1 /* 2 * Implementation of the security services. 3 * 4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil> 5 * James Morris <jmorris@redhat.com> 6 * 7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> 8 * 9 * Support for enhanced MLS infrastructure. 10 * Support for context based audit filters. 11 * 12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com> 13 * 14 * Added conditional policy language extensions 15 * 16 * Updated: Hewlett-Packard <paul@paul-moore.com> 17 * 18 * Added support for NetLabel 19 * Added support for the policy capability bitmap 20 * 21 * Updated: Chad Sellers <csellers@tresys.com> 22 * 23 * Added validation of kernel classes and permissions 24 * 25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com> 26 * 27 * Added support for bounds domain and audit messaged on masked permissions 28 * 29 * Updated: Guido Trentalancia <guido@trentalancia.com> 30 * 31 * Added support for runtime switching of the policy type 32 * 33 * Copyright (C) 2008, 2009 NEC Corporation 34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P. 35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc. 36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC 37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 38 * This program is free software; you can redistribute it and/or modify 39 * it under the terms of the GNU General Public License as published by 40 * the Free Software Foundation, version 2. 41 */ 42 #include <linux/kernel.h> 43 #include <linux/slab.h> 44 #include <linux/string.h> 45 #include <linux/spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/errno.h> 48 #include <linux/in.h> 49 #include <linux/sched.h> 50 #include <linux/audit.h> 51 #include <linux/mutex.h> 52 #include <linux/selinux.h> 53 #include <linux/flex_array.h> 54 #include <linux/vmalloc.h> 55 #include <net/netlabel.h> 56 57 #include "flask.h" 58 #include "avc.h" 59 #include "avc_ss.h" 60 #include "security.h" 61 #include "context.h" 62 #include "policydb.h" 63 #include "sidtab.h" 64 #include "services.h" 65 #include "conditional.h" 66 #include "mls.h" 67 #include "objsec.h" 68 #include "netlabel.h" 69 #include "xfrm.h" 70 #include "ebitmap.h" 71 #include "audit.h" 72 73 int selinux_policycap_netpeer; 74 int selinux_policycap_openperm; 75 76 static DEFINE_RWLOCK(policy_rwlock); 77 78 static struct sidtab sidtab; 79 struct policydb policydb; 80 int ss_initialized; 81 82 /* 83 * The largest sequence number that has been used when 84 * providing an access decision to the access vector cache. 85 * The sequence number only changes when a policy change 86 * occurs. 87 */ 88 static u32 latest_granting; 89 90 /* Forward declaration. */ 91 static int context_struct_to_string(struct context *context, char **scontext, 92 u32 *scontext_len); 93 94 static void context_struct_compute_av(struct context *scontext, 95 struct context *tcontext, 96 u16 tclass, 97 struct av_decision *avd); 98 99 struct selinux_mapping { 100 u16 value; /* policy value */ 101 unsigned num_perms; 102 u32 perms[sizeof(u32) * 8]; 103 }; 104 105 static struct selinux_mapping *current_mapping; 106 static u16 current_mapping_size; 107 108 static int selinux_set_mapping(struct policydb *pol, 109 struct security_class_mapping *map, 110 struct selinux_mapping **out_map_p, 111 u16 *out_map_size) 112 { 113 struct selinux_mapping *out_map = NULL; 114 size_t size = sizeof(struct selinux_mapping); 115 u16 i, j; 116 unsigned k; 117 bool print_unknown_handle = false; 118 119 /* Find number of classes in the input mapping */ 120 if (!map) 121 return -EINVAL; 122 i = 0; 123 while (map[i].name) 124 i++; 125 126 /* Allocate space for the class records, plus one for class zero */ 127 out_map = kcalloc(++i, size, GFP_ATOMIC); 128 if (!out_map) 129 return -ENOMEM; 130 131 /* Store the raw class and permission values */ 132 j = 0; 133 while (map[j].name) { 134 struct security_class_mapping *p_in = map + (j++); 135 struct selinux_mapping *p_out = out_map + j; 136 137 /* An empty class string skips ahead */ 138 if (!strcmp(p_in->name, "")) { 139 p_out->num_perms = 0; 140 continue; 141 } 142 143 p_out->value = string_to_security_class(pol, p_in->name); 144 if (!p_out->value) { 145 printk(KERN_INFO 146 "SELinux: Class %s not defined in policy.\n", 147 p_in->name); 148 if (pol->reject_unknown) 149 goto err; 150 p_out->num_perms = 0; 151 print_unknown_handle = true; 152 continue; 153 } 154 155 k = 0; 156 while (p_in->perms && p_in->perms[k]) { 157 /* An empty permission string skips ahead */ 158 if (!*p_in->perms[k]) { 159 k++; 160 continue; 161 } 162 p_out->perms[k] = string_to_av_perm(pol, p_out->value, 163 p_in->perms[k]); 164 if (!p_out->perms[k]) { 165 printk(KERN_INFO 166 "SELinux: Permission %s in class %s not defined in policy.\n", 167 p_in->perms[k], p_in->name); 168 if (pol->reject_unknown) 169 goto err; 170 print_unknown_handle = true; 171 } 172 173 k++; 174 } 175 p_out->num_perms = k; 176 } 177 178 if (print_unknown_handle) 179 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n", 180 pol->allow_unknown ? "allowed" : "denied"); 181 182 *out_map_p = out_map; 183 *out_map_size = i; 184 return 0; 185 err: 186 kfree(out_map); 187 return -EINVAL; 188 } 189 190 /* 191 * Get real, policy values from mapped values 192 */ 193 194 static u16 unmap_class(u16 tclass) 195 { 196 if (tclass < current_mapping_size) 197 return current_mapping[tclass].value; 198 199 return tclass; 200 } 201 202 /* 203 * Get kernel value for class from its policy value 204 */ 205 static u16 map_class(u16 pol_value) 206 { 207 u16 i; 208 209 for (i = 1; i < current_mapping_size; i++) { 210 if (current_mapping[i].value == pol_value) 211 return i; 212 } 213 214 return SECCLASS_NULL; 215 } 216 217 static void map_decision(u16 tclass, struct av_decision *avd, 218 int allow_unknown) 219 { 220 if (tclass < current_mapping_size) { 221 unsigned i, n = current_mapping[tclass].num_perms; 222 u32 result; 223 224 for (i = 0, result = 0; i < n; i++) { 225 if (avd->allowed & current_mapping[tclass].perms[i]) 226 result |= 1<<i; 227 if (allow_unknown && !current_mapping[tclass].perms[i]) 228 result |= 1<<i; 229 } 230 avd->allowed = result; 231 232 for (i = 0, result = 0; i < n; i++) 233 if (avd->auditallow & current_mapping[tclass].perms[i]) 234 result |= 1<<i; 235 avd->auditallow = result; 236 237 for (i = 0, result = 0; i < n; i++) { 238 if (avd->auditdeny & current_mapping[tclass].perms[i]) 239 result |= 1<<i; 240 if (!allow_unknown && !current_mapping[tclass].perms[i]) 241 result |= 1<<i; 242 } 243 /* 244 * In case the kernel has a bug and requests a permission 245 * between num_perms and the maximum permission number, we 246 * should audit that denial 247 */ 248 for (; i < (sizeof(u32)*8); i++) 249 result |= 1<<i; 250 avd->auditdeny = result; 251 } 252 } 253 254 int security_mls_enabled(void) 255 { 256 return policydb.mls_enabled; 257 } 258 259 /* 260 * Return the boolean value of a constraint expression 261 * when it is applied to the specified source and target 262 * security contexts. 263 * 264 * xcontext is a special beast... It is used by the validatetrans rules 265 * only. For these rules, scontext is the context before the transition, 266 * tcontext is the context after the transition, and xcontext is the context 267 * of the process performing the transition. All other callers of 268 * constraint_expr_eval should pass in NULL for xcontext. 269 */ 270 static int constraint_expr_eval(struct context *scontext, 271 struct context *tcontext, 272 struct context *xcontext, 273 struct constraint_expr *cexpr) 274 { 275 u32 val1, val2; 276 struct context *c; 277 struct role_datum *r1, *r2; 278 struct mls_level *l1, *l2; 279 struct constraint_expr *e; 280 int s[CEXPR_MAXDEPTH]; 281 int sp = -1; 282 283 for (e = cexpr; e; e = e->next) { 284 switch (e->expr_type) { 285 case CEXPR_NOT: 286 BUG_ON(sp < 0); 287 s[sp] = !s[sp]; 288 break; 289 case CEXPR_AND: 290 BUG_ON(sp < 1); 291 sp--; 292 s[sp] &= s[sp + 1]; 293 break; 294 case CEXPR_OR: 295 BUG_ON(sp < 1); 296 sp--; 297 s[sp] |= s[sp + 1]; 298 break; 299 case CEXPR_ATTR: 300 if (sp == (CEXPR_MAXDEPTH - 1)) 301 return 0; 302 switch (e->attr) { 303 case CEXPR_USER: 304 val1 = scontext->user; 305 val2 = tcontext->user; 306 break; 307 case CEXPR_TYPE: 308 val1 = scontext->type; 309 val2 = tcontext->type; 310 break; 311 case CEXPR_ROLE: 312 val1 = scontext->role; 313 val2 = tcontext->role; 314 r1 = policydb.role_val_to_struct[val1 - 1]; 315 r2 = policydb.role_val_to_struct[val2 - 1]; 316 switch (e->op) { 317 case CEXPR_DOM: 318 s[++sp] = ebitmap_get_bit(&r1->dominates, 319 val2 - 1); 320 continue; 321 case CEXPR_DOMBY: 322 s[++sp] = ebitmap_get_bit(&r2->dominates, 323 val1 - 1); 324 continue; 325 case CEXPR_INCOMP: 326 s[++sp] = (!ebitmap_get_bit(&r1->dominates, 327 val2 - 1) && 328 !ebitmap_get_bit(&r2->dominates, 329 val1 - 1)); 330 continue; 331 default: 332 break; 333 } 334 break; 335 case CEXPR_L1L2: 336 l1 = &(scontext->range.level[0]); 337 l2 = &(tcontext->range.level[0]); 338 goto mls_ops; 339 case CEXPR_L1H2: 340 l1 = &(scontext->range.level[0]); 341 l2 = &(tcontext->range.level[1]); 342 goto mls_ops; 343 case CEXPR_H1L2: 344 l1 = &(scontext->range.level[1]); 345 l2 = &(tcontext->range.level[0]); 346 goto mls_ops; 347 case CEXPR_H1H2: 348 l1 = &(scontext->range.level[1]); 349 l2 = &(tcontext->range.level[1]); 350 goto mls_ops; 351 case CEXPR_L1H1: 352 l1 = &(scontext->range.level[0]); 353 l2 = &(scontext->range.level[1]); 354 goto mls_ops; 355 case CEXPR_L2H2: 356 l1 = &(tcontext->range.level[0]); 357 l2 = &(tcontext->range.level[1]); 358 goto mls_ops; 359 mls_ops: 360 switch (e->op) { 361 case CEXPR_EQ: 362 s[++sp] = mls_level_eq(l1, l2); 363 continue; 364 case CEXPR_NEQ: 365 s[++sp] = !mls_level_eq(l1, l2); 366 continue; 367 case CEXPR_DOM: 368 s[++sp] = mls_level_dom(l1, l2); 369 continue; 370 case CEXPR_DOMBY: 371 s[++sp] = mls_level_dom(l2, l1); 372 continue; 373 case CEXPR_INCOMP: 374 s[++sp] = mls_level_incomp(l2, l1); 375 continue; 376 default: 377 BUG(); 378 return 0; 379 } 380 break; 381 default: 382 BUG(); 383 return 0; 384 } 385 386 switch (e->op) { 387 case CEXPR_EQ: 388 s[++sp] = (val1 == val2); 389 break; 390 case CEXPR_NEQ: 391 s[++sp] = (val1 != val2); 392 break; 393 default: 394 BUG(); 395 return 0; 396 } 397 break; 398 case CEXPR_NAMES: 399 if (sp == (CEXPR_MAXDEPTH-1)) 400 return 0; 401 c = scontext; 402 if (e->attr & CEXPR_TARGET) 403 c = tcontext; 404 else if (e->attr & CEXPR_XTARGET) { 405 c = xcontext; 406 if (!c) { 407 BUG(); 408 return 0; 409 } 410 } 411 if (e->attr & CEXPR_USER) 412 val1 = c->user; 413 else if (e->attr & CEXPR_ROLE) 414 val1 = c->role; 415 else if (e->attr & CEXPR_TYPE) 416 val1 = c->type; 417 else { 418 BUG(); 419 return 0; 420 } 421 422 switch (e->op) { 423 case CEXPR_EQ: 424 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1); 425 break; 426 case CEXPR_NEQ: 427 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1); 428 break; 429 default: 430 BUG(); 431 return 0; 432 } 433 break; 434 default: 435 BUG(); 436 return 0; 437 } 438 } 439 440 BUG_ON(sp != 0); 441 return s[0]; 442 } 443 444 /* 445 * security_dump_masked_av - dumps masked permissions during 446 * security_compute_av due to RBAC, MLS/Constraint and Type bounds. 