xref: /linux/security/selinux/ss/services.c (revision 364eeb79a213fcf9164208b53764223ad522d6b3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the security services.
4  *
5  * Authors : Stephen Smalley, <stephen.smalley.work@gmail.com>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *	Support for context based audit filters.
12  *
13  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14  *
15  *	Added conditional policy language extensions
16  *
17  * Updated: Hewlett-Packard <paul@paul-moore.com>
18  *
19  *      Added support for NetLabel
20  *      Added support for the policy capability bitmap
21  *
22  * Updated: Chad Sellers <csellers@tresys.com>
23  *
24  *  Added validation of kernel classes and permissions
25  *
26  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27  *
28  *  Added support for bounds domain and audit messaged on masked permissions
29  *
30  * Updated: Guido Trentalancia <guido@trentalancia.com>
31  *
32  *  Added support for runtime switching of the policy type
33  *
34  * Copyright (C) 2008, 2009 NEC Corporation
35  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39  */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <linux/lsm_hooks.h>
51 #include <net/netlabel.h>
52 
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68 #include "policycap_names.h"
69 #include "ima.h"
70 
71 struct selinux_policy_convert_data {
72 	struct convert_context_args args;
73 	struct sidtab_convert_params sidtab_params;
74 };
75 
76 /* Forward declaration. */
77 static int context_struct_to_string(struct policydb *policydb,
78 				    struct context *context,
79 				    char **scontext,
80 				    u32 *scontext_len);
81 
82 static int sidtab_entry_to_string(struct policydb *policydb,
83 				  struct sidtab *sidtab,
84 				  struct sidtab_entry *entry,
85 				  char **scontext,
86 				  u32 *scontext_len);
87 
88 static void context_struct_compute_av(struct policydb *policydb,
89 				      struct context *scontext,
90 				      struct context *tcontext,
91 				      u16 tclass,
92 				      struct av_decision *avd,
93 				      struct extended_perms *xperms);
94 
95 static int selinux_set_mapping(struct policydb *pol,
96 			       const struct security_class_mapping *map,
97 			       struct selinux_map *out_map)
98 {
99 	u16 i, j;
100 	bool print_unknown_handle = false;
101 
102 	/* Find number of classes in the input mapping */
103 	if (!map)
104 		return -EINVAL;
105 	i = 0;
106 	while (map[i].name)
107 		i++;
108 
109 	/* Allocate space for the class records, plus one for class zero */
110 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
111 	if (!out_map->mapping)
112 		return -ENOMEM;
113 
114 	/* Store the raw class and permission values */
115 	j = 0;
116 	while (map[j].name) {
117 		const struct security_class_mapping *p_in = map + (j++);
118 		struct selinux_mapping *p_out = out_map->mapping + j;
119 		u16 k;
120 
121 		/* An empty class string skips ahead */
122 		if (!strcmp(p_in->name, "")) {
123 			p_out->num_perms = 0;
124 			continue;
125 		}
126 
127 		p_out->value = string_to_security_class(pol, p_in->name);
128 		if (!p_out->value) {
129 			pr_info("SELinux:  Class %s not defined in policy.\n",
130 			       p_in->name);
131 			if (pol->reject_unknown)
132 				goto err;
133 			p_out->num_perms = 0;
134 			print_unknown_handle = true;
135 			continue;
136 		}
137 
138 		k = 0;
139 		while (p_in->perms[k]) {
140 			/* An empty permission string skips ahead */
141 			if (!*p_in->perms[k]) {
142 				k++;
143 				continue;
144 			}
145 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
146 							    p_in->perms[k]);
147 			if (!p_out->perms[k]) {
148 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
149 				       p_in->perms[k], p_in->name);
150 				if (pol->reject_unknown)
151 					goto err;
152 				print_unknown_handle = true;
153 			}
154 
155 			k++;
156 		}
157 		p_out->num_perms = k;
158 	}
159 
160 	if (print_unknown_handle)
161 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
162 		       pol->allow_unknown ? "allowed" : "denied");
163 
164 	out_map->size = i;
165 	return 0;
166 err:
167 	kfree(out_map->mapping);
168 	out_map->mapping = NULL;
169 	return -EINVAL;
170 }
171 
172 /*
173  * Get real, policy values from mapped values
174  */
175 
176 static u16 unmap_class(struct selinux_map *map, u16 tclass)
177 {
178 	if (tclass < map->size)
179 		return map->mapping[tclass].value;
180 
181 	return tclass;
182 }
183 
184 /*
185  * Get kernel value for class from its policy value
186  */
187 static u16 map_class(struct selinux_map *map, u16 pol_value)
188 {
189 	u16 i;
190 
191 	for (i = 1; i < map->size; i++) {
192 		if (map->mapping[i].value == pol_value)
193 			return i;
194 	}
195 
196 	return SECCLASS_NULL;
197 }
198 
199 static void map_decision(struct selinux_map *map,
200 			 u16 tclass, struct av_decision *avd,
201 			 int allow_unknown)
202 {
203 	if (tclass < map->size) {
204 		struct selinux_mapping *mapping = &map->mapping[tclass];
205 		unsigned int i, n = mapping->num_perms;
206 		u32 result;
207 
208 		for (i = 0, result = 0; i < n; i++) {
209 			if (avd->allowed & mapping->perms[i])
210 				result |= (u32)1<<i;
211 			if (allow_unknown && !mapping->perms[i])
212 				result |= (u32)1<<i;
213 		}
214 		avd->allowed = result;
215 
216 		for (i = 0, result = 0; i < n; i++)
217 			if (avd->auditallow & mapping->perms[i])
218 				result |= (u32)1<<i;
219 		avd->auditallow = result;
220 
221 		for (i = 0, result = 0; i < n; i++) {
222 			if (avd->auditdeny & mapping->perms[i])
223 				result |= (u32)1<<i;
224 			if (!allow_unknown && !mapping->perms[i])
225 				result |= (u32)1<<i;
226 		}
227 		/*
228 		 * In case the kernel has a bug and requests a permission
229 		 * between num_perms and the maximum permission number, we
230 		 * should audit that denial
231 		 */
232 		for (; i < (sizeof(u32)*8); i++)
233 			result |= (u32)1<<i;
234 		avd->auditdeny = result;
235 	}
236 }
237 
238 int security_mls_enabled(void)
239 {
240 	int mls_enabled;
241 	struct selinux_policy *policy;
242 
243 	if (!selinux_initialized())
244 		return 0;
245 
246 	rcu_read_lock();
247 	policy = rcu_dereference(selinux_state.policy);
248 	mls_enabled = policy->policydb.mls_enabled;
249 	rcu_read_unlock();
250 	return mls_enabled;
251 }
252 
253 /*
254  * Return the boolean value of a constraint expression
255  * when it is applied to the specified source and target
256  * security contexts.
257  *
258  * xcontext is a special beast...  It is used by the validatetrans rules
259  * only.  For these rules, scontext is the context before the transition,
260  * tcontext is the context after the transition, and xcontext is the context
261  * of the process performing the transition.  All other callers of
262  * constraint_expr_eval should pass in NULL for xcontext.
263  */
264 static int constraint_expr_eval(struct policydb *policydb,
265 				struct context *scontext,
266 				struct context *tcontext,
267 				struct context *xcontext,
268 				struct constraint_expr *cexpr)
269 {
270 	u32 val1, val2;
271 	struct context *c;
272 	struct role_datum *r1, *r2;
273 	struct mls_level *l1, *l2;
274 	struct constraint_expr *e;
275 	int s[CEXPR_MAXDEPTH];
276 	int sp = -1;
277 
278 	for (e = cexpr; e; e = e->next) {
279 		switch (e->expr_type) {
280 		case CEXPR_NOT:
281 			BUG_ON(sp < 0);
282 			s[sp] = !s[sp];
283 			break;
284 		case CEXPR_AND:
285 			BUG_ON(sp < 1);
286 			sp--;
287 			s[sp] &= s[sp + 1];
288 			break;
289 		case CEXPR_OR:
290 			BUG_ON(sp < 1);
291 			sp--;
292 			s[sp] |= s[sp + 1];
293 			break;
294 		case CEXPR_ATTR:
295 			if (sp == (CEXPR_MAXDEPTH - 1))
296 				return 0;
297 			switch (e->attr) {
298 			case CEXPR_USER:
299 				val1 = scontext->user;
300 				val2 = tcontext->user;
301 				break;
302 			case CEXPR_TYPE:
303 				val1 = scontext->type;
304 				val2 = tcontext->type;
305 				break;
306 			case CEXPR_ROLE:
307 				val1 = scontext->role;
308 				val2 = tcontext->role;
309 				r1 = policydb->role_val_to_struct[val1 - 1];
310 				r2 = policydb->role_val_to_struct[val2 - 1];
311 				switch (e->op) {
312 				case CEXPR_DOM:
313 					s[++sp] = ebitmap_get_bit(&r1->dominates,
314 								  val2 - 1);
315 					continue;
316 				case CEXPR_DOMBY:
317 					s[++sp] = ebitmap_get_bit(&r2->dominates,
318 								  val1 - 1);
319 					continue;
320 				case CEXPR_INCOMP:
321 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
322 								    val2 - 1) &&
323 						   !ebitmap_get_bit(&r2->dominates,
324 								    val1 - 1));
325 					continue;
326 				default:
327 					break;
328 				}
329 				break;
330 			case CEXPR_L1L2:
331 				l1 = &(scontext->range.level[0]);
332 				l2 = &(tcontext->range.level[0]);
333 				goto mls_ops;
334 			case CEXPR_L1H2:
335 				l1 = &(scontext->range.level[0]);
336 				l2 = &(tcontext->range.level[1]);
337 				goto mls_ops;
338 			case CEXPR_H1L2:
339 				l1 = &(scontext->range.level[1]);
340 				l2 = &(tcontext->range.level[0]);
341 				goto mls_ops;
342 			case CEXPR_H1H2:
343 				l1 = &(scontext->range.level[1]);
344 				l2 = &(tcontext->range.level[1]);
345 				goto mls_ops;
346 			case CEXPR_L1H1:
347 				l1 = &(scontext->range.level[0]);
348 				l2 = &(scontext->range.level[1]);
349 				goto mls_ops;
350 			case CEXPR_L2H2:
351 				l1 = &(tcontext->range.level[0]);
352 				l2 = &(tcontext->range.level[1]);
353 				goto mls_ops;
354 mls_ops:
355 				switch (e->op) {
356 				case CEXPR_EQ:
357 					s[++sp] = mls_level_eq(l1, l2);
358 					continue;
359 				case CEXPR_NEQ:
360 					s[++sp] = !mls_level_eq(l1, l2);
361 					continue;
362 				case CEXPR_DOM:
363 					s[++sp] = mls_level_dom(l1, l2);
364 					continue;
365 				case CEXPR_DOMBY:
366 					s[++sp] = mls_level_dom(l2, l1);
367 					continue;
368 				case CEXPR_INCOMP:
369 					s[++sp] = mls_level_incomp(l2, l1);
370 					continue;
371 				default:
372 					BUG();
373 					return 0;
374 				}
375 				break;
376 			default:
377 				BUG();
378 				return 0;
379 			}
380 
381 			switch (e->op) {
382 			case CEXPR_EQ:
383 				s[++sp] = (val1 == val2);
384 				break;
385 			case CEXPR_NEQ:
386 				s[++sp] = (val1 != val2);
387 				break;
388 			default:
389 				BUG();
390 				return 0;
391 			}
392 			break;
393 		case CEXPR_NAMES:
394 			if (sp == (CEXPR_MAXDEPTH-1))
395 				return 0;
396 			c = scontext;
397 			if (e->attr & CEXPR_TARGET)
398 				c = tcontext;
399 			else if (e->attr & CEXPR_XTARGET) {
400 				c = xcontext;
401 				if (!c) {
402 					BUG();
403 					return 0;
404 				}
405 			}
406 			if (e->attr & CEXPR_USER)
407 				val1 = c->user;
408 			else if (e->attr & CEXPR_ROLE)
409 				val1 = c->role;
410 			else if (e->attr & CEXPR_TYPE)
411 				val1 = c->type;
412 			else {
413 				BUG();
414 				return 0;
415 			}
416 
417 			switch (e->op) {
418 			case CEXPR_EQ:
419 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
420 				break;
421 			case CEXPR_NEQ:
422 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
423 				break;
424 			default:
425 				BUG();
426 				return 0;
427 			}
428 			break;
429 		default:
430 			BUG();
431 			return 0;
432 		}
433 	}
434 
435 	BUG_ON(sp != 0);
436 	return s[0];
437 }
438 
439 /*
440  * security_dump_masked_av - dumps masked permissions during
441  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
442  */
443 static int dump_masked_av_helper(void *k, void *d, void *args)
444 {
445 	struct perm_datum *pdatum = d;
446 	char **permission_names = args;
447 
448 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
449 
450 	permission_names[pdatum->value - 1] = (char *)k;
451 
452 	return 0;
453 }
454 
455 static void security_dump_masked_av(struct policydb *policydb,
456 				    struct context *scontext,
457 				    struct context *tcontext,
458 				    u16 tclass,
459 				    u32 permissions,
460 				    const char *reason)
461 {
462 	struct common_datum *common_dat;
463 	struct class_datum *tclass_dat;
464 	struct audit_buffer *ab;
465 	char *tclass_name;
466 	char *scontext_name = NULL;
467 	char *tcontext_name = NULL;
468 	char *permission_names[32];
469 	int index;
470 	u32 length;
471 	bool need_comma = false;
472 
473 	if (!permissions)
474 		return;
475 
476 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
477 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
478 	common_dat = tclass_dat->comdatum;
479 
480 	/* init permission_names */
481 	if (common_dat &&
482 	    hashtab_map(&common_dat->permissions.table,
483 			dump_masked_av_helper, permission_names) < 0)
484 		goto out;
485 
486 	if (hashtab_map(&tclass_dat->permissions.table,
487 			dump_masked_av_helper, permission_names) < 0)
488 		goto out;
489 
490 	/* get scontext/tcontext in text form */
491 	if (context_struct_to_string(policydb, scontext,
492 				     &scontext_name, &length) < 0)
493 		goto out;
494 
495 	if (context_struct_to_string(policydb, tcontext,
496 				     &tcontext_name, &length) < 0)
497 		goto out;
498 
499 	/* audit a message */
500 	ab = audit_log_start(audit_context(),
501 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
502 	if (!ab)
503 		goto out;
504 
505 	audit_log_format(ab, "op=security_compute_av reason=%s "
506 			 "scontext=%s tcontext=%s tclass=%s perms=",
507 			 reason, scontext_name, tcontext_name, tclass_name);
508 
509 	for (index = 0; index < 32; index++) {
510 		u32 mask = (1 << index);
511 
512 		if ((mask & permissions) == 0)
513 			continue;
514 
515 		audit_log_format(ab, "%s%s",
516 				 need_comma ? "," : "",
517 				 permission_names[index]
518 				 ? permission_names[index] : "????");
519 		need_comma = true;
520 	}
521 	audit_log_end(ab);
522 out:
523 	/* release scontext/tcontext */
524 	kfree(tcontext_name);
525 	kfree(scontext_name);
526 }
527 
528 /*
529  * security_boundary_permission - drops violated permissions
530  * on boundary constraint.
