xref: /linux/security/selinux/ss/services.c (revision 26fb3dae0a1ec78bdde4b5b72e0e709503e8c596)
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul@paul-moore.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26  *
27  *  Added support for bounds domain and audit messaged on masked permissions
28  *
29  * Updated: Guido Trentalancia <guido@trentalancia.com>
30  *
31  *  Added support for runtime switching of the policy type
32  *
33  * Copyright (C) 2008, 2009 NEC Corporation
34  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38  *	This program is free software; you can redistribute it and/or modify
39  *	it under the terms of the GNU General Public License as published by
40  *	the Free Software Foundation, version 2.
41  */
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/flex_array.h>
53 #include <linux/vmalloc.h>
54 #include <net/netlabel.h>
55 
56 #include "flask.h"
57 #include "avc.h"
58 #include "avc_ss.h"
59 #include "security.h"
60 #include "context.h"
61 #include "policydb.h"
62 #include "sidtab.h"
63 #include "services.h"
64 #include "conditional.h"
65 #include "mls.h"
66 #include "objsec.h"
67 #include "netlabel.h"
68 #include "xfrm.h"
69 #include "ebitmap.h"
70 #include "audit.h"
71 
72 /* Policy capability names */
73 const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
74 	"network_peer_controls",
75 	"open_perms",
76 	"extended_socket_class",
77 	"always_check_network",
78 	"cgroup_seclabel",
79 	"nnp_nosuid_transition"
80 };
81 
82 static struct selinux_ss selinux_ss;
83 
84 void selinux_ss_init(struct selinux_ss **ss)
85 {
86 	rwlock_init(&selinux_ss.policy_rwlock);
87 	mutex_init(&selinux_ss.status_lock);
88 	*ss = &selinux_ss;
89 }
90 
91 /* Forward declaration. */
92 static int context_struct_to_string(struct policydb *policydb,
93 				    struct context *context,
94 				    char **scontext,
95 				    u32 *scontext_len);
96 
97 static void context_struct_compute_av(struct policydb *policydb,
98 				      struct context *scontext,
99 				      struct context *tcontext,
100 				      u16 tclass,
101 				      struct av_decision *avd,
102 				      struct extended_perms *xperms);
103 
104 static int selinux_set_mapping(struct policydb *pol,
105 			       struct security_class_mapping *map,
106 			       struct selinux_map *out_map)
107 {
108 	u16 i, j;
109 	unsigned k;
110 	bool print_unknown_handle = false;
111 
112 	/* Find number of classes in the input mapping */
113 	if (!map)
114 		return -EINVAL;
115 	i = 0;
116 	while (map[i].name)
117 		i++;
118 
119 	/* Allocate space for the class records, plus one for class zero */
120 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
121 	if (!out_map->mapping)
122 		return -ENOMEM;
123 
124 	/* Store the raw class and permission values */
125 	j = 0;
126 	while (map[j].name) {
127 		struct security_class_mapping *p_in = map + (j++);
128 		struct selinux_mapping *p_out = out_map->mapping + j;
129 
130 		/* An empty class string skips ahead */
131 		if (!strcmp(p_in->name, "")) {
132 			p_out->num_perms = 0;
133 			continue;
134 		}
135 
136 		p_out->value = string_to_security_class(pol, p_in->name);
137 		if (!p_out->value) {
138 			pr_info("SELinux:  Class %s not defined in policy.\n",
139 			       p_in->name);
140 			if (pol->reject_unknown)
141 				goto err;
142 			p_out->num_perms = 0;
143 			print_unknown_handle = true;
144 			continue;
145 		}
146 
147 		k = 0;
148 		while (p_in->perms[k]) {
149 			/* An empty permission string skips ahead */
150 			if (!*p_in->perms[k]) {
151 				k++;
152 				continue;
153 			}
154 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
155 							    p_in->perms[k]);
156 			if (!p_out->perms[k]) {
157 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
158 				       p_in->perms[k], p_in->name);
159 				if (pol->reject_unknown)
160 					goto err;
161 				print_unknown_handle = true;
162 			}
163 
164 			k++;
165 		}
166 		p_out->num_perms = k;
167 	}
168 
169 	if (print_unknown_handle)
170 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
171 		       pol->allow_unknown ? "allowed" : "denied");
172 
173 	out_map->size = i;
174 	return 0;
175 err:
176 	kfree(out_map->mapping);
177 	out_map->mapping = NULL;
178 	return -EINVAL;
179 }
180 
181 /*
182  * Get real, policy values from mapped values
183  */
184 
185 static u16 unmap_class(struct selinux_map *map, u16 tclass)
186 {
187 	if (tclass < map->size)
188 		return map->mapping[tclass].value;
189 
190 	return tclass;
191 }
192 
193 /*
194  * Get kernel value for class from its policy value