447 */ 448 static int dump_masked_av_helper(void *k, void *d, void *args) 449 { 450 struct perm_datum *pdatum = d; 451 char **permission_names = args; 452 453 BUG_ON(pdatum->value < 1 || pdatum->value > 32); 454 455 permission_names[pdatum->value - 1] = (char *)k; 456 457 return 0; 458 } 459 460 static void security_dump_masked_av(struct context *scontext, 461 struct context *tcontext, 462 u16 tclass, 463 u32 permissions, 464 const char *reason) 465 { 466 struct common_datum *common_dat; 467 struct class_datum *tclass_dat; 468 struct audit_buffer *ab; 469 char *tclass_name; 470 char *scontext_name = NULL; 471 char *tcontext_name = NULL; 472 char *permission_names[32]; 473 int index; 474 u32 length; 475 bool need_comma = false; 476 477 if (!permissions) 478 return; 479 480 tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1); 481 tclass_dat = policydb.class_val_to_struct[tclass - 1]; 482 common_dat = tclass_dat->comdatum; 483 484 /* init permission_names */ 485 if (common_dat && 486 hashtab_map(common_dat->permissions.table, 487 dump_masked_av_helper, permission_names) < 0) 488 goto out; 489 490 if (hashtab_map(tclass_dat->permissions.table, 491 dump_masked_av_helper, permission_names) < 0) 492 goto out; 493 494 /* get scontext/tcontext in text form */ 495 if (context_struct_to_string(scontext, 496 &scontext_name, &length) < 0) 497 goto out; 498 499 if (context_struct_to_string(tcontext, 500 &tcontext_name, &length) < 0) 501 goto out; 502 503 /* audit a message */ 504 ab = audit_log_start(current->audit_context, 505 GFP_ATOMIC, AUDIT_SELINUX_ERR); 506 if (!ab) 507 goto out; 508 509 audit_log_format(ab, "op=security_compute_av reason=%s " 510 "scontext=%s tcontext=%s tclass=%s perms=", 511 reason, scontext_name, tcontext_name, tclass_name); 512 513 for (index = 0; index < 32; index++) { 514 u32 mask = (1 << index); 515 516 if ((mask & permissions) == 0) 517 continue; 518 519 audit_log_format(ab, "%s%s", 520 need_comma ? "," : "", 521 permission_names[index] 522 ? permission_names[index] : "????"); 523 need_comma = true; 524 } 525 audit_log_end(ab); 526 out: 527 /* release scontext/tcontext */ 528 kfree(tcontext_name); 529 kfree(scontext_name); 530 531 return; 532 } 533 534 /* 535 * security_boundary_permission - drops violated permissions 536 * on boundary constraint. 537 */ 538 static void type_attribute_bounds_av(struct context *scontext, 539 struct context *tcontext, 540 u16 tclass, 541 struct av_decision *avd) 542 { 543 struct context lo_scontext; 544 struct context lo_tcontext; 545 struct av_decision lo_avd; 546 struct type_datum *source; 547 struct type_datum *target; 548 u32 masked = 0; 549 550 source = flex_array_get_ptr(policydb.type_val_to_struct_array, 551 scontext->type - 1); 552 BUG_ON(!source); 553 554 target = flex_array_get_ptr(policydb.type_val_to_struct_array, 555 tcontext->type - 1); 556 BUG_ON(!target); 557 558 if (source->bounds) { 559 memset(&lo_avd, 0, sizeof(lo_avd)); 560 561 memcpy(&lo_scontext, scontext, sizeof(lo_scontext)); 562 lo_scontext.type = source->bounds; 563 564 context_struct_compute_av(&lo_scontext, 565 tcontext, 566 tclass, 567 &lo_avd); 568 if ((lo_avd.allowed & avd->allowed) == avd->allowed) 569 return; /* no masked permission */ 570 masked = ~lo_avd.allowed & avd->allowed; 571 } 572 573 if (target->bounds) { 574 memset(&lo_avd, 0, sizeof(lo_avd)); 575 576 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext)); 577 lo_tcontext.type = target->bounds; 578 579 context_struct_compute_av(scontext, 580 &lo_tcontext, 581 tclass, 582 &lo_avd); 583 if ((lo_avd.allowed & avd->allowed) == avd->allowed) 584 return; /* no masked permission */ 585 masked = ~lo_avd.allowed & avd->allowed; 586 } 587 588 if (source->bounds && target->bounds) { 589 memset(&lo_avd, 0, sizeof(lo_avd)); 590 /* 591 * lo_scontext and lo_tcontext are already 592 * set up. 593 */ 594 595 context_struct_compute_av(&lo_scontext, 596 &lo_tcontext, 597 tclass, 598 &lo_avd); 599 if ((lo_avd.allowed & avd->allowed) == avd->allowed) 600 return; /* no masked permission */ 601 masked = ~lo_avd.allowed & avd->allowed; 602 } 603 604 if (masked) { 605 /* mask violated permissions */ 606 avd->allowed &= ~masked; 607 608 /* audit masked permissions */ 609 security_dump_masked_av(scontext, tcontext, 610 tclass, masked, "bounds"); 611 } 612 } 613 614 /* 615 * Compute access vectors based on a context structure pair for 616 * the permissions in a particular class. 617 */ 618 static void context_struct_compute_av(struct context *scontext, 619 struct context *tcontext, 620 u16 tclass, 621 struct av_decision *avd) 622 { 623 struct constraint_node *constraint; 624 struct role_allow *ra; 625 struct avtab_key avkey; 626 struct avtab_node *node; 627 struct class_datum *tclass_datum; 628 struct ebitmap *sattr, *tattr; 629 struct ebitmap_node *snode, *tnode; 630 unsigned int i, j; 631 632 avd->allowed = 0; 633 avd->auditallow = 0; 634 avd->auditdeny = 0xffffffff; 635 636 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) { 637 if (printk_ratelimit()) 638 printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass); 639 return; 640 } 641 642 tclass_datum = policydb.class_val_to_struct[tclass - 1]; 643 644 /* 645 * If a specific type enforcement rule was defined for 646 * this permission check, then use it. 647 */ 648 avkey.target_class = tclass; 649 avkey.specified = AVTAB_AV; 650 sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1); 651 BUG_ON(!sattr); 652 tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1); 653 BUG_ON(!tattr); 654 ebitmap_for_each_positive_bit(sattr, snode, i) { 655 ebitmap_for_each_positive_bit(tattr, tnode, j) { 656 avkey.source_type = i + 1; 657 avkey.target_type = j + 1; 658 for (node = avtab_search_node(&policydb.te_avtab, &avkey); 659 node; 660 node = avtab_search_node_next(node, avkey.specified)) { 661 if (node->key.specified == AVTAB_ALLOWED) 662 avd->allowed |= node->datum.data; 663 else if (node->key.specified == AVTAB_AUDITALLOW) 664 avd->auditallow |= node->datum.data; 665 else if (node->key.specified == AVTAB_AUDITDENY) 666 avd->auditdeny &= node->datum.data; 667 } 668 669 /* Check conditional av table for additional permissions */ 670 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd); 671 672 } 673 } 674 675 /* 676 * Remove any permissions prohibited by a constraint (this includes 677 * the MLS policy). 678 */ 679 constraint = tclass_datum->constraints; 680 while (constraint) { 681 if ((constraint->permissions & (avd->allowed)) && 682 !constraint_expr_eval(scontext, tcontext, NULL, 683 constraint->expr)) { 684 avd->allowed &= ~(constraint->permissions); 685 } 686 constraint = constraint->next; 687 } 688 689 /* 690 * If checking process transition permission and the 691 * role is changing, then check the (current_role, new_role) 692 * pair. 693 */ 694 if (tclass == policydb.process_class && 695 (avd->allowed & policydb.process_trans_perms) && 696 scontext->role != tcontext->role) { 697 for (ra = policydb.role_allow; ra; ra = ra->next) { 698 if (scontext->role == ra->role && 699 tcontext->role == ra->new_role) 700 break; 701 } 702 if (!ra) 703 avd->allowed &= ~policydb.process_trans_perms; 704 } 705 706 /* 707 * If the given source and target types have boundary 708 * constraint, lazy checks have to mask any violated 709 * permission and notice it to userspace via audit. 710 */ 711 type_attribute_bounds_av(scontext, tcontext, 712 tclass, avd); 713 } 714 715 static int security_validtrans_handle_fail(struct context *ocontext, 716 struct context *ncontext, 717 struct context *tcontext, 718 u16 tclass) 719 { 720 char *o = NULL, *n = NULL, *t = NULL; 721 u32 olen, nlen, tlen; 722 723 if (context_struct_to_string(ocontext, &o, &olen)) 724 goto out; 725 if (context_struct_to_string(ncontext, &n, &nlen)) 726 goto out; 727 if (context_struct_to_string(tcontext, &t, &tlen)) 728 goto out; 729 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR, 730 "security_validate_transition: denied for" 731 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s", 732 o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1)); 733 out: 734 kfree(o); 735 kfree(n); 736 kfree(t); 737 738 if (!selinux_enforcing) 739 return 0; 740 return -EPERM; 741 } 742 743 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid, 744 u16 orig_tclass) 745 { 746 struct context *ocontext; 747 struct context *ncontext; 748 struct context *tcontext; 749 struct class_datum *tclass_datum; 750 struct constraint_node *constraint; 751 u16 tclass; 752 int rc = 0; 753 754 if (!ss_initialized) 755 return 0; 756 757 read_lock(&policy_rwlock); 758 759 tclass = unmap_class(orig_tclass); 760 761 if (!tclass || tclass > policydb.p_classes.nprim) { 762 printk(KERN_ERR "SELinux: %s: unrecognized class %d\n", 763 __func__, tclass); 764 rc = -EINVAL; 765 goto out; 766 } 767 tclass_datum = policydb.class_val_to_struct[tclass - 1]; 768 769 ocontext = sidtab_search(&sidtab, oldsid); 770 if (!ocontext) { 771 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 772 __func__, oldsid); 773 rc = -EINVAL; 774 goto out; 775 } 776 777 ncontext = sidtab_search(&sidtab, newsid); 778 if (!ncontext) { 779 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 780 __func__, newsid); 781 rc = -EINVAL; 782 goto out; 783 } 784 785 tcontext = sidtab_search(&sidtab, tasksid); 786 if (!tcontext) { 787 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 788 __func__, tasksid); 789 rc = -EINVAL; 790 goto out; 791 } 792 793 constraint = tclass_datum->validatetrans; 794 while (constraint) { 795 if (!constraint_expr_eval(ocontext, ncontext, tcontext, 796 constraint->expr)) { 797 rc = security_validtrans_handle_fail(ocontext, ncontext, 798 tcontext, tclass); 799 goto out; 800 } 801 constraint = constraint->next; 802 } 803 804 out: 805 read_unlock(&policy_rwlock); 806 return rc; 807 } 808 809 /* 810 * security_bounded_transition - check whether the given 811 * transition is directed to bounded, or not. 812 * It returns 0, if @newsid is bounded by @oldsid. 