xref: /linux/security/selinux/ss/services.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the security services.
4  *
5  * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *	Support for context based audit filters.
12  *
13  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14  *
15  *	Added conditional policy language extensions
16  *
17  * Updated: Hewlett-Packard <paul@paul-moore.com>
18  *
19  *      Added support for NetLabel
20  *      Added support for the policy capability bitmap
21  *
22  * Updated: Chad Sellers <csellers@tresys.com>
23  *
24  *  Added validation of kernel classes and permissions
25  *
26  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27  *
28  *  Added support for bounds domain and audit messaged on masked permissions
29  *
30  * Updated: Guido Trentalancia <guido@trentalancia.com>
31  *
32  *  Added support for runtime switching of the policy type
33  *
34  * Copyright (C) 2008, 2009 NEC Corporation
35  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39  */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/mutex.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlabel.h>
52 
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68 
69 /* Policy capability names */
70 const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
71 	"network_peer_controls",
72 	"open_perms",
73 	"extended_socket_class",
74 	"always_check_network",
75 	"cgroup_seclabel",
76 	"nnp_nosuid_transition"
77 };
78 
79 static struct selinux_ss selinux_ss;
80 
81 void selinux_ss_init(struct selinux_ss **ss)
82 {
83 	rwlock_init(&selinux_ss.policy_rwlock);
84 	mutex_init(&selinux_ss.status_lock);
85 	*ss = &selinux_ss;
86 }
87 
88 /* Forward declaration. */
89 static int context_struct_to_string(struct policydb *policydb,
90 				    struct context *context,
91 				    char **scontext,
92 				    u32 *scontext_len);
93 
94 static void context_struct_compute_av(struct policydb *policydb,
95 				      struct context *scontext,
96 				      struct context *tcontext,
97 				      u16 tclass,
98 				      struct av_decision *avd,
99 				      struct extended_perms *xperms);
100 
101 static int selinux_set_mapping(struct policydb *pol,
102 			       struct security_class_mapping *map,
103 			       struct selinux_map *out_map)
104 {
105 	u16 i, j;
106 	unsigned k;
107 	bool print_unknown_handle = false;
108 
109 	/* Find number of classes in the input mapping */
110 	if (!map)
111 		return -EINVAL;
112 	i = 0;
113 	while (map[i].name)
114 		i++;
115 
116 	/* Allocate space for the class records, plus one for class zero */
117 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
118 	if (!out_map->mapping)
119 		return -ENOMEM;
120 
121 	/* Store the raw class and permission values */
122 	j = 0;
123 	while (map[j].name) {
124 		struct security_class_mapping *p_in = map + (j++);
125 		struct selinux_mapping *p_out = out_map->mapping + j;
126 
127 		/* An empty class string skips ahead */
128 		if (!strcmp(p_in->name, "")) {
129 			p_out->num_perms = 0;
130 			continue;
131 		}
132 
133 		p_out->value = string_to_security_class(pol, p_in->name);
134 		if (!p_out->value) {
135 			pr_info("SELinux:  Class %s not defined in policy.\n",
136 			       p_in->name);
137 			if (pol->reject_unknown)
138 				goto err;
139 			p_out->num_perms = 0;
140 			print_unknown_handle = true;
141 			continue;
142 		}
143 
144 		k = 0;
145 		while (p_in->perms[k]) {
146 			/* An empty permission string skips ahead */
147 			if (!*p_in->perms[k]) {
148 				k++;
149 				continue;
150 			}
151 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
152 							    p_in->perms[k]);
153 			if (!p_out->perms[k]) {
154 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
155 				       p_in->perms[k], p_in->name);
156 				if (pol->reject_unknown)
157 					goto err;
158 				print_unknown_handle = true;
159 			}
160 
161 			k++;
162 		}
163 		p_out->num_perms = k;
164 	}
165 
166 	if (print_unknown_handle)
167 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
168 		       pol->allow_unknown ? "allowed" : "denied");
169 
170 	out_map->size = i;
171 	return 0;
172 err:
173 	kfree(out_map->mapping);
174 	out_map->mapping = NULL;
175 	return -EINVAL;
176 }
177 
178 /*
179  * Get real, policy values from mapped values
180  */
181 
182 static u16 unmap_class(struct selinux_map *map, u16 tclass)
183 {
184 	if (tclass < map->size)
185 		return map->mapping[tclass].value;
186 
187 	return tclass;
188 }
189 
190 /*
191  * Get kernel value for class from its policy value
192  */
193 static u16 map_class(struct selinux_map *map, u16 pol_value)
194 {
195 	u16 i;
196 
197 	for (i = 1; i < map->size; i++) {
198 		if (map->mapping[i].value == pol_value)
199 			return i;
200 	}
201 
202 	return SECCLASS_NULL;
203 }
204 
205 static void map_decision(struct selinux_map *map,
206 			 u16 tclass, struct av_decision *avd,
207 			 int allow_unknown)
208 {
209 	if (tclass < map->size) {
210 		struct selinux_mapping *mapping = &map->mapping[tclass];
211 		unsigned int i, n = mapping->num_perms;
212 		u32 result;
213 
214 		for (i = 0, result = 0; i < n; i++) {
215 			if (avd->allowed & mapping->perms[i])
216 				result |= 1<<i;
217 			if (allow_unknown && !mapping->perms[i])
218 				result |= 1<<i;
219 		}
220 		avd->allowed = result;
221 
222 		for (i = 0, result = 0; i < n; i++)
223 			if (avd->auditallow & mapping->perms[i])
224 				result |= 1<<i;
225 		avd->auditallow = result;
226 
227 		for (i = 0, result = 0; i < n; i++) {
228 			if (avd->auditdeny & mapping->perms[i])
229 				result |= 1<<i;
230 			if (!allow_unknown && !mapping->perms[i])
231 				result |= 1<<i;
232 		}
233 		/*
234 		 * In case the kernel has a bug and requests a permission
235 		 * between num_perms and the maximum permission number, we
236 		 * should audit that denial
237 		 */
238 		for (; i < (sizeof(u32)*8); i++)
239 			result |= 1<<i;
240 		avd->auditdeny = result;
241 	}
242 }
243 
244 int security_mls_enabled(struct selinux_state *state)
245 {
246 	struct policydb *p = &state->ss->policydb;
247 
248 	return p->mls_enabled;
249 }
250 
251 /*
252  * Return the boolean value of a constraint expression
253  * when it is applied to the specified source and target
254  * security contexts.
255  *
256  * xcontext is a special beast...  It is used by the validatetrans rules
257  * only.  For these rules, scontext is the context before the transition,
258  * tcontext is the context after the transition, and xcontext is the context
259  * of the process performing the transition.  All other callers of
260  * constraint_expr_eval should pass in NULL for xcontext.
261  */
262 static int constraint_expr_eval(struct policydb *policydb,
263 				struct context *scontext,
264 				struct context *tcontext,
265 				struct context *xcontext,
266 				struct constraint_expr *cexpr)
267 {
268 	u32 val1, val2;
269 	struct context *c;
270 	struct role_datum *r1, *r2;
271 	struct mls_level *l1, *l2;
272 	struct constraint_expr *e;
273 	int s[CEXPR_MAXDEPTH];
274 	int sp = -1;
275 
276 	for (e = cexpr; e; e = e->next) {
277 		switch (e->expr_type) {
278 		case CEXPR_NOT:
279 			BUG_ON(sp < 0);
280 			s[sp] = !s[sp];
281 			break;
282 		case CEXPR_AND:
283 			BUG_ON(sp < 1);
284 			sp--;
285 			s[sp] &= s[sp + 1];
286 			break;
287 		case CEXPR_OR:
288 			BUG_ON(sp < 1);
289 			sp--;
290 			s[sp] |= s[sp + 1];
291 			break;
292 		case CEXPR_ATTR:
293 			if (sp == (CEXPR_MAXDEPTH - 1))
294 				return 0;
295 			switch (e->attr) {
296 			case CEXPR_USER:
297 				val1 = scontext->user;
298 				val2 = tcontext->user;
299 				break;
300 			case CEXPR_TYPE:
301 				val1 = scontext->type;
302 				val2 = tcontext->type;
303 				break;
304 			case CEXPR_ROLE:
305 				val1 = scontext->role;
306 				val2 = tcontext->role;
307 				r1 = policydb->role_val_to_struct[val1 - 1];
308 				r2 = policydb->role_val_to_struct[val2 - 1];
309 				switch (e->op) {
310 				case CEXPR_DOM:
311 					s[++sp] = ebitmap_get_bit(&r1->dominates,
312 								  val2 - 1);
313 					continue;
314 				case CEXPR_DOMBY:
315 					s[++sp] = ebitmap_get_bit(&r2->dominates,
316 								  val1 - 1);
317 					continue;
318 				case CEXPR_INCOMP:
319 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
320 								    val2 - 1) &&
321 						   !ebitmap_get_bit(&r2->dominates,
322 								    val1 - 1));
323 					continue;
324 				default:
325 					break;
326 				}
327 				break;
328 			case CEXPR_L1L2:
329 				l1 = &(scontext->range.level[0]);
330 				l2 = &(tcontext->range.level[0]);
331 				goto mls_ops;
332 			case CEXPR_L1H2:
333 				l1 = &(scontext->range.level[0]);
334 				l2 = &(tcontext->range.level[1]);
335 				goto mls_ops;
336 			case CEXPR_H1L2:
337 				l1 = &(scontext->range.level[1]);
338 				l2 = &(tcontext->range.level[0]);
339 				goto mls_ops;
340 			case CEXPR_H1H2:
341 				l1 = &(scontext->range.level[1]);
342 				l2 = &(tcontext->range.level[1]);
343 				goto mls_ops;
344 			case CEXPR_L1H1:
345 				l1 = &(scontext->range.level[0]);
346 				l2 = &(scontext->range.level[1]);
347 				goto mls_ops;
348 			case CEXPR_L2H2:
349 				l1 = &(tcontext->range.level[0]);
350 				l2 = &(tcontext->range.level[1]);
351 				goto mls_ops;
352 mls_ops:
353 			switch (e->op) {
354 			case CEXPR_EQ:
355 				s[++sp] = mls_level_eq(l1, l2);
356 				continue;
357 			case CEXPR_NEQ:
358 				s[++sp] = !mls_level_eq(l1, l2);
359 				continue;
360 			case CEXPR_DOM:
361 				s[++sp] = mls_level_dom(l1, l2);
362 				continue;
363 			case CEXPR_DOMBY:
364 				s[++sp] = mls_level_dom(l2, l1);
365 				continue;
366 			case CEXPR_INCOMP:
367 				s[++sp] = mls_level_incomp(l2, l1);
368 				continue;
369 			default:
370 				BUG();
371 				return 0;
372 			}
373 			break;
374 			default:
375 				BUG();
376 				return 0;
377 			}
378 
379 			switch (e->op) {
380 			case CEXPR_EQ:
381 				s[++sp] = (val1 == val2);
382 				break;
383 			case CEXPR_NEQ:
384 				s[++sp] = (val1 != val2);
385 				break;
386 			default:
387 				BUG();
388 				return 0;
389 			}
390 			break;
391 		case CEXPR_NAMES:
392 			if (sp == (CEXPR_MAXDEPTH-1))
393 				return 0;
394 			c = scontext;
395 			if (e->attr & CEXPR_TARGET)
396 				c = tcontext;
397 			else if (e->attr & CEXPR_XTARGET) {
398 				c = xcontext;
399 				if (!c) {
400 					BUG();
401 					return 0;
402 				}
403 			}
404 			if (e->attr & CEXPR_USER)
405 				val1 = c->user;
406 			else if (e->attr & CEXPR_ROLE)
407 				val1 = c->role;
408 			else if (e->attr & CEXPR_TYPE)
409 				val1 = c->type;
410 			else {
411 				BUG();
412 				return 0;
413 			}
414 
415 			switch (e->op) {
416 			case CEXPR_EQ:
417 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
418 				break;
419 			case CEXPR_NEQ:
420 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
421 				break;
422 			default:
423 				BUG();
424 				return 0;
425 			}
426 			break;
427 		default:
428 			BUG();
429 			return 0;
430 		}
431 	}
432 
433 	BUG_ON(sp != 0);
434 	return s[0];
435 }
436 
437 /*
438  * security_dump_masked_av - dumps masked permissions during
439  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
440  */
441 static int dump_masked_av_helper(void *k, void *d, void *args)
442 {
443 	struct perm_datum *pdatum = d;
444 	char **permission_names = args;
445 
446 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
447 
448 	permission_names[pdatum->value - 1] = (char *)k;
449 
450 	return 0;
451 }
452 
453 static void security_dump_masked_av(struct policydb *policydb,
454 				    struct context *scontext,
455 				    struct context *tcontext,
456 				    u16 tclass,
457 				    u32 permissions,
458 				    const char *reason)
459 {
460 	struct common_datum *common_dat;
461 	struct class_datum *tclass_dat;
462 	struct audit_buffer *ab;
463 	char *tclass_name;
464 	char *scontext_name = NULL;
465 	char *tcontext_name = NULL;
466 	char *permission_names[32];
467 	int index;
468 	u32 length;
469 	bool need_comma = false;
470 
471 	if (!permissions)
472 		return;
473 
474 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
475 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
476 	common_dat = tclass_dat->comdatum;
477 
478 	/* init permission_names */
479 	if (common_dat &&
480 	    hashtab_map(common_dat->permissions.table,
481 			dump_masked_av_helper, permission_names) < 0)
482 		goto out;
483 
484 	if (hashtab_map(tclass_dat->permissions.table,
485 			dump_masked_av_helper, permission_names) < 0)
486 		goto out;
487 
488 	/* get scontext/tcontext in text form */
489 	if (context_struct_to_string(policydb, scontext,
490 				     &scontext_name, &length) < 0)
491 		goto out;
492 
493 	if (context_struct_to_string(policydb, tcontext,
494 				     &tcontext_name, &length) < 0)
495 		goto out;
496 
497 	/* audit a message */
498 	ab = audit_log_start(audit_context(),
499 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
500 	if (!ab)
501 		goto out;
502 
503 	audit_log_format(ab, "op=security_compute_av reason=%s "
504 			 "scontext=%s tcontext=%s tclass=%s perms=",
505 			 reason, scontext_name, tcontext_name, tclass_name);
506 
507 	for (index = 0; index < 32; index++) {
508 		u32 mask = (1 << index);
509 
510 		if ((mask & permissions) == 0)
511 			continue;
512 
513 		audit_log_format(ab, "%s%s",
514 				 need_comma ? "," : "",
515 				 permission_names[index]
516 				 ? permission_names[index] : "????");
517 		need_comma = true;
518 	}
519 	audit_log_end(ab);
520 out:
521 	/* release scontext/tcontext */
522 	kfree(tcontext_name);
523 	kfree(scontext_name);
524 
525 	return;
526 }
527 
528 /*
529  * security_boundary_permission - drops violated permissions
530  * on boundary constraint.
