xref: /linux/security/selinux/ss/services.c (revision aeca4e2ca65c1aeacfbe520684e6421719d99417)
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul@paul-moore.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26  *
27  *  Added support for bounds domain and audit messaged on masked permissions
28  *
29  * Updated: Guido Trentalancia <guido@trentalancia.com>
30  *
31  *  Added support for runtime switching of the policy type
32  *
33  * Copyright (C) 2008, 2009 NEC Corporation
34  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38  *	This program is free software; you can redistribute it and/or modify
39  *	it under the terms of the GNU General Public License as published by
40  *	the Free Software Foundation, version 2.
41  */
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/flex_array.h>
53 #include <linux/vmalloc.h>
54 #include <net/netlabel.h>
55 
56 #include "flask.h"
57 #include "avc.h"
58 #include "avc_ss.h"
59 #include "security.h"
60 #include "context.h"
61 #include "policydb.h"
62 #include "sidtab.h"
63 #include "services.h"
64 #include "conditional.h"
65 #include "mls.h"
66 #include "objsec.h"
67 #include "netlabel.h"
68 #include "xfrm.h"
69 #include "ebitmap.h"
70 #include "audit.h"
71 
72 /* Policy capability names */
73 const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
74 	"network_peer_controls",
75 	"open_perms",
76 	"extended_socket_class",
77 	"always_check_network",
78 	"cgroup_seclabel",
79 	"nnp_nosuid_transition"
80 };
81 
82 static struct selinux_ss selinux_ss;
83 
84 void selinux_ss_init(struct selinux_ss **ss)
85 {
86 	rwlock_init(&selinux_ss.policy_rwlock);
87 	mutex_init(&selinux_ss.status_lock);
88 	*ss = &selinux_ss;
89 }
90 
91 /* Forward declaration. */
92 static int context_struct_to_string(struct policydb *policydb,
93 				    struct context *context,
94 				    char **scontext,
95 				    u32 *scontext_len);
96 
97 static void context_struct_compute_av(struct policydb *policydb,
98 				      struct context *scontext,
99 				      struct context *tcontext,
100 				      u16 tclass,
101 				      struct av_decision *avd,
102 				      struct extended_perms *xperms);
103 
104 static int selinux_set_mapping(struct policydb *pol,
105 			       struct security_class_mapping *map,
106 			       struct selinux_map *out_map)
107 {
108 	u16 i, j;
109 	unsigned k;
110 	bool print_unknown_handle = false;
111 
112 	/* Find number of classes in the input mapping */
113 	if (!map)
114 		return -EINVAL;
115 	i = 0;
116 	while (map[i].name)
117 		i++;
118 
119 	/* Allocate space for the class records, plus one for class zero */
120 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
121 	if (!out_map->mapping)
122 		return -ENOMEM;
123 
124 	/* Store the raw class and permission values */
125 	j = 0;
126 	while (map[j].name) {
127 		struct security_class_mapping *p_in = map + (j++);
128 		struct selinux_mapping *p_out = out_map->mapping + j;
129 
130 		/* An empty class string skips ahead */
131 		if (!strcmp(p_in->name, "")) {
132 			p_out->num_perms = 0;
133 			continue;
134 		}
135 
136 		p_out->value = string_to_security_class(pol, p_in->name);
137 		if (!p_out->value) {
138 			pr_info("SELinux:  Class %s not defined in policy.\n",
139 			       p_in->name);
140 			if (pol->reject_unknown)
141 				goto err;
142 			p_out->num_perms = 0;
143 			print_unknown_handle = true;
144 			continue;
145 		}
146 
147 		k = 0;
148 		while (p_in->perms[k]) {
149 			/* An empty permission string skips ahead */
150 			if (!*p_in->perms[k]) {
151 				k++;
152 				continue;
153 			}
154 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
155 							    p_in->perms[k]);
156 			if (!p_out->perms[k]) {
157 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
158 				       p_in->perms[k], p_in->name);
159 				if (pol->reject_unknown)
160 					goto err;
161 				print_unknown_handle = true;
162 			}
163 
164 			k++;
165 		}
166 		p_out->num_perms = k;
167 	}
168 
169 	if (print_unknown_handle)
170 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
171 		       pol->allow_unknown ? "allowed" : "denied");
172 
173 	out_map->size = i;
174 	return 0;
175 err:
176 	kfree(out_map->mapping);
177 	out_map->mapping = NULL;
178 	return -EINVAL;
179 }
180 
181 /*
182  * Get real, policy values from mapped values
183  */
184 
185 static u16 unmap_class(struct selinux_map *map, u16 tclass)
186 {
187 	if (tclass < map->size)
188 		return map->mapping[tclass].value;
189 
190 	return tclass;
191 }
192 
193 /*
194  * Get kernel value for class from its policy value
195  */
196 static u16 map_class(struct selinux_map *map, u16 pol_value)
197 {
198 	u16 i;
199 
200 	for (i = 1; i < map->size; i++) {
201 		if (map->mapping[i].value == pol_value)
202 			return i;
203 	}
204 
205 	return SECCLASS_NULL;
206 }
207 
208 static void map_decision(struct selinux_map *map,
209 			 u16 tclass, struct av_decision *avd,
210 			 int allow_unknown)
211 {
212 	if (tclass < map->size) {
213 		struct selinux_mapping *mapping = &map->mapping[tclass];
214 		unsigned int i, n = mapping->num_perms;
215 		u32 result;
216 
217 		for (i = 0, result = 0; i < n; i++) {
218 			if (avd->allowed & mapping->perms[i])
219 				result |= 1<<i;
220 			if (allow_unknown && !mapping->perms[i])
221 				result |= 1<<i;
222 		}
223 		avd->allowed = result;
224 
225 		for (i = 0, result = 0; i < n; i++)
226 			if (avd->auditallow & mapping->perms[i])
227 				result |= 1<<i;
228 		avd->auditallow = result;
229 
230 		for (i = 0, result = 0; i < n; i++) {
231 			if (avd->auditdeny & mapping->perms[i])
232 				result |= 1<<i;
233 			if (!allow_unknown && !mapping->perms[i])
234 				result |= 1<<i;
235 		}
236 		/*
237 		 * In case the kernel has a bug and requests a permission
238 		 * between num_perms and the maximum permission number, we
239 		 * should audit that denial
240 		 */
241 		for (; i < (sizeof(u32)*8); i++)
242 			result |= 1<<i;
243 		avd->auditdeny = result;
244 	}
245 }
246 
247 int security_mls_enabled(struct selinux_state *state)
248 {
249 	struct policydb *p = &state->ss->policydb;
250 
251 	return p->mls_enabled;
252 }
253 
254 /*
255  * Return the boolean value of a constraint expression
256  * when it is applied to the specified source and target
257  * security contexts.
258  *
259  * xcontext is a special beast...  It is used by the validatetrans rules
260  * only.  For these rules, scontext is the context before the transition,
261  * tcontext is the context after the transition, and xcontext is the context
262  * of the process performing the transition.  All other callers of
263  * constraint_expr_eval should pass in NULL for xcontext.
264  */
265 static int constraint_expr_eval(struct policydb *policydb,
266 				struct context *scontext,
267 				struct context *tcontext,
268 				struct context *xcontext,
269 				struct constraint_expr *cexpr)
270 {
271 	u32 val1, val2;
272 	struct context *c;
273 	struct role_datum *r1, *r2;
274 	struct mls_level *l1, *l2;
275 	struct constraint_expr *e;
276 	int s[CEXPR_MAXDEPTH];
277 	int sp = -1;
278 
279 	for (e = cexpr; e; e = e->next) {
280 		switch (e->expr_type) {
281 		case CEXPR_NOT:
282 			BUG_ON(sp < 0);
283 			s[sp] = !s[sp];
284 			break;
285 		case CEXPR_AND:
286 			BUG_ON(sp < 1);
287 			sp--;
288 			s[sp] &= s[sp + 1];
289 			break;
290 		case CEXPR_OR:
291 			BUG_ON(sp < 1);
292 			sp--;
293 			s[sp] |= s[sp + 1];
294 			break;
295 		case CEXPR_ATTR:
296 			if (sp == (CEXPR_MAXDEPTH - 1))
297 				return 0;
298 			switch (e->attr) {
299 			case CEXPR_USER:
300 				val1 = scontext->user;
301 				val2 = tcontext->user;
302 				break;
303 			case CEXPR_TYPE:
304 				val1 = scontext->type;
305 				val2 = tcontext->type;
306 				break;
307 			case CEXPR_ROLE:
308 				val1 = scontext->role;
309 				val2 = tcontext->role;
310 				r1 = policydb->role_val_to_struct[val1 - 1];
311 				r2 = policydb->role_val_to_struct[val2 - 1];
312 				switch (e->op) {
313 				case CEXPR_DOM:
314 					s[++sp] = ebitmap_get_bit(&r1->dominates,
315 								  val2 - 1);
316 					continue;
317 				case CEXPR_DOMBY:
318 					s[++sp] = ebitmap_get_bit(&r2->dominates,
319 								  val1 - 1);
320 					continue;
321 				case CEXPR_INCOMP:
322 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
323 								    val2 - 1) &&
324 						   !ebitmap_get_bit(&r2->dominates,
325 								    val1 - 1));
326 					continue;
327 				default:
328 					break;
329 				}
330 				break;
331 			case CEXPR_L1L2:
332 				l1 = &(scontext->range.level[0]);
333 				l2 = &(tcontext->range.level[0]);
334 				goto mls_ops;
335 			case CEXPR_L1H2:
336 				l1 = &(scontext->range.level[0]);
337 				l2 = &(tcontext->range.level[1]);
338 				goto mls_ops;
339 			case CEXPR_H1L2:
340 				l1 = &(scontext->range.level[1]);
341 				l2 = &(tcontext->range.level[0]);
342 				goto mls_ops;
343 			case CEXPR_H1H2:
344 				l1 = &(scontext->range.level[1]);
345 				l2 = &(tcontext->range.level[1]);
346 				goto mls_ops;
347 			case CEXPR_L1H1:
348 				l1 = &(scontext->range.level[0]);
349 				l2 = &(scontext->range.level[1]);
350 				goto mls_ops;
351 			case CEXPR_L2H2:
352 				l1 = &(tcontext->range.level[0]);
353 				l2 = &(tcontext->range.level[1]);
354 				goto mls_ops;
355 mls_ops:
356 			switch (e->op) {
357 			case CEXPR_EQ:
358 				s[++sp] = mls_level_eq(l1, l2);
359 				continue;
360 			case CEXPR_NEQ:
361 				s[++sp] = !mls_level_eq(l1, l2);
362 				continue;
363 			case CEXPR_DOM:
364 				s[++sp] = mls_level_dom(l1, l2);
365 				continue;
366 			case CEXPR_DOMBY:
367 				s[++sp] = mls_level_dom(l2, l1);
368 				continue;
369 			case CEXPR_INCOMP:
370 				s[++sp] = mls_level_incomp(l2, l1);
371 				continue;
372 			default:
373 				BUG();
374 				return 0;
375 			}
376 			break;
377 			default:
378 				BUG();
379 				return 0;
380 			}
381 
382 			switch (e->op) {
383 			case CEXPR_EQ:
384 				s[++sp] = (val1 == val2);
385 				break;
386 			case CEXPR_NEQ:
387 				s[++sp] = (val1 != val2);
388 				break;
389 			default:
390 				BUG();
391 				return 0;
392 			}
393 			break;
394 		case CEXPR_NAMES:
395 			if (sp == (CEXPR_MAXDEPTH-1))
396 				return 0;
397 			c = scontext;
398 			if (e->attr & CEXPR_TARGET)
399 				c = tcontext;
400 			else if (e->attr & CEXPR_XTARGET) {
401 				c = xcontext;
402 				if (!c) {
403 					BUG();
404 					return 0;
405 				}
406 			}
407 			if (e->attr & CEXPR_USER)
408 				val1 = c->user;
409 			else if (e->attr & CEXPR_ROLE)
410 				val1 = c->role;
411 			else if (e->attr & CEXPR_TYPE)
412 				val1 = c->type;
413 			else {
414 				BUG();
415 				return 0;
416 			}
417 
418 			switch (e->op) {
419 			case CEXPR_EQ:
420 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
421 				break;
422 			case CEXPR_NEQ:
423 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
424 				break;
425 			default:
426 				BUG();
427 				return 0;
428 			}
429 			break;
430 		default:
431 			BUG();
432 			return 0;
433 		}
434 	}
435 
436 	BUG_ON(sp != 0);
437 	return s[0];
438 }
439 
440 /*
441  * security_dump_masked_av - dumps masked permissions during
442  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
443  */
444 static int dump_masked_av_helper(void *k, void *d, void *args)
445 {
446 	struct perm_datum *pdatum = d;
447 	char **permission_names = args;
448 
449 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
450 
451 	permission_names[pdatum->value - 1] = (char *)k;
452 
453 	return 0;
454 }
455 
456 static void security_dump_masked_av(struct policydb *policydb,
457 				    struct context *scontext,
458 				    struct context *tcontext,
459 				    u16 tclass,
460 				    u32 permissions,
461 				    const char *reason)
462 {
463 	struct common_datum *common_dat;
464 	struct class_datum *tclass_dat;
465 	struct audit_buffer *ab;
466 	char *tclass_name;
467 	char *scontext_name = NULL;
468 	char *tcontext_name = NULL;
469 	char *permission_names[32];
470 	int index;
471 	u32 length;
472 	bool need_comma = false;
473 
474 	if (!permissions)
475 		return;
476 
477 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
478 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
479 	common_dat = tclass_dat->comdatum;
480 
481 	/* init permission_names */
482 	if (common_dat &&
483 	    hashtab_map(common_dat->permissions.table,
484 			dump_masked_av_helper, permission_names) < 0)
485 		goto out;
486 
487 	if (hashtab_map(tclass_dat->permissions.table,
488 			dump_masked_av_helper, permission_names) < 0)
489 		goto out;
490 
491 	/* get scontext/tcontext in text form */
492 	if (context_struct_to_string(policydb, scontext,
493 				     &scontext_name, &length) < 0)
494 		goto out;
495 
496 	if (context_struct_to_string(policydb, tcontext,
497 				     &tcontext_name, &length) < 0)
498 		goto out;
499 
500 	/* audit a message */
501 	ab = audit_log_start(audit_context(),
502 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
503 	if (!ab)
504 		goto out;
505 
506 	audit_log_format(ab, "op=security_compute_av reason=%s "
507 			 "scontext=%s tcontext=%s tclass=%s perms=",
508 			 reason, scontext_name, tcontext_name, tclass_name);
509 
510 	for (index = 0; index < 32; index++) {
511 		u32 mask = (1 << index);
512 
513 		if ((mask & permissions) == 0)
514 			continue;
515 
516 		audit_log_format(ab, "%s%s",
517 				 need_comma ? "," : "",
518 				 permission_names[index]
519 				 ? permission_names[index] : "????");
520 		need_comma = true;
521 	}
522 	audit_log_end(ab);
523 out:
524 	/* release scontext/tcontext */
525 	kfree(tcontext_name);
526 	kfree(scontext_name);
527 
528 	return;
529 }
530 
531 /*
532  * security_boundary_permission - drops violated permissions
533  * on boundary constraint.
