1 /* 2 * Implementation of the security services. 3 * 4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil> 5 * James Morris <jmorris@redhat.com> 6 * 7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> 8 * 9 * Support for enhanced MLS infrastructure. 10 * Support for context based audit filters. 11 * 12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com> 13 * 14 * Added conditional policy language extensions 15 * 16 * Updated: Hewlett-Packard <paul.moore@hp.com> 17 * 18 * Added support for NetLabel 19 * 20 * Updated: Chad Sellers <csellers@tresys.com> 21 * 22 * Added validation of kernel classes and permissions 23 * 24 * Copyright (C) 2006 Hewlett-Packard Development Company, L.P. 25 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc. 26 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC 27 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 28 * This program is free software; you can redistribute it and/or modify 29 * it under the terms of the GNU General Public License as published by 30 * the Free Software Foundation, version 2. 31 */ 32 #include <linux/kernel.h> 33 #include <linux/slab.h> 34 #include <linux/string.h> 35 #include <linux/spinlock.h> 36 #include <linux/rcupdate.h> 37 #include <linux/errno.h> 38 #include <linux/in.h> 39 #include <linux/sched.h> 40 #include <linux/audit.h> 41 #include <linux/mutex.h> 42 #include <net/sock.h> 43 #include <net/netlabel.h> 44 45 #include "flask.h" 46 #include "avc.h" 47 #include "avc_ss.h" 48 #include "security.h" 49 #include "context.h" 50 #include "policydb.h" 51 #include "sidtab.h" 52 #include "services.h" 53 #include "conditional.h" 54 #include "mls.h" 55 #include "objsec.h" 56 #include "selinux_netlabel.h" 57 #include "xfrm.h" 58 #include "ebitmap.h" 59 60 extern void selnl_notify_policyload(u32 seqno); 61 unsigned int policydb_loaded_version; 62 63 /* 64 * This is declared in avc.c 65 */ 66 extern const struct selinux_class_perm selinux_class_perm; 67 68 static DEFINE_RWLOCK(policy_rwlock); 69 #define POLICY_RDLOCK read_lock(&policy_rwlock) 70 #define POLICY_WRLOCK write_lock_irq(&policy_rwlock) 71 #define POLICY_RDUNLOCK read_unlock(&policy_rwlock) 72 #define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock) 73 74 static DEFINE_MUTEX(load_mutex); 75 #define LOAD_LOCK mutex_lock(&load_mutex) 76 #define LOAD_UNLOCK mutex_unlock(&load_mutex) 77 78 static struct sidtab sidtab; 79 struct policydb policydb; 80 int ss_initialized = 0; 81 82 /* 83 * The largest sequence number that has been used when 84 * providing an access decision to the access vector cache. 85 * The sequence number only changes when a policy change 86 * occurs. 87 */ 88 static u32 latest_granting = 0; 89 90 /* Forward declaration. */ 91 static int context_struct_to_string(struct context *context, char **scontext, 92 u32 *scontext_len); 93 94 /* 95 * Return the boolean value of a constraint expression 96 * when it is applied to the specified source and target 97 * security contexts. 98 * 99 * xcontext is a special beast... It is used by the validatetrans rules 100 * only. For these rules, scontext is the context before the transition, 101 * tcontext is the context after the transition, and xcontext is the context 102 * of the process performing the transition. All other callers of 103 * constraint_expr_eval should pass in NULL for xcontext. 104 */ 105 static int constraint_expr_eval(struct context *scontext, 106 struct context *tcontext, 107 struct context *xcontext, 108 struct constraint_expr *cexpr) 109 { 110 u32 val1, val2; 111 struct context *c; 112 struct role_datum *r1, *r2; 113 struct mls_level *l1, *l2; 114 struct constraint_expr *e; 115 int s[CEXPR_MAXDEPTH]; 116 int sp = -1; 117 118 for (e = cexpr; e; e = e->next) { 119 switch (e->expr_type) { 120 case CEXPR_NOT: 121 BUG_ON(sp < 0); 122 s[sp] = !s[sp]; 123 break; 124 case CEXPR_AND: 125 BUG_ON(sp < 1); 126 sp--; 127 s[sp] &= s[sp+1]; 128 break; 129 case CEXPR_OR: 130 BUG_ON(sp < 1); 131 sp--; 132 s[sp] |= s[sp+1]; 133 break; 134 case CEXPR_ATTR: 135 if (sp == (CEXPR_MAXDEPTH-1)) 136 return 0; 137 switch (e->attr) { 138 case CEXPR_USER: 139 val1 = scontext->user; 140 val2 = tcontext->user; 141 break; 142 case CEXPR_TYPE: 143 val1 = scontext->type; 144 val2 = tcontext->type; 145 break; 146 case CEXPR_ROLE: 147 val1 = scontext->role; 148 val2 = tcontext->role; 149 r1 = policydb.role_val_to_struct[val1 - 1]; 150 r2 = policydb.role_val_to_struct[val2 - 1]; 151 switch (e->op) { 152 case CEXPR_DOM: 153 s[++sp] = ebitmap_get_bit(&r1->dominates, 154 val2 - 1); 155 continue; 156 case CEXPR_DOMBY: 157 s[++sp] = ebitmap_get_bit(&r2->dominates, 158 val1 - 1); 159 continue; 160 case CEXPR_INCOMP: 161 s[++sp] = ( !ebitmap_get_bit(&r1->dominates, 162 val2 - 1) && 163 !ebitmap_get_bit(&r2->dominates, 164 val1 - 1) ); 165 continue; 166 default: 167 break; 168 } 169 break; 170 case CEXPR_L1L2: 171 l1 = &(scontext->range.level[0]); 172 l2 = &(tcontext->range.level[0]); 173 goto mls_ops; 174 case CEXPR_L1H2: 175 l1 = &(scontext->range.level[0]); 176 l2 = &(tcontext->range.level[1]); 177 goto mls_ops; 178 case CEXPR_H1L2: 179 l1 = &(scontext->range.level[1]); 180 l2 = &(tcontext->range.level[0]); 181 goto mls_ops; 182 case CEXPR_H1H2: 183 l1 = &(scontext->range.level[1]); 184 l2 = &(tcontext->range.level[1]); 185 goto mls_ops; 186 case CEXPR_L1H1: 187 l1 = &(scontext->range.level[0]); 188 l2 = &(scontext->range.level[1]); 189 goto mls_ops; 190 case CEXPR_L2H2: 191 l1 = &(tcontext->range.level[0]); 192 l2 = &(tcontext->range.level[1]); 193 goto mls_ops; 194 mls_ops: 195 switch (e->op) { 196 case CEXPR_EQ: 197 s[++sp] = mls_level_eq(l1, l2); 198 continue; 199 case CEXPR_NEQ: 200 s[++sp] = !mls_level_eq(l1, l2); 201 continue; 202 case CEXPR_DOM: 203 s[++sp] = mls_level_dom(l1, l2); 204 continue; 205 case CEXPR_DOMBY: 206 s[++sp] = mls_level_dom(l2, l1); 207 continue; 208 case CEXPR_INCOMP: 209 s[++sp] = mls_level_incomp(l2, l1); 210 continue; 211 default: 212 BUG(); 213 return 0; 214 } 215 break; 216 default: 217 BUG(); 218 return 0; 219 } 220 221 switch (e->op) { 222 case CEXPR_EQ: 223 s[++sp] = (val1 == val2); 224 break; 225 case CEXPR_NEQ: 226 s[++sp] = (val1 != val2); 227 break; 228 default: 229 BUG(); 230 return 0; 231 } 232 break; 233 case CEXPR_NAMES: 234 if (sp == (CEXPR_MAXDEPTH-1)) 235 return 0; 236 c = scontext; 237 if (e->attr & CEXPR_TARGET) 238 c = tcontext; 239 else if (e->attr & CEXPR_XTARGET) { 240 c = xcontext; 241 if (!c) { 242 BUG(); 243 return 0; 244 } 245 } 246 if (e->attr & CEXPR_USER) 247 val1 = c->user; 248 else if (e->attr & CEXPR_ROLE) 249 val1 = c->role; 250 else if (e->attr & CEXPR_TYPE) 251 val1 = c->type; 252 else { 253 BUG(); 254 return 0; 255 } 256 257 switch (e->op) { 258 case CEXPR_EQ: 259 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1); 260 break; 261 case CEXPR_NEQ: 262 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1); 263 break; 264 default: 265 BUG(); 266 return 0; 267 } 268 break; 269 default: 270 BUG(); 271 return 0; 272 } 273 } 274 275 BUG_ON(sp != 0); 276 return s[0]; 277 } 278 279 /* 280 * Compute access vectors based on a context structure pair for 281 * the permissions in a particular class. 282 */ 283 static int context_struct_compute_av(struct context *scontext, 284 struct context *tcontext, 285 u16 tclass, 286 u32 requested, 287 struct av_decision *avd) 288 { 289 struct constraint_node *constraint; 290 struct role_allow *ra; 291 struct avtab_key avkey; 292 struct avtab_node *node; 293 struct class_datum *tclass_datum; 294 struct ebitmap *sattr, *tattr; 295 struct ebitmap_node *snode, *tnode; 296 unsigned int i, j; 297 298 /* 299 * Remap extended Netlink classes for old policy versions. 300 * Do this here rather than socket_type_to_security_class() 301 * in case a newer policy version is loaded, allowing sockets 302 * to remain in the correct class. 303 */ 304 if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS) 305 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET && 306 tclass <= SECCLASS_NETLINK_DNRT_SOCKET) 307 tclass = SECCLASS_NETLINK_SOCKET; 308 309 if (!tclass || tclass > policydb.p_classes.nprim) { 310 printk(KERN_ERR "security_compute_av: unrecognized class %d\n", 311 tclass); 312 return -EINVAL; 313 } 314 tclass_datum = policydb.class_val_to_struct[tclass - 1]; 315 316 /* 317 * Initialize the access vectors to the default values. 318 */ 319 avd->allowed = 0; 320 avd->decided = 0xffffffff; 321 avd->auditallow = 0; 322 avd->auditdeny = 0xffffffff; 323 avd->seqno = latest_granting; 324 325 /* 326 * If a specific type enforcement rule was defined for 327 * this permission check, then use it. 328 */ 329 avkey.target_class = tclass; 330 avkey.specified = AVTAB_AV; 331 sattr = &policydb.type_attr_map[scontext->type - 1]; 332 tattr = &policydb.type_attr_map[tcontext->type - 1]; 333 ebitmap_for_each_bit(sattr, snode, i) { 334 if (!ebitmap_node_get_bit(snode, i)) 335 continue; 336 ebitmap_for_each_bit(tattr, tnode, j) { 337 if (!ebitmap_node_get_bit(tnode, j)) 338 continue; 339 avkey.source_type = i + 1; 340 avkey.target_type = j + 1; 341 for (node = avtab_search_node(&policydb.te_avtab, &avkey); 342 node != NULL; 343 node = avtab_search_node_next(node, avkey.specified)) { 344 if (node->key.specified == AVTAB_ALLOWED) 345 avd->allowed |= node->datum.data; 346 else if (node->key.specified == AVTAB_AUDITALLOW) 347 avd->auditallow |= node->datum.data; 348 else if (node->key.specified == AVTAB_AUDITDENY) 349 avd->auditdeny &= node->datum.data; 350 } 351 352 /* Check conditional av table for additional permissions */ 353 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd); 354 355 } 356 } 357 358 /* 359 * Remove any permissions prohibited by a constraint (this includes 360 * the MLS policy). 