813 * Otherwise, it returns error code. 814 * 815 * @oldsid : current security identifier 816 * @newsid : destinated security identifier 817 */ 818 int security_bounded_transition(u32 old_sid, u32 new_sid) 819 { 820 struct context *old_context, *new_context; 821 struct type_datum *type; 822 int index; 823 int rc; 824 825 read_lock(&policy_rwlock); 826 827 rc = -EINVAL; 828 old_context = sidtab_search(&sidtab, old_sid); 829 if (!old_context) { 830 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n", 831 __func__, old_sid); 832 goto out; 833 } 834 835 rc = -EINVAL; 836 new_context = sidtab_search(&sidtab, new_sid); 837 if (!new_context) { 838 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n", 839 __func__, new_sid); 840 goto out; 841 } 842 843 rc = 0; 844 /* type/domain unchanged */ 845 if (old_context->type == new_context->type) 846 goto out; 847 848 index = new_context->type; 849 while (true) { 850 type = flex_array_get_ptr(policydb.type_val_to_struct_array, 851 index - 1); 852 BUG_ON(!type); 853 854 /* not bounded anymore */ 855 rc = -EPERM; 856 if (!type->bounds) 857 break; 858 859 /* @newsid is bounded by @oldsid */ 860 rc = 0; 861 if (type->bounds == old_context->type) 862 break; 863 864 index = type->bounds; 865 } 866 867 if (rc) { 868 char *old_name = NULL; 869 char *new_name = NULL; 870 u32 length; 871 872 if (!context_struct_to_string(old_context, 873 &old_name, &length) && 874 !context_struct_to_string(new_context, 875 &new_name, &length)) { 876 audit_log(current->audit_context, 877 GFP_ATOMIC, AUDIT_SELINUX_ERR, 878 "op=security_bounded_transition " 879 "result=denied " 880 "oldcontext=%s newcontext=%s", 881 old_name, new_name); 882 } 883 kfree(new_name); 884 kfree(old_name); 885 } 886 out: 887 read_unlock(&policy_rwlock); 888 889 return rc; 890 } 891 892 static void avd_init(struct av_decision *avd) 893 { 894 avd->allowed = 0; 895 avd->auditallow = 0; 896 avd->auditdeny = 0xffffffff; 897 avd->seqno = latest_granting; 898 avd->flags = 0; 899 } 900 901 902 /** 903 * security_compute_av - Compute access vector decisions. 904 * @ssid: source security identifier 905 * @tsid: target security identifier 906 * @tclass: target security class 907 * @avd: access vector decisions 908 * 909 * Compute a set of access vector decisions based on the 910 * SID pair (@ssid, @tsid) for the permissions in @tclass. 911 */ 912 void security_compute_av(u32 ssid, 913 u32 tsid, 914 u16 orig_tclass, 915 struct av_decision *avd) 916 { 917 u16 tclass; 918 struct context *scontext = NULL, *tcontext = NULL; 919 920 read_lock(&policy_rwlock); 921 avd_init(avd); 922 if (!ss_initialized) 923 goto allow; 924 925 scontext = sidtab_search(&sidtab, ssid); 926 if (!scontext) { 927 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 928 __func__, ssid); 929 goto out; 930 } 931 932 /* permissive domain? */ 933 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type)) 934 avd->flags |= AVD_FLAGS_PERMISSIVE; 935 936 tcontext = sidtab_search(&sidtab, tsid); 937 if (!tcontext) { 938 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 939 __func__, tsid); 940 goto out; 941 } 942 943 tclass = unmap_class(orig_tclass); 944 if (unlikely(orig_tclass && !tclass)) { 945 if (policydb.allow_unknown) 946 goto allow; 947 goto out; 948 } 949 context_struct_compute_av(scontext, tcontext, tclass, avd); 950 map_decision(orig_tclass, avd, policydb.allow_unknown); 951 out: 952 read_unlock(&policy_rwlock); 953 return; 954 allow: 955 avd->allowed = 0xffffffff; 956 goto out; 957 } 958 959 void security_compute_av_user(u32 ssid, 960 u32 tsid, 961 u16 tclass, 962 struct av_decision *avd) 963 { 964 struct context *scontext = NULL, *tcontext = NULL; 965 966 read_lock(&policy_rwlock); 967 avd_init(avd); 968 if (!ss_initialized) 969 goto allow; 970 971 scontext = sidtab_search(&sidtab, ssid); 972 if (!scontext) { 973 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 974 __func__, ssid); 975 goto out; 976 } 977 978 /* permissive domain? */ 979 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type)) 980 avd->flags |= AVD_FLAGS_PERMISSIVE; 981 982 tcontext = sidtab_search(&sidtab, tsid); 983 if (!tcontext) { 984 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 985 __func__, tsid); 986 goto out; 987 } 988 989 if (unlikely(!tclass)) { 990 if (policydb.allow_unknown) 991 goto allow; 992 goto out; 993 } 994 995 context_struct_compute_av(scontext, tcontext, tclass, avd); 996 out: 997 read_unlock(&policy_rwlock); 998 return; 999 allow: 1000 avd->allowed = 0xffffffff; 1001 goto out; 1002 } 1003 1004 /* 1005 * Write the security context string representation of 1006 * the context structure `context' into a dynamically 1007 * allocated string of the correct size. Set `*scontext' 1008 * to point to this string and set `*scontext_len' to 1009 * the length of the string. 1010 */ 1011 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len) 1012 { 1013 char *scontextp; 1014 1015 if (scontext) 1016 *scontext = NULL; 1017 *scontext_len = 0; 1018 1019 if (context->len) { 1020 *scontext_len = context->len; 1021 *scontext = kstrdup(context->str, GFP_ATOMIC); 1022 if (!(*scontext)) 1023 return -ENOMEM; 1024 return 0; 1025 } 1026 1027 /* Compute the size of the context. */ 1028 *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1; 1029 *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1; 1030 *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1; 1031 *scontext_len += mls_compute_context_len(context); 1032 1033 if (!scontext) 1034 return 0; 1035 1036 /* Allocate space for the context; caller must free this space. */ 1037 scontextp = kmalloc(*scontext_len, GFP_ATOMIC); 1038 if (!scontextp) 1039 return -ENOMEM; 1040 *scontext = scontextp; 1041 1042 /* 1043 * Copy the user name, role name and type name into the context. 1044 */ 1045 sprintf(scontextp, "%s:%s:%s", 1046 sym_name(&policydb, SYM_USERS, context->user - 1), 1047 sym_name(&policydb, SYM_ROLES, context->role - 1), 1048 sym_name(&policydb, SYM_TYPES, context->type - 1)); 1049 scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1050 1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1051 1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)); 1052 1053 mls_sid_to_context(context, &scontextp); 1054 1055 *scontextp = 0; 1056 1057 return 0; 1058 } 1059 1060 #include "initial_sid_to_string.h" 1061 1062 const char *security_get_initial_sid_context(u32 sid) 1063 { 1064 if (unlikely(sid > SECINITSID_NUM)) 1065 return NULL; 1066 return initial_sid_to_string[sid]; 1067 } 1068 1069 static int security_sid_to_context_core(u32 sid, char **scontext, 1070 u32 *scontext_len, int force) 1071 { 1072 struct context *context; 1073 int rc = 0; 1074 1075 if (scontext) 1076 *scontext = NULL; 1077 *scontext_len = 0; 1078 1079 if (!ss_initialized) { 1080 if (sid <= SECINITSID_NUM) { 1081 char *scontextp; 1082 1083 *scontext_len = strlen(initial_sid_to_string[sid]) + 1; 1084 if (!scontext) 1085 goto out; 1086 scontextp = kmalloc(*scontext_len, GFP_ATOMIC); 1087 if (!scontextp) { 1088 rc = -ENOMEM; 1089 goto out; 1090 } 1091 strcpy(scontextp, initial_sid_to_string[sid]); 1092 *scontext = scontextp; 1093 goto out; 1094 } 1095 printk(KERN_ERR "SELinux: %s: called before initial " 1096 "load_policy on unknown SID %d\n", __func__, sid); 1097 rc = -EINVAL; 1098 goto out; 1099 } 1100 read_lock(&policy_rwlock); 1101 if (force) 1102 context = sidtab_search_force(&sidtab, sid); 1103 else 1104 context = sidtab_search(&sidtab, sid); 1105 if (!context) { 1106 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1107 __func__, sid); 1108 rc = -EINVAL; 1109 goto out_unlock; 1110 } 1111 rc = context_struct_to_string(context, scontext, scontext_len); 1112 out_unlock: 1113 read_unlock(&policy_rwlock); 1114 out: 1115 return rc; 1116 1117 } 1118 1119 /** 1120 * security_sid_to_context - Obtain a context for a given SID. 1121 * @sid: security identifier, SID 1122 * @scontext: security context 1123 * @scontext_len: length in bytes 1124 * 1125 * Write the string representation of the context associated with @sid 1126 * into a dynamically allocated string of the correct size. Set @scontext 1127 * to point to this string and set @scontext_len to the length of the string. 1128 */ 1129 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len) 1130 { 1131 return security_sid_to_context_core(sid, scontext, scontext_len, 0); 1132 } 1133 1134 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len) 1135 { 1136 return security_sid_to_context_core(sid, scontext, scontext_len, 1); 1137 } 1138 1139 /* 1140 * Caveat: Mutates scontext. 1141 */ 1142 static int string_to_context_struct(struct policydb *pol, 1143 struct sidtab *sidtabp, 1144 char *scontext, 1145 u32 scontext_len, 1146 struct context *ctx, 1147 u32 def_sid) 1148 { 1149 struct role_datum *role; 1150 struct type_datum *typdatum; 1151 struct user_datum *usrdatum; 1152 char *scontextp, *p, oldc; 1153 int rc = 0; 1154 1155 context_init(ctx); 1156 1157 /* Parse the security context. */ 1158 1159 rc = -EINVAL; 1160 scontextp = (char *) scontext; 1161 1162 /* Extract the user. */ 1163 p = scontextp; 1164 while (*p && *p != ':') 1165 p++; 1166 1167 if (*p == 0) 1168 goto out; 1169 1170 *p++ = 0; 1171 1172 usrdatum = hashtab_search(pol->p_users.table, scontextp); 1173 if (!usrdatum) 1174 goto out; 1175 1176 ctx->user = usrdatum->value; 1177 1178 /* Extract role. */ 1179 scontextp = p; 1180 while (*p && *p != ':') 1181 p++; 1182 1183 if (*p == 0) 1184 goto out; 1185 1186 *p++ = 0; 1187 1188 role = hashtab_search(pol->p_roles.table, scontextp); 1189 if (!role) 1190 goto out; 1191 ctx->role = role->value; 1192 1193 /* Extract type. */ 1194 scontextp = p; 1195 while (*p && *p != ':') 1196 p++; 1197 oldc = *p; 1198 *p++ = 0; 1199 1200 typdatum = hashtab_search(pol->p_types.table, scontextp); 1201 if (!typdatum || typdatum->attribute) 1202 goto out; 1203 1204 ctx->type = typdatum->value; 1205 1206 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid); 1207 if (rc) 1208 goto out; 1209 1210 rc = -EINVAL; 1211 if ((p - scontext) < scontext_len) 1212 goto out; 1213 1214 /* Check the validity of the new context. */ 1215 if (!policydb_context_isvalid(pol, ctx)) 1216 goto out; 1217 rc = 0; 1218 out: 1219 if (rc) 1220 context_destroy(ctx); 1221 return rc; 1222 } 1223 1224 static int security_context_to_sid_core(const char *scontext, u32 scontext_len, 1225 u32 *sid, u32 def_sid, gfp_t gfp_flags, 1226 int force) 1227 { 1228 char *scontext2, *str = NULL; 1229 struct context context; 1230 int rc = 0; 1231 1232 if (!ss_initialized) { 1233 int i; 1234 1235 for (i = 1; i < SECINITSID_NUM; i++) { 1236 if (!strcmp(initial_sid_to_string[i], scontext)) { 1237 *sid = i; 1238 return 0; 1239 } 1240 } 1241 *sid = SECINITSID_KERNEL; 1242 return 0; 1243 } 1244 *sid = SECSID_NULL; 1245 1246 /* Copy the string so that we can modify the copy as we parse it. */ 1247 scontext2 = kmalloc(scontext_len + 1, gfp_flags); 1248 if (!scontext2) 1249 return -ENOMEM; 1250 memcpy(scontext2, scontext, scontext_len); 1251 scontext2[scontext_len] = 0; 1252 1253 if (force) { 1254 /* Save another copy for storing in uninterpreted form */ 1255 rc = -ENOMEM; 1256 str = kstrdup(scontext2, gfp_flags); 1257 if (!str) 1258 goto out; 1259 } 1260 1261 read_lock(&policy_rwlock); 1262 rc = string_to_context_struct(&policydb, &sidtab, scontext2, 1263 scontext_len, &context, def_sid); 1264 if (rc == -EINVAL && force) { 1265 context.str = str; 1266 context.len = scontext_len; 1267 str = NULL; 1268 } else if (rc) 1269 goto out_unlock; 1270 rc = sidtab_context_to_sid(&sidtab, &context, sid); 1271 context_destroy(&context); 1272 out_unlock: 1273 read_unlock(&policy_rwlock); 1274 out: 1275 kfree(scontext2); 1276 kfree(str); 1277 return rc; 1278 } 1279 1280 /** 1281 * security_context_to_sid - Obtain a SID for a given security context. 