xref: /linux/security/selinux/ss/services.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the security services.
4  *
5  * Authors : Stephen Smalley, <stephen.smalley.work@gmail.com>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *	Support for context based audit filters.
12  *
13  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14  *
15  *	Added conditional policy language extensions
16  *
17  * Updated: Hewlett-Packard <paul@paul-moore.com>
18  *
19  *      Added support for NetLabel
20  *      Added support for the policy capability bitmap
21  *
22  * Updated: Chad Sellers <csellers@tresys.com>
23  *
24  *  Added validation of kernel classes and permissions
25  *
26  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27  *
28  *  Added support for bounds domain and audit messaged on masked permissions
29  *
30  * Updated: Guido Trentalancia <guido@trentalancia.com>
31  *
32  *  Added support for runtime switching of the policy type
33  *
34  * Copyright (C) 2008, 2009 NEC Corporation
35  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39  */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <linux/lsm_hooks.h>
51 #include <net/netlabel.h>
52 
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68 #include "policycap_names.h"
69 #include "ima.h"
70 
71 struct selinux_policy_convert_data {
72 	struct convert_context_args args;
73 	struct sidtab_convert_params sidtab_params;
74 };
75 
76 /* Forward declaration. */
77 static int context_struct_to_string(struct policydb *policydb,
78 				    struct context *context,
79 				    char **scontext,
80 				    u32 *scontext_len);
81 
82 static int sidtab_entry_to_string(struct policydb *policydb,
83 				  struct sidtab *sidtab,
84 				  struct sidtab_entry *entry,
85 				  char **scontext,
86 				  u32 *scontext_len);
87 
88 static void context_struct_compute_av(struct policydb *policydb,
89 				      struct context *scontext,
90 				      struct context *tcontext,
91 				      u16 tclass,
92 				      struct av_decision *avd,
93 				      struct extended_perms *xperms);
94 
95 static int selinux_set_mapping(struct policydb *pol,
96 			       const struct security_class_mapping *map,
97 			       struct selinux_map *out_map)
98 {
99 	u16 i, j;
100 	bool print_unknown_handle = false;
101 
102 	/* Find number of classes in the input mapping */
103 	if (!map)
104 		return -EINVAL;
105 	i = 0;
106 	while (map[i].name)
107 		i++;
108 
109 	/* Allocate space for the class records, plus one for class zero */
110 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
111 	if (!out_map->mapping)
112 		return -ENOMEM;
113 
114 	/* Store the raw class and permission values */
115 	j = 0;
116 	while (map[j].name) {
117 		const struct security_class_mapping *p_in = map + (j++);
118 		struct selinux_mapping *p_out = out_map->mapping + j;
119 		u16 k;
120 
121 		/* An empty class string skips ahead */
122 		if (!strcmp(p_in->name, "")) {
123 			p_out->num_perms = 0;
124 			continue;
125 		}
126 
127 		p_out->value = string_to_security_class(pol, p_in->name);
128 		if (!p_out->value) {
129 			pr_info("SELinux:  Class %s not defined in policy.\n",
130 			       p_in->name);
131 			if (pol->reject_unknown)
132 				goto err;
133 			p_out->num_perms = 0;
134 			print_unknown_handle = true;
135 			continue;
136 		}
137 
138 		k = 0;
139 		while (p_in->perms[k]) {
140 			/* An empty permission string skips ahead */
141 			if (!*p_in->perms[k]) {
142 				k++;
143 				continue;
144 			}
145 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
146 							    p_in->perms[k]);
147 			if (!p_out->perms[k]) {
148 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
149 				       p_in->perms[k], p_in->name);
150 				if (pol->reject_unknown)
151 					goto err;
152 				print_unknown_handle = true;
153 			}
154 
155 			k++;
156 		}
157 		p_out->num_perms = k;
158 	}
159 
160 	if (print_unknown_handle)
161 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
162 		       pol->allow_unknown ? "allowed" : "denied");
163 
164 	out_map->size = i;
165 	return 0;
166 err:
167 	kfree(out_map->mapping);
168 	out_map->mapping = NULL;
169 	return -EINVAL;
170 }
171 
172 /*
173  * Get real, policy values from mapped values
174  */
175 
176 static u16 unmap_class(struct selinux_map *map, u16 tclass)
177 {
178 	if (tclass < map->size)
179 		return map->mapping[tclass].value;
180 
181 	return tclass;
182 }
183 
184 /*
185  * Get kernel value for class from its policy value
186  */
187 static u16 map_class(struct selinux_map *map, u16 pol_value)
188 {
189 	u16 i;
190 
191 	for (i = 1; i < map->size; i++) {
192 		if (map->mapping[i].value == pol_value)
193 			return i;
194 	}
195 
196 	return SECCLASS_NULL;
197 }
198 
199 static void map_decision(struct selinux_map *map,
200 			 u16 tclass, struct av_decision *avd,
201 			 int allow_unknown)
202 {
203 	if (tclass < map->size) {
204 		struct selinux_mapping *mapping = &map->mapping[tclass];
205 		unsigned int i, n = mapping->num_perms;
206 		u32 result;
207 
208 		for (i = 0, result = 0; i < n; i++) {
209 			if (avd->allowed & mapping->perms[i])
210 				result |= (u32)1<<i;
211 			if (allow_unknown && !mapping->perms[i])
212 				result |= (u32)1<<i;
213 		}
214 		avd->allowed = result;
215 
216 		for (i = 0, result = 0; i < n; i++)
217 			if (avd->auditallow & mapping->perms[i])
218 				result |= (u32)1<<i;
219 		avd->auditallow = result;
220 
221 		for (i = 0, result = 0; i < n; i++) {
222 			if (avd->auditdeny & mapping->perms[i])
223 				result |= (u32)1<<i;
224 			if (!allow_unknown && !mapping->perms[i])
225 				result |= (u32)1<<i;
226 		}
227 		/*
228 		 * In case the kernel has a bug and requests a permission
229 		 * between num_perms and the maximum permission number, we
230 		 * should audit that denial
231 		 */
232 		for (; i < (sizeof(u32)*8); i++)
233 			result |= (u32)1<<i;
234 		avd->auditdeny = result;
235 	}
236 }
237 
238 int security_mls_enabled(void)
239 {
240 	int mls_enabled;
241 	struct selinux_policy *policy;
242 
243 	if (!selinux_initialized())
244 		return 0;
245 
246 	rcu_read_lock();
247 	policy = rcu_dereference(selinux_state.policy);
248 	mls_enabled = policy->policydb.mls_enabled;
249 	rcu_read_unlock();
250 	return mls_enabled;
251 }
252 
253 /*
254  * Return the boolean value of a constraint expression
255  * when it is applied to the specified source and target
256  * security contexts.
257  *
258  * xcontext is a special beast...  It is used by the validatetrans rules
259  * only.  For these rules, scontext is the context before the transition,
260  * tcontext is the context after the transition, and xcontext is the context
261  * of the process performing the transition.  All other callers of
262  * constraint_expr_eval should pass in NULL for xcontext.
263  */
264 static int constraint_expr_eval(struct policydb *policydb,
265 				struct context *scontext,
266 				struct context *tcontext,
267 				struct context *xcontext,
268 				struct constraint_expr *cexpr)
269 {
270 	u32 val1, val2;
271 	struct context *c;
272 	struct role_datum *r1, *r2;
273 	struct mls_level *l1, *l2;
274 	struct constraint_expr *e;
275 	int s[CEXPR_MAXDEPTH];
276 	int sp = -1;
277 
278 	for (e = cexpr; e; e = e->next) {
279 		switch (e->expr_type) {
280 		case CEXPR_NOT:
281 			BUG_ON(sp < 0);
282 			s[sp] = !s[sp];
283 			break;
284 		case CEXPR_AND:
285 			BUG_ON(sp < 1);
286 			sp--;
287 			s[sp] &= s[sp + 1];
288 			break;
289 		case CEXPR_OR:
290 			BUG_ON(sp < 1);
291 			sp--;
292 			s[sp] |= s[sp + 1];
293 			break;
294 		case CEXPR_ATTR:
295 			if (sp == (CEXPR_MAXDEPTH - 1))
296 				return 0;
297 			switch (e->attr) {
298 			case CEXPR_USER:
299 				val1 = scontext->user;
300 				val2 = tcontext->user;
301 				break;
302 			case CEXPR_TYPE:
303 				val1 = scontext->type;
304 				val2 = tcontext->type;
305 				break;
306 			case CEXPR_ROLE:
307 				val1 = scontext->role;
308 				val2 = tcontext->role;
309 				r1 = policydb->role_val_to_struct[val1 - 1];
310 				r2 = policydb->role_val_to_struct[val2 - 1];
311 				switch (e->op) {
312 				case CEXPR_DOM:
313 					s[++sp] = ebitmap_get_bit(&r1->dominates,
314 								  val2 - 1);
315 					continue;
316 				case CEXPR_DOMBY:
317 					s[++sp] = ebitmap_get_bit(&r2->dominates,
318 								  val1 - 1);
319 					continue;
320 				case CEXPR_INCOMP:
321 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
322 								    val2 - 1) &&
323 						   !ebitmap_get_bit(&r2->dominates,
324 								    val1 - 1));
325 					continue;
326 				default:
327 					break;
328 				}
329 				break;
330 			case CEXPR_L1L2:
331 				l1 = &(scontext->range.level[0]);
332 				l2 = &(tcontext->range.level[0]);
333 				goto mls_ops;
334 			case CEXPR_L1H2:
335 				l1 = &(scontext->range.level[0]);
336 				l2 = &(tcontext->range.level[1]);
337 				goto mls_ops;
338 			case CEXPR_H1L2:
339 				l1 = &(scontext->range.level[1]);
340 				l2 = &(tcontext->range.level[0]);
341 				goto mls_ops;
342 			case CEXPR_H1H2:
343 				l1 = &(scontext->range.level[1]);
344 				l2 = &(tcontext->range.level[1]);
345 				goto mls_ops;
346 			case CEXPR_L1H1:
347 				l1 = &(scontext->range.level[0]);
348 				l2 = &(scontext->range.level[1]);
349 				goto mls_ops;
350 			case CEXPR_L2H2:
351 				l1 = &(tcontext->range.level[0]);
352 				l2 = &(tcontext->range.level[1]);
353 				goto mls_ops;
354 mls_ops:
355 				switch (e->op) {
356 				case CEXPR_EQ:
357 					s[++sp] = mls_level_eq(l1, l2);
358 					continue;
359 				case CEXPR_NEQ:
360 					s[++sp] = !mls_level_eq(l1, l2);
361 					continue;
362 				case CEXPR_DOM:
363 					s[++sp] = mls_level_dom(l1, l2);
364 					continue;
365 				case CEXPR_DOMBY:
366 					s[++sp] = mls_level_dom(l2, l1);
367 					continue;
368 				case CEXPR_INCOMP:
369 					s[++sp] = mls_level_incomp(l2, l1);
370 					continue;
371 				default:
372 					BUG();
373 					return 0;
374 				}
375 				break;
376 			default:
377 				BUG();
378 				return 0;
379 			}
380 
381 			switch (e->op) {
382 			case CEXPR_EQ:
383 				s[++sp] = (val1 == val2);
384 				break;
385 			case CEXPR_NEQ:
386 				s[++sp] = (val1 != val2);
387 				break;
388 			default:
389 				BUG();
390 				return 0;
391 			}
392 			break;
393 		case CEXPR_NAMES:
394 			if (sp == (CEXPR_MAXDEPTH-1))
395 				return 0;
396 			c = scontext;
397 			if (e->attr & CEXPR_TARGET)
398 				c = tcontext;
399 			else if (e->attr & CEXPR_XTARGET) {
400 				c = xcontext;
401 				if (!c) {
402 					BUG();
403 					return 0;
404 				}
405 			}
406 			if (e->attr & CEXPR_USER)
407 				val1 = c->user;
408 			else if (e->attr & CEXPR_ROLE)
409 				val1 = c->role;
410 			else if (e->attr & CEXPR_TYPE)
411 				val1 = c->type;
412 			else {
413 				BUG();
414 				return 0;
415 			}
416 
417 			switch (e->op) {
418 			case CEXPR_EQ:
419 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
420 				break;
421 			case CEXPR_NEQ:
422 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
423 				break;
424 			default:
425 				BUG();
426 				return 0;
427 			}
428 			break;
429 		default:
430 			BUG();
431 			return 0;
432 		}
433 	}
434 
435 	BUG_ON(sp != 0);
436 	return s[0];
437 }
438 
439 /*
440  * security_dump_masked_av - dumps masked permissions during
441  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
442  */
443 static int dump_masked_av_helper(void *k, void *d, void *args)
444 {
445 	struct perm_datum *pdatum = d;
446 	char **permission_names = args;
447 
448 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
449 
450 	permission_names[pdatum->value - 1] = (char *)k;
451 
452 	return 0;
453 }
454 
455 static void security_dump_masked_av(struct policydb *policydb,
456 				    struct context *scontext,
457 				    struct context *tcontext,
458 				    u16 tclass,
459 				    u32 permissions,
460 				    const char *reason)
461 {
462 	struct common_datum *common_dat;
463 	struct class_datum *tclass_dat;
464 	struct audit_buffer *ab;
465 	char *tclass_name;
466 	char *scontext_name = NULL;
467 	char *tcontext_name = NULL;
468 	char *permission_names[32];
469 	int index;
470 	u32 length;
471 	bool need_comma = false;
472 
473 	if (!permissions)
474 		return;
475 
476 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
477 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
478 	common_dat = tclass_dat->comdatum;
479 
480 	/* init permission_names */
481 	if (common_dat &&
482 	    hashtab_map(&common_dat->permissions.table,
483 			dump_masked_av_helper, permission_names) < 0)
484 		goto out;
485 
486 	if (hashtab_map(&tclass_dat->permissions.table,
487 			dump_masked_av_helper, permission_names) < 0)
488 		goto out;
489 
490 	/* get scontext/tcontext in text form */
491 	if (context_struct_to_string(policydb, scontext,
492 				     &scontext_name, &length) < 0)
493 		goto out;
494 
495 	if (context_struct_to_string(policydb, tcontext,
496 				     &tcontext_name, &length) < 0)
497 		goto out;
498 
499 	/* audit a message */
500 	ab = audit_log_start(audit_context(),
501 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
502 	if (!ab)
503 		goto out;
504 
505 	audit_log_format(ab, "op=security_compute_av reason=%s "
506 			 "scontext=%s tcontext=%s tclass=%s perms=",
507 			 reason, scontext_name, tcontext_name, tclass_name);
508 
509 	for (index = 0; index < 32; index++) {
510 		u32 mask = (1 << index);
511 
512 		if ((mask & permissions) == 0)
513 			continue;
514 
515 		audit_log_format(ab, "%s%s",
516 				 need_comma ? "," : "",
517 				 permission_names[index]
518 				 ? permission_names[index] : "????");
519 		need_comma = true;
520 	}
521 	audit_log_end(ab);
522 out:
523 	/* release scontext/tcontext */
524 	kfree(tcontext_name);
525 	kfree(scontext_name);
526 }
527 
528 /*
529  * security_boundary_permission - drops violated permissions
530  * on boundary constraint.