534  */
535 static void type_attribute_bounds_av(struct policydb *policydb,
536 				     struct context *scontext,
537 				     struct context *tcontext,
538 				     u16 tclass,
539 				     struct av_decision *avd)
540 {
541 	struct context lo_scontext;
542 	struct context lo_tcontext, *tcontextp = tcontext;
543 	struct av_decision lo_avd;
544 	struct type_datum *source;
545 	struct type_datum *target;
546 	u32 masked = 0;
547 
548 	source = flex_array_get_ptr(policydb->type_val_to_struct_array,
549 				    scontext->type - 1);
550 	BUG_ON(!source);
551 
552 	if (!source->bounds)
553 		return;
554 
555 	target = flex_array_get_ptr(policydb->type_val_to_struct_array,
556 				    tcontext->type - 1);
557 	BUG_ON(!target);
558 
559 	memset(&lo_avd, 0, sizeof(lo_avd));
560 
561 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
562 	lo_scontext.type = source->bounds;
563 
564 	if (target->bounds) {
565 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
566 		lo_tcontext.type = target->bounds;
567 		tcontextp = &lo_tcontext;
568 	}
569 
570 	context_struct_compute_av(policydb, &lo_scontext,
571 				  tcontextp,
572 				  tclass,
573 				  &lo_avd,
574 				  NULL);
575 
576 	masked = ~lo_avd.allowed & avd->allowed;
577 
578 	if (likely(!masked))
579 		return;		/* no masked permission */
580 
581 	/* mask violated permissions */
582 	avd->allowed &= ~masked;
583 
584 	/* audit masked permissions */
585 	security_dump_masked_av(policydb, scontext, tcontext,
586 				tclass, masked, "bounds");
587 }
588 
589 /*
590  * flag which drivers have permissions
591  * only looking for ioctl based extended permssions
592  */
593 void services_compute_xperms_drivers(
594 		struct extended_perms *xperms,
595 		struct avtab_node *node)
596 {
597 	unsigned int i;
598 
599 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
600 		/* if one or more driver has all permissions allowed */
601 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
602 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
603 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
604 		/* if allowing permissions within a driver */
605 		security_xperm_set(xperms->drivers.p,
606 					node->datum.u.xperms->driver);
607 	}
608 
609 	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
610 	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
611 		xperms->len = 1;
612 }
613 
614 /*
615  * Compute access vectors and extended permissions based on a context
616  * structure pair for the permissions in a particular class.
617  */
618 static void context_struct_compute_av(struct policydb *policydb,
619 				      struct context *scontext,
620 				      struct context *tcontext,
621 				      u16 tclass,
622 				      struct av_decision *avd,
623 				      struct extended_perms *xperms)
624 {
625 	struct constraint_node *constraint;
626 	struct role_allow *ra;
627 	struct avtab_key avkey;
628 	struct avtab_node *node;
629 	struct class_datum *tclass_datum;
630 	struct ebitmap *sattr, *tattr;
631 	struct ebitmap_node *snode, *tnode;
632 	unsigned int i, j;
633 
634 	avd->allowed = 0;
635 	avd->auditallow = 0;
636 	avd->auditdeny = 0xffffffff;
637 	if (xperms) {
638 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
639 		xperms->len = 0;
640 	}
641 
642 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
643 		if (printk_ratelimit())
644 			pr_warn("SELinux:  Invalid class %hu\n", tclass);
645 		return;
646 	}
647 
648 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
649 
650 	/*
651 	 * If a specific type enforcement rule was defined for
652 	 * this permission check, then use it.
653 	 */
654 	avkey.target_class = tclass;
655 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
656 	sattr = flex_array_get(policydb->type_attr_map_array,
657 			       scontext->type - 1);
658 	BUG_ON(!sattr);
659 	tattr = flex_array_get(policydb->type_attr_map_array,
660 			       tcontext->type - 1);
661 	BUG_ON(!tattr);
662 	ebitmap_for_each_positive_bit(sattr, snode, i) {
663 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
664 			avkey.source_type = i + 1;
665 			avkey.target_type = j + 1;
666 			for (node = avtab_search_node(&policydb->te_avtab,
667 						      &avkey);
668 			     node;
669 			     node = avtab_search_node_next(node, avkey.specified)) {
670 				if (node->key.specified == AVTAB_ALLOWED)
671 					avd->allowed |= node->datum.u.data;
672 				else if (node->key.specified == AVTAB_AUDITALLOW)
673 					avd->auditallow |= node->datum.u.data;
674 				else if (node->key.specified == AVTAB_AUDITDENY)
675 					avd->auditdeny &= node->datum.u.data;
676 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
677 					services_compute_xperms_drivers(xperms, node);
678 			}
679 
680 			/* Check conditional av table for additional permissions */
681 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
682 					avd, xperms);
683 
684 		}
685 	}
686 
687 	/*
688 	 * Remove any permissions prohibited by a constraint (this includes
689 	 * the MLS policy).
690 	 */
691 	constraint = tclass_datum->constraints;
692 	while (constraint) {
693 		if ((constraint->permissions & (avd->allowed)) &&
694 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
695 					  constraint->expr)) {
696 			avd->allowed &= ~(constraint->permissions);
697 		}
698 		constraint = constraint->next;
699 	}
700 
701 	/*
702 	 * If checking process transition permission and the
703 	 * role is changing, then check the (current_role, new_role)
704 	 * pair.
705 	 */
706 	if (tclass == policydb->process_class &&
707 	    (avd->allowed & policydb->process_trans_perms) &&
708 	    scontext->role != tcontext->role) {
709 		for (ra = policydb->role_allow; ra; ra = ra->next) {
710 			if (scontext->role == ra->role &&
711 			    tcontext->role == ra->new_role)
712 				break;
713 		}
714 		if (!ra)
715 			avd->allowed &= ~policydb->process_trans_perms;
716 	}
717 
718 	/*
719 	 * If the given source and target types have boundary
720 	 * constraint, lazy checks have to mask any violated
721 	 * permission and notice it to userspace via audit.
722 	 */
723 	type_attribute_bounds_av(policydb, scontext, tcontext,
724 				 tclass, avd);
725 }
726 
727 static int security_validtrans_handle_fail(struct selinux_state *state,
728 					   struct context *ocontext,
729 					   struct context *ncontext,
730 					   struct context *tcontext,
731 					   u16 tclass)
732 {
733 	struct policydb *p = &state->ss->policydb;
734 	char *o = NULL, *n = NULL, *t = NULL;
735 	u32 olen, nlen, tlen;
736 
737 	if (context_struct_to_string(p, ocontext, &o, &olen))
738 		goto out;
739 	if (context_struct_to_string(p, ncontext, &n, &nlen))
740 		goto out;
741 	if (context_struct_to_string(p, tcontext, &t, &tlen))
742 		goto out;
743 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
744 		  "op=security_validate_transition seresult=denied"
745 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
746 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
747 out:
748 	kfree(o);
749 	kfree(n);
750 	kfree(t);
751 
752 	if (!enforcing_enabled(state))
753 		return 0;
754 	return -EPERM;
755 }
756 
757 static int security_compute_validatetrans(struct selinux_state *state,
758 					  u32 oldsid, u32 newsid, u32 tasksid,
759 					  u16 orig_tclass, bool user)
760 {
761 	struct policydb *policydb;
762 	struct sidtab *sidtab;
763 	struct context *ocontext;
764 	struct context *ncontext;
765 	struct context *tcontext;
766 	struct class_datum *tclass_datum;
767 	struct constraint_node *constraint;
768 	u16 tclass;
769 	int rc = 0;
770 
771 
772 	if (!state->initialized)
773 		return 0;
774 
775 	read_lock(&state->ss->policy_rwlock);
776 
777 	policydb = &state->ss->policydb;
778 	sidtab = state->ss->sidtab;
779 
780 	if (!user)
781 		tclass = unmap_class(&state->ss->map, orig_tclass);
782 	else
783 		tclass = orig_tclass;
784 
785 	if (!tclass || tclass > policydb->p_classes.nprim) {
786 		rc = -EINVAL;
787 		goto out;
788 	}
789 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
790 
791 	ocontext = sidtab_search(sidtab, oldsid);
792 	if (!ocontext) {
793 		pr_err("SELinux: %s:  unrecognized SID %d\n",
794 			__func__, oldsid);
795 		rc = -EINVAL;
796 		goto out;
797 	}
798 
799 	ncontext = sidtab_search(sidtab, newsid);
800 	if (!ncontext) {
801 		pr_err("SELinux: %s:  unrecognized SID %d\n",
802 			__func__, newsid);
803 		rc = -EINVAL;
804 		goto out;
805 	}
806 
807 	tcontext = sidtab_search(sidtab, tasksid);
808 	if (!tcontext) {
809 		pr_err("SELinux: %s:  unrecognized SID %d\n",
810 			__func__, tasksid);
811 		rc = -EINVAL;
812 		goto out;
813 	}
814 
815 	constraint = tclass_datum->validatetrans;
816 	while (constraint) {
817 		if (!constraint_expr_eval(policydb, ocontext, ncontext,
818 					  tcontext, constraint->expr)) {
819 			if (user)
820 				rc = -EPERM;
821 			else
822 				rc = security_validtrans_handle_fail(state,
823 								     ocontext,
824 								     ncontext,
825 								     tcontext,
826 								     tclass);
827 			goto out;
828 		}
829 		constraint = constraint->next;
830 	}
831 
832 out:
833 	read_unlock(&state->ss->policy_rwlock);
834 	return rc;
835 }
836 
837 int security_validate_transition_user(struct selinux_state *state,
838 				      u32 oldsid, u32 newsid, u32 tasksid,
839 				      u16 tclass)
840 {
841 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
842 					      tclass, true);
843 }
844 
845 int security_validate_transition(struct selinux_state *state,
846 				 u32 oldsid, u32 newsid, u32 tasksid,
847 				 u16 orig_tclass)
848 {
849 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
850 					      orig_tclass, false);
851 }
852 
853 /*
854  * security_bounded_transition - check whether the given
855  * transition is directed to bounded, or not.
856  * It returns 0, if @newsid is bounded by @oldsid.
857  * Otherwise, it returns error code.