1282 * @scontext: security context 1283 * @scontext_len: length in bytes 1284 * @sid: security identifier, SID 1285 * 1286 * Obtains a SID associated with the security context that 1287 * has the string representation specified by @scontext. 1288 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient 1289 * memory is available, or 0 on success. 1290 */ 1291 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid) 1292 { 1293 return security_context_to_sid_core(scontext, scontext_len, 1294 sid, SECSID_NULL, GFP_KERNEL, 0); 1295 } 1296 1297 /** 1298 * security_context_to_sid_default - Obtain a SID for a given security context, 1299 * falling back to specified default if needed. 1300 * 1301 * @scontext: security context 1302 * @scontext_len: length in bytes 1303 * @sid: security identifier, SID 1304 * @def_sid: default SID to assign on error 1305 * 1306 * Obtains a SID associated with the security context that 1307 * has the string representation specified by @scontext. 1308 * The default SID is passed to the MLS layer to be used to allow 1309 * kernel labeling of the MLS field if the MLS field is not present 1310 * (for upgrading to MLS without full relabel). 1311 * Implicitly forces adding of the context even if it cannot be mapped yet. 1312 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient 1313 * memory is available, or 0 on success. 1314 */ 1315 int security_context_to_sid_default(const char *scontext, u32 scontext_len, 1316 u32 *sid, u32 def_sid, gfp_t gfp_flags) 1317 { 1318 return security_context_to_sid_core(scontext, scontext_len, 1319 sid, def_sid, gfp_flags, 1); 1320 } 1321 1322 int security_context_to_sid_force(const char *scontext, u32 scontext_len, 1323 u32 *sid) 1324 { 1325 return security_context_to_sid_core(scontext, scontext_len, 1326 sid, SECSID_NULL, GFP_KERNEL, 1); 1327 } 1328 1329 static int compute_sid_handle_invalid_context( 1330 struct context *scontext, 1331 struct context *tcontext, 1332 u16 tclass, 1333 struct context *newcontext) 1334 { 1335 char *s = NULL, *t = NULL, *n = NULL; 1336 u32 slen, tlen, nlen; 1337 1338 if (context_struct_to_string(scontext, &s, &slen)) 1339 goto out; 1340 if (context_struct_to_string(tcontext, &t, &tlen)) 1341 goto out; 1342 if (context_struct_to_string(newcontext, &n, &nlen)) 1343 goto out; 1344 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR, 1345 "security_compute_sid: invalid context %s" 1346 " for scontext=%s" 1347 " tcontext=%s" 1348 " tclass=%s", 1349 n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1)); 1350 out: 1351 kfree(s); 1352 kfree(t); 1353 kfree(n); 1354 if (!selinux_enforcing) 1355 return 0; 1356 return -EACCES; 1357 } 1358 1359 static void filename_compute_type(struct policydb *p, struct context *newcontext, 1360 u32 stype, u32 ttype, u16 tclass, 1361 const char *objname) 1362 { 1363 struct filename_trans ft; 1364 struct filename_trans_datum *otype; 1365 1366 /* 1367 * Most filename trans rules are going to live in specific directories 1368 * like /dev or /var/run. This bitmap will quickly skip rule searches 1369 * if the ttype does not contain any rules. 1370 */ 1371 if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype)) 1372 return; 1373 1374 ft.stype = stype; 1375 ft.ttype = ttype; 1376 ft.tclass = tclass; 1377 ft.name = objname; 1378 1379 otype = hashtab_search(p->filename_trans, &ft); 1380 if (otype) 1381 newcontext->type = otype->otype; 1382 } 1383 1384 static int security_compute_sid(u32 ssid, 1385 u32 tsid, 1386 u16 orig_tclass, 1387 u32 specified, 1388 const char *objname, 1389 u32 *out_sid, 1390 bool kern) 1391 { 1392 struct context *scontext = NULL, *tcontext = NULL, newcontext; 1393 struct role_trans *roletr = NULL; 1394 struct avtab_key avkey; 1395 struct avtab_datum *avdatum; 1396 struct avtab_node *node; 1397 u16 tclass; 1398 int rc = 0; 1399 bool sock; 1400 1401 if (!ss_initialized) { 1402 switch (orig_tclass) { 1403 case SECCLASS_PROCESS: /* kernel value */ 1404 *out_sid = ssid; 1405 break; 1406 default: 1407 *out_sid = tsid; 1408 break; 1409 } 1410 goto out; 1411 } 1412 1413 context_init(&newcontext); 1414 1415 read_lock(&policy_rwlock); 1416 1417 if (kern) { 1418 tclass = unmap_class(orig_tclass); 1419 sock = security_is_socket_class(orig_tclass); 1420 } else { 1421 tclass = orig_tclass; 1422 sock = security_is_socket_class(map_class(tclass)); 1423 } 1424 1425 scontext = sidtab_search(&sidtab, ssid); 1426 if (!scontext) { 1427 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1428 __func__, ssid); 1429 rc = -EINVAL; 1430 goto out_unlock; 1431 } 1432 tcontext = sidtab_search(&sidtab, tsid); 1433 if (!tcontext) { 1434 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 1435 __func__, tsid); 1436 rc = -EINVAL; 1437 goto out_unlock; 1438 } 1439 1440 /* Set the user identity. */ 1441 switch (specified) { 1442 case AVTAB_TRANSITION: 1443 case AVTAB_CHANGE: 1444 /* Use the process user identity. */ 1445 newcontext.user = scontext->user; 1446 break; 1447 case AVTAB_MEMBER: 1448 /* Use the related object owner. */ 1449 newcontext.user = tcontext->user; 1450 break; 1451 } 1452 1453 /* Set the role and type to default values. */ 1454 if ((tclass == policydb.process_class) || (sock == true)) { 1455 /* Use the current role and type of process. */ 1456 newcontext.role = scontext->role; 1457 newcontext.type = scontext->type; 1458 } else { 1459 /* Use the well-defined object role. */ 1460 newcontext.role = OBJECT_R_VAL; 1461 /* Use the type of the related object. */ 1462 newcontext.type = tcontext->type; 1463 } 1464 1465 /* Look for a type transition/member/change rule. */ 1466 avkey.source_type = scontext->type; 1467 avkey.target_type = tcontext->type; 1468 avkey.target_class = tclass; 1469 avkey.specified = specified; 1470 avdatum = avtab_search(&policydb.te_avtab, &avkey); 1471 1472 /* If no permanent rule, also check for enabled conditional rules */ 1473 if (!avdatum) { 1474 node = avtab_search_node(&policydb.te_cond_avtab, &avkey); 1475 for (; node; node = avtab_search_node_next(node, specified)) { 1476 if (node->key.specified & AVTAB_ENABLED) { 1477 avdatum = &node->datum; 1478 break; 1479 } 1480 } 1481 } 1482 1483 if (avdatum) { 1484 /* Use the type from the type transition/member/change rule. */ 1485 newcontext.type = avdatum->data; 1486 } 1487 1488 /* if we have a objname this is a file trans check so check those rules */ 1489 if (objname) 1490 filename_compute_type(&policydb, &newcontext, scontext->type, 1491 tcontext->type, tclass, objname); 1492 1493 /* Check for class-specific changes. */ 1494 if (specified & AVTAB_TRANSITION) { 1495 /* Look for a role transition rule. */ 1496 for (roletr = policydb.role_tr; roletr; roletr = roletr->next) { 1497 if ((roletr->role == scontext->role) && 1498 (roletr->type == tcontext->type) && 1499 (roletr->tclass == tclass)) { 1500 /* Use the role transition rule. */ 1501 newcontext.role = roletr->new_role; 1502 break; 1503 } 1504 } 1505 } 1506 1507 /* Set the MLS attributes. 1508 This is done last because it may allocate memory. */ 1509 rc = mls_compute_sid(scontext, tcontext, tclass, specified, 1510 &newcontext, sock); 1511 if (rc) 1512 goto out_unlock; 1513 1514 /* Check the validity of the context. */ 1515 if (!policydb_context_isvalid(&policydb, &newcontext)) { 1516 rc = compute_sid_handle_invalid_context(scontext, 1517 tcontext, 1518 tclass, 1519 &newcontext); 1520 if (rc) 1521 goto out_unlock; 1522 } 1523 /* Obtain the sid for the context. */ 1524 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid); 1525 out_unlock: 1526 read_unlock(&policy_rwlock); 1527 context_destroy(&newcontext); 1528 out: 1529 return rc; 1530 } 1531 1532 /** 1533 * security_transition_sid - Compute the SID for a new subject/object. 1534 * @ssid: source security identifier 1535 * @tsid: target security identifier 1536 * @tclass: target security class 1537 * @out_sid: security identifier for new subject/object 1538 * 1539 * Compute a SID to use for labeling a new subject or object in the 1540 * class @tclass based on a SID pair (@ssid, @tsid). 1541 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1542 * if insufficient memory is available, or %0 if the new SID was 1543 * computed successfully. 1544 */ 1545 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass, 1546 const struct qstr *qstr, u32 *out_sid) 1547 { 1548 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, 1549 qstr ? qstr->name : NULL, out_sid, true); 1550 } 1551 1552 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass, 1553 const char *objname, u32 *out_sid) 1554 { 1555 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, 1556 objname, out_sid, false); 1557 } 1558 1559 /** 1560 * security_member_sid - Compute the SID for member selection. 1561 * @ssid: source security identifier 1562 * @tsid: target security identifier 1563 * @tclass: target security class 1564 * @out_sid: security identifier for selected member 1565 * 1566 * Compute a SID to use when selecting a member of a polyinstantiated 1567 * object of class @tclass based on a SID pair (@ssid, @tsid). 