531  */
532 static void type_attribute_bounds_av(struct policydb *policydb,
533 				     struct context *scontext,
534 				     struct context *tcontext,
535 				     u16 tclass,
536 				     struct av_decision *avd)
537 {
538 	struct context lo_scontext;
539 	struct context lo_tcontext, *tcontextp = tcontext;
540 	struct av_decision lo_avd;
541 	struct type_datum *source;
542 	struct type_datum *target;
543 	u32 masked = 0;
544 
545 	source = policydb->type_val_to_struct[scontext->type - 1];
546 	BUG_ON(!source);
547 
548 	if (!source->bounds)
549 		return;
550 
551 	target = policydb->type_val_to_struct[tcontext->type - 1];
552 	BUG_ON(!target);
553 
554 	memset(&lo_avd, 0, sizeof(lo_avd));
555 
556 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
557 	lo_scontext.type = source->bounds;
558 
559 	if (target->bounds) {
560 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
561 		lo_tcontext.type = target->bounds;
562 		tcontextp = &lo_tcontext;
563 	}
564 
565 	context_struct_compute_av(policydb, &lo_scontext,
566 				  tcontextp,
567 				  tclass,
568 				  &lo_avd,
569 				  NULL);
570 
571 	masked = ~lo_avd.allowed & avd->allowed;
572 
573 	if (likely(!masked))
574 		return;		/* no masked permission */
575 
576 	/* mask violated permissions */
577 	avd->allowed &= ~masked;
578 
579 	/* audit masked permissions */
580 	security_dump_masked_av(policydb, scontext, tcontext,
581 				tclass, masked, "bounds");
582 }
583 
584 /*
585  * Flag which drivers have permissions.
586  */
587 void services_compute_xperms_drivers(
588 		struct extended_perms *xperms,
589 		struct avtab_node *node)
590 {
591 	unsigned int i;
592 
593 	switch (node->datum.u.xperms->specified) {
594 	case AVTAB_XPERMS_IOCTLDRIVER:
595 		/* if one or more driver has all permissions allowed */
596 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
597 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
598 		break;
599 	case AVTAB_XPERMS_IOCTLFUNCTION:
600 	case AVTAB_XPERMS_NLMSG:
601 		/* if allowing permissions within a driver */
602 		security_xperm_set(xperms->drivers.p,
603 					node->datum.u.xperms->driver);
604 		break;
605 	}
606 
607 	xperms->len = 1;
608 }
609 
610 /*
611  * Compute access vectors and extended permissions based on a context
612  * structure pair for the permissions in a particular class.
613  */
614 static void context_struct_compute_av(struct policydb *policydb,
615 				      struct context *scontext,
616 				      struct context *tcontext,
617 				      u16 tclass,
618 				      struct av_decision *avd,
619 				      struct extended_perms *xperms)
620 {
621 	struct constraint_node *constraint;
622 	struct role_allow *ra;
623 	struct avtab_key avkey;
624 	struct avtab_node *node;
625 	struct class_datum *tclass_datum;
626 	struct ebitmap *sattr, *tattr;
627 	struct ebitmap_node *snode, *tnode;
628 	unsigned int i, j;
629 
630 	avd->allowed = 0;
631 	avd->auditallow = 0;
632 	avd->auditdeny = 0xffffffff;
633 	if (xperms) {
634 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
635 		xperms->len = 0;
636 	}
637 
638 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
639 		pr_warn_ratelimited("SELinux:  Invalid class %u\n", tclass);
640 		return;
641 	}
642 
643 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
644 
645 	/*
646 	 * If a specific type enforcement rule was defined for
647 	 * this permission check, then use it.
648 	 */
649 	avkey.target_class = tclass;
650 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
651 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
652 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
653 	ebitmap_for_each_positive_bit(sattr, snode, i) {
654 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
655 			avkey.source_type = i + 1;
656 			avkey.target_type = j + 1;
657 			for (node = avtab_search_node(&policydb->te_avtab,
658 						      &avkey);
659 			     node;
660 			     node = avtab_search_node_next(node, avkey.specified)) {
661 				if (node->key.specified == AVTAB_ALLOWED)
662 					avd->allowed |= node->datum.u.data;
663 				else if (node->key.specified == AVTAB_AUDITALLOW)
664 					avd->auditallow |= node->datum.u.data;
665 				else if (node->key.specified == AVTAB_AUDITDENY)
666 					avd->auditdeny &= node->datum.u.data;
667 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
668 					services_compute_xperms_drivers(xperms, node);
669 			}
670 
671 			/* Check conditional av table for additional permissions */
672 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
673 					avd, xperms);
674 
675 		}
676 	}
677 
678 	/*
679 	 * Remove any permissions prohibited by a constraint (this includes
680 	 * the MLS policy).
681 	 */
682 	constraint = tclass_datum->constraints;
683 	while (constraint) {
684 		if ((constraint->permissions & (avd->allowed)) &&
685 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
686 					  constraint->expr)) {
687 			avd->allowed &= ~(constraint->permissions);
688 		}
689 		constraint = constraint->next;
690 	}
691 
692 	/*
693 	 * If checking process transition permission and the
694 	 * role is changing, then check the (current_role, new_role)
695 	 * pair.
696 	 */
697 	if (tclass == policydb->process_class &&
698 	    (avd->allowed & policydb->process_trans_perms) &&
699 	    scontext->role != tcontext->role) {
700 		for (ra = policydb->role_allow; ra; ra = ra->next) {
701 			if (scontext->role == ra->role &&
702 			    tcontext->role == ra->new_role)
703 				break;
704 		}
705 		if (!ra)
706 			avd->allowed &= ~policydb->process_trans_perms;
707 	}
708 
709 	/*
710 	 * If the given source and target types have boundary
711 	 * constraint, lazy checks have to mask any violated
712 	 * permission and notice it to userspace via audit.
713 	 */
714 	type_attribute_bounds_av(policydb, scontext, tcontext,
715 				 tclass, avd);
716 }
717 
718 static int security_validtrans_handle_fail(struct selinux_policy *policy,
719 					struct sidtab_entry *oentry,
720 					struct sidtab_entry *nentry,
721 					struct sidtab_entry *tentry,
722 					u16 tclass)
723 {
724 	struct policydb *p = &policy->policydb;
725 	struct sidtab *sidtab = policy->sidtab;
726 	char *o = NULL, *n = NULL, *t = NULL;
727 	u32 olen, nlen, tlen;
728 
729 	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
730 		goto out;
731 	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
732 		goto out;
733 	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
734 		goto out;
735 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
736 		  "op=security_validate_transition seresult=denied"
737 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
738 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
739 out:
740 	kfree(o);
741 	kfree(n);
742 	kfree(t);
743 
744 	if (!enforcing_enabled())
745 		return 0;
746 	return -EPERM;
747 }
748 
749 static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
750 					  u16 orig_tclass, bool user)
751 {
752 	struct selinux_policy *policy;
753 	struct policydb *policydb;
754 	struct sidtab *sidtab;
755 	struct sidtab_entry *oentry;
756 	struct sidtab_entry *nentry;
757 	struct sidtab_entry *tentry;
758 	struct class_datum *tclass_datum;
759 	struct constraint_node *constraint;
760 	u16 tclass;
761 	int rc = 0;
762 
763 
764 	if (!selinux_initialized())
765 		return 0;
766 
767 	rcu_read_lock();
768 
769 	policy = rcu_dereference(selinux_state.policy);
770 	policydb = &policy->policydb;
771 	sidtab = policy->sidtab;
772 
773 	if (!user)
774 		tclass = unmap_class(&policy->map, orig_tclass);
775 	else
776 		tclass = orig_tclass;
777 
778 	if (!tclass || tclass > policydb->p_classes.nprim) {
779 		rc = -EINVAL;
780 		goto out;
781 	}
782 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
783 
784 	oentry = sidtab_search_entry(sidtab, oldsid);
785 	if (!oentry) {
786 		pr_err("SELinux: %s:  unrecognized SID %d\n",
787 			__func__, oldsid);
788 		rc = -EINVAL;
789 		goto out;
790 	}
791 
792 	nentry = sidtab_search_entry(sidtab, newsid);
793 	if (!nentry) {
794 		pr_err("SELinux: %s:  unrecognized SID %d\n",
795 			__func__, newsid);
796 		rc = -EINVAL;
797 		goto out;
798 	}
799 
800 	tentry = sidtab_search_entry(sidtab, tasksid);
801 	if (!tentry) {
802 		pr_err("SELinux: %s:  unrecognized SID %d\n",
803 			__func__, tasksid);
804 		rc = -EINVAL;
805 		goto out;
806 	}
807 
808 	constraint = tclass_datum->validatetrans;
809 	while (constraint) {
810 		if (!constraint_expr_eval(policydb, &oentry->context,
811 					  &nentry->context, &tentry->context,
812 					  constraint->expr)) {
813 			if (user)
814 				rc = -EPERM;
815 			else
816 				rc = security_validtrans_handle_fail(policy,
817 								oentry,
818 								nentry,
819 								tentry,
820 								tclass);
821 			goto out;
822 		}
823 		constraint = constraint->next;
824 	}
825 
826 out:
827 	rcu_read_unlock();
828 	return rc;
829 }
830 
831 int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
832 				      u16 tclass)
833 {
834 	return security_compute_validatetrans(oldsid, newsid, tasksid,
835 					      tclass, true);
836 }
837 
838 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
839 				 u16 orig_tclass)
840 {
841 	return security_compute_validatetrans(oldsid, newsid, tasksid,
842 					      orig_tclass, false);
843 }
844 
845 /*
846  * security_bounded_transition - check whether the given
847  * transition is directed to bounded, or not.
848  * It returns 0, if @newsid is bounded by @oldsid.
849  * Otherwise, it returns error code.
850  *
851  * @oldsid : current security identifier
852  * @newsid : destinated security identifier
853  */
854 int security_bounded_transition(u32 old_sid, u32 new_sid)
855 {
856 	struct selinux_policy *policy;
857 	struct policydb *policydb;
858 	struct sidtab *sidtab;
859 	struct sidtab_entry *old_entry, *new_entry;
860 	struct type_datum *type;
861 	u32 index;
862 	int rc;
863 
864 	if (!selinux_initialized())
865 		return 0;
866 
867 	rcu_read_lock();
868 	policy = rcu_dereference(selinux_state.policy);
869 	policydb = &policy->policydb;
870 	sidtab = policy->sidtab;
871 
872 	rc = -EINVAL;
873 	old_entry = sidtab_search_entry(sidtab, old_sid);
874 	if (!old_entry) {
875 		pr_err("SELinux: %s: unrecognized SID %u\n",
876 		       __func__, old_sid);
877 		goto out;
878 	}
879 
880 	rc = -EINVAL;
881 	new_entry = sidtab_search_entry(sidtab, new_sid);
882 	if (!new_entry) {
883 		pr_err("SELinux: %s: unrecognized SID %u\n",
884 		       __func__, new_sid);
885 		goto out;
886 	}
887 
888 	rc = 0;
889 	/* type/domain unchanged */
890 	if (old_entry->context.type == new_entry->context.type)
891 		goto out;
892 
893 	index = new_entry->context.type;
894 	while (true) {
895 		type = policydb->type_val_to_struct[index - 1];
896 		BUG_ON(!type);
897 
898 		/* not bounded anymore */
899 		rc = -EPERM;
900 		if (!type->bounds)
901 			break;
902 
903 		/* @newsid is bounded by @oldsid */
904 		rc = 0;
905 		if (type->bounds == old_entry->context.type)
906 			break;
907 
908 		index = type->bounds;
909 	}
910 
911 	if (rc) {
912 		char *old_name = NULL;
913 		char *new_name = NULL;
914 		u32 length;
915 
916 		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
917 					    &old_name, &length) &&
918 		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
919 					    &new_name, &length)) {
920 			audit_log(audit_context(),
921 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
922 				  "op=security_bounded_transition "
923 				  "seresult=denied "
924 				  "oldcontext=%s newcontext=%s",
925 				  old_name, new_name);
926 		}
927 		kfree(new_name);
928 		kfree(old_name);
929 	}
930 out:
931 	rcu_read_unlock();
932 
933 	return rc;
934 }
935 
936 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
937 {
938 	avd->allowed = 0;
939 	avd->auditallow = 0;
940 	avd->auditdeny = 0xffffffff;
941 	if (policy)
942 		avd->seqno = policy->latest_granting;
943 	else
944 		avd->seqno = 0;
945 	avd->flags = 0;
946 }
947 
948 static void update_xperms_extended_data(u8 specified,
949 					struct extended_perms_data *from,
950 					struct extended_perms_data *xp_data)
951 {
952 	unsigned int i;
953 
954 	switch (specified) {
955 	case AVTAB_XPERMS_IOCTLDRIVER:
956 		memset(xp_data->p, 0xff, sizeof(xp_data->p));
957 		break;
958 	case AVTAB_XPERMS_IOCTLFUNCTION:
959 	case AVTAB_XPERMS_NLMSG:
960 		for (i = 0; i < ARRAY_SIZE(xp_data->p); i++)
961 			xp_data->p[i] |= from->p[i];
962 		break;
963 	}
964 
965 }
966 
967 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
968 					struct avtab_node *node)
969 {
970 	switch (node->datum.u.xperms->specified) {
971 	case AVTAB_XPERMS_IOCTLFUNCTION:
972 	case AVTAB_XPERMS_NLMSG:
973 		if (xpermd->driver != node->datum.u.xperms->driver)
974 			return;
975 		break;
976 	case AVTAB_XPERMS_IOCTLDRIVER:
977 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
978 					xpermd->driver))
979 			return;
980 		break;
981 	default:
982 		BUG();
983 	}
984 
985 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
986 		xpermd->used |= XPERMS_ALLOWED;
987 		update_xperms_extended_data(node->datum.u.xperms->specified,
988 					    &node->datum.u.xperms->perms,
989 					    xpermd->allowed);
990 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
991 		xpermd->used |= XPERMS_AUDITALLOW;
992 		update_xperms_extended_data(node->datum.u.xperms->specified,
993 					    &node->datum.u.xperms->perms,
994 					    xpermd->auditallow);
995 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
996 		xpermd->used |= XPERMS_DONTAUDIT;
997 		update_xperms_extended_data(node->datum.u.xperms->specified,
998 					    &node->datum.u.xperms->perms,
999 					    xpermd->dontaudit);
1000 	} else {
1001 		BUG();
1002 	}
1003 }
1004 
1005 void security_compute_xperms_decision(u32 ssid,
1006 				      u32 tsid,
1007 				      u16 orig_tclass,
1008 				      u8 driver,
1009 				      struct extended_perms_decision *xpermd)
1010 {
1011 	struct selinux_policy *policy;
1012 	struct policydb *policydb;
1013 	struct sidtab *sidtab;
1014 	u16 tclass;
1015 	struct context *scontext, *tcontext;
1016 	struct avtab_key avkey;
1017 	struct avtab_node *node;
1018 	struct ebitmap *sattr, *tattr;
1019 	struct ebitmap_node *snode, *tnode;
1020 	unsigned int i, j;
1021 
1022 	xpermd->driver = driver;
1023 	xpermd->used = 0;
1024 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1025 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1026 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1027 
1028 	rcu_read_lock();
1029 	if (!selinux_initialized())
1030 		goto allow;
1031 
1032 	policy = rcu_dereference(selinux_state.policy);
1033 	policydb = &policy->policydb;
1034 	sidtab = policy->sidtab;
1035 
1036 	scontext = sidtab_search(sidtab, ssid);
1037 	if (!scontext) {
1038 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1039 		       __func__, ssid);
1040 		goto out;
1041 	}
1042 
1043 	tcontext = sidtab_search(sidtab, tsid);
1044 	if (!tcontext) {
1045 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1046 		       __func__, tsid);
1047 		goto out;
1048 	}
1049 
1050 	tclass = unmap_class(&policy->map, orig_tclass);
1051 	if (unlikely(orig_tclass && !tclass)) {
1052 		if (policydb->allow_unknown)
1053 			goto allow;
1054 		goto out;
1055 	}
1056 
1057 
1058 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1059 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1060 		goto out;
1061 	}
1062 
1063 	avkey.target_class = tclass;
1064 	avkey.specified = AVTAB_XPERMS;
1065 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1066 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1067 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1068 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1069 			avkey.source_type = i + 1;
1070 			avkey.target_type = j + 1;
1071 			for (node = avtab_search_node(&policydb->te_avtab,
1072 						      &avkey);
1073 			     node;
1074 			     node = avtab_search_node_next(node, avkey.specified))
1075 				services_compute_xperms_decision(xpermd, node);
1076 
1077 			cond_compute_xperms(&policydb->te_cond_avtab,
1078 						&avkey, xpermd);
1079 		}
1080 	}
1081 out:
1082 	rcu_read_unlock();
1083 	return;
1084 allow:
1085 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1086 	goto out;
1087 }
1088 
1089 /**
1090  * security_compute_av - Compute access vector decisions.