531  */
532 static void type_attribute_bounds_av(struct policydb *policydb,
533 				     struct context *scontext,
534 				     struct context *tcontext,
535 				     u16 tclass,
536 				     struct av_decision *avd)
537 {
538 	struct context lo_scontext;
539 	struct context lo_tcontext, *tcontextp = tcontext;
540 	struct av_decision lo_avd;
541 	struct type_datum *source;
542 	struct type_datum *target;
543 	u32 masked = 0;
544 
545 	source = policydb->type_val_to_struct[scontext->type - 1];
546 	BUG_ON(!source);
547 
548 	if (!source->bounds)
549 		return;
550 
551 	target = policydb->type_val_to_struct[tcontext->type - 1];
552 	BUG_ON(!target);
553 
554 	memset(&lo_avd, 0, sizeof(lo_avd));
555 
556 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
557 	lo_scontext.type = source->bounds;
558 
559 	if (target->bounds) {
560 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
561 		lo_tcontext.type = target->bounds;
562 		tcontextp = &lo_tcontext;
563 	}
564 
565 	context_struct_compute_av(policydb, &lo_scontext,
566 				  tcontextp,
567 				  tclass,
568 				  &lo_avd,
569 				  NULL);
570 
571 	masked = ~lo_avd.allowed & avd->allowed;
572 
573 	if (likely(!masked))
574 		return;		/* no masked permission */
575 
576 	/* mask violated permissions */
577 	avd->allowed &= ~masked;
578 
579 	/* audit masked permissions */
580 	security_dump_masked_av(policydb, scontext, tcontext,
581 				tclass, masked, "bounds");
582 }
583 
584 /*
585  * flag which drivers have permissions
586  * only looking for ioctl based extended permissions
587  */
588 void services_compute_xperms_drivers(
589 		struct extended_perms *xperms,
590 		struct avtab_node *node)
591 {
592 	unsigned int i;
593 
594 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
595 		/* if one or more driver has all permissions allowed */
596 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
597 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
598 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
599 		/* if allowing permissions within a driver */
600 		security_xperm_set(xperms->drivers.p,
601 					node->datum.u.xperms->driver);
602 	}
603 
604 	xperms->len = 1;
605 }
606 
607 /*
608  * Compute access vectors and extended permissions based on a context
609  * structure pair for the permissions in a particular class.
610  */
611 static void context_struct_compute_av(struct policydb *policydb,
612 				      struct context *scontext,
613 				      struct context *tcontext,
614 				      u16 tclass,
615 				      struct av_decision *avd,
616 				      struct extended_perms *xperms)
617 {
618 	struct constraint_node *constraint;
619 	struct role_allow *ra;
620 	struct avtab_key avkey;
621 	struct avtab_node *node;
622 	struct class_datum *tclass_datum;
623 	struct ebitmap *sattr, *tattr;
624 	struct ebitmap_node *snode, *tnode;
625 	unsigned int i, j;
626 
627 	avd->allowed = 0;
628 	avd->auditallow = 0;
629 	avd->auditdeny = 0xffffffff;
630 	if (xperms) {
631 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
632 		xperms->len = 0;
633 	}
634 
635 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
636 		pr_warn_ratelimited("SELinux:  Invalid class %u\n", tclass);
637 		return;
638 	}
639 
640 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
641 
642 	/*
643 	 * If a specific type enforcement rule was defined for
644 	 * this permission check, then use it.
645 	 */
646 	avkey.target_class = tclass;
647 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
648 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
649 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
650 	ebitmap_for_each_positive_bit(sattr, snode, i) {
651 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
652 			avkey.source_type = i + 1;
653 			avkey.target_type = j + 1;
654 			for (node = avtab_search_node(&policydb->te_avtab,
655 						      &avkey);
656 			     node;
657 			     node = avtab_search_node_next(node, avkey.specified)) {
658 				if (node->key.specified == AVTAB_ALLOWED)
659 					avd->allowed |= node->datum.u.data;
660 				else if (node->key.specified == AVTAB_AUDITALLOW)
661 					avd->auditallow |= node->datum.u.data;
662 				else if (node->key.specified == AVTAB_AUDITDENY)
663 					avd->auditdeny &= node->datum.u.data;
664 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
665 					services_compute_xperms_drivers(xperms, node);
666 			}
667 
668 			/* Check conditional av table for additional permissions */
669 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
670 					avd, xperms);
671 
672 		}
673 	}
674 
675 	/*
676 	 * Remove any permissions prohibited by a constraint (this includes
677 	 * the MLS policy).
678 	 */
679 	constraint = tclass_datum->constraints;
680 	while (constraint) {
681 		if ((constraint->permissions & (avd->allowed)) &&
682 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
683 					  constraint->expr)) {
684 			avd->allowed &= ~(constraint->permissions);
685 		}
686 		constraint = constraint->next;
687 	}
688 
689 	/*
690 	 * If checking process transition permission and the
691 	 * role is changing, then check the (current_role, new_role)
692 	 * pair.
693 	 */
694 	if (tclass == policydb->process_class &&
695 	    (avd->allowed & policydb->process_trans_perms) &&
696 	    scontext->role != tcontext->role) {
697 		for (ra = policydb->role_allow; ra; ra = ra->next) {
698 			if (scontext->role == ra->role &&
699 			    tcontext->role == ra->new_role)
700 				break;
701 		}
702 		if (!ra)
703 			avd->allowed &= ~policydb->process_trans_perms;
704 	}
705 
706 	/*
707 	 * If the given source and target types have boundary
708 	 * constraint, lazy checks have to mask any violated
709 	 * permission and notice it to userspace via audit.
710 	 */
711 	type_attribute_bounds_av(policydb, scontext, tcontext,
712 				 tclass, avd);
713 }
714 
715 static int security_validtrans_handle_fail(struct selinux_policy *policy,
716 					struct sidtab_entry *oentry,
717 					struct sidtab_entry *nentry,
718 					struct sidtab_entry *tentry,
719 					u16 tclass)
720 {
721 	struct policydb *p = &policy->policydb;
722 	struct sidtab *sidtab = policy->sidtab;
723 	char *o = NULL, *n = NULL, *t = NULL;
724 	u32 olen, nlen, tlen;
725 
726 	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
727 		goto out;
728 	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
729 		goto out;
730 	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
731 		goto out;
732 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
733 		  "op=security_validate_transition seresult=denied"
734 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
735 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
736 out:
737 	kfree(o);
738 	kfree(n);
739 	kfree(t);
740 
741 	if (!enforcing_enabled())
742 		return 0;
743 	return -EPERM;
744 }
745 
746 static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
747 					  u16 orig_tclass, bool user)
748 {
749 	struct selinux_policy *policy;
750 	struct policydb *policydb;
751 	struct sidtab *sidtab;
752 	struct sidtab_entry *oentry;
753 	struct sidtab_entry *nentry;
754 	struct sidtab_entry *tentry;
755 	struct class_datum *tclass_datum;
756 	struct constraint_node *constraint;
757 	u16 tclass;
758 	int rc = 0;
759 
760 
761 	if (!selinux_initialized())
762 		return 0;
763 
764 	rcu_read_lock();
765 
766 	policy = rcu_dereference(selinux_state.policy);
767 	policydb = &policy->policydb;
768 	sidtab = policy->sidtab;
769 
770 	if (!user)
771 		tclass = unmap_class(&policy->map, orig_tclass);
772 	else
773 		tclass = orig_tclass;
774 
775 	if (!tclass || tclass > policydb->p_classes.nprim) {
776 		rc = -EINVAL;
777 		goto out;
778 	}
779 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
780 
781 	oentry = sidtab_search_entry(sidtab, oldsid);
782 	if (!oentry) {
783 		pr_err("SELinux: %s:  unrecognized SID %d\n",
784 			__func__, oldsid);
785 		rc = -EINVAL;
786 		goto out;
787 	}
788 
789 	nentry = sidtab_search_entry(sidtab, newsid);
790 	if (!nentry) {
791 		pr_err("SELinux: %s:  unrecognized SID %d\n",
792 			__func__, newsid);
793 		rc = -EINVAL;
794 		goto out;
795 	}
796 
797 	tentry = sidtab_search_entry(sidtab, tasksid);
798 	if (!tentry) {
799 		pr_err("SELinux: %s:  unrecognized SID %d\n",
800 			__func__, tasksid);
801 		rc = -EINVAL;
802 		goto out;
803 	}
804 
805 	constraint = tclass_datum->validatetrans;
806 	while (constraint) {
807 		if (!constraint_expr_eval(policydb, &oentry->context,
808 					  &nentry->context, &tentry->context,
809 					  constraint->expr)) {
810 			if (user)
811 				rc = -EPERM;
812 			else
813 				rc = security_validtrans_handle_fail(policy,
814 								oentry,
815 								nentry,
816 								tentry,
817 								tclass);
818 			goto out;
819 		}
820 		constraint = constraint->next;
821 	}
822 
823 out:
824 	rcu_read_unlock();
825 	return rc;
826 }
827 
828 int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
829 				      u16 tclass)
830 {
831 	return security_compute_validatetrans(oldsid, newsid, tasksid,
832 					      tclass, true);
833 }
834 
835 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
836 				 u16 orig_tclass)
837 {
838 	return security_compute_validatetrans(oldsid, newsid, tasksid,
839 					      orig_tclass, false);
840 }
841 
842 /*
843  * security_bounded_transition - check whether the given
844  * transition is directed to bounded, or not.
845  * It returns 0, if @newsid is bounded by @oldsid.
846  * Otherwise, it returns error code.
847  *
848  * @oldsid : current security identifier
849  * @newsid : destinated security identifier
850  */
851 int security_bounded_transition(u32 old_sid, u32 new_sid)
852 {
853 	struct selinux_policy *policy;
854 	struct policydb *policydb;
855 	struct sidtab *sidtab;
856 	struct sidtab_entry *old_entry, *new_entry;
857 	struct type_datum *type;
858 	u32 index;
859 	int rc;
860 
861 	if (!selinux_initialized())
862 		return 0;
863 
864 	rcu_read_lock();
865 	policy = rcu_dereference(selinux_state.policy);
866 	policydb = &policy->policydb;
867 	sidtab = policy->sidtab;
868 
869 	rc = -EINVAL;
870 	old_entry = sidtab_search_entry(sidtab, old_sid);
871 	if (!old_entry) {
872 		pr_err("SELinux: %s: unrecognized SID %u\n",
873 		       __func__, old_sid);
874 		goto out;
875 	}
876 
877 	rc = -EINVAL;
878 	new_entry = sidtab_search_entry(sidtab, new_sid);
879 	if (!new_entry) {
880 		pr_err("SELinux: %s: unrecognized SID %u\n",
881 		       __func__, new_sid);
882 		goto out;
883 	}
884 
885 	rc = 0;
886 	/* type/domain unchanged */
887 	if (old_entry->context.type == new_entry->context.type)
888 		goto out;
889 
890 	index = new_entry->context.type;
891 	while (true) {
892 		type = policydb->type_val_to_struct[index - 1];
893 		BUG_ON(!type);
894 
895 		/* not bounded anymore */
896 		rc = -EPERM;
897 		if (!type->bounds)
898 			break;
899 
900 		/* @newsid is bounded by @oldsid */
901 		rc = 0;
902 		if (type->bounds == old_entry->context.type)
903 			break;
904 
905 		index = type->bounds;
906 	}
907 
908 	if (rc) {
909 		char *old_name = NULL;
910 		char *new_name = NULL;
911 		u32 length;
912 
913 		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
914 					    &old_name, &length) &&
915 		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
916 					    &new_name, &length)) {
917 			audit_log(audit_context(),
918 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
919 				  "op=security_bounded_transition "
920 				  "seresult=denied "
921 				  "oldcontext=%s newcontext=%s",
922 				  old_name, new_name);
923 		}
924 		kfree(new_name);
925 		kfree(old_name);
926 	}
927 out:
928 	rcu_read_unlock();
929 
930 	return rc;
931 }
932 
933 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
934 {
935 	avd->allowed = 0;
936 	avd->auditallow = 0;
937 	avd->auditdeny = 0xffffffff;
938 	if (policy)
939 		avd->seqno = policy->latest_granting;
940 	else
941 		avd->seqno = 0;
942 	avd->flags = 0;
943 }
944 
945 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
946 					struct avtab_node *node)
947 {
948 	unsigned int i;
949 
950 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
951 		if (xpermd->driver != node->datum.u.xperms->driver)
952 			return;
953 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
954 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
955 					xpermd->driver))
956 			return;
957 	} else {
958 		BUG();
959 	}
960 
961 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
962 		xpermd->used |= XPERMS_ALLOWED;
963 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
964 			memset(xpermd->allowed->p, 0xff,
965 					sizeof(xpermd->allowed->p));
966 		}
967 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
968 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
969 				xpermd->allowed->p[i] |=
970 					node->datum.u.xperms->perms.p[i];
971 		}
972 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
973 		xpermd->used |= XPERMS_AUDITALLOW;
974 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
975 			memset(xpermd->auditallow->p, 0xff,
976 					sizeof(xpermd->auditallow->p));
977 		}
978 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
979 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
980 				xpermd->auditallow->p[i] |=
981 					node->datum.u.xperms->perms.p[i];
982 		}
983 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
984 		xpermd->used |= XPERMS_DONTAUDIT;
985 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
986 			memset(xpermd->dontaudit->p, 0xff,
987 					sizeof(xpermd->dontaudit->p));
988 		}
989 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
990 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
991 				xpermd->dontaudit->p[i] |=
992 					node->datum.u.xperms->perms.p[i];
993 		}
994 	} else {
995 		BUG();
996 	}
997 }
998 
999 void security_compute_xperms_decision(u32 ssid,
1000 				      u32 tsid,
1001 				      u16 orig_tclass,
1002 				      u8 driver,
1003 				      struct extended_perms_decision *xpermd)
1004 {
1005 	struct selinux_policy *policy;
1006 	struct policydb *policydb;
1007 	struct sidtab *sidtab;
1008 	u16 tclass;
1009 	struct context *scontext, *tcontext;
1010 	struct avtab_key avkey;
1011 	struct avtab_node *node;
1012 	struct ebitmap *sattr, *tattr;
1013 	struct ebitmap_node *snode, *tnode;
1014 	unsigned int i, j;
1015 
1016 	xpermd->driver = driver;
1017 	xpermd->used = 0;
1018 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1019 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1020 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1021 
1022 	rcu_read_lock();
1023 	if (!selinux_initialized())
1024 		goto allow;
1025 
1026 	policy = rcu_dereference(selinux_state.policy);
1027 	policydb = &policy->policydb;
1028 	sidtab = policy->sidtab;
1029 
1030 	scontext = sidtab_search(sidtab, ssid);
1031 	if (!scontext) {
1032 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1033 		       __func__, ssid);
1034 		goto out;
1035 	}
1036 
1037 	tcontext = sidtab_search(sidtab, tsid);
1038 	if (!tcontext) {
1039 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1040 		       __func__, tsid);
1041 		goto out;
1042 	}
1043 
1044 	tclass = unmap_class(&policy->map, orig_tclass);
1045 	if (unlikely(orig_tclass && !tclass)) {
1046 		if (policydb->allow_unknown)
1047 			goto allow;
1048 		goto out;
1049 	}
1050 
1051 
1052 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1053 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1054 		goto out;
1055 	}
1056 
1057 	avkey.target_class = tclass;
1058 	avkey.specified = AVTAB_XPERMS;
1059 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1060 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1061 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1062 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1063 			avkey.source_type = i + 1;
1064 			avkey.target_type = j + 1;
1065 			for (node = avtab_search_node(&policydb->te_avtab,
1066 						      &avkey);
1067 			     node;
1068 			     node = avtab_search_node_next(node, avkey.specified))
1069 				services_compute_xperms_decision(xpermd, node);
1070 
1071 			cond_compute_xperms(&policydb->te_cond_avtab,
1072 						&avkey, xpermd);
1073 		}
1074 	}
1075 out:
1076 	rcu_read_unlock();
1077 	return;
1078 allow:
1079 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1080 	goto out;
1081 }
1082 
1083 /**
1084  * security_compute_av - Compute access vector decisions.