1568 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1569 * if insufficient memory is available, or %0 if the SID was 1570 * computed successfully. 1571 */ 1572 int security_member_sid(u32 ssid, 1573 u32 tsid, 1574 u16 tclass, 1575 u32 *out_sid) 1576 { 1577 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL, 1578 out_sid, false); 1579 } 1580 1581 /** 1582 * security_change_sid - Compute the SID for object relabeling. 1583 * @ssid: source security identifier 1584 * @tsid: target security identifier 1585 * @tclass: target security class 1586 * @out_sid: security identifier for selected member 1587 * 1588 * Compute a SID to use for relabeling an object of class @tclass 1589 * based on a SID pair (@ssid, @tsid). 1590 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM 1591 * if insufficient memory is available, or %0 if the SID was 1592 * computed successfully. 1593 */ 1594 int security_change_sid(u32 ssid, 1595 u32 tsid, 1596 u16 tclass, 1597 u32 *out_sid) 1598 { 1599 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL, 1600 out_sid, false); 1601 } 1602 1603 /* Clone the SID into the new SID table. */ 1604 static int clone_sid(u32 sid, 1605 struct context *context, 1606 void *arg) 1607 { 1608 struct sidtab *s = arg; 1609 1610 if (sid > SECINITSID_NUM) 1611 return sidtab_insert(s, sid, context); 1612 else 1613 return 0; 1614 } 1615 1616 static inline int convert_context_handle_invalid_context(struct context *context) 1617 { 1618 char *s; 1619 u32 len; 1620 1621 if (selinux_enforcing) 1622 return -EINVAL; 1623 1624 if (!context_struct_to_string(context, &s, &len)) { 1625 printk(KERN_WARNING "SELinux: Context %s would be invalid if enforcing\n", s); 1626 kfree(s); 1627 } 1628 return 0; 1629 } 1630 1631 struct convert_context_args { 1632 struct policydb *oldp; 1633 struct policydb *newp; 1634 }; 1635 1636 /* 1637 * Convert the values in the security context 1638 * structure `c' from the values specified 1639 * in the policy `p->oldp' to the values specified 1640 * in the policy `p->newp'. Verify that the 1641 * context is valid under the new policy. 1642 */ 1643 static int convert_context(u32 key, 1644 struct context *c, 1645 void *p) 1646 { 1647 struct convert_context_args *args; 1648 struct context oldc; 1649 struct ocontext *oc; 1650 struct mls_range *range; 1651 struct role_datum *role; 1652 struct type_datum *typdatum; 1653 struct user_datum *usrdatum; 1654 char *s; 1655 u32 len; 1656 int rc = 0; 1657 1658 if (key <= SECINITSID_NUM) 1659 goto out; 1660 1661 args = p; 1662 1663 if (c->str) { 1664 struct context ctx; 1665 1666 rc = -ENOMEM; 1667 s = kstrdup(c->str, GFP_KERNEL); 1668 if (!s) 1669 goto out; 1670 1671 rc = string_to_context_struct(args->newp, NULL, s, 1672 c->len, &ctx, SECSID_NULL); 1673 kfree(s); 1674 if (!rc) { 1675 printk(KERN_INFO "SELinux: Context %s became valid (mapped).\n", 1676 c->str); 1677 /* Replace string with mapped representation. */ 1678 kfree(c->str); 1679 memcpy(c, &ctx, sizeof(*c)); 1680 goto out; 1681 } else if (rc == -EINVAL) { 1682 /* Retain string representation for later mapping. */ 1683 rc = 0; 1684 goto out; 1685 } else { 1686 /* Other error condition, e.g. ENOMEM. */ 1687 printk(KERN_ERR "SELinux: Unable to map context %s, rc = %d.\n", 1688 c->str, -rc); 1689 goto out; 1690 } 1691 } 1692 1693 rc = context_cpy(&oldc, c); 1694 if (rc) 1695 goto out; 1696 1697 /* Convert the user. */ 1698 rc = -EINVAL; 1699 usrdatum = hashtab_search(args->newp->p_users.table, 1700 sym_name(args->oldp, SYM_USERS, c->user - 1)); 1701 if (!usrdatum) 1702 goto bad; 1703 c->user = usrdatum->value; 1704 1705 /* Convert the role. */ 1706 rc = -EINVAL; 1707 role = hashtab_search(args->newp->p_roles.table, 1708 sym_name(args->oldp, SYM_ROLES, c->role - 1)); 1709 if (!role) 1710 goto bad; 1711 c->role = role->value; 1712 1713 /* Convert the type. */ 1714 rc = -EINVAL; 1715 typdatum = hashtab_search(args->newp->p_types.table, 1716 sym_name(args->oldp, SYM_TYPES, c->type - 1)); 1717 if (!typdatum) 1718 goto bad; 1719 c->type = typdatum->value; 1720 1721 /* Convert the MLS fields if dealing with MLS policies */ 1722 if (args->oldp->mls_enabled && args->newp->mls_enabled) { 1723 rc = mls_convert_context(args->oldp, args->newp, c); 1724 if (rc) 1725 goto bad; 1726 } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) { 1727 /* 1728 * Switching between MLS and non-MLS policy: 1729 * free any storage used by the MLS fields in the 1730 * context for all existing entries in the sidtab. 1731 */ 1732 mls_context_destroy(c); 1733 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) { 1734 /* 1735 * Switching between non-MLS and MLS policy: 1736 * ensure that the MLS fields of the context for all 1737 * existing entries in the sidtab are filled in with a 1738 * suitable default value, likely taken from one of the 1739 * initial SIDs. 1740 */ 1741 oc = args->newp->ocontexts[OCON_ISID]; 1742 while (oc && oc->sid[0] != SECINITSID_UNLABELED) 1743 oc = oc->next; 1744 rc = -EINVAL; 1745 if (!oc) { 1746 printk(KERN_ERR "SELinux: unable to look up" 1747 " the initial SIDs list\n"); 1748 goto bad; 1749 } 1750 range = &oc->context[0].range; 1751 rc = mls_range_set(c, range); 1752 if (rc) 1753 goto bad; 1754 } 1755 1756 /* Check the validity of the new context. */ 1757 if (!policydb_context_isvalid(args->newp, c)) { 1758 rc = convert_context_handle_invalid_context(&oldc); 1759 if (rc) 1760 goto bad; 1761 } 1762 1763 context_destroy(&oldc); 1764 1765 rc = 0; 1766 out: 1767 return rc; 1768 bad: 1769 /* Map old representation to string and save it. */ 1770 rc = context_struct_to_string(&oldc, &s, &len); 1771 if (rc) 1772 return rc; 1773 context_destroy(&oldc); 1774 context_destroy(c); 1775 c->str = s; 1776 c->len = len; 1777 printk(KERN_INFO "SELinux: Context %s became invalid (unmapped).\n", 1778 c->str); 1779 rc = 0; 1780 goto out; 1781 } 1782 1783 static void security_load_policycaps(void) 1784 { 1785 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps, 1786 POLICYDB_CAPABILITY_NETPEER); 1787 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps, 1788 POLICYDB_CAPABILITY_OPENPERM); 1789 } 1790 1791 static int security_preserve_bools(struct policydb *p); 1792 1793 /** 1794 * security_load_policy - Load a security policy configuration. 1795 * @data: binary policy data 1796 * @len: length of data in bytes 1797 * 1798 * Load a new set of security policy configuration data, 1799 * validate it and convert the SID table as necessary. 1800 * This function will flush the access vector cache after 1801 * loading the new policy. 1802 */ 1803 int security_load_policy(void *data, size_t len) 1804 { 1805 struct policydb oldpolicydb, newpolicydb; 1806 struct sidtab oldsidtab, newsidtab; 1807 struct selinux_mapping *oldmap, *map = NULL; 1808 struct convert_context_args args; 1809 u32 seqno; 1810 u16 map_size; 1811 int rc = 0; 1812 struct policy_file file = { data, len }, *fp = &file; 1813 1814 if (!ss_initialized) { 1815 avtab_cache_init(); 1816 rc = policydb_read(&policydb, fp); 1817 if (rc) { 1818 avtab_cache_destroy(); 1819 return rc; 1820 } 1821 1822 policydb.len = len; 1823 rc = selinux_set_mapping(&policydb, secclass_map, 1824 ¤t_mapping, 1825 ¤t_mapping_size); 1826 if (rc) { 1827 policydb_destroy(&policydb); 1828 avtab_cache_destroy(); 1829 return rc; 1830 } 1831 1832 rc = policydb_load_isids(&policydb, &sidtab); 1833 if (rc) { 1834 policydb_destroy(&policydb); 1835 avtab_cache_destroy(); 1836 return rc; 1837 } 1838 1839 security_load_policycaps(); 1840 ss_initialized = 1; 1841 seqno = ++latest_granting; 1842 selinux_complete_init(); 1843 avc_ss_reset(seqno); 1844 selnl_notify_policyload(seqno); 1845 selinux_status_update_policyload(seqno); 1846 selinux_netlbl_cache_invalidate(); 1847 selinux_xfrm_notify_policyload(); 1848 return 0; 1849 } 1850 1851 #if 0 1852 sidtab_hash_eval(&sidtab, "sids"); 1853 #endif 1854 1855 rc = policydb_read(&newpolicydb, fp); 1856 if (rc) 1857 return rc; 1858 1859 newpolicydb.len = len; 1860 /* If switching between different policy types, log MLS status */ 1861 if (policydb.mls_enabled && !newpolicydb.mls_enabled) 1862 printk(KERN_INFO "SELinux: Disabling MLS support...\n"); 1863 else if (!policydb.mls_enabled && newpolicydb.mls_enabled) 1864 printk(KERN_INFO "SELinux: Enabling MLS support...\n"); 1865 1866 rc = policydb_load_isids(&newpolicydb, &newsidtab); 1867 if (rc) { 1868 printk(KERN_ERR "SELinux: unable to load the initial SIDs\n"); 1869 policydb_destroy(&newpolicydb); 1870 return rc; 1871 } 1872 1873 rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size); 1874 if (rc) 1875 goto err; 1876 1877 rc = security_preserve_bools(&newpolicydb); 1878 if (rc) { 1879 printk(KERN_ERR "SELinux: unable to preserve booleans\n"); 1880 goto err; 1881 } 1882 1883 /* Clone the SID table. */ 1884 sidtab_shutdown(&sidtab); 1885 1886 rc = sidtab_map(&sidtab, clone_sid, &newsidtab); 1887 if (rc) 1888 goto err; 1889 1890 /* 1891 * Convert the internal representations of contexts 1892 * in the new SID table. 1893 */ 1894 args.oldp = &policydb; 1895 args.newp = &newpolicydb; 1896 rc = sidtab_map(&newsidtab, convert_context, &args); 1897 if (rc) { 1898 printk(KERN_ERR "SELinux: unable to convert the internal" 1899 " representation of contexts in the new SID" 1900 " table\n"); 1901 goto err; 1902 } 1903 1904 /* Save the old policydb and SID table to free later. */ 1905 memcpy(&oldpolicydb, &policydb, sizeof policydb); 1906 sidtab_set(&oldsidtab, &sidtab); 1907 1908 /* Install the new policydb and SID table. */ 1909 write_lock_irq(&policy_rwlock); 1910 memcpy(&policydb, &newpolicydb, sizeof policydb); 1911 sidtab_set(&sidtab, &newsidtab); 1912 security_load_policycaps(); 1913 oldmap = current_mapping; 1914 current_mapping = map; 1915 current_mapping_size = map_size; 1916 seqno = ++latest_granting; 1917 write_unlock_irq(&policy_rwlock); 1918 1919 /* Free the old policydb and SID table. */ 1920 policydb_destroy(&oldpolicydb); 1921 sidtab_destroy(&oldsidtab); 1922 kfree(oldmap); 1923 1924 avc_ss_reset(seqno); 1925 selnl_notify_policyload(seqno); 1926 selinux_status_update_policyload(seqno); 1927 selinux_netlbl_cache_invalidate(); 1928 selinux_xfrm_notify_policyload(); 1929 1930 return 0; 1931 1932 err: 1933 kfree(map); 1934 sidtab_destroy(&newsidtab); 1935 policydb_destroy(&newpolicydb); 1936 return rc; 1937 1938 } 1939 1940 size_t security_policydb_len(void) 1941 { 1942 size_t len; 1943 1944 read_lock(&policy_rwlock); 1945 len = policydb.len; 1946 read_unlock(&policy_rwlock); 1947 1948 return len; 1949 } 1950 1951 /** 1952 * security_port_sid - Obtain the SID for a port. 1953 * @protocol: protocol number 1954 * @port: port number 1955 * @out_sid: security identifier 1956 */ 1957 int security_port_sid(u8 protocol, u16 port, u32 *out_sid) 1958 { 1959 struct ocontext *c; 1960 int rc = 0; 1961 1962 read_lock(&policy_rwlock); 1963 1964 c = policydb.ocontexts[OCON_PORT]; 1965 while (c) { 1966 if (c->u.port.protocol == protocol && 1967 c->u.port.low_port <= port && 1968 c->u.port.high_port >= port) 1969 break; 1970 c = c->next; 1971 } 1972 1973 if (c) { 1974 if (!c->sid[0]) { 1975 rc = sidtab_context_to_sid(&sidtab, 1976 &c->context[0], 1977 &c->sid[0]); 1978 if (rc) 1979 goto out; 1980 } 1981 *out_sid = c->sid[0]; 1982 } else { 1983 *out_sid = SECINITSID_PORT; 1984 } 1985 1986 out: 1987 read_unlock(&policy_rwlock); 1988 return rc; 1989 } 1990 1991 /** 1992 * security_netif_sid - Obtain the SID for a network interface. 