195  */
196 static u16 map_class(struct selinux_map *map, u16 pol_value)
197 {
198 	u16 i;
199 
200 	for (i = 1; i < map->size; i++) {
201 		if (map->mapping[i].value == pol_value)
202 			return i;
203 	}
204 
205 	return SECCLASS_NULL;
206 }
207 
208 static void map_decision(struct selinux_map *map,
209 			 u16 tclass, struct av_decision *avd,
210 			 int allow_unknown)
211 {
212 	if (tclass < map->size) {
213 		struct selinux_mapping *mapping = &map->mapping[tclass];
214 		unsigned int i, n = mapping->num_perms;
215 		u32 result;
216 
217 		for (i = 0, result = 0; i < n; i++) {
218 			if (avd->allowed & mapping->perms[i])
219 				result |= 1<<i;
220 			if (allow_unknown && !mapping->perms[i])
221 				result |= 1<<i;
222 		}
223 		avd->allowed = result;
224 
225 		for (i = 0, result = 0; i < n; i++)
226 			if (avd->auditallow & mapping->perms[i])
227 				result |= 1<<i;
228 		avd->auditallow = result;
229 
230 		for (i = 0, result = 0; i < n; i++) {
231 			if (avd->auditdeny & mapping->perms[i])
232 				result |= 1<<i;
233 			if (!allow_unknown && !mapping->perms[i])
234 				result |= 1<<i;
235 		}
236 		/*
237 		 * In case the kernel has a bug and requests a permission
238 		 * between num_perms and the maximum permission number, we
239 		 * should audit that denial
240 		 */
241 		for (; i < (sizeof(u32)*8); i++)
242 			result |= 1<<i;
243 		avd->auditdeny = result;
244 	}
245 }
246 
247 int security_mls_enabled(struct selinux_state *state)
248 {
249 	struct policydb *p = &state->ss->policydb;
250 
251 	return p->mls_enabled;
252 }
253 
254 /*
255  * Return the boolean value of a constraint expression
256  * when it is applied to the specified source and target
257  * security contexts.
258  *
259  * xcontext is a special beast...  It is used by the validatetrans rules
260  * only.  For these rules, scontext is the context before the transition,
261  * tcontext is the context after the transition, and xcontext is the context
262  * of the process performing the transition.  All other callers of
263  * constraint_expr_eval should pass in NULL for xcontext.
264  */
265 static int constraint_expr_eval(struct policydb *policydb,
266 				struct context *scontext,
267 				struct context *tcontext,
268 				struct context *xcontext,
269 				struct constraint_expr *cexpr)
270 {
271 	u32 val1, val2;
272 	struct context *c;
273 	struct role_datum *r1, *r2;
274 	struct mls_level *l1, *l2;
275 	struct constraint_expr *e;
276 	int s[CEXPR_MAXDEPTH];
277 	int sp = -1;
278 
279 	for (e = cexpr; e; e = e->next) {
280 		switch (e->expr_type) {
281 		case CEXPR_NOT:
282 			BUG_ON(sp < 0);
283 			s[sp] = !s[sp];
284 			break;
285 		case CEXPR_AND:
286 			BUG_ON(sp < 1);
287 			sp--;
288 			s[sp] &= s[sp + 1];
289 			break;
290 		case CEXPR_OR:
291 			BUG_ON(sp < 1);
292 			sp--;
293 			s[sp] |= s[sp + 1];
294 			break;
295 		case CEXPR_ATTR:
296 			if (sp == (CEXPR_MAXDEPTH - 1))
297 				return 0;
298 			switch (e->attr) {
299 			case CEXPR_USER:
300 				val1 = scontext->user;
301 				val2 = tcontext->user;
302 				break;
303 			case CEXPR_TYPE:
304 				val1 = scontext->type;
305 				val2 = tcontext->type;
306 				break;
307 			case CEXPR_ROLE:
308 				val1 = scontext->role;
309 				val2 = tcontext->role;
310 				r1 = policydb->role_val_to_struct[val1 - 1];
311 				r2 = policydb->role_val_to_struct[val2 - 1];
312 				switch (e->op) {
313 				case CEXPR_DOM:
314 					s[++sp] = ebitmap_get_bit(&r1->dominates,
315 								  val2 - 1);
316 					continue;
317 				case CEXPR_DOMBY:
318 					s[++sp] = ebitmap_get_bit(&r2->dominates,
319 								  val1 - 1);
320 					continue;
321 				case CEXPR_INCOMP:
322 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
323 								    val2 - 1) &&
324 						   !ebitmap_get_bit(&r2->dominates,
325 								    val1 - 1));
326 					continue;
327 				default:
328 					break;
329 				}
330 				break;
331 			case CEXPR_L1L2:
332 				l1 = &(scontext->range.level[0]);
333 				l2 = &(tcontext->range.level[0]);
334 				goto mls_ops;
335 			case CEXPR_L1H2:
336 				l1 = &(scontext->range.level[0]);
337 				l2 = &(tcontext->range.level[1]);
338 				goto mls_ops;
339 			case CEXPR_H1L2:
340 				l1 = &(scontext->range.level[1]);
341 				l2 = &(tcontext->range.level[0]);
342 				goto mls_ops;
343 			case CEXPR_H1H2:
344 				l1 = &(scontext->range.level[1]);
345 				l2 = &(tcontext->range.level[1]);
346 				goto mls_ops;
347 			case CEXPR_L1H1:
348 				l1 = &(scontext->range.level[0]);
349 				l2 = &(scontext->range.level[1]);
350 				goto mls_ops;
351 			case CEXPR_L2H2:
352 				l1 = &(tcontext->range.level[0]);
353 				l2 = &(tcontext->range.level[1]);
354 				goto mls_ops;
355 mls_ops:
356 			switch (e->op) {
357 			case CEXPR_EQ:
358 				s[++sp] = mls_level_eq(l1, l2);
359 				continue;
360 			case CEXPR_NEQ:
361 				s[++sp] = !mls_level_eq(l1, l2);
362 				continue;
363 			case CEXPR_DOM:
364 				s[++sp] = mls_level_dom(l1, l2);
365 				continue;
366 			case CEXPR_DOMBY:
367 				s[++sp] = mls_level_dom(l2, l1);
368 				continue;
369 			case CEXPR_INCOMP:
370 				s[++sp] = mls_level_incomp(l2, l1);
371 				continue;
372 			default:
373 				BUG();
374 				return 0;
375 			}
376 			break;
377 			default:
378 				BUG();
379 				return 0;
380 			}
381 
382 			switch (e->op) {
383 			case CEXPR_EQ:
384 				s[++sp] = (val1 == val2);
385 				break;
386 			case CEXPR_NEQ:
387 				s[++sp] = (val1 != val2);
388 				break;
389 			default:
390 				BUG();
391 				return 0;
392 			}
393 			break;
394 		case CEXPR_NAMES:
395 			if (sp == (CEXPR_MAXDEPTH-1))
396 				return 0;
397 			c = scontext;
398 			if (e->attr & CEXPR_TARGET)
399 				c = tcontext;
400 			else if (e->attr & CEXPR_XTARGET) {
401 				c = xcontext;
402 				if (!c) {
403 					BUG();
404 					return 0;
405 				}
406 			}
407 			if (e->attr & CEXPR_USER)
408 				val1 = c->user;
409 			else if (e->attr & CEXPR_ROLE)
410 				val1 = c->role;
411 			else if (e->attr & CEXPR_TYPE)
412 				val1 = c->type;
413 			else {
414 				BUG();
415 				return 0;
416 			}
417 
418 			switch (e->op) {
419 			case CEXPR_EQ:
420 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
421 				break;
422 			case CEXPR_NEQ:
423 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
424 				break;
425 			default:
426 				BUG();
427 				return 0;
428 			}
429 			break;
430 		default:
431 			BUG();
432 			return 0;
433 		}
434 	}
435 
436 	BUG_ON(sp != 0);
437 	return s[0];
438 }
439 
440 /*
441  * security_dump_masked_av - dumps masked permissions during
442  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
443  */
444 static int dump_masked_av_helper(void *k, void *d, void *args)
445 {
446 	struct perm_datum *pdatum = d;
447 	char **permission_names = args;
448 
449 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
450 
451 	permission_names[pdatum->value - 1] = (char *)k;
452 
453 	return 0;
454 }
455 
456 static void security_dump_masked_av(struct policydb *policydb,
457 				    struct context *scontext,
458 				    struct context *tcontext,
459 				    u16 tclass,
460 				    u32 permissions,
461 				    const char *reason)
462 {
463 	struct common_datum *common_dat;
464 	struct class_datum *tclass_dat;
465 	struct audit_buffer *ab;
466 	char *tclass_name;
467 	char *scontext_name = NULL;
468 	char *tcontext_name = NULL;
469 	char *permission_names[32];
470 	int index;
471 	u32 length;
472 	bool need_comma = false;
473 
474 	if (!permissions)
475 		return;
476 
477 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
478 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
479 	common_dat = tclass_dat->comdatum;
480 
481 	/* init permission_names */
482 	if (common_dat &&
483 	    hashtab_map(common_dat->permissions.table,
484 			dump_masked_av_helper, permission_names) < 0)
485 		goto out;
486 
487 	if (hashtab_map(tclass_dat->permissions.table,
488 			dump_masked_av_helper, permission_names) < 0)
489 		goto out;
490 
491 	/* get scontext/tcontext in text form */
492 	if (context_struct_to_string(policydb, scontext,
493 				     &scontext_name, &length) < 0)
494 		goto out;
495 
496 	if (context_struct_to_string(policydb, tcontext,
497 				     &tcontext_name, &length) < 0)
498 		goto out;
499 
500 	/* audit a message */
501 	ab = audit_log_start(audit_context(),
502 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
503 	if (!ab)
504 		goto out;
505 
506 	audit_log_format(ab, "op=security_compute_av reason=%s "
507 			 "scontext=%s tcontext=%s tclass=%s perms=",
508 			 reason, scontext_name, tcontext_name, tclass_name);
509 
510 	for (index = 0; index < 32; index++) {
511 		u32 mask = (1 << index);
512 
513 		if ((mask & permissions) == 0)
514 			continue;
515 
516 		audit_log_format(ab, "%s%s",
517 				 need_comma ? "," : "",
518 				 permission_names[index]
519 				 ? permission_names[index] : "????");
520 		need_comma = true;
521 	}
522 	audit_log_end(ab);
523 out:
524 	/* release scontext/tcontext */
525 	kfree(tcontext_name);
526 	kfree(scontext_name);
527 
528 	return;
529 }
530 
531 /*
532  * security_boundary_permission - drops violated permissions
533  * on boundary constraint.