1091  * @ssid: source security identifier
1092  * @tsid: target security identifier
1093  * @orig_tclass: target security class
1094  * @avd: access vector decisions
1095  * @xperms: extended permissions
1096  *
1097  * Compute a set of access vector decisions based on the
1098  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1099  */
1100 void security_compute_av(u32 ssid,
1101 			 u32 tsid,
1102 			 u16 orig_tclass,
1103 			 struct av_decision *avd,
1104 			 struct extended_perms *xperms)
1105 {
1106 	struct selinux_policy *policy;
1107 	struct policydb *policydb;
1108 	struct sidtab *sidtab;
1109 	u16 tclass;
1110 	struct context *scontext = NULL, *tcontext = NULL;
1111 
1112 	rcu_read_lock();
1113 	policy = rcu_dereference(selinux_state.policy);
1114 	avd_init(policy, avd);
1115 	xperms->len = 0;
1116 	if (!selinux_initialized())
1117 		goto allow;
1118 
1119 	policydb = &policy->policydb;
1120 	sidtab = policy->sidtab;
1121 
1122 	scontext = sidtab_search(sidtab, ssid);
1123 	if (!scontext) {
1124 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1125 		       __func__, ssid);
1126 		goto out;
1127 	}
1128 
1129 	/* permissive domain? */
1130 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1131 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1132 
1133 	tcontext = sidtab_search(sidtab, tsid);
1134 	if (!tcontext) {
1135 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1136 		       __func__, tsid);
1137 		goto out;
1138 	}
1139 
1140 	tclass = unmap_class(&policy->map, orig_tclass);
1141 	if (unlikely(orig_tclass && !tclass)) {
1142 		if (policydb->allow_unknown)
1143 			goto allow;
1144 		goto out;
1145 	}
1146 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1147 				  xperms);
1148 	map_decision(&policy->map, orig_tclass, avd,
1149 		     policydb->allow_unknown);
1150 out:
1151 	rcu_read_unlock();
1152 	return;
1153 allow:
1154 	avd->allowed = 0xffffffff;
1155 	goto out;
1156 }
1157 
1158 void security_compute_av_user(u32 ssid,
1159 			      u32 tsid,
1160 			      u16 tclass,
1161 			      struct av_decision *avd)
1162 {
1163 	struct selinux_policy *policy;
1164 	struct policydb *policydb;
1165 	struct sidtab *sidtab;
1166 	struct context *scontext = NULL, *tcontext = NULL;
1167 
1168 	rcu_read_lock();
1169 	policy = rcu_dereference(selinux_state.policy);
1170 	avd_init(policy, avd);
1171 	if (!selinux_initialized())
1172 		goto allow;
1173 
1174 	policydb = &policy->policydb;
1175 	sidtab = policy->sidtab;
1176 
1177 	scontext = sidtab_search(sidtab, ssid);
1178 	if (!scontext) {
1179 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1180 		       __func__, ssid);
1181 		goto out;
1182 	}
1183 
1184 	/* permissive domain? */
1185 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1186 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1187 
1188 	tcontext = sidtab_search(sidtab, tsid);
1189 	if (!tcontext) {
1190 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1191 		       __func__, tsid);
1192 		goto out;
1193 	}
1194 
1195 	if (unlikely(!tclass)) {
1196 		if (policydb->allow_unknown)
1197 			goto allow;
1198 		goto out;
1199 	}
1200 
1201 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1202 				  NULL);
1203  out:
1204 	rcu_read_unlock();
1205 	return;
1206 allow:
1207 	avd->allowed = 0xffffffff;
1208 	goto out;
1209 }
1210 
1211 /*
1212  * Write the security context string representation of
1213  * the context structure `context' into a dynamically
1214  * allocated string of the correct size.  Set `*scontext'
1215  * to point to this string and set `*scontext_len' to
1216  * the length of the string.
1217  */
1218 static int context_struct_to_string(struct policydb *p,
1219 				    struct context *context,
1220 				    char **scontext, u32 *scontext_len)
1221 {
1222 	char *scontextp;
1223 
1224 	if (scontext)
1225 		*scontext = NULL;
1226 	*scontext_len = 0;
1227 
1228 	if (context->len) {
1229 		*scontext_len = context->len;
1230 		if (scontext) {
1231 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1232 			if (!(*scontext))
1233 				return -ENOMEM;
1234 		}
1235 		return 0;
1236 	}
1237 
1238 	/* Compute the size of the context. */
1239 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1240 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1241 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1242 	*scontext_len += mls_compute_context_len(p, context);
1243 
1244 	if (!scontext)
1245 		return 0;
1246 
1247 	/* Allocate space for the context; caller must free this space. */
1248 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1249 	if (!scontextp)
1250 		return -ENOMEM;
1251 	*scontext = scontextp;
1252 
1253 	/*
1254 	 * Copy the user name, role name and type name into the context.
1255 	 */
1256 	scontextp += sprintf(scontextp, "%s:%s:%s",
1257 		sym_name(p, SYM_USERS, context->user - 1),
1258 		sym_name(p, SYM_ROLES, context->role - 1),
1259 		sym_name(p, SYM_TYPES, context->type - 1));
1260 
1261 	mls_sid_to_context(p, context, &scontextp);
1262 
1263 	*scontextp = 0;
1264 
1265 	return 0;
1266 }
1267 
1268 static int sidtab_entry_to_string(struct policydb *p,
1269 				  struct sidtab *sidtab,
1270 				  struct sidtab_entry *entry,
1271 				  char **scontext, u32 *scontext_len)
1272 {
1273 	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1274 
1275 	if (rc != -ENOENT)
1276 		return rc;
1277 
1278 	rc = context_struct_to_string(p, &entry->context, scontext,
1279 				      scontext_len);
1280 	if (!rc && scontext)
1281 		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1282 	return rc;
1283 }
1284 
1285 #include "initial_sid_to_string.h"
1286 
1287 int security_sidtab_hash_stats(char *page)
1288 {
1289 	struct selinux_policy *policy;
1290 	int rc;
1291 
1292 	if (!selinux_initialized()) {
1293 		pr_err("SELinux: %s:  called before initial load_policy\n",
1294 		       __func__);
1295 		return -EINVAL;
1296 	}
1297 
1298 	rcu_read_lock();
1299 	policy = rcu_dereference(selinux_state.policy);
1300 	rc = sidtab_hash_stats(policy->sidtab, page);
1301 	rcu_read_unlock();
1302 
1303 	return rc;
1304 }
1305 
1306 const char *security_get_initial_sid_context(u32 sid)
1307 {
1308 	if (unlikely(sid > SECINITSID_NUM))
1309 		return NULL;
1310 	return initial_sid_to_string[sid];
1311 }
1312 
1313 static int security_sid_to_context_core(u32 sid, char **scontext,
1314 					u32 *scontext_len, int force,
1315 					int only_invalid)
1316 {
1317 	struct selinux_policy *policy;
1318 	struct policydb *policydb;
1319 	struct sidtab *sidtab;
1320 	struct sidtab_entry *entry;
1321 	int rc = 0;
1322 
1323 	if (scontext)
1324 		*scontext = NULL;
1325 	*scontext_len  = 0;
1326 
1327 	if (!selinux_initialized()) {
1328 		if (sid <= SECINITSID_NUM) {
1329 			char *scontextp;
1330 			const char *s;
1331 
1332 			/*
1333 			 * Before the policy is loaded, translate
1334 			 * SECINITSID_INIT to "kernel", because systemd and
1335 			 * libselinux < 2.6 take a getcon_raw() result that is
1336 			 * both non-null and not "kernel" to mean that a policy
1337 			 * is already loaded.
1338 			 */
1339 			if (sid == SECINITSID_INIT)
1340 				sid = SECINITSID_KERNEL;
1341 
1342 			s = initial_sid_to_string[sid];
1343 			if (!s)
1344 				return -EINVAL;
1345 			*scontext_len = strlen(s) + 1;
1346 			if (!scontext)
1347 				return 0;
1348 			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1349 			if (!scontextp)
1350 				return -ENOMEM;
1351 			*scontext = scontextp;
1352 			return 0;
1353 		}
1354 		pr_err("SELinux: %s:  called before initial "
1355 		       "load_policy on unknown SID %d\n", __func__, sid);
1356 		return -EINVAL;
1357 	}
1358 	rcu_read_lock();
1359 	policy = rcu_dereference(selinux_state.policy);
1360 	policydb = &policy->policydb;
1361 	sidtab = policy->sidtab;
1362 
1363 	if (force)
1364 		entry = sidtab_search_entry_force(sidtab, sid);
1365 	else
1366 		entry = sidtab_search_entry(sidtab, sid);
1367 	if (!entry) {
1368 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1369 			__func__, sid);
1370 		rc = -EINVAL;
1371 		goto out_unlock;
1372 	}
1373 	if (only_invalid && !entry->context.len)
1374 		goto out_unlock;
1375 
1376 	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1377 				    scontext_len);
1378 
1379 out_unlock:
1380 	rcu_read_unlock();
1381 	return rc;
1382 
1383 }
1384 
1385 /**
1386  * security_sid_to_context - Obtain a context for a given SID.
1387  * @sid: security identifier, SID
1388  * @scontext: security context
1389  * @scontext_len: length in bytes
1390  *
1391  * Write the string representation of the context associated with @sid
1392  * into a dynamically allocated string of the correct size.  Set @scontext
1393  * to point to this string and set @scontext_len to the length of the string.
1394  */
1395 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1396 {
1397 	return security_sid_to_context_core(sid, scontext,
1398 					    scontext_len, 0, 0);
1399 }
1400 
1401 int security_sid_to_context_force(u32 sid,
1402 				  char **scontext, u32 *scontext_len)
1403 {
1404 	return security_sid_to_context_core(sid, scontext,
1405 					    scontext_len, 1, 0);
1406 }
1407 
1408 /**
1409  * security_sid_to_context_inval - Obtain a context for a given SID if it
1410  *                                 is invalid.
1411  * @sid: security identifier, SID
1412  * @scontext: security context
1413  * @scontext_len: length in bytes
1414  *
1415  * Write the string representation of the context associated with @sid
1416  * into a dynamically allocated string of the correct size, but only if the
1417  * context is invalid in the current policy.  Set @scontext to point to
1418  * this string (or NULL if the context is valid) and set @scontext_len to
1419  * the length of the string (or 0 if the context is valid).
1420  */
1421 int security_sid_to_context_inval(u32 sid,
1422 				  char **scontext, u32 *scontext_len)
1423 {
1424 	return security_sid_to_context_core(sid, scontext,
1425 					    scontext_len, 1, 1);
1426 }
1427 
1428 /*
1429  * Caveat:  Mutates scontext.
1430  */
1431 static int string_to_context_struct(struct policydb *pol,
1432 				    struct sidtab *sidtabp,
1433 				    char *scontext,
1434 				    struct context *ctx,
1435 				    u32 def_sid)
1436 {
1437 	struct role_datum *role;
1438 	struct type_datum *typdatum;
1439 	struct user_datum *usrdatum;
1440 	char *scontextp, *p, oldc;
1441 	int rc = 0;
1442 
1443 	context_init(ctx);
1444 
1445 	/* Parse the security context. */
1446 
1447 	rc = -EINVAL;
1448 	scontextp = scontext;
1449 
1450 	/* Extract the user. */
1451 	p = scontextp;
1452 	while (*p && *p != ':')
1453 		p++;
1454 
1455 	if (*p == 0)
1456 		goto out;
1457 
1458 	*p++ = 0;
1459 
1460 	usrdatum = symtab_search(&pol->p_users, scontextp);
1461 	if (!usrdatum)
1462 		goto out;
1463 
1464 	ctx->user = usrdatum->value;
1465 
1466 	/* Extract role. */
1467 	scontextp = p;
1468 	while (*p && *p != ':')
1469 		p++;
1470 
1471 	if (*p == 0)
1472 		goto out;
1473 
1474 	*p++ = 0;
1475 
1476 	role = symtab_search(&pol->p_roles, scontextp);
1477 	if (!role)
1478 		goto out;
1479 	ctx->role = role->value;
1480 
1481 	/* Extract type. */
1482 	scontextp = p;
1483 	while (*p && *p != ':')
1484 		p++;
1485 	oldc = *p;
1486 	*p++ = 0;
1487 
1488 	typdatum = symtab_search(&pol->p_types, scontextp);
1489 	if (!typdatum || typdatum->attribute)
1490 		goto out;
1491 
1492 	ctx->type = typdatum->value;
1493 
1494 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1495 	if (rc)
1496 		goto out;
1497 
1498 	/* Check the validity of the new context. */
1499 	rc = -EINVAL;
1500 	if (!policydb_context_isvalid(pol, ctx))
1501 		goto out;
1502 	rc = 0;
1503 out:
1504 	if (rc)
1505 		context_destroy(ctx);
1506 	return rc;
1507 }
1508 
1509 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1510 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1511 					int force)
1512 {
1513 	struct selinux_policy *policy;
1514 	struct policydb *policydb;
1515 	struct sidtab *sidtab;
1516 	char *scontext2, *str = NULL;
1517 	struct context context;
1518 	int rc = 0;
1519 
1520 	/* An empty security context is never valid. */
1521 	if (!scontext_len)
1522 		return -EINVAL;
1523 
1524 	/* Copy the string to allow changes and ensure a NUL terminator */
1525 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1526 	if (!scontext2)
1527 		return -ENOMEM;
1528 
1529 	if (!selinux_initialized()) {
1530 		u32 i;
1531 
1532 		for (i = 1; i < SECINITSID_NUM; i++) {
1533 			const char *s = initial_sid_to_string[i];
1534 
1535 			if (s && !strcmp(s, scontext2)) {
1536 				*sid = i;
1537 				goto out;
1538 			}
1539 		}
1540 		*sid = SECINITSID_KERNEL;
1541 		goto out;
1542 	}
1543 	*sid = SECSID_NULL;
1544 
1545 	if (force) {
1546 		/* Save another copy for storing in uninterpreted form */
1547 		rc = -ENOMEM;
1548 		str = kstrdup(scontext2, gfp_flags);
1549 		if (!str)
1550 			goto out;
1551 	}
1552 retry:
1553 	rcu_read_lock();
1554 	policy = rcu_dereference(selinux_state.policy);
1555 	policydb = &policy->policydb;
1556 	sidtab = policy->sidtab;
1557 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1558 				      &context, def_sid);
1559 	if (rc == -EINVAL && force) {
1560 		context.str = str;
1561 		context.len = strlen(str) + 1;
1562 		str = NULL;
1563 	} else if (rc)
1564 		goto out_unlock;
1565 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1566 	if (rc == -ESTALE) {
1567 		rcu_read_unlock();
1568 		if (context.str) {
1569 			str = context.str;
1570 			context.str = NULL;
1571 		}
1572 		context_destroy(&context);
1573 		goto retry;
1574 	}
1575 	context_destroy(&context);
1576 out_unlock:
1577 	rcu_read_unlock();
1578 out:
1579 	kfree(scontext2);
1580 	kfree(str);
1581 	return rc;
1582 }
1583 
1584 /**
1585  * security_context_to_sid - Obtain a SID for a given security context.