1085  * @ssid: source security identifier
1086  * @tsid: target security identifier
1087  * @orig_tclass: target security class
1088  * @avd: access vector decisions
1089  * @xperms: extended permissions
1090  *
1091  * Compute a set of access vector decisions based on the
1092  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1093  */
1094 void security_compute_av(u32 ssid,
1095 			 u32 tsid,
1096 			 u16 orig_tclass,
1097 			 struct av_decision *avd,
1098 			 struct extended_perms *xperms)
1099 {
1100 	struct selinux_policy *policy;
1101 	struct policydb *policydb;
1102 	struct sidtab *sidtab;
1103 	u16 tclass;
1104 	struct context *scontext = NULL, *tcontext = NULL;
1105 
1106 	rcu_read_lock();
1107 	policy = rcu_dereference(selinux_state.policy);
1108 	avd_init(policy, avd);
1109 	xperms->len = 0;
1110 	if (!selinux_initialized())
1111 		goto allow;
1112 
1113 	policydb = &policy->policydb;
1114 	sidtab = policy->sidtab;
1115 
1116 	scontext = sidtab_search(sidtab, ssid);
1117 	if (!scontext) {
1118 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1119 		       __func__, ssid);
1120 		goto out;
1121 	}
1122 
1123 	/* permissive domain? */
1124 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1125 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1126 
1127 	tcontext = sidtab_search(sidtab, tsid);
1128 	if (!tcontext) {
1129 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1130 		       __func__, tsid);
1131 		goto out;
1132 	}
1133 
1134 	tclass = unmap_class(&policy->map, orig_tclass);
1135 	if (unlikely(orig_tclass && !tclass)) {
1136 		if (policydb->allow_unknown)
1137 			goto allow;
1138 		goto out;
1139 	}
1140 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1141 				  xperms);
1142 	map_decision(&policy->map, orig_tclass, avd,
1143 		     policydb->allow_unknown);
1144 out:
1145 	rcu_read_unlock();
1146 	return;
1147 allow:
1148 	avd->allowed = 0xffffffff;
1149 	goto out;
1150 }
1151 
1152 void security_compute_av_user(u32 ssid,
1153 			      u32 tsid,
1154 			      u16 tclass,
1155 			      struct av_decision *avd)
1156 {
1157 	struct selinux_policy *policy;
1158 	struct policydb *policydb;
1159 	struct sidtab *sidtab;
1160 	struct context *scontext = NULL, *tcontext = NULL;
1161 
1162 	rcu_read_lock();
1163 	policy = rcu_dereference(selinux_state.policy);
1164 	avd_init(policy, avd);
1165 	if (!selinux_initialized())
1166 		goto allow;
1167 
1168 	policydb = &policy->policydb;
1169 	sidtab = policy->sidtab;
1170 
1171 	scontext = sidtab_search(sidtab, ssid);
1172 	if (!scontext) {
1173 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1174 		       __func__, ssid);
1175 		goto out;
1176 	}
1177 
1178 	/* permissive domain? */
1179 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1180 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1181 
1182 	tcontext = sidtab_search(sidtab, tsid);
1183 	if (!tcontext) {
1184 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1185 		       __func__, tsid);
1186 		goto out;
1187 	}
1188 
1189 	if (unlikely(!tclass)) {
1190 		if (policydb->allow_unknown)
1191 			goto allow;
1192 		goto out;
1193 	}
1194 
1195 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1196 				  NULL);
1197  out:
1198 	rcu_read_unlock();
1199 	return;
1200 allow:
1201 	avd->allowed = 0xffffffff;
1202 	goto out;
1203 }
1204 
1205 /*
1206  * Write the security context string representation of
1207  * the context structure `context' into a dynamically
1208  * allocated string of the correct size.  Set `*scontext'
1209  * to point to this string and set `*scontext_len' to
1210  * the length of the string.
1211  */
1212 static int context_struct_to_string(struct policydb *p,
1213 				    struct context *context,
1214 				    char **scontext, u32 *scontext_len)
1215 {
1216 	char *scontextp;
1217 
1218 	if (scontext)
1219 		*scontext = NULL;
1220 	*scontext_len = 0;
1221 
1222 	if (context->len) {
1223 		*scontext_len = context->len;
1224 		if (scontext) {
1225 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1226 			if (!(*scontext))
1227 				return -ENOMEM;
1228 		}
1229 		return 0;
1230 	}
1231 
1232 	/* Compute the size of the context. */
1233 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1234 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1235 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1236 	*scontext_len += mls_compute_context_len(p, context);
1237 
1238 	if (!scontext)
1239 		return 0;
1240 
1241 	/* Allocate space for the context; caller must free this space. */
1242 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1243 	if (!scontextp)
1244 		return -ENOMEM;
1245 	*scontext = scontextp;
1246 
1247 	/*
1248 	 * Copy the user name, role name and type name into the context.
1249 	 */
1250 	scontextp += sprintf(scontextp, "%s:%s:%s",
1251 		sym_name(p, SYM_USERS, context->user - 1),
1252 		sym_name(p, SYM_ROLES, context->role - 1),
1253 		sym_name(p, SYM_TYPES, context->type - 1));
1254 
1255 	mls_sid_to_context(p, context, &scontextp);
1256 
1257 	*scontextp = 0;
1258 
1259 	return 0;
1260 }
1261 
1262 static int sidtab_entry_to_string(struct policydb *p,
1263 				  struct sidtab *sidtab,
1264 				  struct sidtab_entry *entry,
1265 				  char **scontext, u32 *scontext_len)
1266 {
1267 	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1268 
1269 	if (rc != -ENOENT)
1270 		return rc;
1271 
1272 	rc = context_struct_to_string(p, &entry->context, scontext,
1273 				      scontext_len);
1274 	if (!rc && scontext)
1275 		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1276 	return rc;
1277 }
1278 
1279 #include "initial_sid_to_string.h"
1280 
1281 int security_sidtab_hash_stats(char *page)
1282 {
1283 	struct selinux_policy *policy;
1284 	int rc;
1285 
1286 	if (!selinux_initialized()) {
1287 		pr_err("SELinux: %s:  called before initial load_policy\n",
1288 		       __func__);
1289 		return -EINVAL;
1290 	}
1291 
1292 	rcu_read_lock();
1293 	policy = rcu_dereference(selinux_state.policy);
1294 	rc = sidtab_hash_stats(policy->sidtab, page);
1295 	rcu_read_unlock();
1296 
1297 	return rc;
1298 }
1299 
1300 const char *security_get_initial_sid_context(u32 sid)
1301 {
1302 	if (unlikely(sid > SECINITSID_NUM))
1303 		return NULL;
1304 	return initial_sid_to_string[sid];
1305 }
1306 
1307 static int security_sid_to_context_core(u32 sid, char **scontext,
1308 					u32 *scontext_len, int force,
1309 					int only_invalid)
1310 {
1311 	struct selinux_policy *policy;
1312 	struct policydb *policydb;
1313 	struct sidtab *sidtab;
1314 	struct sidtab_entry *entry;
1315 	int rc = 0;
1316 
1317 	if (scontext)
1318 		*scontext = NULL;
1319 	*scontext_len  = 0;
1320 
1321 	if (!selinux_initialized()) {
1322 		if (sid <= SECINITSID_NUM) {
1323 			char *scontextp;
1324 			const char *s;
1325 
1326 			/*
1327 			 * Before the policy is loaded, translate
1328 			 * SECINITSID_INIT to "kernel", because systemd and
1329 			 * libselinux < 2.6 take a getcon_raw() result that is
1330 			 * both non-null and not "kernel" to mean that a policy
1331 			 * is already loaded.
1332 			 */
1333 			if (sid == SECINITSID_INIT)
1334 				sid = SECINITSID_KERNEL;
1335 
1336 			s = initial_sid_to_string[sid];
1337 			if (!s)
1338 				return -EINVAL;
1339 			*scontext_len = strlen(s) + 1;
1340 			if (!scontext)
1341 				return 0;
1342 			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1343 			if (!scontextp)
1344 				return -ENOMEM;
1345 			*scontext = scontextp;
1346 			return 0;
1347 		}
1348 		pr_err("SELinux: %s:  called before initial "
1349 		       "load_policy on unknown SID %d\n", __func__, sid);
1350 		return -EINVAL;
1351 	}
1352 	rcu_read_lock();
1353 	policy = rcu_dereference(selinux_state.policy);
1354 	policydb = &policy->policydb;
1355 	sidtab = policy->sidtab;
1356 
1357 	if (force)
1358 		entry = sidtab_search_entry_force(sidtab, sid);
1359 	else
1360 		entry = sidtab_search_entry(sidtab, sid);
1361 	if (!entry) {
1362 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1363 			__func__, sid);
1364 		rc = -EINVAL;
1365 		goto out_unlock;
1366 	}
1367 	if (only_invalid && !entry->context.len)
1368 		goto out_unlock;
1369 
1370 	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1371 				    scontext_len);
1372 
1373 out_unlock:
1374 	rcu_read_unlock();
1375 	return rc;
1376 
1377 }
1378 
1379 /**
1380  * security_sid_to_context - Obtain a context for a given SID.
1381  * @sid: security identifier, SID
1382  * @scontext: security context
1383  * @scontext_len: length in bytes
1384  *
1385  * Write the string representation of the context associated with @sid
1386  * into a dynamically allocated string of the correct size.  Set @scontext
1387  * to point to this string and set @scontext_len to the length of the string.
1388  */
1389 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1390 {
1391 	return security_sid_to_context_core(sid, scontext,
1392 					    scontext_len, 0, 0);
1393 }
1394 
1395 int security_sid_to_context_force(u32 sid,
1396 				  char **scontext, u32 *scontext_len)
1397 {
1398 	return security_sid_to_context_core(sid, scontext,
1399 					    scontext_len, 1, 0);
1400 }
1401 
1402 /**
1403  * security_sid_to_context_inval - Obtain a context for a given SID if it
1404  *                                 is invalid.
1405  * @sid: security identifier, SID
1406  * @scontext: security context
1407  * @scontext_len: length in bytes
1408  *
1409  * Write the string representation of the context associated with @sid
1410  * into a dynamically allocated string of the correct size, but only if the
1411  * context is invalid in the current policy.  Set @scontext to point to
1412  * this string (or NULL if the context is valid) and set @scontext_len to
1413  * the length of the string (or 0 if the context is valid).
1414  */
1415 int security_sid_to_context_inval(u32 sid,
1416 				  char **scontext, u32 *scontext_len)
1417 {
1418 	return security_sid_to_context_core(sid, scontext,
1419 					    scontext_len, 1, 1);
1420 }
1421 
1422 /*
1423  * Caveat:  Mutates scontext.
1424  */
1425 static int string_to_context_struct(struct policydb *pol,
1426 				    struct sidtab *sidtabp,
1427 				    char *scontext,
1428 				    struct context *ctx,
1429 				    u32 def_sid)
1430 {
1431 	struct role_datum *role;
1432 	struct type_datum *typdatum;
1433 	struct user_datum *usrdatum;
1434 	char *scontextp, *p, oldc;
1435 	int rc = 0;
1436 
1437 	context_init(ctx);
1438 
1439 	/* Parse the security context. */
1440 
1441 	rc = -EINVAL;
1442 	scontextp = scontext;
1443 
1444 	/* Extract the user. */
1445 	p = scontextp;
1446 	while (*p && *p != ':')
1447 		p++;
1448 
1449 	if (*p == 0)
1450 		goto out;
1451 
1452 	*p++ = 0;
1453 
1454 	usrdatum = symtab_search(&pol->p_users, scontextp);
1455 	if (!usrdatum)
1456 		goto out;
1457 
1458 	ctx->user = usrdatum->value;
1459 
1460 	/* Extract role. */
1461 	scontextp = p;
1462 	while (*p && *p != ':')
1463 		p++;
1464 
1465 	if (*p == 0)
1466 		goto out;
1467 
1468 	*p++ = 0;
1469 
1470 	role = symtab_search(&pol->p_roles, scontextp);
1471 	if (!role)
1472 		goto out;
1473 	ctx->role = role->value;
1474 
1475 	/* Extract type. */
1476 	scontextp = p;
1477 	while (*p && *p != ':')
1478 		p++;
1479 	oldc = *p;
1480 	*p++ = 0;
1481 
1482 	typdatum = symtab_search(&pol->p_types, scontextp);
1483 	if (!typdatum || typdatum->attribute)
1484 		goto out;
1485 
1486 	ctx->type = typdatum->value;
1487 
1488 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1489 	if (rc)
1490 		goto out;
1491 
1492 	/* Check the validity of the new context. */
1493 	rc = -EINVAL;
1494 	if (!policydb_context_isvalid(pol, ctx))
1495 		goto out;
1496 	rc = 0;
1497 out:
1498 	if (rc)
1499 		context_destroy(ctx);
1500 	return rc;
1501 }
1502 
1503 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1504 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1505 					int force)
1506 {
1507 	struct selinux_policy *policy;
1508 	struct policydb *policydb;
1509 	struct sidtab *sidtab;
1510 	char *scontext2, *str = NULL;
1511 	struct context context;
1512 	int rc = 0;
1513 
1514 	/* An empty security context is never valid. */
1515 	if (!scontext_len)
1516 		return -EINVAL;
1517 
1518 	/* Copy the string to allow changes and ensure a NUL terminator */
1519 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1520 	if (!scontext2)
1521 		return -ENOMEM;
1522 
1523 	if (!selinux_initialized()) {
1524 		u32 i;
1525 
1526 		for (i = 1; i < SECINITSID_NUM; i++) {
1527 			const char *s = initial_sid_to_string[i];
1528 
1529 			if (s && !strcmp(s, scontext2)) {
1530 				*sid = i;
1531 				goto out;
1532 			}
1533 		}
1534 		*sid = SECINITSID_KERNEL;
1535 		goto out;
1536 	}
1537 	*sid = SECSID_NULL;
1538 
1539 	if (force) {
1540 		/* Save another copy for storing in uninterpreted form */
1541 		rc = -ENOMEM;
1542 		str = kstrdup(scontext2, gfp_flags);
1543 		if (!str)
1544 			goto out;
1545 	}
1546 retry:
1547 	rcu_read_lock();
1548 	policy = rcu_dereference(selinux_state.policy);
1549 	policydb = &policy->policydb;
1550 	sidtab = policy->sidtab;
1551 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1552 				      &context, def_sid);
1553 	if (rc == -EINVAL && force) {
1554 		context.str = str;
1555 		context.len = strlen(str) + 1;
1556 		str = NULL;
1557 	} else if (rc)
1558 		goto out_unlock;
1559 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1560 	if (rc == -ESTALE) {
1561 		rcu_read_unlock();
1562 		if (context.str) {
1563 			str = context.str;
1564 			context.str = NULL;
1565 		}
1566 		context_destroy(&context);
1567 		goto retry;
1568 	}
1569 	context_destroy(&context);
1570 out_unlock:
1571 	rcu_read_unlock();
1572 out:
1573 	kfree(scontext2);
1574 	kfree(str);
1575 	return rc;
1576 }
1577 
1578 /**
1579  * security_context_to_sid - Obtain a SID for a given security context.
