xref: /linux/security/selinux/ss/services.c (revision 643e2e259c2b25a2af0ae4c23c6e16586d9fd19c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the security services.
4  *
5  * Authors : Stephen Smalley, <stephen.smalley.work@gmail.com>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *	Support for context based audit filters.
12  *
13  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14  *
15  *	Added conditional policy language extensions
16  *
17  * Updated: Hewlett-Packard <paul@paul-moore.com>
18  *
19  *      Added support for NetLabel
20  *      Added support for the policy capability bitmap
21  *
22  * Updated: Chad Sellers <csellers@tresys.com>
23  *
24  *  Added validation of kernel classes and permissions
25  *
26  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27  *
28  *  Added support for bounds domain and audit messaged on masked permissions
29  *
30  * Updated: Guido Trentalancia <guido@trentalancia.com>
31  *
32  *  Added support for runtime switching of the policy type
33  *
34  * Copyright (C) 2008, 2009 NEC Corporation
35  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39  */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <linux/lsm_hooks.h>
51 #include <net/netlabel.h>
52 
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68 #include "policycap_names.h"
69 #include "ima.h"
70 
71 struct selinux_policy_convert_data {
72 	struct convert_context_args args;
73 	struct sidtab_convert_params sidtab_params;
74 };
75 
76 /* Forward declaration. */
77 static int context_struct_to_string(struct policydb *policydb,
78 				    struct context *context,
79 				    char **scontext,
80 				    u32 *scontext_len);
81 
82 static int sidtab_entry_to_string(struct policydb *policydb,
83 				  struct sidtab *sidtab,
84 				  struct sidtab_entry *entry,
85 				  char **scontext,
86 				  u32 *scontext_len);
87 
88 static void context_struct_compute_av(struct policydb *policydb,
89 				      struct context *scontext,
90 				      struct context *tcontext,
91 				      u16 tclass,
92 				      struct av_decision *avd,
93 				      struct extended_perms *xperms);
94 
95 static int selinux_set_mapping(struct policydb *pol,
96 			       const struct security_class_mapping *map,
97 			       struct selinux_map *out_map)
98 {
99 	u16 i, j;
100 	bool print_unknown_handle = false;
101 
102 	/* Find number of classes in the input mapping */
103 	if (!map)
104 		return -EINVAL;
105 	i = 0;
106 	while (map[i].name)
107 		i++;
108 
109 	/* Allocate space for the class records, plus one for class zero */
110 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
111 	if (!out_map->mapping)
112 		return -ENOMEM;
113 
114 	/* Store the raw class and permission values */
115 	j = 0;
116 	while (map[j].name) {
117 		const struct security_class_mapping *p_in = map + (j++);
118 		struct selinux_mapping *p_out = out_map->mapping + j;
119 		u16 k;
120 
121 		/* An empty class string skips ahead */
122 		if (!strcmp(p_in->name, "")) {
123 			p_out->num_perms = 0;
124 			continue;
125 		}
126 
127 		p_out->value = string_to_security_class(pol, p_in->name);
128 		if (!p_out->value) {
129 			pr_info("SELinux:  Class %s not defined in policy.\n",
130 			       p_in->name);
131 			if (pol->reject_unknown)
132 				goto err;
133 			p_out->num_perms = 0;
134 			print_unknown_handle = true;
135 			continue;
136 		}
137 
138 		k = 0;
139 		while (p_in->perms[k]) {
140 			/* An empty permission string skips ahead */
141 			if (!*p_in->perms[k]) {
142 				k++;
143 				continue;
144 			}
145 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
146 							    p_in->perms[k]);
147 			if (!p_out->perms[k]) {
148 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
149 				       p_in->perms[k], p_in->name);
150 				if (pol->reject_unknown)
151 					goto err;
152 				print_unknown_handle = true;
153 			}
154 
155 			k++;
156 		}
157 		p_out->num_perms = k;
158 	}
159 
160 	if (print_unknown_handle)
161 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
162 		       pol->allow_unknown ? "allowed" : "denied");
163 
164 	out_map->size = i;
165 	return 0;
166 err:
167 	kfree(out_map->mapping);
168 	out_map->mapping = NULL;
169 	return -EINVAL;
170 }
171 
172 /*
173  * Get real, policy values from mapped values
174  */
175 
176 static u16 unmap_class(struct selinux_map *map, u16 tclass)
177 {
178 	if (tclass < map->size)
179 		return map->mapping[tclass].value;
180 
181 	return tclass;
182 }
183 
184 /*
185  * Get kernel value for class from its policy value
186  */
187 static u16 map_class(struct selinux_map *map, u16 pol_value)
188 {
189 	u16 i;
190 
191 	for (i = 1; i < map->size; i++) {
192 		if (map->mapping[i].value == pol_value)
193 			return i;
194 	}
195 
196 	return SECCLASS_NULL;
197 }
198 
199 static void map_decision(struct selinux_map *map,
200 			 u16 tclass, struct av_decision *avd,
201 			 int allow_unknown)
202 {
203 	if (tclass < map->size) {
204 		struct selinux_mapping *mapping = &map->mapping[tclass];
205 		unsigned int i, n = mapping->num_perms;
206 		u32 result;
207 
208 		for (i = 0, result = 0; i < n; i++) {
209 			if (avd->allowed & mapping->perms[i])
210 				result |= (u32)1<<i;
211 			if (allow_unknown && !mapping->perms[i])
212 				result |= (u32)1<<i;
213 		}
214 		avd->allowed = result;
215 
216 		for (i = 0, result = 0; i < n; i++)
217 			if (avd->auditallow & mapping->perms[i])
218 				result |= (u32)1<<i;
219 		avd->auditallow = result;
220 
221 		for (i = 0, result = 0; i < n; i++) {
222 			if (avd->auditdeny & mapping->perms[i])
223 				result |= (u32)1<<i;
224 			if (!allow_unknown && !mapping->perms[i])
225 				result |= (u32)1<<i;
226 		}
227 		/*
228 		 * In case the kernel has a bug and requests a permission
229 		 * between num_perms and the maximum permission number, we
230 		 * should audit that denial
231 		 */
232 		for (; i < (sizeof(u32)*8); i++)
233 			result |= (u32)1<<i;
234 		avd->auditdeny = result;
235 	}
236 }
237 
238 int security_mls_enabled(void)
239 {
240 	int mls_enabled;
241 	struct selinux_policy *policy;
242 
243 	if (!selinux_initialized())
244 		return 0;
245 
246 	rcu_read_lock();
247 	policy = rcu_dereference(selinux_state.policy);
248 	mls_enabled = policy->policydb.mls_enabled;
249 	rcu_read_unlock();
250 	return mls_enabled;
251 }
252 
253 /*
254  * Return the boolean value of a constraint expression
255  * when it is applied to the specified source and target
256  * security contexts.
257  *
258  * xcontext is a special beast...  It is used by the validatetrans rules
259  * only.  For these rules, scontext is the context before the transition,
260  * tcontext is the context after the transition, and xcontext is the context
261  * of the process performing the transition.  All other callers of
262  * constraint_expr_eval should pass in NULL for xcontext.
263  */
264 static int constraint_expr_eval(struct policydb *policydb,
265 				struct context *scontext,
266 				struct context *tcontext,
267 				struct context *xcontext,
268 				struct constraint_expr *cexpr)
269 {
270 	u32 val1, val2;
271 	struct context *c;
272 	struct role_datum *r1, *r2;
273 	struct mls_level *l1, *l2;
274 	struct constraint_expr *e;
275 	int s[CEXPR_MAXDEPTH];
276 	int sp = -1;
277 
278 	for (e = cexpr; e; e = e->next) {
279 		switch (e->expr_type) {
280 		case CEXPR_NOT:
281 			BUG_ON(sp < 0);
282 			s[sp] = !s[sp];
283 			break;
284 		case CEXPR_AND:
285 			BUG_ON(sp < 1);
286 			sp--;
287 			s[sp] &= s[sp + 1];
288 			break;
289 		case CEXPR_OR:
290 			BUG_ON(sp < 1);
291 			sp--;
292 			s[sp] |= s[sp + 1];
293 			break;
294 		case CEXPR_ATTR:
295 			if (sp == (CEXPR_MAXDEPTH - 1))
296 				return 0;
297 			switch (e->attr) {
298 			case CEXPR_USER:
299 				val1 = scontext->user;
300 				val2 = tcontext->user;
301 				break;
302 			case CEXPR_TYPE:
303 				val1 = scontext->type;
304 				val2 = tcontext->type;
305 				break;
306 			case CEXPR_ROLE:
307 				val1 = scontext->role;
308 				val2 = tcontext->role;
309 				r1 = policydb->role_val_to_struct[val1 - 1];
310 				r2 = policydb->role_val_to_struct[val2 - 1];
311 				switch (e->op) {
312 				case CEXPR_DOM:
313 					s[++sp] = ebitmap_get_bit(&r1->dominates,
314 								  val2 - 1);
315 					continue;
316 				case CEXPR_DOMBY:
317 					s[++sp] = ebitmap_get_bit(&r2->dominates,
318 								  val1 - 1);
319 					continue;
320 				case CEXPR_INCOMP:
321 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
322 								    val2 - 1) &&
323 						   !ebitmap_get_bit(&r2->dominates,
324 								    val1 - 1));
325 					continue;
326 				default:
327 					break;
328 				}
329 				break;
330 			case CEXPR_L1L2:
331 				l1 = &(scontext->range.level[0]);
332 				l2 = &(tcontext->range.level[0]);
333 				goto mls_ops;
334 			case CEXPR_L1H2:
335 				l1 = &(scontext->range.level[0]);
336 				l2 = &(tcontext->range.level[1]);
337 				goto mls_ops;
338 			case CEXPR_H1L2:
339 				l1 = &(scontext->range.level[1]);
340 				l2 = &(tcontext->range.level[0]);
341 				goto mls_ops;
342 			case CEXPR_H1H2:
343 				l1 = &(scontext->range.level[1]);
344 				l2 = &(tcontext->range.level[1]);
345 				goto mls_ops;
346 			case CEXPR_L1H1:
347 				l1 = &(scontext->range.level[0]);
348 				l2 = &(scontext->range.level[1]);
349 				goto mls_ops;
350 			case CEXPR_L2H2:
351 				l1 = &(tcontext->range.level[0]);
352 				l2 = &(tcontext->range.level[1]);
353 				goto mls_ops;
354 mls_ops:
355 				switch (e->op) {
356 				case CEXPR_EQ:
357 					s[++sp] = mls_level_eq(l1, l2);
358 					continue;
359 				case CEXPR_NEQ:
360 					s[++sp] = !mls_level_eq(l1, l2);
361 					continue;
362 				case CEXPR_DOM:
363 					s[++sp] = mls_level_dom(l1, l2);
364 					continue;
365 				case CEXPR_DOMBY:
366 					s[++sp] = mls_level_dom(l2, l1);
367 					continue;
368 				case CEXPR_INCOMP:
369 					s[++sp] = mls_level_incomp(l2, l1);
370 					continue;
371 				default:
372 					BUG();
373 					return 0;
374 				}
375 				break;
376 			default:
377 				BUG();
378 				return 0;
379 			}
380 
381 			switch (e->op) {
382 			case CEXPR_EQ:
383 				s[++sp] = (val1 == val2);
384 				break;
385 			case CEXPR_NEQ:
386 				s[++sp] = (val1 != val2);
387 				break;
388 			default:
389 				BUG();
390 				return 0;
391 			}
392 			break;
393 		case CEXPR_NAMES:
394 			if (sp == (CEXPR_MAXDEPTH-1))
395 				return 0;
396 			c = scontext;
397 			if (e->attr & CEXPR_TARGET)
398 				c = tcontext;
399 			else if (e->attr & CEXPR_XTARGET) {
400 				c = xcontext;
401 				if (!c) {
402 					BUG();
403 					return 0;
404 				}
405 			}
406 			if (e->attr & CEXPR_USER)
407 				val1 = c->user;
408 			else if (e->attr & CEXPR_ROLE)
409 				val1 = c->role;
410 			else if (e->attr & CEXPR_TYPE)
411 				val1 = c->type;
412 			else {
413 				BUG();
414 				return 0;
415 			}
416 
417 			switch (e->op) {
418 			case CEXPR_EQ:
419 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
420 				break;
421 			case CEXPR_NEQ:
422 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
423 				break;
424 			default:
425 				BUG();
426 				return 0;
427 			}
428 			break;
429 		default:
430 			BUG();
431 			return 0;
432 		}
433 	}
434 
435 	BUG_ON(sp != 0);
436 	return s[0];
437 }
438 
439 /*
440  * security_dump_masked_av - dumps masked permissions during
441  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
442  */
443 static int dump_masked_av_helper(void *k, void *d, void *args)
444 {
445 	struct perm_datum *pdatum = d;
446 	char **permission_names = args;
447 
448 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
449 
450 	permission_names[pdatum->value - 1] = (char *)k;
451 
452 	return 0;
453 }
454 
455 static void security_dump_masked_av(struct policydb *policydb,
456 				    struct context *scontext,
457 				    struct context *tcontext,
458 				    u16 tclass,
459 				    u32 permissions,
460 				    const char *reason)
461 {
462 	struct common_datum *common_dat;
463 	struct class_datum *tclass_dat;
464 	struct audit_buffer *ab;
465 	char *tclass_name;
466 	char *scontext_name = NULL;
467 	char *tcontext_name = NULL;
468 	char *permission_names[32];
469 	int index;
470 	u32 length;
471 	bool need_comma = false;
472 
473 	if (!permissions)
474 		return;
475 
476 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
477 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
478 	common_dat = tclass_dat->comdatum;
479 
480 	/* init permission_names */
481 	if (common_dat &&
482 	    hashtab_map(&common_dat->permissions.table,
483 			dump_masked_av_helper, permission_names) < 0)
484 		goto out;
485 
486 	if (hashtab_map(&tclass_dat->permissions.table,
487 			dump_masked_av_helper, permission_names) < 0)
488 		goto out;
489 
490 	/* get scontext/tcontext in text form */
491 	if (context_struct_to_string(policydb, scontext,
492 				     &scontext_name, &length) < 0)
493 		goto out;
494 
495 	if (context_struct_to_string(policydb, tcontext,
496 				     &tcontext_name, &length) < 0)
497 		goto out;
498 
499 	/* audit a message */
500 	ab = audit_log_start(audit_context(),
501 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
502 	if (!ab)
503 		goto out;
504 
505 	audit_log_format(ab, "op=security_compute_av reason=%s "
506 			 "scontext=%s tcontext=%s tclass=%s perms=",
507 			 reason, scontext_name, tcontext_name, tclass_name);
508 
509 	for (index = 0; index < 32; index++) {
510 		u32 mask = (1 << index);
511 
512 		if ((mask & permissions) == 0)
513 			continue;
514 
515 		audit_log_format(ab, "%s%s",
516 				 need_comma ? "," : "",
517 				 permission_names[index]
518 				 ? permission_names[index] : "????");
519 		need_comma = true;
520 	}
521 	audit_log_end(ab);
522 out:
523 	/* release scontext/tcontext */
524 	kfree(tcontext_name);
525 	kfree(scontext_name);
526 }
527 
528 /*
529  * security_boundary_permission - drops violated permissions
530  * on boundary constraint.