361 */ 362 constraint = tclass_datum->constraints; 363 while (constraint) { 364 if ((constraint->permissions & (avd->allowed)) && 365 !constraint_expr_eval(scontext, tcontext, NULL, 366 constraint->expr)) { 367 avd->allowed = (avd->allowed) & ~(constraint->permissions); 368 } 369 constraint = constraint->next; 370 } 371 372 /* 373 * If checking process transition permission and the 374 * role is changing, then check the (current_role, new_role) 375 * pair. 376 */ 377 if (tclass == SECCLASS_PROCESS && 378 (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) && 379 scontext->role != tcontext->role) { 380 for (ra = policydb.role_allow; ra; ra = ra->next) { 381 if (scontext->role == ra->role && 382 tcontext->role == ra->new_role) 383 break; 384 } 385 if (!ra) 386 avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION | 387 PROCESS__DYNTRANSITION); 388 } 389 390 return 0; 391 } 392 393 static int security_validtrans_handle_fail(struct context *ocontext, 394 struct context *ncontext, 395 struct context *tcontext, 396 u16 tclass) 397 { 398 char *o = NULL, *n = NULL, *t = NULL; 399 u32 olen, nlen, tlen; 400 401 if (context_struct_to_string(ocontext, &o, &olen) < 0) 402 goto out; 403 if (context_struct_to_string(ncontext, &n, &nlen) < 0) 404 goto out; 405 if (context_struct_to_string(tcontext, &t, &tlen) < 0) 406 goto out; 407 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR, 408 "security_validate_transition: denied for" 409 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s", 410 o, n, t, policydb.p_class_val_to_name[tclass-1]); 411 out: 412 kfree(o); 413 kfree(n); 414 kfree(t); 415 416 if (!selinux_enforcing) 417 return 0; 418 return -EPERM; 419 } 420 421 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid, 422 u16 tclass) 423 { 424 struct context *ocontext; 425 struct context *ncontext; 426 struct context *tcontext; 427 struct class_datum *tclass_datum; 428 struct constraint_node *constraint; 429 int rc = 0; 430 431 if (!ss_initialized) 432 return 0; 433 434 POLICY_RDLOCK; 435 436 /* 437 * Remap extended Netlink classes for old policy versions. 438 * Do this here rather than socket_type_to_security_class() 439 * in case a newer policy version is loaded, allowing sockets 440 * to remain in the correct class. 441 */ 442 if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS) 443 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET && 444 tclass <= SECCLASS_NETLINK_DNRT_SOCKET) 445 tclass = SECCLASS_NETLINK_SOCKET; 446 447 if (!tclass || tclass > policydb.p_classes.nprim) { 448 printk(KERN_ERR "security_validate_transition: " 449 "unrecognized class %d\n", tclass); 450 rc = -EINVAL; 451 goto out; 452 } 453 tclass_datum = policydb.class_val_to_struct[tclass - 1]; 454 455 ocontext = sidtab_search(&sidtab, oldsid); 456 if (!ocontext) { 457 printk(KERN_ERR "security_validate_transition: " 458 " unrecognized SID %d\n", oldsid); 459 rc = -EINVAL; 460 goto out; 461 } 462 463 ncontext = sidtab_search(&sidtab, newsid); 464 if (!ncontext) { 465 printk(KERN_ERR "security_validate_transition: " 466 " unrecognized SID %d\n", newsid); 467 rc = -EINVAL; 468 goto out; 469 } 470 471 tcontext = sidtab_search(&sidtab, tasksid); 472 if (!tcontext) { 473 printk(KERN_ERR "security_validate_transition: " 474 " unrecognized SID %d\n", tasksid); 475 rc = -EINVAL; 476 goto out; 477 } 478 479 constraint = tclass_datum->validatetrans; 480 while (constraint) { 481 if (!constraint_expr_eval(ocontext, ncontext, tcontext, 482 constraint->expr)) { 483 rc = security_validtrans_handle_fail(ocontext, ncontext, 484 tcontext, tclass); 485 goto out; 486 } 487 constraint = constraint->next; 488 } 489 490 out: 491 POLICY_RDUNLOCK; 492 return rc; 493 } 494 495 /** 496 * security_compute_av - Compute access vector decisions. 497 * @ssid: source security identifier 498 * @tsid: target security identifier 499 * @tclass: target security class 500 * @requested: requested permissions 501 * @avd: access vector decisions 502 * 503 * Compute a set of access vector decisions based on the 504 * SID pair (@ssid, @tsid) for the permissions in @tclass. 505 * Return -%EINVAL if any of the parameters are invalid or %0 506 * if the access vector decisions were computed successfully. 507 */ 508 int security_compute_av(u32 ssid, 509 u32 tsid, 510 u16 tclass, 511 u32 requested, 512 struct av_decision *avd) 513 { 514 struct context *scontext = NULL, *tcontext = NULL; 515 int rc = 0; 516 517 if (!ss_initialized) { 518 avd->allowed = 0xffffffff; 519 avd->decided = 0xffffffff; 520 avd->auditallow = 0; 521 avd->auditdeny = 0xffffffff; 522 avd->seqno = latest_granting; 523 return 0; 524 } 525 526 POLICY_RDLOCK; 527 528 scontext = sidtab_search(&sidtab, ssid); 529 if (!scontext) { 530 printk(KERN_ERR "security_compute_av: unrecognized SID %d\n", 531 ssid); 532 rc = -EINVAL; 533 goto out; 534 } 535 tcontext = sidtab_search(&sidtab, tsid); 536 if (!tcontext) { 537 printk(KERN_ERR "security_compute_av: unrecognized SID %d\n", 538 tsid); 539 rc = -EINVAL; 540 goto out; 541 } 542 543 rc = context_struct_compute_av(scontext, tcontext, tclass, 544 requested, avd); 545 out: 546 POLICY_RDUNLOCK; 547 return rc; 548 } 549 550 /* 551 * Write the security context string representation of 552 * the context structure `context' into a dynamically 553 * allocated string of the correct size. Set `*scontext' 554 * to point to this string and set `*scontext_len' to 555 * the length of the string. 556 */ 557 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len) 558 { 559 char *scontextp; 560 561 *scontext = NULL; 562 *scontext_len = 0; 563 564 /* Compute the size of the context. */ 565 *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1; 566 *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1; 567 *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1; 568 *scontext_len += mls_compute_context_len(context); 569 570 /* Allocate space for the context; caller must free this space. */ 571 scontextp = kmalloc(*scontext_len, GFP_ATOMIC); 572 if (!scontextp) { 573 return -ENOMEM; 574 } 575 *scontext = scontextp; 576 577 /* 578 * Copy the user name, role name and type name into the context. 579 */ 580 sprintf(scontextp, "%s:%s:%s", 581 policydb.p_user_val_to_name[context->user - 1], 582 policydb.p_role_val_to_name[context->role - 1], 583 policydb.p_type_val_to_name[context->type - 1]); 584 scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) + 585 1 + strlen(policydb.p_role_val_to_name[context->role - 1]) + 586 1 + strlen(policydb.p_type_val_to_name[context->type - 1]); 587 588 mls_sid_to_context(context, &scontextp); 589 590 *scontextp = 0; 591 592 return 0; 593 } 594 595 #include "initial_sid_to_string.h" 596 597 /** 598 * security_sid_to_context - Obtain a context for a given SID. 599 * @sid: security identifier, SID 600 * @scontext: security context 601 * @scontext_len: length in bytes 602 * 603 * Write the string representation of the context associated with @sid 604 * into a dynamically allocated string of the correct size. Set @scontext 605 * to point to this string and set @scontext_len to the length of the string. 606 */ 607 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len) 608 { 609 struct context *context; 610 int rc = 0; 611 612 *scontext = NULL; 613 *scontext_len = 0; 614 615 if (!ss_initialized) { 616 if (sid <= SECINITSID_NUM) { 617 char *scontextp; 618 619 *scontext_len = strlen(initial_sid_to_string[sid]) + 1; 620 scontextp = kmalloc(*scontext_len,GFP_ATOMIC); 621 if (!scontextp) { 622 rc = -ENOMEM; 623 goto out; 624 } 625 strcpy(scontextp, initial_sid_to_string[sid]); 626 *scontext = scontextp; 627 goto out; 628 } 629 printk(KERN_ERR "security_sid_to_context: called before initial " 630 "load_policy on unknown SID %d\n", sid); 631 rc = -EINVAL; 632 goto out; 633 } 634 POLICY_RDLOCK; 635 context = sidtab_search(&sidtab, sid); 636 if (!context) { 637 printk(KERN_ERR "security_sid_to_context: unrecognized SID " 638 "%d\n", sid); 639 rc = -EINVAL; 640 goto out_unlock; 641 } 642 rc = context_struct_to_string(context, scontext, scontext_len); 643 out_unlock: 644 POLICY_RDUNLOCK; 645 out: 646 return rc; 647 648 } 649 650 static int security_context_to_sid_core(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid) 651 { 652 char *scontext2; 653 struct context context; 654 struct role_datum *role; 655 struct type_datum *typdatum; 656 struct user_datum *usrdatum; 657 char *scontextp, *p, oldc; 658 int rc = 0; 659 660 if (!ss_initialized) { 661 int i; 662 663 for (i = 1; i < SECINITSID_NUM; i++) { 664 if (!strcmp(initial_sid_to_string[i], scontext)) { 665 *sid = i; 666 goto out; 667 } 668 } 669 *sid = SECINITSID_KERNEL; 670 goto out; 671 } 672 *sid = SECSID_NULL; 673 674 /* Copy the string so that we can modify the copy as we parse it. 675 The string should already by null terminated, but we append a 676 null suffix to