: 2774 case AUDIT_OBJ_USER: 2775 userdatum = hashtab_search(policydb.p_users.table, rulestr); 2776 if (!userdatum) 2777 rc = -EINVAL; 2778 else 2779 tmprule->au_ctxt.user = userdatum->value; 2780 break; 2781 case AUDIT_SUBJ_ROLE: 2782 case AUDIT_OBJ_ROLE: 2783 roledatum = hashtab_search(policydb.p_roles.table, rulestr); 2784 if (!roledatum) 2785 rc = -EINVAL; 2786 else 2787 tmprule->au_ctxt.role = roledatum->value; 2788 break; 2789 case AUDIT_SUBJ_TYPE: 2790 case AUDIT_OBJ_TYPE: 2791 typedatum = hashtab_search(policydb.p_types.table, rulestr); 2792 if (!typedatum) 2793 rc = -EINVAL; 2794 else 2795 tmprule->au_ctxt.type = typedatum->value; 2796 break; 2797 case AUDIT_SUBJ_SEN: 2798 case AUDIT_SUBJ_CLR: 2799 case AUDIT_OBJ_LEV_LOW: 2800 case AUDIT_OBJ_LEV_HIGH: 2801 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC); 2802 break; 2803 } 2804 2805 read_unlock(&policy_rwlock); 2806 2807 if (rc) { 2808 selinux_audit_rule_free(tmprule); 2809 tmprule = NULL; 2810 } 2811 2812 *rule = tmprule; 2813 2814 return rc; 2815 } 2816 2817 /* Check to see if the rule contains any selinux fields */ 2818 int selinux_audit_rule_known(struct audit_krule *rule) 2819 { 2820 int i; 2821 2822 for (i = 0; i < rule->field_count; i++) { 2823 struct audit_field *f = &rule->fields[i]; 2824 switch (f->type) { 2825 case AUDIT_SUBJ_USER: 2826 case AUDIT_SUBJ_ROLE: 2827 case AUDIT_SUBJ_TYPE: 2828 case AUDIT_SUBJ_SEN: 2829 case AUDIT_SUBJ_CLR: 2830 case AUDIT_OBJ_USER: 2831 case AUDIT_OBJ_ROLE: 2832 case AUDIT_OBJ_TYPE: 2833 case AUDIT_OBJ_LEV_LOW: 2834 case AUDIT_OBJ_LEV_HIGH: 2835 return 1; 2836 } 2837 } 2838 2839 return 0; 2840 } 2841 2842 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule, 2843 struct audit_context *actx) 2844 { 2845 struct context *ctxt; 2846 struct mls_level *level; 2847 struct selinux_audit_rule *rule = vrule; 2848 int match = 0; 2849 2850 if (!rule) { 2851 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR, 2852 "selinux_audit_rule_match: missing rule\n"); 2853 return -ENOENT; 2854 } 2855 2856 read_lock(&policy_rwlock); 2857 2858 if (rule->au_seqno < latest_granting) { 2859 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR, 2860 "selinux_audit_rule_match: stale rule\n"); 2861 match = -ESTALE; 2862 goto out; 2863 } 2864 2865 ctxt = sidtab_search(&sidtab, sid); 2866 if (!ctxt) { 2867 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR, 2868 "selinux_audit_rule_match: unrecognized SID %d\n", 2869 sid); 2870 match = -ENOENT; 2871 goto out; 2872 } 2873 2874 /* a field/op pair that is not caught here will simply fall through 2875 without a match */ 2876 switch (field) { 2877 case AUDIT_SUBJ_USER: 2878 case AUDIT_OBJ_USER: 2879 switch (op) { 2880 case Audit_equal: 2881 match = (ctxt->user == rule->au_ctxt.user); 2882 break; 2883 case Audit_not_equal: 2884 match = (ctxt->user != rule->au_ctxt.user); 2885 break; 2886 } 2887 break; 2888 case AUDIT_SUBJ_ROLE: 2889 case AUDIT_OBJ_ROLE: 2890 switch (op) { 2891 case Audit_equal: 2892 match = (ctxt->role == rule->au_ctxt.role); 2893 break; 2894 case Audit_not_equal: 2895 match = (ctxt->role != rule->au_ctxt.role); 2896 break; 2897 } 2898 break; 2899 case AUDIT_SUBJ_TYPE: 2900 case AUDIT_OBJ_TYPE: 2901 switch (op) { 2902 case Audit_equal: 2903 match = (ctxt->type == rule->au_ctxt.type); 2904 break; 2905 case Audit_not_equal: 2906 match = (ctxt->type != rule->au_ctxt.type); 2907 break; 2908 } 2909 break; 2910 case AUDIT_SUBJ_SEN: 2911 case AUDIT_SUBJ_CLR: 2912 case AUDIT_OBJ_LEV_LOW: 2913 case AUDIT_OBJ_LEV_HIGH: 2914 level = ((field == AUDIT_SUBJ_SEN || 2915 field == AUDIT_OBJ_LEV_LOW) ? 