531  */
532 static void type_attribute_bounds_av(struct policydb *policydb,
533 				     struct context *scontext,
534 				     struct context *tcontext,
535 				     u16 tclass,
536 				     struct av_decision *avd)
537 {
538 	struct context lo_scontext;
539 	struct context lo_tcontext, *tcontextp = tcontext;
540 	struct av_decision lo_avd;
541 	struct type_datum *source;
542 	struct type_datum *target;
543 	u32 masked = 0;
544 
545 	source = policydb->type_val_to_struct[scontext->type - 1];
546 	BUG_ON(!source);
547 
548 	if (!source->bounds)
549 		return;
550 
551 	target = policydb->type_val_to_struct[tcontext->type - 1];
552 	BUG_ON(!target);
553 
554 	memset(&lo_avd, 0, sizeof(lo_avd));
555 
556 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
557 	lo_scontext.type = source->bounds;
558 
559 	if (target->bounds) {
560 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
561 		lo_tcontext.type = target->bounds;
562 		tcontextp = &lo_tcontext;
563 	}
564 
565 	context_struct_compute_av(policydb, &lo_scontext,
566 				  tcontextp,
567 				  tclass,
568 				  &lo_avd,
569 				  NULL);
570 
571 	masked = ~lo_avd.allowed & avd->allowed;
572 
573 	if (likely(!masked))
574 		return;		/* no masked permission */
575 
576 	/* mask violated permissions */
577 	avd->allowed &= ~masked;
578 
579 	/* audit masked permissions */
580 	security_dump_masked_av(policydb, scontext, tcontext,
581 				tclass, masked, "bounds");
582 }
583 
584 /*
585  * Flag which drivers have permissions and which base permissions are covered.
586  */
587 void services_compute_xperms_drivers(
588 		struct extended_perms *xperms,
589 		struct avtab_node *node)
590 {
591 	unsigned int i;
592 
593 	switch (node->datum.u.xperms->specified) {
594 	case AVTAB_XPERMS_IOCTLDRIVER:
595 		xperms->base_perms |= AVC_EXT_IOCTL;
596 		/* if one or more driver has all permissions allowed */
597 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
598 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
599 		break;
600 	case AVTAB_XPERMS_IOCTLFUNCTION:
601 		xperms->base_perms |= AVC_EXT_IOCTL;
602 		/* if allowing permissions within a driver */
603 		security_xperm_set(xperms->drivers.p,
604 					node->datum.u.xperms->driver);
605 		break;
606 	case AVTAB_XPERMS_NLMSG:
607 		xperms->base_perms |= AVC_EXT_NLMSG;
608 		/* if allowing permissions within a driver */
609 		security_xperm_set(xperms->drivers.p,
610 					node->datum.u.xperms->driver);
611 		break;
612 	}
613 
614 	xperms->len = 1;
615 }
616 
617 /*
618  * Compute access vectors and extended permissions based on a context
619  * structure pair for the permissions in a particular class.
620  */
621 static void context_struct_compute_av(struct policydb *policydb,
622 				      struct context *scontext,
623 				      struct context *tcontext,
624 				      u16 tclass,
625 				      struct av_decision *avd,
626 				      struct extended_perms *xperms)
627 {
628 	struct constraint_node *constraint;
629 	struct role_allow *ra;
630 	struct avtab_key avkey;
631 	struct avtab_node *node;
632 	struct class_datum *tclass_datum;
633 	struct ebitmap *sattr, *tattr;
634 	struct ebitmap_node *snode, *tnode;
635 	unsigned int i, j;
636 
637 	avd->allowed = 0;
638 	avd->auditallow = 0;
639 	avd->auditdeny = 0xffffffff;
640 	if (xperms) {
641 		memset(xperms, 0, sizeof(*xperms));
642 	}
643 
644 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
645 		pr_warn_ratelimited("SELinux:  Invalid class %u\n", tclass);
646 		return;
647 	}
648 
649 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
650 
651 	/*
652 	 * If a specific type enforcement rule was defined for
653 	 * this permission check, then use it.
654 	 */
655 	avkey.target_class = tclass;
656 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
657 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
658 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
659 	ebitmap_for_each_positive_bit(sattr, snode, i) {
660 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
661 			avkey.source_type = i + 1;
662 			avkey.target_type = j + 1;
663 			for (node = avtab_search_node(&policydb->te_avtab,
664 						      &avkey);
665 			     node;
666 			     node = avtab_search_node_next(node, avkey.specified)) {
667 				if (node->key.specified == AVTAB_ALLOWED)
668 					avd->allowed |= node->datum.u.data;
669 				else if (node->key.specified == AVTAB_AUDITALLOW)
670 					avd->auditallow |= node->datum.u.data;
671 				else if (node->key.specified == AVTAB_AUDITDENY)
672 					avd->auditdeny &= node->datum.u.data;
673 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
674 					services_compute_xperms_drivers(xperms, node);
675 			}
676 
677 			/* Check conditional av table for additional permissions */
678 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
679 					avd, xperms);
680 
681 		}
682 	}
683 
684 	/*
685 	 * Remove any permissions prohibited by a constraint (this includes
686 	 * the MLS policy).
687 	 */
688 	constraint = tclass_datum->constraints;
689 	while (constraint) {
690 		if ((constraint->permissions & (avd->allowed)) &&
691 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
692 					  constraint->expr)) {
693 			avd->allowed &= ~(constraint->permissions);
694 		}
695 		constraint = constraint->next;
696 	}
697 
698 	/*
699 	 * If checking process transition permission and the
700 	 * role is changing, then check the (current_role, new_role)
701 	 * pair.
702 	 */
703 	if (tclass == policydb->process_class &&
704 	    (avd->allowed & policydb->process_trans_perms) &&
705 	    scontext->role != tcontext->role) {
706 		for (ra = policydb->role_allow; ra; ra = ra->next) {
707 			if (scontext->role == ra->role &&
708 			    tcontext->role == ra->new_role)
709 				break;
710 		}
711 		if (!ra)
712 			avd->allowed &= ~policydb->process_trans_perms;
713 	}
714 
715 	/*
716 	 * If the given source and target types have boundary
717 	 * constraint, lazy checks have to mask any violated
718 	 * permission and notice it to userspace via audit.
719 	 */
720 	type_attribute_bounds_av(policydb, scontext, tcontext,
721 				 tclass, avd);
722 }
723 
724 static int security_validtrans_handle_fail(struct selinux_policy *policy,
725 					struct sidtab_entry *oentry,
726 					struct sidtab_entry *nentry,
727 					struct sidtab_entry *tentry,
728 					u16 tclass)
729 {
730 	struct policydb *p = &policy->policydb;
731 	struct sidtab *sidtab = policy->sidtab;
732 	char *o = NULL, *n = NULL, *t = NULL;
733 	u32 olen, nlen, tlen;
734 
735 	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
736 		goto out;
737 	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
738 		goto out;
739 	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
740 		goto out;
741 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
742 		  "op=security_validate_transition seresult=denied"
743 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
744 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
745 out:
746 	kfree(o);
747 	kfree(n);
748 	kfree(t);
749 
750 	if (!enforcing_enabled())
751 		return 0;
752 	return -EPERM;
753 }
754 
755 static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
756 					  u16 orig_tclass, bool user)
757 {
758 	struct selinux_policy *policy;
759 	struct policydb *policydb;
760 	struct sidtab *sidtab;
761 	struct sidtab_entry *oentry;
762 	struct sidtab_entry *nentry;
763 	struct sidtab_entry *tentry;
764 	struct class_datum *tclass_datum;
765 	struct constraint_node *constraint;
766 	u16 tclass;
767 	int rc = 0;
768 
769 
770 	if (!selinux_initialized())
771 		return 0;
772 
773 	rcu_read_lock();
774 
775 	policy = rcu_dereference(selinux_state.policy);
776 	policydb = &policy->policydb;
777 	sidtab = policy->sidtab;
778 
779 	if (!user)
780 		tclass = unmap_class(&policy->map, orig_tclass);
781 	else
782 		tclass = orig_tclass;
783 
784 	if (!tclass || tclass > policydb->p_classes.nprim) {
785 		rc = -EINVAL;
786 		goto out;
787 	}
788 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
789 
790 	oentry = sidtab_search_entry(sidtab, oldsid);
791 	if (!oentry) {
792 		pr_err("SELinux: %s:  unrecognized SID %d\n",
793 			__func__, oldsid);
794 		rc = -EINVAL;
795 		goto out;
796 	}
797 
798 	nentry = sidtab_search_entry(sidtab, newsid);
799 	if (!nentry) {
800 		pr_err("SELinux: %s:  unrecognized SID %d\n",
801 			__func__, newsid);
802 		rc = -EINVAL;
803 		goto out;
804 	}
805 
806 	tentry = sidtab_search_entry(sidtab, tasksid);
807 	if (!tentry) {
808 		pr_err("SELinux: %s:  unrecognized SID %d\n",
809 			__func__, tasksid);
810 		rc = -EINVAL;
811 		goto out;
812 	}
813 
814 	constraint = tclass_datum->validatetrans;
815 	while (constraint) {
816 		if (!constraint_expr_eval(policydb, &oentry->context,
817 					  &nentry->context, &tentry->context,
818 					  constraint->expr)) {
819 			if (user)
820 				rc = -EPERM;
821 			else
822 				rc = security_validtrans_handle_fail(policy,
823 								oentry,
824 								nentry,
825 								tentry,
826 								tclass);
827 			goto out;
828 		}
829 		constraint = constraint->next;
830 	}
831 
832 out:
833 	rcu_read_unlock();
834 	return rc;
835 }
836 
837 int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
838 				      u16 tclass)
839 {
840 	return security_compute_validatetrans(oldsid, newsid, tasksid,
841 					      tclass, true);
842 }
843 
844 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
845 				 u16 orig_tclass)
846 {
847 	return security_compute_validatetrans(oldsid, newsid, tasksid,
848 					      orig_tclass, false);
849 }
850 
851 /*
852  * security_bounded_transition - check whether the given
853  * transition is directed to bounded, or not.
854  * It returns 0, if @newsid is bounded by @oldsid.
855  * Otherwise, it returns error code.
856  *
857  * @oldsid : current security identifier
858  * @newsid : destinated security identifier
859  */
860 int security_bounded_transition(u32 old_sid, u32 new_sid)
861 {
862 	struct selinux_policy *policy;
863 	struct policydb *policydb;
864 	struct sidtab *sidtab;
865 	struct sidtab_entry *old_entry, *new_entry;
866 	struct type_datum *type;
867 	u32 index;
868 	int rc;
869 
870 	if (!selinux_initialized())
871 		return 0;
872 
873 	rcu_read_lock();
874 	policy = rcu_dereference(selinux_state.policy);
875 	policydb = &policy->policydb;
876 	sidtab = policy->sidtab;
877 
878 	rc = -EINVAL;
879 	old_entry = sidtab_search_entry(sidtab, old_sid);
880 	if (!old_entry) {
881 		pr_err("SELinux: %s: unrecognized SID %u\n",
882 		       __func__, old_sid);
883 		goto out;
884 	}
885 
886 	rc = -EINVAL;
887 	new_entry = sidtab_search_entry(sidtab, new_sid);
888 	if (!new_entry) {
889 		pr_err("SELinux: %s: unrecognized SID %u\n",
890 		       __func__, new_sid);
891 		goto out;
892 	}
893 
894 	rc = 0;
895 	/* type/domain unchanged */
896 	if (old_entry->context.type == new_entry->context.type)
897 		goto out;
898 
899 	index = new_entry->context.type;
900 	while (true) {
901 		type = policydb->type_val_to_struct[index - 1];
902 		BUG_ON(!type);
903 
904 		/* not bounded anymore */
905 		rc = -EPERM;
906 		if (!type->bounds)
907 			break;
908 
909 		/* @newsid is bounded by @oldsid */
910 		rc = 0;
911 		if (type->bounds == old_entry->context.type)
912 			break;
913 
914 		index = type->bounds;
915 	}
916 
917 	if (rc) {
918 		char *old_name = NULL;
919 		char *new_name = NULL;
920 		u32 length;
921 
922 		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
923 					    &old_name, &length) &&
924 		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
925 					    &new_name, &length)) {
926 			audit_log(audit_context(),
927 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
928 				  "op=security_bounded_transition "
929 				  "seresult=denied "
930 				  "oldcontext=%s newcontext=%s",
931 				  old_name, new_name);
932 		}
933 		kfree(new_name);
934 		kfree(old_name);
935 	}
936 out:
937 	rcu_read_unlock();
938 
939 	return rc;
940 }
941 
942 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
943 {
944 	avd->allowed = 0;
945 	avd->auditallow = 0;
946 	avd->auditdeny = 0xffffffff;
947 	if (policy)
948 		avd->seqno = policy->latest_granting;
949 	else
950 		avd->seqno = 0;
951 	avd->flags = 0;
952 }
953 
954 static void update_xperms_extended_data(u8 specified,
955 					struct extended_perms_data *from,
956 					struct extended_perms_data *xp_data)
957 {
958 	unsigned int i;
959 
960 	switch (specified) {
961 	case AVTAB_XPERMS_IOCTLDRIVER:
962 		memset(xp_data->p, 0xff, sizeof(xp_data->p));
963 		break;
964 	case AVTAB_XPERMS_IOCTLFUNCTION:
965 	case AVTAB_XPERMS_NLMSG:
966 		for (i = 0; i < ARRAY_SIZE(xp_data->p); i++)
967 			xp_data->p[i] |= from->p[i];
968 		break;
969 	}
970 
971 }
972 
973 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
974 					struct avtab_node *node)
975 {
976 	switch (node->datum.u.xperms->specified) {
977 	case AVTAB_XPERMS_IOCTLFUNCTION:
978 		if (xpermd->base_perm != AVC_EXT_IOCTL ||
979 		    xpermd->driver != node->datum.u.xperms->driver)
980 			return;
981 		break;
982 	case AVTAB_XPERMS_IOCTLDRIVER:
983 		if (xpermd->base_perm != AVC_EXT_IOCTL ||
984 		    !security_xperm_test(node->datum.u.xperms->perms.p,
985 					 xpermd->driver))
986 			return;
987 		break;
988 	case AVTAB_XPERMS_NLMSG:
989 		if (xpermd->base_perm != AVC_EXT_NLMSG ||
990 		    xpermd->driver != node->datum.u.xperms->driver)
991 			return;
992 		break;
993 	default:
994 		pr_warn_once(
995 			"SELinux: unknown extended permission (%u) will be ignored\n",
996 			node->datum.u.xperms->specified);
997 		return;
998 	}
999 
1000 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
1001 		xpermd->used |= XPERMS_ALLOWED;
1002 		update_xperms_extended_data(node->datum.u.xperms->specified,
1003 					    &node->datum.u.xperms->perms,
1004 					    xpermd->allowed);
1005 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
1006 		xpermd->used |= XPERMS_AUDITALLOW;
1007 		update_xperms_extended_data(node->datum.u.xperms->specified,
1008 					    &node->datum.u.xperms->perms,
1009 					    xpermd->auditallow);
1010 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
1011 		xpermd->used |= XPERMS_DONTAUDIT;
1012 		update_xperms_extended_data(node->datum.u.xperms->specified,
1013 					    &node->datum.u.xperms->perms,
1014 					    xpermd->dontaudit);
1015 	} else {
1016 		pr_warn_once("SELinux: unknown specified key (%u)\n",
1017 			     node->key.specified);
1018 	}
1019 }
1020 
1021 void security_compute_xperms_decision(u32 ssid,
1022 				      u32 tsid,
1023 				      u16 orig_tclass,
1024 				      u8 driver,
1025 				      u8 base_perm,
1026 				      struct extended_perms_decision *xpermd)
1027 {
1028 	struct selinux_policy *policy;
1029 	struct policydb *policydb;
1030 	struct sidtab *sidtab;
1031 	u16 tclass;
1032 	struct context *scontext, *tcontext;
1033 	struct avtab_key avkey;
1034 	struct avtab_node *node;
1035 	struct ebitmap *sattr, *tattr;
1036 	struct ebitmap_node *snode, *tnode;
1037 	unsigned int i, j;
1038 
1039 	xpermd->base_perm = base_perm;
1040 	xpermd->driver = driver;
1041 	xpermd->used = 0;
1042 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1043 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1044 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1045 
1046 	rcu_read_lock();
1047 	if (!selinux_initialized())
1048 		goto allow;
1049 
1050 	policy = rcu_dereference(selinux_state.policy);
1051 	policydb = &policy->policydb;
1052 	sidtab = policy->sidtab;
1053 
1054 	scontext = sidtab_search(sidtab, ssid);
1055 	if (!scontext) {
1056 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1057 		       __func__, ssid);
1058 		goto out;
1059 	}
1060 
1061 	tcontext = sidtab_search(sidtab, tsid);
1062 	if (!tcontext) {
1063 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1064 		       __func__, tsid);
1065 		goto out;
1066 	}
1067 
1068 	tclass = unmap_class(&policy->map, orig_tclass);
1069 	if (unlikely(orig_tclass && !tclass)) {
1070 		if (policydb->allow_unknown)
1071 			goto allow;
1072 		goto out;
1073 	}
1074 
1075 
1076 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1077 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1078 		goto out;
1079 	}
1080 
1081 	avkey.target_class = tclass;
1082 	avkey.specified = AVTAB_XPERMS;
1083 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1084 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1085 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1086 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1087 			avkey.source_type = i + 1;
1088 			avkey.target_type = j + 1;
1089 			for (node = avtab_search_node(&policydb->te_avtab,
1090 						      &avkey);
1091 			     node;
1092 			     node = avtab_search_node_next(node, avkey.specified))
1093 				services_compute_xperms_decision(xpermd, node);
1094 
1095 			cond_compute_xperms(&policydb->te_cond_avtab,
1096 						&avkey, xpermd);
1097 		}
1098 	}
1099 out:
1100 	rcu_read_unlock();
1101 	return;
1102 allow:
1103 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1104 	goto out;
1105 }
1106 
1107 /**
1108  * security_compute_av - Compute access vector decisions.