531  */
532 static void type_attribute_bounds_av(struct policydb *policydb,
533 				     struct context *scontext,
534 				     struct context *tcontext,
535 				     u16 tclass,
536 				     struct av_decision *avd)
537 {
538 	struct context lo_scontext;
539 	struct context lo_tcontext, *tcontextp = tcontext;
540 	struct av_decision lo_avd;
541 	struct type_datum *source;
542 	struct type_datum *target;
543 	u32 masked = 0;
544 
545 	source = policydb->type_val_to_struct[scontext->type - 1];
546 	BUG_ON(!source);
547 
548 	if (!source->bounds)
549 		return;
550 
551 	target = policydb->type_val_to_struct[tcontext->type - 1];
552 	BUG_ON(!target);
553 
554 	memset(&lo_avd, 0, sizeof(lo_avd));
555 
556 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
557 	lo_scontext.type = source->bounds;
558 
559 	if (target->bounds) {
560 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
561 		lo_tcontext.type = target->bounds;
562 		tcontextp = &lo_tcontext;
563 	}
564 
565 	context_struct_compute_av(policydb, &lo_scontext,
566 				  tcontextp,
567 				  tclass,
568 				  &lo_avd,
569 				  NULL);
570 
571 	masked = ~lo_avd.allowed & avd->allowed;
572 
573 	if (likely(!masked))
574 		return;		/* no masked permission */
575 
576 	/* mask violated permissions */
577 	avd->allowed &= ~masked;
578 
579 	/* audit masked permissions */
580 	security_dump_masked_av(policydb, scontext, tcontext,
581 				tclass, masked, "bounds");
582 }
583 
584 /*
585  * flag which drivers have permissions
586  * only looking for ioctl based extended permssions
587  */
588 void services_compute_xperms_drivers(
589 		struct extended_perms *xperms,
590 		struct avtab_node *node)
591 {
592 	unsigned int i;
593 
594 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
595 		/* if one or more driver has all permissions allowed */
596 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
597 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
598 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
599 		/* if allowing permissions within a driver */
600 		security_xperm_set(xperms->drivers.p,
601 					node->datum.u.xperms->driver);
602 	}
603 
604 	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
605 	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
606 		xperms->len = 1;
607 }
608 
609 /*
610  * Compute access vectors and extended permissions based on a context
611  * structure pair for the permissions in a particular class.
612  */
613 static void context_struct_compute_av(struct policydb *policydb,
614 				      struct context *scontext,
615 				      struct context *tcontext,
616 				      u16 tclass,
617 				      struct av_decision *avd,
618 				      struct extended_perms *xperms)
619 {
620 	struct constraint_node *constraint;
621 	struct role_allow *ra;
622 	struct avtab_key avkey;
623 	struct avtab_node *node;
624 	struct class_datum *tclass_datum;
625 	struct ebitmap *sattr, *tattr;
626 	struct ebitmap_node *snode, *tnode;
627 	unsigned int i, j;
628 
629 	avd->allowed = 0;
630 	avd->auditallow = 0;
631 	avd->auditdeny = 0xffffffff;
632 	if (xperms) {
633 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
634 		xperms->len = 0;
635 	}
636 
637 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
638 		if (printk_ratelimit())
639 			pr_warn("SELinux:  Invalid class %hu\n", tclass);
640 		return;
641 	}
642 
643 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
644 
645 	/*
646 	 * If a specific type enforcement rule was defined for
647 	 * this permission check, then use it.
648 	 */
649 	avkey.target_class = tclass;
650 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
651 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
652 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
653 	ebitmap_for_each_positive_bit(sattr, snode, i) {
654 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
655 			avkey.source_type = i + 1;
656 			avkey.target_type = j + 1;
657 			for (node = avtab_search_node(&policydb->te_avtab,
658 						      &avkey);
659 			     node;
660 			     node = avtab_search_node_next(node, avkey.specified)) {
661 				if (node->key.specified == AVTAB_ALLOWED)
662 					avd->allowed |= node->datum.u.data;
663 				else if (node->key.specified == AVTAB_AUDITALLOW)
664 					avd->auditallow |= node->datum.u.data;
665 				else if (node->key.specified == AVTAB_AUDITDENY)
666 					avd->auditdeny &= node->datum.u.data;
667 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
668 					services_compute_xperms_drivers(xperms, node);
669 			}
670 
671 			/* Check conditional av table for additional permissions */
672 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
673 					avd, xperms);
674 
675 		}
676 	}
677 
678 	/*
679 	 * Remove any permissions prohibited by a constraint (this includes
680 	 * the MLS policy).
681 	 */
682 	constraint = tclass_datum->constraints;
683 	while (constraint) {
684 		if ((constraint->permissions & (avd->allowed)) &&
685 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
686 					  constraint->expr)) {
687 			avd->allowed &= ~(constraint->permissions);
688 		}
689 		constraint = constraint->next;
690 	}
691 
692 	/*
693 	 * If checking process transition permission and the
694 	 * role is changing, then check the (current_role, new_role)
695 	 * pair.
696 	 */
697 	if (tclass == policydb->process_class &&
698 	    (avd->allowed & policydb->process_trans_perms) &&
699 	    scontext->role != tcontext->role) {
700 		for (ra = policydb->role_allow; ra; ra = ra->next) {
701 			if (scontext->role == ra->role &&
702 			    tcontext->role == ra->new_role)
703 				break;
704 		}
705 		if (!ra)
706 			avd->allowed &= ~policydb->process_trans_perms;
707 	}
708 
709 	/*
710 	 * If the given source and target types have boundary
711 	 * constraint, lazy checks have to mask any violated
712 	 * permission and notice it to userspace via audit.
713 	 */
714 	type_attribute_bounds_av(policydb, scontext, tcontext,
715 				 tclass, avd);
716 }
717 
718 static int security_validtrans_handle_fail(struct selinux_state *state,
719 					   struct context *ocontext,
720 					   struct context *ncontext,
721 					   struct context *tcontext,
722 					   u16 tclass)
723 {
724 	struct policydb *p = &state->ss->policydb;
725 	char *o = NULL, *n = NULL, *t = NULL;
726 	u32 olen, nlen, tlen;
727 
728 	if (context_struct_to_string(p, ocontext, &o, &olen))
729 		goto out;
730 	if (context_struct_to_string(p, ncontext, &n, &nlen))
731 		goto out;
732 	if (context_struct_to_string(p, tcontext, &t, &tlen))
733 		goto out;
734 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
735 		  "op=security_validate_transition seresult=denied"
736 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
737 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
738 out:
739 	kfree(o);
740 	kfree(n);
741 	kfree(t);
742 
743 	if (!enforcing_enabled(state))
744 		return 0;
745 	return -EPERM;
746 }
747 
748 static int security_compute_validatetrans(struct selinux_state *state,
749 					  u32 oldsid, u32 newsid, u32 tasksid,
750 					  u16 orig_tclass, bool user)
751 {
752 	struct policydb *policydb;
753 	struct sidtab *sidtab;
754 	struct context *ocontext;
755 	struct context *ncontext;
756 	struct context *tcontext;
757 	struct class_datum *tclass_datum;
758 	struct constraint_node *constraint;
759 	u16 tclass;
760 	int rc = 0;
761 
762 
763 	if (!state->initialized)
764 		return 0;
765 
766 	read_lock(&state->ss->policy_rwlock);
767 
768 	policydb = &state->ss->policydb;
769 	sidtab = state->ss->sidtab;
770 
771 	if (!user)
772 		tclass = unmap_class(&state->ss->map, orig_tclass);
773 	else
774 		tclass = orig_tclass;
775 
776 	if (!tclass || tclass > policydb->p_classes.nprim) {
777 		rc = -EINVAL;
778 		goto out;
779 	}
780 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
781 
782 	ocontext = sidtab_search(sidtab, oldsid);
783 	if (!ocontext) {
784 		pr_err("SELinux: %s:  unrecognized SID %d\n",
785 			__func__, oldsid);
786 		rc = -EINVAL;
787 		goto out;
788 	}
789 
790 	ncontext = sidtab_search(sidtab, newsid);
791 	if (!ncontext) {
792 		pr_err("SELinux: %s:  unrecognized SID %d\n",
793 			__func__, newsid);
794 		rc = -EINVAL;
795 		goto out;
796 	}
797 
798 	tcontext = sidtab_search(sidtab, tasksid);
799 	if (!tcontext) {
800 		pr_err("SELinux: %s:  unrecognized SID %d\n",
801 			__func__, tasksid);
802 		rc = -EINVAL;
803 		goto out;
804 	}
805 
806 	constraint = tclass_datum->validatetrans;
807 	while (constraint) {
808 		if (!constraint_expr_eval(policydb, ocontext, ncontext,
809 					  tcontext, constraint->expr)) {
810 			if (user)
811 				rc = -EPERM;
812 			else
813 				rc = security_validtrans_handle_fail(state,
814 								     ocontext,
815 								     ncontext,
816 								     tcontext,
817 								     tclass);
818 			goto out;
819 		}
820 		constraint = constraint->next;
821 	}
822 
823 out:
824 	read_unlock(&state->ss->policy_rwlock);
825 	return rc;
826 }
827 
828 int security_validate_transition_user(struct selinux_state *state,
829 				      u32 oldsid, u32 newsid, u32 tasksid,
830 				      u16 tclass)
831 {
832 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
833 					      tclass, true);
834 }
835 
836 int security_validate_transition(struct selinux_state *state,
837 				 u32 oldsid, u32 newsid, u32 tasksid,
838 				 u16 orig_tclass)
839 {
840 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
841 					      orig_tclass, false);
842 }
843 
844 /*
845  * security_bounded_transition - check whether the given
846  * transition is directed to bounded, or not.
847  * It returns 0, if @newsid is bounded by @oldsid.
848  * Otherwise, it returns error code.
849  *
850  * @oldsid : current security identifier
851  * @newsid : destinated security identifier
852  */
853 int security_bounded_transition(struct selinux_state *state,
854 				u32 old_sid, u32 new_sid)
855 {
856 	struct policydb *policydb;
857 	struct sidtab *sidtab;
858 	struct context *old_context, *new_context;
859 	struct type_datum *type;
860 	int index;
861 	int rc;
862 
863 	if (!state->initialized)
864 		return 0;
865 
866 	read_lock(&state->ss->policy_rwlock);
867 
868 	policydb = &state->ss->policydb;
869 	sidtab = state->ss->sidtab;
870 
871 	rc = -EINVAL;
872 	old_context = sidtab_search(sidtab, old_sid);
873 	if (!old_context) {
874 		pr_err("SELinux: %s: unrecognized SID %u\n",
875 		       __func__, old_sid);
876 		goto out;
877 	}
878 
879 	rc = -EINVAL;
880 	new_context = sidtab_search(sidtab, new_sid);
881 	if (!new_context) {
882 		pr_err("SELinux: %s: unrecognized SID %u\n",
883 		       __func__, new_sid);
884 		goto out;
885 	}
886 
887 	rc = 0;
888 	/* type/domain unchanged */
889 	if (old_context->type == new_context->type)
890 		goto out;
891 
892 	index = new_context->type;
893 	while (true) {
894 		type = policydb->type_val_to_struct[index - 1];
895 		BUG_ON(!type);
896 
897 		/* not bounded anymore */
898 		rc = -EPERM;
899 		if (!type->bounds)
900 			break;
901 
902 		/* @newsid is bounded by @oldsid */
903 		rc = 0;
904 		if (type->bounds == old_context->type)
905 			break;
906 
907 		index = type->bounds;
908 	}
909 
910 	if (rc) {
911 		char *old_name = NULL;
912 		char *new_name = NULL;
913 		u32 length;
914 
915 		if (!context_struct_to_string(policydb, old_context,
916 					      &old_name, &length) &&
917 		    !context_struct_to_string(policydb, new_context,
918 					      &new_name, &length)) {
919 			audit_log(audit_context(),
920 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
921 				  "op=security_bounded_transition "
922 				  "seresult=denied "
923 				  "oldcontext=%s newcontext=%s",
924 				  old_name, new_name);
925 		}
926 		kfree(new_name);
927 		kfree(old_name);
928 	}
929 out:
930 	read_unlock(&state->ss->policy_rwlock);
931 
932 	return rc;
933 }
934 
935 static void avd_init(struct selinux_state *state, struct av_decision *avd)
936 {
937 	avd->allowed = 0;
938 	avd->auditallow = 0;
939 	avd->auditdeny = 0xffffffff;
940 	avd->seqno = state->ss->latest_granting;
941 	avd->flags = 0;
942 }
943 
944 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
945 					struct avtab_node *node)
946 {
947 	unsigned int i;
948 
949 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
950 		if (xpermd->driver != node->datum.u.xperms->driver)
951 			return;
952 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
953 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
954 					xpermd->driver))
955 			return;
956 	} else {
957 		BUG();
958 	}
959 
960 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
961 		xpermd->used |= XPERMS_ALLOWED;
962 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
963 			memset(xpermd->allowed->p, 0xff,
964 					sizeof(xpermd->allowed->p));
965 		}
966 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
967 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
968 				xpermd->allowed->p[i] |=
969 					node->datum.u.xperms->perms.p[i];
970 		}
971 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
972 		xpermd->used |= XPERMS_AUDITALLOW;
973 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
974 			memset(xpermd->auditallow->p, 0xff,
975 					sizeof(xpermd->auditallow->p));
976 		}
977 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
978 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
979 				xpermd->auditallow->p[i] |=
980 					node->datum.u.xperms->perms.p[i];
981 		}
982 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
983 		xpermd->used |= XPERMS_DONTAUDIT;
984 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
985 			memset(xpermd->dontaudit->p, 0xff,
986 					sizeof(xpermd->dontaudit->p));
987 		}
988 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
989 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
990 				xpermd->dontaudit->p[i] |=
991 					node->datum.u.xperms->perms.p[i];
992 		}
993 	} else {
994 		BUG();
995 	}
996 }
997 
998 void security_compute_xperms_decision(struct selinux_state *state,
999 				      u32 ssid,
1000 				      u32 tsid,
1001 				      u16 orig_tclass,
1002 				      u8 driver,
1003 				      struct extended_perms_decision *xpermd)
1004 {
1005 	struct policydb *policydb;
1006 	struct sidtab *sidtab;
1007 	u16 tclass;
1008 	struct context *scontext, *tcontext;
1009 	struct avtab_key avkey;
1010 	struct avtab_node *node;
1011 	struct ebitmap *sattr, *tattr;
1012 	struct ebitmap_node *snode, *tnode;
1013 	unsigned int i, j;
1014 
1015 	xpermd->driver = driver;
1016 	xpermd->used = 0;
1017 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1018 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1019 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1020 
1021 	read_lock(&state->ss->policy_rwlock);
1022 	if (!state->initialized)
1023 		goto allow;
1024 
1025 	policydb = &state->ss->policydb;
1026 	sidtab = state->ss->sidtab;
1027 
1028 	scontext = sidtab_search(sidtab, ssid);
1029 	if (!scontext) {
1030 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1031 		       __func__, ssid);
1032 		goto out;
1033 	}
1034 
1035 	tcontext = sidtab_search(sidtab, tsid);
1036 	if (!tcontext) {
1037 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1038 		       __func__, tsid);
1039 		goto out;
1040 	}
1041 
1042 	tclass = unmap_class(&state->ss->map, orig_tclass);
1043 	if (unlikely(orig_tclass && !tclass)) {
1044 		if (policydb->allow_unknown)
1045 			goto allow;
1046 		goto out;
1047 	}
1048 
1049 
1050 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1051 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1052 		goto out;
1053 	}
1054 
1055 	avkey.target_class = tclass;
1056 	avkey.specified = AVTAB_XPERMS;
1057 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1058 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1059 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1060 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1061 			avkey.source_type = i + 1;
1062 			avkey.target_type = j + 1;
1063 			for (node = avtab_search_node(&policydb->te_avtab,
1064 						      &avkey);
1065 			     node;
1066 			     node = avtab_search_node_next(node, avkey.specified))
1067 				services_compute_xperms_decision(xpermd, node);
1068 
1069 			cond_compute_xperms(&policydb->te_cond_avtab,
1070 						&avkey, xpermd);
1071 		}
1072 	}
1073 out:
1074 	read_unlock(&state->ss->policy_rwlock);
1075 	return;
1076 allow:
1077 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1078 	goto out;
1079 }
1080 
1081 /**
1082  * security_compute_av - Compute access vector decisions.