534  */
535 static void type_attribute_bounds_av(struct policydb *policydb,
536 				     struct context *scontext,
537 				     struct context *tcontext,
538 				     u16 tclass,
539 				     struct av_decision *avd)
540 {
541 	struct context lo_scontext;
542 	struct context lo_tcontext, *tcontextp = tcontext;
543 	struct av_decision lo_avd;
544 	struct type_datum *source;
545 	struct type_datum *target;
546 	u32 masked = 0;
547 
548 	source = flex_array_get_ptr(policydb->type_val_to_struct_array,
549 				    scontext->type - 1);
550 	BUG_ON(!source);
551 
552 	if (!source->bounds)
553 		return;
554 
555 	target = flex_array_get_ptr(policydb->type_val_to_struct_array,
556 				    tcontext->type - 1);
557 	BUG_ON(!target);
558 
559 	memset(&lo_avd, 0, sizeof(lo_avd));
560 
561 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
562 	lo_scontext.type = source->bounds;
563 
564 	if (target->bounds) {
565 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
566 		lo_tcontext.type = target->bounds;
567 		tcontextp = &lo_tcontext;
568 	}
569 
570 	context_struct_compute_av(policydb, &lo_scontext,
571 				  tcontextp,
572 				  tclass,
573 				  &lo_avd,
574 				  NULL);
575 
576 	masked = ~lo_avd.allowed & avd->allowed;
577 
578 	if (likely(!masked))
579 		return;		/* no masked permission */
580 
581 	/* mask violated permissions */
582 	avd->allowed &= ~masked;
583 
584 	/* audit masked permissions */
585 	security_dump_masked_av(policydb, scontext, tcontext,
586 				tclass, masked, "bounds");
587 }
588 
589 /*
590  * flag which drivers have permissions
591  * only looking for ioctl based extended permssions
592  */
593 void services_compute_xperms_drivers(
594 		struct extended_perms *xperms,
595 		struct avtab_node *node)
596 {
597 	unsigned int i;
598 
599 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
600 		/* if one or more driver has all permissions allowed */
601 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
602 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
603 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
604 		/* if allowing permissions within a driver */
605 		security_xperm_set(xperms->drivers.p,
606 					node->datum.u.xperms->driver);
607 	}
608 
609 	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
610 	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
611 		xperms->len = 1;
612 }
613 
614 /*
615  * Compute access vectors and extended permissions based on a context
616  * structure pair for the permissions in a particular class.
617  */
618 static void context_struct_compute_av(struct policydb *policydb,
619 				      struct context *scontext,
620 				      struct context *tcontext,
621 				      u16 tclass,
622 				      struct av_decision *avd,
623 				      struct extended_perms *xperms)
624 {
625 	struct constraint_node *constraint;
626 	struct role_allow *ra;
627 	struct avtab_key avkey;
628 	struct avtab_node *node;
629 	struct class_datum *tclass_datum;
630 	struct ebitmap *sattr, *tattr;
631 	struct ebitmap_node *snode, *tnode;
632 	unsigned int i, j;
633 
634 	avd->allowed = 0;
635 	avd->auditallow = 0;
636 	avd->auditdeny = 0xffffffff;
637 	if (xperms) {
638 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
639 		xperms->len = 0;
640 	}
641 
642 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
643 		if (printk_ratelimit())
644 			pr_warn("SELinux:  Invalid class %hu\n", tclass);
645 		return;
646 	}
647 
648 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
649 
650 	/*
651 	 * If a specific type enforcement rule was defined for
652 	 * this permission check, then use it.
653 	 */
654 	avkey.target_class = tclass;
655 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
656 	sattr = flex_array_get(policydb->type_attr_map_array,
657 			       scontext->type - 1);
658 	BUG_ON(!sattr);
659 	tattr = flex_array_get(policydb->type_attr_map_array,
660 			       tcontext->type - 1);
661 	BUG_ON(!tattr);
662 	ebitmap_for_each_positive_bit(sattr, snode, i) {
663 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
664 			avkey.source_type = i + 1;
665 			avkey.target_type = j + 1;
666 			for (node = avtab_search_node(&policydb->te_avtab,
667 						      &avkey);
668 			     node;
669 			     node = avtab_search_node_next(node, avkey.specified)) {
670 				if (node->key.specified == AVTAB_ALLOWED)
671 					avd->allowed |= node->datum.u.data;
672 				else if (node->key.specified == AVTAB_AUDITALLOW)
673 					avd->auditallow |= node->datum.u.data;
674 				else if (node->key.specified == AVTAB_AUDITDENY)
675 					avd->auditdeny &= node->datum.u.data;
676 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
677 					services_compute_xperms_drivers(xperms, node);
678 			}
679 
680 			/* Check conditional av table for additional permissions */
681 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
682 					avd, xperms);
683 
684 		}
685 	}
686 
687 	/*
688 	 * Remove any permissions prohibited by a constraint (this includes
689 	 * the MLS policy).