1586  * @scontext: security context
1587  * @scontext_len: length in bytes
1588  * @sid: security identifier, SID
1589  * @gfp: context for the allocation
1590  *
1591  * Obtains a SID associated with the security context that
1592  * has the string representation specified by @scontext.
1593  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1594  * memory is available, or 0 on success.
1595  */
1596 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1597 			    gfp_t gfp)
1598 {
1599 	return security_context_to_sid_core(scontext, scontext_len,
1600 					    sid, SECSID_NULL, gfp, 0);
1601 }
1602 
1603 int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1604 {
1605 	return security_context_to_sid(scontext, strlen(scontext),
1606 				       sid, gfp);
1607 }
1608 
1609 /**
1610  * security_context_to_sid_default - Obtain a SID for a given security context,
1611  * falling back to specified default if needed.
1612  *
1613  * @scontext: security context
1614  * @scontext_len: length in bytes
1615  * @sid: security identifier, SID
1616  * @def_sid: default SID to assign on error
1617  * @gfp_flags: the allocator get-free-page (GFP) flags
1618  *
1619  * Obtains a SID associated with the security context that
1620  * has the string representation specified by @scontext.
1621  * The default SID is passed to the MLS layer to be used to allow
1622  * kernel labeling of the MLS field if the MLS field is not present
1623  * (for upgrading to MLS without full relabel).
1624  * Implicitly forces adding of the context even if it cannot be mapped yet.
1625  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1626  * memory is available, or 0 on success.
1627  */
1628 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1629 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1630 {
1631 	return security_context_to_sid_core(scontext, scontext_len,
1632 					    sid, def_sid, gfp_flags, 1);
1633 }
1634 
1635 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1636 				  u32 *sid)
1637 {
1638 	return security_context_to_sid_core(scontext, scontext_len,
1639 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1640 }
1641 
1642 static int compute_sid_handle_invalid_context(
1643 	struct selinux_policy *policy,
1644 	struct sidtab_entry *sentry,
1645 	struct sidtab_entry *tentry,
1646 	u16 tclass,
1647 	struct context *newcontext)
1648 {
1649 	struct policydb *policydb = &policy->policydb;
1650 	struct sidtab *sidtab = policy->sidtab;
1651 	char *s = NULL, *t = NULL, *n = NULL;
1652 	u32 slen, tlen, nlen;
1653 	struct audit_buffer *ab;
1654 
1655 	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1656 		goto out;
1657 	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1658 		goto out;
1659 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1660 		goto out;
1661 	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1662 	if (!ab)
1663 		goto out;
1664 	audit_log_format(ab,
1665 			 "op=security_compute_sid invalid_context=");
1666 	/* no need to record the NUL with untrusted strings */
1667 	audit_log_n_untrustedstring(ab, n, nlen - 1);
1668 	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1669 			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1670 	audit_log_end(ab);
1671 out:
1672 	kfree(s);
1673 	kfree(t);
1674 	kfree(n);
1675 	if (!enforcing_enabled())
1676 		return 0;
1677 	return -EACCES;
1678 }
1679 
1680 static void filename_compute_type(struct policydb *policydb,
1681 				  struct context *newcontext,
1682 				  u32 stype, u32 ttype, u16 tclass,
1683 				  const char *objname)
1684 {
1685 	struct filename_trans_key ft;
1686 	struct filename_trans_datum *datum;
1687 
1688 	/*
1689 	 * Most filename trans rules are going to live in specific directories
1690 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1691 	 * if the ttype does not contain any rules.
1692 	 */
1693 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1694 		return;
1695 
1696 	ft.ttype = ttype;
1697 	ft.tclass = tclass;
1698 	ft.name = objname;
1699 
1700 	datum = policydb_filenametr_search(policydb, &ft);
1701 	while (datum) {
1702 		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1703 			newcontext->type = datum->otype;
1704 			return;
1705 		}
1706 		datum = datum->next;
1707 	}
1708 }
1709 
1710 static int security_compute_sid(u32 ssid,
1711 				u32 tsid,
1712 				u16 orig_tclass,
1713 				u16 specified,
1714 				const char *objname,
1715 				u32 *out_sid,
1716 				bool kern)
1717 {
1718 	struct selinux_policy *policy;
1719 	struct policydb *policydb;
1720 	struct sidtab *sidtab;
1721 	struct class_datum *cladatum;
1722 	struct context *scontext, *tcontext, newcontext;
1723 	struct sidtab_entry *sentry, *tentry;
1724 	struct avtab_key avkey;
1725 	struct avtab_node *avnode, *node;
1726 	u16 tclass;
1727 	int rc = 0;
1728 	bool sock;
1729 
1730 	if (!selinux_initialized()) {
1731 		switch (orig_tclass) {
1732 		case SECCLASS_PROCESS: /* kernel value */
1733 			*out_sid = ssid;
1734 			break;
1735 		default:
1736 			*out_sid = tsid;
1737 			break;
1738 		}
1739 		goto out;
1740 	}
1741 
1742 retry:
1743 	cladatum = NULL;
1744 	context_init(&newcontext);
1745 
1746 	rcu_read_lock();
1747 
1748 	policy = rcu_dereference(selinux_state.policy);
1749 
1750 	if (kern) {
1751 		tclass = unmap_class(&policy->map, orig_tclass);
1752 		sock = security_is_socket_class(orig_tclass);
1753 	} else {
1754 		tclass = orig_tclass;
1755 		sock = security_is_socket_class(map_class(&policy->map,
1756 							  tclass));
1757 	}
1758 
1759 	policydb = &policy->policydb;
1760 	sidtab = policy->sidtab;
1761 
1762 	sentry = sidtab_search_entry(sidtab, ssid);
1763 	if (!sentry) {
1764 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1765 		       __func__, ssid);
1766 		rc = -EINVAL;
1767 		goto out_unlock;
1768 	}
1769 	tentry = sidtab_search_entry(sidtab, tsid);
1770 	if (!tentry) {
1771 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1772 		       __func__, tsid);
1773 		rc = -EINVAL;
1774 		goto out_unlock;
1775 	}
1776 
1777 	scontext = &sentry->context;
1778 	tcontext = &tentry->context;
1779 
1780 	if (tclass && tclass <= policydb->p_classes.nprim)
1781 		cladatum = policydb->class_val_to_struct[tclass - 1];
1782 
1783 	/* Set the user identity. */
1784 	switch (specified) {
1785 	case AVTAB_TRANSITION:
1786 	case AVTAB_CHANGE:
1787 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1788 			newcontext.user = tcontext->user;
1789 		} else {
1790 			/* notice this gets both DEFAULT_SOURCE and unset */
1791 			/* Use the process user identity. */
1792 			newcontext.user = scontext->user;
1793 		}
1794 		break;
1795 	case AVTAB_MEMBER:
1796 		/* Use the related object owner. */
1797 		newcontext.user = tcontext->user;
1798 		break;
1799 	}
1800 
1801 	/* Set the role to default values. */
1802 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1803 		newcontext.role = scontext->role;
1804 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1805 		newcontext.role = tcontext->role;
1806 	} else {
1807 		if ((tclass == policydb->process_class) || sock)
1808 			newcontext.role = scontext->role;
1809 		else
1810 			newcontext.role = OBJECT_R_VAL;
1811 	}
1812 
1813 	/* Set the type.
1814 	 * Look for a type transition/member/change rule.
1815 	 */
1816 	avkey.source_type = scontext->type;
1817 	avkey.target_type = tcontext->type;
1818 	avkey.target_class = tclass;
1819 	avkey.specified = specified;
1820 	avnode = avtab_search_node(&policydb->te_avtab, &avkey);
1821 
1822 	/* If no permanent rule, also check for enabled conditional rules */
1823 	if (!avnode) {
1824 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1825 		for (; node; node = avtab_search_node_next(node, specified)) {
1826 			if (node->key.specified & AVTAB_ENABLED) {
1827 				avnode = node;
1828 				break;
1829 			}
1830 		}
1831 	}
1832 
1833 	/* If a permanent rule is found, use the type from
1834 	 * the type transition/member/change rule. Otherwise,
1835 	 * set the type to its default values.
1836 	 */
1837 	if (avnode) {
1838 		newcontext.type = avnode->datum.u.data;
1839 	} else if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1840 		newcontext.type = scontext->type;
1841 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1842 		newcontext.type = tcontext->type;
1843 	} else {
1844 		if ((tclass == policydb->process_class) || sock) {
1845 			/* Use the type of process. */
1846 			newcontext.type = scontext->type;
1847 		} else {
1848 			/* Use the type of the related object. */
1849 			newcontext.type = tcontext->type;
1850 		}
1851 	}
1852 
1853 	/* if we have a objname this is a file trans check so check those rules */
1854 	if (objname)
1855 		filename_compute_type(policydb, &newcontext, scontext->type,
1856 				      tcontext->type, tclass, objname);
1857 
1858 	/* Check for class-specific changes. */
1859 	if (specified & AVTAB_TRANSITION) {
1860 		/* Look for a role transition rule. */
1861 		struct role_trans_datum *rtd;
1862 		struct role_trans_key rtk = {
1863 			.role = scontext->role,
1864 			.type = tcontext->type,
1865 			.tclass = tclass,
1866 		};
1867 
1868 		rtd = policydb_roletr_search(policydb, &rtk);
1869 		if (rtd)
1870 			newcontext.role = rtd->new_role;
1871 	}
1872 
1873 	/* Set the MLS attributes.
1874 	   This is done last because it may allocate memory. */
1875 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1876 			     &newcontext, sock);
1877 	if (rc)
1878 		goto out_unlock;
1879 
1880 	/* Check the validity of the context. */
1881 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1882 		rc = compute_sid_handle_invalid_context(policy, sentry,
1883 							tentry, tclass,
1884 							&newcontext);
1885 		if (rc)
1886 			goto out_unlock;
1887 	}
1888 	/* Obtain the sid for the context. */
1889 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1890 	if (rc == -ESTALE) {
1891 		rcu_read_unlock();
1892 		context_destroy(&newcontext);
1893 		goto retry;
1894 	}
1895 out_unlock:
1896 	rcu_read_unlock();
1897 	context_destroy(&newcontext);
1898 out:
1899 	return rc;
1900 }
1901 
1902 /**
1903  * security_transition_sid - Compute the SID for a new subject/object.
1904  * @ssid: source security identifier
1905  * @tsid: target security identifier
1906  * @tclass: target security class
1907  * @qstr: object name
1908  * @out_sid: security identifier for new subject/object
1909  *
1910  * Compute a SID to use for labeling a new subject or object in the
1911  * class @tclass based on a SID pair (@ssid, @tsid).
1912  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1913  * if insufficient memory is available, or %0 if the new SID was
1914  * computed successfully.
1915  */
1916 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1917 			    const struct qstr *qstr, u32 *out_sid)
1918 {
1919 	return security_compute_sid(ssid, tsid, tclass,
1920 				    AVTAB_TRANSITION,
1921 				    qstr ? qstr->name : NULL, out_sid, true);
1922 }
1923 
1924 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1925 				 const char *objname, u32 *out_sid)
1926 {
1927 	return security_compute_sid(ssid, tsid, tclass,
1928 				    AVTAB_TRANSITION,
1929 				    objname, out_sid, false);
1930 }
1931 
1932 /**
1933  * security_member_sid - Compute the SID for member selection.
1934  * @ssid: source security identifier
1935  * @tsid: target security identifier
1936  * @tclass: target security class
1937  * @out_sid: security identifier for selected member
1938  *
1939  * Compute a SID to use when selecting a member of a polyinstantiated
1940  * object of class @tclass based on a SID pair (@ssid, @tsid).
1941  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1942  * if insufficient memory is available, or %0 if the SID was
1943  * computed successfully.
1944  */
1945 int security_member_sid(u32 ssid,
1946 			u32 tsid,
1947 			u16 tclass,
1948 			u32 *out_sid)
1949 {
1950 	return security_compute_sid(ssid, tsid, tclass,
1951 				    AVTAB_MEMBER, NULL,
1952 				    out_sid, false);
1953 }
1954 
1955 /**
1956  * security_change_sid - Compute the SID for object relabeling.
1957  * @ssid: source security identifier
1958  * @tsid: target security identifier
1959  * @tclass: target security class
1960  * @out_sid: security identifier for selected member
1961  *
1962  * Compute a SID to use for relabeling an object of class @tclass
1963  * based on a SID pair (@ssid, @tsid).
1964  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1965  * if insufficient memory is available, or %0 if the SID was
1966  * computed successfully.
1967  */
1968 int security_change_sid(u32 ssid,
1969 			u32 tsid,
1970 			u16 tclass,
1971 			u32 *out_sid)
1972 {
1973 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1974 				    out_sid, false);
1975 }
1976 
1977 static inline int convert_context_handle_invalid_context(
1978 	struct policydb *policydb,
1979 	struct context *context)
1980 {
1981 	char *s;
1982 	u32 len;
1983 
1984 	if (enforcing_enabled())
1985 		return -EINVAL;
1986 
1987 	if (!context_struct_to_string(policydb, context, &s, &len)) {
1988 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1989 			s);
1990 		kfree(s);
1991 	}
1992 	return 0;
1993 }
1994 
1995 /**
1996  * services_convert_context - Convert a security context across policies.
1997  * @args: populated convert_context_args struct
1998  * @oldc: original context
1999  * @newc: converted context
2000  * @gfp_flags: allocation flags
2001  *
2002  * Convert the values in the security context structure @oldc from the values
2003  * specified in the policy @args->oldp to the values specified in the policy
2004  * @args->newp, storing the new context in @newc, and verifying that the
2005  * context is valid under the new policy.