1580  * @scontext: security context
1581  * @scontext_len: length in bytes
1582  * @sid: security identifier, SID
1583  * @gfp: context for the allocation
1584  *
1585  * Obtains a SID associated with the security context that
1586  * has the string representation specified by @scontext.
1587  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1588  * memory is available, or 0 on success.
1589  */
1590 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1591 			    gfp_t gfp)
1592 {
1593 	return security_context_to_sid_core(scontext, scontext_len,
1594 					    sid, SECSID_NULL, gfp, 0);
1595 }
1596 
1597 int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1598 {
1599 	return security_context_to_sid(scontext, strlen(scontext),
1600 				       sid, gfp);
1601 }
1602 
1603 /**
1604  * security_context_to_sid_default - Obtain a SID for a given security context,
1605  * falling back to specified default if needed.
1606  *
1607  * @scontext: security context
1608  * @scontext_len: length in bytes
1609  * @sid: security identifier, SID
1610  * @def_sid: default SID to assign on error
1611  * @gfp_flags: the allocator get-free-page (GFP) flags
1612  *
1613  * Obtains a SID associated with the security context that
1614  * has the string representation specified by @scontext.
1615  * The default SID is passed to the MLS layer to be used to allow
1616  * kernel labeling of the MLS field if the MLS field is not present
1617  * (for upgrading to MLS without full relabel).
1618  * Implicitly forces adding of the context even if it cannot be mapped yet.
1619  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1620  * memory is available, or 0 on success.
1621  */
1622 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1623 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1624 {
1625 	return security_context_to_sid_core(scontext, scontext_len,
1626 					    sid, def_sid, gfp_flags, 1);
1627 }
1628 
1629 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1630 				  u32 *sid)
1631 {
1632 	return security_context_to_sid_core(scontext, scontext_len,
1633 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1634 }
1635 
1636 static int compute_sid_handle_invalid_context(
1637 	struct selinux_policy *policy,
1638 	struct sidtab_entry *sentry,
1639 	struct sidtab_entry *tentry,
1640 	u16 tclass,
1641 	struct context *newcontext)
1642 {
1643 	struct policydb *policydb = &policy->policydb;
1644 	struct sidtab *sidtab = policy->sidtab;
1645 	char *s = NULL, *t = NULL, *n = NULL;
1646 	u32 slen, tlen, nlen;
1647 	struct audit_buffer *ab;
1648 
1649 	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1650 		goto out;
1651 	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1652 		goto out;
1653 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1654 		goto out;
1655 	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1656 	if (!ab)
1657 		goto out;
1658 	audit_log_format(ab,
1659 			 "op=security_compute_sid invalid_context=");
1660 	/* no need to record the NUL with untrusted strings */
1661 	audit_log_n_untrustedstring(ab, n, nlen - 1);
1662 	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1663 			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1664 	audit_log_end(ab);
1665 out:
1666 	kfree(s);
1667 	kfree(t);
1668 	kfree(n);
1669 	if (!enforcing_enabled())
1670 		return 0;
1671 	return -EACCES;
1672 }
1673 
1674 static void filename_compute_type(struct policydb *policydb,
1675 				  struct context *newcontext,
1676 				  u32 stype, u32 ttype, u16 tclass,
1677 				  const char *objname)
1678 {
1679 	struct filename_trans_key ft;
1680 	struct filename_trans_datum *datum;
1681 
1682 	/*
1683 	 * Most filename trans rules are going to live in specific directories
1684 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1685 	 * if the ttype does not contain any rules.
1686 	 */
1687 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1688 		return;
1689 
1690 	ft.ttype = ttype;
1691 	ft.tclass = tclass;
1692 	ft.name = objname;
1693 
1694 	datum = policydb_filenametr_search(policydb, &ft);
1695 	while (datum) {
1696 		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1697 			newcontext->type = datum->otype;
1698 			return;
1699 		}
1700 		datum = datum->next;
1701 	}
1702 }
1703 
1704 static int security_compute_sid(u32 ssid,
1705 				u32 tsid,
1706 				u16 orig_tclass,
1707 				u16 specified,
1708 				const char *objname,
1709 				u32 *out_sid,
1710 				bool kern)
1711 {
1712 	struct selinux_policy *policy;
1713 	struct policydb *policydb;
1714 	struct sidtab *sidtab;
1715 	struct class_datum *cladatum;
1716 	struct context *scontext, *tcontext, newcontext;
1717 	struct sidtab_entry *sentry, *tentry;
1718 	struct avtab_key avkey;
1719 	struct avtab_node *avnode, *node;
1720 	u16 tclass;
1721 	int rc = 0;
1722 	bool sock;
1723 
1724 	if (!selinux_initialized()) {
1725 		switch (orig_tclass) {
1726 		case SECCLASS_PROCESS: /* kernel value */
1727 			*out_sid = ssid;
1728 			break;
1729 		default:
1730 			*out_sid = tsid;
1731 			break;
1732 		}
1733 		goto out;
1734 	}
1735 
1736 retry:
1737 	cladatum = NULL;
1738 	context_init(&newcontext);
1739 
1740 	rcu_read_lock();
1741 
1742 	policy = rcu_dereference(selinux_state.policy);
1743 
1744 	if (kern) {
1745 		tclass = unmap_class(&policy->map, orig_tclass);
1746 		sock = security_is_socket_class(orig_tclass);
1747 	} else {
1748 		tclass = orig_tclass;
1749 		sock = security_is_socket_class(map_class(&policy->map,
1750 							  tclass));
1751 	}
1752 
1753 	policydb = &policy->policydb;
1754 	sidtab = policy->sidtab;
1755 
1756 	sentry = sidtab_search_entry(sidtab, ssid);
1757 	if (!sentry) {
1758 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1759 		       __func__, ssid);
1760 		rc = -EINVAL;
1761 		goto out_unlock;
1762 	}
1763 	tentry = sidtab_search_entry(sidtab, tsid);
1764 	if (!tentry) {
1765 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1766 		       __func__, tsid);
1767 		rc = -EINVAL;
1768 		goto out_unlock;
1769 	}
1770 
1771 	scontext = &sentry->context;
1772 	tcontext = &tentry->context;
1773 
1774 	if (tclass && tclass <= policydb->p_classes.nprim)
1775 		cladatum = policydb->class_val_to_struct[tclass - 1];
1776 
1777 	/* Set the user identity. */
1778 	switch (specified) {
1779 	case AVTAB_TRANSITION:
1780 	case AVTAB_CHANGE:
1781 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1782 			newcontext.user = tcontext->user;
1783 		} else {
1784 			/* notice this gets both DEFAULT_SOURCE and unset */
1785 			/* Use the process user identity. */
1786 			newcontext.user = scontext->user;
1787 		}
1788 		break;
1789 	case AVTAB_MEMBER:
1790 		/* Use the related object owner. */
1791 		newcontext.user = tcontext->user;
1792 		break;
1793 	}
1794 
1795 	/* Set the role to default values. */
1796 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1797 		newcontext.role = scontext->role;
1798 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1799 		newcontext.role = tcontext->role;
1800 	} else {
1801 		if ((tclass == policydb->process_class) || sock)
1802 			newcontext.role = scontext->role;
1803 		else
1804 			newcontext.role = OBJECT_R_VAL;
1805 	}
1806 
1807 	/* Set the type.
1808 	 * Look for a type transition/member/change rule.
1809 	 */
1810 	avkey.source_type = scontext->type;
1811 	avkey.target_type = tcontext->type;
1812 	avkey.target_class = tclass;
1813 	avkey.specified = specified;
1814 	avnode = avtab_search_node(&policydb->te_avtab, &avkey);
1815 
1816 	/* If no permanent rule, also check for enabled conditional rules */
1817 	if (!avnode) {
1818 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1819 		for (; node; node = avtab_search_node_next(node, specified)) {
1820 			if (node->key.specified & AVTAB_ENABLED) {
1821 				avnode = node;
1822 				break;
1823 			}
1824 		}
1825 	}
1826 
1827 	/* If a permanent rule is found, use the type from
1828 	 * the type transition/member/change rule. Otherwise,
1829 	 * set the type to its default values.
1830 	 */
1831 	if (avnode) {
1832 		newcontext.type = avnode->datum.u.data;
1833 	} else if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1834 		newcontext.type = scontext->type;
1835 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1836 		newcontext.type = tcontext->type;
1837 	} else {
1838 		if ((tclass == policydb->process_class) || sock) {
1839 			/* Use the type of process. */
1840 			newcontext.type = scontext->type;
1841 		} else {
1842 			/* Use the type of the related object. */
1843 			newcontext.type = tcontext->type;
1844 		}
1845 	}
1846 
1847 	/* if we have a objname this is a file trans check so check those rules */
1848 	if (objname)
1849 		filename_compute_type(policydb, &newcontext, scontext->type,
1850 				      tcontext->type, tclass, objname);
1851 
1852 	/* Check for class-specific changes. */
1853 	if (specified & AVTAB_TRANSITION) {
1854 		/* Look for a role transition rule. */
1855 		struct role_trans_datum *rtd;
1856 		struct role_trans_key rtk = {
1857 			.role = scontext->role,
1858 			.type = tcontext->type,
1859 			.tclass = tclass,
1860 		};
1861 
1862 		rtd = policydb_roletr_search(policydb, &rtk);
1863 		if (rtd)
1864 			newcontext.role = rtd->new_role;
1865 	}
1866 
1867 	/* Set the MLS attributes.
1868 	   This is done last because it may allocate memory. */
1869 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1870 			     &newcontext, sock);
1871 	if (rc)
1872 		goto out_unlock;
1873 
1874 	/* Check the validity of the context. */
1875 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1876 		rc = compute_sid_handle_invalid_context(policy, sentry,
1877 							tentry, tclass,
1878 							&newcontext);
1879 		if (rc)
1880 			goto out_unlock;
1881 	}
1882 	/* Obtain the sid for the context. */
1883 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1884 	if (rc == -ESTALE) {
1885 		rcu_read_unlock();
1886 		context_destroy(&newcontext);
1887 		goto retry;
1888 	}
1889 out_unlock:
1890 	rcu_read_unlock();
1891 	context_destroy(&newcontext);
1892 out:
1893 	return rc;
1894 }
1895 
1896 /**
1897  * security_transition_sid - Compute the SID for a new subject/object.
1898  * @ssid: source security identifier
1899  * @tsid: target security identifier
1900  * @tclass: target security class
1901  * @qstr: object name
1902  * @out_sid: security identifier for new subject/object
1903  *
1904  * Compute a SID to use for labeling a new subject or object in the
1905  * class @tclass based on a SID pair (@ssid, @tsid).
1906  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1907  * if insufficient memory is available, or %0 if the new SID was
1908  * computed successfully.
1909  */
1910 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1911 			    const struct qstr *qstr, u32 *out_sid)
1912 {
1913 	return security_compute_sid(ssid, tsid, tclass,
1914 				    AVTAB_TRANSITION,
1915 				    qstr ? qstr->name : NULL, out_sid, true);
1916 }
1917 
1918 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1919 				 const char *objname, u32 *out_sid)
1920 {
1921 	return security_compute_sid(ssid, tsid, tclass,
1922 				    AVTAB_TRANSITION,
1923 				    objname, out_sid, false);
1924 }
1925 
1926 /**
1927  * security_member_sid - Compute the SID for member selection.
1928  * @ssid: source security identifier
1929  * @tsid: target security identifier
1930  * @tclass: target security class
1931  * @out_sid: security identifier for selected member
1932  *
1933  * Compute a SID to use when selecting a member of a polyinstantiated
1934  * object of class @tclass based on a SID pair (@ssid, @tsid).
1935  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1936  * if insufficient memory is available, or %0 if the SID was
1937  * computed successfully.
1938  */
1939 int security_member_sid(u32 ssid,
1940 			u32 tsid,
1941 			u16 tclass,
1942 			u32 *out_sid)
1943 {
1944 	return security_compute_sid(ssid, tsid, tclass,
1945 				    AVTAB_MEMBER, NULL,
1946 				    out_sid, false);
1947 }
1948 
1949 /**
1950  * security_change_sid - Compute the SID for object relabeling.
1951  * @ssid: source security identifier
1952  * @tsid: target security identifier
1953  * @tclass: target security class
1954  * @out_sid: security identifier for selected member
1955  *
1956  * Compute a SID to use for relabeling an object of class @tclass
1957  * based on a SID pair (@ssid, @tsid).
1958  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1959  * if insufficient memory is available, or %0 if the SID was
1960  * computed successfully.
1961  */
1962 int security_change_sid(u32 ssid,
1963 			u32 tsid,
1964 			u16 tclass,
1965 			u32 *out_sid)
1966 {
1967 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1968 				    out_sid, false);
1969 }
1970 
1971 static inline int convert_context_handle_invalid_context(
1972 	struct policydb *policydb,
1973 	struct context *context)
1974 {
1975 	char *s;
1976 	u32 len;
1977 
1978 	if (enforcing_enabled())
1979 		return -EINVAL;
1980 
1981 	if (!context_struct_to_string(policydb, context, &s, &len)) {
1982 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1983 			s);
1984 		kfree(s);
1985 	}
1986 	return 0;
1987 }
1988 
1989 /**
1990  * services_convert_context - Convert a security context across policies.
1991  * @args: populated convert_context_args struct
1992  * @oldc: original context
1993  * @newc: converted context
1994  * @gfp_flags: allocation flags
1995  *
1996  * Convert the values in the security context structure @oldc from the values
1997  * specified in the policy @args->oldp to the values specified in the policy
1998  * @args->newp, storing the new context in @newc, and verifying that the
1999  * context is valid under the new policy.
2000  */
2001 int services_convert_context(struct convert_context_args *args,
2002 			     struct context *oldc, struct context *newc,
2003 			     gfp_t gfp_flags)
2004 {
2005 	struct ocontext *oc;
2006 	struct role_datum *role;
2007 	struct type_datum *typdatum;
2008 	struct user_datum *usrdatum;
2009 	char *s;
2010 	u32 len;
2011 	int rc;
2012 
2013 	if (oldc->str) {
2014 		s = kstrdup(oldc->str, gfp_flags);
2015 		if (!s)
2016 			return -ENOMEM;
2017 
2018 		rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2019 		if (rc == -EINVAL) {
2020 			/*
2021 			 * Retain string representation for later mapping.