858  *
859  * @oldsid : current security identifier
860  * @newsid : destinated security identifier
861  */
862 int security_bounded_transition(struct selinux_state *state,
863 				u32 old_sid, u32 new_sid)
864 {
865 	struct policydb *policydb;
866 	struct sidtab *sidtab;
867 	struct context *old_context, *new_context;
868 	struct type_datum *type;
869 	int index;
870 	int rc;
871 
872 	if (!state->initialized)
873 		return 0;
874 
875 	read_lock(&state->ss->policy_rwlock);
876 
877 	policydb = &state->ss->policydb;
878 	sidtab = state->ss->sidtab;
879 
880 	rc = -EINVAL;
881 	old_context = sidtab_search(sidtab, old_sid);
882 	if (!old_context) {
883 		pr_err("SELinux: %s: unrecognized SID %u\n",
884 		       __func__, old_sid);
885 		goto out;
886 	}
887 
888 	rc = -EINVAL;
889 	new_context = sidtab_search(sidtab, new_sid);
890 	if (!new_context) {
891 		pr_err("SELinux: %s: unrecognized SID %u\n",
892 		       __func__, new_sid);
893 		goto out;
894 	}
895 
896 	rc = 0;
897 	/* type/domain unchanged */
898 	if (old_context->type == new_context->type)
899 		goto out;
900 
901 	index = new_context->type;
902 	while (true) {
903 		type = flex_array_get_ptr(policydb->type_val_to_struct_array,
904 					  index - 1);
905 		BUG_ON(!type);
906 
907 		/* not bounded anymore */
908 		rc = -EPERM;
909 		if (!type->bounds)
910 			break;
911 
912 		/* @newsid is bounded by @oldsid */
913 		rc = 0;
914 		if (type->bounds == old_context->type)
915 			break;
916 
917 		index = type->bounds;
918 	}
919 
920 	if (rc) {
921 		char *old_name = NULL;
922 		char *new_name = NULL;
923 		u32 length;
924 
925 		if (!context_struct_to_string(policydb, old_context,
926 					      &old_name, &length) &&
927 		    !context_struct_to_string(policydb, new_context,
928 					      &new_name, &length)) {
929 			audit_log(audit_context(),
930 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
931 				  "op=security_bounded_transition "
932 				  "seresult=denied "
933 				  "oldcontext=%s newcontext=%s",
934 				  old_name, new_name);
935 		}
936 		kfree(new_name);
937 		kfree(old_name);
938 	}
939 out:
940 	read_unlock(&state->ss->policy_rwlock);
941 
942 	return rc;
943 }
944 
945 static void avd_init(struct selinux_state *state, struct av_decision *avd)
946 {
947 	avd->allowed = 0;
948 	avd->auditallow = 0;
949 	avd->auditdeny = 0xffffffff;
950 	avd->seqno = state->ss->latest_granting;
951 	avd->flags = 0;
952 }
953 
954 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
955 					struct avtab_node *node)
956 {
957 	unsigned int i;
958 
959 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
960 		if (xpermd->driver != node->datum.u.xperms->driver)
961 			return;
962 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
963 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
964 					xpermd->driver))
965 			return;
966 	} else {
967 		BUG();
968 	}
969 
970 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
971 		xpermd->used |= XPERMS_ALLOWED;
972 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
973 			memset(xpermd->allowed->p, 0xff,
974 					sizeof(xpermd->allowed->p));
975 		}
976 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
977 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
978 				xpermd->allowed->p[i] |=
979 					node->datum.u.xperms->perms.p[i];
980 		}
981 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
982 		xpermd->used |= XPERMS_AUDITALLOW;
983 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
984 			memset(xpermd->auditallow->p, 0xff,
985 					sizeof(xpermd->auditallow->p));
986 		}
987 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
988 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
989 				xpermd->auditallow->p[i] |=
990 					node->datum.u.xperms->perms.p[i];
991 		}
992 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
993 		xpermd->used |= XPERMS_DONTAUDIT;
994 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
995 			memset(xpermd->dontaudit->p, 0xff,
996 					sizeof(xpermd->dontaudit->p));
997 		}
998 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
999 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1000 				xpermd->dontaudit->p[i] |=
1001 					node->datum.u.xperms->perms.p[i];
1002 		}
1003 	} else {
1004 		BUG();
1005 	}
1006 }
1007 
1008 void security_compute_xperms_decision(struct selinux_state *state,
1009 				      u32 ssid,
1010 				      u32 tsid,
1011 				      u16 orig_tclass,
1012 				      u8 driver,
1013 				      struct extended_perms_decision *xpermd)
1014 {
1015 	struct policydb *policydb;
1016 	struct sidtab *sidtab;
1017 	u16 tclass;
1018 	struct context *scontext, *tcontext;
1019 	struct avtab_key avkey;
1020 	struct avtab_node *node;
1021 	struct ebitmap *sattr, *tattr;
1022 	struct ebitmap_node *snode, *tnode;
1023 	unsigned int i, j;
1024 
1025 	xpermd->driver = driver;
1026 	xpermd->used = 0;
1027 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1028 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1029 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1030 
1031 	read_lock(&state->ss->policy_rwlock);
1032 	if (!state->initialized)
1033 		goto allow;
1034 
1035 	policydb = &state->ss->policydb;
1036 	sidtab = state->ss->sidtab;
1037 
1038 	scontext = sidtab_search(sidtab, ssid);
1039 	if (!scontext) {
1040 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1041 		       __func__, ssid);
1042 		goto out;
1043 	}
1044 
1045 	tcontext = sidtab_search(sidtab, tsid);
1046 	if (!tcontext) {
1047 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1048 		       __func__, tsid);
1049 		goto out;
1050 	}
1051 
1052 	tclass = unmap_class(&state->ss->map, orig_tclass);
1053 	if (unlikely(orig_tclass && !tclass)) {
1054 		if (policydb->allow_unknown)
1055 			goto allow;
1056 		goto out;
1057 	}
1058 
1059 
1060 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1061 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1062 		goto out;
1063 	}
1064 
1065 	avkey.target_class = tclass;
1066 	avkey.specified = AVTAB_XPERMS;
1067 	sattr = flex_array_get(policydb->type_attr_map_array,
1068 				scontext->type - 1);
1069 	BUG_ON(!sattr);
1070 	tattr = flex_array_get(policydb->type_attr_map_array,
1071 				tcontext->type - 1);
1072 	BUG_ON(!tattr);
1073 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1074 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1075 			avkey.source_type = i + 1;
1076 			avkey.target_type = j + 1;
1077 			for (node = avtab_search_node(&policydb->te_avtab,
1078 						      &avkey);
1079 			     node;
1080 			     node = avtab_search_node_next(node, avkey.specified))
1081 				services_compute_xperms_decision(xpermd, node);
1082 
1083 			cond_compute_xperms(&policydb->te_cond_avtab,
1084 						&avkey, xpermd);
1085 		}
1086 	}
1087 out:
1088 	read_unlock(&state->ss->policy_rwlock);
1089 	return;
1090 allow:
1091 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1092 	goto out;
1093 }
1094 
1095 /**
1096  * security_compute_av - Compute access vector decisions.
1097  * @ssid: source security identifier
1098  * @tsid: target security identifier
1099  * @tclass: target security class
1100  * @avd: access vector decisions
1101  * @xperms: extended permissions
1102  *
1103  * Compute a set of access vector decisions based on the
1104  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1105  */
1106 void security_compute_av(struct selinux_state *state,
1107 			 u32 ssid,
1108 			 u32 tsid,
1109 			 u16 orig_tclass,
1110 			 struct av_decision *avd,
1111 			 struct extended_perms *xperms)
1112 {
1113 	struct policydb *policydb;
1114 	struct sidtab *sidtab;
1115 	u16 tclass;
1116 	struct context *scontext = NULL, *tcontext = NULL;
1117 
1118 	read_lock(&state->ss->policy_rwlock);
1119 	avd_init(state, avd);
1120 	xperms->len = 0;
1121 	if (!state->initialized)
1122 		goto allow;
1123 
1124 	policydb = &state->ss->policydb;
1125 	sidtab = state->ss->sidtab;
1126 
1127 	scontext = sidtab_search(sidtab, ssid);
1128 	if (!scontext) {
1129 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1130 		       __func__, ssid);
1131 		goto out;
1132 	}
1133 
1134 	/* permissive domain? */
1135 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1136 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1137 
1138 	tcontext = sidtab_search(sidtab, tsid);
1139 	if (!tcontext) {
1140 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1141 		       __func__, tsid);
1142 		goto out;
1143 	}
1144 
1145 	tclass = unmap_class(&state->ss->map, orig_tclass);
1146 	if (unlikely(orig_tclass && !tclass)) {
1147 		if (policydb->allow_unknown)
1148 			goto allow;
1149 		goto out;
1150 	}
1151 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1152 				  xperms);
1153 	map_decision(&state->ss->map, orig_tclass, avd,
1154 		     policydb->allow_unknown);
1155 out:
1156 	read_unlock(&state->ss->policy_rwlock);
1157 	return;
1158 allow:
1159 	avd->allowed = 0xffffffff;
1160 	goto out;
1161 }
1162 
1163 void security_compute_av_user(struct selinux_state *state,
1164 			      u32 ssid,
1165 			      u32 tsid,
1166 			      u16 tclass,
1167 			      struct av_decision *avd)
1168 {
1169 	struct policydb *policydb;
1170 	struct sidtab *sidtab;
1171 	struct context *scontext = NULL, *tcontext = NULL;
1172 
1173 	read_lock(&state->ss->policy_rwlock);
1174 	avd_init(state, avd);
1175 	if (!state->initialized)
1176 		goto allow;
1177 
1178 	policydb = &state->ss->policydb;
1179 	sidtab = state->ss->sidtab;
1180 
1181 	scontext = sidtab_search(sidtab, ssid);
1182 	if (!scontext) {
1183 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1184 		       __func__, ssid);
1185 		goto out;
1186 	}
1187 
1188 	/* permissive domain? */
1189 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1190 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1191 
1192 	tcontext = sidtab_search(sidtab, tsid);
1193 	if (!tcontext) {
1194 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1195 		       __func__, tsid);
1196 		goto out;
1197 	}
1198 
1199 	if (unlikely(!tclass)) {
1200 		if (policydb->allow_unknown)
1201 			goto allow;
1202 		goto out;
1203 	}
1204 
1205 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1206 				  NULL);
1207  out:
1208 	read_unlock(&state->ss->policy_rwlock);
1209 	return;
1210 allow:
1211 	avd->allowed = 0xffffffff;
1212 	goto out;
1213 }
1214 
1215 /*
1216  * Write the security context string representation of
1217  * the context structure `context' into a dynamically
1218  * allocated string of the correct size.  Set `*scontext'
1219  * to point to this string and set `*scontext_len' to
1220  * the length of the string.
1221  */
1222 static int context_struct_to_string(struct policydb *p,
1223 				    struct context *context,
1224 				    char **scontext, u32 *scontext_len)
1225 {
1226 	char *scontextp;
1227 
1228 	if (scontext)
1229 		*scontext = NULL;
1230 	*scontext_len = 0;
1231 
1232 	if (context->len) {
1233 		*scontext_len = context->len;
1234 		if (scontext) {
1235 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1236 			if (!(*scontext))
1237 				return -ENOMEM;
1238 		}
1239 		return 0;
1240 	}
1241 
1242 	/* Compute the size of the context. */
1243 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1244 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1245 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1246 	*scontext_len += mls_compute_context_len(p, context);
1247 
1248 	if (!scontext)
1249 		return 0;
1250 
1251 	/* Allocate space for the context; caller must free this space. */
1252 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1253 	if (!scontextp)
1254 		return -ENOMEM;
1255 	*scontext = scontextp;
1256 
1257 	/*
1258 	 * Copy the user name, role name and type name into the context.
1259 	 */
1260 	scontextp += sprintf(scontextp, "%s:%s:%s",
1261 		sym_name(p, SYM_USERS, context->user - 1),
1262 		sym_name(p, SYM_ROLES, context->role - 1),
1263 		sym_name(p, SYM_TYPES, context->type - 1));
1264 
1265 	mls_sid_to_context(p, context, &scontextp);
1266 
1267 	*scontextp = 0;
1268 
1269 	return 0;
1270 }
1271 
1272 #include "initial_sid_to_string.h"
1273 
1274 const char *security_get_initial_sid_context(u32 sid)
1275 {
1276 	if (unlikely(sid > SECINITSID_NUM))
1277 		return NULL;
1278 	return initial_sid_to_string[sid];
1279 }
1280 
1281 static int security_sid_to_context_core(struct selinux_state *state,
1282 					u32 sid, char **scontext,
1283 					u32 *scontext_len, int force)
1284 {
1285 	struct policydb *policydb;
1286 	struct sidtab *sidtab;
1287 	struct context *context;
1288 	int rc = 0;
1289 
1290 	if (scontext)
1291 		*scontext = NULL;
1292 	*scontext_len  = 0;
1293 
1294 	if (!state->initialized) {
1295 		if (sid <= SECINITSID_NUM) {
1296 			char *scontextp;
1297 
1298 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1299 			if (!scontext)
1300 				goto out;
1301 			scontextp = kmemdup(initial_sid_to_string[sid],
1302 					    *scontext_len, GFP_ATOMIC);
1303 			if (!scontextp) {
1304 				rc = -ENOMEM;
1305 				goto out;
1306 			}
1307 			*scontext = scontextp;
1308 			goto out;
1309 		}
1310 		pr_err("SELinux: %s:  called before initial "
1311 		       "load_policy on unknown SID %d\n", __func__, sid);
1312 		rc = -EINVAL;
1313 		goto out;
1314 	}
1315 	read_lock(&state->ss->policy_rwlock);
1316 	policydb = &state->ss->policydb;
1317 	sidtab = state->ss->sidtab;
1318 	if (force)
1319 		context = sidtab_search_force(sidtab, sid);
1320 	else
1321 		context = sidtab_search(sidtab, sid);
1322 	if (!context) {
1323 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1324 			__func__, sid);
1325 		rc = -EINVAL;
1326 		goto out_unlock;
1327 	}
1328 	rc = context_struct_to_string(policydb, context, scontext,
1329 				      scontext_len);
1330 out_unlock:
1331 	read_unlock(&state->ss->policy_rwlock);
1332 out:
1333 	return rc;
1334 
1335 }
1336 
1337 /**
1338  * security_sid_to_context - Obtain a context for a given SID.
1339  * @sid: security identifier, SID
1340  * @scontext: security context
1341  * @scontext_len: length in bytes
1342  *
1343  * Write the string representation of the context associated with @sid
1344  * into a dynamically allocated string of the correct size.  Set @scontext
1345  * to point to this string and set @scontext_len to the length of the string.
1346  */
1347 int security_sid_to_context(struct selinux_state *state,
1348 			    u32 sid, char **scontext, u32 *scontext_len)
1349 {
1350 	return security_sid_to_context_core(state, sid, scontext,
1351 					    scontext_len, 0);
1352 }
1353 
1354 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1355 				  char **scontext, u32 *scontext_len)
1356 {
1357 	return security_sid_to_context_core(state, sid, scontext,
1358 					    scontext_len, 1);
1359 }
1360 
1361 /*
1362  * Caveat:  Mutates scontext.
1363  */
1364 static int string_to_context_struct(struct policydb *pol,
1365 				    struct sidtab *sidtabp,
1366 				    char *scontext,
1367 				    struct context *ctx,
1368 				    u32 def_sid)
1369 {
1370 	struct role_datum *role;
1371 	struct type_datum *typdatum;
1372 	struct user_datum *usrdatum;
1373 	char *scontextp, *p, oldc;
1374 	int rc = 0;
1375 
1376 	context_init(ctx);
1377 
1378 	/* Parse the security context. */
1379 
1380 	rc = -EINVAL;
1381 	scontextp = (char *) scontext;
1382 
1383 	/* Extract the user. */
1384 	p = scontextp;
1385 	while (*p && *p != ':')
1386 		p++;
1387 
1388 	if (*p == 0)
1389 		goto out;
1390 
1391 	*p++ = 0;
1392 
1393 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1394 	if (!usrdatum)
1395 		goto out;
1396 
1397 	ctx->user = usrdatum->value;
1398 
1399 	/* Extract role. */
1400 	scontextp = p;
1401 	while (*p && *p != ':')
1402 		p++;
1403 
1404 	if (*p == 0)
1405 		goto out;
1406 
1407 	*p++ = 0;
1408 
1409 	role = hashtab_search(pol->p_roles.table, scontextp);
1410 	if (!role)
1411 		goto out;
1412 	ctx->role = role->value;
1413 
1414 	/* Extract type. */
1415 	scontextp = p;
1416 	while (*p && *p != ':')
1417 		p++;
1418 	oldc = *p;
1419 	*p++ = 0;
1420 
1421 	typdatum = hashtab_search(pol->p_types.table, scontextp);
1422 	if (!typdatum || typdatum->attribute)
1423 		goto out;
1424 
1425 	ctx->type = typdatum->value;
1426 
1427 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1428 	if (rc)
1429 		goto out;
1430 
1431 	/* Check the validity of the new context. */
1432 	rc = -EINVAL;
1433 	if (!policydb_context_isvalid(pol, ctx))
1434 		goto out;
1435 	rc = 0;
1436 out:
1437 	if (rc)
1438 		context_destroy(ctx);
1439 	return rc;
1440 }
1441 
1442 static int security_context_to_sid_core(struct selinux_state *state,
1443 					const char *scontext, u32 scontext_len,
1444 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1445 					int force)
1446 {
1447 	struct policydb *policydb;
1448 	struct sidtab *sidtab;
1449 	char *scontext2, *str = NULL;
1450 	struct context context;
1451 	int rc = 0;
1452 
1453 	/* An empty security context is never valid. */
1454 	if (!scontext_len)
1455 		return -EINVAL;
1456 
1457 	/* Copy the string to allow changes and ensure a NUL terminator */
1458 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1459 	if (!scontext2)
1460 		return -ENOMEM;
1461 
1462 	if (!state->initialized) {
1463 		int i;
1464 
1465 		for (i = 1; i < SECINITSID_NUM; i++) {
1466 			if (!strcmp(initial_sid_to_string[i], scontext2)) {
1467 				*sid = i;
1468 				goto out;
1469 			}
1470 		}
1471 		*sid = SECINITSID_KERNEL;
1472 		goto out;
1473 	}
1474 	*sid = SECSID_NULL;
1475 
1476 	if (force) {
1477 		/* Save another copy for storing in uninterpreted form */
1478 		rc = -ENOMEM;
1479 		str = kstrdup(scontext2, gfp_flags);
1480 		if (!str)
1481 			goto out;
1482 	}
1483 	read_lock(&state->ss->policy_rwlock);
1484 	policydb = &state->ss->policydb;
1485 	sidtab = state->ss->sidtab;
1486 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1487 				      &context, def_sid);
1488 	if (rc == -EINVAL && force) {
1489 		context.str = str;
1490 		context.len = strlen(str) + 1;
1491 		str = NULL;
1492 	} else if (rc)
1493 		goto out_unlock;
1494 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1495 	context_destroy(&context);
1496 out_unlock:
1497 	read_unlock(&state->ss->policy_rwlock);
1498 out:
1499 	kfree(scontext2);
1500 	kfree(str);
1501 	return rc;
1502 }
1503 
1504 /**
1505  * security_context_to_sid - Obtain a SID for a given security context.