1109  * @ssid: source security identifier
1110  * @tsid: target security identifier
1111  * @orig_tclass: target security class
1112  * @avd: access vector decisions
1113  * @xperms: extended permissions
1114  *
1115  * Compute a set of access vector decisions based on the
1116  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1117  */
1118 void security_compute_av(u32 ssid,
1119 			 u32 tsid,
1120 			 u16 orig_tclass,
1121 			 struct av_decision *avd,
1122 			 struct extended_perms *xperms)
1123 {
1124 	struct selinux_policy *policy;
1125 	struct policydb *policydb;
1126 	struct sidtab *sidtab;
1127 	u16 tclass;
1128 	struct context *scontext = NULL, *tcontext = NULL;
1129 
1130 	rcu_read_lock();
1131 	policy = rcu_dereference(selinux_state.policy);
1132 	avd_init(policy, avd);
1133 	xperms->len = 0;
1134 	if (!selinux_initialized())
1135 		goto allow;
1136 
1137 	policydb = &policy->policydb;
1138 	sidtab = policy->sidtab;
1139 
1140 	scontext = sidtab_search(sidtab, ssid);
1141 	if (!scontext) {
1142 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1143 		       __func__, ssid);
1144 		goto out;
1145 	}
1146 
1147 	/* permissive domain? */
1148 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1149 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1150 
1151 	tcontext = sidtab_search(sidtab, tsid);
1152 	if (!tcontext) {
1153 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1154 		       __func__, tsid);
1155 		goto out;
1156 	}
1157 
1158 	tclass = unmap_class(&policy->map, orig_tclass);
1159 	if (unlikely(orig_tclass && !tclass)) {
1160 		if (policydb->allow_unknown)
1161 			goto allow;
1162 		goto out;
1163 	}
1164 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1165 				  xperms);
1166 	map_decision(&policy->map, orig_tclass, avd,
1167 		     policydb->allow_unknown);
1168 out:
1169 	rcu_read_unlock();
1170 	return;
1171 allow:
1172 	avd->allowed = 0xffffffff;
1173 	goto out;
1174 }
1175 
1176 void security_compute_av_user(u32 ssid,
1177 			      u32 tsid,
1178 			      u16 tclass,
1179 			      struct av_decision *avd)
1180 {
1181 	struct selinux_policy *policy;
1182 	struct policydb *policydb;
1183 	struct sidtab *sidtab;
1184 	struct context *scontext = NULL, *tcontext = NULL;
1185 
1186 	rcu_read_lock();
1187 	policy = rcu_dereference(selinux_state.policy);
1188 	avd_init(policy, avd);
1189 	if (!selinux_initialized())
1190 		goto allow;
1191 
1192 	policydb = &policy->policydb;
1193 	sidtab = policy->sidtab;
1194 
1195 	scontext = sidtab_search(sidtab, ssid);
1196 	if (!scontext) {
1197 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1198 		       __func__, ssid);
1199 		goto out;
1200 	}
1201 
1202 	/* permissive domain? */
1203 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1204 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1205 
1206 	tcontext = sidtab_search(sidtab, tsid);
1207 	if (!tcontext) {
1208 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1209 		       __func__, tsid);
1210 		goto out;
1211 	}
1212 
1213 	if (unlikely(!tclass)) {
1214 		if (policydb->allow_unknown)
1215 			goto allow;
1216 		goto out;
1217 	}
1218 
1219 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1220 				  NULL);
1221  out:
1222 	rcu_read_unlock();
1223 	return;
1224 allow:
1225 	avd->allowed = 0xffffffff;
1226 	goto out;
1227 }
1228 
1229 /*
1230  * Write the security context string representation of
1231  * the context structure `context' into a dynamically
1232  * allocated string of the correct size.  Set `*scontext'
1233  * to point to this string and set `*scontext_len' to
1234  * the length of the string.
1235  */
1236 static int context_struct_to_string(struct policydb *p,
1237 				    struct context *context,
1238 				    char **scontext, u32 *scontext_len)
1239 {
1240 	char *scontextp;
1241 
1242 	if (scontext)
1243 		*scontext = NULL;
1244 	*scontext_len = 0;
1245 
1246 	if (context->len) {
1247 		*scontext_len = context->len;
1248 		if (scontext) {
1249 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1250 			if (!(*scontext))
1251 				return -ENOMEM;
1252 		}
1253 		return 0;
1254 	}
1255 
1256 	/* Compute the size of the context. */
1257 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1258 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1259 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1260 	*scontext_len += mls_compute_context_len(p, context);
1261 
1262 	if (!scontext)
1263 		return 0;
1264 
1265 	/* Allocate space for the context; caller must free this space. */
1266 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1267 	if (!scontextp)
1268 		return -ENOMEM;
1269 	*scontext = scontextp;
1270 
1271 	/*
1272 	 * Copy the user name, role name and type name into the context.
1273 	 */
1274 	scontextp += sprintf(scontextp, "%s:%s:%s",
1275 		sym_name(p, SYM_USERS, context->user - 1),
1276 		sym_name(p, SYM_ROLES, context->role - 1),
1277 		sym_name(p, SYM_TYPES, context->type - 1));
1278 
1279 	mls_sid_to_context(p, context, &scontextp);
1280 
1281 	*scontextp = 0;
1282 
1283 	return 0;
1284 }
1285 
1286 static int sidtab_entry_to_string(struct policydb *p,
1287 				  struct sidtab *sidtab,
1288 				  struct sidtab_entry *entry,
1289 				  char **scontext, u32 *scontext_len)
1290 {
1291 	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1292 
1293 	if (rc != -ENOENT)
1294 		return rc;
1295 
1296 	rc = context_struct_to_string(p, &entry->context, scontext,
1297 				      scontext_len);
1298 	if (!rc && scontext)
1299 		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1300 	return rc;
1301 }
1302 
1303 #include "initial_sid_to_string.h"
1304 
1305 int security_sidtab_hash_stats(char *page)
1306 {
1307 	struct selinux_policy *policy;
1308 	int rc;
1309 
1310 	if (!selinux_initialized()) {
1311 		pr_err("SELinux: %s:  called before initial load_policy\n",
1312 		       __func__);
1313 		return -EINVAL;
1314 	}
1315 
1316 	rcu_read_lock();
1317 	policy = rcu_dereference(selinux_state.policy);
1318 	rc = sidtab_hash_stats(policy->sidtab, page);
1319 	rcu_read_unlock();
1320 
1321 	return rc;
1322 }
1323 
1324 const char *security_get_initial_sid_context(u32 sid)
1325 {
1326 	if (unlikely(sid > SECINITSID_NUM))
1327 		return NULL;
1328 	return initial_sid_to_string[sid];
1329 }
1330 
1331 static int security_sid_to_context_core(u32 sid, char **scontext,
1332 					u32 *scontext_len, int force,
1333 					int only_invalid)
1334 {
1335 	struct selinux_policy *policy;
1336 	struct policydb *policydb;
1337 	struct sidtab *sidtab;
1338 	struct sidtab_entry *entry;
1339 	int rc = 0;
1340 
1341 	if (scontext)
1342 		*scontext = NULL;
1343 	*scontext_len  = 0;
1344 
1345 	if (!selinux_initialized()) {
1346 		if (sid <= SECINITSID_NUM) {
1347 			char *scontextp;
1348 			const char *s;
1349 
1350 			/*
1351 			 * Before the policy is loaded, translate
1352 			 * SECINITSID_INIT to "kernel", because systemd and
1353 			 * libselinux < 2.6 take a getcon_raw() result that is
1354 			 * both non-null and not "kernel" to mean that a policy
1355 			 * is already loaded.
1356 			 */
1357 			if (sid == SECINITSID_INIT)
1358 				sid = SECINITSID_KERNEL;
1359 
1360 			s = initial_sid_to_string[sid];
1361 			if (!s)
1362 				return -EINVAL;
1363 			*scontext_len = strlen(s) + 1;
1364 			if (!scontext)
1365 				return 0;
1366 			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1367 			if (!scontextp)
1368 				return -ENOMEM;
1369 			*scontext = scontextp;
1370 			return 0;
1371 		}
1372 		pr_err("SELinux: %s:  called before initial "
1373 		       "load_policy on unknown SID %d\n", __func__, sid);
1374 		return -EINVAL;
1375 	}
1376 	rcu_read_lock();
1377 	policy = rcu_dereference(selinux_state.policy);
1378 	policydb = &policy->policydb;
1379 	sidtab = policy->sidtab;
1380 
1381 	if (force)
1382 		entry = sidtab_search_entry_force(sidtab, sid);
1383 	else
1384 		entry = sidtab_search_entry(sidtab, sid);
1385 	if (!entry) {
1386 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1387 			__func__, sid);
1388 		rc = -EINVAL;
1389 		goto out_unlock;
1390 	}
1391 	if (only_invalid && !entry->context.len)
1392 		goto out_unlock;
1393 
1394 	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1395 				    scontext_len);
1396 
1397 out_unlock:
1398 	rcu_read_unlock();
1399 	return rc;
1400 
1401 }
1402 
1403 /**
1404  * security_sid_to_context - Obtain a context for a given SID.
1405  * @sid: security identifier, SID
1406  * @scontext: security context
1407  * @scontext_len: length in bytes
1408  *
1409  * Write the string representation of the context associated with @sid
1410  * into a dynamically allocated string of the correct size.  Set @scontext
1411  * to point to this string and set @scontext_len to the length of the string.
1412  */
1413 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1414 {
1415 	return security_sid_to_context_core(sid, scontext,
1416 					    scontext_len, 0, 0);
1417 }
1418 
1419 int security_sid_to_context_force(u32 sid,
1420 				  char **scontext, u32 *scontext_len)
1421 {
1422 	return security_sid_to_context_core(sid, scontext,
1423 					    scontext_len, 1, 0);
1424 }
1425 
1426 /**
1427  * security_sid_to_context_inval - Obtain a context for a given SID if it
1428  *                                 is invalid.
1429  * @sid: security identifier, SID
1430  * @scontext: security context
1431  * @scontext_len: length in bytes
1432  *
1433  * Write the string representation of the context associated with @sid
1434  * into a dynamically allocated string of the correct size, but only if the
1435  * context is invalid in the current policy.  Set @scontext to point to
1436  * this string (or NULL if the context is valid) and set @scontext_len to
1437  * the length of the string (or 0 if the context is valid).
1438  */
1439 int security_sid_to_context_inval(u32 sid,
1440 				  char **scontext, u32 *scontext_len)
1441 {
1442 	return security_sid_to_context_core(sid, scontext,
1443 					    scontext_len, 1, 1);
1444 }
1445 
1446 /*
1447  * Caveat:  Mutates scontext.
1448  */
1449 static int string_to_context_struct(struct policydb *pol,
1450 				    struct sidtab *sidtabp,
1451 				    char *scontext,
1452 				    struct context *ctx,
1453 				    u32 def_sid)
1454 {
1455 	struct role_datum *role;
1456 	struct type_datum *typdatum;
1457 	struct user_datum *usrdatum;
1458 	char *scontextp, *p, oldc;
1459 	int rc = 0;
1460 
1461 	context_init(ctx);
1462 
1463 	/* Parse the security context. */
1464 
1465 	rc = -EINVAL;
1466 	scontextp = scontext;
1467 
1468 	/* Extract the user. */
1469 	p = scontextp;
1470 	while (*p && *p != ':')
1471 		p++;
1472 
1473 	if (*p == 0)
1474 		goto out;
1475 
1476 	*p++ = 0;
1477 
1478 	usrdatum = symtab_search(&pol->p_users, scontextp);
1479 	if (!usrdatum)
1480 		goto out;
1481 
1482 	ctx->user = usrdatum->value;
1483 
1484 	/* Extract role. */
1485 	scontextp = p;
1486 	while (*p && *p != ':')
1487 		p++;
1488 
1489 	if (*p == 0)
1490 		goto out;
1491 
1492 	*p++ = 0;
1493 
1494 	role = symtab_search(&pol->p_roles, scontextp);
1495 	if (!role)
1496 		goto out;
1497 	ctx->role = role->value;
1498 
1499 	/* Extract type. */
1500 	scontextp = p;
1501 	while (*p && *p != ':')
1502 		p++;
1503 	oldc = *p;
1504 	*p++ = 0;
1505 
1506 	typdatum = symtab_search(&pol->p_types, scontextp);
1507 	if (!typdatum || typdatum->attribute)
1508 		goto out;
1509 
1510 	ctx->type = typdatum->value;
1511 
1512 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1513 	if (rc)
1514 		goto out;
1515 
1516 	/* Check the validity of the new context. */
1517 	rc = -EINVAL;
1518 	if (!policydb_context_isvalid(pol, ctx))
1519 		goto out;
1520 	rc = 0;
1521 out:
1522 	if (rc)
1523 		context_destroy(ctx);
1524 	return rc;
1525 }
1526 
1527 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1528 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1529 					int force)
1530 {
1531 	struct selinux_policy *policy;
1532 	struct policydb *policydb;
1533 	struct sidtab *sidtab;
1534 	char *scontext2, *str = NULL;
1535 	struct context context;
1536 	int rc = 0;
1537 
1538 	/* An empty security context is never valid. */
1539 	if (!scontext_len)
1540 		return -EINVAL;
1541 
1542 	/* Copy the string to allow changes and ensure a NUL terminator */
1543 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1544 	if (!scontext2)
1545 		return -ENOMEM;
1546 
1547 	if (!selinux_initialized()) {
1548 		u32 i;
1549 
1550 		for (i = 1; i < SECINITSID_NUM; i++) {
1551 			const char *s = initial_sid_to_string[i];
1552 
1553 			if (s && !strcmp(s, scontext2)) {
1554 				*sid = i;
1555 				goto out;
1556 			}
1557 		}
1558 		*sid = SECINITSID_KERNEL;
1559 		goto out;
1560 	}
1561 	*sid = SECSID_NULL;
1562 
1563 	if (force) {
1564 		/* Save another copy for storing in uninterpreted form */
1565 		rc = -ENOMEM;
1566 		str = kstrdup(scontext2, gfp_flags);
1567 		if (!str)
1568 			goto out;
1569 	}
1570 retry:
1571 	rcu_read_lock();
1572 	policy = rcu_dereference(selinux_state.policy);
1573 	policydb = &policy->policydb;
1574 	sidtab = policy->sidtab;
1575 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1576 				      &context, def_sid);
1577 	if (rc == -EINVAL && force) {
1578 		context.str = str;
1579 		context.len = strlen(str) + 1;
1580 		str = NULL;
1581 	} else if (rc)
1582 		goto out_unlock;
1583 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1584 	if (rc == -ESTALE) {
1585 		rcu_read_unlock();
1586 		if (context.str) {
1587 			str = context.str;
1588 			context.str = NULL;
1589 		}
1590 		context_destroy(&context);
1591 		goto retry;
1592 	}
1593 	context_destroy(&context);
1594 out_unlock:
1595 	rcu_read_unlock();
1596 out:
1597 	kfree(scontext2);
1598 	kfree(str);
1599 	return rc;
1600 }
1601 
1602 /**
1603  * security_context_to_sid - Obtain a SID for a given security context.