1993 * @name: interface name 1994 * @if_sid: interface SID 1995 */ 1996 int security_netif_sid(char *name, u32 *if_sid) 1997 { 1998 int rc = 0; 1999 struct ocontext *c; 2000 2001 read_lock(&policy_rwlock); 2002 2003 c = policydb.ocontexts[OCON_NETIF]; 2004 while (c) { 2005 if (strcmp(name, c->u.name) == 0) 2006 break; 2007 c = c->next; 2008 } 2009 2010 if (c) { 2011 if (!c->sid[0] || !c->sid[1]) { 2012 rc = sidtab_context_to_sid(&sidtab, 2013 &c->context[0], 2014 &c->sid[0]); 2015 if (rc) 2016 goto out; 2017 rc = sidtab_context_to_sid(&sidtab, 2018 &c->context[1], 2019 &c->sid[1]); 2020 if (rc) 2021 goto out; 2022 } 2023 *if_sid = c->sid[0]; 2024 } else 2025 *if_sid = SECINITSID_NETIF; 2026 2027 out: 2028 read_unlock(&policy_rwlock); 2029 return rc; 2030 } 2031 2032 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask) 2033 { 2034 int i, fail = 0; 2035 2036 for (i = 0; i < 4; i++) 2037 if (addr[i] != (input[i] & mask[i])) { 2038 fail = 1; 2039 break; 2040 } 2041 2042 return !fail; 2043 } 2044 2045 /** 2046 * security_node_sid - Obtain the SID for a node (host). 2047 * @domain: communication domain aka address family 2048 * @addrp: address 2049 * @addrlen: address length in bytes 2050 * @out_sid: security identifier 2051 */ 2052 int security_node_sid(u16 domain, 2053 void *addrp, 2054 u32 addrlen, 2055 u32 *out_sid) 2056 { 2057 int rc; 2058 struct ocontext *c; 2059 2060 read_lock(&policy_rwlock); 2061 2062 switch (domain) { 2063 case AF_INET: { 2064 u32 addr; 2065 2066 rc = -EINVAL; 2067 if (addrlen != sizeof(u32)) 2068 goto out; 2069 2070 addr = *((u32 *)addrp); 2071 2072 c = policydb.ocontexts[OCON_NODE]; 2073 while (c) { 2074 if (c->u.node.addr == (addr & c->u.node.mask)) 2075 break; 2076 c = c->next; 2077 } 2078 break; 2079 } 2080 2081 case AF_INET6: 2082 rc = -EINVAL; 2083 if (addrlen != sizeof(u64) * 2) 2084 goto out; 2085 c = policydb.ocontexts[OCON_NODE6]; 2086 while (c) { 2087 if (match_ipv6_addrmask(addrp, c->u.node6.addr, 2088 c->u.node6.mask)) 2089 break; 2090 c = c->next; 2091 } 2092 break; 2093 2094 default: 2095 rc = 0; 2096 *out_sid = SECINITSID_NODE; 2097 goto out; 2098 } 2099 2100 if (c) { 2101 if (!c->sid[0]) { 2102 rc = sidtab_context_to_sid(&sidtab, 2103 &c->context[0], 2104 &c->sid[0]); 2105 if (rc) 2106 goto out; 2107 } 2108 *out_sid = c->sid[0]; 2109 } else { 2110 *out_sid = SECINITSID_NODE; 2111 } 2112 2113 rc = 0; 2114 out: 2115 read_unlock(&policy_rwlock); 2116 return rc; 2117 } 2118 2119 #define SIDS_NEL 25 2120 2121 /** 2122 * security_get_user_sids - Obtain reachable SIDs for a user. 2123 * @fromsid: starting SID 2124 * @username: username 2125 * @sids: array of reachable SIDs for user 2126 * @nel: number of elements in @sids 2127 * 2128 * Generate the set of SIDs for legal security contexts 2129 * for a given user that can be reached by @fromsid. 2130 * Set *@sids to point to a dynamically allocated 2131 * array containing the set of SIDs. Set *@nel to the 2132 * number of elements in the array. 2133 */ 2134 2135 int security_get_user_sids(u32 fromsid, 2136 char *username, 2137 u32 **sids, 2138 u32 *nel) 2139 { 2140 struct context *fromcon, usercon; 2141 u32 *mysids = NULL, *mysids2, sid; 2142 u32 mynel = 0, maxnel = SIDS_NEL; 2143 struct user_datum *user; 2144 struct role_datum *role; 2145 struct ebitmap_node *rnode, *tnode; 2146 int rc = 0, i, j; 2147 2148 *sids = NULL; 2149 *nel = 0; 2150 2151 if (!ss_initialized) 2152 goto out; 2153 2154 read_lock(&policy_rwlock); 2155 2156 context_init(&usercon); 2157 2158 rc = -EINVAL; 2159 fromcon = sidtab_search(&sidtab, fromsid); 2160 if (!fromcon) 2161 goto out_unlock; 2162 2163 rc = -EINVAL; 2164 user = hashtab_search(policydb.p_users.table, username); 2165 if (!user) 2166 goto out_unlock; 2167 2168 usercon.user = user->value; 2169 2170 rc = -ENOMEM; 2171 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC); 2172 if (!mysids) 2173 goto out_unlock; 2174 2175 ebitmap_for_each_positive_bit(&user->roles, rnode, i) { 2176 role = policydb.role_val_to_struct[i]; 2177 usercon.role = i + 1; 2178 ebitmap_for_each_positive_bit(&role->types, tnode, j) { 2179 usercon.type = j + 1; 2180 2181 if (mls_setup_user_range(fromcon, user, &usercon)) 2182 continue; 2183 2184 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid); 2185 if (rc) 2186 goto out_unlock; 2187 if (mynel < maxnel) { 2188 mysids[mynel++] = sid; 2189 } else { 2190 rc = -ENOMEM; 2191 maxnel += SIDS_NEL; 2192 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC); 2193 if (!mysids2) 2194 goto out_unlock; 2195 memcpy(mysids2, mysids, mynel * sizeof(*mysids2)); 2196 kfree(mysids); 2197 mysids = mysids2; 2198 mysids[mynel++] = sid; 2199 } 2200 } 2201 } 2202 rc = 0; 2203 out_unlock: 2204 read_unlock(&policy_rwlock); 2205 if (rc || !mynel) { 2206 kfree(mysids); 2207 goto out; 2208 } 2209 2210 rc = -ENOMEM; 2211 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL); 2212 if (!mysids2) { 2213 kfree(mysids); 2214 goto out; 2215 } 2216 for (i = 0, j = 0; i < mynel; i++) { 2217 struct av_decision dummy_avd; 2218 rc = avc_has_perm_noaudit(fromsid, mysids[i], 2219 SECCLASS_PROCESS, /* kernel value */ 2220 PROCESS__TRANSITION, AVC_STRICT, 2221 &dummy_avd); 2222 if (!rc) 2223 mysids2[j++] = mysids[i]; 2224 cond_resched(); 2225 } 2226 rc = 0; 2227 kfree(mysids); 2228 *sids = mysids2; 2229 *nel = j; 2230 out: 2231 return rc; 2232 } 2233 2234 /** 2235 * security_genfs_sid - Obtain a SID for a file in a filesystem 2236 * @fstype: filesystem type 2237 * @path: path from root of mount 2238 * @sclass: file security class 2239 * @sid: SID for path 2240 * 2241 * Obtain a SID to use for a file in a filesystem that 2242 * cannot support xattr or use a fixed labeling behavior like 2243 * transition SIDs or task SIDs. 2244 */ 2245 int security_genfs_sid(const char *fstype, 2246 char *path, 2247 u16 orig_sclass, 2248 u32 *sid) 2249 { 2250 int len; 2251 u16 sclass; 2252 struct genfs *genfs; 2253 struct ocontext *c; 2254 int rc, cmp = 0; 2255 2256 while (path[0] == '/' && path[1] == '/') 2257 path++; 2258 2259 read_lock(&policy_rwlock); 2260 2261 sclass = unmap_class(orig_sclass); 2262 *sid = SECINITSID_UNLABELED; 2263 2264 for (genfs = policydb.genfs; genfs; genfs = genfs->next) { 2265 cmp = strcmp(fstype, genfs->fstype); 2266 if (cmp <= 0) 2267 break; 2268 } 2269 2270 rc = -ENOENT; 2271 if (!genfs || cmp) 2272 goto out; 2273 2274 for (c = genfs->head; c; c = c->next) { 2275 len = strlen(c->u.name); 2276 if ((!c->v.sclass || sclass == c->v.sclass) && 2277 (strncmp(c->u.name, path, len) == 0)) 2278 break; 2279 } 2280 2281 rc = -ENOENT; 2282 if (!c) 2283 goto out; 2284 2285 if (!c->sid[0]) { 2286 rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]); 2287 if (rc) 2288 goto out; 2289 } 2290 2291 *sid = c->sid[0]; 2292 rc = 0; 2293 out: 2294 read_unlock(&policy_rwlock); 2295 return rc; 2296 } 2297 2298 /** 2299 * security_fs_use - Determine how to handle labeling for a filesystem. 2300 * @fstype: filesystem type 2301 * @behavior: labeling behavior 2302 * @sid: SID for filesystem (superblock) 2303 */ 2304 int security_fs_use( 2305 const char *fstype, 2306 unsigned int *behavior, 2307 u32 *sid) 2308 { 2309 int rc = 0; 2310 struct ocontext *c; 2311 2312 read_lock(&policy_rwlock); 2313 2314 c = policydb.ocontexts[OCON_FSUSE]; 2315 while (c) { 2316 if (strcmp(fstype, c->u.name) == 0) 2317 break; 2318 c = c->next; 2319 } 2320 2321 if (c) { 2322 *behavior = c->v.behavior; 2323 if (!c->sid[0]) { 2324 rc = sidtab_context_to_sid(&sidtab, &c->context[0], 2325 &c->sid[0]); 2326 if (rc) 2327 goto out; 2328 } 2329 *sid = c->sid[0]; 2330 } else { 2331 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid); 2332 if (rc) { 2333 *behavior = SECURITY_FS_USE_NONE; 2334 rc = 0; 2335 } else { 2336 *behavior = SECURITY_FS_USE_GENFS; 2337 } 2338 } 2339 2340 out: 2341 read_unlock(&policy_rwlock); 2342 return rc; 2343 } 2344 2345 int security_get_bools(int *len, char ***names, int **values) 2346 { 2347 int i, rc; 2348 2349 read_lock(&policy_rwlock); 2350 *names = NULL; 2351 *values = NULL; 2352 2353 rc = 0; 2354 *len = policydb.p_bools.nprim; 2355 if (!*len) 2356 goto out; 2357 2358 rc = -ENOMEM; 2359 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC); 2360 if (!*names) 2361 goto err; 2362 2363 rc = -ENOMEM; 2364 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC); 2365 if (!*values) 2366 goto err; 2367 2368 for (i = 0; i < *len; i++) { 2369 size_t name_len; 2370 2371 (*values)[i] = policydb.bool_val_to_struct[i]->state; 2372 name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1; 2373 2374 rc = -ENOMEM; 2375 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC); 2376 if (!