690 	 */
691 	constraint = tclass_datum->constraints;
692 	while (constraint) {
693 		if ((constraint->permissions & (avd->allowed)) &&
694 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
695 					  constraint->expr)) {
696 			avd->allowed &= ~(constraint->permissions);
697 		}
698 		constraint = constraint->next;
699 	}
700 
701 	/*
702 	 * If checking process transition permission and the
703 	 * role is changing, then check the (current_role, new_role)
704 	 * pair.
705 	 */
706 	if (tclass == policydb->process_class &&
707 	    (avd->allowed & policydb->process_trans_perms) &&
708 	    scontext->role != tcontext->role) {
709 		for (ra = policydb->role_allow; ra; ra = ra->next) {
710 			if (scontext->role == ra->role &&
711 			    tcontext->role == ra->new_role)
712 				break;
713 		}
714 		if (!ra)
715 			avd->allowed &= ~policydb->process_trans_perms;
716 	}
717 
718 	/*
719 	 * If the given source and target types have boundary
720 	 * constraint, lazy checks have to mask any violated
721 	 * permission and notice it to userspace via audit.
722 	 */
723 	type_attribute_bounds_av(policydb, scontext, tcontext,
724 				 tclass, avd);
725 }
726 
727 static int security_validtrans_handle_fail(struct selinux_state *state,
728 					   struct context *ocontext,
729 					   struct context *ncontext,
730 					   struct context *tcontext,
731 					   u16 tclass)
732 {
733 	struct policydb *p = &state->ss->policydb;
734 	char *o = NULL, *n = NULL, *t = NULL;
735 	u32 olen, nlen, tlen;
736 
737 	if (context_struct_to_string(p, ocontext, &o, &olen))
738 		goto out;
739 	if (context_struct_to_string(p, ncontext, &n, &nlen))
740 		goto out;
741 	if (context_struct_to_string(p, tcontext, &t, &tlen))
742 		goto out;
743 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
744 		  "op=security_validate_transition seresult=denied"
745 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
746 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
747 out:
748 	kfree(o);
749 	kfree(n);
750 	kfree(t);
751 
752 	if (!enforcing_enabled(state))
753 		return 0;
754 	return -EPERM;
755 }
756 
757 static int security_compute_validatetrans(struct selinux_state *state,
758 					  u32 oldsid, u32 newsid, u32 tasksid,
759 					  u16 orig_tclass, bool user)
760 {
761 	struct policydb *policydb;
762 	struct sidtab *sidtab;
763 	struct context *ocontext;
764 	struct context *ncontext;
765 	struct context *tcontext;
766 	struct class_datum *tclass_datum;
767 	struct constraint_node *constraint;
768 	u16 tclass;
769 	int rc = 0;
770 
771 
772 	if (!state->initialized)
773 		return 0;
774 
775 	read_lock(&state->ss->policy_rwlock);
776 
777 	policydb = &state->ss->policydb;
778 	sidtab = state->ss->sidtab;
779 
780 	if (!user)
781 		tclass = unmap_class(&state->ss->map, orig_tclass);
782 	else
783 		tclass = orig_tclass;
784 
785 	if (!tclass || tclass > policydb->p_classes.nprim) {
786 		rc = -EINVAL;
787 		goto out;
788 	}
789 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
790 
791 	ocontext = sidtab_search(sidtab, oldsid);
792 	if (!ocontext) {
793 		pr_err("SELinux: %s:  unrecognized SID %d\n",
794 			__func__, oldsid);
795 		rc = -EINVAL;
796 		goto out;
797 	}
798 
799 	ncontext = sidtab_search(sidtab, newsid);
800 	if (!ncontext) {
801 		pr_err("SELinux: %s:  unrecognized SID %d\n",
802 			__func__, newsid);
803 		rc = -EINVAL;
804 		goto out;
805 	}
806 
807 	tcontext = sidtab_search(sidtab, tasksid);
808 	if (!tcontext) {
809 		pr_err("SELinux: %s:  unrecognized SID %d\n",
810 			__func__, tasksid);
811 		rc = -EINVAL;
812 		goto out;
813 	}
814 
815 	constraint = tclass_datum->validatetrans;
816 	while (constraint) {
817 		if (!constraint_expr_eval(policydb, ocontext, ncontext,
818 					  tcontext, constraint->expr)) {
819 			if (user)
820 				rc = -EPERM;
821 			else
822 				rc = security_validtrans_handle_fail(state,
823 								     ocontext,
824 								     ncontext,
825 								     tcontext,
826 								     tclass);
827 			goto out;
828 		}
829 		constraint = constraint->next;
830 	}
831 
832 out:
833 	read_unlock(&state->ss->policy_rwlock);
834 	return rc;
835 }
836 
837 int security_validate_transition_user(struct selinux_state *state,
838 				      u32 oldsid, u32 newsid, u32 tasksid,
839 				      u16 tclass)
840 {
841 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
842 					      tclass, true);
843 }
844 
845 int security_validate_transition(struct selinux_state *state,
846 				 u32 oldsid, u32 newsid, u32 tasksid,
847 				 u16 orig_tclass)
848 {
849 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
850 					      orig_tclass, false);
851 }
852 
853 /*
854  * security_bounded_transition - check whether the given
855  * transition is directed to bounded, or not.