the copy to avoid problems with the existing 677 attr package, which doesn't view the null terminator as part 678 of the attribute value. */ 679 scontext2 = kmalloc(scontext_len+1,GFP_KERNEL); 680 if (!scontext2) { 681 rc = -ENOMEM; 682 goto out; 683 } 684 memcpy(scontext2, scontext, scontext_len); 685 scontext2[scontext_len] = 0; 686 687 context_init(&context); 688 *sid = SECSID_NULL; 689 690 POLICY_RDLOCK; 691 692 /* Parse the security context. */ 693 694 rc = -EINVAL; 695 scontextp = (char *) scontext2; 696 697 /* Extract the user. */ 698 p = scontextp; 699 while (*p && *p != ':') 700 p++; 701 702 if (*p == 0) 703 goto out_unlock; 704 705 *p++ = 0; 706 707 usrdatum = hashtab_search(policydb.p_users.table, scontextp); 708 if (!usrdatum) 709 goto out_unlock; 710 711 context.user = usrdatum->value; 712 713 /* Extract role. */ 714 scontextp = p; 715 while (*p && *p != ':') 716 p++; 717 718 if (*p == 0) 719 goto out_unlock; 720 721 *p++ = 0; 722 723 role = hashtab_search(policydb.p_roles.table, scontextp); 724 if (!role) 725 goto out_unlock; 726 context.role = role->value; 727 728 /* Extract type. */ 729 scontextp = p; 730 while (*p && *p != ':') 731 p++; 732 oldc = *p; 733 *p++ = 0; 734 735 typdatum = hashtab_search(policydb.p_types.table, scontextp); 736 if (!typdatum) 737 goto out_unlock; 738 739 context.type = typdatum->value; 740 741 rc = mls_context_to_sid(oldc, &p, &context, &sidtab, def_sid); 742 if (rc) 743 goto out_unlock; 744 745 if ((p - scontext2) < scontext_len) { 746 rc = -EINVAL; 747 goto out_unlock; 748 } 749 750 /* Check the validity of the new context. */ 751 if (!policydb_context_isvalid(&policydb, &context)) { 752 rc = -EINVAL; 753 goto out_unlock; 754 } 755 /* Obtain the new sid. */ 756 rc = sidtab_context_to_sid(&sidtab, &context, sid); 757 out_unlock: 758 POLICY_RDUNLOCK; 759 context_destroy(&context); 760 kfree(scontext2); 761 out: 762 return rc; 763 } 764 765 /** 766 * security_context_to_sid - Obtain a SID for a given security context. 767 * @scontext: security context 768 * @scontext_len: length in bytes 769 * @sid: security identifier, SID 770 * 771 * Obtains a SID associated with the security context that 772 * has the string representation specified by @scontext. 773 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient 774 * memory is available, or 0 on success. 775 */ 776 int security_context_to_sid(char *scontext, u32 scontext_len, u32 *sid) 777 { 778 return security_context_to_sid_core(scontext, scontext_len, 779 sid, SECSID_NULL); 780 } 781 782 /** 783 * security_context_to_sid_default - Obtain a SID for a given security context, 784 * falling back to specified default if needed. 785 * 786 * @scontext: security context 787 * @scontext_len: length in bytes 788 * @sid: security identifier, SID 789 * @def_sid: default SID to assign on errror 790 * 791 * Obtains a SID associated with the security context that 792 * has the string representation specified by @scontext. 793 * The default SID is passed to the MLS layer to be used to allow 794 * kernel labeling of the MLS field if the MLS field is not present 795 * (for upgrading to MLS without full relabel). 796 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient 797 * memory is available, or 0 on success. 798 */ 799 int security_context_to_sid_default(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid) 800 { 801 return security_context_to_sid_core(scontext, scontext_len, 802 sid, def_sid); 803 } 804 805 static int compute_sid_handle_invalid_context( 806 struct context *scontext, 807 struct context *tcontext, 808 u16 tclass, 809 struct context *newcontext) 810 { 811 char *s = NULL, *t = NULL, *n = NULL; 812 u32 slen, tlen, nlen; 813 814 if (context_struct_to_string(scontext, &s, &slen) < 0) 815 goto out; 816 if (context_struct_to_string(tcontext, &t, &tlen) < 0) 817 goto out; 818 if (context_struct_to_string(newcontext, &n, &nlen) < 0) 819 goto out; 820 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR, 821 "security_compute_sid: invalid context %s" 822 " for scontext=%s" 823 " tcontext=%s" 824 " tclass=%s", 825 n, s, t, policydb.p_class_val_to_name[tclass-1]); 826 out: 827 kfree(s); 828 kfree(t); 829 kfree(n); 830 if (!selinux_enforcing) 831 return 0; 832 return -EACCES; 833 } 834 835 static int security_compute_sid(u32 ssid, 836 u32 tsid, 837 u16 tclass, 838 u32 specified, 839 u32 *out_sid) 840 { 841 struct context *scontext = NULL, *tcontext = NULL, newcontext; 842 struct role_trans *roletr = NULL; 843 struct avtab_key avkey; 844 struct avtab_datum *avdatum; 845 struct avtab_node *node; 846 int rc = 0; 847 848 if (!ss_initialized) { 849 switch (tclass) { 850 case SECCLASS_PROCESS: 851 *out_sid = ssid; 852 break; 853 default: 854 *out_sid = tsid; 855 break; 856 } 857 goto out; 858 } 859 860 context_init(&newcontext); 861 862 POLICY_RDLOCK; 863 864 scontext = sidtab_search(&sidtab, ssid); 865 if (!scontext) { 866 printk(KERN_ERR "security_compute_sid: unrecognized SID %d\n", 867 ssid); 868 rc = -EINVAL; 869 goto out_unlock; 870 } 871 tcontext = sidtab_search(&sidtab, tsid); 872 if (!tcontext) { 873 printk(KERN_ERR "security_compute_sid: unrecognized SID %d\n", 874 tsid); 875 rc = -EINVAL; 876 goto out_unlock; 877 } 878 879 /* Set the user identity. */ 880 switch (specified) { 881 case AVTAB_TRANSITION: 882 case AVTAB_CHANGE: 883 /* Use the process user identity. */ 884 newcontext.user = scontext->user; 885 break; 886 case AVTAB_MEMBER: 887 /* Use the related object owner. */ 888 newcontext.user = tcontext->user; 889 break; 890 } 891 892 /* Set the role and type to default values. */ 893 switch (tclass) { 894 case SECCLASS_PROCESS: 895 /* Use the current role and type of process. */ 896 newcontext.role = scontext->role; 897 newcontext.type = scontext->type; 898 break; 899 default: 900 /* Use the well-defined object role. */ 901 newcontext.role = OBJECT_R_VAL; 902 /* Use the type of the related object. */ 903 newcontext.type = tcontext->type; 904 } 905 906 /* Look for a type transition/member/change rule. */ 907 avkey.source_type = scontext->type; 908 avkey.target_type = tcontext->type; 909 avkey.target_class = tclass; 910 avkey.specified = specified; 911 avdatum = avtab_search(&policydb.te_avtab, &avkey); 912 913 /* If no permanent rule, also check for enabled conditional rules */ 914 if(!avdatum) { 915 node = avtab_search_node(&policydb.te_cond_avtab, &avkey); 916 for (; node != NULL; node = avtab_search_node_next(node, specified)) { 917 if (node->key.specified & AVTAB_ENABLED) { 918 avdatum = &node->datum; 919 break; 920 } 921 } 922 } 923 924 if (avdatum) { 925 /* Use the type from the type transition/member/change rule. */ 926 newcontext.type = avdatum->data; 927 } 928 929 /* Check for class-specific changes. */ 930 switch (tclass) { 931 case SECCLASS_PROCESS: 932 if (specified & AVTAB_TRANSITION) { 933 /* Look for a role transition rule. */ 934 for (roletr = policydb.role_tr; roletr; 935 roletr = roletr->next) { 936 if (roletr->role == scontext->role && 937 roletr->type == tcontext->type) { 938 /* Use the role transition rule. */ 939 newcontext.role = roletr->new_role; 940 break; 941 } 942 } 943 } 944 break; 945 default: 946 break; 947 } 948 949 /* Set the MLS attributes. 950 This is done last because it may allocate memory. */ 951 rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext); 952 if (rc) 953 goto out_unlock; 954 955 /* Check the validity of the context. */ 956 if (!policydb_context_isvalid(&policydb, &newcontext)) { 957 rc = compute_sid_handle_invalid_context(scontext, 958 tcontext, 959 tclass, 960 &newcontext); 961 if (rc) 962 goto out_unlock; 963 } 964 /* Obtain the sid for the context. */ 965 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid); 966 out_unlock: 967 POLICY_RDUNLOCK; 968 context_destroy(&newcontext); 969 out: 970 return rc; 971 } 972 973 /** 974 * security_transition_sid - Compute the SID for a new subject/object. 975 * @ssid: source security identifier 976 * @tsid: target security identifier 977 * @tclass: target security class 978 * @out_sid: security identifier for new subject/object 979 * 980 * Compute a SID to use for labeling a new subject or object in the 981 * class @tclass based on a SID pair (@ssid, @tsid). 982 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 983 * if insufficient memory is available, or %0 if the new SID was 984 * computed successfully. 985 */ 986 int security_transition_sid(u32 ssid, 987 u32 tsid, 988 u16 tclass, 989 u32 *out_sid) 990 { 991 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid); 992 } 993 994 /** 995 * security_member_sid - Compute the SID for member selection. 996 * @ssid: source security identifier 997 * @tsid: target security identifier 998 * @tclass: target security class 999 * @out_sid: security identifier for selected member 1000 * 1001 * Compute a SID to use when selecting a member of a polyinstantiated 1002 * object of class @tclass based on a SID pair (@ssid, @tsid). 1003 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1004 * if insufficient memory is available, or %0 if the SID was 1005 * computed successfully. 1006 */ 1007 int security_member_sid(u32 ssid, 1008 u32 tsid, 1009 u16 tclass, 1010 u32 *out_sid) 1011 { 1012 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid); 1013 } 1014 1015 /** 1016 * security_change_sid - Compute the SID for object relabeling. 