1604  * @scontext: security context
1605  * @scontext_len: length in bytes
1606  * @sid: security identifier, SID
1607  * @gfp: context for the allocation
1608  *
1609  * Obtains a SID associated with the security context that
1610  * has the string representation specified by @scontext.
1611  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1612  * memory is available, or 0 on success.
1613  */
1614 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1615 			    gfp_t gfp)
1616 {
1617 	return security_context_to_sid_core(scontext, scontext_len,
1618 					    sid, SECSID_NULL, gfp, 0);
1619 }
1620 
1621 int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1622 {
1623 	return security_context_to_sid(scontext, strlen(scontext),
1624 				       sid, gfp);
1625 }
1626 
1627 /**
1628  * security_context_to_sid_default - Obtain a SID for a given security context,
1629  * falling back to specified default if needed.
1630  *
1631  * @scontext: security context
1632  * @scontext_len: length in bytes
1633  * @sid: security identifier, SID
1634  * @def_sid: default SID to assign on error
1635  * @gfp_flags: the allocator get-free-page (GFP) flags
1636  *
1637  * Obtains a SID associated with the security context that
1638  * has the string representation specified by @scontext.
1639  * The default SID is passed to the MLS layer to be used to allow
1640  * kernel labeling of the MLS field if the MLS field is not present
1641  * (for upgrading to MLS without full relabel).
1642  * Implicitly forces adding of the context even if it cannot be mapped yet.
1643  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1644  * memory is available, or 0 on success.
1645  */
1646 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1647 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1648 {
1649 	return security_context_to_sid_core(scontext, scontext_len,
1650 					    sid, def_sid, gfp_flags, 1);
1651 }
1652 
1653 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1654 				  u32 *sid)
1655 {
1656 	return security_context_to_sid_core(scontext, scontext_len,
1657 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1658 }
1659 
1660 static int compute_sid_handle_invalid_context(
1661 	struct selinux_policy *policy,
1662 	struct sidtab_entry *sentry,
1663 	struct sidtab_entry *tentry,
1664 	u16 tclass,
1665 	struct context *newcontext)
1666 {
1667 	struct policydb *policydb = &policy->policydb;
1668 	struct sidtab *sidtab = policy->sidtab;
1669 	char *s = NULL, *t = NULL, *n = NULL;
1670 	u32 slen, tlen, nlen;
1671 	struct audit_buffer *ab;
1672 
1673 	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1674 		goto out;
1675 	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1676 		goto out;
1677 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1678 		goto out;
1679 	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1680 	if (!ab)
1681 		goto out;
1682 	audit_log_format(ab,
1683 			 "op=security_compute_sid invalid_context=");
1684 	/* no need to record the NUL with untrusted strings */
1685 	audit_log_n_untrustedstring(ab, n, nlen - 1);
1686 	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1687 			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1688 	audit_log_end(ab);
1689 out:
1690 	kfree(s);
1691 	kfree(t);
1692 	kfree(n);
1693 	if (!enforcing_enabled())
1694 		return 0;
1695 	return -EACCES;
1696 }
1697 
1698 static void filename_compute_type(struct policydb *policydb,
1699 				  struct context *newcontext,
1700 				  u32 stype, u32 ttype, u16 tclass,
1701 				  const char *objname)
1702 {
1703 	struct filename_trans_key ft;
1704 	struct filename_trans_datum *datum;
1705 
1706 	/*
1707 	 * Most filename trans rules are going to live in specific directories
1708 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1709 	 * if the ttype does not contain any rules.
1710 	 */
1711 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1712 		return;
1713 
1714 	ft.ttype = ttype;
1715 	ft.tclass = tclass;
1716 	ft.name = objname;
1717 
1718 	datum = policydb_filenametr_search(policydb, &ft);
1719 	while (datum) {
1720 		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1721 			newcontext->type = datum->otype;
1722 			return;
1723 		}
1724 		datum = datum->next;
1725 	}
1726 }
1727 
1728 static int security_compute_sid(u32 ssid,
1729 				u32 tsid,
1730 				u16 orig_tclass,
1731 				u16 specified,
1732 				const char *objname,
1733 				u32 *out_sid,
1734 				bool kern)
1735 {
1736 	struct selinux_policy *policy;
1737 	struct policydb *policydb;
1738 	struct sidtab *sidtab;
1739 	struct class_datum *cladatum;
1740 	struct context *scontext, *tcontext, newcontext;
1741 	struct sidtab_entry *sentry, *tentry;
1742 	struct avtab_key avkey;
1743 	struct avtab_node *avnode, *node;
1744 	u16 tclass;
1745 	int rc = 0;
1746 	bool sock;
1747 
1748 	if (!selinux_initialized()) {
1749 		switch (orig_tclass) {
1750 		case SECCLASS_PROCESS: /* kernel value */
1751 			*out_sid = ssid;
1752 			break;
1753 		default:
1754 			*out_sid = tsid;
1755 			break;
1756 		}
1757 		goto out;
1758 	}
1759 
1760 retry:
1761 	cladatum = NULL;
1762 	context_init(&newcontext);
1763 
1764 	rcu_read_lock();
1765 
1766 	policy = rcu_dereference(selinux_state.policy);
1767 
1768 	if (kern) {
1769 		tclass = unmap_class(&policy->map, orig_tclass);
1770 		sock = security_is_socket_class(orig_tclass);
1771 	} else {
1772 		tclass = orig_tclass;
1773 		sock = security_is_socket_class(map_class(&policy->map,
1774 							  tclass));
1775 	}
1776 
1777 	policydb = &policy->policydb;
1778 	sidtab = policy->sidtab;
1779 
1780 	sentry = sidtab_search_entry(sidtab, ssid);
1781 	if (!sentry) {
1782 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1783 		       __func__, ssid);
1784 		rc = -EINVAL;
1785 		goto out_unlock;
1786 	}
1787 	tentry = sidtab_search_entry(sidtab, tsid);
1788 	if (!tentry) {
1789 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1790 		       __func__, tsid);
1791 		rc = -EINVAL;
1792 		goto out_unlock;
1793 	}
1794 
1795 	scontext = &sentry->context;
1796 	tcontext = &tentry->context;
1797 
1798 	if (tclass && tclass <= policydb->p_classes.nprim)
1799 		cladatum = policydb->class_val_to_struct[tclass - 1];
1800 
1801 	/* Set the user identity. */
1802 	switch (specified) {
1803 	case AVTAB_TRANSITION:
1804 	case AVTAB_CHANGE:
1805 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1806 			newcontext.user = tcontext->user;
1807 		} else {
1808 			/* notice this gets both DEFAULT_SOURCE and unset */
1809 			/* Use the process user identity. */
1810 			newcontext.user = scontext->user;
1811 		}
1812 		break;
1813 	case AVTAB_MEMBER:
1814 		/* Use the related object owner. */
1815 		newcontext.user = tcontext->user;
1816 		break;
1817 	}
1818 
1819 	/* Set the role to default values. */
1820 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1821 		newcontext.role = scontext->role;
1822 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1823 		newcontext.role = tcontext->role;
1824 	} else {
1825 		if ((tclass == policydb->process_class) || sock)
1826 			newcontext.role = scontext->role;
1827 		else
1828 			newcontext.role = OBJECT_R_VAL;
1829 	}
1830 
1831 	/* Set the type.
1832 	 * Look for a type transition/member/change rule.
1833 	 */
1834 	avkey.source_type = scontext->type;
1835 	avkey.target_type = tcontext->type;
1836 	avkey.target_class = tclass;
1837 	avkey.specified = specified;
1838 	avnode = avtab_search_node(&policydb->te_avtab, &avkey);
1839 
1840 	/* If no permanent rule, also check for enabled conditional rules */
1841 	if (!avnode) {
1842 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1843 		for (; node; node = avtab_search_node_next(node, specified)) {
1844 			if (node->key.specified & AVTAB_ENABLED) {
1845 				avnode = node;
1846 				break;
1847 			}
1848 		}
1849 	}
1850 
1851 	/* If a permanent rule is found, use the type from
1852 	 * the type transition/member/change rule. Otherwise,
1853 	 * set the type to its default values.
1854 	 */
1855 	if (avnode) {
1856 		newcontext.type = avnode->datum.u.data;
1857 	} else if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1858 		newcontext.type = scontext->type;
1859 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1860 		newcontext.type = tcontext->type;
1861 	} else {
1862 		if ((tclass == policydb->process_class) || sock) {
1863 			/* Use the type of process. */
1864 			newcontext.type = scontext->type;
1865 		} else {
1866 			/* Use the type of the related object. */
1867 			newcontext.type = tcontext->type;
1868 		}
1869 	}
1870 
1871 	/* if we have a objname this is a file trans check so check those rules */
1872 	if (objname)
1873 		filename_compute_type(policydb, &newcontext, scontext->type,
1874 				      tcontext->type, tclass, objname);
1875 
1876 	/* Check for class-specific changes. */
1877 	if (specified & AVTAB_TRANSITION) {
1878 		/* Look for a role transition rule. */
1879 		struct role_trans_datum *rtd;
1880 		struct role_trans_key rtk = {
1881 			.role = scontext->role,
1882 			.type = tcontext->type,
1883 			.tclass = tclass,
1884 		};
1885 
1886 		rtd = policydb_roletr_search(policydb, &rtk);
1887 		if (rtd)
1888 			newcontext.role = rtd->new_role;
1889 	}
1890 
1891 	/* Set the MLS attributes.
1892 	   This is done last because it may allocate memory. */
1893 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1894 			     &newcontext, sock);
1895 	if (rc)
1896 		goto out_unlock;
1897 
1898 	/* Check the validity of the context. */
1899 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1900 		rc = compute_sid_handle_invalid_context(policy, sentry,
1901 							tentry, tclass,
1902 							&newcontext);
1903 		if (rc)
1904 			goto out_unlock;
1905 	}
1906 	/* Obtain the sid for the context. */
1907 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1908 	if (rc == -ESTALE) {
1909 		rcu_read_unlock();
1910 		context_destroy(&newcontext);
1911 		goto retry;
1912 	}
1913 out_unlock:
1914 	rcu_read_unlock();
1915 	context_destroy(&newcontext);
1916 out:
1917 	return rc;
1918 }
1919 
1920 /**
1921  * security_transition_sid - Compute the SID for a new subject/object.
1922  * @ssid: source security identifier
1923  * @tsid: target security identifier
1924  * @tclass: target security class
1925  * @qstr: object name
1926  * @out_sid: security identifier for new subject/object
1927  *
1928  * Compute a SID to use for labeling a new subject or object in the
1929  * class @tclass based on a SID pair (@ssid, @tsid).
1930  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1931  * if insufficient memory is available, or %0 if the new SID was
1932  * computed successfully.
1933  */
1934 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1935 			    const struct qstr *qstr, u32 *out_sid)
1936 {
1937 	return security_compute_sid(ssid, tsid, tclass,
1938 				    AVTAB_TRANSITION,
1939 				    qstr ? qstr->name : NULL, out_sid, true);
1940 }
1941 
1942 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1943 				 const char *objname, u32 *out_sid)
1944 {
1945 	return security_compute_sid(ssid, tsid, tclass,
1946 				    AVTAB_TRANSITION,
1947 				    objname, out_sid, false);
1948 }
1949 
1950 /**
1951  * security_member_sid - Compute the SID for member selection.
1952  * @ssid: source security identifier
1953  * @tsid: target security identifier
1954  * @tclass: target security class
1955  * @out_sid: security identifier for selected member
1956  *
1957  * Compute a SID to use when selecting a member of a polyinstantiated
1958  * object of class @tclass based on a SID pair (@ssid, @tsid).
1959  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1960  * if insufficient memory is available, or %0 if the SID was
1961  * computed successfully.
1962  */
1963 int security_member_sid(u32 ssid,
1964 			u32 tsid,
1965 			u16 tclass,
1966 			u32 *out_sid)
1967 {
1968 	return security_compute_sid(ssid, tsid, tclass,
1969 				    AVTAB_MEMBER, NULL,
1970 				    out_sid, false);
1971 }
1972 
1973 /**
1974  * security_change_sid - Compute the SID for object relabeling.
1975  * @ssid: source security identifier
1976  * @tsid: target security identifier
1977  * @tclass: target security class
1978  * @out_sid: security identifier for selected member
1979  *
1980  * Compute a SID to use for relabeling an object of class @tclass
1981  * based on a SID pair (@ssid, @tsid).
1982  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1983  * if insufficient memory is available, or %0 if the SID was
1984  * computed successfully.
1985  */
1986 int security_change_sid(u32 ssid,
1987 			u32 tsid,
1988 			u16 tclass,
1989 			u32 *out_sid)
1990 {
1991 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1992 				    out_sid, false);
1993 }
1994 
1995 static inline int convert_context_handle_invalid_context(
1996 	struct policydb *policydb,
1997 	struct context *context)
1998 {
1999 	char *s;
2000 	u32 len;
2001 
2002 	if (enforcing_enabled())
2003 		return -EINVAL;
2004 
2005 	if (!context_struct_to_string(policydb, context, &s, &len)) {
2006 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2007 			s);
2008 		kfree(s);
2009 	}
2010 	return 0;
2011 }
2012 
2013 /**
2014  * services_convert_context - Convert a security context across policies.