(*names)[i]) 2377 goto err; 2378 2379 strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len); 2380 (*names)[i][name_len - 1] = 0; 2381 } 2382 rc = 0; 2383 out: 2384 read_unlock(&policy_rwlock); 2385 return rc; 2386 err: 2387 if (*names) { 2388 for (i = 0; i < *len; i++) 2389 kfree((*names)[i]); 2390 } 2391 kfree(*values); 2392 goto out; 2393 } 2394 2395 2396 int security_set_bools(int len, int *values) 2397 { 2398 int i, rc; 2399 int lenp, seqno = 0; 2400 struct cond_node *cur; 2401 2402 write_lock_irq(&policy_rwlock); 2403 2404 rc = -EFAULT; 2405 lenp = policydb.p_bools.nprim; 2406 if (len != lenp) 2407 goto out; 2408 2409 for (i = 0; i < len; i++) { 2410 if (!!values[i] != policydb.bool_val_to_struct[i]->state) { 2411 audit_log(current->audit_context, GFP_ATOMIC, 2412 AUDIT_MAC_CONFIG_CHANGE, 2413 "bool=%s val=%d old_val=%d auid=%u ses=%u", 2414 sym_name(&policydb, SYM_BOOLS, i), 2415 !!values[i], 2416 policydb.bool_val_to_struct[i]->state, 2417 audit_get_loginuid(current), 2418 audit_get_sessionid(current)); 2419 } 2420 if (values[i]) 2421 policydb.bool_val_to_struct[i]->state = 1; 2422 else 2423 policydb.bool_val_to_struct[i]->state = 0; 2424 } 2425 2426 for (cur = policydb.cond_list; cur; cur = cur->next) { 2427 rc = evaluate_cond_node(&policydb, cur); 2428 if (rc) 2429 goto out; 2430 } 2431 2432 seqno = ++latest_granting; 2433 rc = 0; 2434 out: 2435 write_unlock_irq(&policy_rwlock); 2436 if (!rc) { 2437 avc_ss_reset(seqno); 2438 selnl_notify_policyload(seqno); 2439 selinux_status_update_policyload(seqno); 2440 selinux_xfrm_notify_policyload(); 2441 } 2442 return rc; 2443 } 2444 2445 int security_get_bool_value(int bool) 2446 { 2447 int rc; 2448 int len; 2449 2450 read_lock(&policy_rwlock); 2451 2452 rc = -EFAULT; 2453 len = policydb.p_bools.nprim; 2454 if (bool >= len) 2455 goto out; 2456 2457 rc = policydb.bool_val_to_struct[bool]->state; 2458 out: 2459 read_unlock(&policy_rwlock); 2460 return rc; 2461 } 2462 2463 static int security_preserve_bools(struct policydb *p) 2464 { 2465 int rc, nbools = 0, *bvalues = NULL, i; 2466 char **bnames = NULL; 2467 struct cond_bool_datum *booldatum; 2468 struct cond_node *cur; 2469 2470 rc = security_get_bools(&nbools, &bnames, &bvalues); 2471 if (rc) 2472 goto out; 2473 for (i = 0; i < nbools; i++) { 2474 booldatum = hashtab_search(p->p_bools.table, bnames[i]); 2475 if (booldatum) 2476 booldatum->state = bvalues[i]; 2477 } 2478 for (cur = p->cond_list; cur; cur = cur->next) { 2479 rc = evaluate_cond_node(p, cur); 2480 if (rc) 2481 goto out; 2482 } 2483 2484 out: 2485 if (bnames) { 2486 for (i = 0; i < nbools; i++) 2487 kfree(bnames[i]); 2488 } 2489 kfree(bnames); 2490 kfree(bvalues); 2491 return rc; 2492 } 2493 2494 /* 2495 * security_sid_mls_copy() - computes a new sid based on the given 2496 * sid and the mls portion of mls_sid. 2497 */ 2498 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid) 2499 { 2500 struct context *context1; 2501 struct context *context2; 2502 struct context newcon; 2503 char *s; 2504 u32 len; 2505 int rc; 2506 2507 rc = 0; 2508 if (!ss_initialized || !policydb.mls_enabled) { 2509 *new_sid = sid; 2510 goto out; 2511 } 2512 2513 context_init(&newcon); 2514 2515 read_lock(&policy_rwlock); 2516 2517 rc = -EINVAL; 2518 context1 = sidtab_search(&sidtab, sid); 2519 if (!context1) { 2520 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2521 __func__, sid); 2522 goto out_unlock; 2523 } 2524 2525 rc = -EINVAL; 2526 context2 = sidtab_search(&sidtab, mls_sid); 2527 if (!context2) { 2528 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2529 __func__, mls_sid); 2530 goto out_unlock; 2531 } 2532 2533 newcon.user = context1->user; 2534 newcon.role = context1->role; 2535 newcon.type = context1->type; 2536 rc = mls_context_cpy(&newcon, context2); 2537 if (rc) 2538 goto out_unlock; 2539 2540 /* Check the validity of the new context. */ 2541 if (!policydb_context_isvalid(&policydb, &newcon)) { 2542 rc = convert_context_handle_invalid_context(&newcon); 2543 if (rc) { 2544 if (!context_struct_to_string(&newcon, &s, &len)) { 2545 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR, 2546 "security_sid_mls_copy: invalid context %s", s); 2547 kfree(s); 2548 } 2549 goto out_unlock; 2550 } 2551 } 2552 2553 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid); 2554 out_unlock: 2555 read_unlock(&policy_rwlock); 2556 context_destroy(&newcon); 2557 out: 2558 return rc; 2559 } 2560 2561 /** 2562 * security_net_peersid_resolve - Compare and resolve two network peer SIDs 2563 * @nlbl_sid: NetLabel SID 2564 * @nlbl_type: NetLabel labeling protocol type 2565 * @xfrm_sid: XFRM SID 2566 * 2567 * Description: 2568 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be 2569 * resolved into a single SID it is returned via @peer_sid and the function 2570 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function 2571 * returns a negative value. A table summarizing the behavior is below: 2572 * 2573 * | function return | @sid 2574 * ------------------------------+-----------------+----------------- 2575 * no peer labels | 0 | SECSID_NULL 2576 * single peer label | 0 | <peer_label> 2577 * multiple, consistent labels | 0 | <peer_label> 2578 * multiple, inconsistent labels | -<errno> | SECSID_NULL 2579 * 2580 */ 2581 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type, 2582 u32 xfrm_sid, 2583 u32 *peer_sid) 2584 { 2585 int rc; 2586 struct context *nlbl_ctx; 2587 struct context *xfrm_ctx; 2588 2589 *peer_sid = SECSID_NULL; 2590 2591 /* handle the common (which also happens to be the set of easy) cases 2592 * right away, these two if statements catch everything involving a 2593 * single or absent peer SID/label */ 2594 if (xfrm_sid == SECSID_NULL) { 2595 *peer_sid = nlbl_sid; 2596 return 0; 2597 } 2598 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label 2599 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label 2600 * is present */ 2601 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) { 2602 *peer_sid = xfrm_sid; 2603 return 0; 2604 } 2605 2606 /* we don't need to check ss_initialized here since the only way both 2607 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the 2608 * security server was initialized and ss_initialized was true */ 2609 if (!policydb.mls_enabled) 2610 return 0; 2611 2612 read_lock(&policy_rwlock); 2613 2614 rc = -EINVAL; 2615 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid); 2616 if (!nlbl_ctx) { 2617 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2618 __func__, nlbl_sid); 2619 goto out; 2620 } 2621 rc = -EINVAL; 2622 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid); 2623 if (!xfrm_ctx) { 2624 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n", 2625 __func__, xfrm_sid); 2626 goto out; 2627 } 2628 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES); 2629 if (rc) 2630 goto out; 2631 2632 /* at present NetLabel SIDs/labels really only carry MLS 2633 * information so if the MLS portion of the NetLabel SID 2634 * matches the MLS portion of the labeled XFRM SID/label 2635 * then pass along the XFRM SID as it is the most 2636 * expressive */ 2637 *peer_sid = xfrm_sid; 2638 out: 2639 read_unlock(&policy_rwlock); 2640 return rc; 2641 } 2642 2643 static int get_classes_callback(void *k, void *d, void *args) 2644 { 2645 struct class_datum *datum = d; 2646 char *name = k, **classes = args; 2647 int value = datum->value - 1; 2648 2649 classes[value] = kstrdup(name, GFP_ATOMIC); 2650 if (!classes[value]) 2651 return -ENOMEM; 2652 2653 return 0; 2654 } 2655 2656 int security_get_classes(char ***classes, int *nclasses) 2657 { 2658 int rc; 2659 2660 read_lock(&policy_rwlock); 2661 2662 rc = -ENOMEM; 2663 *nclasses = policydb.p_classes.nprim; 2664 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC); 2665 if (!*classes) 2666 goto out; 2667 2668 rc = hashtab_map(policydb.p_classes.table, get_classes_callback, 2669 *classes); 2670 if (rc) { 2671 int i; 2672 for (i = 0; i < *nclasses; i++) 2673 kfree((*classes)[i]); 2674 kfree(*classes); 2675 } 2676 2677 out: 2678 read_unlock(&policy_rwlock); 2679 return rc; 2680 } 2681 2682 static int get_permissions_callback(void *k, void *d, void *args) 2683 { 2684 struct perm_datum *datum = d; 2685 char *name = k, **perms = args; 2686 int value = datum->value - 1; 2687 2688 perms[value] = kstrdup(name, GFP_ATOMIC); 2689 if (!perms[value]) 2690 return -ENOMEM; 2691 2692 return 0; 2693 } 2694 2695 int security_get_permissions(char *class, char ***perms, int *nperms) 2696 { 2697 int rc, i; 2698 struct class_datum *match; 2699 2700 read_lock(&policy_rwlock); 2701 2702 rc = -EINVAL; 2703 match = hashtab_search(policydb.p_classes.table, class); 2704 if (!match) { 2705 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n", 2706 __func__, class); 2707 goto out; 2708 } 2709 2710 rc = -ENOMEM; 2711 *nperms = match->permissions.nprim; 2712 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC); 2713 if (!*perms) 2714 goto out; 2715 2716 if (match->comdatum) { 2717 rc = hashtab_map(match->comdatum->permissions.table, 2718 get_permissions_callback, *perms); 2719 if (rc) 2720 goto err; 2721 } 2722 2723 rc = hashtab_map(match->permissions.table, get_permissions_callback, 2724 *perms); 2725 if (rc) 2726 goto err; 2727 2728 out: 2729 read_unlock(&policy_rwlock); 2730 return rc; 2731 2732 err: 2733 read_unlock(&policy_rwlock); 2734 for (i = 0; i < *nperms; i++) 2735 kfree((*perms)[i]); 2736 kfree(*perms); 2737 return rc; 2738 } 2739 2740 int security_get_reject_unknown(void) 2741 { 2742 return policydb.reject_unknown; 2743 } 2744 2745 int security_get_allow_unknown(void) 2746 { 2747 return policydb.allow_unknown; 2748 } 2749 2750 /** 2751 * security_policycap_supported - Check for a specific policy capability 2752 * @req_cap: capability 2753 * 2754 * Description: 2755 * This function queries the currently loaded policy to see if it supports the 2756 * capability specified by @req_cap. Returns true (1) if the capability is 2757 * supported, false (0) if it isn't supported. 2758 * 2759 */ 2760 int security_policycap_supported(unsigned int req_cap) 2761 { 2762 int rc; 2763 2764 read_lock(&policy_rwlock); 2765 rc = ebitmap_get_bit(&policydb.policycaps, req_cap); 2766 read_unlock(&policy_rwlock); 2767 2768 return rc; 2769 } 2770 2771 struct selinux_audit_rule { 2772 u32 au_seqno; 2773 struct context au_ctxt; 2774 }; 2775 2776 void selinux_audit_rule_free(void *vrule) 2777 { 2778 struct selinux_audit_rule *rule = vrule; 2779 2780 if (rule) { 2781 context_destroy(&rule->au_ctxt); 2782 kfree(rule); 2783 } 2784 } 2785 2786 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule) 2787 { 2788 struct selinux_audit_rule *tmprule; 2789 struct role_datum *roledatum; 2790 struct type_datum *typedatum; 2791 struct user_datum *userdatum; 2792 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule; 2793 int rc = 0; 2794 2795 *rule = NULL; 2796 2797 if (!ss_initialized) 2798 return -EOPNOTSUPP; 2799 2800 switch (field) { 2801 case AUDIT_SUBJ_USER: 2802 case AUDIT_SUBJ_ROLE: 2803 case AUDIT_SUBJ_TYPE: 2804 case AUDIT_OBJ_USER: 2805 case AUDIT_OBJ_ROLE: 2806 case AUDIT_OBJ_TYPE: 2807 /* only 'equals' and 'not equals' fit user, role, and type */ 2808 if (op != Audit_equal && op != Audit_not_equal) 2809 return -EINVAL; 2810 break; 2811 case AUDIT_SUBJ_SEN: 2812 case AUDIT_SUBJ_CLR: 2813 case AUDIT_OBJ_LEV_LOW: 2814 case AUDIT_OBJ_LEV_HIGH: 2815 /* we do not allow a range, indicated by the presence of '-' */ 2816 if (strchr(rulestr, '-')) 2817 return -EINVAL; 2818 break; 2819 default: 2820 /* only the above fields are valid */ 2821 return -EINVAL; 