1506  * @scontext: security context
1507  * @scontext_len: length in bytes
1508  * @sid: security identifier, SID
1509  * @gfp: context for the allocation
1510  *
1511  * Obtains a SID associated with the security context that
1512  * has the string representation specified by @scontext.
1513  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1514  * memory is available, or 0 on success.
1515  */
1516 int security_context_to_sid(struct selinux_state *state,
1517 			    const char *scontext, u32 scontext_len, u32 *sid,
1518 			    gfp_t gfp)
1519 {
1520 	return security_context_to_sid_core(state, scontext, scontext_len,
1521 					    sid, SECSID_NULL, gfp, 0);
1522 }
1523 
1524 int security_context_str_to_sid(struct selinux_state *state,
1525 				const char *scontext, u32 *sid, gfp_t gfp)
1526 {
1527 	return security_context_to_sid(state, scontext, strlen(scontext),
1528 				       sid, gfp);
1529 }
1530 
1531 /**
1532  * security_context_to_sid_default - Obtain a SID for a given security context,
1533  * falling back to specified default if needed.
1534  *
1535  * @scontext: security context
1536  * @scontext_len: length in bytes
1537  * @sid: security identifier, SID
1538  * @def_sid: default SID to assign on error
1539  *
1540  * Obtains a SID associated with the security context that
1541  * has the string representation specified by @scontext.
1542  * The default SID is passed to the MLS layer to be used to allow
1543  * kernel labeling of the MLS field if the MLS field is not present
1544  * (for upgrading to MLS without full relabel).
1545  * Implicitly forces adding of the context even if it cannot be mapped yet.
1546  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1547  * memory is available, or 0 on success.
1548  */
1549 int security_context_to_sid_default(struct selinux_state *state,
1550 				    const char *scontext, u32 scontext_len,
1551 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1552 {
1553 	return security_context_to_sid_core(state, scontext, scontext_len,
1554 					    sid, def_sid, gfp_flags, 1);
1555 }
1556 
1557 int security_context_to_sid_force(struct selinux_state *state,
1558 				  const char *scontext, u32 scontext_len,
1559 				  u32 *sid)
1560 {
1561 	return security_context_to_sid_core(state, scontext, scontext_len,
1562 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1563 }
1564 
1565 static int compute_sid_handle_invalid_context(
1566 	struct selinux_state *state,
1567 	struct context *scontext,
1568 	struct context *tcontext,
1569 	u16 tclass,
1570 	struct context *newcontext)
1571 {
1572 	struct policydb *policydb = &state->ss->policydb;
1573 	char *s = NULL, *t = NULL, *n = NULL;
1574 	u32 slen, tlen, nlen;
1575 
1576 	if (context_struct_to_string(policydb, scontext, &s, &slen))
1577 		goto out;
1578 	if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1579 		goto out;
1580 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1581 		goto out;
1582 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
1583 		  "op=security_compute_sid invalid_context=%s"
1584 		  " scontext=%s"
1585 		  " tcontext=%s"
1586 		  " tclass=%s",
1587 		  n, s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1588 out:
1589 	kfree(s);
1590 	kfree(t);
1591 	kfree(n);
1592 	if (!enforcing_enabled(state))
1593 		return 0;
1594 	return -EACCES;
1595 }
1596 
1597 static void filename_compute_type(struct policydb *policydb,
1598 				  struct context *newcontext,
1599 				  u32 stype, u32 ttype, u16 tclass,
1600 				  const char *objname)
1601 {
1602 	struct filename_trans ft;
1603 	struct filename_trans_datum *otype;
1604 
1605 	/*
1606 	 * Most filename trans rules are going to live in specific directories
1607 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1608 	 * if the ttype does not contain any rules.
1609 	 */
1610 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1611 		return;
1612 
1613 	ft.stype = stype;
1614 	ft.ttype = ttype;
1615 	ft.tclass = tclass;
1616 	ft.name = objname;
1617 
1618 	otype = hashtab_search(policydb->filename_trans, &ft);
1619 	if (otype)
1620 		newcontext->type = otype->otype;
1621 }
1622 
1623 static int security_compute_sid(struct selinux_state *state,
1624 				u32 ssid,
1625 				u32 tsid,
1626 				u16 orig_tclass,
1627 				u32 specified,
1628 				const char *objname,
1629 				u32 *out_sid,
1630 				bool kern)
1631 {
1632 	struct policydb *policydb;
1633 	struct sidtab *sidtab;
1634 	struct class_datum *cladatum = NULL;
1635 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1636 	struct role_trans *roletr = NULL;
1637 	struct avtab_key avkey;
1638 	struct avtab_datum *avdatum;
1639 	struct avtab_node *node;
1640 	u16 tclass;
1641 	int rc = 0;
1642 	bool sock;
1643 
1644 	if (!state->initialized) {
1645 		switch (orig_tclass) {
1646 		case SECCLASS_PROCESS: /* kernel value */
1647 			*out_sid = ssid;
1648 			break;
1649 		default:
1650 			*out_sid = tsid;
1651 			break;
1652 		}
1653 		goto out;
1654 	}
1655 
1656 	context_init(&newcontext);
1657 
1658 	read_lock(&state->ss->policy_rwlock);
1659 
1660 	if (kern) {
1661 		tclass = unmap_class(&state->ss->map, orig_tclass);
1662 		sock = security_is_socket_class(orig_tclass);
1663 	} else {
1664 		tclass = orig_tclass;
1665 		sock = security_is_socket_class(map_class(&state->ss->map,
1666 							  tclass));
1667 	}
1668 
1669 	policydb = &state->ss->policydb;
1670 	sidtab = state->ss->sidtab;
1671 
1672 	scontext = sidtab_search(sidtab, ssid);
1673 	if (!scontext) {
1674 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1675 		       __func__, ssid);
1676 		rc = -EINVAL;
1677 		goto out_unlock;
1678 	}
1679 	tcontext = sidtab_search(sidtab, tsid);
1680 	if (!tcontext) {
1681 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1682 		       __func__, tsid);
1683 		rc = -EINVAL;
1684 		goto out_unlock;
1685 	}
1686 
1687 	if (tclass && tclass <= policydb->p_classes.nprim)
1688 		cladatum = policydb->class_val_to_struct[tclass - 1];
1689 
1690 	/* Set the user identity. */
1691 	switch (specified) {
1692 	case AVTAB_TRANSITION:
1693 	case AVTAB_CHANGE:
1694 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1695 			newcontext.user = tcontext->user;
1696 		} else {
1697 			/* notice this gets both DEFAULT_SOURCE and unset */
1698 			/* Use the process user identity. */
1699 			newcontext.user = scontext->user;
1700 		}
1701 		break;
1702 	case AVTAB_MEMBER:
1703 		/* Use the related object owner. */
1704 		newcontext.user = tcontext->user;
1705 		break;
1706 	}
1707 
1708 	/* Set the role to default values. */
1709 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1710 		newcontext.role = scontext->role;
1711 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1712 		newcontext.role = tcontext->role;
1713 	} else {
1714 		if ((tclass == policydb->process_class) || (sock == true))
1715 			newcontext.role = scontext->role;
1716 		else
1717 			newcontext.role = OBJECT_R_VAL;
1718 	}
1719 
1720 	/* Set the type to default values. */
1721 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1722 		newcontext.type = scontext->type;
1723 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1724 		newcontext.type = tcontext->type;
1725 	} else {
1726 		if ((tclass == policydb->process_class) || (sock == true)) {
1727 			/* Use the type of process. */
1728 			newcontext.type = scontext->type;
1729 		} else {
1730 			/* Use the type of the related object. */
1731 			newcontext.type = tcontext->type;
1732 		}
1733 	}
1734 
1735 	/* Look for a type transition/member/change rule. */
1736 	avkey.source_type = scontext->type;
1737 	avkey.target_type = tcontext->type;
1738 	avkey.target_class = tclass;
1739 	avkey.specified = specified;
1740 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1741 
1742 	/* If no permanent rule, also check for enabled conditional rules */
1743 	if (!avdatum) {
1744 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1745 		for (; node; node = avtab_search_node_next(node, specified)) {
1746 			if (node->key.specified & AVTAB_ENABLED) {
1747 				avdatum = &node->datum;
1748 				break;
1749 			}
1750 		}
1751 	}
1752 
1753 	if (avdatum) {
1754 		/* Use the type from the type transition/member/change rule. */
1755 		newcontext.type = avdatum->u.data;
1756 	}
1757 
1758 	/* if we have a objname this is a file trans check so check those rules */
1759 	if (objname)
1760 		filename_compute_type(policydb, &newcontext, scontext->type,
1761 				      tcontext->type, tclass, objname);
1762 
1763 	/* Check for class-specific changes. */
1764 	if (specified & AVTAB_TRANSITION) {
1765 		/* Look for a role transition rule. */
1766 		for (roletr = policydb->role_tr; roletr;
1767 		     roletr = roletr->next) {
1768 			if ((roletr->role == scontext->role) &&
1769 			    (roletr->type == tcontext->type) &&
1770 			    (roletr->tclass == tclass)) {
1771 				/* Use the role transition rule. */
1772 				newcontext.role = roletr->new_role;
1773 				break;
1774 			}
1775 		}
1776 	}
1777 
1778 	/* Set the MLS attributes.
1779 	   This is done last because it may allocate memory. */
1780 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1781 			     &newcontext, sock);
1782 	if (rc)
1783 		goto out_unlock;
1784 
1785 	/* Check the validity of the context. */
1786 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1787 		rc = compute_sid_handle_invalid_context(state, scontext,
1788 							tcontext,
1789 							tclass,
1790 							&newcontext);
1791 		if (rc)
1792 			goto out_unlock;
1793 	}
1794 	/* Obtain the sid for the context. */
1795 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1796 out_unlock:
1797 	read_unlock(&state->ss->policy_rwlock);
1798 	context_destroy(&newcontext);
1799 out:
1800 	return rc;
1801 }
1802 
1803 /**
1804  * security_transition_sid - Compute the SID for a new subject/object.
1805  * @ssid: source security identifier
1806  * @tsid: target security identifier
1807  * @tclass: target security class
1808  * @out_sid: security identifier for new subject/object
1809  *
1810  * Compute a SID to use for labeling a new subject or object in the
1811  * class @tclass based on a SID pair (@ssid, @tsid).
1812  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1813  * if insufficient memory is available, or %0 if the new SID was
1814  * computed successfully.
1815  */
1816 int security_transition_sid(struct selinux_state *state,
1817 			    u32 ssid, u32 tsid, u16 tclass,
1818 			    const struct qstr *qstr, u32 *out_sid)
1819 {
1820 	return security_compute_sid(state, ssid, tsid, tclass,
1821 				    AVTAB_TRANSITION,
1822 				    qstr ? qstr->name : NULL, out_sid, true);
1823 }
1824 
1825 int security_transition_sid_user(struct selinux_state *state,
1826 				 u32 ssid, u32 tsid, u16 tclass,
1827 				 const char *objname, u32 *out_sid)
1828 {
1829 	return security_compute_sid(state, ssid, tsid, tclass,
1830 				    AVTAB_TRANSITION,
1831 				    objname, out_sid, false);
1832 }
1833 
1834 /**
1835  * security_member_sid - Compute the SID for member selection.
1836  * @ssid: source security identifier
1837  * @tsid: target security identifier
1838  * @tclass: target security class
1839  * @out_sid: security identifier for selected member
1840  *
1841  * Compute a SID to use when selecting a member of a polyinstantiated
1842  * object of class @tclass based on a SID pair (@ssid, @tsid).
1843  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1844  * if insufficient memory is available, or %0 if the SID was
1845  * computed successfully.
1846  */
1847 int security_member_sid(struct selinux_state *state,
1848 			u32 ssid,
1849 			u32 tsid,
1850 			u16 tclass,
1851 			u32 *out_sid)
1852 {
1853 	return security_compute_sid(state, ssid, tsid, tclass,
1854 				    AVTAB_MEMBER, NULL,
1855 				    out_sid, false);
1856 }
1857 
1858 /**
1859  * security_change_sid - Compute the SID for object relabeling.
1860  * @ssid: source security identifier
1861  * @tsid: target security identifier
1862  * @tclass: target security class
1863  * @out_sid: security identifier for selected member
1864  *
1865  * Compute a SID to use for relabeling an object of class @tclass
1866  * based on a SID pair (@ssid, @tsid).