1017 * @ssid: source security identifier 1018 * @tsid: target security identifier 1019 * @tclass: target security class 1020 * @out_sid: security identifier for selected member 1021 * 1022 * Compute a SID to use for relabeling an object of class @tclass 1023 * based on a SID pair (@ssid, @tsid). 1024 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1025 * if insufficient memory is available, or %0 if the SID was 1026 * computed successfully. 1027 */ 1028 int security_change_sid(u32 ssid, 1029 u32 tsid, 1030 u16 tclass, 1031 u32 *out_sid) 1032 { 1033 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid); 1034 } 1035 1036 /* 1037 * Verify that each kernel class that is defined in the 1038 * policy is correct 1039 */ 1040 static int validate_classes(struct policydb *p) 1041 { 1042 int i, j; 1043 struct class_datum *cladatum; 1044 struct perm_datum *perdatum; 1045 u32 nprim, tmp, common_pts_len, perm_val, pol_val; 1046 u16 class_val; 1047 const struct selinux_class_perm *kdefs = &selinux_class_perm; 1048 const char *def_class, *def_perm, *pol_class; 1049 struct symtab *perms; 1050 1051 for (i = 1; i < kdefs->cts_len; i++) { 1052 def_class = kdefs->class_to_string[i]; 1053 if (i > p->p_classes.nprim) { 1054 printk(KERN_INFO 1055 "security: class %s not defined in policy\n", 1056 def_class); 1057 continue; 1058 } 1059 pol_class = p->p_class_val_to_name[i-1]; 1060 if (strcmp(pol_class, def_class)) { 1061 printk(KERN_ERR 1062 "security: class %d is incorrect, found %s but should be %s\n", 1063 i, pol_class, def_class); 1064 return -EINVAL; 1065 } 1066 } 1067 for (i = 0; i < kdefs->av_pts_len; i++) { 1068 class_val = kdefs->av_perm_to_string[i].tclass; 1069 perm_val = kdefs->av_perm_to_string[i].value; 1070 def_perm = kdefs->av_perm_to_string[i].name; 1071 if (class_val > p->p_classes.nprim) 1072 continue; 1073 pol_class = p->p_class_val_to_name[class_val-1]; 1074 cladatum = hashtab_search(p->p_classes.table, pol_class); 1075 BUG_ON(!cladatum); 1076 perms = &cladatum->permissions; 1077 nprim = 1 << (perms->nprim - 1); 1078 if (perm_val > nprim) { 1079 printk(KERN_INFO 1080 "security: permission %s in class %s not defined in policy\n", 1081 def_perm, pol_class); 1082 continue; 1083 } 1084 perdatum = hashtab_search(perms->table, def_perm); 1085 if (perdatum == NULL) { 1086 printk(KERN_ERR 1087 "security: permission %s in class %s not found in policy\n", 1088 def_perm, pol_class); 1089 return -EINVAL; 1090 } 1091 pol_val = 1 << (perdatum->value - 1); 1092 if (pol_val != perm_val) { 1093 printk(KERN_ERR 1094 "security: permission %s in class %s has incorrect value\n", 1095 def_perm, pol_class); 1096 return -EINVAL; 1097 } 1098 } 1099 for (i = 0; i < kdefs->av_inherit_len; i++) { 1100 class_val = kdefs->av_inherit[i].tclass; 1101 if (class_val > p->p_classes.nprim) 1102 continue; 1103 pol_class = p->p_class_val_to_name[class_val-1]; 1104 cladatum = hashtab_search(p->p_classes.table, pol_class); 1105 BUG_ON(!cladatum); 1106 if (!cladatum->comdatum) { 1107 printk(KERN_ERR 1108 "security: class %s should have an inherits clause but does not\n", 1109 pol_class); 1110 return -EINVAL; 1111 } 1112 tmp = kdefs->av_inherit[i].common_base; 1113 common_pts_len = 0; 1114 while (!(tmp & 0x01)) { 1115 common_pts_len++; 1116 tmp >>= 1; 1117 } 1118 perms = &cladatum->comdatum->permissions; 1119 for (j = 0; j < common_pts_len; j++) { 1120 def_perm = kdefs->av_inherit[i].common_pts[j]; 1121 if (j >= perms->nprim) { 1122 printk(KERN_INFO 1123 "security: permission %s in class %s not defined in policy\n", 1124 def_perm, pol_class); 1125 continue; 1126 } 1127 perdatum = hashtab_search(perms->table, def_perm); 1128 if (perdatum == NULL) { 1129 printk(KERN_ERR 1130 "security: permission %s in class %s not found in policy\n", 1131 def_perm, pol_class); 1132 return -EINVAL; 1133 } 1134 if (perdatum->value != j + 1) { 1135 printk(KERN_ERR 1136 "security: permission %s in class %s has incorrect value\n", 1137 def_perm, pol_class); 1138 return -EINVAL; 1139 } 1140 } 1141 } 1142 return 0; 1143 } 1144 1145 /* Clone the SID into the new SID table. */ 1146 static int clone_sid(u32 sid, 1147 struct context *context, 1148 void *arg) 1149 { 1150 struct sidtab *s = arg; 1151 1152 return sidtab_insert(s, sid, context); 1153 } 1154 1155 static inline int convert_context_handle_invalid_context(struct context *context) 1156 { 1157 int rc = 0; 1158 1159 if (selinux_enforcing) { 1160 rc = -EINVAL; 1161 } else { 1162 char *s; 1163 u32 len; 1164 1165 context_struct_to_string(context, &s, &len); 1166 printk(KERN_ERR "security: context %s is invalid\n", s); 1167 kfree(s); 1168 } 1169 return rc; 1170 } 1171 1172 struct convert_context_args { 1173 struct policydb *oldp; 1174 struct policydb *newp; 1175 }; 1176 1177 /* 1178 * Convert the values in the security context 1179 * structure `c' from the values specified 1180 * in the policy `p->oldp' to the values specified 1181 * in the policy `p->newp'. Verify that the 1182 * context is valid under the new policy. 1183 */ 1184 static int convert_context(u32 key, 1185 struct context *c, 1186 void *p) 1187 { 1188 struct convert_context_args *args; 1189 struct context oldc; 1190 struct role_datum *role; 1191 struct type_datum *typdatum; 1192 struct user_datum *usrdatum; 1193 char *s; 1194 u32 len; 1195 int rc; 1196 1197 args = p; 1198 1199 rc = context_cpy(&oldc, c); 1200 if (rc) 1201 goto out; 1202 1203 rc = -EINVAL; 1204 1205 /* Convert the user. */ 1206 usrdatum = hashtab_search(args->newp->p_users.table, 1207 args->oldp->p_user_val_to_name[c->user - 1]); 1208 if (!usrdatum) { 1209 goto bad; 1210 } 1211 c->user = usrdatum->value; 1212 1213 /* Convert the role. */ 1214 role = hashtab_search(args->newp->p_roles.table, 1215 args->oldp->p_role_val_to_name[c->role - 1]); 1216 if (!role) { 1217 goto bad; 1218 } 1219 c->role = role->value; 1220 1221 /* Convert the type. */ 1222 typdatum = hashtab_search(args->newp->p_types.table, 1223 args->oldp->p_type_val_to_name[c->type - 1]); 1224 if (!typdatum) { 1225 goto bad; 1226 } 1227 c->type = typdatum->value; 1228 1229 rc = mls_convert_context(args->oldp, args->newp, c); 1230 if (rc) 1231 goto bad; 1232 1233 /* Check the validity of the new context. */ 1234 if (!policydb_context_isvalid(args->newp, c)) { 1235 rc = convert_context_handle_invalid_context(&oldc); 1236 if (rc) 1237 goto bad; 1238 } 1239 1240 context_destroy(&oldc); 1241 out: 1242 return rc; 1243 bad: 1244 context_struct_to_string(&oldc, &s, &len); 1245 context_destroy(&oldc); 1246 printk(KERN_ERR "security: invalidating context %s\n", s); 1247 kfree(s); 1248 goto out; 1249 } 1250 1251 extern void selinux_complete_init(void); 1252 1253 /** 1254 * security_load_policy - Load a security policy configuration. 1255 * @data: binary policy data 1256 * @len: length of data in bytes 1257 * 1258 * Load a new set of security policy configuration data, 1259 * validate it and convert the SID table as necessary. 1260 * This function will flush the access vector cache after 1261 * loading the new policy. 1262 */ 1263 int security_load_policy(void *data, size_t len) 1264 { 1265 struct policydb oldpolicydb, newpolicydb; 1266 struct sidtab oldsidtab, newsidtab; 1267 struct convert_context_args args; 1268 u32 seqno; 1269 int rc = 0; 1270 struct policy_file file = { data, len }, *fp = &file; 1271 1272 LOAD_LOCK; 1273 1274 if (!ss_initialized) { 1275 avtab_cache_init(); 1276 if (policydb_read(&policydb, fp)) { 1277 LOAD_UNLOCK; 1278 avtab_cache_destroy(); 1279 return -EINVAL; 1280 } 1281 if (policydb_load_isids(&policydb, &sidtab)) { 1282 LOAD_UNLOCK; 1283 policydb_destroy(&policydb); 1284 avtab_cache_destroy(); 1285 return -EINVAL; 1286 } 1287 /* Verify that the kernel defined classes are correct. */ 1288 if (validate_classes(&policydb)) { 1289 printk(KERN_ERR 1290 "security: the definition of a class is incorrect\n"); 1291 LOAD_UNLOCK; 1292 sidtab_destroy(&sidtab); 1293 policydb_destroy(&policydb); 1294 avtab_cache_destroy(); 1295 return -EINVAL; 1296 } 1297 policydb_loaded_version = policydb.policyvers; 1298 ss_initialized = 1; 1299 seqno = ++latest_granting; 1300 LOAD_UNLOCK; 1301 selinux_complete_init(); 1302 avc_ss_reset(seqno); 1303 selnl_notify_policyload(seqno); 1304 selinux_netlbl_cache_invalidate(); 1305 selinux_xfrm_notify_policyload(); 1306 return 0; 1307 } 1308 1309 #if 0 1310 sidtab_hash_eval(&sidtab, "sids"); 1311 #endif 1312 1313 if (policydb_read(&newpolicydb, fp)) { 1314 LOAD_UNLOCK; 1315 return -EINVAL; 1316 } 1317 1318 sidtab_init(&newsidtab); 1319 1320 /* Verify that the kernel defined classes are correct. */ 1321 if (validate_classes(&newpolicydb)) { 1322 printk(KERN_ERR 1323 "security: the definition of a class is incorrect\n"); 1324 rc = -EINVAL; 1325 goto err; 1326 } 1327 1328 /* Clone the SID table. */ 1329 sidtab_shutdown(&sidtab); 1330 if (sidtab_map(&sidtab, clone_sid, &newsidtab)) { 1331 rc = -ENOMEM; 1332 goto err; 1333 } 1334 1335 /* Convert the internal representations of contexts 1336 in the new SID table and remove invalid SIDs. */ 1337 args.oldp = &policydb; 1338 args.newp = &newpolicydb; 1339 sidtab_map_remove_on_error(&newsidtab, convert_context, &args); 1340 1341 /* Save the old policydb and SID table to free later. */ 1342 memcpy(&oldpolicydb, &policydb, sizeof