2822 } 2823 2824 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL); 2825 if (!tmprule) 2826 return -ENOMEM; 2827 2828 context_init(&tmprule->au_ctxt); 2829 2830 read_lock(&policy_rwlock); 2831 2832 tmprule->au_seqno = latest_granting; 2833 2834 switch (field) { 2835 case AUDIT_SUBJ_USER: 2836 case AUDIT_OBJ_USER: 2837 rc = -EINVAL; 2838 userdatum = hashtab_search(policydb.p_users.table, rulestr); 2839 if (!userdatum) 2840 goto out; 2841 tmprule->au_ctxt.user = userdatum->value; 2842 break; 2843 case AUDIT_SUBJ_ROLE: 2844 case AUDIT_OBJ_ROLE: 2845 rc = -EINVAL; 2846 roledatum = hashtab_search(policydb.p_roles.table, rulestr); 2847 if (!roledatum) 2848 goto out; 2849 tmprule->au_ctxt.role = roledatum->value; 2850 break; 2851 case AUDIT_SUBJ_TYPE: 2852 case AUDIT_OBJ_TYPE: 2853 rc = -EINVAL; 2854 typedatum = hashtab_search(policydb.p_types.table, rulestr); 2855 if (!typedatum) 2856 goto out; 2857 tmprule->au_ctxt.type = typedatum->value; 2858 break; 2859 case AUDIT_SUBJ_SEN: 2860 case AUDIT_SUBJ_CLR: 2861 case AUDIT_OBJ_LEV_LOW: 2862 case AUDIT_OBJ_LEV_HIGH: 2863 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC); 2864 if (rc) 2865 goto out; 2866 break; 2867 } 2868 rc = 0; 2869 out: 2870 read_unlock(&policy_rwlock); 2871 2872 if (rc) { 2873 selinux_audit_rule_free(tmprule); 2874 tmprule = NULL; 2875 } 2876 2877 *rule = tmprule; 2878 2879 return rc; 2880 } 2881 2882 /* Check to see if the rule contains any selinux fields */ 2883 int selinux_audit_rule_known(struct audit_krule *rule) 2884 { 2885 int i; 2886 2887 for (i = 0; i < rule->field_count; i++) { 2888 struct audit_field *f = &rule->fields[i]; 2889 switch (f->type) { 2890 case AUDIT_SUBJ_USER: 2891 case AUDIT_SUBJ_ROLE: 2892 case AUDIT_SUBJ_TYPE: 2893 case AUDIT_SUBJ_SEN: 2894 case AUDIT_SUBJ_CLR: 2895 case AUDIT_OBJ_USER: 2896 case AUDIT_OBJ_ROLE: 2897 case AUDIT_OBJ_TYPE: 2898 case AUDIT_OBJ_LEV_LOW: 2899 case AUDIT_OBJ_LEV_HIGH: 2900 return 1; 2901 } 2902 } 2903 2904 return 0; 2905 } 2906 2907 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule, 2908 struct audit_context *actx) 2909 { 2910 struct context *ctxt; 2911 struct mls_level *level; 2912 struct selinux_audit_rule *rule = vrule; 2913 int match = 0; 2914 2915 if (!rule) { 2916 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR, 2917 "selinux_audit_rule_match: missing rule\n"); 2918 return -ENOENT; 2919 } 2920 2921 read_lock(&policy_rwlock); 2922 2923 if (rule->au_seqno < latest_granting) { 2924 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR, 2925 "selinux_audit_rule_match: stale rule\n"); 2926 match = -ESTALE; 2927 goto out; 2928 } 2929 2930 ctxt = sidtab_search(&sidtab, sid); 2931 if (!ctxt) { 2932 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR, 2933 "selinux_audit_rule_match: unrecognized SID %d\n", 2934 sid); 2935 match = -ENOENT; 2936 goto out; 2937 } 2938 2939 /* a field/op pair that is not caught here will simply fall through 2940 without a match */ 2941 switch (field) { 2942 case AUDIT_SUBJ_USER: 2943 case AUDIT_OBJ_USER: 2944 switch (op) { 2945 case Audit_equal: 2946 match = (ctxt->user == rule->au_ctxt.user); 2947 break; 2948 case Audit_not_equal: 2949 match = (ctxt->user != rule->au_ctxt.user); 2950 break; 2951 } 2952 break; 2953 case AUDIT_SUBJ_ROLE: 2954 case AUDIT_OBJ_ROLE: 2955 switch (op) { 2956 case Audit_equal: 2957 match = (ctxt->role == rule->au_ctxt.role); 2958 break; 2959 case Audit_not_equal: 2960 match = (ctxt->role != rule->au_ctxt.role); 2961 break; 2962 } 2963 break; 2964 case AUDIT_SUBJ_TYPE: 2965 case AUDIT_OBJ_TYPE: 2966 switch (op) { 2967 case Audit_equal: 2968 match = (ctxt->type == rule->au_ctxt.type); 2969 break; 2970 case Audit_not_equal: 2971 match = (ctxt->type != rule->au_ctxt.type); 2972 break; 2973 } 2974 break; 2975 case AUDIT_SUBJ_SEN: 2976 case AUDIT_SUBJ_CLR: 2977 case AUDIT_OBJ_LEV_LOW: 2978 case AUDIT_OBJ_LEV_HIGH: 2979 level = ((field == AUDIT_SUBJ_SEN || 2980 field == AUDIT_OBJ_LEV_LOW) ? 2981 &ctxt->range.level[0] : &ctxt->range.level[1]); 2982 switch (op) { 2983 case Audit_equal: 2984 match = mls_level_eq(&rule->au_ctxt.range.level[0], 2985 level); 2986 break; 2987 case Audit_not_equal: 2988 match = !mls_level_eq(&rule->au_ctxt.range.level[0], 2989 level); 2990 break; 2991 case Audit_lt: 2992 match = (mls_level_dom(&rule->au_ctxt.range.level[0], 2993 level) && 2994 !mls_level_eq(&rule->au_ctxt.range.level[0], 2995 level)); 2996 break; 2997 case Audit_le: 2998 match = mls_level_dom(&rule->au_ctxt.range.level[0], 2999 level); 3000 break; 3001 case Audit_gt: 3002 match = (mls_level_dom(level, 3003 &rule->au_ctxt.range.level[0]) && 3004 !mls_level_eq(level, 3005 &rule->au_ctxt.range.level[0])); 3006 break; 3007 case Audit_ge: 3008 match = mls_level_dom(level, 3009 &rule->au_ctxt.range.level[0]); 3010 break; 3011 } 3012 } 3013 3014 out: 3015 read_unlock(&policy_rwlock); 3016 return match; 3017 } 3018 3019 static int (*aurule_callback)(void) = audit_update_lsm_rules; 3020 3021 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid, 3022 u16 class, u32 perms, u32 *retained) 3023 { 3024 int err = 0; 3025 3026 if (event == AVC_CALLBACK_RESET && aurule_callback) 3027 err = aurule_callback(); 3028 return err; 3029 } 3030 3031 static int __init aurule_init(void) 3032 { 3033 int err; 3034 3035 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET, 3036 SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0); 3037 if (err) 3038 panic("avc_add_callback() failed, error %d\n", err); 3039 3040 return err; 3041 } 3042 __initcall(aurule_init); 3043 3044 #ifdef CONFIG_NETLABEL 3045 /** 3046 * security_netlbl_cache_add - Add an entry to the NetLabel cache 3047 * @secattr: the NetLabel packet security attributes 3048 * @sid: the SELinux SID 3049 * 3050 * Description: 3051 * Attempt to cache the context in @ctx, which was derived from the packet in 3052 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has 3053 * already been initialized. 3054 * 3055 */ 3056 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr, 3057 u32 sid) 3058 { 3059 u32 *sid_cache; 3060 3061 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC); 3062 if (sid_cache == NULL) 3063 return; 3064 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC); 3065 if (secattr->cache == NULL) { 3066 kfree(sid_cache); 3067 return; 3068 } 3069 3070 *sid_cache = sid; 3071 secattr->cache->free = kfree; 3072 secattr->cache->data = sid_cache; 3073 secattr->flags |= NETLBL_SECATTR_CACHE; 3074 } 3075 3076 /** 3077 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID 3078 * @secattr: the NetLabel packet security attributes 3079 * @sid: the SELinux SID 3080 * 3081 * Description: 3082 * Convert the given NetLabel security attributes in @secattr into a 3083 * SELinux SID. If the @secattr field does not contain a full SELinux 3084 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the 3085 * 'cache' field of @secattr is set and the CACHE flag is set; this is to 3086 * allow the @secattr to be used by NetLabel to cache the secattr to SID 3087 * conversion for future lookups. Returns zero on success, negative values on 3088 * failure. 3089 * 3090 */ 3091 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr, 3092 u32 *sid) 3093 { 3094 int rc; 3095 struct context *ctx; 3096 struct context ctx_new; 3097 3098 if (!ss_initialized) { 3099 *sid = SECSID_NULL; 3100 return 0; 3101 } 3102 3103 read_lock(&policy_rwlock); 3104 3105 if (secattr->flags & NETLBL_SECATTR_CACHE) 3106 *sid = *(u32 *)secattr->cache->data; 3107 else if (secattr->flags & NETLBL_SECATTR_SECID) 3108 *sid = secattr->attr.secid; 3109 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) { 3110 rc = -EIDRM; 3111 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG); 3112 if (ctx == NULL) 3113 goto out; 3114 3115 context_init(&ctx_new); 3116 ctx_new.user = ctx->user; 3117 ctx_new.role = ctx->role; 3118 ctx_new.type = ctx->type; 3119 mls_import_netlbl_lvl(&ctx_new, secattr); 3120 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) { 3121 rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat, 3122 secattr->attr.mls.cat); 3123 if (rc) 3124 goto out; 3125 memcpy(&ctx_new.range.level[1].cat, 3126 &ctx_new.range.level[0].cat, 3127 sizeof(ctx_new.range.level[0].cat)); 3128 } 3129 rc = -EIDRM; 3130 if (!mls_context_isvalid(&policydb, &ctx_new)) 3131 goto out_free; 3132 3133 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid); 3134 if (rc) 3135 goto out_free; 3136 3137 security_netlbl_cache_add(secattr, *sid); 3138 3139 ebitmap_destroy(&ctx_new.range.level[0].cat); 3140 } else 3141 *sid = SECSID_NULL; 3142 3143 read_unlock(&policy_rwlock); 3144 return 0; 3145 out_free: 3146 ebitmap_destroy(&ctx_new.range.level[0].cat); 3147 out: 3148 read_unlock(&policy_rwlock); 3149 return rc; 3150 } 3151 3152 /** 3153 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr 3154 * @sid: the SELinux SID 3155 * @secattr: the NetLabel packet security attributes 3156 * 3157 * Description: 3158 * Convert the given SELinux SID in @sid into a NetLabel security attribute. 3159 * Returns zero on success, negative values on failure. 3160 * 3161 */ 3162 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr) 3163 { 3164 int rc; 3165 struct context *ctx; 3166 3167 if (!ss_initialized) 3168 return 0; 3169 3170 read_lock(&policy_rwlock); 3171 3172 rc = -ENOENT; 3173 ctx = sidtab_search(&sidtab, sid); 3174 if (ctx == NULL) 3175 goto out; 3176 3177 rc = -ENOMEM; 3178 secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1), 3179 GFP_ATOMIC); 3180 if (secattr->domain == NULL) 3181 goto out; 3182 3183 secattr->attr.secid = sid; 3184 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID; 3185 mls_export_netlbl_lvl(ctx, secattr); 3186 rc = mls_export_netlbl_cat(ctx, secattr); 3187 out: 3188 read_unlock(&policy_rwlock); 3189 return rc; 3190 } 3191 #endif /* CONFIG_NETLABEL */ 3192 3193 /** 3194 * security_read_policy - read the policy. 3195 * @data: binary policy data 3196 * @len: length of data in bytes 3197 * 3198 */ 3199 int security_read_policy(void **data, size_t *len) 3200 { 3201 int rc; 3202 struct policy_file fp; 3203 3204 if (!ss_initialized) 3205 return -EINVAL; 3206 3207 *len = security_policydb_len(); 3208 3209 *data = vmalloc_user(*len); 3210 if (!*data) 3211 return -ENOMEM; 3212 3213 fp.data = *data; 3214 fp.len = *len; 3215 3216 read_lock(&policy_rwlock); 3217 rc = policydb_write(&policydb, &fp); 3218 read_unlock(&policy_rwlock); 3219 3220 if (rc) 3221 return rc; 3222 3223 *len = (unsigned long)fp.data - (unsigned long)*data; 3224 return 0; 3225 3226 } 3227