1083  * @ssid: source security identifier
1084  * @tsid: target security identifier
1085  * @tclass: target security class
1086  * @avd: access vector decisions
1087  * @xperms: extended permissions
1088  *
1089  * Compute a set of access vector decisions based on the
1090  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1091  */
1092 void security_compute_av(struct selinux_state *state,
1093 			 u32 ssid,
1094 			 u32 tsid,
1095 			 u16 orig_tclass,
1096 			 struct av_decision *avd,
1097 			 struct extended_perms *xperms)
1098 {
1099 	struct policydb *policydb;
1100 	struct sidtab *sidtab;
1101 	u16 tclass;
1102 	struct context *scontext = NULL, *tcontext = NULL;
1103 
1104 	read_lock(&state->ss->policy_rwlock);
1105 	avd_init(state, avd);
1106 	xperms->len = 0;
1107 	if (!state->initialized)
1108 		goto allow;
1109 
1110 	policydb = &state->ss->policydb;
1111 	sidtab = state->ss->sidtab;
1112 
1113 	scontext = sidtab_search(sidtab, ssid);
1114 	if (!scontext) {
1115 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1116 		       __func__, ssid);
1117 		goto out;
1118 	}
1119 
1120 	/* permissive domain? */
1121 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1122 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1123 
1124 	tcontext = sidtab_search(sidtab, tsid);
1125 	if (!tcontext) {
1126 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1127 		       __func__, tsid);
1128 		goto out;
1129 	}
1130 
1131 	tclass = unmap_class(&state->ss->map, orig_tclass);
1132 	if (unlikely(orig_tclass && !tclass)) {
1133 		if (policydb->allow_unknown)
1134 			goto allow;
1135 		goto out;
1136 	}
1137 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1138 				  xperms);
1139 	map_decision(&state->ss->map, orig_tclass, avd,
1140 		     policydb->allow_unknown);
1141 out:
1142 	read_unlock(&state->ss->policy_rwlock);
1143 	return;
1144 allow:
1145 	avd->allowed = 0xffffffff;
1146 	goto out;
1147 }
1148 
1149 void security_compute_av_user(struct selinux_state *state,
1150 			      u32 ssid,
1151 			      u32 tsid,
1152 			      u16 tclass,
1153 			      struct av_decision *avd)
1154 {
1155 	struct policydb *policydb;
1156 	struct sidtab *sidtab;
1157 	struct context *scontext = NULL, *tcontext = NULL;
1158 
1159 	read_lock(&state->ss->policy_rwlock);
1160 	avd_init(state, avd);
1161 	if (!state->initialized)
1162 		goto allow;
1163 
1164 	policydb = &state->ss->policydb;
1165 	sidtab = state->ss->sidtab;
1166 
1167 	scontext = sidtab_search(sidtab, ssid);
1168 	if (!scontext) {
1169 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1170 		       __func__, ssid);
1171 		goto out;
1172 	}
1173 
1174 	/* permissive domain? */
1175 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1176 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1177 
1178 	tcontext = sidtab_search(sidtab, tsid);
1179 	if (!tcontext) {
1180 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1181 		       __func__, tsid);
1182 		goto out;
1183 	}
1184 
1185 	if (unlikely(!tclass)) {
1186 		if (policydb->allow_unknown)
1187 			goto allow;
1188 		goto out;
1189 	}
1190 
1191 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1192 				  NULL);
1193  out:
1194 	read_unlock(&state->ss->policy_rwlock);
1195 	return;
1196 allow:
1197 	avd->allowed = 0xffffffff;
1198 	goto out;
1199 }
1200 
1201 /*
1202  * Write the security context string representation of
1203  * the context structure `context' into a dynamically
1204  * allocated string of the correct size.  Set `*scontext'
1205  * to point to this string and set `*scontext_len' to
1206  * the length of the string.
1207  */
1208 static int context_struct_to_string(struct policydb *p,
1209 				    struct context *context,
1210 				    char **scontext, u32 *scontext_len)
1211 {
1212 	char *scontextp;
1213 
1214 	if (scontext)
1215 		*scontext = NULL;
1216 	*scontext_len = 0;
1217 
1218 	if (context->len) {
1219 		*scontext_len = context->len;
1220 		if (scontext) {
1221 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1222 			if (!(*scontext))
1223 				return -ENOMEM;
1224 		}
1225 		return 0;
1226 	}
1227 
1228 	/* Compute the size of the context. */
1229 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1230 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1231 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1232 	*scontext_len += mls_compute_context_len(p, context);
1233 
1234 	if (!scontext)
1235 		return 0;
1236 
1237 	/* Allocate space for the context; caller must free this space. */
1238 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1239 	if (!scontextp)
1240 		return -ENOMEM;
1241 	*scontext = scontextp;
1242 
1243 	/*
1244 	 * Copy the user name, role name and type name into the context.
1245 	 */
1246 	scontextp += sprintf(scontextp, "%s:%s:%s",
1247 		sym_name(p, SYM_USERS, context->user - 1),
1248 		sym_name(p, SYM_ROLES, context->role - 1),
1249 		sym_name(p, SYM_TYPES, context->type - 1));
1250 
1251 	mls_sid_to_context(p, context, &scontextp);
1252 
1253 	*scontextp = 0;
1254 
1255 	return 0;
1256 }
1257 
1258 #include "initial_sid_to_string.h"
1259 
1260 const char *security_get_initial_sid_context(u32 sid)
1261 {
1262 	if (unlikely(sid > SECINITSID_NUM))
1263 		return NULL;
1264 	return initial_sid_to_string[sid];
1265 }
1266 
1267 static int security_sid_to_context_core(struct selinux_state *state,
1268 					u32 sid, char **scontext,
1269 					u32 *scontext_len, int force,
1270 					int only_invalid)
1271 {
1272 	struct policydb *policydb;
1273 	struct sidtab *sidtab;
1274 	struct context *context;
1275 	int rc = 0;
1276 
1277 	if (scontext)
1278 		*scontext = NULL;
1279 	*scontext_len  = 0;
1280 
1281 	if (!state->initialized) {
1282 		if (sid <= SECINITSID_NUM) {
1283 			char *scontextp;
1284 
1285 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1286 			if (!scontext)
1287 				goto out;
1288 			scontextp = kmemdup(initial_sid_to_string[sid],
1289 					    *scontext_len, GFP_ATOMIC);
1290 			if (!scontextp) {
1291 				rc = -ENOMEM;
1292 				goto out;
1293 			}
1294 			*scontext = scontextp;
1295 			goto out;
1296 		}
1297 		pr_err("SELinux: %s:  called before initial "
1298 		       "load_policy on unknown SID %d\n", __func__, sid);
1299 		rc = -EINVAL;
1300 		goto out;
1301 	}
1302 	read_lock(&state->ss->policy_rwlock);
1303 	policydb = &state->ss->policydb;
1304 	sidtab = state->ss->sidtab;
1305 	if (force)
1306 		context = sidtab_search_force(sidtab, sid);
1307 	else
1308 		context = sidtab_search(sidtab, sid);
1309 	if (!context) {
1310 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1311 			__func__, sid);
1312 		rc = -EINVAL;
1313 		goto out_unlock;
1314 	}
1315 	if (only_invalid && !context->len)
1316 		rc = 0;
1317 	else
1318 		rc = context_struct_to_string(policydb, context, scontext,
1319 					      scontext_len);
1320 out_unlock:
1321 	read_unlock(&state->ss->policy_rwlock);
1322 out:
1323 	return rc;
1324 
1325 }
1326 
1327 /**
1328  * security_sid_to_context - Obtain a context for a given SID.
1329  * @sid: security identifier, SID
1330  * @scontext: security context
1331  * @scontext_len: length in bytes
1332  *
1333  * Write the string representation of the context associated with @sid
1334  * into a dynamically allocated string of the correct size.  Set @scontext
1335  * to point to this string and set @scontext_len to the length of the string.
1336  */
1337 int security_sid_to_context(struct selinux_state *state,
1338 			    u32 sid, char **scontext, u32 *scontext_len)
1339 {
1340 	return security_sid_to_context_core(state, sid, scontext,
1341 					    scontext_len, 0, 0);
1342 }
1343 
1344 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1345 				  char **scontext, u32 *scontext_len)
1346 {
1347 	return security_sid_to_context_core(state, sid, scontext,
1348 					    scontext_len, 1, 0);
1349 }
1350 
1351 /**
1352  * security_sid_to_context_inval - Obtain a context for a given SID if it
1353  *                                 is invalid.
1354  * @sid: security identifier, SID
1355  * @scontext: security context
1356  * @scontext_len: length in bytes
1357  *
1358  * Write the string representation of the context associated with @sid
1359  * into a dynamically allocated string of the correct size, but only if the
1360  * context is invalid in the current policy.  Set @scontext to point to
1361  * this string (or NULL if the context is valid) and set @scontext_len to
1362  * the length of the string (or 0 if the context is valid).
1363  */
1364 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1365 				  char **scontext, u32 *scontext_len)
1366 {
1367 	return security_sid_to_context_core(state, sid, scontext,
1368 					    scontext_len, 1, 1);
1369 }
1370 
1371 /*
1372  * Caveat:  Mutates scontext.
1373  */
1374 static int string_to_context_struct(struct policydb *pol,
1375 				    struct sidtab *sidtabp,
1376 				    char *scontext,
1377 				    struct context *ctx,
1378 				    u32 def_sid)
1379 {
1380 	struct role_datum *role;
1381 	struct type_datum *typdatum;
1382 	struct user_datum *usrdatum;
1383 	char *scontextp, *p, oldc;
1384 	int rc = 0;
1385 
1386 	context_init(ctx);
1387 
1388 	/* Parse the security context. */
1389 
1390 	rc = -EINVAL;
1391 	scontextp = (char *) scontext;
1392 
1393 	/* Extract the user. */
1394 	p = scontextp;
1395 	while (*p && *p != ':')
1396 		p++;
1397 
1398 	if (*p == 0)
1399 		goto out;
1400 
1401 	*p++ = 0;
1402 
1403 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1404 	if (!usrdatum)
1405 		goto out;
1406 
1407 	ctx->user = usrdatum->value;
1408 
1409 	/* Extract role. */
1410 	scontextp = p;
1411 	while (*p && *p != ':')
1412 		p++;
1413 
1414 	if (*p == 0)
1415 		goto out;
1416 
1417 	*p++ = 0;
1418 
1419 	role = hashtab_search(pol->p_roles.table, scontextp);
1420 	if (!role)
1421 		goto out;
1422 	ctx->role = role->value;
1423 
1424 	/* Extract type. */
1425 	scontextp = p;
1426 	while (*p && *p != ':')
1427 		p++;
1428 	oldc = *p;
1429 	*p++ = 0;
1430 
1431 	typdatum = hashtab_search(pol->p_types.table, scontextp);
1432 	if (!typdatum || typdatum->attribute)
1433 		goto out;
1434 
1435 	ctx->type = typdatum->value;
1436 
1437 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1438 	if (rc)
1439 		goto out;
1440 
1441 	/* Check the validity of the new context. */
1442 	rc = -EINVAL;
1443 	if (!policydb_context_isvalid(pol, ctx))
1444 		goto out;
1445 	rc = 0;
1446 out:
1447 	if (rc)
1448 		context_destroy(ctx);
1449 	return rc;
1450 }
1451 
1452 static int security_context_to_sid_core(struct selinux_state *state,
1453 					const char *scontext, u32 scontext_len,
1454 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1455 					int force)
1456 {
1457 	struct policydb *policydb;
1458 	struct sidtab *sidtab;
1459 	char *scontext2, *str = NULL;
1460 	struct context context;
1461 	int rc = 0;
1462 
1463 	/* An empty security context is never valid. */
1464 	if (!scontext_len)
1465 		return -EINVAL;
1466 
1467 	/* Copy the string to allow changes and ensure a NUL terminator */
1468 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1469 	if (!scontext2)
1470 		return -ENOMEM;
1471 
1472 	if (!state->initialized) {
1473 		int i;
1474 
1475 		for (i = 1; i < SECINITSID_NUM; i++) {
1476 			if (!strcmp(initial_sid_to_string[i], scontext2)) {
1477 				*sid = i;
1478 				goto out;
1479 			}
1480 		}
1481 		*sid = SECINITSID_KERNEL;
1482 		goto out;
1483 	}
1484 	*sid = SECSID_NULL;
1485 
1486 	if (force) {
1487 		/* Save another copy for storing in uninterpreted form */
1488 		rc = -ENOMEM;
1489 		str = kstrdup(scontext2, gfp_flags);
1490 		if (!str)
1491 			goto out;
1492 	}
1493 	read_lock(&state->ss->policy_rwlock);
1494 	policydb = &state->ss->policydb;
1495 	sidtab = state->ss->sidtab;
1496 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1497 				      &context, def_sid);
1498 	if (rc == -EINVAL && force) {
1499 		context.str = str;
1500 		context.len = strlen(str) + 1;
1501 		str = NULL;
1502 	} else if (rc)
1503 		goto out_unlock;
1504 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1505 	context_destroy(&context);
1506 out_unlock:
1507 	read_unlock(&state->ss->policy_rwlock);
1508 out:
1509 	kfree(scontext2);
1510 	kfree(str);
1511 	return rc;
1512 }
1513 
1514 /**
1515  * security_context_to_sid - Obtain a SID for a given security context.