2015  * @args: populated convert_context_args struct
2016  * @oldc: original context
2017  * @newc: converted context
2018  * @gfp_flags: allocation flags
2019  *
2020  * Convert the values in the security context structure @oldc from the values
2021  * specified in the policy @args->oldp to the values specified in the policy
2022  * @args->newp, storing the new context in @newc, and verifying that the
2023  * context is valid under the new policy.
2024  */
2025 int services_convert_context(struct convert_context_args *args,
2026 			     struct context *oldc, struct context *newc,
2027 			     gfp_t gfp_flags)
2028 {
2029 	struct ocontext *oc;
2030 	struct role_datum *role;
2031 	struct type_datum *typdatum;
2032 	struct user_datum *usrdatum;
2033 	char *s;
2034 	u32 len;
2035 	int rc;
2036 
2037 	if (oldc->str) {
2038 		s = kstrdup(oldc->str, gfp_flags);
2039 		if (!s)
2040 			return -ENOMEM;
2041 
2042 		rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2043 		if (rc == -EINVAL) {
2044 			/*
2045 			 * Retain string representation for later mapping.
2046 			 *
2047 			 * IMPORTANT: We need to copy the contents of oldc->str
2048 			 * back into s again because string_to_context_struct()
2049 			 * may have garbled it.
2050 			 */
2051 			memcpy(s, oldc->str, oldc->len);
2052 			context_init(newc);
2053 			newc->str = s;
2054 			newc->len = oldc->len;
2055 			return 0;
2056 		}
2057 		kfree(s);
2058 		if (rc) {
2059 			/* Other error condition, e.g. ENOMEM. */
2060 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2061 			       oldc->str, -rc);
2062 			return rc;
2063 		}
2064 		pr_info("SELinux:  Context %s became valid (mapped).\n",
2065 			oldc->str);
2066 		return 0;
2067 	}
2068 
2069 	context_init(newc);
2070 
2071 	/* Convert the user. */
2072 	usrdatum = symtab_search(&args->newp->p_users,
2073 				 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
2074 	if (!usrdatum)
2075 		goto bad;
2076 	newc->user = usrdatum->value;
2077 
2078 	/* Convert the role. */
2079 	role = symtab_search(&args->newp->p_roles,
2080 			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2081 	if (!role)
2082 		goto bad;
2083 	newc->role = role->value;
2084 
2085 	/* Convert the type. */
2086 	typdatum = symtab_search(&args->newp->p_types,
2087 				 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
2088 	if (!typdatum)
2089 		goto bad;
2090 	newc->type = typdatum->value;
2091 
2092 	/* Convert the MLS fields if dealing with MLS policies */
2093 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2094 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2095 		if (rc)
2096 			goto bad;
2097 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2098 		/*
2099 		 * Switching between non-MLS and MLS policy:
2100 		 * ensure that the MLS fields of the context for all
2101 		 * existing entries in the sidtab are filled in with a
2102 		 * suitable default value, likely taken from one of the
2103 		 * initial SIDs.
2104 		 */
2105 		oc = args->newp->ocontexts[OCON_ISID];
2106 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2107 			oc = oc->next;
2108 		if (!oc) {
2109 			pr_err("SELinux:  unable to look up"
2110 				" the initial SIDs list\n");
2111 			goto bad;
2112 		}
2113 		rc = mls_range_set(newc, &oc->context[0].range);
2114 		if (rc)
2115 			goto bad;
2116 	}
2117 
2118 	/* Check the validity of the new context. */
2119 	if (!policydb_context_isvalid(args->newp, newc)) {
2120 		rc = convert_context_handle_invalid_context(args->oldp, oldc);
2121 		if (rc)
2122 			goto bad;
2123 	}
2124 
2125 	return 0;
2126 bad:
2127 	/* Map old representation to string and save it. */
2128 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2129 	if (rc)
2130 		return rc;
2131 	context_destroy(newc);
2132 	newc->str = s;
2133 	newc->len = len;
2134 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2135 		newc->str);
2136 	return 0;
2137 }
2138 
2139 static void security_load_policycaps(struct selinux_policy *policy)
2140 {
2141 	struct policydb *p;
2142 	unsigned int i;
2143 	struct ebitmap_node *node;
2144 
2145 	p = &policy->policydb;
2146 
2147 	for (i = 0; i < ARRAY_SIZE(selinux_state.policycap); i++)
2148 		WRITE_ONCE(selinux_state.policycap[i],
2149 			ebitmap_get_bit(&p->policycaps, i));
2150 
2151 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2152 		pr_info("SELinux:  policy capability %s=%d\n",
2153 			selinux_policycap_names[i],
2154 			ebitmap_get_bit(&p->policycaps, i));
2155 
2156 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2157 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2158 			pr_info("SELinux:  unknown policy capability %u\n",
2159 				i);
2160 	}
2161 }
2162 
2163 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2164 				struct selinux_policy *newpolicy);
2165 
2166 static void selinux_policy_free(struct selinux_policy *policy)
2167 {
2168 	if (!policy)
2169 		return;
2170 
2171 	sidtab_destroy(policy->sidtab);
2172 	kfree(policy->map.mapping);
2173 	policydb_destroy(&policy->policydb);
2174 	kfree(policy->sidtab);
2175 	kfree(policy);
2176 }
2177 
2178 static void selinux_policy_cond_free(struct selinux_policy *policy)
2179 {
2180 	cond_policydb_destroy_dup(&policy->policydb);
2181 	kfree(policy);
2182 }
2183 
2184 void selinux_policy_cancel(struct selinux_load_state *load_state)
2185 {
2186 	struct selinux_state *state = &selinux_state;
2187 	struct selinux_policy *oldpolicy;
2188 
2189 	oldpolicy = rcu_dereference_protected(state->policy,
2190 					lockdep_is_held(&state->policy_mutex));
2191 
2192 	sidtab_cancel_convert(oldpolicy->sidtab);
2193 	selinux_policy_free(load_state->policy);
2194 	kfree(load_state->convert_data);
2195 }
2196 
2197 static void selinux_notify_policy_change(u32 seqno)
2198 {
2199 	/* Flush external caches and notify userspace of policy load */
2200 	avc_ss_reset(seqno);
2201 	selnl_notify_policyload(seqno);
2202 	selinux_status_update_policyload(seqno);
2203 	selinux_netlbl_cache_invalidate();
2204 	selinux_xfrm_notify_policyload();
2205 	selinux_ima_measure_state_locked();
2206 }
2207 
2208 void selinux_policy_commit(struct selinux_load_state *load_state)
2209 {
2210 	struct selinux_state *state = &selinux_state;
2211 	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2212 	unsigned long flags;
2213 	u32 seqno;
2214 
2215 	oldpolicy = rcu_dereference_protected(state->policy,
2216 					lockdep_is_held(&state->policy_mutex));
2217 
2218 	/* If switching between different policy types, log MLS status */
2219 	if (oldpolicy) {
2220 		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2221 			pr_info("SELinux: Disabling MLS support...\n");
2222 		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2223 			pr_info("SELinux: Enabling MLS support...\n");
2224 	}
2225 
2226 	/* Set latest granting seqno for new policy. */
2227 	if (oldpolicy)
2228 		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2229 	else
2230 		newpolicy->latest_granting = 1;
2231 	seqno = newpolicy->latest_granting;
2232 
2233 	/* Install the new policy. */
2234 	if (oldpolicy) {
2235 		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2236 		rcu_assign_pointer(state->policy, newpolicy);
2237 		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2238 	} else {
2239 		rcu_assign_pointer(state->policy, newpolicy);
2240 	}
2241 
2242 	/* Load the policycaps from the new policy */
2243 	security_load_policycaps(newpolicy);
2244 
2245 	if (!selinux_initialized()) {
2246 		/*
2247 		 * After first policy load, the security server is
2248 		 * marked as initialized and ready to handle requests and
2249 		 * any objects created prior to policy load are then labeled.
2250 		 */
2251 		selinux_mark_initialized();
2252 		selinux_complete_init();
2253 	}
2254 
2255 	/* Free the old policy */
2256 	synchronize_rcu();
2257 	selinux_policy_free(oldpolicy);
2258 	kfree(load_state->convert_data);
2259 
2260 	/* Notify others of the policy change */
2261 	selinux_notify_policy_change(seqno);
2262 }
2263 
2264 /**
2265  * security_load_policy - Load a security policy configuration.
2266  * @data: binary policy data
2267  * @len: length of data in bytes
2268  * @load_state: policy load state
2269  *
2270  * Load a new set of security policy configuration data,
2271  * validate it and convert the SID table as necessary.
2272  * This function will flush the access vector cache after
2273  * loading the new policy.
2274  */
2275 int security_load_policy(void *data, size_t len,
2276 			 struct selinux_load_state *load_state)
2277 {
2278 	struct selinux_state *state = &selinux_state;
2279 	struct selinux_policy *newpolicy, *oldpolicy;
2280 	struct selinux_policy_convert_data *convert_data;
2281 	int rc = 0;
2282 	struct policy_file file = { data, len }, *fp = &file;
2283 
2284 	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2285 	if (!newpolicy)
2286 		return -ENOMEM;
2287 
2288 	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2289 	if (!newpolicy->sidtab) {
2290 		rc = -ENOMEM;
2291 		goto err_policy;
2292 	}
2293 
2294 	rc = policydb_read(&newpolicy->policydb, fp);
2295 	if (rc)
2296 		goto err_sidtab;
2297 
2298 	newpolicy->policydb.len = len;
2299 	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2300 				&newpolicy->map);
2301 	if (rc)
2302 		goto err_policydb;
2303 
2304 	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2305 	if (rc) {
2306 		pr_err("SELinux:  unable to load the initial SIDs\n");
2307 		goto err_mapping;
2308 	}
2309 
2310 	if (!selinux_initialized()) {
2311 		/* First policy load, so no need to preserve state from old policy */
2312 		load_state->policy = newpolicy;
2313 		load_state->convert_data = NULL;
2314 		return 0;
2315 	}
2316 
2317 	oldpolicy = rcu_dereference_protected(state->policy,
2318 					lockdep_is_held(&state->policy_mutex));
2319 
2320 	/* Preserve active boolean values from the old policy */
2321 	rc = security_preserve_bools(oldpolicy, newpolicy);
2322 	if (rc) {
2323 		pr_err("SELinux:  unable to preserve booleans\n");
2324 		goto err_free_isids;
2325 	}
2326 
2327 	/*
2328 	 * Convert the internal representations of contexts
2329 	 * in the new SID table.
2330 	 */
2331 
2332 	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2333 	if (!convert_data) {
2334 		rc = -ENOMEM;
2335 		goto err_free_isids;
2336 	}
2337 
2338 	convert_data->args.oldp = &oldpolicy->policydb;
2339 	convert_data->args.newp = &newpolicy->policydb;
2340 
2341 	convert_data->sidtab_params.args = &convert_data->args;
2342 	convert_data->sidtab_params.target = newpolicy->sidtab;
2343 
2344 	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2345 	if (rc) {
2346 		pr_err("SELinux:  unable to convert the internal"
2347 			" representation of contexts in the new SID"
2348 			" table\n");
2349 		goto err_free_convert_data;
2350 	}
2351 
2352 	load_state->policy = newpolicy;
2353 	load_state->convert_data = convert_data;
2354 	return 0;
2355 
2356 err_free_convert_data:
2357 	kfree(convert_data);
2358 err_free_isids:
2359 	sidtab_destroy(newpolicy->sidtab);
2360 err_mapping:
2361 	kfree(newpolicy->map.mapping);
2362 err_policydb:
2363 	policydb_destroy(&newpolicy->policydb);
2364 err_sidtab:
2365 	kfree(newpolicy->sidtab);
2366 err_policy:
2367 	kfree(newpolicy);
2368 
2369 	return rc;
2370 }
2371 
2372 /**
2373  * ocontext_to_sid - Helper to safely get sid for an ocontext
2374  * @sidtab: SID table
2375  * @c: ocontext structure
2376  * @index: index of the context entry (0 or 1)
2377  * @out_sid: pointer to the resulting SID value
2378  *
2379  * For all ocontexts except OCON_ISID the SID fields are populated
2380  * on-demand when needed. Since updating the SID value is an SMP-sensitive
2381  * operation, this helper must be used to do that safely.
2382  *
2383  * WARNING: This function may return -ESTALE, indicating that the caller
2384  * must retry the operation after re-acquiring the policy pointer!
2385  */
2386 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2387 			   size_t index, u32 *out_sid)
2388 {
2389 	int rc;
2390 	u32 sid;
2391 
2392 	/* Ensure the associated sidtab entry is visible to this thread. */
2393 	sid = smp_load_acquire(&c->sid[index]);
2394 	if (!sid) {
2395 		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2396 		if (rc)
2397 			return rc;
2398 
2399 		/*
2400 		 * Ensure the new sidtab entry is visible to other threads
2401 		 * when they see the SID.
2402 		 */
2403 		smp_store_release(&c->sid[index], sid);
2404 	}
2405 	*out_sid = sid;
2406 	return 0;
2407 }
2408 
2409 /**
2410  * security_port_sid - Obtain the SID for a port.
2411  * @protocol: protocol number
2412  * @port: port number
2413  * @out_sid: security identifier
2414  */
2415 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2416 {
2417 	struct selinux_policy *policy;
2418 	struct policydb *policydb;
2419 	struct sidtab *sidtab;
2420 	struct ocontext *c;
2421 	int rc;
2422 
2423 	if (!selinux_initialized()) {
2424 		*out_sid = SECINITSID_PORT;
2425 		return 0;
2426 	}
2427 
2428 retry:
2429 	rc = 0;
2430 	rcu_read_lock();
2431 	policy = rcu_dereference(selinux_state.policy);
2432 	policydb = &policy->policydb;
2433 	sidtab = policy->sidtab;
2434 
2435 	c = policydb->ocontexts[OCON_PORT];
2436 	while (c) {
2437 		if (c->u.port.protocol == protocol &&
2438 		    c->u.port.low_port <= port &&
2439 		    c->u.port.high_port >= port)
2440 			break;
2441 		c = c->next;
2442 	}
2443 
2444 	if (c) {
2445 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2446 		if (rc == -ESTALE) {
2447 			rcu_read_unlock();
2448 			goto retry;
2449 		}
2450 		if (rc)
2451 			goto out;
2452 	} else {
2453 		*out_sid = SECINITSID_PORT;
2454 	}
2455 
2456 out:
2457 	rcu_read_unlock();
2458 	return rc;
2459 }
2460 
2461 /**
2462  * security_ib_pkey_sid - Obtain the SID for a pkey.