1867  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1868  * if insufficient memory is available, or %0 if the SID was
1869  * computed successfully.
1870  */
1871 int security_change_sid(struct selinux_state *state,
1872 			u32 ssid,
1873 			u32 tsid,
1874 			u16 tclass,
1875 			u32 *out_sid)
1876 {
1877 	return security_compute_sid(state,
1878 				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1879 				    out_sid, false);
1880 }
1881 
1882 static inline int convert_context_handle_invalid_context(
1883 	struct selinux_state *state,
1884 	struct context *context)
1885 {
1886 	struct policydb *policydb = &state->ss->policydb;
1887 	char *s;
1888 	u32 len;
1889 
1890 	if (enforcing_enabled(state))
1891 		return -EINVAL;
1892 
1893 	if (!context_struct_to_string(policydb, context, &s, &len)) {
1894 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1895 			s);
1896 		kfree(s);
1897 	}
1898 	return 0;
1899 }
1900 
1901 struct convert_context_args {
1902 	struct selinux_state *state;
1903 	struct policydb *oldp;
1904 	struct policydb *newp;
1905 };
1906 
1907 /*
1908  * Convert the values in the security context
1909  * structure `oldc' from the values specified
1910  * in the policy `p->oldp' to the values specified
1911  * in the policy `p->newp', storing the new context
1912  * in `newc'.  Verify that the context is valid
1913  * under the new policy.
1914  */
1915 static int convert_context(struct context *oldc, struct context *newc, void *p)
1916 {
1917 	struct convert_context_args *args;
1918 	struct ocontext *oc;
1919 	struct role_datum *role;
1920 	struct type_datum *typdatum;
1921 	struct user_datum *usrdatum;
1922 	char *s;
1923 	u32 len;
1924 	int rc;
1925 
1926 	args = p;
1927 
1928 	if (oldc->str) {
1929 		s = kstrdup(oldc->str, GFP_KERNEL);
1930 		if (!s)
1931 			return -ENOMEM;
1932 
1933 		rc = string_to_context_struct(args->newp, NULL, s,
1934 					      newc, SECSID_NULL);
1935 		if (rc == -EINVAL) {
1936 			/* Retain string representation for later mapping. */
1937 			context_init(newc);
1938 			newc->str = s;
1939 			newc->len = oldc->len;
1940 			return 0;
1941 		}
1942 		kfree(s);
1943 		if (rc) {
1944 			/* Other error condition, e.g. ENOMEM. */
1945 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
1946 			       oldc->str, -rc);
1947 			return rc;
1948 		}
1949 		pr_info("SELinux:  Context %s became valid (mapped).\n",
1950 			oldc->str);
1951 		return 0;
1952 	}
1953 
1954 	context_init(newc);
1955 
1956 	/* Convert the user. */
1957 	rc = -EINVAL;
1958 	usrdatum = hashtab_search(args->newp->p_users.table,
1959 				  sym_name(args->oldp,
1960 					   SYM_USERS, oldc->user - 1));
1961 	if (!usrdatum)
1962 		goto bad;
1963 	newc->user = usrdatum->value;
1964 
1965 	/* Convert the role. */
1966 	rc = -EINVAL;
1967 	role = hashtab_search(args->newp->p_roles.table,
1968 			      sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
1969 	if (!role)
1970 		goto bad;
1971 	newc->role = role->value;
1972 
1973 	/* Convert the type. */
1974 	rc = -EINVAL;
1975 	typdatum = hashtab_search(args->newp->p_types.table,
1976 				  sym_name(args->oldp,
1977 					   SYM_TYPES, oldc->type - 1));
1978 	if (!typdatum)
1979 		goto bad;
1980 	newc->type = typdatum->value;
1981 
1982 	/* Convert the MLS fields if dealing with MLS policies */
1983 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1984 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
1985 		if (rc)
1986 			goto bad;
1987 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1988 		/*
1989 		 * Switching between non-MLS and MLS policy:
1990 		 * ensure that the MLS fields of the context for all
1991 		 * existing entries in the sidtab are filled in with a
1992 		 * suitable default value, likely taken from one of the
1993 		 * initial SIDs.
1994 		 */
1995 		oc = args->newp->ocontexts[OCON_ISID];
1996 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1997 			oc = oc->next;
1998 		rc = -EINVAL;
1999 		if (!oc) {
2000 			pr_err("SELinux:  unable to look up"
2001 				" the initial SIDs list\n");
2002 			goto bad;
2003 		}
2004 		rc = mls_range_set(newc, &oc->context[0].range);
2005 		if (rc)
2006 			goto bad;
2007 	}
2008 
2009 	/* Check the validity of the new context. */
2010 	if (!policydb_context_isvalid(args->newp, newc)) {
2011 		rc = convert_context_handle_invalid_context(args->state, oldc);
2012 		if (rc)
2013 			goto bad;
2014 	}
2015 
2016 	return 0;
2017 bad:
2018 	/* Map old representation to string and save it. */
2019 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2020 	if (rc)
2021 		return rc;
2022 	context_destroy(newc);
2023 	newc->str = s;
2024 	newc->len = len;
2025 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2026 		newc->str);
2027 	return 0;
2028 }
2029 
2030 static void security_load_policycaps(struct selinux_state *state)
2031 {
2032 	struct policydb *p = &state->ss->policydb;
2033 	unsigned int i;
2034 	struct ebitmap_node *node;
2035 
2036 	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2037 		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2038 
2039 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2040 		pr_info("SELinux:  policy capability %s=%d\n",
2041 			selinux_policycap_names[i],
2042 			ebitmap_get_bit(&p->policycaps, i));
2043 
2044 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2045 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2046 			pr_info("SELinux:  unknown policy capability %u\n",
2047 				i);
2048 	}
2049 }
2050 
2051 static int security_preserve_bools(struct selinux_state *state,
2052 				   struct policydb *newpolicydb);
2053 
2054 /**
2055  * security_load_policy - Load a security policy configuration.
2056  * @data: binary policy data
2057  * @len: length of data in bytes
2058  *
2059  * Load a new set of security policy configuration data,
2060  * validate it and convert the SID table as necessary.
2061  * This function will flush the access vector cache after
2062  * loading the new policy.
2063  */
2064 int security_load_policy(struct selinux_state *state, void *data, size_t len)
2065 {
2066 	struct policydb *policydb;
2067 	struct sidtab *oldsidtab, *newsidtab;
2068 	struct policydb *oldpolicydb, *newpolicydb;
2069 	struct selinux_mapping *oldmapping;
2070 	struct selinux_map newmap;
2071 	struct sidtab_convert_params convert_params;
2072 	struct convert_context_args args;
2073 	u32 seqno;
2074 	int rc = 0;
2075 	struct policy_file file = { data, len }, *fp = &file;
2076 
2077 	oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2078 	if (!oldpolicydb) {
2079 		rc = -ENOMEM;
2080 		goto out;
2081 	}
2082 	newpolicydb = oldpolicydb + 1;
2083 
2084 	policydb = &state->ss->policydb;
2085 
2086 	newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2087 	if (!newsidtab) {
2088 		rc = -ENOMEM;
2089 		goto out;
2090 	}
2091 
2092 	if (!state->initialized) {
2093 		rc = policydb_read(policydb, fp);
2094 		if (rc) {
2095 			kfree(newsidtab);
2096 			goto out;
2097 		}
2098 
2099 		policydb->len = len;
2100 		rc = selinux_set_mapping(policydb, secclass_map,
2101 					 &state->ss->map);
2102 		if (rc) {
2103 			kfree(newsidtab);
2104 			policydb_destroy(policydb);
2105 			goto out;
2106 		}
2107 
2108 		rc = policydb_load_isids(policydb, newsidtab);
2109 		if (rc) {
2110 			kfree(newsidtab);
2111 			policydb_destroy(policydb);
2112 			goto out;
2113 		}
2114 
2115 		state->ss->sidtab = newsidtab;
2116 		security_load_policycaps(state);
2117 		state->initialized = 1;
2118 		seqno = ++state->ss->latest_granting;
2119 		selinux_complete_init();
2120 		avc_ss_reset(state->avc, seqno);
2121 		selnl_notify_policyload(seqno);
2122 		selinux_status_update_policyload(state, seqno);
2123 		selinux_netlbl_cache_invalidate();
2124 		selinux_xfrm_notify_policyload();
2125 		goto out;
2126 	}
2127 
2128 	rc = policydb_read(newpolicydb, fp);
2129 	if (rc) {
2130 		kfree(newsidtab);
2131 		goto out;
2132 	}
2133 
2134 	newpolicydb->len = len;
2135 	/* If switching between different policy types, log MLS status */
2136 	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2137 		pr_info("SELinux: Disabling MLS support...\n");
2138 	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2139 		pr_info("SELinux: Enabling MLS support...\n");
2140 
2141 	rc = policydb_load_isids(newpolicydb, newsidtab);
2142 	if (rc) {
2143 		pr_err("SELinux:  unable to load the initial SIDs\n");
2144 		policydb_destroy(newpolicydb);
2145 		kfree(newsidtab);
2146 		goto out;
2147 	}
2148 
2149 	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2150 	if (rc)
2151 		goto err;
2152 
2153 	rc = security_preserve_bools(state, newpolicydb);
2154 	if (rc) {
2155 		pr_err("SELinux:  unable to preserve booleans\n");
2156 		goto err;
2157 	}
2158 
2159 	oldsidtab = state->ss->sidtab;
2160 
2161 	/*
2162 	 * Convert the internal representations of contexts
2163 	 * in the new SID table.
2164 	 */
2165 	args.state = state;
2166 	args.oldp = policydb;
2167 	args.newp = newpolicydb;
2168 
2169 	convert_params.func = convert_context;
2170 	convert_params.args = &args;
2171 	convert_params.target = newsidtab;
2172 
2173 	rc = sidtab_convert(oldsidtab, &convert_params);
2174 	if (rc) {
2175 		pr_err("SELinux:  unable to convert the internal"
2176 			" representation of contexts in the new SID"
2177 			" table\n");
2178 		goto err;
2179 	}
2180 
2181 	/* Save the old policydb and SID table to free later. */
2182 	memcpy(oldpolicydb, policydb, sizeof(*policydb));
2183 
2184 	/* Install the new policydb and SID table. */
2185 	write_lock_irq(&state->ss->policy_rwlock);
2186 	memcpy(policydb, newpolicydb, sizeof(*policydb));
2187 	state->ss->sidtab = newsidtab;
2188 	security_load_policycaps(state);
2189 	oldmapping = state->ss->map.mapping;
2190 	state->ss->map.mapping = newmap.mapping;
2191 	state->ss->map.size = newmap.size;
2192 	seqno = ++state->ss->latest_granting;
2193 	write_unlock_irq(&state->ss->policy_rwlock);
2194 
2195 	/* Free the old policydb and SID table. */
2196 	policydb_destroy(oldpolicydb);
2197 	sidtab_destroy(oldsidtab);
2198 	kfree(oldsidtab);
2199 	kfree(oldmapping);
2200 
2201 	avc_ss_reset(state->avc, seqno);
2202 	selnl_notify_policyload(seqno);
2203 	selinux_status_update_policyload(state, seqno);
2204 	selinux_netlbl_cache_invalidate();
2205 	selinux_xfrm_notify_policyload();
2206 
2207 	rc = 0;
2208 	goto out;
2209 
2210 err:
2211 	kfree(newmap.mapping);
2212 	sidtab_destroy(newsidtab);
2213 	kfree(newsidtab);
2214 	policydb_destroy(newpolicydb);
2215 
2216 out:
2217 	kfree(oldpolicydb);
2218 	return rc;
2219 }
2220 
2221 size_t security_policydb_len(struct selinux_state *state)
2222 {
2223 	struct policydb *p = &state->ss->policydb;
2224 	size_t len;
2225 
2226 	read_lock(&state->ss->policy_rwlock);
2227 	len = p->len;
2228 	read_unlock(&state->ss->policy_rwlock);
2229 
2230 	return len;
2231 }
2232 
2233 /**
2234  * security_port_sid - Obtain the SID for a port.
2235  * @protocol: protocol number
2236  * @port: port number
2237  * @out_sid: security identifier
2238  */
2239 int security_port_sid(struct selinux_state *state,
2240 		      u8 protocol, u16 port, u32 *out_sid)
2241 {
2242 	struct policydb *policydb;
2243 	struct sidtab *sidtab;
2244 	struct ocontext *c;
2245 	int rc = 0;
2246 
2247 	read_lock(&state->ss->policy_rwlock);
2248 
2249 	policydb = &state->ss->policydb;
2250 	sidtab = state->ss->sidtab;
2251 
2252 	c = policydb->ocontexts[OCON_PORT];
2253 	while (c) {
2254 		if (c->u.port.protocol == protocol &&
2255 		    c->u.port.low_port <= port &&
2256 		    c->u.port.high_port >= port)
2257 			break;
2258 		c = c->next;
2259 	}
2260 
2261 	if (c) {
2262 		if (!c->sid[0]) {
2263 			rc = sidtab_context_to_sid(sidtab,
2264 						   &c->context[0],
2265 						   &c->sid[0]);
2266 			if (rc)
2267 				goto out;
2268 		}
2269 		*out_sid = c->sid[0];
2270 	} else {
2271 		*out_sid = SECINITSID_PORT;
2272 	}
2273 
2274 out:
2275 	read_unlock(&state->ss->policy_rwlock);
2276 	return rc;
2277 }
2278 
2279 /**
2280  * security_pkey_sid - Obtain the SID for a pkey.