1516  * @scontext: security context
1517  * @scontext_len: length in bytes
1518  * @sid: security identifier, SID
1519  * @gfp: context for the allocation
1520  *
1521  * Obtains a SID associated with the security context that
1522  * has the string representation specified by @scontext.
1523  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1524  * memory is available, or 0 on success.
1525  */
1526 int security_context_to_sid(struct selinux_state *state,
1527 			    const char *scontext, u32 scontext_len, u32 *sid,
1528 			    gfp_t gfp)
1529 {
1530 	return security_context_to_sid_core(state, scontext, scontext_len,
1531 					    sid, SECSID_NULL, gfp, 0);
1532 }
1533 
1534 int security_context_str_to_sid(struct selinux_state *state,
1535 				const char *scontext, u32 *sid, gfp_t gfp)
1536 {
1537 	return security_context_to_sid(state, scontext, strlen(scontext),
1538 				       sid, gfp);
1539 }
1540 
1541 /**
1542  * security_context_to_sid_default - Obtain a SID for a given security context,
1543  * falling back to specified default if needed.
1544  *
1545  * @scontext: security context
1546  * @scontext_len: length in bytes
1547  * @sid: security identifier, SID
1548  * @def_sid: default SID to assign on error
1549  *
1550  * Obtains a SID associated with the security context that
1551  * has the string representation specified by @scontext.
1552  * The default SID is passed to the MLS layer to be used to allow
1553  * kernel labeling of the MLS field if the MLS field is not present
1554  * (for upgrading to MLS without full relabel).
1555  * Implicitly forces adding of the context even if it cannot be mapped yet.
1556  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1557  * memory is available, or 0 on success.
1558  */
1559 int security_context_to_sid_default(struct selinux_state *state,
1560 				    const char *scontext, u32 scontext_len,
1561 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1562 {
1563 	return security_context_to_sid_core(state, scontext, scontext_len,
1564 					    sid, def_sid, gfp_flags, 1);
1565 }
1566 
1567 int security_context_to_sid_force(struct selinux_state *state,
1568 				  const char *scontext, u32 scontext_len,
1569 				  u32 *sid)
1570 {
1571 	return security_context_to_sid_core(state, scontext, scontext_len,
1572 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1573 }
1574 
1575 static int compute_sid_handle_invalid_context(
1576 	struct selinux_state *state,
1577 	struct context *scontext,
1578 	struct context *tcontext,
1579 	u16 tclass,
1580 	struct context *newcontext)
1581 {
1582 	struct policydb *policydb = &state->ss->policydb;
1583 	char *s = NULL, *t = NULL, *n = NULL;
1584 	u32 slen, tlen, nlen;
1585 	struct audit_buffer *ab;
1586 
1587 	if (context_struct_to_string(policydb, scontext, &s, &slen))
1588 		goto out;
1589 	if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1590 		goto out;
1591 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1592 		goto out;
1593 	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1594 	audit_log_format(ab,
1595 			 "op=security_compute_sid invalid_context=");
1596 	/* no need to record the NUL with untrusted strings */
1597 	audit_log_n_untrustedstring(ab, n, nlen - 1);
1598 	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1599 			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1600 	audit_log_end(ab);
1601 out:
1602 	kfree(s);
1603 	kfree(t);
1604 	kfree(n);
1605 	if (!enforcing_enabled(state))
1606 		return 0;
1607 	return -EACCES;
1608 }
1609 
1610 static void filename_compute_type(struct policydb *policydb,
1611 				  struct context *newcontext,
1612 				  u32 stype, u32 ttype, u16 tclass,
1613 				  const char *objname)
1614 {
1615 	struct filename_trans ft;
1616 	struct filename_trans_datum *otype;
1617 
1618 	/*
1619 	 * Most filename trans rules are going to live in specific directories
1620 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1621 	 * if the ttype does not contain any rules.
1622 	 */
1623 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1624 		return;
1625 
1626 	ft.stype = stype;
1627 	ft.ttype = ttype;
1628 	ft.tclass = tclass;
1629 	ft.name = objname;
1630 
1631 	otype = hashtab_search(policydb->filename_trans, &ft);
1632 	if (otype)
1633 		newcontext->type = otype->otype;
1634 }
1635 
1636 static int security_compute_sid(struct selinux_state *state,
1637 				u32 ssid,
1638 				u32 tsid,
1639 				u16 orig_tclass,
1640 				u32 specified,
1641 				const char *objname,
1642 				u32 *out_sid,
1643 				bool kern)
1644 {
1645 	struct policydb *policydb;
1646 	struct sidtab *sidtab;
1647 	struct class_datum *cladatum = NULL;
1648 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1649 	struct role_trans *roletr = NULL;
1650 	struct avtab_key avkey;
1651 	struct avtab_datum *avdatum;
1652 	struct avtab_node *node;
1653 	u16 tclass;
1654 	int rc = 0;
1655 	bool sock;
1656 
1657 	if (!state->initialized) {
1658 		switch (orig_tclass) {
1659 		case SECCLASS_PROCESS: /* kernel value */
1660 			*out_sid = ssid;
1661 			break;
1662 		default:
1663 			*out_sid = tsid;
1664 			break;
1665 		}
1666 		goto out;
1667 	}
1668 
1669 	context_init(&newcontext);
1670 
1671 	read_lock(&state->ss->policy_rwlock);
1672 
1673 	if (kern) {
1674 		tclass = unmap_class(&state->ss->map, orig_tclass);
1675 		sock = security_is_socket_class(orig_tclass);
1676 	} else {
1677 		tclass = orig_tclass;
1678 		sock = security_is_socket_class(map_class(&state->ss->map,
1679 							  tclass));
1680 	}
1681 
1682 	policydb = &state->ss->policydb;
1683 	sidtab = state->ss->sidtab;
1684 
1685 	scontext = sidtab_search(sidtab, ssid);
1686 	if (!scontext) {
1687 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1688 		       __func__, ssid);
1689 		rc = -EINVAL;
1690 		goto out_unlock;
1691 	}
1692 	tcontext = sidtab_search(sidtab, tsid);
1693 	if (!tcontext) {
1694 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1695 		       __func__, tsid);
1696 		rc = -EINVAL;
1697 		goto out_unlock;
1698 	}
1699 
1700 	if (tclass && tclass <= policydb->p_classes.nprim)
1701 		cladatum = policydb->class_val_to_struct[tclass - 1];
1702 
1703 	/* Set the user identity. */
1704 	switch (specified) {
1705 	case AVTAB_TRANSITION:
1706 	case AVTAB_CHANGE:
1707 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1708 			newcontext.user = tcontext->user;
1709 		} else {
1710 			/* notice this gets both DEFAULT_SOURCE and unset */
1711 			/* Use the process user identity. */
1712 			newcontext.user = scontext->user;
1713 		}
1714 		break;
1715 	case AVTAB_MEMBER:
1716 		/* Use the related object owner. */
1717 		newcontext.user = tcontext->user;
1718 		break;
1719 	}
1720 
1721 	/* Set the role to default values. */
1722 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1723 		newcontext.role = scontext->role;
1724 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1725 		newcontext.role = tcontext->role;
1726 	} else {
1727 		if ((tclass == policydb->process_class) || (sock == true))
1728 			newcontext.role = scontext->role;
1729 		else
1730 			newcontext.role = OBJECT_R_VAL;
1731 	}
1732 
1733 	/* Set the type to default values. */
1734 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1735 		newcontext.type = scontext->type;
1736 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1737 		newcontext.type = tcontext->type;
1738 	} else {
1739 		if ((tclass == policydb->process_class) || (sock == true)) {
1740 			/* Use the type of process. */
1741 			newcontext.type = scontext->type;
1742 		} else {
1743 			/* Use the type of the related object. */
1744 			newcontext.type = tcontext->type;
1745 		}
1746 	}
1747 
1748 	/* Look for a type transition/member/change rule. */
1749 	avkey.source_type = scontext->type;
1750 	avkey.target_type = tcontext->type;
1751 	avkey.target_class = tclass;
1752 	avkey.specified = specified;
1753 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1754 
1755 	/* If no permanent rule, also check for enabled conditional rules */
1756 	if (!avdatum) {
1757 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1758 		for (; node; node = avtab_search_node_next(node, specified)) {
1759 			if (node->key.specified & AVTAB_ENABLED) {
1760 				avdatum = &node->datum;
1761 				break;
1762 			}
1763 		}
1764 	}
1765 
1766 	if (avdatum) {
1767 		/* Use the type from the type transition/member/change rule. */
1768 		newcontext.type = avdatum->u.data;
1769 	}
1770 
1771 	/* if we have a objname this is a file trans check so check those rules */
1772 	if (objname)
1773 		filename_compute_type(policydb, &newcontext, scontext->type,
1774 				      tcontext->type, tclass, objname);
1775 
1776 	/* Check for class-specific changes. */
1777 	if (specified & AVTAB_TRANSITION) {
1778 		/* Look for a role transition rule. */
1779 		for (roletr = policydb->role_tr; roletr;
1780 		     roletr = roletr->next) {
1781 			if ((roletr->role == scontext->role) &&
1782 			    (roletr->type == tcontext->type) &&
1783 			    (roletr->tclass == tclass)) {
1784 				/* Use the role transition rule. */
1785 				newcontext.role = roletr->new_role;
1786 				break;
1787 			}
1788 		}
1789 	}
1790 
1791 	/* Set the MLS attributes.
1792 	   This is done last because it may allocate memory. */
1793 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1794 			     &newcontext, sock);
1795 	if (rc)
1796 		goto out_unlock;
1797 
1798 	/* Check the validity of the context. */
1799 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1800 		rc = compute_sid_handle_invalid_context(state, scontext,
1801 							tcontext,
1802 							tclass,
1803 							&newcontext);
1804 		if (rc)
1805 			goto out_unlock;
1806 	}
1807 	/* Obtain the sid for the context. */
1808 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1809 out_unlock:
1810 	read_unlock(&state->ss->policy_rwlock);
1811 	context_destroy(&newcontext);
1812 out:
1813 	return rc;
1814 }
1815 
1816 /**
1817  * security_transition_sid - Compute the SID for a new subject/object.
1818  * @ssid: source security identifier
1819  * @tsid: target security identifier
1820  * @tclass: target security class
1821  * @out_sid: security identifier for new subject/object
1822  *
1823  * Compute a SID to use for labeling a new subject or object in the
1824  * class @tclass based on a SID pair (@ssid, @tsid).
1825  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1826  * if insufficient memory is available, or %0 if the new SID was
1827  * computed successfully.
1828  */
1829 int security_transition_sid(struct selinux_state *state,
1830 			    u32 ssid, u32 tsid, u16 tclass,
1831 			    const struct qstr *qstr, u32 *out_sid)
1832 {
1833 	return security_compute_sid(state, ssid, tsid, tclass,
1834 				    AVTAB_TRANSITION,
1835 				    qstr ? qstr->name : NULL, out_sid, true);
1836 }
1837 
1838 int security_transition_sid_user(struct selinux_state *state,
1839 				 u32 ssid, u32 tsid, u16 tclass,
1840 				 const char *objname, u32 *out_sid)
1841 {
1842 	return security_compute_sid(state, ssid, tsid, tclass,
1843 				    AVTAB_TRANSITION,
1844 				    objname, out_sid, false);
1845 }
1846 
1847 /**
1848  * security_member_sid - Compute the SID for member selection.
1849  * @ssid: source security identifier
1850  * @tsid: target security identifier
1851  * @tclass: target security class
1852  * @out_sid: security identifier for selected member
1853  *
1854  * Compute a SID to use when selecting a member of a polyinstantiated
1855  * object of class @tclass based on a SID pair (@ssid, @tsid).
1856  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1857  * if insufficient memory is available, or %0 if the SID was
1858  * computed successfully.
1859  */
1860 int security_member_sid(struct selinux_state *state,
1861 			u32 ssid,
1862 			u32 tsid,
1863 			u16 tclass,
1864 			u32 *out_sid)
1865 {
1866 	return security_compute_sid(state, ssid, tsid, tclass,
1867 				    AVTAB_MEMBER, NULL,
1868 				    out_sid, false);
1869 }
1870 
1871 /**
1872  * security_change_sid - Compute the SID for object relabeling.
1873  * @ssid: source security identifier
1874  * @tsid: target security identifier
1875  * @tclass: target security class
1876  * @out_sid: security identifier for selected member
1877  *
1878  * Compute a SID to use for relabeling an object of class @tclass
1879  * based on a SID pair (@ssid, @tsid).
1880  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1881  * if insufficient memory is available, or %0 if the SID was
1882  * computed successfully.