2463  * @subnet_prefix: Subnet Prefix
2464  * @pkey_num: pkey number
2465  * @out_sid: security identifier
2466  */
2467 int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2468 {
2469 	struct selinux_policy *policy;
2470 	struct policydb *policydb;
2471 	struct sidtab *sidtab;
2472 	struct ocontext *c;
2473 	int rc;
2474 
2475 	if (!selinux_initialized()) {
2476 		*out_sid = SECINITSID_UNLABELED;
2477 		return 0;
2478 	}
2479 
2480 retry:
2481 	rc = 0;
2482 	rcu_read_lock();
2483 	policy = rcu_dereference(selinux_state.policy);
2484 	policydb = &policy->policydb;
2485 	sidtab = policy->sidtab;
2486 
2487 	c = policydb->ocontexts[OCON_IBPKEY];
2488 	while (c) {
2489 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2490 		    c->u.ibpkey.high_pkey >= pkey_num &&
2491 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2492 			break;
2493 
2494 		c = c->next;
2495 	}
2496 
2497 	if (c) {
2498 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2499 		if (rc == -ESTALE) {
2500 			rcu_read_unlock();
2501 			goto retry;
2502 		}
2503 		if (rc)
2504 			goto out;
2505 	} else
2506 		*out_sid = SECINITSID_UNLABELED;
2507 
2508 out:
2509 	rcu_read_unlock();
2510 	return rc;
2511 }
2512 
2513 /**
2514  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2515  * @dev_name: device name
2516  * @port_num: port number
2517  * @out_sid: security identifier
2518  */
2519 int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2520 {
2521 	struct selinux_policy *policy;
2522 	struct policydb *policydb;
2523 	struct sidtab *sidtab;
2524 	struct ocontext *c;
2525 	int rc;
2526 
2527 	if (!selinux_initialized()) {
2528 		*out_sid = SECINITSID_UNLABELED;
2529 		return 0;
2530 	}
2531 
2532 retry:
2533 	rc = 0;
2534 	rcu_read_lock();
2535 	policy = rcu_dereference(selinux_state.policy);
2536 	policydb = &policy->policydb;
2537 	sidtab = policy->sidtab;
2538 
2539 	c = policydb->ocontexts[OCON_IBENDPORT];
2540 	while (c) {
2541 		if (c->u.ibendport.port == port_num &&
2542 		    !strncmp(c->u.ibendport.dev_name,
2543 			     dev_name,
2544 			     IB_DEVICE_NAME_MAX))
2545 			break;
2546 
2547 		c = c->next;
2548 	}
2549 
2550 	if (c) {
2551 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2552 		if (rc == -ESTALE) {
2553 			rcu_read_unlock();
2554 			goto retry;
2555 		}
2556 		if (rc)
2557 			goto out;
2558 	} else
2559 		*out_sid = SECINITSID_UNLABELED;
2560 
2561 out:
2562 	rcu_read_unlock();
2563 	return rc;
2564 }
2565 
2566 /**
2567  * security_netif_sid - Obtain the SID for a network interface.
2568  * @name: interface name
2569  * @if_sid: interface SID
2570  */
2571 int security_netif_sid(char *name, u32 *if_sid)
2572 {
2573 	struct selinux_policy *policy;
2574 	struct policydb *policydb;
2575 	struct sidtab *sidtab;
2576 	int rc;
2577 	struct ocontext *c;
2578 
2579 	if (!selinux_initialized()) {
2580 		*if_sid = SECINITSID_NETIF;
2581 		return 0;
2582 	}
2583 
2584 retry:
2585 	rc = 0;
2586 	rcu_read_lock();
2587 	policy = rcu_dereference(selinux_state.policy);
2588 	policydb = &policy->policydb;
2589 	sidtab = policy->sidtab;
2590 
2591 	c = policydb->ocontexts[OCON_NETIF];
2592 	while (c) {
2593 		if (strcmp(name, c->u.name) == 0)
2594 			break;
2595 		c = c->next;
2596 	}
2597 
2598 	if (c) {
2599 		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2600 		if (rc == -ESTALE) {
2601 			rcu_read_unlock();
2602 			goto retry;
2603 		}
2604 		if (rc)
2605 			goto out;
2606 	} else
2607 		*if_sid = SECINITSID_NETIF;
2608 
2609 out:
2610 	rcu_read_unlock();
2611 	return rc;
2612 }
2613 
2614 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2615 {
2616 	int i, fail = 0;
2617 
2618 	for (i = 0; i < 4; i++)
2619 		if (addr[i] != (input[i] & mask[i])) {
2620 			fail = 1;
2621 			break;
2622 		}
2623 
2624 	return !fail;
2625 }
2626 
2627 /**
2628  * security_node_sid - Obtain the SID for a node (host).
2629  * @domain: communication domain aka address family
2630  * @addrp: address
2631  * @addrlen: address length in bytes
2632  * @out_sid: security identifier
2633  */
2634 int security_node_sid(u16 domain,
2635 		      void *addrp,
2636 		      u32 addrlen,
2637 		      u32 *out_sid)
2638 {
2639 	struct selinux_policy *policy;
2640 	struct policydb *policydb;
2641 	struct sidtab *sidtab;
2642 	int rc;
2643 	struct ocontext *c;
2644 
2645 	if (!selinux_initialized()) {
2646 		*out_sid = SECINITSID_NODE;
2647 		return 0;
2648 	}
2649 
2650 retry:
2651 	rcu_read_lock();
2652 	policy = rcu_dereference(selinux_state.policy);
2653 	policydb = &policy->policydb;
2654 	sidtab = policy->sidtab;
2655 
2656 	switch (domain) {
2657 	case AF_INET: {
2658 		u32 addr;
2659 
2660 		rc = -EINVAL;
2661 		if (addrlen != sizeof(u32))
2662 			goto out;
2663 
2664 		addr = *((u32 *)addrp);
2665 
2666 		c = policydb->ocontexts[OCON_NODE];
2667 		while (c) {
2668 			if (c->u.node.addr == (addr & c->u.node.mask))
2669 				break;
2670 			c = c->next;
2671 		}
2672 		break;
2673 	}
2674 
2675 	case AF_INET6:
2676 		rc = -EINVAL;
2677 		if (addrlen != sizeof(u64) * 2)
2678 			goto out;
2679 		c = policydb->ocontexts[OCON_NODE6];
2680 		while (c) {
2681 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2682 						c->u.node6.mask))
2683 				break;
2684 			c = c->next;
2685 		}
2686 		break;
2687 
2688 	default:
2689 		rc = 0;
2690 		*out_sid = SECINITSID_NODE;
2691 		goto out;
2692 	}
2693 
2694 	if (c) {
2695 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2696 		if (rc == -ESTALE) {
2697 			rcu_read_unlock();
2698 			goto retry;
2699 		}
2700 		if (rc)
2701 			goto out;
2702 	} else {
2703 		*out_sid = SECINITSID_NODE;
2704 	}
2705 
2706 	rc = 0;
2707 out:
2708 	rcu_read_unlock();
2709 	return rc;
2710 }
2711 
2712 #define SIDS_NEL 25
2713 
2714 /**
2715  * security_get_user_sids - Obtain reachable SIDs for a user.
2716  * @fromsid: starting SID
2717  * @username: username
2718  * @sids: array of reachable SIDs for user
2719  * @nel: number of elements in @sids
2720  *
2721  * Generate the set of SIDs for legal security contexts
2722  * for a given user that can be reached by @fromsid.
2723  * Set *@sids to point to a dynamically allocated
2724  * array containing the set of SIDs.  Set *@nel to the
2725  * number of elements in the array.
2726  */
2727 
2728 int security_get_user_sids(u32 fromsid,
2729 			   char *username,
2730 			   u32 **sids,
2731 			   u32 *nel)
2732 {
2733 	struct selinux_policy *policy;
2734 	struct policydb *policydb;
2735 	struct sidtab *sidtab;
2736 	struct context *fromcon, usercon;
2737 	u32 *mysids = NULL, *mysids2, sid;
2738 	u32 i, j, mynel, maxnel = SIDS_NEL;
2739 	struct user_datum *user;
2740 	struct role_datum *role;
2741 	struct ebitmap_node *rnode, *tnode;
2742 	int rc;
2743 
2744 	*sids = NULL;
2745 	*nel = 0;
2746 
2747 	if (!selinux_initialized())
2748 		return 0;
2749 
2750 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2751 	if (!mysids)
2752 		return -ENOMEM;
2753 
2754 retry:
2755 	mynel = 0;
2756 	rcu_read_lock();
2757 	policy = rcu_dereference(selinux_state.policy);
2758 	policydb = &policy->policydb;
2759 	sidtab = policy->sidtab;
2760 
2761 	context_init(&usercon);
2762 
2763 	rc = -EINVAL;
2764 	fromcon = sidtab_search(sidtab, fromsid);
2765 	if (!fromcon)
2766 		goto out_unlock;
2767 
2768 	rc = -EINVAL;
2769 	user = symtab_search(&policydb->p_users, username);
2770 	if (!user)
2771 		goto out_unlock;
2772 
2773 	usercon.user = user->value;
2774 
2775 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2776 		role = policydb->role_val_to_struct[i];
2777 		usercon.role = i + 1;
2778 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2779 			usercon.type = j + 1;
2780 
2781 			if (mls_setup_user_range(policydb, fromcon, user,
2782 						 &usercon))
2783 				continue;
2784 
2785 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2786 			if (rc == -ESTALE) {
2787 				rcu_read_unlock();
2788 				goto retry;
2789 			}
2790 			if (rc)
2791 				goto out_unlock;
2792 			if (mynel < maxnel) {
2793 				mysids[mynel++] = sid;
2794 			} else {
2795 				rc = -ENOMEM;
2796 				maxnel += SIDS_NEL;
2797 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2798 				if (!mysids2)
2799 					goto out_unlock;
2800 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2801 				kfree(mysids);
2802 				mysids = mysids2;
2803 				mysids[mynel++] = sid;
2804 			}
2805 		}
2806 	}
2807 	rc = 0;
2808 out_unlock:
2809 	rcu_read_unlock();
2810 	if (rc || !mynel) {
2811 		kfree(mysids);
2812 		return rc;
2813 	}
2814 
2815 	rc = -ENOMEM;
2816 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2817 	if (!mysids2) {
2818 		kfree(mysids);
2819 		return rc;
2820 	}
2821 	for (i = 0, j = 0; i < mynel; i++) {
2822 		struct av_decision dummy_avd;
2823 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2824 					  SECCLASS_PROCESS, /* kernel value */
2825 					  PROCESS__TRANSITION, AVC_STRICT,
2826 					  &dummy_avd);
2827 		if (!rc)
2828 			mysids2[j++] = mysids[i];
2829 		cond_resched();
2830 	}
2831 	kfree(mysids);
2832 	*sids = mysids2;
2833 	*nel = j;
2834 	return 0;
2835 }
2836 
2837 /**
2838  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2839  * @policy: policy
2840  * @fstype: filesystem type
2841  * @path: path from root of mount
2842  * @orig_sclass: file security class
2843  * @sid: SID for path
2844  *
2845  * Obtain a SID to use for a file in a filesystem that
2846  * cannot support xattr or use a fixed labeling behavior like
2847  * transition SIDs or task SIDs.
2848  *
2849  * WARNING: This function may return -ESTALE, indicating that the caller
2850  * must retry the operation after re-acquiring the policy pointer!
2851  */
2852 static inline int __security_genfs_sid(struct selinux_policy *policy,
2853 				       const char *fstype,
2854 				       const char *path,
2855 				       u16 orig_sclass,
2856 				       u32 *sid)
2857 {
2858 	struct policydb *policydb = &policy->policydb;
2859 	struct sidtab *sidtab = policy->sidtab;
2860 	u16 sclass;
2861 	struct genfs *genfs;
2862 	struct ocontext *c;
2863 	int cmp = 0;
2864 
2865 	while (path[0] == '/' && path[1] == '/')
2866 		path++;
2867 
2868 	sclass = unmap_class(&policy->map, orig_sclass);
2869 	*sid = SECINITSID_UNLABELED;
2870 
2871 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2872 		cmp = strcmp(fstype, genfs->fstype);
2873 		if (cmp <= 0)
2874 			break;
2875 	}
2876 
2877 	if (!genfs || cmp)
2878 		return -ENOENT;
2879 
2880 	for (c = genfs->head; c; c = c->next) {
2881 		size_t len = strlen(c->u.name);
2882 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2883 		    (strncmp(c->u.name, path, len) == 0))
2884 			break;
2885 	}
2886 
2887 	if (!c)
2888 		return -ENOENT;
2889 
2890 	return ocontext_to_sid(sidtab, c, 0, sid);
2891 }
2892 
2893 /**
2894  * security_genfs_sid - Obtain a SID for a file in a filesystem
2895  * @fstype: filesystem type
2896  * @path: path from root of mount
2897  * @orig_sclass: file security class
2898  * @sid: SID for path
2899  *
2900  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2901  * it afterward.
2902  */
2903 int security_genfs_sid(const char *fstype,
2904 		       const char *path,
2905 		       u16 orig_sclass,
2906 		       u32 *sid)
2907 {
2908 	struct selinux_policy *policy;
2909 	int retval;
2910 
2911 	if (!selinux_initialized()) {
2912 		*sid = SECINITSID_UNLABELED;
2913 		return 0;
2914 	}
2915 
2916 	do {
2917 		rcu_read_lock();
2918 		policy = rcu_dereference(selinux_state.policy);
2919 		retval = __security_genfs_sid(policy, fstype, path,
2920 					      orig_sclass, sid);
2921 		rcu_read_unlock();
2922 	} while (retval == -ESTALE);
2923 	return retval;
2924 }
2925 
2926 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2927 			const char *fstype,
2928 			const char *path,
2929 			u16 orig_sclass,
2930 			u32 *sid)
2931 {
2932 	/* no lock required, policy is not yet accessible by other threads */
2933 	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2934 }
2935 
2936 /**
2937  * security_fs_use - Determine how to handle labeling for a filesystem.
2938  * @sb: superblock in question
2939  */
2940 int security_fs_use(struct super_block *sb)
2941 {
2942 	struct selinux_policy *policy;
2943 	struct policydb *policydb;
2944 	struct sidtab *sidtab;
2945 	int rc;
2946 	struct ocontext *c;
2947 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2948 	const char *fstype = sb->s_type->name;
2949 
2950 	if (!selinux_initialized()) {
2951 		sbsec->behavior = SECURITY_FS_USE_NONE;
2952 		sbsec->sid = SECINITSID_UNLABELED;
2953 		return 0;
2954 	}
2955 
2956 retry:
2957 	rcu_read_lock();
2958 	policy = rcu_dereference(selinux_state.policy);
2959 	policydb = &policy->policydb;
2960 	sidtab = policy->sidtab;
2961 
2962 	c = policydb->ocontexts[OCON_FSUSE];
2963 	while (c) {
2964 		if (strcmp(fstype, c->u.name) == 0)
2965 			break;
2966 		c = c->next;
2967 	}
2968 
2969 	if (c) {
2970 		sbsec->behavior = c->v.behavior;
2971 		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2972 		if (rc == -ESTALE) {
2973 			rcu_read_unlock();
2974 			goto retry;
2975 		}
2976 		if (rc)
2977 			goto out;
2978 	} else {
2979 		rc = __security_genfs_sid(policy, fstype, "/",
2980 					SECCLASS_DIR, &sbsec->sid);
2981 		if (rc == -ESTALE) {
2982 			rcu_read_unlock();
2983 			goto retry;
2984 		}
2985 		if (rc) {
2986 			sbsec->behavior = SECURITY_FS_USE_NONE;
2987 			rc = 0;
2988 		} else {
2989 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2990 		}
2991 	}
2992 
2993 out:
2994 	rcu_read_unlock();
2995 	return rc;
2996 }
2997 
2998 int security_get_bools(struct selinux_policy *policy,
2999 		       u32 *len, char ***names, int **values)
3000 {
3001 	struct policydb *policydb;
3002 	u32 i;
3003 	int rc;
3004 
3005 	policydb = &policy->policydb;
3006 
3007 	*names = NULL;
3008 	*values = NULL;
3009 
3010 	rc = 0;
3011 	*len = policydb->p_bools.nprim;
3012 	if (!*len)
3013 		goto out;
3014 
3015 	rc = -ENOMEM;
3016 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3017 	if (!*names)
3018 		goto err;
3019 
3020 	rc = -ENOMEM;
3021 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3022 	if (!*values)
3023 		goto err;
3024 
3025 	for (i = 0; i < *len; i++) {
3026 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3027 
3028 		rc = -ENOMEM;
3029 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3030 				      GFP_ATOMIC);
3031 		if (!(*names)[i])
3032 			goto err;
3033 	}
3034 	rc = 0;
3035 out:
3036 	return rc;
3037 err:
3038 	if (*names) {
3039 		for (i = 0; i < *len; i++)
3040 			kfree((*names)[i]);
3041 		kfree(*names);
3042 	}
3043 	kfree(*values);
3044 	*len = 0;
3045 	*names = NULL;
3046 	*values = NULL;
3047 	goto out;
3048 }
3049 
3050 
3051 int security_set_bools(u32 len, int *values)
3052 {
3053 	struct selinux_state *state = &selinux_state;
3054 	struct selinux_policy *newpolicy, *oldpolicy;
3055 	int rc;
3056 	u32 i, seqno = 0;
3057 
3058 	if (!selinux_initialized())
3059 		return -EINVAL;
3060 
3061 	oldpolicy = rcu_dereference_protected(state->policy,
3062 					lockdep_is_held(&state->policy_mutex));
3063 
3064 	/* Consistency check on number of booleans, should never fail */
3065 	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3066 		return -EINVAL;
3067 
3068 	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3069 	if (!newpolicy)
3070 		return -ENOMEM;
3071 
3072 	/*
3073 	 * Deep copy only the parts of the policydb that might be
3074 	 * modified as a result of changing booleans.