policydb); 1343 sidtab_set(&oldsidtab, &sidtab); 1344 1345 /* Install the new policydb and SID table. */ 1346 POLICY_WRLOCK; 1347 memcpy(&policydb, &newpolicydb, sizeof policydb); 1348 sidtab_set(&sidtab, &newsidtab); 1349 seqno = ++latest_granting; 1350 policydb_loaded_version = policydb.policyvers; 1351 POLICY_WRUNLOCK; 1352 LOAD_UNLOCK; 1353 1354 /* Free the old policydb and SID table. */ 1355 policydb_destroy(&oldpolicydb); 1356 sidtab_destroy(&oldsidtab); 1357 1358 avc_ss_reset(seqno); 1359 selnl_notify_policyload(seqno); 1360 selinux_netlbl_cache_invalidate(); 1361 selinux_xfrm_notify_policyload(); 1362 1363 return 0; 1364 1365 err: 1366 LOAD_UNLOCK; 1367 sidtab_destroy(&newsidtab); 1368 policydb_destroy(&newpolicydb); 1369 return rc; 1370 1371 } 1372 1373 /** 1374 * security_port_sid - Obtain the SID for a port. 1375 * @domain: communication domain aka address family 1376 * @type: socket type 1377 * @protocol: protocol number 1378 * @port: port number 1379 * @out_sid: security identifier 1380 */ 1381 int security_port_sid(u16 domain, 1382 u16 type, 1383 u8 protocol, 1384 u16 port, 1385 u32 *out_sid) 1386 { 1387 struct ocontext *c; 1388 int rc = 0; 1389 1390 POLICY_RDLOCK; 1391 1392 c = policydb.ocontexts[OCON_PORT]; 1393 while (c) { 1394 if (c->u.port.protocol == protocol && 1395 c->u.port.low_port <= port && 1396 c->u.port.high_port >= port) 1397 break; 1398 c = c->next; 1399 } 1400 1401 if (c) { 1402 if (!c->sid[0]) { 1403 rc = sidtab_context_to_sid(&sidtab, 1404 &c->context[0], 1405 &c->sid[0]); 1406 if (rc) 1407 goto out; 1408 } 1409 *out_sid = c->sid[0]; 1410 } else { 1411 *out_sid = SECINITSID_PORT; 1412 } 1413 1414 out: 1415 POLICY_RDUNLOCK; 1416 return rc; 1417 } 1418 1419 /** 1420 * security_netif_sid - Obtain the SID for a network interface. 1421 * @name: interface name 1422 * @if_sid: interface SID 1423 * @msg_sid: default SID for received packets 1424 */ 1425 int security_netif_sid(char *name, 1426 u32 *if_sid, 1427 u32 *msg_sid) 1428 { 1429 int rc = 0; 1430 struct ocontext *c; 1431 1432 POLICY_RDLOCK; 1433 1434 c = policydb.ocontexts[OCON_NETIF]; 1435 while (c) { 1436 if (strcmp(name, c->u.name) == 0) 1437 break; 1438 c = c->next; 1439 } 1440 1441 if (c) { 1442 if (!c->sid[0] || !c->sid[1]) { 1443 rc = sidtab_context_to_sid(&sidtab, 1444 &c->context[0], 1445 &c->sid[0]); 1446 if (rc) 1447 goto out; 1448 rc = sidtab_context_to_sid(&sidtab, 1449 &c->context[1], 1450 &c->sid[1]); 1451 if (rc) 1452 goto out; 1453 } 1454 *if_sid = c->sid[0]; 1455 *msg_sid = c->sid[1]; 1456 } else { 1457 *if_sid = SECINITSID_NETIF; 1458 *msg_sid = SECINITSID_NETMSG; 1459 } 1460 1461 out: 1462 POLICY_RDUNLOCK; 1463 return rc; 1464 } 1465 1466 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask) 1467 { 1468 int i, fail = 0; 1469 1470 for(i = 0; i < 4; i++) 1471 if(addr[i] != (input[i] & mask[i])) { 1472 fail = 1; 1473 break; 1474 } 1475 1476 return !fail; 1477 } 1478 1479 /** 1480 * security_node_sid - Obtain the SID for a node (host). 1481 * @domain: communication domain aka address family 1482 * @addrp: address 1483 * @addrlen: address length in bytes 1484 * @out_sid: security identifier 1485 */ 1486 int security_node_sid(u16 domain, 1487 void *addrp, 1488 u32 addrlen, 1489 u32 *out_sid) 1490 { 1491 int rc = 0; 1492 struct ocontext *c; 1493 1494 POLICY_RDLOCK; 1495 1496 switch (domain) { 1497 case AF_INET: { 1498 u32 addr; 1499 1500 if (addrlen != sizeof(u32)) { 1501 rc = -EINVAL; 1502 goto out; 1503 } 1504 1505 addr = *((u32 *)addrp); 1506 1507 c = policydb.ocontexts[OCON_NODE]; 1508 while (c) { 1509 if (c->u.node.addr == (addr & c->u.node.mask)) 1510 break; 1511 c = c->next; 1512 } 1513 break; 1514 } 1515 1516 case AF_INET6: 1517 if (addrlen != sizeof(u64) * 2) { 1518 rc = -EINVAL; 1519 goto out; 1520 } 1521 c = policydb.ocontexts[OCON_NODE6]; 1522 while (c) { 1523 if (match_ipv6_addrmask(addrp, c->u.node6.addr, 1524 c->u.node6.mask)) 1525 break; 1526 c = c->next; 1527 } 1528 break; 1529 1530 default: 1531 *out_sid = SECINITSID_NODE; 1532 goto out; 1533 } 1534 1535 if (c) { 1536 if (!c->sid[0]) { 1537 rc = sidtab_context_to_sid(&sidtab, 1538 &c->context[0], 1539 &c->sid[0]); 1540 if (rc) 1541 goto out; 1542 } 1543 *out_sid = c->sid[0]; 1544 } else { 1545 *out_sid = SECINITSID_NODE; 1546 } 1547 1548 out: 1549 POLICY_RDUNLOCK; 1550 return rc; 1551 } 1552 1553 #define SIDS_NEL 25 1554 1555 /** 1556 * security_get_user_sids - Obtain reachable SIDs for a user. 1557 * @fromsid: starting SID 1558 * @username: username 1559 * @sids: array of reachable SIDs for user 1560 * @nel: number of elements in @sids 1561 * 1562 * Generate the set of SIDs for legal security contexts 1563 * for a given user that can be reached by @fromsid. 1564 * Set *@sids to point to a dynamically allocated 1565 * array containing the set of SIDs. Set *@nel to the 1566 * number of elements in the array. 1567 */ 1568 1569 int security_get_user_sids(u32 fromsid, 1570 char *username, 1571 u32 **sids, 1572 u32 *nel) 1573 { 1574 struct context *fromcon, usercon; 1575 u32 *mysids, *mysids2, sid; 1576 u32 mynel = 0, maxnel = SIDS_NEL; 1577 struct user_datum *user; 1578 struct role_datum *role; 1579 struct av_decision avd; 1580 struct ebitmap_node *rnode, *tnode; 1581 int rc = 0, i, j; 1582 1583 if (!ss_initialized) { 1584 *sids = NULL; 1585 *nel = 0; 1586 goto out; 1587 } 1588 1589 POLICY_RDLOCK; 1590 1591 fromcon = sidtab_search(&sidtab, fromsid); 1592 if (!fromcon) { 1593 rc = -EINVAL; 1594 goto out_unlock; 1595 } 1596 1597 user = hashtab_search(policydb.p_users.table, username); 1598 if (!user) { 1599 rc = -EINVAL; 1600 goto out_unlock; 1601 } 1602 usercon.user = user->value; 1603 1604 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC); 1605 if (!mysids) { 1606 rc = -ENOMEM; 1607 goto out_unlock; 1608 } 1609 1610 ebitmap_for_each_bit(&user->roles, rnode, i) { 1611 if (!ebitmap_node_get_bit(rnode, i)) 1612 continue; 1613 role = policydb.role_val_to_struct[i]; 1614 usercon.role = i+1; 1615 ebitmap_for_each_bit(&role->types, tnode, j) { 1616 if (!ebitmap_node_get_bit(tnode, j)) 1617 continue; 1618 usercon.type = j+1; 1619 1620 if (mls_setup_user_range(fromcon, user, &usercon)) 1621 continue; 1622 1623 rc = context_struct_compute_av(fromcon, &usercon, 1624 SECCLASS_PROCESS, 1625 PROCESS__TRANSITION, 1626 &avd); 1627 if (rc || !(avd.allowed & PROCESS__TRANSITION)) 1628 continue; 1629 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid); 1630 if (rc) { 1631 kfree(mysids); 1632 goto out_unlock; 1633 } 1634 if (mynel < maxnel) { 1635 mysids[mynel++] = sid; 1636 } else { 1637 maxnel += SIDS_NEL; 1638 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC); 1639 if (!mysids2) { 1640 rc = -ENOMEM; 1641 kfree(mysids); 1642 goto out_unlock; 1643 } 1644 memcpy(mysids2, mysids, mynel * sizeof(*mysids2)); 1645 kfree(mysids); 1646 mysids = mysids2; 1647 mysids[mynel++] = sid; 1648 } 1649 } 1650 } 1651 1652 *sids = mysids; 1653 *nel = mynel; 1654 1655 out_unlock: 1656 POLICY_RDUNLOCK; 1657 out: 1658 return rc; 1659 } 1660 1661 /** 1662 * security_genfs_sid - Obtain a SID for a file in a filesystem 1663 * @fstype: filesystem type 1664 * @path: path from root of mount 1665 * @sclass: file security class 1666 * @sid: SID for path 1667 * 1668 * Obtain a SID to use for a file in a filesystem that 1669 * cannot support xattr or use a fixed labeling behavior like 1670 * transition SIDs or task SIDs. 1671 */ 1672 int security_genfs_sid(const char *fstype, 1673 char *path, 1674 u16 sclass, 1675 u32 *sid) 1676 { 1677 int len; 1678 struct genfs *genfs; 1679 struct ocontext *c; 1680 int rc = 0, cmp = 0; 1681 1682 POLICY_RDLOCK; 1683 1684 for (genfs = policydb.genfs; genfs; genfs = genfs->next) { 1685 cmp = strcmp(fstype, genfs->fstype); 1686 if (cmp <= 0) 1687 break; 1688 } 1689 1690 if (!genfs || cmp) { 1691 *sid = SECINITSID_UNLABELED; 1692 rc = -ENOENT; 1693 goto out; 1694 } 1695 1696 for (c = genfs->head; c; c = c->next) { 1697 len = strlen(c->u.name); 1698 if ((!c->v.sclass || sclass == c->v.sclass) && 1699 (strncmp(c->u.name, path, len) == 0)) 1700 break; 1701 } 1702 1703 if (!c) { 1704 *sid = SECINITSID_UNLABELED; 1705 rc = -ENOENT; 1706 goto out; 1707 } 1708 1709 if (!c->sid[0]) { 1710 rc = sidtab_context_to_sid(&sidtab, 1711 &c->context[0], 1712 &c->sid[0]); 1713 if (rc) 1714 goto out; 1715 } 1716 1717 *sid = c->sid[0]; 1718 out: 1719 POLICY_RDUNLOCK; 1720 return rc; 1721 } 1722 1723 /** 1724 * security_fs_use - Determine how to handle labeling for a filesystem. 1725 * @fstype: filesystem type 1726 * @behavior: labeling behavior 1727 * @sid: SID for filesystem (superblock) 1728 */ 1729 int security_fs_use( 1730 const char *fstype, 1731 unsigned int *behavior, 1732 u32 *sid) 1733 { 1734 int rc = 0; 1735 struct ocontext *c; 1736 1737 POLICY_RDLOCK; 1738 1739 c = policydb.ocontexts[OCON_FSUSE]; 1740 while (c) { 1741 if (strcmp(fstype, c->u.name) == 0) 1742 break; 1743 c = c->next; 1744 } 1745 1746 if (c) { 1747 *behavior = c->v.behavior; 1748 if (!c->sid[0]) { 1749 rc = sidtab_context_to_sid(&sidtab, 1750 &c->context[0], 1751 &c->sid[0]); 1752 if (rc) 1753 goto out; 1754 } 1755 *sid = c->sid[0]; 1756 } else { 1757 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid); 1758 if (rc) { 1759 *behavior = SECURITY_FS_USE_NONE; 1760 rc = 0; 1761 } else { 1762 *behavior = SECURITY_FS_USE_GENFS; 1763 } 1764 } 1765 1766 out: 1767 POLICY_RDUNLOCK; 1768 return rc; 1769 } 1770 1771 int security_get_bools(int *len, char ***names, int **values) 1772 { 1773 int i, rc = -ENOMEM; 1774 1775 POLICY_RDLOCK; 1776 *names = NULL; 1777 *values = NULL; 1778 1779 *len = policydb.p_bools.nprim; 1780 if (!