2916 &ctxt->range.level[0] : &ctxt->range.level[1]); 2917 switch (op) { 2918 case Audit_equal: 2919 match = mls_level_eq(&rule->au_ctxt.range.level[0], 2920 level); 2921 break; 2922 case Audit_not_equal: 2923 match = !mls_level_eq(&rule->au_ctxt.range.level[0], 2924 level); 2925 break; 2926 case Audit_lt: 2927 match = (mls_level_dom(&rule->au_ctxt.range.level[0], 2928 level) && 2929 !mls_level_eq(&rule->au_ctxt.range.level[0], 2930 level)); 2931 break; 2932 case Audit_le: 2933 match = mls_level_dom(&rule->au_ctxt.range.level[0], 2934 level); 2935 break; 2936 case Audit_gt: 2937 match = (mls_level_dom(level, 2938 &rule->au_ctxt.range.level[0]) && 2939 !mls_level_eq(level, 2940 &rule->au_ctxt.range.level[0])); 2941 break; 2942 case Audit_ge: 2943 match = mls_level_dom(level, 2944 &rule->au_ctxt.range.level[0]); 2945 break; 2946 } 2947 } 2948 2949 out: 2950 read_unlock(&policy_rwlock); 2951 return match; 2952 } 2953 2954 static int (*aurule_callback)(void) = audit_update_lsm_rules; 2955 2956 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid, 2957 u16 class, u32 perms, u32 *retained) 2958 { 2959 int err = 0; 2960 2961 if (event == AVC_CALLBACK_RESET && aurule_callback) 2962 err = aurule_callback(); 2963 return err; 2964 } 2965 2966 static int __init aurule_init(void) 2967 { 2968 int err; 2969 2970 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET, 2971 SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0); 2972 if (err) 2973 panic("avc_add_callback() failed, error %d\n", err); 2974 2975 return err; 2976 } 2977 __initcall(aurule_init); 2978 2979 #ifdef CONFIG_NETLABEL 2980 /** 2981 * security_netlbl_cache_add - Add an entry to the NetLabel cache 2982 * @secattr: the NetLabel packet security attributes 2983 * @sid: the SELinux SID 2984 * 2985 * Description: 2986 * Attempt to cache the context in @ctx, which was derived from the packet in 2987 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has 2988 * already been initialized. 2989 * 2990 */ 2991 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr, 2992 u32 sid) 2993 { 2994 u32 *sid_cache; 2995 2996 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC); 2997 if (sid_cache == NULL) 2998 return; 2999 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC); 3000 if (secattr->cache == NULL) { 3001 kfree(sid_cache); 3002 return; 3003 } 3004 3005 *sid_cache = sid; 3006 secattr->cache->free = kfree; 3007 secattr->cache->data = sid_cache; 3008 secattr->flags |= NETLBL_SECATTR_CACHE; 3009 } 3010 3011 /** 3012 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID 3013 * @secattr: the NetLabel packet security attributes 3014 * @sid: the SELinux SID 3015 * 3016 * Description: 3017 * Convert the given NetLabel security attributes in @secattr into a 3018 * SELinux SID. If the @secattr field does not contain a full SELinux 3019 * SID/context then use SECINITSID_NETMSG as the foundation. If possibile the 3020 * 'cache' field of @secattr is set and the CACHE flag is set; this is to 3021 * allow the @secattr to be used by NetLabel to cache the secattr to SID 3022 * conversion for future lookups. Returns zero on success, negative values on 3023 * failure. 