1883  */
1884 int security_change_sid(struct selinux_state *state,
1885 			u32 ssid,
1886 			u32 tsid,
1887 			u16 tclass,
1888 			u32 *out_sid)
1889 {
1890 	return security_compute_sid(state,
1891 				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1892 				    out_sid, false);
1893 }
1894 
1895 static inline int convert_context_handle_invalid_context(
1896 	struct selinux_state *state,
1897 	struct context *context)
1898 {
1899 	struct policydb *policydb = &state->ss->policydb;
1900 	char *s;
1901 	u32 len;
1902 
1903 	if (enforcing_enabled(state))
1904 		return -EINVAL;
1905 
1906 	if (!context_struct_to_string(policydb, context, &s, &len)) {
1907 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1908 			s);
1909 		kfree(s);
1910 	}
1911 	return 0;
1912 }
1913 
1914 struct convert_context_args {
1915 	struct selinux_state *state;
1916 	struct policydb *oldp;
1917 	struct policydb *newp;
1918 };
1919 
1920 /*
1921  * Convert the values in the security context
1922  * structure `oldc' from the values specified
1923  * in the policy `p->oldp' to the values specified
1924  * in the policy `p->newp', storing the new context
1925  * in `newc'.  Verify that the context is valid
1926  * under the new policy.
1927  */
1928 static int convert_context(struct context *oldc, struct context *newc, void *p)
1929 {
1930 	struct convert_context_args *args;
1931 	struct ocontext *oc;
1932 	struct role_datum *role;
1933 	struct type_datum *typdatum;
1934 	struct user_datum *usrdatum;
1935 	char *s;
1936 	u32 len;
1937 	int rc;
1938 
1939 	args = p;
1940 
1941 	if (oldc->str) {
1942 		s = kstrdup(oldc->str, GFP_KERNEL);
1943 		if (!s)
1944 			return -ENOMEM;
1945 
1946 		rc = string_to_context_struct(args->newp, NULL, s,
1947 					      newc, SECSID_NULL);
1948 		if (rc == -EINVAL) {
1949 			/*
1950 			 * Retain string representation for later mapping.
1951 			 *
1952 			 * IMPORTANT: We need to copy the contents of oldc->str
1953 			 * back into s again because string_to_context_struct()
1954 			 * may have garbled it.
1955 			 */
1956 			memcpy(s, oldc->str, oldc->len);
1957 			context_init(newc);
1958 			newc->str = s;
1959 			newc->len = oldc->len;
1960 			return 0;
1961 		}
1962 		kfree(s);
1963 		if (rc) {
1964 			/* Other error condition, e.g. ENOMEM. */
1965 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
1966 			       oldc->str, -rc);
1967 			return rc;
1968 		}
1969 		pr_info("SELinux:  Context %s became valid (mapped).\n",
1970 			oldc->str);
1971 		return 0;
1972 	}
1973 
1974 	context_init(newc);
1975 
1976 	/* Convert the user. */
1977 	rc = -EINVAL;
1978 	usrdatum = hashtab_search(args->newp->p_users.table,
1979 				  sym_name(args->oldp,
1980 					   SYM_USERS, oldc->user - 1));
1981 	if (!usrdatum)
1982 		goto bad;
1983 	newc->user = usrdatum->value;
1984 
1985 	/* Convert the role. */
1986 	rc = -EINVAL;
1987 	role = hashtab_search(args->newp->p_roles.table,
1988 			      sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
1989 	if (!role)
1990 		goto bad;
1991 	newc->role = role->value;
1992 
1993 	/* Convert the type. */
1994 	rc = -EINVAL;
1995 	typdatum = hashtab_search(args->newp->p_types.table,
1996 				  sym_name(args->oldp,
1997 					   SYM_TYPES, oldc->type - 1));
1998 	if (!typdatum)
1999 		goto bad;
2000 	newc->type = typdatum->value;
2001 
2002 	/* Convert the MLS fields if dealing with MLS policies */
2003 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2004 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2005 		if (rc)
2006 			goto bad;
2007 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2008 		/*
2009 		 * Switching between non-MLS and MLS policy:
2010 		 * ensure that the MLS fields of the context for all
2011 		 * existing entries in the sidtab are filled in with a
2012 		 * suitable default value, likely taken from one of the
2013 		 * initial SIDs.
2014 		 */
2015 		oc = args->newp->ocontexts[OCON_ISID];
2016 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2017 			oc = oc->next;
2018 		rc = -EINVAL;
2019 		if (!oc) {
2020 			pr_err("SELinux:  unable to look up"
2021 				" the initial SIDs list\n");
2022 			goto bad;
2023 		}
2024 		rc = mls_range_set(newc, &oc->context[0].range);
2025 		if (rc)
2026 			goto bad;
2027 	}
2028 
2029 	/* Check the validity of the new context. */
2030 	if (!policydb_context_isvalid(args->newp, newc)) {
2031 		rc = convert_context_handle_invalid_context(args->state, oldc);
2032 		if (rc)
2033 			goto bad;
2034 	}
2035 
2036 	return 0;
2037 bad:
2038 	/* Map old representation to string and save it. */
2039 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2040 	if (rc)
2041 		return rc;
2042 	context_destroy(newc);
2043 	newc->str = s;
2044 	newc->len = len;
2045 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2046 		newc->str);
2047 	return 0;
2048 }
2049 
2050 static void security_load_policycaps(struct selinux_state *state)
2051 {
2052 	struct policydb *p = &state->ss->policydb;
2053 	unsigned int i;
2054 	struct ebitmap_node *node;
2055 
2056 	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2057 		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2058 
2059 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2060 		pr_info("SELinux:  policy capability %s=%d\n",
2061 			selinux_policycap_names[i],
2062 			ebitmap_get_bit(&p->policycaps, i));
2063 
2064 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2065 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2066 			pr_info("SELinux:  unknown policy capability %u\n",
2067 				i);
2068 	}
2069 }
2070 
2071 static int security_preserve_bools(struct selinux_state *state,
2072 				   struct policydb *newpolicydb);
2073 
2074 /**
2075  * security_load_policy - Load a security policy configuration.
2076  * @data: binary policy data
2077  * @len: length of data in bytes
2078  *
2079  * Load a new set of security policy configuration data,
2080  * validate it and convert the SID table as necessary.
2081  * This function will flush the access vector cache after
2082  * loading the new policy.
2083  */
2084 int security_load_policy(struct selinux_state *state, void *data, size_t len)
2085 {
2086 	struct policydb *policydb;
2087 	struct sidtab *oldsidtab, *newsidtab;
2088 	struct policydb *oldpolicydb, *newpolicydb;
2089 	struct selinux_mapping *oldmapping;
2090 	struct selinux_map newmap;
2091 	struct sidtab_convert_params convert_params;
2092 	struct convert_context_args args;
2093 	u32 seqno;
2094 	int rc = 0;
2095 	struct policy_file file = { data, len }, *fp = &file;
2096 
2097 	oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2098 	if (!oldpolicydb) {
2099 		rc = -ENOMEM;
2100 		goto out;
2101 	}
2102 	newpolicydb = oldpolicydb + 1;
2103 
2104 	policydb = &state->ss->policydb;
2105 
2106 	newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2107 	if (!newsidtab) {
2108 		rc = -ENOMEM;
2109 		goto out;
2110 	}
2111 
2112 	if (!state->initialized) {
2113 		rc = policydb_read(policydb, fp);
2114 		if (rc) {
2115 			kfree(newsidtab);
2116 			goto out;
2117 		}
2118 
2119 		policydb->len = len;
2120 		rc = selinux_set_mapping(policydb, secclass_map,
2121 					 &state->ss->map);
2122 		if (rc) {
2123 			kfree(newsidtab);
2124 			policydb_destroy(policydb);
2125 			goto out;
2126 		}
2127 
2128 		rc = policydb_load_isids(policydb, newsidtab);
2129 		if (rc) {
2130 			kfree(newsidtab);
2131 			policydb_destroy(policydb);
2132 			goto out;
2133 		}
2134 
2135 		state->ss->sidtab = newsidtab;
2136 		security_load_policycaps(state);
2137 		state->initialized = 1;
2138 		seqno = ++state->ss->latest_granting;
2139 		selinux_complete_init();
2140 		avc_ss_reset(state->avc, seqno);
2141 		selnl_notify_policyload(seqno);
2142 		selinux_status_update_policyload(state, seqno);
2143 		selinux_netlbl_cache_invalidate();
2144 		selinux_xfrm_notify_policyload();
2145 		goto out;
2146 	}
2147 
2148 	rc = policydb_read(newpolicydb, fp);
2149 	if (rc) {
2150 		kfree(newsidtab);
2151 		goto out;
2152 	}
2153 
2154 	newpolicydb->len = len;
2155 	/* If switching between different policy types, log MLS status */
2156 	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2157 		pr_info("SELinux: Disabling MLS support...\n");
2158 	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2159 		pr_info("SELinux: Enabling MLS support...\n");
2160 
2161 	rc = policydb_load_isids(newpolicydb, newsidtab);
2162 	if (rc) {
2163 		pr_err("SELinux:  unable to load the initial SIDs\n");
2164 		policydb_destroy(newpolicydb);
2165 		kfree(newsidtab);
2166 		goto out;
2167 	}
2168 
2169 	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2170 	if (rc)
2171 		goto err;
2172 
2173 	rc = security_preserve_bools(state, newpolicydb);
2174 	if (rc) {
2175 		pr_err("SELinux:  unable to preserve booleans\n");
2176 		goto err;
2177 	}
2178 
2179 	oldsidtab = state->ss->sidtab;
2180 
2181 	/*
2182 	 * Convert the internal representations of contexts
2183 	 * in the new SID table.
2184 	 */
2185 	args.state = state;
2186 	args.oldp = policydb;
2187 	args.newp = newpolicydb;
2188 
2189 	convert_params.func = convert_context;
2190 	convert_params.args = &args;
2191 	convert_params.target = newsidtab;
2192 
2193 	rc = sidtab_convert(oldsidtab, &convert_params);
2194 	if (rc) {
2195 		pr_err("SELinux:  unable to convert the internal"
2196 			" representation of contexts in the new SID"
2197 			" table\n");
2198 		goto err;
2199 	}
2200 
2201 	/* Save the old policydb and SID table to free later. */
2202 	memcpy(oldpolicydb, policydb, sizeof(*policydb));
2203 
2204 	/* Install the new policydb and SID table. */
2205 	write_lock_irq(&state->ss->policy_rwlock);
2206 	memcpy(policydb, newpolicydb, sizeof(*policydb));
2207 	state->ss->sidtab = newsidtab;
2208 	security_load_policycaps(state);
2209 	oldmapping = state->ss->map.mapping;
2210 	state->ss->map.mapping = newmap.mapping;
2211 	state->ss->map.size = newmap.size;
2212 	seqno = ++state->ss->latest_granting;
2213 	write_unlock_irq(&state->ss->policy_rwlock);
2214 
2215 	/* Free the old policydb and SID table. */
2216 	policydb_destroy(oldpolicydb);
2217 	sidtab_destroy(oldsidtab);
2218 	kfree(oldsidtab);
2219 	kfree(oldmapping);
2220 
2221 	avc_ss_reset(state->avc, seqno);
2222 	selnl_notify_policyload(seqno);
2223 	selinux_status_update_policyload(state, seqno);
2224 	selinux_netlbl_cache_invalidate();
2225 	selinux_xfrm_notify_policyload();
2226 
2227 	rc = 0;
2228 	goto out;
2229 
2230 err:
2231 	kfree(newmap.mapping);
2232 	sidtab_destroy(newsidtab);
2233 	kfree(newsidtab);
2234 	policydb_destroy(newpolicydb);
2235 
2236 out:
2237 	kfree(oldpolicydb);
2238 	return rc;
2239 }
2240 
2241 size_t security_policydb_len(struct selinux_state *state)
2242 {
2243 	struct policydb *p = &state->ss->policydb;
2244 	size_t len;
2245 
2246 	read_lock(&state->ss->policy_rwlock);
2247 	len = p->len;
2248 	read_unlock(&state->ss->policy_rwlock);
2249 
2250 	return len;
2251 }
2252 
2253 /**
2254  * security_port_sid - Obtain the SID for a port.
2255  * @protocol: protocol number
2256  * @port: port number
2257  * @out_sid: security identifier
2258  */
2259 int security_port_sid(struct selinux_state *state,
2260 		      u8 protocol, u16 port, u32 *out_sid)
2261 {
2262 	struct policydb *policydb;
2263 	struct sidtab *sidtab;
2264 	struct ocontext *c;
2265 	int rc = 0;
2266 
2267 	read_lock(&state->ss->policy_rwlock);
2268 
2269 	policydb = &state->ss->policydb;
2270 	sidtab = state->ss->sidtab;
2271 
2272 	c = policydb->ocontexts[OCON_PORT];
2273 	while (c) {
2274 		if (c->u.port.protocol == protocol &&
2275 		    c->u.port.low_port <= port &&
2276 		    c->u.port.high_port >= port)
2277 			break;
2278 		c = c->next;
2279 	}
2280 
2281 	if (c) {
2282 		if (!c->sid[0]) {
2283 			rc = sidtab_context_to_sid(sidtab,
2284 						   &c->context[0],
2285 						   &c->sid[0]);
2286 			if (rc)
2287 				goto out;
2288 		}
2289 		*out_sid = c->sid[0];
2290 	} else {
2291 		*out_sid = SECINITSID_PORT;
2292 	}
2293 
2294 out:
2295 	read_unlock(&state->ss->policy_rwlock);
2296 	return rc;
2297 }
2298 
2299 /**
2300  * security_pkey_sid - Obtain the SID for a pkey.