*len) { 1781 rc = 0; 1782 goto out; 1783 } 1784 1785 *names = kcalloc(*len, sizeof(char*), GFP_ATOMIC); 1786 if (!*names) 1787 goto err; 1788 1789 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC); 1790 if (!*values) 1791 goto err; 1792 1793 for (i = 0; i < *len; i++) { 1794 size_t name_len; 1795 (*values)[i] = policydb.bool_val_to_struct[i]->state; 1796 name_len = strlen(policydb.p_bool_val_to_name[i]) + 1; 1797 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC); 1798 if (!(*names)[i]) 1799 goto err; 1800 strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len); 1801 (*names)[i][name_len - 1] = 0; 1802 } 1803 rc = 0; 1804 out: 1805 POLICY_RDUNLOCK; 1806 return rc; 1807 err: 1808 if (*names) { 1809 for (i = 0; i < *len; i++) 1810 kfree((*names)[i]); 1811 } 1812 kfree(*values); 1813 goto out; 1814 } 1815 1816 1817 int security_set_bools(int len, int *values) 1818 { 1819 int i, rc = 0; 1820 int lenp, seqno = 0; 1821 struct cond_node *cur; 1822 1823 POLICY_WRLOCK; 1824 1825 lenp = policydb.p_bools.nprim; 1826 if (len != lenp) { 1827 rc = -EFAULT; 1828 goto out; 1829 } 1830 1831 for (i = 0; i < len; i++) { 1832 if (!!values[i] != policydb.bool_val_to_struct[i]->state) { 1833 audit_log(current->audit_context, GFP_ATOMIC, 1834 AUDIT_MAC_CONFIG_CHANGE, 1835 "bool=%s val=%d old_val=%d auid=%u", 1836 policydb.p_bool_val_to_name[i], 1837 !!values[i], 1838 policydb.bool_val_to_struct[i]->state, 1839 audit_get_loginuid(current->audit_context)); 1840 } 1841 if (values[i]) { 1842 policydb.bool_val_to_struct[i]->state = 1; 1843 } else { 1844 policydb.bool_val_to_struct[i]->state = 0; 1845 } 1846 } 1847 1848 for (cur = policydb.cond_list; cur != NULL; cur = cur->next) { 1849 rc = evaluate_cond_node(&policydb, cur); 1850 if (rc) 1851 goto out; 1852 } 1853 1854 seqno = ++latest_granting; 1855 1856 out: 1857 POLICY_WRUNLOCK; 1858 if (!rc) { 1859 avc_ss_reset(seqno); 1860 selnl_notify_policyload(seqno); 1861 selinux_xfrm_notify_policyload(); 1862 } 1863 return rc; 1864 } 1865 1866 int security_get_bool_value(int bool) 1867 { 1868 int rc = 0; 1869 int len; 1870 1871 POLICY_RDLOCK; 1872 1873 len = policydb.p_bools.nprim; 1874 if (bool >= len) { 1875 rc = -EFAULT; 1876 goto out; 1877 } 1878 1879 rc = policydb.bool_val_to_struct[bool]->state; 1880 out: 1881 POLICY_RDUNLOCK; 1882 return rc; 1883 } 1884 1885 /* 1886 * security_sid_mls_copy() - computes a new sid based on the given 1887 * sid and the mls portion of mls_sid. 1888 */ 1889 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid) 1890 { 1891 struct context *context1; 1892 struct context *context2; 1893 struct context newcon; 1894 char *s; 1895 u32 len; 1896 int rc = 0; 1897 1898 if (!ss_initialized || !selinux_mls_enabled) { 1899 *new_sid = sid; 1900 goto out; 1901 } 1902 1903 context_init(&newcon); 1904 1905 POLICY_RDLOCK; 1906 context1 = sidtab_search(&sidtab, sid); 1907 if (!context1) { 1908 printk(KERN_ERR "security_sid_mls_copy: unrecognized SID " 1909 "%d\n", sid); 1910 rc = -EINVAL; 1911 goto out_unlock; 1912 } 1913 1914 context2 = sidtab_search(&sidtab, mls_sid); 1915 if (!context2) { 1916 printk(KERN_ERR "security_sid_mls_copy: unrecognized SID " 1917 "%d\n", mls_sid); 1918 rc = -EINVAL; 1919 goto out_unlock; 1920 } 1921 1922 newcon.user = context1->user; 1923 newcon.role = context1->role; 1924 newcon.type = context1->type; 1925 rc = mls_context_cpy(&newcon, context2); 1926 if (rc) 1927 goto out_unlock; 1928 1929 /* Check the validity of the new context. */ 1930 if (!policydb_context_isvalid(&policydb, &newcon)) { 1931 rc = convert_context_handle_invalid_context(&newcon); 1932 if (rc) 1933 goto bad; 1934 } 1935 1936 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid); 1937 goto out_unlock; 1938 1939 bad: 1940 if (!context_struct_to_string(&newcon, &s, &len)) { 1941 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR, 1942 "security_sid_mls_copy: invalid context %s", s); 1943 kfree(s); 1944 } 1945 1946 out_unlock: 1947 POLICY_RDUNLOCK; 1948 context_destroy(&newcon); 1949 out: 1950 return rc; 1951 } 1952 1953 struct selinux_audit_rule { 1954 u32 au_seqno; 1955 struct context au_ctxt; 1956 }; 1957 1958 void selinux_audit_rule_free(struct selinux_audit_rule *rule) 1959 { 1960 if (rule) { 1961 context_destroy(&rule->au_ctxt); 1962 kfree(rule); 1963 } 1964 } 1965 1966 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, 1967 struct selinux_audit_rule **rule) 1968 { 1969 struct selinux_audit_rule *tmprule; 1970 struct role_datum *roledatum; 1971 struct type_datum *typedatum; 1972 struct user_datum *userdatum; 1973 int rc = 0; 1974 1975 *rule = NULL; 1976 1977 if (!ss_initialized) 1978 return -ENOTSUPP; 1979 1980 switch (field) { 1981 case AUDIT_SUBJ_USER: 1982 case AUDIT_SUBJ_ROLE: 1983 case AUDIT_SUBJ_TYPE: 1984 case AUDIT_OBJ_USER: 1985 case AUDIT_OBJ_ROLE: 1986 case AUDIT_OBJ_TYPE: 1987 /* only 'equals' and 'not equals' fit user, role, and type */ 1988 if (op != AUDIT_EQUAL && op != AUDIT_NOT_EQUAL) 1989 return -EINVAL; 1990 break; 1991 case AUDIT_SUBJ_SEN: 1992 case AUDIT_SUBJ_CLR: 1993 case AUDIT_OBJ_LEV_LOW: 1994 case AUDIT_OBJ_LEV_HIGH: 1995 /* we do not allow a range, indicated by the presense of '-' */ 1996 if (strchr(rulestr, '-')) 1997 return -EINVAL; 1998 break; 1999 default: 2000 /* only the above fields are valid */ 2001 return -EINVAL; 2002 } 2003 2004 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL); 2005 if (!tmprule) 2006 return -ENOMEM; 2007 2008 context_init(&tmprule->au_ctxt); 2009 2010 POLICY_RDLOCK; 2011 2012 tmprule->au_seqno = latest_granting; 2013 2014 switch (field) { 2015 case AUDIT_SUBJ_USER: 2016 case AUDIT_OBJ_USER: 2017 userdatum = hashtab_search(policydb.p_users.table, rulestr); 2018 if (!userdatum) 2019 rc = -EINVAL; 2020 else 2021 tmprule->au_ctxt.user = userdatum->value; 2022 break; 2023 case AUDIT_SUBJ_ROLE: 2024 case AUDIT_OBJ_ROLE: 2025 roledatum = hashtab_search(policydb.p_roles.table, rulestr); 2026 if (!roledatum) 2027 rc = -EINVAL; 2028 else 2029 tmprule->au_ctxt.role = roledatum->value; 2030 break; 2031 case AUDIT_SUBJ_TYPE: 2032 case AUDIT_OBJ_TYPE: 2033 typedatum = hashtab_search(policydb.p_types.table, rulestr); 2034 if (!typedatum) 2035 rc = -EINVAL; 2036 else 2037 tmprule->au_ctxt.type = typedatum->value; 2038 break; 2039 case AUDIT_SUBJ_SEN: 2040 case AUDIT_SUBJ_CLR: 2041 case AUDIT_OBJ_LEV_LOW: 2042 case AUDIT_OBJ_LEV_HIGH: 2043 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC); 2044 break; 2045 } 2046 2047 POLICY_RDUNLOCK; 2048 2049 if (rc) { 2050 selinux_audit_rule_free(tmprule); 2051 tmprule = NULL; 2052 } 2053 2054 *rule = tmprule; 2055 2056 return rc; 2057 } 2058 2059 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, 2060 struct selinux_audit_rule *rule, 2061 struct audit_context *actx) 2062 { 2063 struct context *ctxt; 2064 struct mls_level *level; 2065 int match = 0; 2066 2067 if (!rule) { 2068 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR, 2069 "selinux_audit_rule_match: missing rule\n"); 2070 return -ENOENT; 2071 } 2072 2073 POLICY_RDLOCK; 2074 2075 if (rule->au_seqno < latest_granting) { 2076 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR, 2077 "selinux_audit_rule_match: stale rule\n"); 2078 match = -ESTALE; 2079 goto out; 2080 } 2081 2082 ctxt = sidtab_search(&sidtab, sid); 2083 if (!ctxt) { 2084 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR, 2085 "selinux_audit_rule_match: unrecognized SID %d\n", 2086 sid); 2087 match = -ENOENT; 2088 goto out; 2089 } 2090 2091 /* a field/op pair that is not caught here will simply fall through 2092 without a match */ 2093 switch (field) { 2094 case AUDIT_SUBJ_USER: 2095 case AUDIT_OBJ_USER: 2096 switch (op) { 2097 case AUDIT_EQUAL: 2098 match = (ctxt->user == rule->au_ctxt.user); 2099 break; 2100 case AUDIT_NOT_EQUAL: 2101 match = (ctxt->user != rule->au_ctxt.user); 2102 break; 2103 } 2104 break; 2105 case AUDIT_SUBJ_ROLE: 2106 case AUDIT_OBJ_ROLE: 2107 switch (op) { 2108 case AUDIT_EQUAL: 2109 match = (ctxt->role == rule->au_ctxt.role); 2110 break; 2111 case AUDIT_NOT_EQUAL: 2112 match = (ctxt->role != rule->au_ctxt.role); 2113 break; 2114 } 2115 break; 2116 case AUDIT_SUBJ_TYPE: 2117 case AUDIT_OBJ_TYPE: 2118 switch (op) { 2119 case AUDIT_EQUAL: 2120 match = (ctxt->type == rule->au_ctxt.type); 2121 break; 2122 case AUDIT_NOT_EQUAL: 2123 match = (ctxt->type != rule->au_ctxt.type); 2124 break; 2125 } 2126 break; 2127 case AUDIT_SUBJ_SEN: 2128 case AUDIT_SUBJ_CLR: 2129 case AUDIT_OBJ_LEV_LOW: 2130 case AUDIT_OBJ_LEV_HIGH: 2131 level = ((field == AUDIT_SUBJ_SEN || 2132 field == AUDIT_OBJ_LEV_LOW) ? 