856  * It returns 0, if @newsid is bounded by @oldsid.
857  * Otherwise, it returns error code.
858  *
859  * @oldsid : current security identifier
860  * @newsid : destinated security identifier
861  */
862 int security_bounded_transition(struct selinux_state *state,
863 				u32 old_sid, u32 new_sid)
864 {
865 	struct policydb *policydb;
866 	struct sidtab *sidtab;
867 	struct context *old_context, *new_context;
868 	struct type_datum *type;
869 	int index;
870 	int rc;
871 
872 	if (!state->initialized)
873 		return 0;
874 
875 	read_lock(&state->ss->policy_rwlock);
876 
877 	policydb = &state->ss->policydb;
878 	sidtab = state->ss->sidtab;
879 
880 	rc = -EINVAL;
881 	old_context = sidtab_search(sidtab, old_sid);
882 	if (!old_context) {
883 		pr_err("SELinux: %s: unrecognized SID %u\n",
884 		       __func__, old_sid);
885 		goto out;
886 	}
887 
888 	rc = -EINVAL;
889 	new_context = sidtab_search(sidtab, new_sid);
890 	if (!new_context) {
891 		pr_err("SELinux: %s: unrecognized SID %u\n",
892 		       __func__, new_sid);
893 		goto out;
894 	}
895 
896 	rc = 0;
897 	/* type/domain unchanged */
898 	if (old_context->type == new_context->type)
899 		goto out;
900 
901 	index = new_context->type;
902 	while (true) {
903 		type = flex_array_get_ptr(policydb->type_val_to_struct_array,
904 					  index - 1);
905 		BUG_ON(!type);
906 
907 		/* not bounded anymore */
908 		rc = -EPERM;
909 		if (!type->bounds)
910 			break;
911 
912 		/* @newsid is bounded by @oldsid */
913 		rc = 0;
914 		if (type->bounds == old_context->type)
915 			break;
916 
917 		index = type->bounds;
918 	}
919 
920 	if (rc) {
921 		char *old_name = NULL;
922 		char *new_name = NULL;
923 		u32 length;
924 
925 		if (!context_struct_to_string(policydb, old_context,
926 					      &old_name, &length) &&
927 		    !context_struct_to_string(policydb, new_context,
928 					      &new_name, &length)) {
929 			audit_log(audit_context(),
930 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
931 				  "op=security_bounded_transition "
932 				  "seresult=denied "
933 				  "oldcontext=%s newcontext=%s",
934 				  old_name, new_name);
935 		}
936 		kfree(new_name);
937 		kfree(old_name);
938 	}
939 out:
940 	read_unlock(&state->ss->policy_rwlock);
941 
942 	return rc;
943 }
944 
945 static void avd_init(struct selinux_state *state, struct av_decision *avd)
946 {
947 	avd->allowed = 0;
948 	avd->auditallow = 0;
949 	avd->auditdeny = 0xffffffff;
950 	avd->seqno = state->ss->latest_granting;
951 	avd->flags = 0;
952 }
953 
954 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
955 					struct avtab_node *node)
956 {
957 	unsigned int i;
958 
959 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
960 		if (xpermd->driver != node->datum.u.xperms->driver)
961 			return;
962 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
963 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
964 					xpermd->driver))
965 			return;
966 	} else {
967 		BUG();
968 	}
969 
970 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
971 		xpermd->used |= XPERMS_ALLOWED;
972 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
973 			memset(xpermd->allowed->p, 0xff,
974 					sizeof(xpermd->allowed->p));
975 		}
976 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
977 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
978 				xpermd->allowed->p[i] |=
979 					node->datum.u.xperms->perms.p[i];
980 		}
981 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
982 		xpermd->used |= XPERMS_AUDITALLOW;
983 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
984 			memset(xpermd->auditallow->p, 0xff,
985 					sizeof(xpermd->auditallow->p));
986 		}
987 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
988 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
989 				xpermd->auditallow->p[i] |=
990 					node->datum.u.xperms->perms.p[i];
991 		}
992 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
993 		xpermd->used |= XPERMS_DONTAUDIT;
994 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
995 			memset(xpermd->dontaudit->p, 0xff,
996 					sizeof(xpermd->dontaudit->p));
997 		}
998 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
999 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1000 				xpermd->dontaudit->p[i] |=
1001 					node->datum.u.xperms->perms.p[i];
1002 		}
1003 	} else {
1004 		BUG();
1005 	}
1006 }
1007 
1008 void security_compute_xperms_decision(struct selinux_state *state,
1009 				      u32 ssid,
1010 				      u32 tsid,
1011 				      u16 orig_tclass,
1012 				      u8 driver,