2301  * @subnet_prefix: Subnet Prefix
2302  * @pkey_num: pkey number
2303  * @out_sid: security identifier
2304  */
2305 int security_ib_pkey_sid(struct selinux_state *state,
2306 			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2307 {
2308 	struct policydb *policydb;
2309 	struct sidtab *sidtab;
2310 	struct ocontext *c;
2311 	int rc = 0;
2312 
2313 	read_lock(&state->ss->policy_rwlock);
2314 
2315 	policydb = &state->ss->policydb;
2316 	sidtab = state->ss->sidtab;
2317 
2318 	c = policydb->ocontexts[OCON_IBPKEY];
2319 	while (c) {
2320 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2321 		    c->u.ibpkey.high_pkey >= pkey_num &&
2322 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2323 			break;
2324 
2325 		c = c->next;
2326 	}
2327 
2328 	if (c) {
2329 		if (!c->sid[0]) {
2330 			rc = sidtab_context_to_sid(sidtab,
2331 						   &c->context[0],
2332 						   &c->sid[0]);
2333 			if (rc)
2334 				goto out;
2335 		}
2336 		*out_sid = c->sid[0];
2337 	} else
2338 		*out_sid = SECINITSID_UNLABELED;
2339 
2340 out:
2341 	read_unlock(&state->ss->policy_rwlock);
2342 	return rc;
2343 }
2344 
2345 /**
2346  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2347  * @dev_name: device name
2348  * @port: port number
2349  * @out_sid: security identifier
2350  */
2351 int security_ib_endport_sid(struct selinux_state *state,
2352 			    const char *dev_name, u8 port_num, u32 *out_sid)
2353 {
2354 	struct policydb *policydb;
2355 	struct sidtab *sidtab;
2356 	struct ocontext *c;
2357 	int rc = 0;
2358 
2359 	read_lock(&state->ss->policy_rwlock);
2360 
2361 	policydb = &state->ss->policydb;
2362 	sidtab = state->ss->sidtab;
2363 
2364 	c = policydb->ocontexts[OCON_IBENDPORT];
2365 	while (c) {
2366 		if (c->u.ibendport.port == port_num &&
2367 		    !strncmp(c->u.ibendport.dev_name,
2368 			     dev_name,
2369 			     IB_DEVICE_NAME_MAX))
2370 			break;
2371 
2372 		c = c->next;
2373 	}
2374 
2375 	if (c) {
2376 		if (!c->sid[0]) {
2377 			rc = sidtab_context_to_sid(sidtab,
2378 						   &c->context[0],
2379 						   &c->sid[0]);
2380 			if (rc)
2381 				goto out;
2382 		}
2383 		*out_sid = c->sid[0];
2384 	} else
2385 		*out_sid = SECINITSID_UNLABELED;
2386 
2387 out:
2388 	read_unlock(&state->ss->policy_rwlock);
2389 	return rc;
2390 }
2391 
2392 /**
2393  * security_netif_sid - Obtain the SID for a network interface.
2394  * @name: interface name
2395  * @if_sid: interface SID
2396  */
2397 int security_netif_sid(struct selinux_state *state,
2398 		       char *name, u32 *if_sid)
2399 {
2400 	struct policydb *policydb;
2401 	struct sidtab *sidtab;
2402 	int rc = 0;
2403 	struct ocontext *c;
2404 
2405 	read_lock(&state->ss->policy_rwlock);
2406 
2407 	policydb = &state->ss->policydb;
2408 	sidtab = state->ss->sidtab;
2409 
2410 	c = policydb->ocontexts[OCON_NETIF];
2411 	while (c) {
2412 		if (strcmp(name, c->u.name) == 0)
2413 			break;
2414 		c = c->next;
2415 	}
2416 
2417 	if (c) {
2418 		if (!c->sid[0] || !c->sid[1]) {
2419 			rc = sidtab_context_to_sid(sidtab,
2420 						  &c->context[0],
2421 						  &c->sid[0]);
2422 			if (rc)
2423 				goto out;
2424 			rc = sidtab_context_to_sid(sidtab,
2425 						   &c->context[1],
2426 						   &c->sid[1]);
2427 			if (rc)
2428 				goto out;
2429 		}
2430 		*if_sid = c->sid[0];
2431 	} else
2432 		*if_sid = SECINITSID_NETIF;
2433 
2434 out:
2435 	read_unlock(&state->ss->policy_rwlock);
2436 	return rc;
2437 }
2438 
2439 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2440 {
2441 	int i, fail = 0;
2442 
2443 	for (i = 0; i < 4; i++)
2444 		if (addr[i] != (input[i] & mask[i])) {
2445 			fail = 1;
2446 			break;
2447 		}
2448 
2449 	return !fail;
2450 }
2451 
2452 /**
2453  * security_node_sid - Obtain the SID for a node (host).
2454  * @domain: communication domain aka address family
2455  * @addrp: address
2456  * @addrlen: address length in bytes
2457  * @out_sid: security identifier
2458  */
2459 int security_node_sid(struct selinux_state *state,
2460 		      u16 domain,
2461 		      void *addrp,
2462 		      u32 addrlen,
2463 		      u32 *out_sid)
2464 {
2465 	struct policydb *policydb;
2466 	struct sidtab *sidtab;
2467 	int rc;
2468 	struct ocontext *c;
2469 
2470 	read_lock(&state->ss->policy_rwlock);
2471 
2472 	policydb = &state->ss->policydb;
2473 	sidtab = state->ss->sidtab;
2474 
2475 	switch (domain) {
2476 	case AF_INET: {
2477 		u32 addr;
2478 
2479 		rc = -EINVAL;
2480 		if (addrlen != sizeof(u32))
2481 			goto out;
2482 
2483 		addr = *((u32 *)addrp);
2484 
2485 		c = policydb->ocontexts[OCON_NODE];
2486 		while (c) {
2487 			if (c->u.node.addr == (addr & c->u.node.mask))
2488 				break;
2489 			c = c->next;
2490 		}
2491 		break;
2492 	}
2493 
2494 	case AF_INET6:
2495 		rc = -EINVAL;
2496 		if (addrlen != sizeof(u64) * 2)
2497 			goto out;
2498 		c = policydb->ocontexts[OCON_NODE6];
2499 		while (c) {
2500 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2501 						c->u.node6.mask))
2502 				break;
2503 			c = c->next;
2504 		}
2505 		break;
2506 
2507 	default:
2508 		rc = 0;
2509 		*out_sid = SECINITSID_NODE;
2510 		goto out;
2511 	}
2512 
2513 	if (c) {
2514 		if (!c->sid[0]) {
2515 			rc = sidtab_context_to_sid(sidtab,
2516 						   &c->context[0],
2517 						   &c->sid[0]);
2518 			if (rc)
2519 				goto out;
2520 		}
2521 		*out_sid = c->sid[0];
2522 	} else {
2523 		*out_sid = SECINITSID_NODE;
2524 	}
2525 
2526 	rc = 0;
2527 out:
2528 	read_unlock(&state->ss->policy_rwlock);
2529 	return rc;
2530 }
2531 
2532 #define SIDS_NEL 25
2533 
2534 /**
2535  * security_get_user_sids - Obtain reachable SIDs for a user.
2536  * @fromsid: starting SID
2537  * @username: username
2538  * @sids: array of reachable SIDs for user
2539  * @nel: number of elements in @sids
2540  *
2541  * Generate the set of SIDs for legal security contexts
2542  * for a given user that can be reached by @fromsid.
2543  * Set *@sids to point to a dynamically allocated
2544  * array containing the set of SIDs.  Set *@nel to the
2545  * number of elements in the array.
2546  */
2547 
2548 int security_get_user_sids(struct selinux_state *state,
2549 			   u32 fromsid,
2550 			   char *username,
2551 			   u32 **sids,
2552 			   u32 *nel)
2553 {
2554 	struct policydb *policydb;
2555 	struct sidtab *sidtab;
2556 	struct context *fromcon, usercon;
2557 	u32 *mysids = NULL, *mysids2, sid;
2558 	u32 mynel = 0, maxnel = SIDS_NEL;
2559 	struct user_datum *user;
2560 	struct role_datum *role;
2561 	struct ebitmap_node *rnode, *tnode;
2562 	int rc = 0, i, j;
2563 
2564 	*sids = NULL;
2565 	*nel = 0;
2566 
2567 	if (!state->initialized)
2568 		goto out;
2569 
2570 	read_lock(&state->ss->policy_rwlock);
2571 
2572 	policydb = &state->ss->policydb;
2573 	sidtab = state->ss->sidtab;
2574 
2575 	context_init(&usercon);
2576 
2577 	rc = -EINVAL;
2578 	fromcon = sidtab_search(sidtab, fromsid);
2579 	if (!fromcon)
2580 		goto out_unlock;
2581 
2582 	rc = -EINVAL;
2583 	user = hashtab_search(policydb->p_users.table, username);
2584 	if (!user)
2585 		goto out_unlock;
2586 
2587 	usercon.user = user->value;
2588 
2589 	rc = -ENOMEM;
2590 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2591 	if (!mysids)
2592 		goto out_unlock;
2593 
2594 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2595 		role = policydb->role_val_to_struct[i];
2596 		usercon.role = i + 1;
2597 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2598 			usercon.type = j + 1;
2599 
2600 			if (mls_setup_user_range(policydb, fromcon, user,
2601 						 &usercon))
2602 				continue;
2603 
2604 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2605 			if (rc)
2606 				goto out_unlock;
2607 			if (mynel < maxnel) {
2608 				mysids[mynel++] = sid;
2609 			} else {
2610 				rc = -ENOMEM;
2611 				maxnel += SIDS_NEL;
2612 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2613 				if (!mysids2)
2614 					goto out_unlock;
2615 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2616 				kfree(mysids);
2617 				mysids = mysids2;
2618 				mysids[mynel++] = sid;
2619 			}
2620 		}
2621 	}
2622 	rc = 0;
2623 out_unlock:
2624 	read_unlock(&state->ss->policy_rwlock);
2625 	if (rc || !mynel) {
2626 		kfree(mysids);
2627 		goto out;
2628 	}
2629 
2630 	rc = -ENOMEM;
2631 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2632 	if (!mysids2) {
2633 		kfree(mysids);
2634 		goto out;
2635 	}
2636 	for (i = 0, j = 0; i < mynel; i++) {
2637 		struct av_decision dummy_avd;
2638 		rc = avc_has_perm_noaudit(state,
2639 					  fromsid, mysids[i],
2640 					  SECCLASS_PROCESS, /* kernel value */
2641 					  PROCESS__TRANSITION, AVC_STRICT,
2642 					  &dummy_avd);
2643 		if (!rc)
2644 			mysids2[j++] = mysids[i];
2645 		cond_resched();
2646 	}
2647 	rc = 0;
2648 	kfree(mysids);
2649 	*sids = mysids2;
2650 	*nel = j;
2651 out:
2652 	return rc;
2653 }
2654 
2655 /**
2656  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2657  * @fstype: filesystem type
2658  * @path: path from root of mount
2659  * @sclass: file security class
2660  * @sid: SID for path
2661  *
2662  * Obtain a SID to use for a file in a filesystem that
2663  * cannot support xattr or use a fixed labeling behavior like
2664  * transition SIDs or task SIDs.
2665  *
2666  * The caller must acquire the policy_rwlock before calling this function.
2667  */
2668 static inline int __security_genfs_sid(struct selinux_state *state,
2669 				       const char *fstype,
2670 				       char *path,
2671 				       u16 orig_sclass,
2672 				       u32 *sid)
2673 {
2674 	struct policydb *policydb = &state->ss->policydb;
2675 	struct sidtab *sidtab = state->ss->sidtab;
2676 	int len;
2677 	u16 sclass;
2678 	struct genfs *genfs;
2679 	struct ocontext *c;
2680 	int rc, cmp = 0;
2681 
2682 	while (path[0] == '/' && path[1] == '/')
2683 		path++;
2684 
2685 	sclass = unmap_class(&state->ss->map, orig_sclass);
2686 	*sid = SECINITSID_UNLABELED;
2687 
2688 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2689 		cmp = strcmp(fstype, genfs->fstype);
2690 		if (cmp <= 0)
2691 			break;
2692 	}
2693 
2694 	rc = -ENOENT;
2695 	if (!genfs || cmp)
2696 		goto out;
2697 
2698 	for (c = genfs->head; c; c = c->next) {
2699 		len = strlen(c->u.name);
2700 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2701 		    (strncmp(c->u.name, path, len) == 0))
2702 			break;
2703 	}
2704 
2705 	rc = -ENOENT;
2706 	if (!c)
2707 		goto out;
2708 
2709 	if (!c->sid[0]) {
2710 		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2711 		if (rc)
2712 			goto out;
2713 	}
2714 
2715 	*sid = c->sid[0];
2716 	rc = 0;
2717 out:
2718 	return rc;
2719 }
2720 
2721 /**
2722  * security_genfs_sid - Obtain a SID for a file in a filesystem
2723  * @fstype: filesystem type
2724  * @path: path from root of mount
2725  * @sclass: file security class
2726  * @sid: SID for path
2727  *
2728  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2729  * it afterward.
2730  */
2731 int security_genfs_sid(struct selinux_state *state,
2732 		       const char *fstype,
2733 		       char *path,
2734 		       u16 orig_sclass,
2735 		       u32 *sid)
2736 {
2737 	int retval;
2738 
2739 	read_lock(&state->ss->policy_rwlock);
2740 	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2741 	read_unlock(&state->ss->policy_rwlock);
2742 	return retval;
2743 }
2744 
2745 /**
2746  * security_fs_use - Determine how to handle labeling for a filesystem.