3075 	 */
3076 	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3077 	if (rc) {
3078 		kfree(newpolicy);
3079 		return -ENOMEM;
3080 	}
3081 
3082 	/* Update the boolean states in the copy */
3083 	for (i = 0; i < len; i++) {
3084 		int new_state = !!values[i];
3085 		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3086 
3087 		if (new_state != old_state) {
3088 			audit_log(audit_context(), GFP_ATOMIC,
3089 				AUDIT_MAC_CONFIG_CHANGE,
3090 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3091 				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3092 				new_state,
3093 				old_state,
3094 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3095 				audit_get_sessionid(current));
3096 			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3097 		}
3098 	}
3099 
3100 	/* Re-evaluate the conditional rules in the copy */
3101 	evaluate_cond_nodes(&newpolicy->policydb);
3102 
3103 	/* Set latest granting seqno for new policy */
3104 	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3105 	seqno = newpolicy->latest_granting;
3106 
3107 	/* Install the new policy */
3108 	rcu_assign_pointer(state->policy, newpolicy);
3109 
3110 	/*
3111 	 * Free the conditional portions of the old policydb
3112 	 * that were copied for the new policy, and the oldpolicy
3113 	 * structure itself but not what it references.
3114 	 */
3115 	synchronize_rcu();
3116 	selinux_policy_cond_free(oldpolicy);
3117 
3118 	/* Notify others of the policy change */
3119 	selinux_notify_policy_change(seqno);
3120 	return 0;
3121 }
3122 
3123 int security_get_bool_value(u32 index)
3124 {
3125 	struct selinux_policy *policy;
3126 	struct policydb *policydb;
3127 	int rc;
3128 	u32 len;
3129 
3130 	if (!selinux_initialized())
3131 		return 0;
3132 
3133 	rcu_read_lock();
3134 	policy = rcu_dereference(selinux_state.policy);
3135 	policydb = &policy->policydb;
3136 
3137 	rc = -EFAULT;
3138 	len = policydb->p_bools.nprim;
3139 	if (index >= len)
3140 		goto out;
3141 
3142 	rc = policydb->bool_val_to_struct[index]->state;
3143 out:
3144 	rcu_read_unlock();
3145 	return rc;
3146 }
3147 
3148 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3149 				struct selinux_policy *newpolicy)
3150 {
3151 	int rc, *bvalues = NULL;
3152 	char **bnames = NULL;
3153 	struct cond_bool_datum *booldatum;
3154 	u32 i, nbools = 0;
3155 
3156 	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3157 	if (rc)
3158 		goto out;
3159 	for (i = 0; i < nbools; i++) {
3160 		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3161 					bnames[i]);
3162 		if (booldatum)
3163 			booldatum->state = bvalues[i];
3164 	}
3165 	evaluate_cond_nodes(&newpolicy->policydb);
3166 
3167 out:
3168 	if (bnames) {
3169 		for (i = 0; i < nbools; i++)
3170 			kfree(bnames[i]);
3171 	}
3172 	kfree(bnames);
3173 	kfree(bvalues);
3174 	return rc;
3175 }
3176 
3177 /*
3178  * security_sid_mls_copy() - computes a new sid based on the given
3179  * sid and the mls portion of mls_sid.
3180  */
3181 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
3182 {
3183 	struct selinux_policy *policy;
3184 	struct policydb *policydb;
3185 	struct sidtab *sidtab;
3186 	struct context *context1;
3187 	struct context *context2;
3188 	struct context newcon;
3189 	char *s;
3190 	u32 len;
3191 	int rc;
3192 
3193 	if (!selinux_initialized()) {
3194 		*new_sid = sid;
3195 		return 0;
3196 	}
3197 
3198 retry:
3199 	rc = 0;
3200 	context_init(&newcon);
3201 
3202 	rcu_read_lock();
3203 	policy = rcu_dereference(selinux_state.policy);
3204 	policydb = &policy->policydb;
3205 	sidtab = policy->sidtab;
3206 
3207 	if (!policydb->mls_enabled) {
3208 		*new_sid = sid;
3209 		goto out_unlock;
3210 	}
3211 
3212 	rc = -EINVAL;
3213 	context1 = sidtab_search(sidtab, sid);
3214 	if (!context1) {
3215 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3216 			__func__, sid);
3217 		goto out_unlock;
3218 	}
3219 
3220 	rc = -EINVAL;
3221 	context2 = sidtab_search(sidtab, mls_sid);
3222 	if (!context2) {
3223 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3224 			__func__, mls_sid);
3225 		goto out_unlock;
3226 	}
3227 
3228 	newcon.user = context1->user;
3229 	newcon.role = context1->role;
3230 	newcon.type = context1->type;
3231 	rc = mls_context_cpy(&newcon, context2);
3232 	if (rc)
3233 		goto out_unlock;
3234 
3235 	/* Check the validity of the new context. */
3236 	if (!policydb_context_isvalid(policydb, &newcon)) {
3237 		rc = convert_context_handle_invalid_context(policydb,
3238 							&newcon);
3239 		if (rc) {
3240 			if (!context_struct_to_string(policydb, &newcon, &s,
3241 						      &len)) {
3242 				struct audit_buffer *ab;
3243 
3244 				ab = audit_log_start(audit_context(),
3245 						     GFP_ATOMIC,
3246 						     AUDIT_SELINUX_ERR);
3247 				audit_log_format(ab,
3248 						 "op=security_sid_mls_copy invalid_context=");
3249 				/* don't record NUL with untrusted strings */
3250 				audit_log_n_untrustedstring(ab, s, len - 1);
3251 				audit_log_end(ab);
3252 				kfree(s);
3253 			}
3254 			goto out_unlock;
3255 		}
3256 	}
3257 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3258 	if (rc == -ESTALE) {
3259 		rcu_read_unlock();
3260 		context_destroy(&newcon);
3261 		goto retry;
3262 	}
3263 out_unlock:
3264 	rcu_read_unlock();
3265 	context_destroy(&newcon);
3266 	return rc;
3267 }
3268 
3269 /**
3270  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3271  * @nlbl_sid: NetLabel SID
3272  * @nlbl_type: NetLabel labeling protocol type
3273  * @xfrm_sid: XFRM SID
3274  * @peer_sid: network peer sid
3275  *
3276  * Description:
3277  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3278  * resolved into a single SID it is returned via @peer_sid and the function
3279  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3280  * returns a negative value.  A table summarizing the behavior is below:
3281  *
3282  *                                 | function return |      @sid
3283  *   ------------------------------+-----------------+-----------------
3284  *   no peer labels                |        0        |    SECSID_NULL
3285  *   single peer label             |        0        |    <peer_label>
3286  *   multiple, consistent labels   |        0        |    <peer_label>
3287  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3288  *
3289  */
3290 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
3291 				 u32 xfrm_sid,
3292 				 u32 *peer_sid)
3293 {
3294 	struct selinux_policy *policy;
3295 	struct policydb *policydb;
3296 	struct sidtab *sidtab;
3297 	int rc;
3298 	struct context *nlbl_ctx;
3299 	struct context *xfrm_ctx;
3300 
3301 	*peer_sid = SECSID_NULL;
3302 
3303 	/* handle the common (which also happens to be the set of easy) cases
3304 	 * right away, these two if statements catch everything involving a
3305 	 * single or absent peer SID/label */
3306 	if (xfrm_sid == SECSID_NULL) {
3307 		*peer_sid = nlbl_sid;
3308 		return 0;
3309 	}
3310 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3311 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3312 	 * is present */
3313 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3314 		*peer_sid = xfrm_sid;
3315 		return 0;
3316 	}
3317 
3318 	if (!selinux_initialized())
3319 		return 0;
3320 
3321 	rcu_read_lock();
3322 	policy = rcu_dereference(selinux_state.policy);
3323 	policydb = &policy->policydb;
3324 	sidtab = policy->sidtab;
3325 
3326 	/*
3327 	 * We don't need to check initialized here since the only way both
3328 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3329 	 * security server was initialized and state->initialized was true.
3330 	 */
3331 	if (!policydb->mls_enabled) {
3332 		rc = 0;
3333 		goto out;
3334 	}
3335 
3336 	rc = -EINVAL;
3337 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3338 	if (!nlbl_ctx) {
3339 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3340 		       __func__, nlbl_sid);
3341 		goto out;
3342 	}
3343 	rc = -EINVAL;
3344 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3345 	if (!xfrm_ctx) {
3346 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3347 		       __func__, xfrm_sid);
3348 		goto out;
3349 	}
3350 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3351 	if (rc)
3352 		goto out;
3353 
3354 	/* at present NetLabel SIDs/labels really only carry MLS
3355 	 * information so if the MLS portion of the NetLabel SID
3356 	 * matches the MLS portion of the labeled XFRM SID/label
3357 	 * then pass along the XFRM SID as it is the most
3358 	 * expressive */
3359 	*peer_sid = xfrm_sid;
3360 out:
3361 	rcu_read_unlock();
3362 	return rc;
3363 }
3364 
3365 static int get_classes_callback(void *k, void *d, void *args)
3366 {
3367 	struct class_datum *datum = d;
3368 	char *name = k, **classes = args;
3369 	u32 value = datum->value - 1;
3370 
3371 	classes[value] = kstrdup(name, GFP_ATOMIC);
3372 	if (!classes[value])
3373 		return -ENOMEM;
3374 
3375 	return 0;
3376 }
3377 
3378 int security_get_classes(struct selinux_policy *policy,
3379 			 char ***classes, u32 *nclasses)
3380 {
3381 	struct policydb *policydb;
3382 	int rc;
3383 
3384 	policydb = &policy->policydb;
3385 
3386 	rc = -ENOMEM;
3387 	*nclasses = policydb->p_classes.nprim;
3388 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3389 	if (!*classes)
3390 		goto out;
3391 
3392 	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3393 			 *classes);
3394 	if (rc) {
3395 		u32 i;
3396 
3397 		for (i = 0; i < *nclasses; i++)
3398 			kfree((*classes)[i]);
3399 		kfree(*classes);
3400 	}
3401 
3402 out:
3403 	return rc;
3404 }
3405 
3406 static int get_permissions_callback(void *k, void *d, void *args)
3407 {
3408 	struct perm_datum *datum = d;
3409 	char *name = k, **perms = args;
3410 	u32 value = datum->value - 1;
3411 
3412 	perms[value] = kstrdup(name, GFP_ATOMIC);
3413 	if (!perms[value])
3414 		return -ENOMEM;
3415 
3416 	return 0;
3417 }
3418 
3419 int security_get_permissions(struct selinux_policy *policy,
3420 			     const char *class, char ***perms, u32 *nperms)
3421 {
3422 	struct policydb *policydb;
3423 	u32 i;
3424 	int rc;
3425 	struct class_datum *match;
3426 
3427 	policydb = &policy->policydb;
3428 
3429 	rc = -EINVAL;
3430 	match = symtab_search(&policydb->p_classes, class);
3431 	if (!match) {
3432 		pr_err("SELinux: %s:  unrecognized class %s\n",
3433 			__func__, class);
3434 		goto out;
3435 	}
3436 
3437 	rc = -ENOMEM;
3438 	*nperms = match->permissions.nprim;
3439 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3440 	if (!*perms)
3441 		goto out;
3442 
3443 	if (match->comdatum) {
3444 		rc = hashtab_map(&match->comdatum->permissions.table,
3445 				 get_permissions_callback, *perms);
3446 		if (rc)
3447 			goto err;
3448 	}
3449 
3450 	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3451 			 *perms);
3452 	if (rc)
3453 		goto err;
3454 
3455 out:
3456 	return rc;
3457 
3458 err:
3459 	for (i = 0; i < *nperms; i++)
3460 		kfree((*perms)[i]);
3461 	kfree(*perms);
3462 	return rc;
3463 }
3464 
3465 int security_get_reject_unknown(void)
3466 {
3467 	struct selinux_policy *policy;
3468 	int value;
3469 
3470 	if (!selinux_initialized())
3471 		return 0;
3472 
3473 	rcu_read_lock();
3474 	policy = rcu_dereference(selinux_state.policy);
3475 	value = policy->policydb.reject_unknown;
3476 	rcu_read_unlock();
3477 	return value;
3478 }
3479 
3480 int security_get_allow_unknown(void)
3481 {
3482 	struct selinux_policy *policy;
3483 	int value;
3484 
3485 	if (!selinux_initialized())
3486 		return 0;
3487 
3488 	rcu_read_lock();
3489 	policy = rcu_dereference(selinux_state.policy);
3490 	value = policy->policydb.allow_unknown;
3491 	rcu_read_unlock();
3492 	return value;
3493 }
3494 
3495 /**
3496  * security_policycap_supported - Check for a specific policy capability
3497  * @req_cap: capability
3498  *
3499  * Description:
3500  * This function queries the currently loaded policy to see if it supports the
3501  * capability specified by @req_cap.  Returns true (1) if the capability is
3502  * supported, false (0) if it isn't supported.