1013 				      struct extended_perms_decision *xpermd)
1014 {
1015 	struct policydb *policydb;
1016 	struct sidtab *sidtab;
1017 	u16 tclass;
1018 	struct context *scontext, *tcontext;
1019 	struct avtab_key avkey;
1020 	struct avtab_node *node;
1021 	struct ebitmap *sattr, *tattr;
1022 	struct ebitmap_node *snode, *tnode;
1023 	unsigned int i, j;
1024 
1025 	xpermd->driver = driver;
1026 	xpermd->used = 0;
1027 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1028 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1029 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1030 
1031 	read_lock(&state->ss->policy_rwlock);
1032 	if (!state->initialized)
1033 		goto allow;
1034 
1035 	policydb = &state->ss->policydb;
1036 	sidtab = state->ss->sidtab;
1037 
1038 	scontext = sidtab_search(sidtab, ssid);
1039 	if (!scontext) {
1040 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1041 		       __func__, ssid);
1042 		goto out;
1043 	}
1044 
1045 	tcontext = sidtab_search(sidtab, tsid);
1046 	if (!tcontext) {
1047 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1048 		       __func__, tsid);
1049 		goto out;
1050 	}
1051 
1052 	tclass = unmap_class(&state->ss->map, orig_tclass);
1053 	if (unlikely(orig_tclass && !tclass)) {
1054 		if (policydb->allow_unknown)
1055 			goto allow;
1056 		goto out;
1057 	}
1058 
1059 
1060 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1061 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1062 		goto out;
1063 	}
1064 
1065 	avkey.target_class = tclass;
1066 	avkey.specified = AVTAB_XPERMS;
1067 	sattr = flex_array_get(policydb->type_attr_map_array,
1068 				scontext->type - 1);
1069 	BUG_ON(!sattr);
1070 	tattr = flex_array_get(policydb->type_attr_map_array,
1071 				tcontext->type - 1);
1072 	BUG_ON(!tattr);
1073 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1074 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1075 			avkey.source_type = i + 1;
1076 			avkey.target_type = j + 1;
1077 			for (node = avtab_search_node(&policydb->te_avtab,
1078 						      &avkey);
1079 			     node;
1080 			     node = avtab_search_node_next(node, avkey.specified))
1081 				services_compute_xperms_decision(xpermd, node);
1082 
1083 			cond_compute_xperms(&policydb->te_cond_avtab,
1084 						&avkey, xpermd);
1085 		}
1086 	}
1087 out:
1088 	read_unlock(&state->ss->policy_rwlock);
1089 	return;
1090 allow:
1091 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1092 	goto out;
1093 }
1094 
1095 /**
1096  * security_compute_av - Compute access vector decisions.
1097  * @ssid: source security identifier
1098  * @tsid: target security identifier
1099  * @tclass: target security class
1100  * @avd: access vector decisions
1101  * @xperms: extended permissions
1102  *
1103  * Compute a set of access vector decisions based on the
1104  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1105  */
1106 void security_compute_av(struct selinux_state *state,
1107 			 u32 ssid,
1108 			 u32 tsid,
1109 			 u16 orig_tclass,
1110 			 struct av_decision *avd,
1111 			 struct extended_perms *xperms)
1112 {
1113 	struct policydb *policydb;
1114 	struct sidtab *sidtab;
1115 	u16 tclass;
1116 	struct context *scontext = NULL, *tcontext = NULL;
1117 
1118 	read_lock(&state->ss->policy_rwlock);
1119 	avd_init(state, avd);
1120 	xperms->len = 0;
1121 	if (!state->initialized)
1122 		goto allow;
1123 
1124 	policydb = &state->ss->policydb;
1125 	sidtab = state->ss->sidtab;
1126 
1127 	scontext = sidtab_search(sidtab, ssid);
1128 	if (!scontext) {
1129 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1130 		       __func__, ssid);
1131 		goto out;
1132 	}
1133 
1134 	/* permissive domain? */
1135 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1136 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1137 
1138 	tcontext = sidtab_search(sidtab, tsid);
1139 	if (!tcontext) {
1140 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1141 		       __func__, tsid);
1142 		goto out;
1143 	}
1144 
1145 	tclass = unmap_class(&state->ss->map, orig_tclass);
1146 	if (unlikely(orig_tclass && !tclass)) {
1147 		if (policydb->allow_unknown)
1148 			goto allow;
1149 		goto out;
1150 	}
1151 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1152 				  xperms);
1153 	map_decision(&state->ss->map, orig_tclass, avd,
1154 		     policydb->allow_unknown);
1155 out:
1156 	read_unlock(&state->ss->policy_rwlock);
1157 	return;
1158 allow:
1159 	avd->allowed = 0xffffffff;
1160 	goto out;
1161 }
1162 
1163 void security_compute_av_user(struct selinux_state *state,
1164 			      u32 ssid,
1165 			      u32 tsid,