2281  * @subnet_prefix: Subnet Prefix
2282  * @pkey_num: pkey number
2283  * @out_sid: security identifier
2284  */
2285 int security_ib_pkey_sid(struct selinux_state *state,
2286 			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2287 {
2288 	struct policydb *policydb;
2289 	struct sidtab *sidtab;
2290 	struct ocontext *c;
2291 	int rc = 0;
2292 
2293 	read_lock(&state->ss->policy_rwlock);
2294 
2295 	policydb = &state->ss->policydb;
2296 	sidtab = state->ss->sidtab;
2297 
2298 	c = policydb->ocontexts[OCON_IBPKEY];
2299 	while (c) {
2300 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2301 		    c->u.ibpkey.high_pkey >= pkey_num &&
2302 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2303 			break;
2304 
2305 		c = c->next;
2306 	}
2307 
2308 	if (c) {
2309 		if (!c->sid[0]) {
2310 			rc = sidtab_context_to_sid(sidtab,
2311 						   &c->context[0],
2312 						   &c->sid[0]);
2313 			if (rc)
2314 				goto out;
2315 		}
2316 		*out_sid = c->sid[0];
2317 	} else
2318 		*out_sid = SECINITSID_UNLABELED;
2319 
2320 out:
2321 	read_unlock(&state->ss->policy_rwlock);
2322 	return rc;
2323 }
2324 
2325 /**
2326  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2327  * @dev_name: device name
2328  * @port: port number
2329  * @out_sid: security identifier
2330  */
2331 int security_ib_endport_sid(struct selinux_state *state,
2332 			    const char *dev_name, u8 port_num, u32 *out_sid)
2333 {
2334 	struct policydb *policydb;
2335 	struct sidtab *sidtab;
2336 	struct ocontext *c;
2337 	int rc = 0;
2338 
2339 	read_lock(&state->ss->policy_rwlock);
2340 
2341 	policydb = &state->ss->policydb;
2342 	sidtab = state->ss->sidtab;
2343 
2344 	c = policydb->ocontexts[OCON_IBENDPORT];
2345 	while (c) {
2346 		if (c->u.ibendport.port == port_num &&
2347 		    !strncmp(c->u.ibendport.dev_name,
2348 			     dev_name,
2349 			     IB_DEVICE_NAME_MAX))
2350 			break;
2351 
2352 		c = c->next;
2353 	}
2354 
2355 	if (c) {
2356 		if (!c->sid[0]) {
2357 			rc = sidtab_context_to_sid(sidtab,
2358 						   &c->context[0],
2359 						   &c->sid[0]);
2360 			if (rc)
2361 				goto out;
2362 		}
2363 		*out_sid = c->sid[0];
2364 	} else
2365 		*out_sid = SECINITSID_UNLABELED;
2366 
2367 out:
2368 	read_unlock(&state->ss->policy_rwlock);
2369 	return rc;
2370 }
2371 
2372 /**
2373  * security_netif_sid - Obtain the SID for a network interface.
2374  * @name: interface name
2375  * @if_sid: interface SID
2376  */
2377 int security_netif_sid(struct selinux_state *state,
2378 		       char *name, u32 *if_sid)
2379 {
2380 	struct policydb *policydb;
2381 	struct sidtab *sidtab;
2382 	int rc = 0;
2383 	struct ocontext *c;
2384 
2385 	read_lock(&state->ss->policy_rwlock);
2386 
2387 	policydb = &state->ss->policydb;
2388 	sidtab = state->ss->sidtab;
2389 
2390 	c = policydb->ocontexts[OCON_NETIF];
2391 	while (c) {
2392 		if (strcmp(name, c->u.name) == 0)
2393 			break;
2394 		c = c->next;
2395 	}
2396 
2397 	if (c) {
2398 		if (!c->sid[0] || !c->sid[1]) {
2399 			rc = sidtab_context_to_sid(sidtab,
2400 						  &c->context[0],
2401 						  &c->sid[0]);
2402 			if (rc)
2403 				goto out;
2404 			rc = sidtab_context_to_sid(sidtab,
2405 						   &c->context[1],
2406 						   &c->sid[1]);
2407 			if (rc)
2408 				goto out;
2409 		}
2410 		*if_sid = c->sid[0];
2411 	} else
2412 		*if_sid = SECINITSID_NETIF;
2413 
2414 out:
2415 	read_unlock(&state->ss->policy_rwlock);
2416 	return rc;
2417 }
2418 
2419 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2420 {
2421 	int i, fail = 0;
2422 
2423 	for (i = 0; i < 4; i++)
2424 		if (addr[i] != (input[i] & mask[i])) {
2425 			fail = 1;
2426 			break;
2427 		}
2428 
2429 	return !fail;
2430 }
2431 
2432 /**
2433  * security_node_sid - Obtain the SID for a node (host).
2434  * @domain: communication domain aka address family
2435  * @addrp: address
2436  * @addrlen: address length in bytes
2437  * @out_sid: security identifier
2438  */
2439 int security_node_sid(struct selinux_state *state,
2440 		      u16 domain,
2441 		      void *addrp,
2442 		      u32 addrlen,
2443 		      u32 *out_sid)
2444 {
2445 	struct policydb *policydb;
2446 	struct sidtab *sidtab;
2447 	int rc;
2448 	struct ocontext *c;
2449 
2450 	read_lock(&state->ss->policy_rwlock);
2451 
2452 	policydb = &state->ss->policydb;
2453 	sidtab = state->ss->sidtab;
2454 
2455 	switch (domain) {
2456 	case AF_INET: {
2457 		u32 addr;
2458 
2459 		rc = -EINVAL;
2460 		if (addrlen != sizeof(u32))
2461 			goto out;
2462 
2463 		addr = *((u32 *)addrp);
2464 
2465 		c = policydb->ocontexts[OCON_NODE];
2466 		while (c) {
2467 			if (c->u.node.addr == (addr & c->u.node.mask))
2468 				break;
2469 			c = c->next;
2470 		}
2471 		break;
2472 	}
2473 
2474 	case AF_INET6:
2475 		rc = -EINVAL;
2476 		if (addrlen != sizeof(u64) * 2)
2477 			goto out;
2478 		c = policydb->ocontexts[OCON_NODE6];
2479 		while (c) {
2480 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2481 						c->u.node6.mask))
2482 				break;
2483 			c = c->next;
2484 		}
2485 		break;
2486 
2487 	default:
2488 		rc = 0;
2489 		*out_sid = SECINITSID_NODE;
2490 		goto out;
2491 	}
2492 
2493 	if (c) {
2494 		if (!c->sid[0]) {
2495 			rc = sidtab_context_to_sid(sidtab,
2496 						   &c->context[0],
2497 						   &c->sid[0]);
2498 			if (rc)
2499 				goto out;
2500 		}
2501 		*out_sid = c->sid[0];
2502 	} else {
2503 		*out_sid = SECINITSID_NODE;
2504 	}
2505 
2506 	rc = 0;
2507 out:
2508 	read_unlock(&state->ss->policy_rwlock);
2509 	return rc;
2510 }
2511 
2512 #define SIDS_NEL 25
2513 
2514 /**
2515  * security_get_user_sids - Obtain reachable SIDs for a user.
2516  * @fromsid: starting SID
2517  * @username: username
2518  * @sids: array of reachable SIDs for user
2519  * @nel: number of elements in @sids
2520  *
2521  * Generate the set of SIDs for legal security contexts
2522  * for a given user that can be reached by @fromsid.
2523  * Set *@sids to point to a dynamically allocated
2524  * array containing the set of SIDs.  Set *@nel to the
2525  * number of elements in the array.
2526  */
2527 
2528 int security_get_user_sids(struct selinux_state *state,
2529 			   u32 fromsid,
2530 			   char *username,
2531 			   u32 **sids,
2532 			   u32 *nel)
2533 {
2534 	struct policydb *policydb;
2535 	struct sidtab *sidtab;
2536 	struct context *fromcon, usercon;
2537 	u32 *mysids = NULL, *mysids2, sid;
2538 	u32 mynel = 0, maxnel = SIDS_NEL;
2539 	struct user_datum *user;
2540 	struct role_datum *role;
2541 	struct ebitmap_node *rnode, *tnode;
2542 	int rc = 0, i, j;
2543 
2544 	*sids = NULL;
2545 	*nel = 0;
2546 
2547 	if (!state->initialized)
2548 		goto out;
2549 
2550 	read_lock(&state->ss->policy_rwlock);
2551 
2552 	policydb = &state->ss->policydb;
2553 	sidtab = state->ss->sidtab;
2554 
2555 	context_init(&usercon);
2556 
2557 	rc = -EINVAL;
2558 	fromcon = sidtab_search(sidtab, fromsid);
2559 	if (!fromcon)
2560 		goto out_unlock;
2561 
2562 	rc = -EINVAL;
2563 	user = hashtab_search(policydb->p_users.table, username);
2564 	if (!user)
2565 		goto out_unlock;
2566 
2567 	usercon.user = user->value;
2568 
2569 	rc = -ENOMEM;
2570 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2571 	if (!mysids)
2572 		goto out_unlock;
2573 
2574 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2575 		role = policydb->role_val_to_struct[i];
2576 		usercon.role = i + 1;
2577 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2578 			usercon.type = j + 1;
2579 
2580 			if (mls_setup_user_range(policydb, fromcon, user,
2581 						 &usercon))
2582 				continue;
2583 
2584 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2585 			if (rc)
2586 				goto out_unlock;
2587 			if (mynel < maxnel) {
2588 				mysids[mynel++] = sid;
2589 			} else {
2590 				rc = -ENOMEM;
2591 				maxnel += SIDS_NEL;
2592 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2593 				if (!mysids2)
2594 					goto out_unlock;
2595 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2596 				kfree(mysids);
2597 				mysids = mysids2;
2598 				mysids[mynel++] = sid;
2599 			}
2600 		}
2601 	}
2602 	rc = 0;
2603 out_unlock:
2604 	read_unlock(&state->ss->policy_rwlock);
2605 	if (rc || !mynel) {
2606 		kfree(mysids);
2607 		goto out;
2608 	}
2609 
2610 	rc = -ENOMEM;
2611 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2612 	if (!mysids2) {
2613 		kfree(mysids);
2614 		goto out;
2615 	}
2616 	for (i = 0, j = 0; i < mynel; i++) {
2617 		struct av_decision dummy_avd;
2618 		rc = avc_has_perm_noaudit(state,
2619 					  fromsid, mysids[i],
2620 					  SECCLASS_PROCESS, /* kernel value */
2621 					  PROCESS__TRANSITION, AVC_STRICT,
2622 					  &dummy_avd);
2623 		if (!rc)
2624 			mysids2[j++] = mysids[i];
2625 		cond_resched();
2626 	}
2627 	rc = 0;
2628 	kfree(mysids);
2629 	*sids = mysids2;
2630 	*nel = j;
2631 out:
2632 	return rc;
2633 }
2634 
2635 /**
2636  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2637  * @fstype: filesystem type
2638  * @path: path from root of mount
2639  * @sclass: file security class
2640  * @sid: SID for path
2641  *
2642  * Obtain a SID to use for a file in a filesystem that
2643  * cannot support xattr or use a fixed labeling behavior like
2644  * transition SIDs or task SIDs.
2645  *
2646  * The caller must acquire the policy_rwlock before calling this function.
2647  */
2648 static inline int __security_genfs_sid(struct selinux_state *state,
2649 				       const char *fstype,
2650 				       char *path,
2651 				       u16 orig_sclass,
2652 				       u32 *sid)
2653 {
2654 	struct policydb *policydb = &state->ss->policydb;
2655 	struct sidtab *sidtab = state->ss->sidtab;
2656 	int len;
2657 	u16 sclass;
2658 	struct genfs *genfs;
2659 	struct ocontext *c;
2660 	int rc, cmp = 0;
2661 
2662 	while (path[0] == '/' && path[1] == '/')
2663 		path++;
2664 
2665 	sclass = unmap_class(&state->ss->map, orig_sclass);
2666 	*sid = SECINITSID_UNLABELED;
2667 
2668 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2669 		cmp = strcmp(fstype, genfs->fstype);
2670 		if (cmp <= 0)
2671 			break;
2672 	}
2673 
2674 	rc = -ENOENT;
2675 	if (!genfs || cmp)
2676 		goto out;
2677 
2678 	for (c = genfs->head; c; c = c->next) {
2679 		len = strlen(c->u.name);
2680 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2681 		    (strncmp(c->u.name, path, len) == 0))
2682 			break;
2683 	}
2684 
2685 	rc = -ENOENT;
2686 	if (!c)
2687 		goto out;
2688 
2689 	if (!c->sid[0]) {
2690 		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2691 		if (rc)
2692 			goto out;
2693 	}
2694 
2695 	*sid = c->sid[0];
2696 	rc = 0;
2697 out:
2698 	return rc;
2699 }
2700 
2701 /**
2702  * security_genfs_sid - Obtain a SID for a file in a filesystem
2703  * @fstype: filesystem type
2704  * @path: path from root of mount
2705  * @sclass: file security class
2706  * @sid: SID for path
2707  *
2708  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2709  * it afterward.
2710  */
2711 int security_genfs_sid(struct selinux_state *state,
2712 		       const char *fstype,
2713 		       char *path,
2714 		       u16 orig_sclass,
2715 		       u32 *sid)
2716 {
2717 	int retval;
2718 
2719 	read_lock(&state->ss->policy_rwlock);
2720 	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2721 	read_unlock(&state->ss->policy_rwlock);
2722 	return retval;
2723 }
2724 
2725 /**
2726  * security_fs_use - Determine how to handle labeling for a filesystem.