2022 			 *
2023 			 * IMPORTANT: We need to copy the contents of oldc->str
2024 			 * back into s again because string_to_context_struct()
2025 			 * may have garbled it.
2026 			 */
2027 			memcpy(s, oldc->str, oldc->len);
2028 			context_init(newc);
2029 			newc->str = s;
2030 			newc->len = oldc->len;
2031 			return 0;
2032 		}
2033 		kfree(s);
2034 		if (rc) {
2035 			/* Other error condition, e.g. ENOMEM. */
2036 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2037 			       oldc->str, -rc);
2038 			return rc;
2039 		}
2040 		pr_info("SELinux:  Context %s became valid (mapped).\n",
2041 			oldc->str);
2042 		return 0;
2043 	}
2044 
2045 	context_init(newc);
2046 
2047 	/* Convert the user. */
2048 	usrdatum = symtab_search(&args->newp->p_users,
2049 				 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
2050 	if (!usrdatum)
2051 		goto bad;
2052 	newc->user = usrdatum->value;
2053 
2054 	/* Convert the role. */
2055 	role = symtab_search(&args->newp->p_roles,
2056 			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2057 	if (!role)
2058 		goto bad;
2059 	newc->role = role->value;
2060 
2061 	/* Convert the type. */
2062 	typdatum = symtab_search(&args->newp->p_types,
2063 				 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
2064 	if (!typdatum)
2065 		goto bad;
2066 	newc->type = typdatum->value;
2067 
2068 	/* Convert the MLS fields if dealing with MLS policies */
2069 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2070 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2071 		if (rc)
2072 			goto bad;
2073 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2074 		/*
2075 		 * Switching between non-MLS and MLS policy:
2076 		 * ensure that the MLS fields of the context for all
2077 		 * existing entries in the sidtab are filled in with a
2078 		 * suitable default value, likely taken from one of the
2079 		 * initial SIDs.
2080 		 */
2081 		oc = args->newp->ocontexts[OCON_ISID];
2082 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2083 			oc = oc->next;
2084 		if (!oc) {
2085 			pr_err("SELinux:  unable to look up"
2086 				" the initial SIDs list\n");
2087 			goto bad;
2088 		}
2089 		rc = mls_range_set(newc, &oc->context[0].range);
2090 		if (rc)
2091 			goto bad;
2092 	}
2093 
2094 	/* Check the validity of the new context. */
2095 	if (!policydb_context_isvalid(args->newp, newc)) {
2096 		rc = convert_context_handle_invalid_context(args->oldp, oldc);
2097 		if (rc)
2098 			goto bad;
2099 	}
2100 
2101 	return 0;
2102 bad:
2103 	/* Map old representation to string and save it. */
2104 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2105 	if (rc)
2106 		return rc;
2107 	context_destroy(newc);
2108 	newc->str = s;
2109 	newc->len = len;
2110 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2111 		newc->str);
2112 	return 0;
2113 }
2114 
2115 static void security_load_policycaps(struct selinux_policy *policy)
2116 {
2117 	struct policydb *p;
2118 	unsigned int i;
2119 	struct ebitmap_node *node;
2120 
2121 	p = &policy->policydb;
2122 
2123 	for (i = 0; i < ARRAY_SIZE(selinux_state.policycap); i++)
2124 		WRITE_ONCE(selinux_state.policycap[i],
2125 			ebitmap_get_bit(&p->policycaps, i));
2126 
2127 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2128 		pr_info("SELinux:  policy capability %s=%d\n",
2129 			selinux_policycap_names[i],
2130 			ebitmap_get_bit(&p->policycaps, i));
2131 
2132 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2133 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2134 			pr_info("SELinux:  unknown policy capability %u\n",
2135 				i);
2136 	}
2137 }
2138 
2139 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2140 				struct selinux_policy *newpolicy);
2141 
2142 static void selinux_policy_free(struct selinux_policy *policy)
2143 {
2144 	if (!policy)
2145 		return;
2146 
2147 	sidtab_destroy(policy->sidtab);
2148 	kfree(policy->map.mapping);
2149 	policydb_destroy(&policy->policydb);
2150 	kfree(policy->sidtab);
2151 	kfree(policy);
2152 }
2153 
2154 static void selinux_policy_cond_free(struct selinux_policy *policy)
2155 {
2156 	cond_policydb_destroy_dup(&policy->policydb);
2157 	kfree(policy);
2158 }
2159 
2160 void selinux_policy_cancel(struct selinux_load_state *load_state)
2161 {
2162 	struct selinux_state *state = &selinux_state;
2163 	struct selinux_policy *oldpolicy;
2164 
2165 	oldpolicy = rcu_dereference_protected(state->policy,
2166 					lockdep_is_held(&state->policy_mutex));
2167 
2168 	sidtab_cancel_convert(oldpolicy->sidtab);
2169 	selinux_policy_free(load_state->policy);
2170 	kfree(load_state->convert_data);
2171 }
2172 
2173 static void selinux_notify_policy_change(u32 seqno)
2174 {
2175 	/* Flush external caches and notify userspace of policy load */
2176 	avc_ss_reset(seqno);
2177 	selnl_notify_policyload(seqno);
2178 	selinux_status_update_policyload(seqno);
2179 	selinux_netlbl_cache_invalidate();
2180 	selinux_xfrm_notify_policyload();
2181 	selinux_ima_measure_state_locked();
2182 }
2183 
2184 void selinux_policy_commit(struct selinux_load_state *load_state)
2185 {
2186 	struct selinux_state *state = &selinux_state;
2187 	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2188 	unsigned long flags;
2189 	u32 seqno;
2190 
2191 	oldpolicy = rcu_dereference_protected(state->policy,
2192 					lockdep_is_held(&state->policy_mutex));
2193 
2194 	/* If switching between different policy types, log MLS status */
2195 	if (oldpolicy) {
2196 		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2197 			pr_info("SELinux: Disabling MLS support...\n");
2198 		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2199 			pr_info("SELinux: Enabling MLS support...\n");
2200 	}
2201 
2202 	/* Set latest granting seqno for new policy. */
2203 	if (oldpolicy)
2204 		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2205 	else
2206 		newpolicy->latest_granting = 1;
2207 	seqno = newpolicy->latest_granting;
2208 
2209 	/* Install the new policy. */
2210 	if (oldpolicy) {
2211 		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2212 		rcu_assign_pointer(state->policy, newpolicy);
2213 		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2214 	} else {
2215 		rcu_assign_pointer(state->policy, newpolicy);
2216 	}
2217 
2218 	/* Load the policycaps from the new policy */
2219 	security_load_policycaps(newpolicy);
2220 
2221 	if (!selinux_initialized()) {
2222 		/*
2223 		 * After first policy load, the security server is
2224 		 * marked as initialized and ready to handle requests and
2225 		 * any objects created prior to policy load are then labeled.
2226 		 */
2227 		selinux_mark_initialized();
2228 		selinux_complete_init();
2229 	}
2230 
2231 	/* Free the old policy */
2232 	synchronize_rcu();
2233 	selinux_policy_free(oldpolicy);
2234 	kfree(load_state->convert_data);
2235 
2236 	/* Notify others of the policy change */
2237 	selinux_notify_policy_change(seqno);
2238 }
2239 
2240 /**
2241  * security_load_policy - Load a security policy configuration.
2242  * @data: binary policy data
2243  * @len: length of data in bytes
2244  * @load_state: policy load state
2245  *
2246  * Load a new set of security policy configuration data,
2247  * validate it and convert the SID table as necessary.
2248  * This function will flush the access vector cache after
2249  * loading the new policy.
2250  */
2251 int security_load_policy(void *data, size_t len,
2252 			 struct selinux_load_state *load_state)
2253 {
2254 	struct selinux_state *state = &selinux_state;
2255 	struct selinux_policy *newpolicy, *oldpolicy;
2256 	struct selinux_policy_convert_data *convert_data;
2257 	int rc = 0;
2258 	struct policy_file file = { data, len }, *fp = &file;
2259 
2260 	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2261 	if (!newpolicy)
2262 		return -ENOMEM;
2263 
2264 	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2265 	if (!newpolicy->sidtab) {
2266 		rc = -ENOMEM;
2267 		goto err_policy;
2268 	}
2269 
2270 	rc = policydb_read(&newpolicy->policydb, fp);
2271 	if (rc)
2272 		goto err_sidtab;
2273 
2274 	newpolicy->policydb.len = len;
2275 	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2276 				&newpolicy->map);
2277 	if (rc)
2278 		goto err_policydb;
2279 
2280 	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2281 	if (rc) {
2282 		pr_err("SELinux:  unable to load the initial SIDs\n");
2283 		goto err_mapping;
2284 	}
2285 
2286 	if (!selinux_initialized()) {
2287 		/* First policy load, so no need to preserve state from old policy */
2288 		load_state->policy = newpolicy;
2289 		load_state->convert_data = NULL;
2290 		return 0;
2291 	}
2292 
2293 	oldpolicy = rcu_dereference_protected(state->policy,
2294 					lockdep_is_held(&state->policy_mutex));
2295 
2296 	/* Preserve active boolean values from the old policy */
2297 	rc = security_preserve_bools(oldpolicy, newpolicy);
2298 	if (rc) {
2299 		pr_err("SELinux:  unable to preserve booleans\n");
2300 		goto err_free_isids;
2301 	}
2302 
2303 	/*
2304 	 * Convert the internal representations of contexts
2305 	 * in the new SID table.
2306 	 */
2307 
2308 	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2309 	if (!convert_data) {
2310 		rc = -ENOMEM;
2311 		goto err_free_isids;
2312 	}
2313 
2314 	convert_data->args.oldp = &oldpolicy->policydb;
2315 	convert_data->args.newp = &newpolicy->policydb;
2316 
2317 	convert_data->sidtab_params.args = &convert_data->args;
2318 	convert_data->sidtab_params.target = newpolicy->sidtab;
2319 
2320 	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2321 	if (rc) {
2322 		pr_err("SELinux:  unable to convert the internal"
2323 			" representation of contexts in the new SID"
2324 			" table\n");
2325 		goto err_free_convert_data;
2326 	}
2327 
2328 	load_state->policy = newpolicy;
2329 	load_state->convert_data = convert_data;
2330 	return 0;
2331 
2332 err_free_convert_data:
2333 	kfree(convert_data);
2334 err_free_isids:
2335 	sidtab_destroy(newpolicy->sidtab);
2336 err_mapping:
2337 	kfree(newpolicy->map.mapping);
2338 err_policydb:
2339 	policydb_destroy(&newpolicy->policydb);
2340 err_sidtab:
2341 	kfree(newpolicy->sidtab);
2342 err_policy:
2343 	kfree(newpolicy);
2344 
2345 	return rc;
2346 }
2347 
2348 /**
2349  * ocontext_to_sid - Helper to safely get sid for an ocontext
2350  * @sidtab: SID table
2351  * @c: ocontext structure
2352  * @index: index of the context entry (0 or 1)
2353  * @out_sid: pointer to the resulting SID value
2354  *
2355  * For all ocontexts except OCON_ISID the SID fields are populated
2356  * on-demand when needed. Since updating the SID value is an SMP-sensitive
2357  * operation, this helper must be used to do that safely.
2358  *
2359  * WARNING: This function may return -ESTALE, indicating that the caller
2360  * must retry the operation after re-acquiring the policy pointer!
2361  */
2362 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2363 			   size_t index, u32 *out_sid)
2364 {
2365 	int rc;
2366 	u32 sid;
2367 
2368 	/* Ensure the associated sidtab entry is visible to this thread. */
2369 	sid = smp_load_acquire(&c->sid[index]);
2370 	if (!sid) {
2371 		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2372 		if (rc)
2373 			return rc;
2374 
2375 		/*
2376 		 * Ensure the new sidtab entry is visible to other threads
2377 		 * when they see the SID.
2378 		 */
2379 		smp_store_release(&c->sid[index], sid);
2380 	}
2381 	*out_sid = sid;
2382 	return 0;
2383 }
2384 
2385 /**
2386  * security_port_sid - Obtain the SID for a port.
2387  * @protocol: protocol number
2388  * @port: port number
2389  * @out_sid: security identifier
2390  */
2391 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2392 {
2393 	struct selinux_policy *policy;
2394 	struct policydb *policydb;
2395 	struct sidtab *sidtab;
2396 	struct ocontext *c;
2397 	int rc;
2398 
2399 	if (!selinux_initialized()) {
2400 		*out_sid = SECINITSID_PORT;
2401 		return 0;
2402 	}
2403 
2404 retry:
2405 	rc = 0;
2406 	rcu_read_lock();
2407 	policy = rcu_dereference(selinux_state.policy);
2408 	policydb = &policy->policydb;
2409 	sidtab = policy->sidtab;
2410 
2411 	c = policydb->ocontexts[OCON_PORT];
2412 	while (c) {
2413 		if (c->u.port.protocol == protocol &&
2414 		    c->u.port.low_port <= port &&
2415 		    c->u.port.high_port >= port)
2416 			break;
2417 		c = c->next;
2418 	}
2419 
2420 	if (c) {
2421 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2422 		if (rc == -ESTALE) {
2423 			rcu_read_unlock();
2424 			goto retry;
2425 		}
2426 		if (rc)
2427 			goto out;
2428 	} else {
2429 		*out_sid = SECINITSID_PORT;
2430 	}
2431 
2432 out:
2433 	rcu_read_unlock();
2434 	return rc;
2435 }
2436 
2437 /**
2438  * security_ib_pkey_sid - Obtain the SID for a pkey.
2439  * @subnet_prefix: Subnet Prefix
2440  * @pkey_num: pkey number
2441  * @out_sid: security identifier
2442  */
2443 int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2444 {
2445 	struct selinux_policy *policy;
2446 	struct policydb *policydb;
2447 	struct sidtab *sidtab;
2448 	struct ocontext *c;
2449 	int rc;
2450 
2451 	if (!selinux_initialized()) {
2452 		*out_sid = SECINITSID_UNLABELED;
2453 		return 0;
2454 	}
2455 
2456 retry:
2457 	rc = 0;
2458 	rcu_read_lock();
2459 	policy = rcu_dereference(selinux_state.policy);
2460 	policydb = &policy->policydb;
2461 	sidtab = policy->sidtab;
2462 
2463 	c = policydb->ocontexts[OCON_IBPKEY];
2464 	while (c) {
2465 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2466 		    c->u.ibpkey.high_pkey >= pkey_num &&
2467 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2468 			break;
2469 
2470 		c = c->next;
2471 	}
2472 
2473 	if (c) {
2474 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2475 		if (rc == -ESTALE) {
2476 			rcu_read_unlock();
2477 			goto retry;
2478 		}
2479 		if (rc)
2480 			goto out;
2481 	} else
2482 		*out_sid = SECINITSID_UNLABELED;
2483 
2484 out:
2485 	rcu_read_unlock();
2486 	return rc;
2487 }
2488 
2489 /**
2490  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2491  * @dev_name: device name
2492  * @port_num: port number
2493  * @out_sid: security identifier
2494  */
2495 int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2496 {
2497 	struct selinux_policy *policy;
2498 	struct policydb *policydb;
2499 	struct sidtab *sidtab;
2500 	struct ocontext *c;
2501 	int rc;
2502 
2503 	if (!selinux_initialized()) {
2504 		*out_sid = SECINITSID_UNLABELED;
2505 		return 0;
2506 	}
2507 
2508 retry:
2509 	rc = 0;
2510 	rcu_read_lock();
2511 	policy = rcu_dereference(selinux_state.policy);
2512 	policydb = &policy->policydb;
2513 	sidtab = policy->sidtab;
2514 
2515 	c = policydb->ocontexts[OCON_IBENDPORT];
2516 	while (c) {
2517 		if (c->u.ibendport.port == port_num &&
2518 		    !strncmp(c->u.ibendport.dev_name,
2519 			     dev_name,
2520 			     IB_DEVICE_NAME_MAX))
2521 			break;
2522 
2523 		c = c->next;
2524 	}
2525 
2526 	if (c) {
2527 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2528 		if (rc == -ESTALE) {
2529 			rcu_read_unlock();
2530 			goto retry;
2531 		}
2532 		if (rc)
2533 			goto out;
2534 	} else
2535 		*out_sid = SECINITSID_UNLABELED;
2536 
2537 out:
2538 	rcu_read_unlock();
2539 	return rc;
2540 }
2541 
2542 /**
2543  * security_netif_sid - Obtain the SID for a network interface.