3024 * 3025 */ 3026 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr, 3027 u32 *sid) 3028 { 3029 int rc = -EIDRM; 3030 struct context *ctx; 3031 struct context ctx_new; 3032 3033 if (!ss_initialized) { 3034 *sid = SECSID_NULL; 3035 return 0; 3036 } 3037 3038 read_lock(&policy_rwlock); 3039 3040 if (secattr->flags & NETLBL_SECATTR_CACHE) { 3041 *sid = *(u32 *)secattr->cache->data; 3042 rc = 0; 3043 } else if (secattr->flags & NETLBL_SECATTR_SECID) { 3044 *sid = secattr->attr.secid; 3045 rc = 0; 3046 } else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) { 3047 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG); 3048 if (ctx == NULL) 3049 goto netlbl_secattr_to_sid_return; 3050 3051 context_init(&ctx_new); 3052 ctx_new.user = ctx->user; 3053 ctx_new.role = ctx->role; 3054 ctx_new.type = ctx->type; 3055 mls_import_netlbl_lvl(&ctx_new, secattr); 3056 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) { 3057 if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat, 3058 secattr->attr.mls.cat) != 0) 3059 goto netlbl_secattr_to_sid_return; 3060 memcpy(&ctx_new.range.level[1].cat, 3061 &ctx_new.range.level[0].cat, 3062 sizeof(ctx_new.range.level[0].cat)); 3063 } 3064 if (mls_context_isvalid(&policydb, &ctx_new) != 1) 3065 goto netlbl_secattr_to_sid_return_cleanup; 3066 3067 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid); 3068 if (rc != 0) 3069 goto netlbl_secattr_to_sid_return_cleanup; 3070 3071 security_netlbl_cache_add(secattr, *sid); 3072 3073 ebitmap_destroy(&ctx_new.range.level[0].cat); 3074 } else { 3075 *sid = SECSID_NULL; 3076 rc = 0; 3077 } 3078 3079 netlbl_secattr_to_sid_return: 3080 read_unlock(&policy_rwlock); 3081 return rc; 3082 netlbl_secattr_to_sid_return_cleanup: 3083 ebitmap_destroy(&ctx_new.range.level[0].cat); 3084 goto netlbl_secattr_to_sid_return; 3085 } 3086 3087 /** 3088 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr 3089 * @sid: the SELinux SID 3090 * @secattr: the NetLabel packet security attributes 3091 * 3092 * Description: 3093 * Convert the given SELinux SID in @sid into a NetLabel security attribute. 3094 * Returns zero on success, negative values on failure. 3095 * 3096 */ 3097 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr) 3098 { 3099 int rc; 3100 struct context *ctx; 3101 3102 if (!ss_initialized) 3103 return 0; 3104 3105 read_lock(&policy_rwlock); 3106 ctx = sidtab_search(&sidtab, sid); 3107 if (ctx == NULL) { 3108 rc = -ENOENT; 3109 goto netlbl_sid_to_secattr_failure; 3110 } 3111 secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1], 3112 GFP_ATOMIC); 3113 if (secattr->domain == NULL) { 3114 rc = -ENOMEM; 3115 goto netlbl_sid_to_secattr_failure; 3116 } 3117 secattr->attr.secid = sid; 3118 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID; 3119 mls_export_netlbl_lvl(ctx, secattr); 3120 rc = mls_export_netlbl_cat(ctx, secattr); 3121 if (rc != 0) 3122 goto netlbl_sid_to_secattr_failure; 3123 read_unlock(&policy_rwlock); 3124 3125 return 0; 3126 3127 netlbl_sid_to_secattr_failure: 3128 read_unlock(&policy_rwlock); 3129 return rc; 3130 } 3131 #endif /* CONFIG_NETLABEL */ 3132