2727  * @sb: superblock in question
2728  */
2729 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2730 {
2731 	struct policydb *policydb;
2732 	struct sidtab *sidtab;
2733 	int rc = 0;
2734 	struct ocontext *c;
2735 	struct superblock_security_struct *sbsec = sb->s_security;
2736 	const char *fstype = sb->s_type->name;
2737 
2738 	read_lock(&state->ss->policy_rwlock);
2739 
2740 	policydb = &state->ss->policydb;
2741 	sidtab = state->ss->sidtab;
2742 
2743 	c = policydb->ocontexts[OCON_FSUSE];
2744 	while (c) {
2745 		if (strcmp(fstype, c->u.name) == 0)
2746 			break;
2747 		c = c->next;
2748 	}
2749 
2750 	if (c) {
2751 		sbsec->behavior = c->v.behavior;
2752 		if (!c->sid[0]) {
2753 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2754 						   &c->sid[0]);
2755 			if (rc)
2756 				goto out;
2757 		}
2758 		sbsec->sid = c->sid[0];
2759 	} else {
2760 		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2761 					  &sbsec->sid);
2762 		if (rc) {
2763 			sbsec->behavior = SECURITY_FS_USE_NONE;
2764 			rc = 0;
2765 		} else {
2766 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2767 		}
2768 	}
2769 
2770 out:
2771 	read_unlock(&state->ss->policy_rwlock);
2772 	return rc;
2773 }
2774 
2775 int security_get_bools(struct selinux_state *state,
2776 		       int *len, char ***names, int **values)
2777 {
2778 	struct policydb *policydb;
2779 	int i, rc;
2780 
2781 	if (!state->initialized) {
2782 		*len = 0;
2783 		*names = NULL;
2784 		*values = NULL;
2785 		return 0;
2786 	}
2787 
2788 	read_lock(&state->ss->policy_rwlock);
2789 
2790 	policydb = &state->ss->policydb;
2791 
2792 	*names = NULL;
2793 	*values = NULL;
2794 
2795 	rc = 0;
2796 	*len = policydb->p_bools.nprim;
2797 	if (!*len)
2798 		goto out;
2799 
2800 	rc = -ENOMEM;
2801 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2802 	if (!*names)
2803 		goto err;
2804 
2805 	rc = -ENOMEM;
2806 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2807 	if (!*values)
2808 		goto err;
2809 
2810 	for (i = 0; i < *len; i++) {
2811 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2812 
2813 		rc = -ENOMEM;
2814 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2815 				      GFP_ATOMIC);
2816 		if (!(*names)[i])
2817 			goto err;
2818 	}
2819 	rc = 0;
2820 out:
2821 	read_unlock(&state->ss->policy_rwlock);
2822 	return rc;
2823 err:
2824 	if (*names) {
2825 		for (i = 0; i < *len; i++)
2826 			kfree((*names)[i]);
2827 	}
2828 	kfree(*values);
2829 	goto out;
2830 }
2831 
2832 
2833 int security_set_bools(struct selinux_state *state, int len, int *values)
2834 {
2835 	struct policydb *policydb;
2836 	int i, rc;
2837 	int lenp, seqno = 0;
2838 	struct cond_node *cur;
2839 
2840 	write_lock_irq(&state->ss->policy_rwlock);
2841 
2842 	policydb = &state->ss->policydb;
2843 
2844 	rc = -EFAULT;
2845 	lenp = policydb->p_bools.nprim;
2846 	if (len != lenp)
2847 		goto out;
2848 
2849 	for (i = 0; i < len; i++) {
2850 		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2851 			audit_log(audit_context(), GFP_ATOMIC,
2852 				AUDIT_MAC_CONFIG_CHANGE,
2853 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2854 				sym_name(policydb, SYM_BOOLS, i),
2855 				!!values[i],
2856 				policydb->bool_val_to_struct[i]->state,
2857 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2858 				audit_get_sessionid(current));
2859 		}
2860 		if (values[i])
2861 			policydb->bool_val_to_struct[i]->state = 1;
2862 		else
2863 			policydb->bool_val_to_struct[i]->state = 0;
2864 	}
2865 
2866 	for (cur = policydb->cond_list; cur; cur = cur->next) {
2867 		rc = evaluate_cond_node(policydb, cur);
2868 		if (rc)
2869 			goto out;
2870 	}
2871 
2872 	seqno = ++state->ss->latest_granting;
2873 	rc = 0;
2874 out:
2875 	write_unlock_irq(&state->ss->policy_rwlock);
2876 	if (!rc) {
2877 		avc_ss_reset(state->avc, seqno);
2878 		selnl_notify_policyload(seqno);
2879 		selinux_status_update_policyload(state, seqno);
2880 		selinux_xfrm_notify_policyload();
2881 	}
2882 	return rc;
2883 }
2884 
2885 int security_get_bool_value(struct selinux_state *state,
2886 			    int index)
2887 {
2888 	struct policydb *policydb;
2889 	int rc;
2890 	int len;
2891 
2892 	read_lock(&state->ss->policy_rwlock);
2893 
2894 	policydb = &state->ss->policydb;
2895 
2896 	rc = -EFAULT;
2897 	len = policydb->p_bools.nprim;
2898 	if (index >= len)
2899 		goto out;
2900 
2901 	rc = policydb->bool_val_to_struct[index]->state;
2902 out:
2903 	read_unlock(&state->ss->policy_rwlock);
2904 	return rc;
2905 }
2906 
2907 static int security_preserve_bools(struct selinux_state *state,
2908 				   struct policydb *policydb)
2909 {
2910 	int rc, nbools = 0, *bvalues = NULL, i;
2911 	char **bnames = NULL;
2912 	struct cond_bool_datum *booldatum;
2913 	struct cond_node *cur;
2914 
2915 	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2916 	if (rc)
2917 		goto out;
2918 	for (i = 0; i < nbools; i++) {
2919 		booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2920 		if (booldatum)
2921 			booldatum->state = bvalues[i];
2922 	}
2923 	for (cur = policydb->cond_list; cur; cur = cur->next) {
2924 		rc = evaluate_cond_node(policydb, cur);
2925 		if (rc)
2926 			goto out;
2927 	}
2928 
2929 out:
2930 	if (bnames) {
2931 		for (i = 0; i < nbools; i++)
2932 			kfree(bnames[i]);
2933 	}
2934 	kfree(bnames);
2935 	kfree(bvalues);
2936 	return rc;
2937 }
2938 
2939 /*
2940  * security_sid_mls_copy() - computes a new sid based on the given
2941  * sid and the mls portion of mls_sid.
2942  */
2943 int security_sid_mls_copy(struct selinux_state *state,
2944 			  u32 sid, u32 mls_sid, u32 *new_sid)
2945 {
2946 	struct policydb *policydb = &state->ss->policydb;
2947 	struct sidtab *sidtab = state->ss->sidtab;
2948 	struct context *context1;
2949 	struct context *context2;
2950 	struct context newcon;
2951 	char *s;
2952 	u32 len;
2953 	int rc;
2954 
2955 	rc = 0;
2956 	if (!state->initialized || !policydb->mls_enabled) {
2957 		*new_sid = sid;
2958 		goto out;
2959 	}
2960 
2961 	context_init(&newcon);
2962 
2963 	read_lock(&state->ss->policy_rwlock);
2964 
2965 	rc = -EINVAL;
2966 	context1 = sidtab_search(sidtab, sid);
2967 	if (!context1) {
2968 		pr_err("SELinux: %s:  unrecognized SID %d\n",
2969 			__func__, sid);
2970 		goto out_unlock;
2971 	}
2972 
2973 	rc = -EINVAL;
2974 	context2 = sidtab_search(sidtab, mls_sid);
2975 	if (!context2) {
2976 		pr_err("SELinux: %s:  unrecognized SID %d\n",
2977 			__func__, mls_sid);
2978 		goto out_unlock;
2979 	}
2980 
2981 	newcon.user = context1->user;
2982 	newcon.role = context1->role;
2983 	newcon.type = context1->type;
2984 	rc = mls_context_cpy(&newcon, context2);
2985 	if (rc)
2986 		goto out_unlock;
2987 
2988 	/* Check the validity of the new context. */
2989 	if (!policydb_context_isvalid(policydb, &newcon)) {
2990 		rc = convert_context_handle_invalid_context(state, &newcon);
2991 		if (rc) {
2992 			if (!context_struct_to_string(policydb, &newcon, &s,
2993 						      &len)) {
2994 				audit_log(audit_context(),
2995 					  GFP_ATOMIC, AUDIT_SELINUX_ERR,
2996 					  "op=security_sid_mls_copy "
2997 					  "invalid_context=%s", s);
2998 				kfree(s);
2999 			}
3000 			goto out_unlock;
3001 		}
3002 	}
3003 
3004 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3005 out_unlock:
3006 	read_unlock(&state->ss->policy_rwlock);
3007 	context_destroy(&newcon);
3008 out:
3009 	return rc;
3010 }
3011 
3012 /**
3013  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3014  * @nlbl_sid: NetLabel SID
3015  * @nlbl_type: NetLabel labeling protocol type
3016  * @xfrm_sid: XFRM SID
3017  *
3018  * Description:
3019  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3020  * resolved into a single SID it is returned via @peer_sid and the function
3021  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3022  * returns a negative value.  A table summarizing the behavior is below:
3023  *
3024  *                                 | function return |      @sid
3025  *   ------------------------------+-----------------+-----------------
3026  *   no peer labels                |        0        |    SECSID_NULL
3027  *   single peer label             |        0        |    <peer_label>
3028  *   multiple, consistent labels   |        0        |    <peer_label>
3029  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3030  *
3031  */
3032 int security_net_peersid_resolve(struct selinux_state *state,
3033 				 u32 nlbl_sid, u32 nlbl_type,
3034 				 u32 xfrm_sid,
3035 				 u32 *peer_sid)
3036 {
3037 	struct policydb *policydb = &state->ss->policydb;
3038 	struct sidtab *sidtab = state->ss->sidtab;
3039 	int rc;
3040 	struct context *nlbl_ctx;
3041 	struct context *xfrm_ctx;
3042 
3043 	*peer_sid = SECSID_NULL;
3044 
3045 	/* handle the common (which also happens to be the set of easy) cases
3046 	 * right away, these two if statements catch everything involving a
3047 	 * single or absent peer SID/label */
3048 	if (xfrm_sid == SECSID_NULL) {
3049 		*peer_sid = nlbl_sid;
3050 		return 0;
3051 	}
3052 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3053 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3054 	 * is present */
3055 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3056 		*peer_sid = xfrm_sid;
3057 		return 0;
3058 	}
3059 
3060 	/*
3061 	 * We don't need to check initialized here since the only way both
3062 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3063 	 * security server was initialized and state->initialized was true.
3064 	 */
3065 	if (!policydb->mls_enabled)
3066 		return 0;
3067 
3068 	read_lock(&state->ss->policy_rwlock);
3069 
3070 	rc = -EINVAL;
3071 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3072 	if (!nlbl_ctx) {
3073 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3074 		       __func__, nlbl_sid);
3075 		goto out;
3076 	}
3077 	rc = -EINVAL;
3078 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3079 	if (!xfrm_ctx) {
3080 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3081 		       __func__, xfrm_sid);
3082 		goto out;
3083 	}
3084 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3085 	if (rc)
3086 		goto out;
3087 
3088 	/* at present NetLabel SIDs/labels really only carry MLS
3089 	 * information so if the MLS portion of the NetLabel SID
3090 	 * matches the MLS portion of the labeled XFRM SID/label
3091 	 * then pass along the XFRM SID as it is the most
3092 	 * expressive */
3093 	*peer_sid = xfrm_sid;
3094 out:
3095 	read_unlock(&state->ss->policy_rwlock);
3096 	return rc;
3097 }
3098 
3099 static int get_classes_callback(void *k, void *d, void *args)
3100 {
3101 	struct class_datum *datum = d;
3102 	char *name = k, **classes = args;
3103 	int value = datum->value - 1;
3104 
3105 	classes[value] = kstrdup(name, GFP_ATOMIC);
3106 	if (!classes[value])
3107 		return -ENOMEM;
3108 
3109 	return 0;
3110 }
3111 
3112 int security_get_classes(struct selinux_state *state,
3113 			 char ***classes, int *nclasses)
3114 {
3115 	struct policydb *policydb = &state->ss->policydb;
3116 	int rc;
3117 
3118 	if (!state->initialized) {
3119 		*nclasses = 0;
3120 		*classes = NULL;
3121 		return 0;
3122 	}
3123 
3124 	read_lock(&state->ss->policy_rwlock);
3125 
3126 	rc = -ENOMEM;
3127 	*nclasses = policydb->p_classes.nprim;
3128 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3129 	if (!*classes)
3130 		goto out;
3131 
3132 	rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3133 			*classes);
3134 	if (rc) {
3135 		int i;
3136 		for (i = 0; i < *nclasses; i++)
3137 			kfree((*classes)[i]);
3138 		kfree(*classes);
3139 	}
3140 
3141 out:
3142 	read_unlock(&state->ss->policy_rwlock);
3143 	return rc;
3144 }
3145 
3146 static int get_permissions_callback(void *k, void *d, void *args)
3147 {
3148 	struct perm_datum *datum = d;
3149 	char *name = k, **perms = args;
3150 	int value = datum->value - 1;
3151 
3152 	perms[value] = kstrdup(name, GFP_ATOMIC);
3153 	if (!perms[value])
3154 		return -ENOMEM;
3155 
3156 	return 0;
3157 }
3158 
3159 int security_get_permissions(struct selinux_state *state,
3160 			     char *class, char ***perms, int *nperms)
3161 {
3162 	struct policydb *policydb = &state->ss->policydb;
3163 	int rc, i;
3164 	struct class_datum *match;
3165 
3166 	read_lock(&state->ss->policy_rwlock);
3167 
3168 	rc = -EINVAL;
3169 	match = hashtab_search(policydb->p_classes.table, class);
3170 	if (!match) {
3171 		pr_err("SELinux: %s:  unrecognized class %s\n",
3172 			__func__, class);
3173 		goto out;
3174 	}
3175 
3176 	rc = -ENOMEM;
3177 	*nperms = match->permissions.nprim;
3178 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3179 	if (!*perms)
3180 		goto out;
3181 
3182 	if (match->comdatum) {
3183 		rc = hashtab_map(match->comdatum->permissions.table,
3184 				get_permissions_callback, *perms);
3185 		if (rc)
3186 			goto err;
3187 	}
3188 
3189 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
3190 			*perms);
3191 	if (rc)
3192 		goto err;
3193 
3194 out:
3195 	read_unlock(&state->ss->policy_rwlock);
3196 	return rc;
3197 
3198 err:
3199 	read_unlock(&state->ss->policy_rwlock);
3200 	for (i = 0; i < *nperms; i++)
3201 		kfree((*perms)[i]);
3202 	kfree(*perms);
3203 	return rc;
3204 }
3205 
3206 int security_get_reject_unknown(struct selinux_state *state)
3207 {
3208 	return state->ss->policydb.reject_unknown;
3209 }
3210 
3211 int security_get_allow_unknown(struct selinux_state *state)
3212 {
3213 	return state->ss->policydb.allow_unknown;
3214 }
3215 
3216 /**
3217  * security_policycap_supported - Check for a specific policy capability
3218  * @req_cap: capability
3219  *
3220  * Description:
3221  * This function queries the currently loaded policy to see if it supports the
3222  * capability specified by @req_cap.  Returns true (1) if the capability is
3223  * supported, false (0) if it isn't supported.