3503  *
3504  */
3505 int security_policycap_supported(unsigned int req_cap)
3506 {
3507 	struct selinux_policy *policy;
3508 	int rc;
3509 
3510 	if (!selinux_initialized())
3511 		return 0;
3512 
3513 	rcu_read_lock();
3514 	policy = rcu_dereference(selinux_state.policy);
3515 	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3516 	rcu_read_unlock();
3517 
3518 	return rc;
3519 }
3520 
3521 struct selinux_audit_rule {
3522 	u32 au_seqno;
3523 	struct context au_ctxt;
3524 };
3525 
3526 void selinux_audit_rule_free(void *vrule)
3527 {
3528 	struct selinux_audit_rule *rule = vrule;
3529 
3530 	if (rule) {
3531 		context_destroy(&rule->au_ctxt);
3532 		kfree(rule);
3533 	}
3534 }
3535 
3536 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule,
3537 			    gfp_t gfp)
3538 {
3539 	struct selinux_state *state = &selinux_state;
3540 	struct selinux_policy *policy;
3541 	struct policydb *policydb;
3542 	struct selinux_audit_rule *tmprule;
3543 	struct role_datum *roledatum;
3544 	struct type_datum *typedatum;
3545 	struct user_datum *userdatum;
3546 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3547 	int rc = 0;
3548 
3549 	*rule = NULL;
3550 
3551 	if (!selinux_initialized())
3552 		return -EOPNOTSUPP;
3553 
3554 	switch (field) {
3555 	case AUDIT_SUBJ_USER:
3556 	case AUDIT_SUBJ_ROLE:
3557 	case AUDIT_SUBJ_TYPE:
3558 	case AUDIT_OBJ_USER:
3559 	case AUDIT_OBJ_ROLE:
3560 	case AUDIT_OBJ_TYPE:
3561 		/* only 'equals' and 'not equals' fit user, role, and type */
3562 		if (op != Audit_equal && op != Audit_not_equal)
3563 			return -EINVAL;
3564 		break;
3565 	case AUDIT_SUBJ_SEN:
3566 	case AUDIT_SUBJ_CLR:
3567 	case AUDIT_OBJ_LEV_LOW:
3568 	case AUDIT_OBJ_LEV_HIGH:
3569 		/* we do not allow a range, indicated by the presence of '-' */
3570 		if (strchr(rulestr, '-'))
3571 			return -EINVAL;
3572 		break;
3573 	default:
3574 		/* only the above fields are valid */
3575 		return -EINVAL;
3576 	}
3577 
3578 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), gfp);
3579 	if (!tmprule)
3580 		return -ENOMEM;
3581 	context_init(&tmprule->au_ctxt);
3582 
3583 	rcu_read_lock();
3584 	policy = rcu_dereference(state->policy);
3585 	policydb = &policy->policydb;
3586 	tmprule->au_seqno = policy->latest_granting;
3587 	switch (field) {
3588 	case AUDIT_SUBJ_USER:
3589 	case AUDIT_OBJ_USER:
3590 		userdatum = symtab_search(&policydb->p_users, rulestr);
3591 		if (!userdatum) {
3592 			rc = -EINVAL;
3593 			goto err;
3594 		}
3595 		tmprule->au_ctxt.user = userdatum->value;
3596 		break;
3597 	case AUDIT_SUBJ_ROLE:
3598 	case AUDIT_OBJ_ROLE:
3599 		roledatum = symtab_search(&policydb->p_roles, rulestr);
3600 		if (!roledatum) {
3601 			rc = -EINVAL;
3602 			goto err;
3603 		}
3604 		tmprule->au_ctxt.role = roledatum->value;
3605 		break;
3606 	case AUDIT_SUBJ_TYPE:
3607 	case AUDIT_OBJ_TYPE:
3608 		typedatum = symtab_search(&policydb->p_types, rulestr);
3609 		if (!typedatum) {
3610 			rc = -EINVAL;
3611 			goto err;
3612 		}
3613 		tmprule->au_ctxt.type = typedatum->value;
3614 		break;
3615 	case AUDIT_SUBJ_SEN:
3616 	case AUDIT_SUBJ_CLR:
3617 	case AUDIT_OBJ_LEV_LOW:
3618 	case AUDIT_OBJ_LEV_HIGH:
3619 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3620 				     GFP_ATOMIC);
3621 		if (rc)
3622 			goto err;
3623 		break;
3624 	}
3625 	rcu_read_unlock();
3626 
3627 	*rule = tmprule;
3628 	return 0;
3629 
3630 err:
3631 	rcu_read_unlock();
3632 	selinux_audit_rule_free(tmprule);
3633 	*rule = NULL;
3634 	return rc;
3635 }
3636 
3637 /* Check to see if the rule contains any selinux fields */
3638 int selinux_audit_rule_known(struct audit_krule *rule)
3639 {
3640 	u32 i;
3641 
3642 	for (i = 0; i < rule->field_count; i++) {
3643 		struct audit_field *f = &rule->fields[i];
3644 		switch (f->type) {
3645 		case AUDIT_SUBJ_USER:
3646 		case AUDIT_SUBJ_ROLE:
3647 		case AUDIT_SUBJ_TYPE:
3648 		case AUDIT_SUBJ_SEN:
3649 		case AUDIT_SUBJ_CLR:
3650 		case AUDIT_OBJ_USER:
3651 		case AUDIT_OBJ_ROLE:
3652 		case AUDIT_OBJ_TYPE:
3653 		case AUDIT_OBJ_LEV_LOW:
3654 		case AUDIT_OBJ_LEV_HIGH:
3655 			return 1;
3656 		}
3657 	}
3658 
3659 	return 0;
3660 }
3661 
3662 int selinux_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op, void *vrule)
3663 {
3664 	struct selinux_state *state = &selinux_state;
3665 	struct selinux_policy *policy;
3666 	struct context *ctxt;
3667 	struct mls_level *level;
3668 	struct selinux_audit_rule *rule = vrule;
3669 	int match = 0;
3670 
3671 	if (unlikely(!rule)) {
3672 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3673 		return -ENOENT;
3674 	}
3675 
3676 	if (!selinux_initialized())
3677 		return 0;
3678 
3679 	rcu_read_lock();
3680 
3681 	policy = rcu_dereference(state->policy);
3682 
3683 	if (rule->au_seqno < policy->latest_granting) {
3684 		match = -ESTALE;
3685 		goto out;
3686 	}
3687 
3688 	ctxt = sidtab_search(policy->sidtab, prop->selinux.secid);
3689 	if (unlikely(!ctxt)) {
3690 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3691 			  prop->selinux.secid);
3692 		match = -ENOENT;
3693 		goto out;
3694 	}
3695 
3696 	/* a field/op pair that is not caught here will simply fall through
3697 	   without a match */
3698 	switch (field) {
3699 	case AUDIT_SUBJ_USER:
3700 	case AUDIT_OBJ_USER:
3701 		switch (op) {
3702 		case Audit_equal:
3703 			match = (ctxt->user == rule->au_ctxt.user);
3704 			break;
3705 		case Audit_not_equal:
3706 			match = (ctxt->user != rule->au_ctxt.user);
3707 			break;
3708 		}
3709 		break;
3710 	case AUDIT_SUBJ_ROLE:
3711 	case AUDIT_OBJ_ROLE:
3712 		switch (op) {
3713 		case Audit_equal:
3714 			match = (ctxt->role == rule->au_ctxt.role);
3715 			break;
3716 		case Audit_not_equal:
3717 			match = (ctxt->role != rule->au_ctxt.role);
3718 			break;
3719 		}
3720 		break;
3721 	case AUDIT_SUBJ_TYPE:
3722 	case AUDIT_OBJ_TYPE:
3723 		switch (op) {
3724 		case Audit_equal:
3725 			match = (ctxt->type == rule->au_ctxt.type);
3726 			break;
3727 		case Audit_not_equal:
3728 			match = (ctxt->type != rule->au_ctxt.type);
3729 			break;
3730 		}
3731 		break;
3732 	case AUDIT_SUBJ_SEN:
3733 	case AUDIT_SUBJ_CLR:
3734 	case AUDIT_OBJ_LEV_LOW:
3735 	case AUDIT_OBJ_LEV_HIGH:
3736 		level = ((field == AUDIT_SUBJ_SEN ||
3737 			  field == AUDIT_OBJ_LEV_LOW) ?
3738 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3739 		switch (op) {
3740 		case Audit_equal:
3741 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3742 					     level);
3743 			break;
3744 		case Audit_not_equal:
3745 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3746 					      level);
3747 			break;
3748 		case Audit_lt:
3749 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3750 					       level) &&
3751 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3752 					       level));
3753 			break;
3754 		case Audit_le:
3755 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3756 					      level);
3757 			break;
3758 		case Audit_gt:
3759 			match = (mls_level_dom(level,
3760 					      &rule->au_ctxt.range.level[0]) &&
3761 				 !mls_level_eq(level,
3762 					       &rule->au_ctxt.range.level[0]));
3763 			break;
3764 		case Audit_ge:
3765 			match = mls_level_dom(level,
3766 					      &rule->au_ctxt.range.level[0]);
3767 			break;
3768 		}
3769 	}
3770 
3771 out:
3772 	rcu_read_unlock();
3773 	return match;
3774 }
3775 
3776 static int aurule_avc_callback(u32 event)
3777 {
3778 	if (event == AVC_CALLBACK_RESET)
3779 		return audit_update_lsm_rules();
3780 	return 0;
3781 }
3782 
3783 static int __init aurule_init(void)
3784 {
3785 	int err;
3786 
3787 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3788 	if (err)
3789 		panic("avc_add_callback() failed, error %d\n", err);
3790 
3791 	return err;
3792 }
3793 __initcall(aurule_init);
3794 
3795 #ifdef CONFIG_NETLABEL
3796 /**
3797  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3798  * @secattr: the NetLabel packet security attributes
3799  * @sid: the SELinux SID
3800  *
3801  * Description:
3802  * Attempt to cache the context in @ctx, which was derived from the packet in
3803  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3804  * already been initialized.
3805  *
3806  */
3807 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3808 				      u32 sid)
3809 {
3810 	u32 *sid_cache;
3811 
3812 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3813 	if (sid_cache == NULL)
3814 		return;
3815 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3816 	if (secattr->cache == NULL) {
3817 		kfree(sid_cache);
3818 		return;
3819 	}
3820 
3821 	*sid_cache = sid;
3822 	secattr->cache->free = kfree;
3823 	secattr->cache->data = sid_cache;
3824 	secattr->flags |= NETLBL_SECATTR_CACHE;
3825 }
3826 
3827 /**
3828  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3829  * @secattr: the NetLabel packet security attributes
3830  * @sid: the SELinux SID
3831  *
3832  * Description:
3833  * Convert the given NetLabel security attributes in @secattr into a
3834  * SELinux SID.  If the @secattr field does not contain a full SELinux
3835  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3836  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3837  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3838  * conversion for future lookups.  Returns zero on success, negative values on
3839  * failure.
3840  *
3841  */
3842 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3843 				   u32 *sid)
3844 {
3845 	struct selinux_policy *policy;
3846 	struct policydb *policydb;
3847 	struct sidtab *sidtab;
3848 	int rc;
3849 	struct context *ctx;
3850 	struct context ctx_new;
3851 
3852 	if (!selinux_initialized()) {
3853 		*sid = SECSID_NULL;
3854 		return 0;
3855 	}
3856 
3857 retry:
3858 	rc = 0;
3859 	rcu_read_lock();
3860 	policy = rcu_dereference(selinux_state.policy);
3861 	policydb = &policy->policydb;
3862 	sidtab = policy->sidtab;
3863 
3864 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3865 		*sid = *(u32 *)secattr->cache->data;
3866 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3867 		*sid = secattr->attr.secid;
3868 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3869 		rc = -EIDRM;
3870 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3871 		if (ctx == NULL)
3872 			goto out;
3873 
3874 		context_init(&ctx_new);
3875 		ctx_new.user = ctx->user;
3876 		ctx_new.role = ctx->role;
3877 		ctx_new.type = ctx->type;
3878 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3879 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3880 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3881 			if (rc)
3882 				goto out;
3883 		}
3884 		rc = -EIDRM;
3885 		if (!mls_context_isvalid(policydb, &ctx_new)) {
3886 			ebitmap_destroy(&ctx_new.range.level[0].cat);
3887 			goto out;
3888 		}
3889 
3890 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3891 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3892 		if (rc == -ESTALE) {
3893 			rcu_read_unlock();
3894 			goto retry;
3895 		}
3896 		if (rc)
3897 			goto out;
3898 
3899 		security_netlbl_cache_add(secattr, *sid);
3900 	} else
3901 		*sid = SECSID_NULL;
3902 
3903 out:
3904 	rcu_read_unlock();
3905 	return rc;
3906 }
3907 
3908 /**
3909  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3910  * @sid: the SELinux SID
3911  * @secattr: the NetLabel packet security attributes
3912  *
3913  * Description:
3914  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3915  * Returns zero on success, negative values on failure.
3916  *
3917  */
3918 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3919 {
3920 	struct selinux_policy *policy;
3921 	struct policydb *policydb;
3922 	int rc;
3923 	struct context *ctx;
3924 
3925 	if (!selinux_initialized())
3926 		return 0;
3927 
3928 	rcu_read_lock();
3929 	policy = rcu_dereference(selinux_state.policy);
3930 	policydb = &policy->policydb;
3931 
3932 	rc = -ENOENT;
3933 	ctx = sidtab_search(policy->sidtab, sid);
3934 	if (ctx == NULL)
3935 		goto out;
3936 
3937 	rc = -ENOMEM;
3938 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3939 				  GFP_ATOMIC);
3940 	if (secattr->domain == NULL)
3941 		goto out;
3942 
3943 	secattr->attr.secid = sid;
3944 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3945 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3946 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3947 out:
3948 	rcu_read_unlock();
3949 	return rc;
3950 }
3951 #endif /* CONFIG_NETLABEL */
3952 
3953 /**
3954  * __security_read_policy - read the policy.
3955  * @policy: SELinux policy
3956  * @data: binary policy data
3957  * @len: length of data in bytes
3958  *
3959  */
3960 static int __security_read_policy(struct selinux_policy *policy,
3961 				  void *data, size_t *len)
3962 {
3963 	int rc;
3964 	struct policy_file fp;
3965 
3966 	fp.data = data;
3967 	fp.len = *len;
3968 
3969 	rc = policydb_write(&policy->policydb, &fp);
3970 	if (rc)
3971 		return rc;
3972 
3973 	*len = (unsigned long)fp.data - (unsigned long)data;
3974 	return 0;
3975 }
3976 
3977 /**
3978  * security_read_policy - read the policy.
3979  * @data: binary policy data
3980  * @len: length of data in bytes
3981  *
3982  */
3983 int security_read_policy(void **data, size_t *len)
3984 {
3985 	struct selinux_state *state = &selinux_state;
3986 	struct selinux_policy *policy;
3987 
3988 	policy = rcu_dereference_protected(
3989 			state->policy, lockdep_is_held(&state->policy_mutex));
3990 	if (!policy)
3991 		return -EINVAL;
3992 
3993 	*len = policy->policydb.len;
3994 	*data = vmalloc_user(*len);
3995 	if (!*data)
3996 		return -ENOMEM;
3997 
3998 	return __security_read_policy(policy, *data, len);
3999 }
4000 
4001 /**
4002  * security_read_state_kernel - read the policy.
4003  * @data: binary policy data
4004  * @len: length of data in bytes
4005  *
4006  * Allocates kernel memory for reading SELinux policy.
4007  * This function is for internal use only and should not
4008  * be used for returning data to user space.
4009  *
4010  * This function must be called with policy_mutex held.
4011  */
4012 int security_read_state_kernel(void **data, size_t *len)
4013 {
4014 	int err;
4015 	struct selinux_state *state = &selinux_state;
4016 	struct selinux_policy *policy;
4017 
4018 	policy = rcu_dereference_protected(
4019 			state->policy, lockdep_is_held(&state->policy_mutex));
4020 	if (!policy)
4021 		return -EINVAL;
4022 
4023 	*len = policy->policydb.len;
4024 	*data = vmalloc(*len);
4025 	if (!*data)
4026 		return -ENOMEM;
4027 
4028 	err = __security_read_policy(policy, *data, len);
4029 	if (err) {
4030 		vfree(*data);
4031 		*data = NULL;
4032 		*len = 0;
4033 	}
4034 	return err;
4035 }
4036