2133 &ctxt->range.level[0] : &ctxt->range.level[1]); 2134 switch (op) { 2135 case AUDIT_EQUAL: 2136 match = mls_level_eq(&rule->au_ctxt.range.level[0], 2137 level); 2138 break; 2139 case AUDIT_NOT_EQUAL: 2140 match = !mls_level_eq(&rule->au_ctxt.range.level[0], 2141 level); 2142 break; 2143 case AUDIT_LESS_THAN: 2144 match = (mls_level_dom(&rule->au_ctxt.range.level[0], 2145 level) && 2146 !mls_level_eq(&rule->au_ctxt.range.level[0], 2147 level)); 2148 break; 2149 case AUDIT_LESS_THAN_OR_EQUAL: 2150 match = mls_level_dom(&rule->au_ctxt.range.level[0], 2151 level); 2152 break; 2153 case AUDIT_GREATER_THAN: 2154 match = (mls_level_dom(level, 2155 &rule->au_ctxt.range.level[0]) && 2156 !mls_level_eq(level, 2157 &rule->au_ctxt.range.level[0])); 2158 break; 2159 case AUDIT_GREATER_THAN_OR_EQUAL: 2160 match = mls_level_dom(level, 2161 &rule->au_ctxt.range.level[0]); 2162 break; 2163 } 2164 } 2165 2166 out: 2167 POLICY_RDUNLOCK; 2168 return match; 2169 } 2170 2171 static int (*aurule_callback)(void) = NULL; 2172 2173 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid, 2174 u16 class, u32 perms, u32 *retained) 2175 { 2176 int err = 0; 2177 2178 if (event == AVC_CALLBACK_RESET && aurule_callback) 2179 err = aurule_callback(); 2180 return err; 2181 } 2182 2183 static int __init aurule_init(void) 2184 { 2185 int err; 2186 2187 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET, 2188 SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0); 2189 if (err) 2190 panic("avc_add_callback() failed, error %d\n", err); 2191 2192 return err; 2193 } 2194 __initcall(aurule_init); 2195 2196 void selinux_audit_set_callback(int (*callback)(void)) 2197 { 2198 aurule_callback = callback; 2199 } 2200 2201 /** 2202 * security_skb_extlbl_sid - Determine the external label of a packet 2203 * @skb: the packet 2204 * @base_sid: the SELinux SID to use as a context for MLS only external labels 2205 * @sid: the packet's SID 2206 * 2207 * Description: 2208 * Check the various different forms of external packet labeling and determine 2209 * the external SID for the packet. 2210 * 2211 */ 2212 void security_skb_extlbl_sid(struct sk_buff *skb, u32 base_sid, u32 *sid) 2213 { 2214 u32 xfrm_sid; 2215 u32 nlbl_sid; 2216 2217 selinux_skb_xfrm_sid(skb, &xfrm_sid); 2218 if (selinux_netlbl_skbuff_getsid(skb, 2219 (xfrm_sid == SECSID_NULL ? 2220 base_sid : xfrm_sid), 2221 &nlbl_sid) != 0) 2222 nlbl_sid = SECSID_NULL; 2223 2224 *sid = (nlbl_sid == SECSID_NULL ? xfrm_sid : nlbl_sid); 2225 } 2226 2227 #ifdef CONFIG_NETLABEL 2228 /* 2229 * This is the structure we store inside the NetLabel cache block. 2230 */ 2231 #define NETLBL_CACHE(x) ((struct netlbl_cache *)(x)) 2232 #define NETLBL_CACHE_T_NONE 0 2233 #define NETLBL_CACHE_T_SID 1 2234 #define NETLBL_CACHE_T_MLS 2 2235 struct netlbl_cache { 2236 u32 type; 2237 union { 2238 u32 sid; 2239 struct mls_range mls_label; 2240 } data; 2241 }; 2242 2243 /** 2244 * selinux_netlbl_cache_free - Free the NetLabel cached data 2245 * @data: the data to free 2246 * 2247 * Description: 2248 * This function is intended to be used as the free() callback inside the 2249 * netlbl_lsm_cache structure. 2250 * 2251 */ 2252 static void selinux_netlbl_cache_free(const void *data) 2253 { 2254 struct netlbl_cache *cache; 2255 2256 if (data == NULL) 2257 return; 2258 2259 cache = NETLBL_CACHE(data); 2260 switch (cache->type) { 2261 case NETLBL_CACHE_T_MLS: 2262 ebitmap_destroy(&cache->data.mls_label.level[0].cat); 2263 break; 2264 } 2265 kfree(data); 2266 } 2267 2268 /** 2269 * selinux_netlbl_cache_add - Add an entry to the NetLabel cache 2270 * @skb: the packet 2271 * @ctx: the SELinux context 2272 * 2273 * Description: 2274 * Attempt to cache the context in @ctx, which was derived from the packet in 2275 * @skb, in the NetLabel subsystem cache. 2276 * 2277 */ 2278 static void selinux_netlbl_cache_add(struct sk_buff *skb, struct context *ctx) 2279 { 2280 struct netlbl_cache *cache = NULL; 2281 struct netlbl_lsm_secattr secattr; 2282 2283 netlbl_secattr_init(&secattr); 2284 secattr.cache = netlbl_secattr_cache_alloc(GFP_ATOMIC); 2285 if (secattr.cache == NULL) 2286 goto netlbl_cache_add_return; 2287 2288 cache = kzalloc(sizeof(*cache), GFP_ATOMIC); 2289 if (cache == NULL) 2290 goto netlbl_cache_add_return; 2291 2292 cache->type = NETLBL_CACHE_T_MLS; 2293 if (ebitmap_cpy(&cache->data.mls_label.level[0].cat, 2294 &ctx->range.level[0].cat) != 0) 2295 goto netlbl_cache_add_return; 2296 cache->data.mls_label.level[1].cat.highbit = 2297 cache->data.mls_label.level[0].cat.highbit; 2298 cache->data.mls_label.level[1].cat.node = 2299 cache->data.mls_label.level[0].cat.node; 2300 cache->data.mls_label.level[0].sens = ctx->range.level[0].sens; 2301 cache->data.mls_label.level[1].sens = ctx->range.level[0].sens; 2302 2303 secattr.cache->free = selinux_netlbl_cache_free; 2304 secattr.cache->data = (void *)cache; 2305 secattr.flags = NETLBL_SECATTR_CACHE; 2306 2307 netlbl_cache_add(skb, &secattr); 2308 2309 netlbl_cache_add_return: 2310 netlbl_secattr_destroy(&secattr); 2311 } 2312 2313 /** 2314 * selinux_netlbl_cache_invalidate - Invalidate the NetLabel cache 2315 * 2316 * Description: 2317 * Invalidate the NetLabel security attribute mapping cache. 2318 * 2319 */ 2320 void selinux_netlbl_cache_invalidate(void) 2321 { 2322 netlbl_cache_invalidate(); 2323 } 2324 2325 /** 2326 * selinux_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID 2327 * @skb: the network packet 2328 * @secattr: the NetLabel packet security attributes 2329 * @base_sid: the SELinux SID to use as a context for MLS only attributes 2330 * @sid: the SELinux SID 2331 * 2332 * Description: 2333 * Convert the given NetLabel packet security attributes in @secattr into a 2334 * SELinux SID. If the @secattr field does not contain a full SELinux 2335 * SID/context then use the context in @base_sid as the foundation. If @skb 2336 * is not NULL attempt to cache as much data as possibile. Returns zero on 2337 * success, negative values on failure. 2338 * 2339 */ 2340 static int selinux_netlbl_secattr_to_sid(struct sk_buff *skb, 2341 struct netlbl_lsm_secattr *secattr, 2342 u32 base_sid, 2343 u32 *sid) 2344 { 2345 int rc = -EIDRM; 2346 struct context *ctx; 2347 struct context ctx_new; 2348 struct netlbl_cache *cache; 2349 2350 POLICY_RDLOCK; 2351 2352 if (secattr->flags & NETLBL_SECATTR_CACHE) { 2353 cache = NETLBL_CACHE(secattr->cache->data); 2354 switch (cache->type) { 2355 case NETLBL_CACHE_T_SID: 2356 *sid = cache->data.sid; 2357 rc = 0; 2358 break; 2359 case NETLBL_CACHE_T_MLS: 2360 ctx = sidtab_search(&sidtab, base_sid); 2361 if (ctx == NULL) 2362 goto netlbl_secattr_to_sid_return; 2363 2364 ctx_new.user = ctx->user; 2365 ctx_new.role = ctx->role; 2366 ctx_new.type = ctx->type; 2367 ctx_new.range.level[0].sens = 2368 cache->data.mls_label.level[0].sens; 2369 ctx_new.range.level[0].cat.highbit = 2370 cache->data.mls_label.level[0].cat.highbit; 2371 ctx_new.range.level[0].cat.node = 2372 cache->data.mls_label.level[0].cat.node; 2373 ctx_new.range.level[1].sens = 2374 cache->data.mls_label.level[1].sens; 2375 ctx_new.range.level[1].cat.highbit = 2376 cache->data.mls_label.level[1].cat.highbit; 2377 ctx_new.range.level[1].cat.node = 2378 cache->data.mls_label.level[1].cat.node; 2379 2380 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid); 2381 break; 2382 default: 2383 goto netlbl_secattr_to_sid_return; 2384 } 2385 } else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) { 2386 ctx = sidtab_search(&sidtab, base_sid); 2387 if (ctx == NULL) 2388 goto netlbl_secattr_to_sid_return; 2389 2390 ctx_new.user = ctx->user; 2391 ctx_new.role = ctx->role; 2392 ctx_new.type = ctx->type; 2393 mls_import_netlbl_lvl(&ctx_new, secattr); 2394 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) { 2395 if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat, 2396 secattr->mls_cat) != 0) 2397 goto netlbl_secattr_to_sid_return; 2398 ctx_new.range.level[1].cat.highbit = 2399 ctx_new.range.level[0].cat.highbit; 2400 ctx_new.range.level[1].cat.node = 2401 ctx_new.range.level[0].cat.node; 2402 } else { 2403 ebitmap_init(&ctx_new.range.level[0].cat); 2404 ebitmap_init(&ctx_new.range.level[1].cat); 2405 } 2406 if (mls_context_isvalid(&policydb, &ctx_new) != 1) 2407 goto netlbl_secattr_to_sid_return_cleanup; 2408 2409 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid); 2410 if (rc != 0) 2411 goto netlbl_secattr_to_sid_return_cleanup; 2412 2413 if (skb != NULL) 2414 selinux_netlbl_cache_add(skb, &ctx_new); 2415 ebitmap_destroy(&ctx_new.range.level[0].cat); 2416 } else { 2417 *sid = SECSID_NULL; 2418 rc = 0; 2419 } 2420 2421 netlbl_secattr_to_sid_return: 2422 POLICY_RDUNLOCK; 2423 return rc; 2424 netlbl_secattr_to_sid_return_cleanup: 2425 ebitmap_destroy(&ctx_new.range.level[0].cat); 2426 goto netlbl_secattr_to_sid_return; 2427 } 2428 2429 /** 2430 * selinux_netlbl_skbuff_getsid - Get the sid of a packet using NetLabel 2431 * @skb: the packet 2432 * @base_sid: the SELinux SID to use as a context for MLS only attributes 2433 * @sid: the SID 2434 * 2435 * Description: 2436 * Call the NetLabel mechanism to get the security attributes of the given 2437 * packet and use those attributes to determine the correct context/SID to 2438 * assign to the packet. Returns zero on success, negative values on failure. 