2747  * @sb: superblock in question
2748  */
2749 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2750 {
2751 	struct policydb *policydb;
2752 	struct sidtab *sidtab;
2753 	int rc = 0;
2754 	struct ocontext *c;
2755 	struct superblock_security_struct *sbsec = sb->s_security;
2756 	const char *fstype = sb->s_type->name;
2757 
2758 	read_lock(&state->ss->policy_rwlock);
2759 
2760 	policydb = &state->ss->policydb;
2761 	sidtab = state->ss->sidtab;
2762 
2763 	c = policydb->ocontexts[OCON_FSUSE];
2764 	while (c) {
2765 		if (strcmp(fstype, c->u.name) == 0)
2766 			break;
2767 		c = c->next;
2768 	}
2769 
2770 	if (c) {
2771 		sbsec->behavior = c->v.behavior;
2772 		if (!c->sid[0]) {
2773 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2774 						   &c->sid[0]);
2775 			if (rc)
2776 				goto out;
2777 		}
2778 		sbsec->sid = c->sid[0];
2779 	} else {
2780 		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2781 					  &sbsec->sid);
2782 		if (rc) {
2783 			sbsec->behavior = SECURITY_FS_USE_NONE;
2784 			rc = 0;
2785 		} else {
2786 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2787 		}
2788 	}
2789 
2790 out:
2791 	read_unlock(&state->ss->policy_rwlock);
2792 	return rc;
2793 }
2794 
2795 int security_get_bools(struct selinux_state *state,
2796 		       int *len, char ***names, int **values)
2797 {
2798 	struct policydb *policydb;
2799 	int i, rc;
2800 
2801 	if (!state->initialized) {
2802 		*len = 0;
2803 		*names = NULL;
2804 		*values = NULL;
2805 		return 0;
2806 	}
2807 
2808 	read_lock(&state->ss->policy_rwlock);
2809 
2810 	policydb = &state->ss->policydb;
2811 
2812 	*names = NULL;
2813 	*values = NULL;
2814 
2815 	rc = 0;
2816 	*len = policydb->p_bools.nprim;
2817 	if (!*len)
2818 		goto out;
2819 
2820 	rc = -ENOMEM;
2821 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2822 	if (!*names)
2823 		goto err;
2824 
2825 	rc = -ENOMEM;
2826 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2827 	if (!*values)
2828 		goto err;
2829 
2830 	for (i = 0; i < *len; i++) {
2831 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2832 
2833 		rc = -ENOMEM;
2834 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2835 				      GFP_ATOMIC);
2836 		if (!(*names)[i])
2837 			goto err;
2838 	}
2839 	rc = 0;
2840 out:
2841 	read_unlock(&state->ss->policy_rwlock);
2842 	return rc;
2843 err:
2844 	if (*names) {
2845 		for (i = 0; i < *len; i++)
2846 			kfree((*names)[i]);
2847 	}
2848 	kfree(*values);
2849 	goto out;
2850 }
2851 
2852 
2853 int security_set_bools(struct selinux_state *state, int len, int *values)
2854 {
2855 	struct policydb *policydb;
2856 	int i, rc;
2857 	int lenp, seqno = 0;
2858 	struct cond_node *cur;
2859 
2860 	write_lock_irq(&state->ss->policy_rwlock);
2861 
2862 	policydb = &state->ss->policydb;
2863 
2864 	rc = -EFAULT;
2865 	lenp = policydb->p_bools.nprim;
2866 	if (len != lenp)
2867 		goto out;
2868 
2869 	for (i = 0; i < len; i++) {
2870 		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2871 			audit_log(audit_context(), GFP_ATOMIC,
2872 				AUDIT_MAC_CONFIG_CHANGE,
2873 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2874 				sym_name(policydb, SYM_BOOLS, i),
2875 				!!values[i],
2876 				policydb->bool_val_to_struct[i]->state,
2877 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2878 				audit_get_sessionid(current));
2879 		}
2880 		if (values[i])
2881 			policydb->bool_val_to_struct[i]->state = 1;
2882 		else
2883 			policydb->bool_val_to_struct[i]->state = 0;
2884 	}
2885 
2886 	for (cur = policydb->cond_list; cur; cur = cur->next) {
2887 		rc = evaluate_cond_node(policydb, cur);
2888 		if (rc)
2889 			goto out;
2890 	}
2891 
2892 	seqno = ++state->ss->latest_granting;
2893 	rc = 0;
2894 out:
2895 	write_unlock_irq(&state->ss->policy_rwlock);
2896 	if (!rc) {
2897 		avc_ss_reset(state->avc, seqno);
2898 		selnl_notify_policyload(seqno);
2899 		selinux_status_update_policyload(state, seqno);
2900 		selinux_xfrm_notify_policyload();
2901 	}
2902 	return rc;
2903 }
2904 
2905 int security_get_bool_value(struct selinux_state *state,
2906 			    int index)
2907 {
2908 	struct policydb *policydb;
2909 	int rc;
2910 	int len;
2911 
2912 	read_lock(&state->ss->policy_rwlock);
2913 
2914 	policydb = &state->ss->policydb;
2915 
2916 	rc = -EFAULT;
2917 	len = policydb->p_bools.nprim;
2918 	if (index >= len)
2919 		goto out;
2920 
2921 	rc = policydb->bool_val_to_struct[index]->state;
2922 out:
2923 	read_unlock(&state->ss->policy_rwlock);
2924 	return rc;
2925 }
2926 
2927 static int security_preserve_bools(struct selinux_state *state,
2928 				   struct policydb *policydb)
2929 {
2930 	int rc, nbools = 0, *bvalues = NULL, i;
2931 	char **bnames = NULL;
2932 	struct cond_bool_datum *booldatum;
2933 	struct cond_node *cur;
2934 
2935 	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2936 	if (rc)
2937 		goto out;
2938 	for (i = 0; i < nbools; i++) {
2939 		booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2940 		if (booldatum)
2941 			booldatum->state = bvalues[i];
2942 	}
2943 	for (cur = policydb->cond_list; cur; cur = cur->next) {
2944 		rc = evaluate_cond_node(policydb, cur);
2945 		if (rc)
2946 			goto out;
2947 	}
2948 
2949 out:
2950 	if (bnames) {
2951 		for (i = 0; i < nbools; i++)
2952 			kfree(bnames[i]);
2953 	}
2954 	kfree(bnames);
2955 	kfree(bvalues);
2956 	return rc;
2957 }
2958 
2959 /*
2960  * security_sid_mls_copy() - computes a new sid based on the given
2961  * sid and the mls portion of mls_sid.
2962  */
2963 int security_sid_mls_copy(struct selinux_state *state,
2964 			  u32 sid, u32 mls_sid, u32 *new_sid)
2965 {
2966 	struct policydb *policydb = &state->ss->policydb;
2967 	struct sidtab *sidtab = state->ss->sidtab;
2968 	struct context *context1;
2969 	struct context *context2;
2970 	struct context newcon;
2971 	char *s;
2972 	u32 len;
2973 	int rc;
2974 
2975 	rc = 0;
2976 	if (!state->initialized || !policydb->mls_enabled) {
2977 		*new_sid = sid;
2978 		goto out;
2979 	}
2980 
2981 	context_init(&newcon);
2982 
2983 	read_lock(&state->ss->policy_rwlock);
2984 
2985 	rc = -EINVAL;
2986 	context1 = sidtab_search(sidtab, sid);
2987 	if (!context1) {
2988 		pr_err("SELinux: %s:  unrecognized SID %d\n",
2989 			__func__, sid);
2990 		goto out_unlock;
2991 	}
2992 
2993 	rc = -EINVAL;
2994 	context2 = sidtab_search(sidtab, mls_sid);
2995 	if (!context2) {
2996 		pr_err("SELinux: %s:  unrecognized SID %d\n",
2997 			__func__, mls_sid);
2998 		goto out_unlock;
2999 	}
3000 
3001 	newcon.user = context1->user;
3002 	newcon.role = context1->role;
3003 	newcon.type = context1->type;
3004 	rc = mls_context_cpy(&newcon, context2);
3005 	if (rc)
3006 		goto out_unlock;
3007 
3008 	/* Check the validity of the new context. */
3009 	if (!policydb_context_isvalid(policydb, &newcon)) {
3010 		rc = convert_context_handle_invalid_context(state, &newcon);
3011 		if (rc) {
3012 			if (!context_struct_to_string(policydb, &newcon, &s,
3013 						      &len)) {
3014 				struct audit_buffer *ab;
3015 
3016 				ab = audit_log_start(audit_context(),
3017 						     GFP_ATOMIC,
3018 						     AUDIT_SELINUX_ERR);
3019 				audit_log_format(ab,
3020 						 "op=security_sid_mls_copy invalid_context=");
3021 				/* don't record NUL with untrusted strings */
3022 				audit_log_n_untrustedstring(ab, s, len - 1);
3023 				audit_log_end(ab);
3024 				kfree(s);
3025 			}
3026 			goto out_unlock;
3027 		}
3028 	}
3029 
3030 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3031 out_unlock:
3032 	read_unlock(&state->ss->policy_rwlock);
3033 	context_destroy(&newcon);
3034 out:
3035 	return rc;
3036 }
3037 
3038 /**
3039  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3040  * @nlbl_sid: NetLabel SID
3041  * @nlbl_type: NetLabel labeling protocol type
3042  * @xfrm_sid: XFRM SID
3043  *
3044  * Description:
3045  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3046  * resolved into a single SID it is returned via @peer_sid and the function
3047  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3048  * returns a negative value.  A table summarizing the behavior is below:
3049  *
3050  *                                 | function return |      @sid
3051  *   ------------------------------+-----------------+-----------------
3052  *   no peer labels                |        0        |    SECSID_NULL
3053  *   single peer label             |        0        |    <peer_label>
3054  *   multiple, consistent labels   |        0        |    <peer_label>
3055  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3056  *
3057  */
3058 int security_net_peersid_resolve(struct selinux_state *state,
3059 				 u32 nlbl_sid, u32 nlbl_type,
3060 				 u32 xfrm_sid,
3061 				 u32 *peer_sid)
3062 {
3063 	struct policydb *policydb = &state->ss->policydb;
3064 	struct sidtab *sidtab = state->ss->sidtab;
3065 	int rc;
3066 	struct context *nlbl_ctx;
3067 	struct context *xfrm_ctx;
3068 
3069 	*peer_sid = SECSID_NULL;
3070 
3071 	/* handle the common (which also happens to be the set of easy) cases
3072 	 * right away, these two if statements catch everything involving a
3073 	 * single or absent peer SID/label */
3074 	if (xfrm_sid == SECSID_NULL) {
3075 		*peer_sid = nlbl_sid;
3076 		return 0;
3077 	}
3078 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3079 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3080 	 * is present */
3081 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3082 		*peer_sid = xfrm_sid;
3083 		return 0;
3084 	}
3085 
3086 	/*
3087 	 * We don't need to check initialized here since the only way both
3088 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3089 	 * security server was initialized and state->initialized was true.
3090 	 */
3091 	if (!policydb->mls_enabled)
3092 		return 0;
3093 
3094 	read_lock(&state->ss->policy_rwlock);
3095 
3096 	rc = -EINVAL;
3097 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3098 	if (!nlbl_ctx) {
3099 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3100 		       __func__, nlbl_sid);
3101 		goto out;
3102 	}
3103 	rc = -EINVAL;
3104 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3105 	if (!xfrm_ctx) {
3106 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3107 		       __func__, xfrm_sid);
3108 		goto out;
3109 	}
3110 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3111 	if (rc)
3112 		goto out;
3113 
3114 	/* at present NetLabel SIDs/labels really only carry MLS
3115 	 * information so if the MLS portion of the NetLabel SID
3116 	 * matches the MLS portion of the labeled XFRM SID/label
3117 	 * then pass along the XFRM SID as it is the most
3118 	 * expressive */
3119 	*peer_sid = xfrm_sid;
3120 out:
3121 	read_unlock(&state->ss->policy_rwlock);
3122 	return rc;
3123 }
3124 
3125 static int get_classes_callback(void *k, void *d, void *args)
3126 {
3127 	struct class_datum *datum = d;
3128 	char *name = k, **classes = args;
3129 	int value = datum->value - 1;
3130 
3131 	classes[value] = kstrdup(name, GFP_ATOMIC);
3132 	if (!classes[value])
3133 		return -ENOMEM;
3134 
3135 	return 0;
3136 }
3137 
3138 int security_get_classes(struct selinux_state *state,
3139 			 char ***classes, int *nclasses)
3140 {
3141 	struct policydb *policydb = &state->ss->policydb;
3142 	int rc;
3143 
3144 	if (!state->initialized) {
3145 		*nclasses = 0;
3146 		*classes = NULL;
3147 		return 0;
3148 	}
3149 
3150 	read_lock(&state->ss->policy_rwlock);
3151 
3152 	rc = -ENOMEM;
3153 	*nclasses = policydb->p_classes.nprim;
3154 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3155 	if (!*classes)
3156 		goto out;
3157 
3158 	rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3159 			*classes);
3160 	if (rc) {
3161 		int i;
3162 		for (i = 0; i < *nclasses; i++)
3163 			kfree((*classes)[i]);
3164 		kfree(*classes);
3165 	}
3166 
3167 out:
3168 	read_unlock(&state->ss->policy_rwlock);
3169 	return rc;
3170 }
3171 
3172 static int get_permissions_callback(void *k, void *d, void *args)
3173 {
3174 	struct perm_datum *datum = d;
3175 	char *name = k, **perms = args;
3176 	int value = datum->value - 1;
3177 
3178 	perms[value] = kstrdup(name, GFP_ATOMIC);
3179 	if (!perms[value])
3180 		return -ENOMEM;
3181 
3182 	return 0;
3183 }
3184 
3185 int security_get_permissions(struct selinux_state *state,
3186 			     char *class, char ***perms, int *nperms)
3187 {
3188 	struct policydb *policydb = &state->ss->policydb;
3189 	int rc, i;
3190 	struct class_datum *match;
3191 
3192 	read_lock(&state->ss->policy_rwlock);
3193 
3194 	rc = -EINVAL;
3195 	match = hashtab_search(policydb->p_classes.table, class);
3196 	if (!match) {
3197 		pr_err("SELinux: %s:  unrecognized class %s\n",
3198 			__func__, class);
3199 		goto out;
3200 	}
3201 
3202 	rc = -ENOMEM;
3203 	*nperms = match->permissions.nprim;
3204 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3205 	if (!*perms)
3206 		goto out;
3207 
3208 	if (match->comdatum) {
3209 		rc = hashtab_map(match->comdatum->permissions.table,
3210 				get_permissions_callback, *perms);
3211 		if (rc)
3212 			goto err;
3213 	}
3214 
3215 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
3216 			*perms);
3217 	if (rc)
3218 		goto err;
3219 
3220 out:
3221 	read_unlock(&state->ss->policy_rwlock);
3222 	return rc;
3223 
3224 err:
3225 	read_unlock(&state->ss->policy_rwlock);
3226 	for (i = 0; i < *nperms; i++)
3227 		kfree((*perms)[i]);
3228 	kfree(*perms);
3229 	return rc;
3230 }
3231 
3232 int security_get_reject_unknown(struct selinux_state *state)
3233 {
3234 	return state->ss->policydb.reject_unknown;
3235 }
3236 
3237 int security_get_allow_unknown(struct selinux_state *state)
3238 {
3239 	return state->ss->policydb.allow_unknown;
3240 }
3241 
3242 /**
3243  * security_policycap_supported - Check for a specific policy capability
3244  * @req_cap: capability
3245  *
3246  * Description:
3247  * This function queries the currently loaded policy to see if it supports the
3248  * capability specified by @req_cap.  Returns true (1) if the capability is
3249  * supported, false (0) if it isn't supported.