2544  * @name: interface name
2545  * @if_sid: interface SID
2546  */
2547 int security_netif_sid(char *name, u32 *if_sid)
2548 {
2549 	struct selinux_policy *policy;
2550 	struct policydb *policydb;
2551 	struct sidtab *sidtab;
2552 	int rc;
2553 	struct ocontext *c;
2554 
2555 	if (!selinux_initialized()) {
2556 		*if_sid = SECINITSID_NETIF;
2557 		return 0;
2558 	}
2559 
2560 retry:
2561 	rc = 0;
2562 	rcu_read_lock();
2563 	policy = rcu_dereference(selinux_state.policy);
2564 	policydb = &policy->policydb;
2565 	sidtab = policy->sidtab;
2566 
2567 	c = policydb->ocontexts[OCON_NETIF];
2568 	while (c) {
2569 		if (strcmp(name, c->u.name) == 0)
2570 			break;
2571 		c = c->next;
2572 	}
2573 
2574 	if (c) {
2575 		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2576 		if (rc == -ESTALE) {
2577 			rcu_read_unlock();
2578 			goto retry;
2579 		}
2580 		if (rc)
2581 			goto out;
2582 	} else
2583 		*if_sid = SECINITSID_NETIF;
2584 
2585 out:
2586 	rcu_read_unlock();
2587 	return rc;
2588 }
2589 
2590 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2591 {
2592 	int i, fail = 0;
2593 
2594 	for (i = 0; i < 4; i++)
2595 		if (addr[i] != (input[i] & mask[i])) {
2596 			fail = 1;
2597 			break;
2598 		}
2599 
2600 	return !fail;
2601 }
2602 
2603 /**
2604  * security_node_sid - Obtain the SID for a node (host).
2605  * @domain: communication domain aka address family
2606  * @addrp: address
2607  * @addrlen: address length in bytes
2608  * @out_sid: security identifier
2609  */
2610 int security_node_sid(u16 domain,
2611 		      void *addrp,
2612 		      u32 addrlen,
2613 		      u32 *out_sid)
2614 {
2615 	struct selinux_policy *policy;
2616 	struct policydb *policydb;
2617 	struct sidtab *sidtab;
2618 	int rc;
2619 	struct ocontext *c;
2620 
2621 	if (!selinux_initialized()) {
2622 		*out_sid = SECINITSID_NODE;
2623 		return 0;
2624 	}
2625 
2626 retry:
2627 	rcu_read_lock();
2628 	policy = rcu_dereference(selinux_state.policy);
2629 	policydb = &policy->policydb;
2630 	sidtab = policy->sidtab;
2631 
2632 	switch (domain) {
2633 	case AF_INET: {
2634 		u32 addr;
2635 
2636 		rc = -EINVAL;
2637 		if (addrlen != sizeof(u32))
2638 			goto out;
2639 
2640 		addr = *((u32 *)addrp);
2641 
2642 		c = policydb->ocontexts[OCON_NODE];
2643 		while (c) {
2644 			if (c->u.node.addr == (addr & c->u.node.mask))
2645 				break;
2646 			c = c->next;
2647 		}
2648 		break;
2649 	}
2650 
2651 	case AF_INET6:
2652 		rc = -EINVAL;
2653 		if (addrlen != sizeof(u64) * 2)
2654 			goto out;
2655 		c = policydb->ocontexts[OCON_NODE6];
2656 		while (c) {
2657 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2658 						c->u.node6.mask))
2659 				break;
2660 			c = c->next;
2661 		}
2662 		break;
2663 
2664 	default:
2665 		rc = 0;
2666 		*out_sid = SECINITSID_NODE;
2667 		goto out;
2668 	}
2669 
2670 	if (c) {
2671 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2672 		if (rc == -ESTALE) {
2673 			rcu_read_unlock();
2674 			goto retry;
2675 		}
2676 		if (rc)
2677 			goto out;
2678 	} else {
2679 		*out_sid = SECINITSID_NODE;
2680 	}
2681 
2682 	rc = 0;
2683 out:
2684 	rcu_read_unlock();
2685 	return rc;
2686 }
2687 
2688 #define SIDS_NEL 25
2689 
2690 /**
2691  * security_get_user_sids - Obtain reachable SIDs for a user.
2692  * @fromsid: starting SID
2693  * @username: username
2694  * @sids: array of reachable SIDs for user
2695  * @nel: number of elements in @sids
2696  *
2697  * Generate the set of SIDs for legal security contexts
2698  * for a given user that can be reached by @fromsid.
2699  * Set *@sids to point to a dynamically allocated
2700  * array containing the set of SIDs.  Set *@nel to the
2701  * number of elements in the array.
2702  */
2703 
2704 int security_get_user_sids(u32 fromsid,
2705 			   char *username,
2706 			   u32 **sids,
2707 			   u32 *nel)
2708 {
2709 	struct selinux_policy *policy;
2710 	struct policydb *policydb;
2711 	struct sidtab *sidtab;
2712 	struct context *fromcon, usercon;
2713 	u32 *mysids = NULL, *mysids2, sid;
2714 	u32 i, j, mynel, maxnel = SIDS_NEL;
2715 	struct user_datum *user;
2716 	struct role_datum *role;
2717 	struct ebitmap_node *rnode, *tnode;
2718 	int rc;
2719 
2720 	*sids = NULL;
2721 	*nel = 0;
2722 
2723 	if (!selinux_initialized())
2724 		return 0;
2725 
2726 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2727 	if (!mysids)
2728 		return -ENOMEM;
2729 
2730 retry:
2731 	mynel = 0;
2732 	rcu_read_lock();
2733 	policy = rcu_dereference(selinux_state.policy);
2734 	policydb = &policy->policydb;
2735 	sidtab = policy->sidtab;
2736 
2737 	context_init(&usercon);
2738 
2739 	rc = -EINVAL;
2740 	fromcon = sidtab_search(sidtab, fromsid);
2741 	if (!fromcon)
2742 		goto out_unlock;
2743 
2744 	rc = -EINVAL;
2745 	user = symtab_search(&policydb->p_users, username);
2746 	if (!user)
2747 		goto out_unlock;
2748 
2749 	usercon.user = user->value;
2750 
2751 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2752 		role = policydb->role_val_to_struct[i];
2753 		usercon.role = i + 1;
2754 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2755 			usercon.type = j + 1;
2756 
2757 			if (mls_setup_user_range(policydb, fromcon, user,
2758 						 &usercon))
2759 				continue;
2760 
2761 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2762 			if (rc == -ESTALE) {
2763 				rcu_read_unlock();
2764 				goto retry;
2765 			}
2766 			if (rc)
2767 				goto out_unlock;
2768 			if (mynel < maxnel) {
2769 				mysids[mynel++] = sid;
2770 			} else {
2771 				rc = -ENOMEM;
2772 				maxnel += SIDS_NEL;
2773 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2774 				if (!mysids2)
2775 					goto out_unlock;
2776 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2777 				kfree(mysids);
2778 				mysids = mysids2;
2779 				mysids[mynel++] = sid;
2780 			}
2781 		}
2782 	}
2783 	rc = 0;
2784 out_unlock:
2785 	rcu_read_unlock();
2786 	if (rc || !mynel) {
2787 		kfree(mysids);
2788 		return rc;
2789 	}
2790 
2791 	rc = -ENOMEM;
2792 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2793 	if (!mysids2) {
2794 		kfree(mysids);
2795 		return rc;
2796 	}
2797 	for (i = 0, j = 0; i < mynel; i++) {
2798 		struct av_decision dummy_avd;
2799 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2800 					  SECCLASS_PROCESS, /* kernel value */
2801 					  PROCESS__TRANSITION, AVC_STRICT,
2802 					  &dummy_avd);
2803 		if (!rc)
2804 			mysids2[j++] = mysids[i];
2805 		cond_resched();
2806 	}
2807 	kfree(mysids);
2808 	*sids = mysids2;
2809 	*nel = j;
2810 	return 0;
2811 }
2812 
2813 /**
2814  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2815  * @policy: policy
2816  * @fstype: filesystem type
2817  * @path: path from root of mount
2818  * @orig_sclass: file security class
2819  * @sid: SID for path
2820  *
2821  * Obtain a SID to use for a file in a filesystem that
2822  * cannot support xattr or use a fixed labeling behavior like
2823  * transition SIDs or task SIDs.
2824  *
2825  * WARNING: This function may return -ESTALE, indicating that the caller
2826  * must retry the operation after re-acquiring the policy pointer!
2827  */
2828 static inline int __security_genfs_sid(struct selinux_policy *policy,
2829 				       const char *fstype,
2830 				       const char *path,
2831 				       u16 orig_sclass,
2832 				       u32 *sid)
2833 {
2834 	struct policydb *policydb = &policy->policydb;
2835 	struct sidtab *sidtab = policy->sidtab;
2836 	u16 sclass;
2837 	struct genfs *genfs;
2838 	struct ocontext *c;
2839 	int cmp = 0;
2840 
2841 	while (path[0] == '/' && path[1] == '/')
2842 		path++;
2843 
2844 	sclass = unmap_class(&policy->map, orig_sclass);
2845 	*sid = SECINITSID_UNLABELED;
2846 
2847 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2848 		cmp = strcmp(fstype, genfs->fstype);
2849 		if (cmp <= 0)
2850 			break;
2851 	}
2852 
2853 	if (!genfs || cmp)
2854 		return -ENOENT;
2855 
2856 	for (c = genfs->head; c; c = c->next) {
2857 		size_t len = strlen(c->u.name);
2858 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2859 		    (strncmp(c->u.name, path, len) == 0))
2860 			break;
2861 	}
2862 
2863 	if (!c)
2864 		return -ENOENT;
2865 
2866 	return ocontext_to_sid(sidtab, c, 0, sid);
2867 }
2868 
2869 /**
2870  * security_genfs_sid - Obtain a SID for a file in a filesystem
2871  * @fstype: filesystem type
2872  * @path: path from root of mount
2873  * @orig_sclass: file security class
2874  * @sid: SID for path
2875  *
2876  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2877  * it afterward.
2878  */
2879 int security_genfs_sid(const char *fstype,
2880 		       const char *path,
2881 		       u16 orig_sclass,
2882 		       u32 *sid)
2883 {
2884 	struct selinux_policy *policy;
2885 	int retval;
2886 
2887 	if (!selinux_initialized()) {
2888 		*sid = SECINITSID_UNLABELED;
2889 		return 0;
2890 	}
2891 
2892 	do {
2893 		rcu_read_lock();
2894 		policy = rcu_dereference(selinux_state.policy);
2895 		retval = __security_genfs_sid(policy, fstype, path,
2896 					      orig_sclass, sid);
2897 		rcu_read_unlock();
2898 	} while (retval == -ESTALE);
2899 	return retval;
2900 }
2901 
2902 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2903 			const char *fstype,
2904 			const char *path,
2905 			u16 orig_sclass,
2906 			u32 *sid)
2907 {
2908 	/* no lock required, policy is not yet accessible by other threads */
2909 	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2910 }
2911 
2912 /**
2913  * security_fs_use - Determine how to handle labeling for a filesystem.
2914  * @sb: superblock in question
2915  */
2916 int security_fs_use(struct super_block *sb)
2917 {
2918 	struct selinux_policy *policy;
2919 	struct policydb *policydb;
2920 	struct sidtab *sidtab;
2921 	int rc;
2922 	struct ocontext *c;
2923 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2924 	const char *fstype = sb->s_type->name;
2925 
2926 	if (!selinux_initialized()) {
2927 		sbsec->behavior = SECURITY_FS_USE_NONE;
2928 		sbsec->sid = SECINITSID_UNLABELED;
2929 		return 0;
2930 	}
2931 
2932 retry:
2933 	rcu_read_lock();
2934 	policy = rcu_dereference(selinux_state.policy);
2935 	policydb = &policy->policydb;
2936 	sidtab = policy->sidtab;
2937 
2938 	c = policydb->ocontexts[OCON_FSUSE];
2939 	while (c) {
2940 		if (strcmp(fstype, c->u.name) == 0)
2941 			break;
2942 		c = c->next;
2943 	}
2944 
2945 	if (c) {
2946 		sbsec->behavior = c->v.behavior;
2947 		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2948 		if (rc == -ESTALE) {
2949 			rcu_read_unlock();
2950 			goto retry;
2951 		}
2952 		if (rc)
2953 			goto out;
2954 	} else {
2955 		rc = __security_genfs_sid(policy, fstype, "/",
2956 					SECCLASS_DIR, &sbsec->sid);
2957 		if (rc == -ESTALE) {
2958 			rcu_read_unlock();
2959 			goto retry;
2960 		}
2961 		if (rc) {
2962 			sbsec->behavior = SECURITY_FS_USE_NONE;
2963 			rc = 0;
2964 		} else {
2965 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2966 		}
2967 	}
2968 
2969 out:
2970 	rcu_read_unlock();
2971 	return rc;
2972 }
2973 
2974 int security_get_bools(struct selinux_policy *policy,
2975 		       u32 *len, char ***names, int **values)
2976 {
2977 	struct policydb *policydb;
2978 	u32 i;
2979 	int rc;
2980 
2981 	policydb = &policy->policydb;
2982 
2983 	*names = NULL;
2984 	*values = NULL;
2985 
2986 	rc = 0;
2987 	*len = policydb->p_bools.nprim;
2988 	if (!*len)
2989 		goto out;
2990 
2991 	rc = -ENOMEM;
2992 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2993 	if (!*names)
2994 		goto err;
2995 
2996 	rc = -ENOMEM;
2997 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2998 	if (!*values)
2999 		goto err;
3000 
3001 	for (i = 0; i < *len; i++) {
3002 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3003 
3004 		rc = -ENOMEM;
3005 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3006 				      GFP_ATOMIC);
3007 		if (!(*names)[i])
3008 			goto err;
3009 	}
3010 	rc = 0;
3011 out:
3012 	return rc;
3013 err:
3014 	if (*names) {
3015 		for (i = 0; i < *len; i++)
3016 			kfree((*names)[i]);
3017 		kfree(*names);
3018 	}
3019 	kfree(*values);
3020 	*len = 0;
3021 	*names = NULL;
3022 	*values = NULL;
3023 	goto out;
3024 }
3025 
3026 
3027 int security_set_bools(u32 len, int *values)
3028 {
3029 	struct selinux_state *state = &selinux_state;
3030 	struct selinux_policy *newpolicy, *oldpolicy;
3031 	int rc;
3032 	u32 i, seqno = 0;
3033 
3034 	if (!selinux_initialized())
3035 		return -EINVAL;
3036 
3037 	oldpolicy = rcu_dereference_protected(state->policy,
3038 					lockdep_is_held(&state->policy_mutex));
3039 
3040 	/* Consistency check on number of booleans, should never fail */
3041 	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3042 		return -EINVAL;
3043 
3044 	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3045 	if (!newpolicy)
3046 		return -ENOMEM;
3047 
3048 	/*
3049 	 * Deep copy only the parts of the policydb that might be
3050 	 * modified as a result of changing booleans.