2439 * 2440 */ 2441 int selinux_netlbl_skbuff_getsid(struct sk_buff *skb, u32 base_sid, u32 *sid) 2442 { 2443 int rc; 2444 struct netlbl_lsm_secattr secattr; 2445 2446 netlbl_secattr_init(&secattr); 2447 rc = netlbl_skbuff_getattr(skb, &secattr); 2448 if (rc == 0 && secattr.flags != NETLBL_SECATTR_NONE) 2449 rc = selinux_netlbl_secattr_to_sid(skb, 2450 &secattr, 2451 base_sid, 2452 sid); 2453 else 2454 *sid = SECSID_NULL; 2455 netlbl_secattr_destroy(&secattr); 2456 2457 return rc; 2458 } 2459 2460 /** 2461 * selinux_netlbl_socket_setsid - Label a socket using the NetLabel mechanism 2462 * @sock: the socket to label 2463 * @sid: the SID to use 2464 * 2465 * Description: 2466 * Attempt to label a socket using the NetLabel mechanism using the given 2467 * SID. Returns zero values on success, negative values on failure. The 2468 * caller is responsibile for calling rcu_read_lock() before calling this 2469 * this function and rcu_read_unlock() after this function returns. 2470 * 2471 */ 2472 static int selinux_netlbl_socket_setsid(struct socket *sock, u32 sid) 2473 { 2474 int rc = -ENOENT; 2475 struct sk_security_struct *sksec = sock->sk->sk_security; 2476 struct netlbl_lsm_secattr secattr; 2477 struct context *ctx; 2478 2479 if (!ss_initialized) 2480 return 0; 2481 2482 netlbl_secattr_init(&secattr); 2483 2484 POLICY_RDLOCK; 2485 2486 ctx = sidtab_search(&sidtab, sid); 2487 if (ctx == NULL) 2488 goto netlbl_socket_setsid_return; 2489 2490 secattr.domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1], 2491 GFP_ATOMIC); 2492 secattr.flags |= NETLBL_SECATTR_DOMAIN; 2493 mls_export_netlbl_lvl(ctx, &secattr); 2494 rc = mls_export_netlbl_cat(ctx, &secattr); 2495 if (rc != 0) 2496 goto netlbl_socket_setsid_return; 2497 2498 rc = netlbl_socket_setattr(sock, &secattr); 2499 if (rc == 0) { 2500 spin_lock_bh(&sksec->nlbl_lock); 2501 sksec->nlbl_state = NLBL_LABELED; 2502 spin_unlock_bh(&sksec->nlbl_lock); 2503 } 2504 2505 netlbl_socket_setsid_return: 2506 POLICY_RDUNLOCK; 2507 netlbl_secattr_destroy(&secattr); 2508 return rc; 2509 } 2510 2511 /** 2512 * selinux_netlbl_sk_security_reset - Reset the NetLabel fields 2513 * @ssec: the sk_security_struct 2514 * @family: the socket family 2515 * 2516 * Description: 2517 * Called when the NetLabel state of a sk_security_struct needs to be reset. 2518 * The caller is responsibile for all the NetLabel sk_security_struct locking. 2519 * 2520 */ 2521 void selinux_netlbl_sk_security_reset(struct sk_security_struct *ssec, 2522 int family) 2523 { 2524 if (family == PF_INET) 2525 ssec->nlbl_state = NLBL_REQUIRE; 2526 else 2527 ssec->nlbl_state = NLBL_UNSET; 2528 } 2529 2530 /** 2531 * selinux_netlbl_sk_security_init - Setup the NetLabel fields 2532 * @ssec: the sk_security_struct 2533 * @family: the socket family 2534 * 2535 * Description: 2536 * Called when a new sk_security_struct is allocated to initialize the NetLabel 2537 * fields. 2538 * 2539 */ 2540 void selinux_netlbl_sk_security_init(struct sk_security_struct *ssec, 2541 int family) 2542 { 2543 /* No locking needed, we are the only one who has access to ssec */ 2544 selinux_netlbl_sk_security_reset(ssec, family); 2545 spin_lock_init(&ssec->nlbl_lock); 2546 } 2547 2548 /** 2549 * selinux_netlbl_sk_security_clone - Copy the NetLabel fields 2550 * @ssec: the original sk_security_struct 2551 * @newssec: the cloned sk_security_struct 2552 * 2553 * Description: 2554 * Clone the NetLabel specific sk_security_struct fields from @ssec to 2555 * @newssec. 2556 * 2557 */ 2558 void selinux_netlbl_sk_security_clone(struct sk_security_struct *ssec, 2559 struct sk_security_struct *newssec) 2560 { 2561 /* We don't need to take newssec->nlbl_lock because we are the only 2562 * thread with access to newssec, but we do need to take the RCU read 2563 * lock as other threads could have access to ssec */ 2564 rcu_read_lock(); 2565 selinux_netlbl_sk_security_reset(newssec, ssec->sk->sk_family); 2566 newssec->sclass = ssec->sclass; 2567 rcu_read_unlock(); 2568 } 2569 2570 /** 2571 * selinux_netlbl_socket_post_create - Label a socket using NetLabel 2572 * @sock: the socket to label 2573 * 2574 * Description: 2575 * Attempt to label a socket using the NetLabel mechanism using the given 2576 * SID. Returns zero values on success, negative values on failure. 2577 * 2578 */ 2579 int selinux_netlbl_socket_post_create(struct socket *sock) 2580 { 2581 int rc = 0; 2582 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 2583 struct sk_security_struct *sksec = sock->sk->sk_security; 2584 2585 sksec->sclass = isec->sclass; 2586 2587 rcu_read_lock(); 2588 if (sksec->nlbl_state == NLBL_REQUIRE) 2589 rc = selinux_netlbl_socket_setsid(sock, sksec->sid); 2590 rcu_read_unlock(); 2591 2592 return rc; 2593 } 2594 2595 /** 2596 * selinux_netlbl_sock_graft - Netlabel the new socket 2597 * @sk: the new connection 2598 * @sock: the new socket 2599 * 2600 * Description: 2601 * The connection represented by @sk is being grafted onto @sock so set the 2602 * socket's NetLabel to match the SID of @sk. 2603 * 2604 */ 2605 void selinux_netlbl_sock_graft(struct sock *sk, struct socket *sock) 2606 { 2607 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 2608 struct sk_security_struct *sksec = sk->sk_security; 2609 struct netlbl_lsm_secattr secattr; 2610 u32 nlbl_peer_sid; 2611 2612 sksec->sclass = isec->sclass; 2613 2614 rcu_read_lock(); 2615 2616 if (sksec->nlbl_state != NLBL_REQUIRE) { 2617 rcu_read_unlock(); 2618 return; 2619 } 2620 2621 netlbl_secattr_init(&secattr); 2622 if (netlbl_sock_getattr(sk, &secattr) == 0 && 2623 secattr.flags != NETLBL_SECATTR_NONE && 2624 selinux_netlbl_secattr_to_sid(NULL, 2625 &secattr, 2626 SECINITSID_UNLABELED, 2627 &nlbl_peer_sid) == 0) 2628 sksec->peer_sid = nlbl_peer_sid; 2629 netlbl_secattr_destroy(&secattr); 2630 2631 /* Try to set the NetLabel on the socket to save time later, if we fail 2632 * here we will pick up the pieces in later calls to 2633 * selinux_netlbl_inode_permission(). */ 2634 selinux_netlbl_socket_setsid(sock, sksec->sid); 2635 2636 rcu_read_unlock(); 2637 } 2638 2639 /** 2640 * selinux_netlbl_inode_permission - Verify the socket is NetLabel labeled 2641 * @inode: the file descriptor's inode 2642 * @mask: the permission mask 2643 * 2644 * Description: 2645 * Looks at a file's inode and if it is marked as a socket protected by 2646 * NetLabel then verify that the socket has been labeled, if not try to label 2647 * the socket now with the inode's SID. Returns zero on success, negative 2648 * values on failure. 2649 * 2650 */ 2651 int selinux_netlbl_inode_permission(struct inode *inode, int mask) 2652 { 2653 int rc; 2654 struct sk_security_struct *sksec; 2655 struct socket *sock; 2656 2657 if (!S_ISSOCK(inode->i_mode) || 2658 ((mask & (MAY_WRITE | MAY_APPEND)) == 0)) 2659 return 0; 2660 sock = SOCKET_I(inode); 2661 sksec = sock->sk->sk_security; 2662 2663 rcu_read_lock(); 2664 if (sksec->nlbl_state != NLBL_REQUIRE) { 2665 rcu_read_unlock(); 2666 return 0; 2667 } 2668 local_bh_disable(); 2669 bh_lock_sock_nested(sock->sk); 2670 rc = selinux_netlbl_socket_setsid(sock, sksec->sid); 2671 bh_unlock_sock(sock->sk); 2672 local_bh_enable(); 2673 rcu_read_unlock(); 2674 2675 return rc; 2676 } 2677 2678 /** 2679 * selinux_netlbl_sock_rcv_skb - Do an inbound access check using NetLabel 2680 * @sksec: the sock's sk_security_struct 2681 * @skb: the packet 2682 * @ad: the audit data 2683 * 2684 * Description: 2685 * Fetch the NetLabel security attributes from @skb and perform an access check 2686 * against the receiving socket. Returns zero on success, negative values on 2687 * error. 2688 * 2689 */ 2690 int selinux_netlbl_sock_rcv_skb(struct sk_security_struct *sksec, 2691 struct sk_buff *skb, 2692 struct avc_audit_data *ad) 2693 { 2694 int rc; 2695 u32 netlbl_sid; 2696 u32 recv_perm; 2697 2698 rc = selinux_netlbl_skbuff_getsid(skb, 2699 SECINITSID_UNLABELED, 2700 &netlbl_sid); 2701 if (rc != 0) 2702 return rc; 2703 2704 if (netlbl_sid == SECSID_NULL) 2705 return 0; 2706 2707 switch (sksec->sclass) { 2708 case SECCLASS_UDP_SOCKET: 2709 recv_perm = UDP_SOCKET__RECVFROM; 2710 break; 2711 case SECCLASS_TCP_SOCKET: 2712 recv_perm = TCP_SOCKET__RECVFROM; 2713 break; 2714 default: 2715 recv_perm = RAWIP_SOCKET__RECVFROM; 2716 } 2717 2718 rc = avc_has_perm(sksec->sid, 2719 netlbl_sid, 2720 sksec->sclass, 2721 recv_perm, 2722 ad); 2723 if (rc == 0) 2724 return 0; 2725 2726 netlbl_skbuff_err(skb, rc); 2727 return rc; 2728 } 2729 2730 /** 2731 * selinux_netlbl_socket_setsockopt - Do not allow users to remove a NetLabel 2732 * @sock: the socket 2733 * @level: the socket level or protocol 2734 * @optname: the socket option name 2735 * 2736 * Description: 2737 * Check the setsockopt() call and if the user is trying to replace the IP 2738 * options on a socket and a NetLabel is in place for the socket deny the 2739 * access; otherwise allow the access. Returns zero when the access is 2740 * allowed, -EACCES when denied, and other negative values on error. 2741 * 2742 */ 2743 int selinux_netlbl_socket_setsockopt(struct socket *sock, 2744 int level, 2745 int optname) 2746 { 2747 int rc = 0; 2748 struct sk_security_struct *sksec = sock->sk->sk_security; 2749 struct netlbl_lsm_secattr secattr; 2750 2751 rcu_read_lock(); 2752 if (level == IPPROTO_IP && optname == IP_OPTIONS && 2753 sksec->nlbl_state == NLBL_LABELED) { 2754 netlbl_secattr_init(&secattr); 2755 rc = netlbl_socket_getattr(sock, &secattr); 2756 if (rc == 0 && secattr.flags != NETLBL_SECATTR_NONE) 2757 rc = -EACCES; 2758 netlbl_secattr_destroy(&secattr); 2759 } 2760 rcu_read_unlock(); 2761 2762 return rc; 2763 } 2764 #endif /* CONFIG_NETLABEL */ 2765