3224  *
3225  */
3226 int security_policycap_supported(struct selinux_state *state,
3227 				 unsigned int req_cap)
3228 {
3229 	struct policydb *policydb = &state->ss->policydb;
3230 	int rc;
3231 
3232 	read_lock(&state->ss->policy_rwlock);
3233 	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3234 	read_unlock(&state->ss->policy_rwlock);
3235 
3236 	return rc;
3237 }
3238 
3239 struct selinux_audit_rule {
3240 	u32 au_seqno;
3241 	struct context au_ctxt;
3242 };
3243 
3244 void selinux_audit_rule_free(void *vrule)
3245 {
3246 	struct selinux_audit_rule *rule = vrule;
3247 
3248 	if (rule) {
3249 		context_destroy(&rule->au_ctxt);
3250 		kfree(rule);
3251 	}
3252 }
3253 
3254 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3255 {
3256 	struct selinux_state *state = &selinux_state;
3257 	struct policydb *policydb = &state->ss->policydb;
3258 	struct selinux_audit_rule *tmprule;
3259 	struct role_datum *roledatum;
3260 	struct type_datum *typedatum;
3261 	struct user_datum *userdatum;
3262 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3263 	int rc = 0;
3264 
3265 	*rule = NULL;
3266 
3267 	if (!state->initialized)
3268 		return -EOPNOTSUPP;
3269 
3270 	switch (field) {
3271 	case AUDIT_SUBJ_USER:
3272 	case AUDIT_SUBJ_ROLE:
3273 	case AUDIT_SUBJ_TYPE:
3274 	case AUDIT_OBJ_USER:
3275 	case AUDIT_OBJ_ROLE:
3276 	case AUDIT_OBJ_TYPE:
3277 		/* only 'equals' and 'not equals' fit user, role, and type */
3278 		if (op != Audit_equal && op != Audit_not_equal)
3279 			return -EINVAL;
3280 		break;
3281 	case AUDIT_SUBJ_SEN:
3282 	case AUDIT_SUBJ_CLR:
3283 	case AUDIT_OBJ_LEV_LOW:
3284 	case AUDIT_OBJ_LEV_HIGH:
3285 		/* we do not allow a range, indicated by the presence of '-' */
3286 		if (strchr(rulestr, '-'))
3287 			return -EINVAL;
3288 		break;
3289 	default:
3290 		/* only the above fields are valid */
3291 		return -EINVAL;
3292 	}
3293 
3294 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3295 	if (!tmprule)
3296 		return -ENOMEM;
3297 
3298 	context_init(&tmprule->au_ctxt);
3299 
3300 	read_lock(&state->ss->policy_rwlock);
3301 
3302 	tmprule->au_seqno = state->ss->latest_granting;
3303 
3304 	switch (field) {
3305 	case AUDIT_SUBJ_USER:
3306 	case AUDIT_OBJ_USER:
3307 		rc = -EINVAL;
3308 		userdatum = hashtab_search(policydb->p_users.table, rulestr);
3309 		if (!userdatum)
3310 			goto out;
3311 		tmprule->au_ctxt.user = userdatum->value;
3312 		break;
3313 	case AUDIT_SUBJ_ROLE:
3314 	case AUDIT_OBJ_ROLE:
3315 		rc = -EINVAL;
3316 		roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3317 		if (!roledatum)
3318 			goto out;
3319 		tmprule->au_ctxt.role = roledatum->value;
3320 		break;
3321 	case AUDIT_SUBJ_TYPE:
3322 	case AUDIT_OBJ_TYPE:
3323 		rc = -EINVAL;
3324 		typedatum = hashtab_search(policydb->p_types.table, rulestr);
3325 		if (!typedatum)
3326 			goto out;
3327 		tmprule->au_ctxt.type = typedatum->value;
3328 		break;
3329 	case AUDIT_SUBJ_SEN:
3330 	case AUDIT_SUBJ_CLR:
3331 	case AUDIT_OBJ_LEV_LOW:
3332 	case AUDIT_OBJ_LEV_HIGH:
3333 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3334 				     GFP_ATOMIC);
3335 		if (rc)
3336 			goto out;
3337 		break;
3338 	}
3339 	rc = 0;
3340 out:
3341 	read_unlock(&state->ss->policy_rwlock);
3342 
3343 	if (rc) {
3344 		selinux_audit_rule_free(tmprule);
3345 		tmprule = NULL;
3346 	}
3347 
3348 	*rule = tmprule;
3349 
3350 	return rc;
3351 }
3352 
3353 /* Check to see if the rule contains any selinux fields */
3354 int selinux_audit_rule_known(struct audit_krule *rule)
3355 {
3356 	int i;
3357 
3358 	for (i = 0; i < rule->field_count; i++) {
3359 		struct audit_field *f = &rule->fields[i];
3360 		switch (f->type) {
3361 		case AUDIT_SUBJ_USER:
3362 		case AUDIT_SUBJ_ROLE:
3363 		case AUDIT_SUBJ_TYPE:
3364 		case AUDIT_SUBJ_SEN:
3365 		case AUDIT_SUBJ_CLR:
3366 		case AUDIT_OBJ_USER:
3367 		case AUDIT_OBJ_ROLE:
3368 		case AUDIT_OBJ_TYPE:
3369 		case AUDIT_OBJ_LEV_LOW:
3370 		case AUDIT_OBJ_LEV_HIGH:
3371 			return 1;
3372 		}
3373 	}
3374 
3375 	return 0;
3376 }
3377 
3378 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3379 			     struct audit_context *actx)
3380 {
3381 	struct selinux_state *state = &selinux_state;
3382 	struct context *ctxt;
3383 	struct mls_level *level;
3384 	struct selinux_audit_rule *rule = vrule;
3385 	int match = 0;
3386 
3387 	if (unlikely(!rule)) {
3388 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3389 		return -ENOENT;
3390 	}
3391 
3392 	read_lock(&state->ss->policy_rwlock);
3393 
3394 	if (rule->au_seqno < state->ss->latest_granting) {
3395 		match = -ESTALE;
3396 		goto out;
3397 	}
3398 
3399 	ctxt = sidtab_search(state->ss->sidtab, sid);
3400 	if (unlikely(!ctxt)) {
3401 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3402 			  sid);
3403 		match = -ENOENT;
3404 		goto out;
3405 	}
3406 
3407 	/* a field/op pair that is not caught here will simply fall through
3408 	   without a match */
3409 	switch (field) {
3410 	case AUDIT_SUBJ_USER:
3411 	case AUDIT_OBJ_USER:
3412 		switch (op) {
3413 		case Audit_equal:
3414 			match = (ctxt->user == rule->au_ctxt.user);
3415 			break;
3416 		case Audit_not_equal:
3417 			match = (ctxt->user != rule->au_ctxt.user);
3418 			break;
3419 		}
3420 		break;
3421 	case AUDIT_SUBJ_ROLE:
3422 	case AUDIT_OBJ_ROLE:
3423 		switch (op) {
3424 		case Audit_equal:
3425 			match = (ctxt->role == rule->au_ctxt.role);
3426 			break;
3427 		case Audit_not_equal:
3428 			match = (ctxt->role != rule->au_ctxt.role);
3429 			break;
3430 		}
3431 		break;
3432 	case AUDIT_SUBJ_TYPE:
3433 	case AUDIT_OBJ_TYPE:
3434 		switch (op) {
3435 		case Audit_equal:
3436 			match = (ctxt->type == rule->au_ctxt.type);
3437 			break;
3438 		case Audit_not_equal:
3439 			match = (ctxt->type != rule->au_ctxt.type);
3440 			break;
3441 		}
3442 		break;
3443 	case AUDIT_SUBJ_SEN:
3444 	case AUDIT_SUBJ_CLR:
3445 	case AUDIT_OBJ_LEV_LOW:
3446 	case AUDIT_OBJ_LEV_HIGH:
3447 		level = ((field == AUDIT_SUBJ_SEN ||
3448 			  field == AUDIT_OBJ_LEV_LOW) ?
3449 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3450 		switch (op) {
3451 		case Audit_equal:
3452 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3453 					     level);
3454 			break;
3455 		case Audit_not_equal:
3456 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3457 					      level);
3458 			break;
3459 		case Audit_lt:
3460 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3461 					       level) &&
3462 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3463 					       level));
3464 			break;
3465 		case Audit_le:
3466 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3467 					      level);
3468 			break;
3469 		case Audit_gt:
3470 			match = (mls_level_dom(level,
3471 					      &rule->au_ctxt.range.level[0]) &&
3472 				 !mls_level_eq(level,
3473 					       &rule->au_ctxt.range.level[0]));
3474 			break;
3475 		case Audit_ge:
3476 			match = mls_level_dom(level,
3477 					      &rule->au_ctxt.range.level[0]);
3478 			break;
3479 		}
3480 	}
3481 
3482 out:
3483 	read_unlock(&state->ss->policy_rwlock);
3484 	return match;
3485 }
3486 
3487 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3488 
3489 static int aurule_avc_callback(u32 event)
3490 {
3491 	int err = 0;
3492 
3493 	if (event == AVC_CALLBACK_RESET && aurule_callback)
3494 		err = aurule_callback();
3495 	return err;
3496 }
3497 
3498 static int __init aurule_init(void)
3499 {
3500 	int err;
3501 
3502 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3503 	if (err)
3504 		panic("avc_add_callback() failed, error %d\n", err);
3505 
3506 	return err;
3507 }
3508 __initcall(aurule_init);
3509 
3510 #ifdef CONFIG_NETLABEL
3511 /**
3512  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3513  * @secattr: the NetLabel packet security attributes
3514  * @sid: the SELinux SID
3515  *
3516  * Description:
3517  * Attempt to cache the context in @ctx, which was derived from the packet in
3518  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3519  * already been initialized.
3520  *
3521  */
3522 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3523 				      u32 sid)
3524 {
3525 	u32 *sid_cache;
3526 
3527 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3528 	if (sid_cache == NULL)
3529 		return;
3530 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3531 	if (secattr->cache == NULL) {
3532 		kfree(sid_cache);
3533 		return;
3534 	}
3535 
3536 	*sid_cache = sid;
3537 	secattr->cache->free = kfree;
3538 	secattr->cache->data = sid_cache;
3539 	secattr->flags |= NETLBL_SECATTR_CACHE;
3540 }
3541 
3542 /**
3543  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3544  * @secattr: the NetLabel packet security attributes
3545  * @sid: the SELinux SID
3546  *
3547  * Description:
3548  * Convert the given NetLabel security attributes in @secattr into a
3549  * SELinux SID.  If the @secattr field does not contain a full SELinux
3550  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3551  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3552  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3553  * conversion for future lookups.  Returns zero on success, negative values on
3554  * failure.
3555  *
3556  */
3557 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3558 				   struct netlbl_lsm_secattr *secattr,
3559 				   u32 *sid)
3560 {
3561 	struct policydb *policydb = &state->ss->policydb;
3562 	struct sidtab *sidtab = state->ss->sidtab;
3563 	int rc;
3564 	struct context *ctx;
3565 	struct context ctx_new;
3566 
3567 	if (!state->initialized) {
3568 		*sid = SECSID_NULL;
3569 		return 0;
3570 	}
3571 
3572 	read_lock(&state->ss->policy_rwlock);
3573 
3574 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3575 		*sid = *(u32 *)secattr->cache->data;
3576 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3577 		*sid = secattr->attr.secid;
3578 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3579 		rc = -EIDRM;
3580 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3581 		if (ctx == NULL)
3582 			goto out;
3583 
3584 		context_init(&ctx_new);
3585 		ctx_new.user = ctx->user;
3586 		ctx_new.role = ctx->role;
3587 		ctx_new.type = ctx->type;
3588 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3589 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3590 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3591 			if (rc)
3592 				goto out;
3593 		}
3594 		rc = -EIDRM;
3595 		if (!mls_context_isvalid(policydb, &ctx_new))
3596 			goto out_free;
3597 
3598 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3599 		if (rc)
3600 			goto out_free;
3601 
3602 		security_netlbl_cache_add(secattr, *sid);
3603 
3604 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3605 	} else
3606 		*sid = SECSID_NULL;
3607 
3608 	read_unlock(&state->ss->policy_rwlock);
3609 	return 0;
3610 out_free:
3611 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3612 out:
3613 	read_unlock(&state->ss->policy_rwlock);
3614 	return rc;
3615 }
3616 
3617 /**
3618  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3619  * @sid: the SELinux SID
3620  * @secattr: the NetLabel packet security attributes
3621  *
3622  * Description:
3623  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3624  * Returns zero on success, negative values on failure.
3625  *
3626  */
3627 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3628 				   u32 sid, struct netlbl_lsm_secattr *secattr)
3629 {
3630 	struct policydb *policydb = &state->ss->policydb;
3631 	int rc;
3632 	struct context *ctx;
3633 
3634 	if (!state->initialized)
3635 		return 0;
3636 
3637 	read_lock(&state->ss->policy_rwlock);
3638 
3639 	rc = -ENOENT;
3640 	ctx = sidtab_search(state->ss->sidtab, sid);
3641 	if (ctx == NULL)
3642 		goto out;
3643 
3644 	rc = -ENOMEM;
3645 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3646 				  GFP_ATOMIC);
3647 	if (secattr->domain == NULL)
3648 		goto out;
3649 
3650 	secattr->attr.secid = sid;
3651 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3652 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3653 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3654 out:
3655 	read_unlock(&state->ss->policy_rwlock);
3656 	return rc;
3657 }
3658 #endif /* CONFIG_NETLABEL */
3659 
3660 /**
3661  * security_read_policy - read the policy.
3662  * @data: binary policy data
3663  * @len: length of data in bytes
3664  *
3665  */
3666 int security_read_policy(struct selinux_state *state,
3667 			 void **data, size_t *len)
3668 {
3669 	struct policydb *policydb = &state->ss->policydb;
3670 	int rc;
3671 	struct policy_file fp;
3672 
3673 	if (!state->initialized)
3674 		return -EINVAL;
3675 
3676 	*len = security_policydb_len(state);
3677 
3678 	*data = vmalloc_user(*len);
3679 	if (!*data)
3680 		return -ENOMEM;
3681 
3682 	fp.data = *data;
3683 	fp.len = *len;
3684 
3685 	read_lock(&state->ss->policy_rwlock);
3686 	rc = policydb_write(policydb, &fp);
3687 	read_unlock(&state->ss->policy_rwlock);
3688 
3689 	if (rc)
3690 		return rc;
3691 
3692 	*len = (unsigned long)fp.data - (unsigned long)*data;
3693 	return 0;
3694 
3695 }
3696