3051 	 */
3052 	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3053 	if (rc) {
3054 		kfree(newpolicy);
3055 		return -ENOMEM;
3056 	}
3057 
3058 	/* Update the boolean states in the copy */
3059 	for (i = 0; i < len; i++) {
3060 		int new_state = !!values[i];
3061 		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3062 
3063 		if (new_state != old_state) {
3064 			audit_log(audit_context(), GFP_ATOMIC,
3065 				AUDIT_MAC_CONFIG_CHANGE,
3066 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3067 				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3068 				new_state,
3069 				old_state,
3070 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3071 				audit_get_sessionid(current));
3072 			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3073 		}
3074 	}
3075 
3076 	/* Re-evaluate the conditional rules in the copy */
3077 	evaluate_cond_nodes(&newpolicy->policydb);
3078 
3079 	/* Set latest granting seqno for new policy */
3080 	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3081 	seqno = newpolicy->latest_granting;
3082 
3083 	/* Install the new policy */
3084 	rcu_assign_pointer(state->policy, newpolicy);
3085 
3086 	/*
3087 	 * Free the conditional portions of the old policydb
3088 	 * that were copied for the new policy, and the oldpolicy
3089 	 * structure itself but not what it references.
3090 	 */
3091 	synchronize_rcu();
3092 	selinux_policy_cond_free(oldpolicy);
3093 
3094 	/* Notify others of the policy change */
3095 	selinux_notify_policy_change(seqno);
3096 	return 0;
3097 }
3098 
3099 int security_get_bool_value(u32 index)
3100 {
3101 	struct selinux_policy *policy;
3102 	struct policydb *policydb;
3103 	int rc;
3104 	u32 len;
3105 
3106 	if (!selinux_initialized())
3107 		return 0;
3108 
3109 	rcu_read_lock();
3110 	policy = rcu_dereference(selinux_state.policy);
3111 	policydb = &policy->policydb;
3112 
3113 	rc = -EFAULT;
3114 	len = policydb->p_bools.nprim;
3115 	if (index >= len)
3116 		goto out;
3117 
3118 	rc = policydb->bool_val_to_struct[index]->state;
3119 out:
3120 	rcu_read_unlock();
3121 	return rc;
3122 }
3123 
3124 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3125 				struct selinux_policy *newpolicy)
3126 {
3127 	int rc, *bvalues = NULL;
3128 	char **bnames = NULL;
3129 	struct cond_bool_datum *booldatum;
3130 	u32 i, nbools = 0;
3131 
3132 	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3133 	if (rc)
3134 		goto out;
3135 	for (i = 0; i < nbools; i++) {
3136 		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3137 					bnames[i]);
3138 		if (booldatum)
3139 			booldatum->state = bvalues[i];
3140 	}
3141 	evaluate_cond_nodes(&newpolicy->policydb);
3142 
3143 out:
3144 	if (bnames) {
3145 		for (i = 0; i < nbools; i++)
3146 			kfree(bnames[i]);
3147 	}
3148 	kfree(bnames);
3149 	kfree(bvalues);
3150 	return rc;
3151 }
3152 
3153 /*
3154  * security_sid_mls_copy() - computes a new sid based on the given
3155  * sid and the mls portion of mls_sid.
3156  */
3157 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
3158 {
3159 	struct selinux_policy *policy;
3160 	struct policydb *policydb;
3161 	struct sidtab *sidtab;
3162 	struct context *context1;
3163 	struct context *context2;
3164 	struct context newcon;
3165 	char *s;
3166 	u32 len;
3167 	int rc;
3168 
3169 	if (!selinux_initialized()) {
3170 		*new_sid = sid;
3171 		return 0;
3172 	}
3173 
3174 retry:
3175 	rc = 0;
3176 	context_init(&newcon);
3177 
3178 	rcu_read_lock();
3179 	policy = rcu_dereference(selinux_state.policy);
3180 	policydb = &policy->policydb;
3181 	sidtab = policy->sidtab;
3182 
3183 	if (!policydb->mls_enabled) {
3184 		*new_sid = sid;
3185 		goto out_unlock;
3186 	}
3187 
3188 	rc = -EINVAL;
3189 	context1 = sidtab_search(sidtab, sid);
3190 	if (!context1) {
3191 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3192 			__func__, sid);
3193 		goto out_unlock;
3194 	}
3195 
3196 	rc = -EINVAL;
3197 	context2 = sidtab_search(sidtab, mls_sid);
3198 	if (!context2) {
3199 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3200 			__func__, mls_sid);
3201 		goto out_unlock;
3202 	}
3203 
3204 	newcon.user = context1->user;
3205 	newcon.role = context1->role;
3206 	newcon.type = context1->type;
3207 	rc = mls_context_cpy(&newcon, context2);
3208 	if (rc)
3209 		goto out_unlock;
3210 
3211 	/* Check the validity of the new context. */
3212 	if (!policydb_context_isvalid(policydb, &newcon)) {
3213 		rc = convert_context_handle_invalid_context(policydb,
3214 							&newcon);
3215 		if (rc) {
3216 			if (!context_struct_to_string(policydb, &newcon, &s,
3217 						      &len)) {
3218 				struct audit_buffer *ab;
3219 
3220 				ab = audit_log_start(audit_context(),
3221 						     GFP_ATOMIC,
3222 						     AUDIT_SELINUX_ERR);
3223 				audit_log_format(ab,
3224 						 "op=security_sid_mls_copy invalid_context=");
3225 				/* don't record NUL with untrusted strings */
3226 				audit_log_n_untrustedstring(ab, s, len - 1);
3227 				audit_log_end(ab);
3228 				kfree(s);
3229 			}
3230 			goto out_unlock;
3231 		}
3232 	}
3233 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3234 	if (rc == -ESTALE) {
3235 		rcu_read_unlock();
3236 		context_destroy(&newcon);
3237 		goto retry;
3238 	}
3239 out_unlock:
3240 	rcu_read_unlock();
3241 	context_destroy(&newcon);
3242 	return rc;
3243 }
3244 
3245 /**
3246  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3247  * @nlbl_sid: NetLabel SID
3248  * @nlbl_type: NetLabel labeling protocol type
3249  * @xfrm_sid: XFRM SID
3250  * @peer_sid: network peer sid
3251  *
3252  * Description:
3253  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3254  * resolved into a single SID it is returned via @peer_sid and the function
3255  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3256  * returns a negative value.  A table summarizing the behavior is below:
3257  *
3258  *                                 | function return |      @sid
3259  *   ------------------------------+-----------------+-----------------
3260  *   no peer labels                |        0        |    SECSID_NULL
3261  *   single peer label             |        0        |    <peer_label>
3262  *   multiple, consistent labels   |        0        |    <peer_label>
3263  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3264  *
3265  */
3266 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
3267 				 u32 xfrm_sid,
3268 				 u32 *peer_sid)
3269 {
3270 	struct selinux_policy *policy;
3271 	struct policydb *policydb;
3272 	struct sidtab *sidtab;
3273 	int rc;
3274 	struct context *nlbl_ctx;
3275 	struct context *xfrm_ctx;
3276 
3277 	*peer_sid = SECSID_NULL;
3278 
3279 	/* handle the common (which also happens to be the set of easy) cases
3280 	 * right away, these two if statements catch everything involving a
3281 	 * single or absent peer SID/label */
3282 	if (xfrm_sid == SECSID_NULL) {
3283 		*peer_sid = nlbl_sid;
3284 		return 0;
3285 	}
3286 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3287 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3288 	 * is present */
3289 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3290 		*peer_sid = xfrm_sid;
3291 		return 0;
3292 	}
3293 
3294 	if (!selinux_initialized())
3295 		return 0;
3296 
3297 	rcu_read_lock();
3298 	policy = rcu_dereference(selinux_state.policy);
3299 	policydb = &policy->policydb;
3300 	sidtab = policy->sidtab;
3301 
3302 	/*
3303 	 * We don't need to check initialized here since the only way both
3304 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3305 	 * security server was initialized and state->initialized was true.
3306 	 */
3307 	if (!policydb->mls_enabled) {
3308 		rc = 0;
3309 		goto out;
3310 	}
3311 
3312 	rc = -EINVAL;
3313 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3314 	if (!nlbl_ctx) {
3315 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3316 		       __func__, nlbl_sid);
3317 		goto out;
3318 	}
3319 	rc = -EINVAL;
3320 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3321 	if (!xfrm_ctx) {
3322 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3323 		       __func__, xfrm_sid);
3324 		goto out;
3325 	}
3326 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3327 	if (rc)
3328 		goto out;
3329 
3330 	/* at present NetLabel SIDs/labels really only carry MLS
3331 	 * information so if the MLS portion of the NetLabel SID
3332 	 * matches the MLS portion of the labeled XFRM SID/label
3333 	 * then pass along the XFRM SID as it is the most
3334 	 * expressive */
3335 	*peer_sid = xfrm_sid;
3336 out:
3337 	rcu_read_unlock();
3338 	return rc;
3339 }
3340 
3341 static int get_classes_callback(void *k, void *d, void *args)
3342 {
3343 	struct class_datum *datum = d;
3344 	char *name = k, **classes = args;
3345 	u32 value = datum->value - 1;
3346 
3347 	classes[value] = kstrdup(name, GFP_ATOMIC);
3348 	if (!classes[value])
3349 		return -ENOMEM;
3350 
3351 	return 0;
3352 }
3353 
3354 int security_get_classes(struct selinux_policy *policy,
3355 			 char ***classes, u32 *nclasses)
3356 {
3357 	struct policydb *policydb;
3358 	int rc;
3359 
3360 	policydb = &policy->policydb;
3361 
3362 	rc = -ENOMEM;
3363 	*nclasses = policydb->p_classes.nprim;
3364 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3365 	if (!*classes)
3366 		goto out;
3367 
3368 	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3369 			 *classes);
3370 	if (rc) {
3371 		u32 i;
3372 
3373 		for (i = 0; i < *nclasses; i++)
3374 			kfree((*classes)[i]);
3375 		kfree(*classes);
3376 	}
3377 
3378 out:
3379 	return rc;
3380 }
3381 
3382 static int get_permissions_callback(void *k, void *d, void *args)
3383 {
3384 	struct perm_datum *datum = d;
3385 	char *name = k, **perms = args;
3386 	u32 value = datum->value - 1;
3387 
3388 	perms[value] = kstrdup(name, GFP_ATOMIC);
3389 	if (!perms[value])
3390 		return -ENOMEM;
3391 
3392 	return 0;
3393 }
3394 
3395 int security_get_permissions(struct selinux_policy *policy,
3396 			     const char *class, char ***perms, u32 *nperms)
3397 {
3398 	struct policydb *policydb;
3399 	u32 i;
3400 	int rc;
3401 	struct class_datum *match;
3402 
3403 	policydb = &policy->policydb;
3404 
3405 	rc = -EINVAL;
3406 	match = symtab_search(&policydb->p_classes, class);
3407 	if (!match) {
3408 		pr_err("SELinux: %s:  unrecognized class %s\n",
3409 			__func__, class);
3410 		goto out;
3411 	}
3412 
3413 	rc = -ENOMEM;
3414 	*nperms = match->permissions.nprim;
3415 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3416 	if (!*perms)
3417 		goto out;
3418 
3419 	if (match->comdatum) {
3420 		rc = hashtab_map(&match->comdatum->permissions.table,
3421 				 get_permissions_callback, *perms);
3422 		if (rc)
3423 			goto err;
3424 	}
3425 
3426 	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3427 			 *perms);
3428 	if (rc)
3429 		goto err;
3430 
3431 out:
3432 	return rc;
3433 
3434 err:
3435 	for (i = 0; i < *nperms; i++)
3436 		kfree((*perms)[i]);
3437 	kfree(*perms);
3438 	return rc;
3439 }
3440 
3441 int security_get_reject_unknown(void)
3442 {
3443 	struct selinux_policy *policy;
3444 	int value;
3445 
3446 	if (!selinux_initialized())
3447 		return 0;
3448 
3449 	rcu_read_lock();
3450 	policy = rcu_dereference(selinux_state.policy);
3451 	value = policy->policydb.reject_unknown;
3452 	rcu_read_unlock();
3453 	return value;
3454 }
3455 
3456 int security_get_allow_unknown(void)
3457 {
3458 	struct selinux_policy *policy;
3459 	int value;
3460 
3461 	if (!selinux_initialized())
3462 		return 0;
3463 
3464 	rcu_read_lock();
3465 	policy = rcu_dereference(selinux_state.policy);
3466 	value = policy->policydb.allow_unknown;
3467 	rcu_read_unlock();
3468 	return value;
3469 }
3470 
3471 /**
3472  * security_policycap_supported - Check for a specific policy capability
3473  * @req_cap: capability
3474  *
3475  * Description:
3476  * This function queries the currently loaded policy to see if it supports the
3477  * capability specified by @req_cap.  Returns true (1) if the capability is
3478  * supported, false (0) if it isn't supported.