2006  */
2007 int services_convert_context(struct convert_context_args *args,
2008 			     struct context *oldc, struct context *newc,
2009 			     gfp_t gfp_flags)
2010 {
2011 	struct ocontext *oc;
2012 	struct role_datum *role;
2013 	struct type_datum *typdatum;
2014 	struct user_datum *usrdatum;
2015 	char *s;
2016 	u32 len;
2017 	int rc;
2018 
2019 	if (oldc->str) {
2020 		s = kstrdup(oldc->str, gfp_flags);
2021 		if (!s)
2022 			return -ENOMEM;
2023 
2024 		rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2025 		if (rc == -EINVAL) {
2026 			/*
2027 			 * Retain string representation for later mapping.
2028 			 *
2029 			 * IMPORTANT: We need to copy the contents of oldc->str
2030 			 * back into s again because string_to_context_struct()
2031 			 * may have garbled it.
2032 			 */
2033 			memcpy(s, oldc->str, oldc->len);
2034 			context_init(newc);
2035 			newc->str = s;
2036 			newc->len = oldc->len;
2037 			return 0;
2038 		}
2039 		kfree(s);
2040 		if (rc) {
2041 			/* Other error condition, e.g. ENOMEM. */
2042 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2043 			       oldc->str, -rc);
2044 			return rc;
2045 		}
2046 		pr_info("SELinux:  Context %s became valid (mapped).\n",
2047 			oldc->str);
2048 		return 0;
2049 	}
2050 
2051 	context_init(newc);
2052 
2053 	/* Convert the user. */
2054 	usrdatum = symtab_search(&args->newp->p_users,
2055 				 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
2056 	if (!usrdatum)
2057 		goto bad;
2058 	newc->user = usrdatum->value;
2059 
2060 	/* Convert the role. */
2061 	role = symtab_search(&args->newp->p_roles,
2062 			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2063 	if (!role)
2064 		goto bad;
2065 	newc->role = role->value;
2066 
2067 	/* Convert the type. */
2068 	typdatum = symtab_search(&args->newp->p_types,
2069 				 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
2070 	if (!typdatum)
2071 		goto bad;
2072 	newc->type = typdatum->value;
2073 
2074 	/* Convert the MLS fields if dealing with MLS policies */
2075 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2076 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2077 		if (rc)
2078 			goto bad;
2079 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2080 		/*
2081 		 * Switching between non-MLS and MLS policy:
2082 		 * ensure that the MLS fields of the context for all
2083 		 * existing entries in the sidtab are filled in with a
2084 		 * suitable default value, likely taken from one of the
2085 		 * initial SIDs.
2086 		 */
2087 		oc = args->newp->ocontexts[OCON_ISID];
2088 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2089 			oc = oc->next;
2090 		if (!oc) {
2091 			pr_err("SELinux:  unable to look up"
2092 				" the initial SIDs list\n");
2093 			goto bad;
2094 		}
2095 		rc = mls_range_set(newc, &oc->context[0].range);
2096 		if (rc)
2097 			goto bad;
2098 	}
2099 
2100 	/* Check the validity of the new context. */
2101 	if (!policydb_context_isvalid(args->newp, newc)) {
2102 		rc = convert_context_handle_invalid_context(args->oldp, oldc);
2103 		if (rc)
2104 			goto bad;
2105 	}
2106 
2107 	return 0;
2108 bad:
2109 	/* Map old representation to string and save it. */
2110 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2111 	if (rc)
2112 		return rc;
2113 	context_destroy(newc);
2114 	newc->str = s;
2115 	newc->len = len;
2116 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2117 		newc->str);
2118 	return 0;
2119 }
2120 
2121 static void security_load_policycaps(struct selinux_policy *policy)
2122 {
2123 	struct policydb *p;
2124 	unsigned int i;
2125 	struct ebitmap_node *node;
2126 
2127 	p = &policy->policydb;
2128 
2129 	for (i = 0; i < ARRAY_SIZE(selinux_state.policycap); i++)
2130 		WRITE_ONCE(selinux_state.policycap[i],
2131 			ebitmap_get_bit(&p->policycaps, i));
2132 
2133 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2134 		pr_info("SELinux:  policy capability %s=%d\n",
2135 			selinux_policycap_names[i],
2136 			ebitmap_get_bit(&p->policycaps, i));
2137 
2138 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2139 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2140 			pr_info("SELinux:  unknown policy capability %u\n",
2141 				i);
2142 	}
2143 }
2144 
2145 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2146 				struct selinux_policy *newpolicy);
2147 
2148 static void selinux_policy_free(struct selinux_policy *policy)
2149 {
2150 	if (!policy)
2151 		return;
2152 
2153 	sidtab_destroy(policy->sidtab);
2154 	kfree(policy->map.mapping);
2155 	policydb_destroy(&policy->policydb);
2156 	kfree(policy->sidtab);
2157 	kfree(policy);
2158 }
2159 
2160 static void selinux_policy_cond_free(struct selinux_policy *policy)
2161 {
2162 	cond_policydb_destroy_dup(&policy->policydb);
2163 	kfree(policy);
2164 }
2165 
2166 void selinux_policy_cancel(struct selinux_load_state *load_state)
2167 {
2168 	struct selinux_state *state = &selinux_state;
2169 	struct selinux_policy *oldpolicy;
2170 
2171 	oldpolicy = rcu_dereference_protected(state->policy,
2172 					lockdep_is_held(&state->policy_mutex));
2173 
2174 	sidtab_cancel_convert(oldpolicy->sidtab);
2175 	selinux_policy_free(load_state->policy);
2176 	kfree(load_state->convert_data);
2177 }
2178 
2179 static void selinux_notify_policy_change(u32 seqno)
2180 {
2181 	/* Flush external caches and notify userspace of policy load */
2182 	avc_ss_reset(seqno);
2183 	selnl_notify_policyload(seqno);
2184 	selinux_status_update_policyload(seqno);
2185 	selinux_netlbl_cache_invalidate();
2186 	selinux_xfrm_notify_policyload();
2187 	selinux_ima_measure_state_locked();
2188 }
2189 
2190 void selinux_policy_commit(struct selinux_load_state *load_state)
2191 {
2192 	struct selinux_state *state = &selinux_state;
2193 	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2194 	unsigned long flags;
2195 	u32 seqno;
2196 
2197 	oldpolicy = rcu_dereference_protected(state->policy,
2198 					lockdep_is_held(&state->policy_mutex));
2199 
2200 	/* If switching between different policy types, log MLS status */
2201 	if (oldpolicy) {
2202 		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2203 			pr_info("SELinux: Disabling MLS support...\n");
2204 		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2205 			pr_info("SELinux: Enabling MLS support...\n");
2206 	}
2207 
2208 	/* Set latest granting seqno for new policy. */
2209 	if (oldpolicy)
2210 		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2211 	else
2212 		newpolicy->latest_granting = 1;
2213 	seqno = newpolicy->latest_granting;
2214 
2215 	/* Install the new policy. */
2216 	if (oldpolicy) {
2217 		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2218 		rcu_assign_pointer(state->policy, newpolicy);
2219 		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2220 	} else {
2221 		rcu_assign_pointer(state->policy, newpolicy);
2222 	}
2223 
2224 	/* Load the policycaps from the new policy */
2225 	security_load_policycaps(newpolicy);
2226 
2227 	if (!selinux_initialized()) {
2228 		/*
2229 		 * After first policy load, the security server is
2230 		 * marked as initialized and ready to handle requests and
2231 		 * any objects created prior to policy load are then labeled.
2232 		 */
2233 		selinux_mark_initialized();
2234 		selinux_complete_init();
2235 	}
2236 
2237 	/* Free the old policy */
2238 	synchronize_rcu();
2239 	selinux_policy_free(oldpolicy);
2240 	kfree(load_state->convert_data);
2241 
2242 	/* Notify others of the policy change */
2243 	selinux_notify_policy_change(seqno);
2244 }
2245 
2246 /**
2247  * security_load_policy - Load a security policy configuration.
2248  * @data: binary policy data
2249  * @len: length of data in bytes
2250  * @load_state: policy load state
2251  *
2252  * Load a new set of security policy configuration data,
2253  * validate it and convert the SID table as necessary.
2254  * This function will flush the access vector cache after
2255  * loading the new policy.
2256  */
2257 int security_load_policy(void *data, size_t len,
2258 			 struct selinux_load_state *load_state)
2259 {
2260 	struct selinux_state *state = &selinux_state;
2261 	struct selinux_policy *newpolicy, *oldpolicy;
2262 	struct selinux_policy_convert_data *convert_data;
2263 	int rc = 0;
2264 	struct policy_file file = { data, len }, *fp = &file;
2265 
2266 	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2267 	if (!newpolicy)
2268 		return -ENOMEM;
2269 
2270 	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2271 	if (!newpolicy->sidtab) {
2272 		rc = -ENOMEM;
2273 		goto err_policy;
2274 	}
2275 
2276 	rc = policydb_read(&newpolicy->policydb, fp);
2277 	if (rc)
2278 		goto err_sidtab;
2279 
2280 	newpolicy->policydb.len = len;
2281 	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2282 				&newpolicy->map);
2283 	if (rc)
2284 		goto err_policydb;
2285 
2286 	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2287 	if (rc) {
2288 		pr_err("SELinux:  unable to load the initial SIDs\n");
2289 		goto err_mapping;
2290 	}
2291 
2292 	if (!selinux_initialized()) {
2293 		/* First policy load, so no need to preserve state from old policy */
2294 		load_state->policy = newpolicy;
2295 		load_state->convert_data = NULL;
2296 		return 0;
2297 	}
2298 
2299 	oldpolicy = rcu_dereference_protected(state->policy,
2300 					lockdep_is_held(&state->policy_mutex));
2301 
2302 	/* Preserve active boolean values from the old policy */
2303 	rc = security_preserve_bools(oldpolicy, newpolicy);
2304 	if (rc) {
2305 		pr_err("SELinux:  unable to preserve booleans\n");
2306 		goto err_free_isids;
2307 	}
2308 
2309 	/*
2310 	 * Convert the internal representations of contexts
2311 	 * in the new SID table.
2312 	 */
2313 
2314 	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2315 	if (!convert_data) {
2316 		rc = -ENOMEM;
2317 		goto err_free_isids;
2318 	}
2319 
2320 	convert_data->args.oldp = &oldpolicy->policydb;
2321 	convert_data->args.newp = &newpolicy->policydb;
2322 
2323 	convert_data->sidtab_params.args = &convert_data->args;
2324 	convert_data->sidtab_params.target = newpolicy->sidtab;
2325 
2326 	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2327 	if (rc) {
2328 		pr_err("SELinux:  unable to convert the internal"
2329 			" representation of contexts in the new SID"
2330 			" table\n");
2331 		goto err_free_convert_data;
2332 	}
2333 
2334 	load_state->policy = newpolicy;
2335 	load_state->convert_data = convert_data;
2336 	return 0;
2337 
2338 err_free_convert_data:
2339 	kfree(convert_data);
2340 err_free_isids:
2341 	sidtab_destroy(newpolicy->sidtab);
2342 err_mapping:
2343 	kfree(newpolicy->map.mapping);
2344 err_policydb:
2345 	policydb_destroy(&newpolicy->policydb);
2346 err_sidtab:
2347 	kfree(newpolicy->sidtab);
2348 err_policy:
2349 	kfree(newpolicy);
2350 
2351 	return rc;
2352 }
2353 
2354 /**
2355  * ocontext_to_sid - Helper to safely get sid for an ocontext
2356  * @sidtab: SID table
2357  * @c: ocontext structure
2358  * @index: index of the context entry (0 or 1)
2359  * @out_sid: pointer to the resulting SID value
2360  *
2361  * For all ocontexts except OCON_ISID the SID fields are populated
2362  * on-demand when needed. Since updating the SID value is an SMP-sensitive
2363  * operation, this helper must be used to do that safely.
2364  *
2365  * WARNING: This function may return -ESTALE, indicating that the caller
2366  * must retry the operation after re-acquiring the policy pointer!
2367  */
2368 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2369 			   size_t index, u32 *out_sid)
2370 {
2371 	int rc;
2372 	u32 sid;
2373 
2374 	/* Ensure the associated sidtab entry is visible to this thread. */
2375 	sid = smp_load_acquire(&c->sid[index]);
2376 	if (!sid) {
2377 		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2378 		if (rc)
2379 			return rc;
2380 
2381 		/*
2382 		 * Ensure the new sidtab entry is visible to other threads
2383 		 * when they see the SID.
2384 		 */
2385 		smp_store_release(&c->sid[index], sid);
2386 	}
2387 	*out_sid = sid;
2388 	return 0;
2389 }
2390 
2391 /**
2392  * security_port_sid - Obtain the SID for a port.
2393  * @protocol: protocol number
2394  * @port: port number
2395  * @out_sid: security identifier
2396  */
2397 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2398 {
2399 	struct selinux_policy *policy;
2400 	struct policydb *policydb;
2401 	struct sidtab *sidtab;
2402 	struct ocontext *c;
2403 	int rc;
2404 
2405 	if (!selinux_initialized()) {
2406 		*out_sid = SECINITSID_PORT;
2407 		return 0;
2408 	}
2409 
2410 retry:
2411 	rc = 0;
2412 	rcu_read_lock();
2413 	policy = rcu_dereference(selinux_state.policy);
2414 	policydb = &policy->policydb;
2415 	sidtab = policy->sidtab;
2416 
2417 	c = policydb->ocontexts[OCON_PORT];
2418 	while (c) {
2419 		if (c->u.port.protocol == protocol &&
2420 		    c->u.port.low_port <= port &&
2421 		    c->u.port.high_port >= port)
2422 			break;
2423 		c = c->next;
2424 	}
2425 
2426 	if (c) {
2427 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2428 		if (rc == -ESTALE) {
2429 			rcu_read_unlock();
2430 			goto retry;
2431 		}
2432 		if (rc)
2433 			goto out;
2434 	} else {
2435 		*out_sid = SECINITSID_PORT;
2436 	}
2437 
2438 out:
2439 	rcu_read_unlock();
2440 	return rc;
2441 }
2442 
2443 /**
2444  * security_ib_pkey_sid - Obtain the SID for a pkey.