3250  *
3251  */
3252 int security_policycap_supported(struct selinux_state *state,
3253 				 unsigned int req_cap)
3254 {
3255 	struct policydb *policydb = &state->ss->policydb;
3256 	int rc;
3257 
3258 	read_lock(&state->ss->policy_rwlock);
3259 	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3260 	read_unlock(&state->ss->policy_rwlock);
3261 
3262 	return rc;
3263 }
3264 
3265 struct selinux_audit_rule {
3266 	u32 au_seqno;
3267 	struct context au_ctxt;
3268 };
3269 
3270 void selinux_audit_rule_free(void *vrule)
3271 {
3272 	struct selinux_audit_rule *rule = vrule;
3273 
3274 	if (rule) {
3275 		context_destroy(&rule->au_ctxt);
3276 		kfree(rule);
3277 	}
3278 }
3279 
3280 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3281 {
3282 	struct selinux_state *state = &selinux_state;
3283 	struct policydb *policydb = &state->ss->policydb;
3284 	struct selinux_audit_rule *tmprule;
3285 	struct role_datum *roledatum;
3286 	struct type_datum *typedatum;
3287 	struct user_datum *userdatum;
3288 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3289 	int rc = 0;
3290 
3291 	*rule = NULL;
3292 
3293 	if (!state->initialized)
3294 		return -EOPNOTSUPP;
3295 
3296 	switch (field) {
3297 	case AUDIT_SUBJ_USER:
3298 	case AUDIT_SUBJ_ROLE:
3299 	case AUDIT_SUBJ_TYPE:
3300 	case AUDIT_OBJ_USER:
3301 	case AUDIT_OBJ_ROLE:
3302 	case AUDIT_OBJ_TYPE:
3303 		/* only 'equals' and 'not equals' fit user, role, and type */
3304 		if (op != Audit_equal && op != Audit_not_equal)
3305 			return -EINVAL;
3306 		break;
3307 	case AUDIT_SUBJ_SEN:
3308 	case AUDIT_SUBJ_CLR:
3309 	case AUDIT_OBJ_LEV_LOW:
3310 	case AUDIT_OBJ_LEV_HIGH:
3311 		/* we do not allow a range, indicated by the presence of '-' */
3312 		if (strchr(rulestr, '-'))
3313 			return -EINVAL;
3314 		break;
3315 	default:
3316 		/* only the above fields are valid */
3317 		return -EINVAL;
3318 	}
3319 
3320 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3321 	if (!tmprule)
3322 		return -ENOMEM;
3323 
3324 	context_init(&tmprule->au_ctxt);
3325 
3326 	read_lock(&state->ss->policy_rwlock);
3327 
3328 	tmprule->au_seqno = state->ss->latest_granting;
3329 
3330 	switch (field) {
3331 	case AUDIT_SUBJ_USER:
3332 	case AUDIT_OBJ_USER:
3333 		rc = -EINVAL;
3334 		userdatum = hashtab_search(policydb->p_users.table, rulestr);
3335 		if (!userdatum)
3336 			goto out;
3337 		tmprule->au_ctxt.user = userdatum->value;
3338 		break;
3339 	case AUDIT_SUBJ_ROLE:
3340 	case AUDIT_OBJ_ROLE:
3341 		rc = -EINVAL;
3342 		roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3343 		if (!roledatum)
3344 			goto out;
3345 		tmprule->au_ctxt.role = roledatum->value;
3346 		break;
3347 	case AUDIT_SUBJ_TYPE:
3348 	case AUDIT_OBJ_TYPE:
3349 		rc = -EINVAL;
3350 		typedatum = hashtab_search(policydb->p_types.table, rulestr);
3351 		if (!typedatum)
3352 			goto out;
3353 		tmprule->au_ctxt.type = typedatum->value;
3354 		break;
3355 	case AUDIT_SUBJ_SEN:
3356 	case AUDIT_SUBJ_CLR:
3357 	case AUDIT_OBJ_LEV_LOW:
3358 	case AUDIT_OBJ_LEV_HIGH:
3359 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3360 				     GFP_ATOMIC);
3361 		if (rc)
3362 			goto out;
3363 		break;
3364 	}
3365 	rc = 0;
3366 out:
3367 	read_unlock(&state->ss->policy_rwlock);
3368 
3369 	if (rc) {
3370 		selinux_audit_rule_free(tmprule);
3371 		tmprule = NULL;
3372 	}
3373 
3374 	*rule = tmprule;
3375 
3376 	return rc;
3377 }
3378 
3379 /* Check to see if the rule contains any selinux fields */
3380 int selinux_audit_rule_known(struct audit_krule *rule)
3381 {
3382 	int i;
3383 
3384 	for (i = 0; i < rule->field_count; i++) {
3385 		struct audit_field *f = &rule->fields[i];
3386 		switch (f->type) {
3387 		case AUDIT_SUBJ_USER:
3388 		case AUDIT_SUBJ_ROLE:
3389 		case AUDIT_SUBJ_TYPE:
3390 		case AUDIT_SUBJ_SEN:
3391 		case AUDIT_SUBJ_CLR:
3392 		case AUDIT_OBJ_USER:
3393 		case AUDIT_OBJ_ROLE:
3394 		case AUDIT_OBJ_TYPE:
3395 		case AUDIT_OBJ_LEV_LOW:
3396 		case AUDIT_OBJ_LEV_HIGH:
3397 			return 1;
3398 		}
3399 	}
3400 
3401 	return 0;
3402 }
3403 
3404 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3405 {
3406 	struct selinux_state *state = &selinux_state;
3407 	struct context *ctxt;
3408 	struct mls_level *level;
3409 	struct selinux_audit_rule *rule = vrule;
3410 	int match = 0;
3411 
3412 	if (unlikely(!rule)) {
3413 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3414 		return -ENOENT;
3415 	}
3416 
3417 	read_lock(&state->ss->policy_rwlock);
3418 
3419 	if (rule->au_seqno < state->ss->latest_granting) {
3420 		match = -ESTALE;
3421 		goto out;
3422 	}
3423 
3424 	ctxt = sidtab_search(state->ss->sidtab, sid);
3425 	if (unlikely(!ctxt)) {
3426 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3427 			  sid);
3428 		match = -ENOENT;
3429 		goto out;
3430 	}
3431 
3432 	/* a field/op pair that is not caught here will simply fall through
3433 	   without a match */
3434 	switch (field) {
3435 	case AUDIT_SUBJ_USER:
3436 	case AUDIT_OBJ_USER:
3437 		switch (op) {
3438 		case Audit_equal:
3439 			match = (ctxt->user == rule->au_ctxt.user);
3440 			break;
3441 		case Audit_not_equal:
3442 			match = (ctxt->user != rule->au_ctxt.user);
3443 			break;
3444 		}
3445 		break;
3446 	case AUDIT_SUBJ_ROLE:
3447 	case AUDIT_OBJ_ROLE:
3448 		switch (op) {
3449 		case Audit_equal:
3450 			match = (ctxt->role == rule->au_ctxt.role);
3451 			break;
3452 		case Audit_not_equal:
3453 			match = (ctxt->role != rule->au_ctxt.role);
3454 			break;
3455 		}
3456 		break;
3457 	case AUDIT_SUBJ_TYPE:
3458 	case AUDIT_OBJ_TYPE:
3459 		switch (op) {
3460 		case Audit_equal:
3461 			match = (ctxt->type == rule->au_ctxt.type);
3462 			break;
3463 		case Audit_not_equal:
3464 			match = (ctxt->type != rule->au_ctxt.type);
3465 			break;
3466 		}
3467 		break;
3468 	case AUDIT_SUBJ_SEN:
3469 	case AUDIT_SUBJ_CLR:
3470 	case AUDIT_OBJ_LEV_LOW:
3471 	case AUDIT_OBJ_LEV_HIGH:
3472 		level = ((field == AUDIT_SUBJ_SEN ||
3473 			  field == AUDIT_OBJ_LEV_LOW) ?
3474 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3475 		switch (op) {
3476 		case Audit_equal:
3477 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3478 					     level);
3479 			break;
3480 		case Audit_not_equal:
3481 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3482 					      level);
3483 			break;
3484 		case Audit_lt:
3485 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3486 					       level) &&
3487 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3488 					       level));
3489 			break;
3490 		case Audit_le:
3491 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3492 					      level);
3493 			break;
3494 		case Audit_gt:
3495 			match = (mls_level_dom(level,
3496 					      &rule->au_ctxt.range.level[0]) &&
3497 				 !mls_level_eq(level,
3498 					       &rule->au_ctxt.range.level[0]));
3499 			break;
3500 		case Audit_ge:
3501 			match = mls_level_dom(level,
3502 					      &rule->au_ctxt.range.level[0]);
3503 			break;
3504 		}
3505 	}
3506 
3507 out:
3508 	read_unlock(&state->ss->policy_rwlock);
3509 	return match;
3510 }
3511 
3512 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3513 
3514 static int aurule_avc_callback(u32 event)
3515 {
3516 	int err = 0;
3517 
3518 	if (event == AVC_CALLBACK_RESET && aurule_callback)
3519 		err = aurule_callback();
3520 	return err;
3521 }
3522 
3523 static int __init aurule_init(void)
3524 {
3525 	int err;
3526 
3527 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3528 	if (err)
3529 		panic("avc_add_callback() failed, error %d\n", err);
3530 
3531 	return err;
3532 }
3533 __initcall(aurule_init);
3534 
3535 #ifdef CONFIG_NETLABEL
3536 /**
3537  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3538  * @secattr: the NetLabel packet security attributes
3539  * @sid: the SELinux SID
3540  *
3541  * Description:
3542  * Attempt to cache the context in @ctx, which was derived from the packet in
3543  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3544  * already been initialized.
3545  *
3546  */
3547 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3548 				      u32 sid)
3549 {
3550 	u32 *sid_cache;
3551 
3552 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3553 	if (sid_cache == NULL)
3554 		return;
3555 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3556 	if (secattr->cache == NULL) {
3557 		kfree(sid_cache);
3558 		return;
3559 	}
3560 
3561 	*sid_cache = sid;
3562 	secattr->cache->free = kfree;
3563 	secattr->cache->data = sid_cache;
3564 	secattr->flags |= NETLBL_SECATTR_CACHE;
3565 }
3566 
3567 /**
3568  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3569  * @secattr: the NetLabel packet security attributes
3570  * @sid: the SELinux SID
3571  *
3572  * Description:
3573  * Convert the given NetLabel security attributes in @secattr into a
3574  * SELinux SID.  If the @secattr field does not contain a full SELinux
3575  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3576  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3577  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3578  * conversion for future lookups.  Returns zero on success, negative values on
3579  * failure.
3580  *
3581  */
3582 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3583 				   struct netlbl_lsm_secattr *secattr,
3584 				   u32 *sid)
3585 {
3586 	struct policydb *policydb = &state->ss->policydb;
3587 	struct sidtab *sidtab = state->ss->sidtab;
3588 	int rc;
3589 	struct context *ctx;
3590 	struct context ctx_new;
3591 
3592 	if (!state->initialized) {
3593 		*sid = SECSID_NULL;
3594 		return 0;
3595 	}
3596 
3597 	read_lock(&state->ss->policy_rwlock);
3598 
3599 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3600 		*sid = *(u32 *)secattr->cache->data;
3601 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3602 		*sid = secattr->attr.secid;
3603 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3604 		rc = -EIDRM;
3605 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3606 		if (ctx == NULL)
3607 			goto out;
3608 
3609 		context_init(&ctx_new);
3610 		ctx_new.user = ctx->user;
3611 		ctx_new.role = ctx->role;
3612 		ctx_new.type = ctx->type;
3613 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3614 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3615 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3616 			if (rc)
3617 				goto out;
3618 		}
3619 		rc = -EIDRM;
3620 		if (!mls_context_isvalid(policydb, &ctx_new))
3621 			goto out_free;
3622 
3623 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3624 		if (rc)
3625 			goto out_free;
3626 
3627 		security_netlbl_cache_add(secattr, *sid);
3628 
3629 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3630 	} else
3631 		*sid = SECSID_NULL;
3632 
3633 	read_unlock(&state->ss->policy_rwlock);
3634 	return 0;
3635 out_free:
3636 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3637 out:
3638 	read_unlock(&state->ss->policy_rwlock);
3639 	return rc;
3640 }
3641 
3642 /**
3643  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3644  * @sid: the SELinux SID
3645  * @secattr: the NetLabel packet security attributes
3646  *
3647  * Description:
3648  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3649  * Returns zero on success, negative values on failure.
3650  *
3651  */
3652 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3653 				   u32 sid, struct netlbl_lsm_secattr *secattr)
3654 {
3655 	struct policydb *policydb = &state->ss->policydb;
3656 	int rc;
3657 	struct context *ctx;
3658 
3659 	if (!state->initialized)
3660 		return 0;
3661 
3662 	read_lock(&state->ss->policy_rwlock);
3663 
3664 	rc = -ENOENT;
3665 	ctx = sidtab_search(state->ss->sidtab, sid);
3666 	if (ctx == NULL)
3667 		goto out;
3668 
3669 	rc = -ENOMEM;
3670 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3671 				  GFP_ATOMIC);
3672 	if (secattr->domain == NULL)
3673 		goto out;
3674 
3675 	secattr->attr.secid = sid;
3676 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3677 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3678 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3679 out:
3680 	read_unlock(&state->ss->policy_rwlock);
3681 	return rc;
3682 }
3683 #endif /* CONFIG_NETLABEL */
3684 
3685 /**
3686  * security_read_policy - read the policy.
3687  * @data: binary policy data
3688  * @len: length of data in bytes
3689  *
3690  */
3691 int security_read_policy(struct selinux_state *state,
3692 			 void **data, size_t *len)
3693 {
3694 	struct policydb *policydb = &state->ss->policydb;
3695 	int rc;
3696 	struct policy_file fp;
3697 
3698 	if (!state->initialized)
3699 		return -EINVAL;
3700 
3701 	*len = security_policydb_len(state);
3702 
3703 	*data = vmalloc_user(*len);
3704 	if (!*data)
3705 		return -ENOMEM;
3706 
3707 	fp.data = *data;
3708 	fp.len = *len;
3709 
3710 	read_lock(&state->ss->policy_rwlock);
3711 	rc = policydb_write(policydb, &fp);
3712 	read_unlock(&state->ss->policy_rwlock);
3713 
3714 	if (rc)
3715 		return rc;
3716 
3717 	*len = (unsigned long)fp.data - (unsigned long)*data;
3718 	return 0;
3719 
3720 }
3721