3479  *
3480  */
3481 int security_policycap_supported(unsigned int req_cap)
3482 {
3483 	struct selinux_policy *policy;
3484 	int rc;
3485 
3486 	if (!selinux_initialized())
3487 		return 0;
3488 
3489 	rcu_read_lock();
3490 	policy = rcu_dereference(selinux_state.policy);
3491 	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3492 	rcu_read_unlock();
3493 
3494 	return rc;
3495 }
3496 
3497 struct selinux_audit_rule {
3498 	u32 au_seqno;
3499 	struct context au_ctxt;
3500 };
3501 
3502 void selinux_audit_rule_free(void *vrule)
3503 {
3504 	struct selinux_audit_rule *rule = vrule;
3505 
3506 	if (rule) {
3507 		context_destroy(&rule->au_ctxt);
3508 		kfree(rule);
3509 	}
3510 }
3511 
3512 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule,
3513 			    gfp_t gfp)
3514 {
3515 	struct selinux_state *state = &selinux_state;
3516 	struct selinux_policy *policy;
3517 	struct policydb *policydb;
3518 	struct selinux_audit_rule *tmprule;
3519 	struct role_datum *roledatum;
3520 	struct type_datum *typedatum;
3521 	struct user_datum *userdatum;
3522 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3523 	int rc = 0;
3524 
3525 	*rule = NULL;
3526 
3527 	if (!selinux_initialized())
3528 		return -EOPNOTSUPP;
3529 
3530 	switch (field) {
3531 	case AUDIT_SUBJ_USER:
3532 	case AUDIT_SUBJ_ROLE:
3533 	case AUDIT_SUBJ_TYPE:
3534 	case AUDIT_OBJ_USER:
3535 	case AUDIT_OBJ_ROLE:
3536 	case AUDIT_OBJ_TYPE:
3537 		/* only 'equals' and 'not equals' fit user, role, and type */
3538 		if (op != Audit_equal && op != Audit_not_equal)
3539 			return -EINVAL;
3540 		break;
3541 	case AUDIT_SUBJ_SEN:
3542 	case AUDIT_SUBJ_CLR:
3543 	case AUDIT_OBJ_LEV_LOW:
3544 	case AUDIT_OBJ_LEV_HIGH:
3545 		/* we do not allow a range, indicated by the presence of '-' */
3546 		if (strchr(rulestr, '-'))
3547 			return -EINVAL;
3548 		break;
3549 	default:
3550 		/* only the above fields are valid */
3551 		return -EINVAL;
3552 	}
3553 
3554 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), gfp);
3555 	if (!tmprule)
3556 		return -ENOMEM;
3557 	context_init(&tmprule->au_ctxt);
3558 
3559 	rcu_read_lock();
3560 	policy = rcu_dereference(state->policy);
3561 	policydb = &policy->policydb;
3562 	tmprule->au_seqno = policy->latest_granting;
3563 	switch (field) {
3564 	case AUDIT_SUBJ_USER:
3565 	case AUDIT_OBJ_USER:
3566 		userdatum = symtab_search(&policydb->p_users, rulestr);
3567 		if (!userdatum) {
3568 			rc = -EINVAL;
3569 			goto err;
3570 		}
3571 		tmprule->au_ctxt.user = userdatum->value;
3572 		break;
3573 	case AUDIT_SUBJ_ROLE:
3574 	case AUDIT_OBJ_ROLE:
3575 		roledatum = symtab_search(&policydb->p_roles, rulestr);
3576 		if (!roledatum) {
3577 			rc = -EINVAL;
3578 			goto err;
3579 		}
3580 		tmprule->au_ctxt.role = roledatum->value;
3581 		break;
3582 	case AUDIT_SUBJ_TYPE:
3583 	case AUDIT_OBJ_TYPE:
3584 		typedatum = symtab_search(&policydb->p_types, rulestr);
3585 		if (!typedatum) {
3586 			rc = -EINVAL;
3587 			goto err;
3588 		}
3589 		tmprule->au_ctxt.type = typedatum->value;
3590 		break;
3591 	case AUDIT_SUBJ_SEN:
3592 	case AUDIT_SUBJ_CLR:
3593 	case AUDIT_OBJ_LEV_LOW:
3594 	case AUDIT_OBJ_LEV_HIGH:
3595 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3596 				     GFP_ATOMIC);
3597 		if (rc)
3598 			goto err;
3599 		break;
3600 	}
3601 	rcu_read_unlock();
3602 
3603 	*rule = tmprule;
3604 	return 0;
3605 
3606 err:
3607 	rcu_read_unlock();
3608 	selinux_audit_rule_free(tmprule);
3609 	*rule = NULL;
3610 	return rc;
3611 }
3612 
3613 /* Check to see if the rule contains any selinux fields */
3614 int selinux_audit_rule_known(struct audit_krule *rule)
3615 {
3616 	u32 i;
3617 
3618 	for (i = 0; i < rule->field_count; i++) {
3619 		struct audit_field *f = &rule->fields[i];
3620 		switch (f->type) {
3621 		case AUDIT_SUBJ_USER:
3622 		case AUDIT_SUBJ_ROLE:
3623 		case AUDIT_SUBJ_TYPE:
3624 		case AUDIT_SUBJ_SEN:
3625 		case AUDIT_SUBJ_CLR:
3626 		case AUDIT_OBJ_USER:
3627 		case AUDIT_OBJ_ROLE:
3628 		case AUDIT_OBJ_TYPE:
3629 		case AUDIT_OBJ_LEV_LOW:
3630 		case AUDIT_OBJ_LEV_HIGH:
3631 			return 1;
3632 		}
3633 	}
3634 
3635 	return 0;
3636 }
3637 
3638 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3639 {
3640 	struct selinux_state *state = &selinux_state;
3641 	struct selinux_policy *policy;
3642 	struct context *ctxt;
3643 	struct mls_level *level;
3644 	struct selinux_audit_rule *rule = vrule;
3645 	int match = 0;
3646 
3647 	if (unlikely(!rule)) {
3648 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3649 		return -ENOENT;
3650 	}
3651 
3652 	if (!selinux_initialized())
3653 		return 0;
3654 
3655 	rcu_read_lock();
3656 
3657 	policy = rcu_dereference(state->policy);
3658 
3659 	if (rule->au_seqno < policy->latest_granting) {
3660 		match = -ESTALE;
3661 		goto out;
3662 	}
3663 
3664 	ctxt = sidtab_search(policy->sidtab, sid);
3665 	if (unlikely(!ctxt)) {
3666 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3667 			  sid);
3668 		match = -ENOENT;
3669 		goto out;
3670 	}
3671 
3672 	/* a field/op pair that is not caught here will simply fall through
3673 	   without a match */
3674 	switch (field) {
3675 	case AUDIT_SUBJ_USER:
3676 	case AUDIT_OBJ_USER:
3677 		switch (op) {
3678 		case Audit_equal:
3679 			match = (ctxt->user == rule->au_ctxt.user);
3680 			break;
3681 		case Audit_not_equal:
3682 			match = (ctxt->user != rule->au_ctxt.user);
3683 			break;
3684 		}
3685 		break;
3686 	case AUDIT_SUBJ_ROLE:
3687 	case AUDIT_OBJ_ROLE:
3688 		switch (op) {
3689 		case Audit_equal:
3690 			match = (ctxt->role == rule->au_ctxt.role);
3691 			break;
3692 		case Audit_not_equal:
3693 			match = (ctxt->role != rule->au_ctxt.role);
3694 			break;
3695 		}
3696 		break;
3697 	case AUDIT_SUBJ_TYPE:
3698 	case AUDIT_OBJ_TYPE:
3699 		switch (op) {
3700 		case Audit_equal:
3701 			match = (ctxt->type == rule->au_ctxt.type);
3702 			break;
3703 		case Audit_not_equal:
3704 			match = (ctxt->type != rule->au_ctxt.type);
3705 			break;
3706 		}
3707 		break;
3708 	case AUDIT_SUBJ_SEN:
3709 	case AUDIT_SUBJ_CLR:
3710 	case AUDIT_OBJ_LEV_LOW:
3711 	case AUDIT_OBJ_LEV_HIGH:
3712 		level = ((field == AUDIT_SUBJ_SEN ||
3713 			  field == AUDIT_OBJ_LEV_LOW) ?
3714 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3715 		switch (op) {
3716 		case Audit_equal:
3717 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3718 					     level);
3719 			break;
3720 		case Audit_not_equal:
3721 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3722 					      level);
3723 			break;
3724 		case Audit_lt:
3725 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3726 					       level) &&
3727 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3728 					       level));
3729 			break;
3730 		case Audit_le:
3731 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3732 					      level);
3733 			break;
3734 		case Audit_gt:
3735 			match = (mls_level_dom(level,
3736 					      &rule->au_ctxt.range.level[0]) &&
3737 				 !mls_level_eq(level,
3738 					       &rule->au_ctxt.range.level[0]));
3739 			break;
3740 		case Audit_ge:
3741 			match = mls_level_dom(level,
3742 					      &rule->au_ctxt.range.level[0]);
3743 			break;
3744 		}
3745 	}
3746 
3747 out:
3748 	rcu_read_unlock();
3749 	return match;
3750 }
3751 
3752 static int aurule_avc_callback(u32 event)
3753 {
3754 	if (event == AVC_CALLBACK_RESET)
3755 		return audit_update_lsm_rules();
3756 	return 0;
3757 }
3758 
3759 static int __init aurule_init(void)
3760 {
3761 	int err;
3762 
3763 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3764 	if (err)
3765 		panic("avc_add_callback() failed, error %d\n", err);
3766 
3767 	return err;
3768 }
3769 __initcall(aurule_init);
3770 
3771 #ifdef CONFIG_NETLABEL
3772 /**
3773  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3774  * @secattr: the NetLabel packet security attributes
3775  * @sid: the SELinux SID
3776  *
3777  * Description:
3778  * Attempt to cache the context in @ctx, which was derived from the packet in
3779  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3780  * already been initialized.
3781  *
3782  */
3783 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3784 				      u32 sid)
3785 {
3786 	u32 *sid_cache;
3787 
3788 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3789 	if (sid_cache == NULL)
3790 		return;
3791 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3792 	if (secattr->cache == NULL) {
3793 		kfree(sid_cache);
3794 		return;
3795 	}
3796 
3797 	*sid_cache = sid;
3798 	secattr->cache->free = kfree;
3799 	secattr->cache->data = sid_cache;
3800 	secattr->flags |= NETLBL_SECATTR_CACHE;
3801 }
3802 
3803 /**
3804  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3805  * @secattr: the NetLabel packet security attributes
3806  * @sid: the SELinux SID
3807  *
3808  * Description:
3809  * Convert the given NetLabel security attributes in @secattr into a
3810  * SELinux SID.  If the @secattr field does not contain a full SELinux
3811  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3812  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3813  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3814  * conversion for future lookups.  Returns zero on success, negative values on
3815  * failure.
3816  *
3817  */
3818 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3819 				   u32 *sid)
3820 {
3821 	struct selinux_policy *policy;
3822 	struct policydb *policydb;
3823 	struct sidtab *sidtab;
3824 	int rc;
3825 	struct context *ctx;
3826 	struct context ctx_new;
3827 
3828 	if (!selinux_initialized()) {
3829 		*sid = SECSID_NULL;
3830 		return 0;
3831 	}
3832 
3833 retry:
3834 	rc = 0;
3835 	rcu_read_lock();
3836 	policy = rcu_dereference(selinux_state.policy);
3837 	policydb = &policy->policydb;
3838 	sidtab = policy->sidtab;
3839 
3840 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3841 		*sid = *(u32 *)secattr->cache->data;
3842 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3843 		*sid = secattr->attr.secid;
3844 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3845 		rc = -EIDRM;
3846 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3847 		if (ctx == NULL)
3848 			goto out;
3849 
3850 		context_init(&ctx_new);
3851 		ctx_new.user = ctx->user;
3852 		ctx_new.role = ctx->role;
3853 		ctx_new.type = ctx->type;
3854 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3855 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3856 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3857 			if (rc)
3858 				goto out;
3859 		}
3860 		rc = -EIDRM;
3861 		if (!mls_context_isvalid(policydb, &ctx_new)) {
3862 			ebitmap_destroy(&ctx_new.range.level[0].cat);
3863 			goto out;
3864 		}
3865 
3866 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3867 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3868 		if (rc == -ESTALE) {
3869 			rcu_read_unlock();
3870 			goto retry;
3871 		}
3872 		if (rc)
3873 			goto out;
3874 
3875 		security_netlbl_cache_add(secattr, *sid);
3876 	} else
3877 		*sid = SECSID_NULL;
3878 
3879 out:
3880 	rcu_read_unlock();
3881 	return rc;
3882 }
3883 
3884 /**
3885  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3886  * @sid: the SELinux SID
3887  * @secattr: the NetLabel packet security attributes
3888  *
3889  * Description:
3890  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3891  * Returns zero on success, negative values on failure.
3892  *
3893  */
3894 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3895 {
3896 	struct selinux_policy *policy;
3897 	struct policydb *policydb;
3898 	int rc;
3899 	struct context *ctx;
3900 
3901 	if (!selinux_initialized())
3902 		return 0;
3903 
3904 	rcu_read_lock();
3905 	policy = rcu_dereference(selinux_state.policy);
3906 	policydb = &policy->policydb;
3907 
3908 	rc = -ENOENT;
3909 	ctx = sidtab_search(policy->sidtab, sid);
3910 	if (ctx == NULL)
3911 		goto out;
3912 
3913 	rc = -ENOMEM;
3914 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3915 				  GFP_ATOMIC);
3916 	if (secattr->domain == NULL)
3917 		goto out;
3918 
3919 	secattr->attr.secid = sid;
3920 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3921 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3922 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3923 out:
3924 	rcu_read_unlock();
3925 	return rc;
3926 }
3927 #endif /* CONFIG_NETLABEL */
3928 
3929 /**
3930  * __security_read_policy - read the policy.
3931  * @policy: SELinux policy
3932  * @data: binary policy data
3933  * @len: length of data in bytes
3934  *
3935  */
3936 static int __security_read_policy(struct selinux_policy *policy,
3937 				  void *data, size_t *len)
3938 {
3939 	int rc;
3940 	struct policy_file fp;
3941 
3942 	fp.data = data;
3943 	fp.len = *len;
3944 
3945 	rc = policydb_write(&policy->policydb, &fp);
3946 	if (rc)
3947 		return rc;
3948 
3949 	*len = (unsigned long)fp.data - (unsigned long)data;
3950 	return 0;
3951 }
3952 
3953 /**
3954  * security_read_policy - read the policy.
3955  * @data: binary policy data
3956  * @len: length of data in bytes
3957  *
3958  */
3959 int security_read_policy(void **data, size_t *len)
3960 {
3961 	struct selinux_state *state = &selinux_state;
3962 	struct selinux_policy *policy;
3963 
3964 	policy = rcu_dereference_protected(
3965 			state->policy, lockdep_is_held(&state->policy_mutex));
3966 	if (!policy)
3967 		return -EINVAL;
3968 
3969 	*len = policy->policydb.len;
3970 	*data = vmalloc_user(*len);
3971 	if (!*data)
3972 		return -ENOMEM;
3973 
3974 	return __security_read_policy(policy, *data, len);
3975 }
3976 
3977 /**
3978  * security_read_state_kernel - read the policy.
3979  * @data: binary policy data
3980  * @len: length of data in bytes
3981  *
3982  * Allocates kernel memory for reading SELinux policy.
3983  * This function is for internal use only and should not
3984  * be used for returning data to user space.
3985  *
3986  * This function must be called with policy_mutex held.
3987  */
3988 int security_read_state_kernel(void **data, size_t *len)
3989 {
3990 	int err;
3991 	struct selinux_state *state = &selinux_state;
3992 	struct selinux_policy *policy;
3993 
3994 	policy = rcu_dereference_protected(
3995 			state->policy, lockdep_is_held(&state->policy_mutex));
3996 	if (!policy)
3997 		return -EINVAL;
3998 
3999 	*len = policy->policydb.len;
4000 	*data = vmalloc(*len);
4001 	if (!*data)
4002 		return -ENOMEM;
4003 
4004 	err = __security_read_policy(policy, *data, len);
4005 	if (err) {
4006 		vfree(*data);
4007 		*data = NULL;
4008 		*len = 0;
4009 	}
4010 	return err;
4011 }
4012