2445  * @subnet_prefix: Subnet Prefix
2446  * @pkey_num: pkey number
2447  * @out_sid: security identifier
2448  */
2449 int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2450 {
2451 	struct selinux_policy *policy;
2452 	struct policydb *policydb;
2453 	struct sidtab *sidtab;
2454 	struct ocontext *c;
2455 	int rc;
2456 
2457 	if (!selinux_initialized()) {
2458 		*out_sid = SECINITSID_UNLABELED;
2459 		return 0;
2460 	}
2461 
2462 retry:
2463 	rc = 0;
2464 	rcu_read_lock();
2465 	policy = rcu_dereference(selinux_state.policy);
2466 	policydb = &policy->policydb;
2467 	sidtab = policy->sidtab;
2468 
2469 	c = policydb->ocontexts[OCON_IBPKEY];
2470 	while (c) {
2471 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2472 		    c->u.ibpkey.high_pkey >= pkey_num &&
2473 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2474 			break;
2475 
2476 		c = c->next;
2477 	}
2478 
2479 	if (c) {
2480 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2481 		if (rc == -ESTALE) {
2482 			rcu_read_unlock();
2483 			goto retry;
2484 		}
2485 		if (rc)
2486 			goto out;
2487 	} else
2488 		*out_sid = SECINITSID_UNLABELED;
2489 
2490 out:
2491 	rcu_read_unlock();
2492 	return rc;
2493 }
2494 
2495 /**
2496  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2497  * @dev_name: device name
2498  * @port_num: port number
2499  * @out_sid: security identifier
2500  */
2501 int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2502 {
2503 	struct selinux_policy *policy;
2504 	struct policydb *policydb;
2505 	struct sidtab *sidtab;
2506 	struct ocontext *c;
2507 	int rc;
2508 
2509 	if (!selinux_initialized()) {
2510 		*out_sid = SECINITSID_UNLABELED;
2511 		return 0;
2512 	}
2513 
2514 retry:
2515 	rc = 0;
2516 	rcu_read_lock();
2517 	policy = rcu_dereference(selinux_state.policy);
2518 	policydb = &policy->policydb;
2519 	sidtab = policy->sidtab;
2520 
2521 	c = policydb->ocontexts[OCON_IBENDPORT];
2522 	while (c) {
2523 		if (c->u.ibendport.port == port_num &&
2524 		    !strncmp(c->u.ibendport.dev_name,
2525 			     dev_name,
2526 			     IB_DEVICE_NAME_MAX))
2527 			break;
2528 
2529 		c = c->next;
2530 	}
2531 
2532 	if (c) {
2533 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2534 		if (rc == -ESTALE) {
2535 			rcu_read_unlock();
2536 			goto retry;
2537 		}
2538 		if (rc)
2539 			goto out;
2540 	} else
2541 		*out_sid = SECINITSID_UNLABELED;
2542 
2543 out:
2544 	rcu_read_unlock();
2545 	return rc;
2546 }
2547 
2548 /**
2549  * security_netif_sid - Obtain the SID for a network interface.
2550  * @name: interface name
2551  * @if_sid: interface SID
2552  */
2553 int security_netif_sid(char *name, u32 *if_sid)
2554 {
2555 	struct selinux_policy *policy;
2556 	struct policydb *policydb;
2557 	struct sidtab *sidtab;
2558 	int rc;
2559 	struct ocontext *c;
2560 
2561 	if (!selinux_initialized()) {
2562 		*if_sid = SECINITSID_NETIF;
2563 		return 0;
2564 	}
2565 
2566 retry:
2567 	rc = 0;
2568 	rcu_read_lock();
2569 	policy = rcu_dereference(selinux_state.policy);
2570 	policydb = &policy->policydb;
2571 	sidtab = policy->sidtab;
2572 
2573 	c = policydb->ocontexts[OCON_NETIF];
2574 	while (c) {
2575 		if (strcmp(name, c->u.name) == 0)
2576 			break;
2577 		c = c->next;
2578 	}
2579 
2580 	if (c) {
2581 		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2582 		if (rc == -ESTALE) {
2583 			rcu_read_unlock();
2584 			goto retry;
2585 		}
2586 		if (rc)
2587 			goto out;
2588 	} else
2589 		*if_sid = SECINITSID_NETIF;
2590 
2591 out:
2592 	rcu_read_unlock();
2593 	return rc;
2594 }
2595 
2596 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2597 {
2598 	int i, fail = 0;
2599 
2600 	for (i = 0; i < 4; i++)
2601 		if (addr[i] != (input[i] & mask[i])) {
2602 			fail = 1;
2603 			break;
2604 		}
2605 
2606 	return !fail;
2607 }
2608 
2609 /**
2610  * security_node_sid - Obtain the SID for a node (host).
2611  * @domain: communication domain aka address family
2612  * @addrp: address
2613  * @addrlen: address length in bytes
2614  * @out_sid: security identifier
2615  */
2616 int security_node_sid(u16 domain,
2617 		      void *addrp,
2618 		      u32 addrlen,
2619 		      u32 *out_sid)
2620 {
2621 	struct selinux_policy *policy;
2622 	struct policydb *policydb;
2623 	struct sidtab *sidtab;
2624 	int rc;
2625 	struct ocontext *c;
2626 
2627 	if (!selinux_initialized()) {
2628 		*out_sid = SECINITSID_NODE;
2629 		return 0;
2630 	}
2631 
2632 retry:
2633 	rcu_read_lock();
2634 	policy = rcu_dereference(selinux_state.policy);
2635 	policydb = &policy->policydb;
2636 	sidtab = policy->sidtab;
2637 
2638 	switch (domain) {
2639 	case AF_INET: {
2640 		u32 addr;
2641 
2642 		rc = -EINVAL;
2643 		if (addrlen != sizeof(u32))
2644 			goto out;
2645 
2646 		addr = *((u32 *)addrp);
2647 
2648 		c = policydb->ocontexts[OCON_NODE];
2649 		while (c) {
2650 			if (c->u.node.addr == (addr & c->u.node.mask))
2651 				break;
2652 			c = c->next;
2653 		}
2654 		break;
2655 	}
2656 
2657 	case AF_INET6:
2658 		rc = -EINVAL;
2659 		if (addrlen != sizeof(u64) * 2)
2660 			goto out;
2661 		c = policydb->ocontexts[OCON_NODE6];
2662 		while (c) {
2663 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2664 						c->u.node6.mask))
2665 				break;
2666 			c = c->next;
2667 		}
2668 		break;
2669 
2670 	default:
2671 		rc = 0;
2672 		*out_sid = SECINITSID_NODE;
2673 		goto out;
2674 	}
2675 
2676 	if (c) {
2677 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2678 		if (rc == -ESTALE) {
2679 			rcu_read_unlock();
2680 			goto retry;
2681 		}
2682 		if (rc)
2683 			goto out;
2684 	} else {
2685 		*out_sid = SECINITSID_NODE;
2686 	}
2687 
2688 	rc = 0;
2689 out:
2690 	rcu_read_unlock();
2691 	return rc;
2692 }
2693 
2694 #define SIDS_NEL 25
2695 
2696 /**
2697  * security_get_user_sids - Obtain reachable SIDs for a user.
2698  * @fromsid: starting SID
2699  * @username: username
2700  * @sids: array of reachable SIDs for user
2701  * @nel: number of elements in @sids
2702  *
2703  * Generate the set of SIDs for legal security contexts
2704  * for a given user that can be reached by @fromsid.
2705  * Set *@sids to point to a dynamically allocated
2706  * array containing the set of SIDs.  Set *@nel to the
2707  * number of elements in the array.
2708  */
2709 
2710 int security_get_user_sids(u32 fromsid,
2711 			   char *username,
2712 			   u32 **sids,
2713 			   u32 *nel)
2714 {
2715 	struct selinux_policy *policy;
2716 	struct policydb *policydb;
2717 	struct sidtab *sidtab;
2718 	struct context *fromcon, usercon;
2719 	u32 *mysids = NULL, *mysids2, sid;
2720 	u32 i, j, mynel, maxnel = SIDS_NEL;
2721 	struct user_datum *user;
2722 	struct role_datum *role;
2723 	struct ebitmap_node *rnode, *tnode;
2724 	int rc;
2725 
2726 	*sids = NULL;
2727 	*nel = 0;
2728 
2729 	if (!selinux_initialized())
2730 		return 0;
2731 
2732 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2733 	if (!mysids)
2734 		return -ENOMEM;
2735 
2736 retry:
2737 	mynel = 0;
2738 	rcu_read_lock();
2739 	policy = rcu_dereference(selinux_state.policy);
2740 	policydb = &policy->policydb;
2741 	sidtab = policy->sidtab;
2742 
2743 	context_init(&usercon);
2744 
2745 	rc = -EINVAL;
2746 	fromcon = sidtab_search(sidtab, fromsid);
2747 	if (!fromcon)
2748 		goto out_unlock;
2749 
2750 	rc = -EINVAL;
2751 	user = symtab_search(&policydb->p_users, username);
2752 	if (!user)
2753 		goto out_unlock;
2754 
2755 	usercon.user = user->value;
2756 
2757 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2758 		role = policydb->role_val_to_struct[i];
2759 		usercon.role = i + 1;
2760 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2761 			usercon.type = j + 1;
2762 
2763 			if (mls_setup_user_range(policydb, fromcon, user,
2764 						 &usercon))
2765 				continue;
2766 
2767 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2768 			if (rc == -ESTALE) {
2769 				rcu_read_unlock();
2770 				goto retry;
2771 			}
2772 			if (rc)
2773 				goto out_unlock;
2774 			if (mynel < maxnel) {
2775 				mysids[mynel++] = sid;
2776 			} else {
2777 				rc = -ENOMEM;
2778 				maxnel += SIDS_NEL;
2779 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2780 				if (!mysids2)
2781 					goto out_unlock;
2782 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2783 				kfree(mysids);
2784 				mysids = mysids2;
2785 				mysids[mynel++] = sid;
2786 			}
2787 		}
2788 	}
2789 	rc = 0;
2790 out_unlock:
2791 	rcu_read_unlock();
2792 	if (rc || !mynel) {
2793 		kfree(mysids);
2794 		return rc;
2795 	}
2796 
2797 	rc = -ENOMEM;
2798 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2799 	if (!mysids2) {
2800 		kfree(mysids);
2801 		return rc;
2802 	}
2803 	for (i = 0, j = 0; i < mynel; i++) {
2804 		struct av_decision dummy_avd;
2805 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2806 					  SECCLASS_PROCESS, /* kernel value */
2807 					  PROCESS__TRANSITION, AVC_STRICT,
2808 					  &dummy_avd);
2809 		if (!rc)
2810 			mysids2[j++] = mysids[i];
2811 		cond_resched();
2812 	}
2813 	kfree(mysids);
2814 	*sids = mysids2;
2815 	*nel = j;
2816 	return 0;
2817 }
2818 
2819 /**
2820  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2821  * @policy: policy
2822  * @fstype: filesystem type
2823  * @path: path from root of mount
2824  * @orig_sclass: file security class
2825  * @sid: SID for path
2826  *
2827  * Obtain a SID to use for a file in a filesystem that
2828  * cannot support xattr or use a fixed labeling behavior like
2829  * transition SIDs or task SIDs.
2830  *
2831  * WARNING: This function may return -ESTALE, indicating that the caller
2832  * must retry the operation after re-acquiring the policy pointer!
2833  */
2834 static inline int __security_genfs_sid(struct selinux_policy *policy,
2835 				       const char *fstype,
2836 				       const char *path,
2837 				       u16 orig_sclass,
2838 				       u32 *sid)
2839 {
2840 	struct policydb *policydb = &policy->policydb;
2841 	struct sidtab *sidtab = policy->sidtab;
2842 	u16 sclass;
2843 	struct genfs *genfs;
2844 	struct ocontext *c;
2845 	int cmp = 0;
2846 
2847 	while (path[0] == '/' && path[1] == '/')
2848 		path++;
2849 
2850 	sclass = unmap_class(&policy->map, orig_sclass);
2851 	*sid = SECINITSID_UNLABELED;
2852 
2853 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2854 		cmp = strcmp(fstype, genfs->fstype);
2855 		if (cmp <= 0)
2856 			break;
2857 	}
2858 
2859 	if (!genfs || cmp)
2860 		return -ENOENT;
2861 
2862 	for (c = genfs->head; c; c = c->next) {
2863 		size_t len = strlen(c->u.name);
2864 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2865 		    (strncmp(c->u.name, path, len) == 0))
2866 			break;
2867 	}
2868 
2869 	if (!c)
2870 		return -ENOENT;
2871 
2872 	return ocontext_to_sid(sidtab, c, 0, sid);
2873 }
2874 
2875 /**
2876  * security_genfs_sid - Obtain a SID for a file in a filesystem
2877  * @fstype: filesystem type
2878  * @path: path from root of mount
2879  * @orig_sclass: file security class
2880  * @sid: SID for path
2881  *
2882  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2883  * it afterward.
2884  */
2885 int security_genfs_sid(const char *fstype,
2886 		       const char *path,
2887 		       u16 orig_sclass,
2888 		       u32 *sid)
2889 {
2890 	struct selinux_policy *policy;
2891 	int retval;
2892 
2893 	if (!selinux_initialized()) {
2894 		*sid = SECINITSID_UNLABELED;
2895 		return 0;
2896 	}
2897 
2898 	do {
2899 		rcu_read_lock();
2900 		policy = rcu_dereference(selinux_state.policy);
2901 		retval = __security_genfs_sid(policy, fstype, path,
2902 					      orig_sclass, sid);
2903 		rcu_read_unlock();
2904 	} while (retval == -ESTALE);
2905 	return retval;
2906 }
2907 
2908 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2909 			const char *fstype,
2910 			const char *path,
2911 			u16 orig_sclass,
2912 			u32 *sid)
2913 {
2914 	/* no lock required, policy is not yet accessible by other threads */
2915 	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2916 }
2917 
2918 /**
2919  * security_fs_use - Determine how to handle labeling for a filesystem.
2920  * @sb: superblock in question
2921  */
2922 int security_fs_use(struct super_block *sb)
2923 {
2924 	struct selinux_policy *policy;
2925 	struct policydb *policydb;
2926 	struct sidtab *sidtab;
2927 	int rc;
2928 	struct ocontext *c;
2929 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2930 	const char *fstype = sb->s_type->name;
2931 
2932 	if (!selinux_initialized()) {
2933 		sbsec->behavior = SECURITY_FS_USE_NONE;
2934 		sbsec->sid = SECINITSID_UNLABELED;
2935 		return 0;
2936 	}
2937 
2938 retry:
2939 	rcu_read_lock();
2940 	policy = rcu_dereference(selinux_state.policy);
2941 	policydb = &policy->policydb;
2942 	sidtab = policy->sidtab;
2943 
2944 	c = policydb->ocontexts[OCON_FSUSE];
2945 	while (c) {
2946 		if (strcmp(fstype, c->u.name) == 0)
2947 			break;
2948 		c = c->next;
2949 	}
2950 
2951 	if (c) {
2952 		sbsec->behavior = c->v.behavior;
2953 		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2954 		if (rc == -ESTALE) {
2955 			rcu_read_unlock();
2956 			goto retry;
2957 		}
2958 		if (rc)
2959 			goto out;
2960 	} else {
2961 		rc = __security_genfs_sid(policy, fstype, "/",
2962 					SECCLASS_DIR, &sbsec->sid);
2963 		if (rc == -ESTALE) {
2964 			rcu_read_unlock();
2965 			goto retry;
2966 		}
2967 		if (rc) {
2968 			sbsec->behavior = SECURITY_FS_USE_NONE;
2969 			rc = 0;
2970 		} else {
2971 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2972 		}
2973 	}
2974 
2975 out:
2976 	rcu_read_unlock();
2977 	return rc;
2978 }
2979 
2980 int security_get_bools(struct selinux_policy *policy,
2981 		       u32 *len, char ***names, int **values)
2982 {
2983 	struct policydb *policydb;
2984 	u32 i;
2985 	int rc;
2986 
2987 	policydb = &policy->policydb;
2988 
2989 	*names = NULL;
2990 	*values = NULL;
2991 
2992 	rc = 0;
2993 	*len = policydb->p_bools.nprim;
2994 	if (!*len)
2995 		goto out;
2996 
2997 	rc = -ENOMEM;
2998 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2999 	if (!*names)
3000 		goto err;
3001 
3002 	rc = -ENOMEM;
3003 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3004 	if (!*values)
3005 		goto err;
3006 
3007 	for (i = 0; i < *len; i++) {
3008 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3009 
3010 		rc = -ENOMEM;
3011 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3012 				      GFP_ATOMIC);
3013 		if (!(*names)[i])
3014 			goto err;
3015 	}
3016 	rc = 0;
3017 out:
3018 	return rc;
3019 err:
3020 	if (*names) {
3021 		for (i = 0; i < *len; i++)
3022 			kfree((*names)[i]);
3023 		kfree(*names);
3024 	}
3025 	kfree(*values);
3026 	*len = 0;
3027 	*names = NULL;
3028 	*values = NULL;
3029 	goto out;
3030 }
3031 
3032 
3033 int security_set_bools(u32 len, int *values)
3034 {
3035 	struct selinux_state *state = &selinux_state;
3036 	struct selinux_policy *newpolicy, *oldpolicy;
3037 	int rc;
3038 	u32 i, seqno = 0;
3039 
3040 	if (!selinux_initialized())
3041 		return -EINVAL;
3042 
3043 	oldpolicy = rcu_dereference_protected(state->policy,
3044 					lockdep_is_held(&state->policy_mutex));
3045 
3046 	/* Consistency check on number of booleans, should never fail */
3047 	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3048 		return -EINVAL;
3049 
3050 	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3051 	if (!newpolicy)
3052 		return -ENOMEM;
3053 
3054 	/*
3055 	 * Deep copy only the parts of the policydb that might be
3056 	 * modified as a result of changing booleans.
3057 	 */
3058 	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3059 	if (rc) {
3060 		kfree(newpolicy);
3061 		return -ENOMEM;
3062 	}
3063 
3064 	/* Update the boolean states in the copy */
3065 	for (i = 0; i < len; i++) {
3066 		int new_state = !!values[i];
3067 		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3068 
3069 		if (new_state != old_state) {
3070 			audit_log(audit_context(), GFP_ATOMIC,
3071 				AUDIT_MAC_CONFIG_CHANGE,
3072 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3073 				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3074 				new_state,
3075 				old_state,
3076 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3077 				audit_get_sessionid(current));
3078 			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3079 		}
3080 	}
3081 
3082 	/* Re-evaluate the conditional rules in the copy */
3083 	evaluate_cond_nodes(&newpolicy->policydb);
3084 
3085 	/* Set latest granting seqno for new policy */
3086 	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3087 	seqno = newpolicy->latest_granting;
3088 
3089 	/* Install the new policy */
3090 	rcu_assign_pointer(state->policy, newpolicy);
3091 
3092 	/*
3093 	 * Free the conditional portions of the old policydb
3094 	 * that were copied for the new policy, and the oldpolicy
3095 	 * structure itself but not what it references.
3096 	 */
3097 	synchronize_rcu();
3098 	selinux_policy_cond_free(oldpolicy);
3099 
3100 	/* Notify others of the policy change */
3101 	selinux_notify_policy_change(seqno);
3102 	return 0;
3103 }
3104 
3105 int security_get_bool_value(u32 index)
3106 {
3107 	struct selinux_policy *policy;
3108 	struct policydb *policydb;
3109 	int rc;
3110 	u32 len;
3111 
3112 	if (!selinux_initialized())
3113 		return 0;
3114 
3115 	rcu_read_lock();
3116 	policy = rcu_dereference(selinux_state.policy);
3117 	policydb = &policy->policydb;
3118 
3119 	rc = -EFAULT;
3120 	len = policydb->p_bools.nprim;
3121 	if (index >= len)
3122 		goto out;
3123 
3124 	rc = policydb->bool_val_to_struct[index]->state;
3125 out:
3126 	rcu_read_unlock();
3127 	return rc;
3128 }
3129 
3130 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3131 				struct selinux_policy *newpolicy)
3132 {
3133 	int rc, *bvalues = NULL;
3134 	char **bnames = NULL;
3135 	struct cond_bool_datum *booldatum;
3136 	u32 i, nbools = 0;
3137 
3138 	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3139 	if (rc)
3140 		goto out;
3141 	for (i = 0; i < nbools; i++) {
3142 		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3143 					bnames[i]);
3144 		if (booldatum)
3145 			booldatum->state = bvalues[i];
3146 	}
3147 	evaluate_cond_nodes(&newpolicy->policydb);
3148 
3149 out:
3150 	if (bnames) {
3151 		for (i = 0; i < nbools; i++)
3152 			kfree(bnames[i]);
3153 	}
3154 	kfree(bnames);
3155 	kfree(bvalues);
3156 	return rc;
3157 }
3158 
3159 /*
3160  * security_sid_mls_copy() - computes a new sid based on the given
3161  * sid and the mls portion of mls_sid.
3162  */
3163 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
3164 {
3165 	struct selinux_policy *policy;
3166 	struct policydb *policydb;
3167 	struct sidtab *sidtab;
3168 	struct context *context1;
3169 	struct context *context2;
3170 	struct context newcon;
3171 	char *s;
3172 	u32 len;
3173 	int rc;
3174 
3175 	if (!selinux_initialized()) {
3176 		*new_sid = sid;
3177 		return 0;
3178 	}
3179 
3180 retry:
3181 	rc = 0;
3182 	context_init(&newcon);
3183 
3184 	rcu_read_lock();
3185 	policy = rcu_dereference(selinux_state.policy);
3186 	policydb = &policy->policydb;
3187 	sidtab = policy->sidtab;
3188 
3189 	if (!policydb->mls_enabled) {
3190 		*new_sid = sid;
3191 		goto out_unlock;
3192 	}
3193 
3194 	rc = -EINVAL;
3195 	context1 = sidtab_search(sidtab, sid);
3196 	if (!context1) {
3197 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3198 			__func__, sid);
3199 		goto out_unlock;
3200 	}
3201 
3202 	rc = -EINVAL;
3203 	context2 = sidtab_search(sidtab, mls_sid);
3204 	if (!context2) {
3205 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3206 			__func__, mls_sid);
3207 		goto out_unlock;
3208 	}
3209 
3210 	newcon.user = context1->user;
3211 	newcon.role = context1->role;
3212 	newcon.type = context1->type;
3213 	rc = mls_context_cpy(&newcon, context2);
3214 	if (rc)
3215 		goto out_unlock;
3216 
3217 	/* Check the validity of the new context. */
3218 	if (!policydb_context_isvalid(policydb, &newcon)) {
3219 		rc = convert_context_handle_invalid_context(policydb,
3220 							&newcon);
3221 		if (rc) {
3222 			if (!context_struct_to_string(policydb, &newcon, &s,
3223 						      &len)) {
3224 				struct audit_buffer *ab;
3225 
3226 				ab = audit_log_start(audit_context(),
3227 						     GFP_ATOMIC,
3228 						     AUDIT_SELINUX_ERR);
3229 				audit_log_format(ab,
3230 						 "op=security_sid_mls_copy invalid_context=");
3231 				/* don't record NUL with untrusted strings */
3232 				audit_log_n_untrustedstring(ab, s, len - 1);
3233 				audit_log_end(ab);
3234 				kfree(s);
3235 			}
3236 			goto out_unlock;
3237 		}
3238 	}
3239 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3240 	if (rc == -ESTALE) {
3241 		rcu_read_unlock();
3242 		context_destroy(&newcon);
3243 		goto retry;
3244 	}
3245 out_unlock:
3246 	rcu_read_unlock();
3247 	context_destroy(&newcon);
3248 	return rc;
3249 }
3250 
3251 /**
3252  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3253  * @nlbl_sid: NetLabel SID
3254  * @nlbl_type: NetLabel labeling protocol type
3255  * @xfrm_sid: XFRM SID
3256  * @peer_sid: network peer sid
3257  *
3258  * Description:
3259  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3260  * resolved into a single SID it is returned via @peer_sid and the function
3261  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3262  * returns a negative value.  A table summarizing the behavior is below:
3263  *
3264  *                                 | function return |      @sid
3265  *   ------------------------------+-----------------+-----------------
3266  *   no peer labels                |        0        |    SECSID_NULL
3267  *   single peer label             |        0        |    <peer_label>
3268  *   multiple, consistent labels   |        0        |    <peer_label>
3269  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3270  *
3271  */
3272 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
3273 				 u32 xfrm_sid,
3274 				 u32 *peer_sid)
3275 {
3276 	struct selinux_policy *policy;
3277 	struct policydb *policydb;
3278 	struct sidtab *sidtab;
3279 	int rc;
3280 	struct context *nlbl_ctx;
3281 	struct context *xfrm_ctx;
3282 
3283 	*peer_sid = SECSID_NULL;
3284 
3285 	/* handle the common (which also happens to be the set of easy) cases
3286 	 * right away, these two if statements catch everything involving a
3287 	 * single or absent peer SID/label */
3288 	if (xfrm_sid == SECSID_NULL) {
3289 		*peer_sid = nlbl_sid;
3290 		return 0;
3291 	}
3292 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3293 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3294 	 * is present */
3295 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3296 		*peer_sid = xfrm_sid;
3297 		return 0;
3298 	}
3299 
3300 	if (!selinux_initialized())
3301 		return 0;
3302 
3303 	rcu_read_lock();
3304 	policy = rcu_dereference(selinux_state.policy);
3305 	policydb = &policy->policydb;
3306 	sidtab = policy->sidtab;
3307 
3308 	/*
3309 	 * We don't need to check initialized here since the only way both
3310 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3311 	 * security server was initialized and state->initialized was true.
3312 	 */
3313 	if (!policydb->mls_enabled) {
3314 		rc = 0;
3315 		goto out;
3316 	}
3317 
3318 	rc = -EINVAL;
3319 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3320 	if (!nlbl_ctx) {
3321 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3322 		       __func__, nlbl_sid);
3323 		goto out;
3324 	}
3325 	rc = -EINVAL;
3326 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3327 	if (!xfrm_ctx) {
3328 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3329 		       __func__, xfrm_sid);
3330 		goto out;
3331 	}
3332 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3333 	if (rc)
3334 		goto out;
3335 
3336 	/* at present NetLabel SIDs/labels really only carry MLS
3337 	 * information so if the MLS portion of the NetLabel SID
3338 	 * matches the MLS portion of the labeled XFRM SID/label
3339 	 * then pass along the XFRM SID as it is the most
3340 	 * expressive */
3341 	*peer_sid = xfrm_sid;
3342 out:
3343 	rcu_read_unlock();
3344 	return rc;
3345 }
3346 
3347 static int get_classes_callback(void *k, void *d, void *args)
3348 {
3349 	struct class_datum *datum = d;
3350 	char *name = k, **classes = args;
3351 	u32 value = datum->value - 1;
3352 
3353 	classes[value] = kstrdup(name, GFP_ATOMIC);
3354 	if (!classes[value])
3355 		return -ENOMEM;
3356 
3357 	return 0;
3358 }
3359 
3360 int security_get_classes(struct selinux_policy *policy,
3361 			 char ***classes, u32 *nclasses)
3362 {
3363 	struct policydb *policydb;
3364 	int rc;
3365 
3366 	policydb = &policy->policydb;
3367 
3368 	rc = -ENOMEM;
3369 	*nclasses = policydb->p_classes.nprim;
3370 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3371 	if (!*classes)
3372 		goto out;
3373 
3374 	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3375 			 *classes);
3376 	if (rc) {
3377 		u32 i;
3378 
3379 		for (i = 0; i < *nclasses; i++)
3380 			kfree((*classes)[i]);
3381 		kfree(*classes);
3382 	}
3383 
3384 out:
3385 	return rc;
3386 }
3387 
3388 static int get_permissions_callback(void *k, void *d, void *args)
3389 {
3390 	struct perm_datum *datum = d;
3391 	char *name = k, **perms = args;
3392 	u32 value = datum->value - 1;
3393 
3394 	perms[value] = kstrdup(name, GFP_ATOMIC);
3395 	if (!perms[value])
3396 		return -ENOMEM;
3397 
3398 	return 0;
3399 }
3400 
3401 int security_get_permissions(struct selinux_policy *policy,
3402 			     const char *class, char ***perms, u32 *nperms)
3403 {
3404 	struct policydb *policydb;
3405 	u32 i;
3406 	int rc;
3407 	struct class_datum *match;
3408 
3409 	policydb = &policy->policydb;
3410 
3411 	rc = -EINVAL;
3412 	match = symtab_search(&policydb->p_classes, class);
3413 	if (!match) {
3414 		pr_err("SELinux: %s:  unrecognized class %s\n",
3415 			__func__, class);
3416 		goto out;
3417 	}
3418 
3419 	rc = -ENOMEM;
3420 	*nperms = match->permissions.nprim;
3421 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3422 	if (!*perms)
3423 		goto out;
3424 
3425 	if (match->comdatum) {
3426 		rc = hashtab_map(&match->comdatum->permissions.table,
3427 				 get_permissions_callback, *perms);
3428 		if (rc)
3429 			goto err;
3430 	}
3431 
3432 	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3433 			 *perms);
3434 	if (rc)
3435 		goto err;
3436 
3437 out:
3438 	return rc;
3439 
3440 err:
3441 	for (i = 0; i < *nperms; i++)
3442 		kfree((*perms)[i]);
3443 	kfree(*perms);
3444 	return rc;
3445 }
3446 
3447 int security_get_reject_unknown(void)
3448 {
3449 	struct selinux_policy *policy;
3450 	int value;
3451 
3452 	if (!selinux_initialized())
3453 		return 0;
3454 
3455 	rcu_read_lock();
3456 	policy = rcu_dereference(selinux_state.policy);
3457 	value = policy->policydb.reject_unknown;
3458 	rcu_read_unlock();
3459 	return value;
3460 }
3461 
3462 int security_get_allow_unknown(void)
3463 {
3464 	struct selinux_policy *policy;
3465 	int value;
3466 
3467 	if (!selinux_initialized())
3468 		return 0;
3469 
3470 	rcu_read_lock();
3471 	policy = rcu_dereference(selinux_state.policy);
3472 	value = policy->policydb.allow_unknown;
3473 	rcu_read_unlock();
3474 	return value;
3475 }
3476 
3477 /**
3478  * security_policycap_supported - Check for a specific policy capability
3479  * @req_cap: capability
3480  *
3481  * Description:
3482  * This function queries the currently loaded policy to see if it supports the
3483  * capability specified by @req_cap.  Returns true (1) if the capability is
3484  * supported, false (0) if it isn't supported.
3485  *
3486  */
3487 int security_policycap_supported(unsigned int req_cap)
3488 {
3489 	struct selinux_policy *policy;
3490 	int rc;
3491 
3492 	if (!selinux_initialized())
3493 		return 0;
3494 
3495 	rcu_read_lock();
3496 	policy = rcu_dereference(selinux_state.policy);
3497 	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3498 	rcu_read_unlock();
3499 
3500 	return rc;
3501 }
3502 
3503 struct selinux_audit_rule {
3504 	u32 au_seqno;
3505 	struct context au_ctxt;
3506 };
3507 
3508 void selinux_audit_rule_free(void *vrule)
3509 {
3510 	struct selinux_audit_rule *rule = vrule;
3511 
3512 	if (rule) {
3513 		context_destroy(&rule->au_ctxt);
3514 		kfree(rule);
3515 	}
3516 }
3517 
3518 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule,
3519 			    gfp_t gfp)
3520 {
3521 	struct selinux_state *state = &selinux_state;
3522 	struct selinux_policy *policy;
3523 	struct policydb *policydb;
3524 	struct selinux_audit_rule *tmprule;
3525 	struct role_datum *roledatum;
3526 	struct type_datum *typedatum;
3527 	struct user_datum *userdatum;
3528 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3529 	int rc = 0;
3530 
3531 	*rule = NULL;
3532 
3533 	if (!selinux_initialized())
3534 		return -EOPNOTSUPP;
3535 
3536 	switch (field) {
3537 	case AUDIT_SUBJ_USER:
3538 	case AUDIT_SUBJ_ROLE:
3539 	case AUDIT_SUBJ_TYPE:
3540 	case AUDIT_OBJ_USER:
3541 	case AUDIT_OBJ_ROLE:
3542 	case AUDIT_OBJ_TYPE:
3543 		/* only 'equals' and 'not equals' fit user, role, and type */
3544 		if (op != Audit_equal && op != Audit_not_equal)
3545 			return -EINVAL;
3546 		break;
3547 	case AUDIT_SUBJ_SEN:
3548 	case AUDIT_SUBJ_CLR:
3549 	case AUDIT_OBJ_LEV_LOW:
3550 	case AUDIT_OBJ_LEV_HIGH:
3551 		/* we do not allow a range, indicated by the presence of '-' */
3552 		if (strchr(rulestr, '-'))
3553 			return -EINVAL;
3554 		break;
3555 	default:
3556 		/* only the above fields are valid */
3557 		return -EINVAL;
3558 	}
3559 
3560 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), gfp);
3561 	if (!tmprule)
3562 		return -ENOMEM;
3563 	context_init(&tmprule->au_ctxt);
3564 
3565 	rcu_read_lock();
3566 	policy = rcu_dereference(state->policy);
3567 	policydb = &policy->policydb;
3568 	tmprule->au_seqno = policy->latest_granting;
3569 	switch (field) {
3570 	case AUDIT_SUBJ_USER:
3571 	case AUDIT_OBJ_USER:
3572 		userdatum = symtab_search(&policydb->p_users, rulestr);
3573 		if (!userdatum) {
3574 			rc = -EINVAL;
3575 			goto err;
3576 		}
3577 		tmprule->au_ctxt.user = userdatum->value;
3578 		break;
3579 	case AUDIT_SUBJ_ROLE:
3580 	case AUDIT_OBJ_ROLE:
3581 		roledatum = symtab_search(&policydb->p_roles, rulestr);
3582 		if (!roledatum) {
3583 			rc = -EINVAL;
3584 			goto err;
3585 		}
3586 		tmprule->au_ctxt.role = roledatum->value;
3587 		break;
3588 	case AUDIT_SUBJ_TYPE:
3589 	case AUDIT_OBJ_TYPE:
3590 		typedatum = symtab_search(&policydb->p_types, rulestr);
3591 		if (!typedatum) {
3592 			rc = -EINVAL;
3593 			goto err;
3594 		}
3595 		tmprule->au_ctxt.type = typedatum->value;
3596 		break;
3597 	case AUDIT_SUBJ_SEN:
3598 	case AUDIT_SUBJ_CLR:
3599 	case AUDIT_OBJ_LEV_LOW:
3600 	case AUDIT_OBJ_LEV_HIGH:
3601 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3602 				     GFP_ATOMIC);
3603 		if (rc)
3604 			goto err;
3605 		break;
3606 	}
3607 	rcu_read_unlock();
3608 
3609 	*rule = tmprule;
3610 	return 0;
3611 
3612 err:
3613 	rcu_read_unlock();
3614 	selinux_audit_rule_free(tmprule);
3615 	*rule = NULL;
3616 	return rc;
3617 }
3618 
3619 /* Check to see if the rule contains any selinux fields */
3620 int selinux_audit_rule_known(struct audit_krule *rule)
3621 {
3622 	u32 i;
3623 
3624 	for (i = 0; i < rule->field_count; i++) {
3625 		struct audit_field *f = &rule->fields[i];
3626 		switch (f->type) {
3627 		case AUDIT_SUBJ_USER:
3628 		case AUDIT_SUBJ_ROLE:
3629 		case AUDIT_SUBJ_TYPE:
3630 		case AUDIT_SUBJ_SEN:
3631 		case AUDIT_SUBJ_CLR:
3632 		case AUDIT_OBJ_USER:
3633 		case AUDIT_OBJ_ROLE:
3634 		case AUDIT_OBJ_TYPE:
3635 		case AUDIT_OBJ_LEV_LOW:
3636 		case AUDIT_OBJ_LEV_HIGH:
3637 			return 1;
3638 		}
3639 	}
3640 
3641 	return 0;
3642 }
3643 
3644 int selinux_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op, void *vrule)
3645 {
3646 	struct selinux_state *state = &selinux_state;
3647 	struct selinux_policy *policy;
3648 	struct context *ctxt;
3649 	struct mls_level *level;
3650 	struct selinux_audit_rule *rule = vrule;
3651 	int match = 0;
3652 
3653 	if (unlikely(!rule)) {
3654 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3655 		return -ENOENT;
3656 	}
3657 
3658 	if (!selinux_initialized())
3659 		return 0;
3660 
3661 	rcu_read_lock();
3662 
3663 	policy = rcu_dereference(state->policy);
3664 
3665 	if (rule->au_seqno < policy->latest_granting) {
3666 		match = -ESTALE;
3667 		goto out;
3668 	}
3669 
3670 	ctxt = sidtab_search(policy->sidtab, prop->selinux.secid);
3671 	if (unlikely(!ctxt)) {
3672 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3673 			  prop->selinux.secid);
3674 		match = -ENOENT;
3675 		goto out;
3676 	}
3677 
3678 	/* a field/op pair that is not caught here will simply fall through
3679 	   without a match */
3680 	switch (field) {
3681 	case AUDIT_SUBJ_USER:
3682 	case AUDIT_OBJ_USER:
3683 		switch (op) {
3684 		case Audit_equal:
3685 			match = (ctxt->user == rule->au_ctxt.user);
3686 			break;
3687 		case Audit_not_equal:
3688 			match = (ctxt->user != rule->au_ctxt.user);
3689 			break;
3690 		}
3691 		break;
3692 	case AUDIT_SUBJ_ROLE:
3693 	case AUDIT_OBJ_ROLE:
3694 		switch (op) {
3695 		case Audit_equal:
3696 			match = (ctxt->role == rule->au_ctxt.role);
3697 			break;
3698 		case Audit_not_equal:
3699 			match = (ctxt->role != rule->au_ctxt.role);
3700 			break;
3701 		}
3702 		break;
3703 	case AUDIT_SUBJ_TYPE:
3704 	case AUDIT_OBJ_TYPE:
3705 		switch (op) {
3706 		case Audit_equal:
3707 			match = (ctxt->type == rule->au_ctxt.type);
3708 			break;
3709 		case Audit_not_equal:
3710 			match = (ctxt->type != rule->au_ctxt.type);
3711 			break;
3712 		}
3713 		break;
3714 	case AUDIT_SUBJ_SEN:
3715 	case AUDIT_SUBJ_CLR:
3716 	case AUDIT_OBJ_LEV_LOW:
3717 	case AUDIT_OBJ_LEV_HIGH:
3718 		level = ((field == AUDIT_SUBJ_SEN ||
3719 			  field == AUDIT_OBJ_LEV_LOW) ?
3720 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3721 		switch (op) {
3722 		case Audit_equal:
3723 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3724 					     level);
3725 			break;
3726 		case Audit_not_equal:
3727 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3728 					      level);
3729 			break;
3730 		case Audit_lt:
3731 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3732 					       level) &&
3733 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3734 					       level));
3735 			break;
3736 		case Audit_le:
3737 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3738 					      level);
3739 			break;
3740 		case Audit_gt:
3741 			match = (mls_level_dom(level,
3742 					      &rule->au_ctxt.range.level[0]) &&
3743 				 !mls_level_eq(level,
3744 					       &rule->au_ctxt.range.level[0]));
3745 			break;
3746 		case Audit_ge:
3747 			match = mls_level_dom(level,
3748 					      &rule->au_ctxt.range.level[0]);
3749 			break;
3750 		}
3751 	}
3752 
3753 out:
3754 	rcu_read_unlock();
3755 	return match;
3756 }
3757 
3758 static int aurule_avc_callback(u32 event)
3759 {
3760 	if (event == AVC_CALLBACK_RESET)
3761 		return audit_update_lsm_rules();
3762 	return 0;
3763 }
3764 
3765 static int __init aurule_init(void)
3766 {
3767 	int err;
3768 
3769 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3770 	if (err)
3771 		panic("avc_add_callback() failed, error %d\n", err);
3772 
3773 	return err;
3774 }
3775 __initcall(aurule_init);
3776 
3777 #ifdef CONFIG_NETLABEL
3778 /**
3779  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3780  * @secattr: the NetLabel packet security attributes
3781  * @sid: the SELinux SID
3782  *
3783  * Description:
3784  * Attempt to cache the context in @ctx, which was derived from the packet in
3785  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3786  * already been initialized.
3787  *
3788  */
3789 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3790 				      u32 sid)
3791 {
3792 	u32 *sid_cache;
3793 
3794 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3795 	if (sid_cache == NULL)
3796 		return;
3797 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3798 	if (secattr->cache == NULL) {
3799 		kfree(sid_cache);
3800 		return;
3801 	}
3802 
3803 	*sid_cache = sid;
3804 	secattr->cache->free = kfree;
3805 	secattr->cache->data = sid_cache;
3806 	secattr->flags |= NETLBL_SECATTR_CACHE;
3807 }
3808 
3809 /**
3810  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3811  * @secattr: the NetLabel packet security attributes
3812  * @sid: the SELinux SID
3813  *
3814  * Description:
3815  * Convert the given NetLabel security attributes in @secattr into a
3816  * SELinux SID.  If the @secattr field does not contain a full SELinux
3817  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3818  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3819  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3820  * conversion for future lookups.  Returns zero on success, negative values on
3821  * failure.
3822  *
3823  */
3824 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3825 				   u32 *sid)
3826 {
3827 	struct selinux_policy *policy;
3828 	struct policydb *policydb;
3829 	struct sidtab *sidtab;
3830 	int rc;
3831 	struct context *ctx;
3832 	struct context ctx_new;
3833 
3834 	if (!selinux_initialized()) {
3835 		*sid = SECSID_NULL;
3836 		return 0;
3837 	}
3838 
3839 retry:
3840 	rc = 0;
3841 	rcu_read_lock();
3842 	policy = rcu_dereference(selinux_state.policy);
3843 	policydb = &policy->policydb;
3844 	sidtab = policy->sidtab;
3845 
3846 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3847 		*sid = *(u32 *)secattr->cache->data;
3848 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3849 		*sid = secattr->attr.secid;
3850 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3851 		rc = -EIDRM;
3852 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3853 		if (ctx == NULL)
3854 			goto out;
3855 
3856 		context_init(&ctx_new);
3857 		ctx_new.user = ctx->user;
3858 		ctx_new.role = ctx->role;
3859 		ctx_new.type = ctx->type;
3860 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3861 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3862 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3863 			if (rc)
3864 				goto out;
3865 		}
3866 		rc = -EIDRM;
3867 		if (!mls_context_isvalid(policydb, &ctx_new)) {
3868 			ebitmap_destroy(&ctx_new.range.level[0].cat);
3869 			goto out;
3870 		}
3871 
3872 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3873 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3874 		if (rc == -ESTALE) {
3875 			rcu_read_unlock();
3876 			goto retry;
3877 		}
3878 		if (rc)
3879 			goto out;
3880 
3881 		security_netlbl_cache_add(secattr, *sid);
3882 	} else
3883 		*sid = SECSID_NULL;
3884 
3885 out:
3886 	rcu_read_unlock();
3887 	return rc;
3888 }
3889 
3890 /**
3891  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3892  * @sid: the SELinux SID
3893  * @secattr: the NetLabel packet security attributes
3894  *
3895  * Description:
3896  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3897  * Returns zero on success, negative values on failure.
3898  *
3899  */
3900 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3901 {
3902 	struct selinux_policy *policy;
3903 	struct policydb *policydb;
3904 	int rc;
3905 	struct context *ctx;
3906 
3907 	if (!selinux_initialized())
3908 		return 0;
3909 
3910 	rcu_read_lock();
3911 	policy = rcu_dereference(selinux_state.policy);
3912 	policydb = &policy->policydb;
3913 
3914 	rc = -ENOENT;
3915 	ctx = sidtab_search(policy->sidtab, sid);
3916 	if (ctx == NULL)
3917 		goto out;
3918 
3919 	rc = -ENOMEM;
3920 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3921 				  GFP_ATOMIC);
3922 	if (secattr->domain == NULL)
3923 		goto out;
3924 
3925 	secattr->attr.secid = sid;
3926 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3927 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3928 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3929 out:
3930 	rcu_read_unlock();
3931 	return rc;
3932 }
3933 #endif /* CONFIG_NETLABEL */
3934 
3935 /**
3936  * __security_read_policy - read the policy.
3937  * @policy: SELinux policy
3938  * @data: binary policy data
3939  * @len: length of data in bytes
3940  *
3941  */
3942 static int __security_read_policy(struct selinux_policy *policy,
3943 				  void *data, size_t *len)
3944 {
3945 	int rc;
3946 	struct policy_file fp;
3947 
3948 	fp.data = data;
3949 	fp.len = *len;
3950 
3951 	rc = policydb_write(&policy->policydb, &fp);
3952 	if (rc)
3953 		return rc;
3954 
3955 	*len = (unsigned long)fp.data - (unsigned long)data;
3956 	return 0;
3957 }
3958 
3959 /**
3960  * security_read_policy - read the policy.
3961  * @data: binary policy data
3962  * @len: length of data in bytes
3963  *
3964  */
3965 int security_read_policy(void **data, size_t *len)
3966 {
3967 	struct selinux_state *state = &selinux_state;
3968 	struct selinux_policy *policy;
3969 
3970 	policy = rcu_dereference_protected(
3971 			state->policy, lockdep_is_held(&state->policy_mutex));
3972 	if (!policy)
3973 		return -EINVAL;
3974 
3975 	*len = policy->policydb.len;
3976 	*data = vmalloc_user(*len);
3977 	if (!*data)
3978 		return -ENOMEM;
3979 
3980 	return __security_read_policy(policy, *data, len);
3981 }
3982 
3983 /**
3984  * security_read_state_kernel - read the policy.
3985  * @data: binary policy data
3986  * @len: length of data in bytes
3987  *
3988  * Allocates kernel memory for reading SELinux policy.
3989  * This function is for internal use only and should not
3990  * be used for returning data to user space.
3991  *
3992  * This function must be called with policy_mutex held.
3993  */
3994 int security_read_state_kernel(void **data, size_t *len)
3995 {
3996 	int err;
3997 	struct selinux_state *state = &selinux_state;
3998 	struct selinux_policy *policy;
3999 
4000 	policy = rcu_dereference_protected(
4001 			state->policy, lockdep_is_held(&state->policy_mutex));
4002 	if (!policy)
4003 		return -EINVAL;
4004 
4005 	*len = policy->policydb.len;
4006 	*data = vmalloc(*len);
4007 	if (!*data)
4008 		return -ENOMEM;
4009 
4010 	err = __security_read_policy(policy, *data, len);
4011 	if (err) {
4012 		vfree(*data);
4013 		*data = NULL;
4014 		*len = 0;
4015 	}
4016 	return err;
4017 }
4018