1166 			      u16 tclass,
1167 			      struct av_decision *avd)
1168 {
1169 	struct policydb *policydb;
1170 	struct sidtab *sidtab;
1171 	struct context *scontext = NULL, *tcontext = NULL;
1172 
1173 	read_lock(&state->ss->policy_rwlock);
1174 	avd_init(state, avd);
1175 	if (!state->initialized)
1176 		goto allow;
1177 
1178 	policydb = &state->ss->policydb;
1179 	sidtab = state->ss->sidtab;
1180 
1181 	scontext = sidtab_search(sidtab, ssid);
1182 	if (!scontext) {
1183 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1184 		       __func__, ssid);
1185 		goto out;
1186 	}
1187 
1188 	/* permissive domain? */
1189 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1190 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1191 
1192 	tcontext = sidtab_search(sidtab, tsid);
1193 	if (!tcontext) {
1194 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1195 		       __func__, tsid);
1196 		goto out;
1197 	}
1198 
1199 	if (unlikely(!tclass)) {
1200 		if (policydb->allow_unknown)
1201 			goto allow;
1202 		goto out;
1203 	}
1204 
1205 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1206 				  NULL);
1207  out:
1208 	read_unlock(&state->ss->policy_rwlock);
1209 	return;
1210 allow:
1211 	avd->allowed = 0xffffffff;
1212 	goto out;
1213 }
1214 
1215 /*
1216  * Write the security context string representation of
1217  * the context structure `context' into a dynamically
1218  * allocated string of the correct size.  Set `*scontext'
1219  * to point to this string and set `*scontext_len' to
1220  * the length of the string.
1221  */
1222 static int context_struct_to_string(struct policydb *p,
1223 				    struct context *context,
1224 				    char **scontext, u32 *scontext_len)
1225 {
1226 	char *scontextp;
1227 
1228 	if (scontext)
1229 		*scontext = NULL;
1230 	*scontext_len = 0;
1231 
1232 	if (context->len) {
1233 		*scontext_len = context->len;
1234 		if (scontext) {
1235 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1236 			if (!(*scontext))
1237 				return -ENOMEM;
1238 		}
1239 		return 0;
1240 	}
1241 
1242 	/* Compute the size of the context. */
1243 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1244 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1245 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1246 	*scontext_len += mls_compute_context_len(p, context);
1247 
1248 	if (!scontext)
1249 		return 0;
1250 
1251 	/* Allocate space for the context; caller must free this space. */
1252 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1253 	if (!scontextp)
1254 		return -ENOMEM;
1255 	*scontext = scontextp;
1256 
1257 	/*
1258 	 * Copy the user name, role name and type name into the context.
1259 	 */
1260 	scontextp += sprintf(scontextp, "%s:%s:%s",
1261 		sym_name(p, SYM_USERS, context->user - 1),
1262 		sym_name(p, SYM_ROLES, context->role - 1),
1263 		sym_name(p, SYM_TYPES, context->type - 1));
1264 
1265 	mls_sid_to_context(p, context, &scontextp);
1266 
1267 	*scontextp = 0;
1268 
1269 	return 0;
1270 }
1271 
1272 #include "initial_sid_to_string.h"
1273 
1274 const char *security_get_initial_sid_context(u32 sid)
1275 {
1276 	if (unlikely(sid > SECINITSID_NUM))
1277 		return NULL;
1278 	return initial_sid_to_string[sid];
1279 }
1280 
1281 static int security_sid_to_context_core(struct selinux_state *state,
1282 					u32 sid, char **scontext,
1283 					u32 *scontext_len, int force,
1284 					int only_invalid)
1285 {
1286 	struct policydb *policydb;
1287 	struct sidtab *sidtab;
1288 	struct context *context;
1289 	int rc = 0;
1290 
1291 	if (scontext)
1292 		*scontext = NULL;
1293 	*scontext_len  = 0;
1294 
1295 	if (!state->initialized) {
1296 		if (sid <= SECINITSID_NUM) {
1297 			char *scontextp;
1298 
1299 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1300 			if (!scontext)
1301 				goto out;
1302 			scontextp = kmemdup(initial_sid_to_string[sid],
1303 					    *scontext_len, GFP_ATOMIC);
1304 			if (!scontextp) {
1305 				rc = -ENOMEM;
1306 				goto out;
1307 			}
1308 			*scontext = scontextp;
1309 			goto out;
1310 		}
1311 		pr_err("SELinux: %s:  called before initial "
1312 		       "load_policy on unknown SID %d\n", __func__, sid);
1313 		rc = -EINVAL;
1314 		goto out;
1315 	}
1316 	read_lock(&state->ss->policy_rwlock);
1317 	policydb = &state->ss->policydb;
1318 	sidtab = state->ss->sidtab;
1319 	if (force)
1320 		context = sidtab_search_force(sidtab, sid);
1321 	else
1322 		context = sidtab_search(sidtab, sid);
1323 	if (!context) {
1324 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1325 			__func__, sid);
1326 		rc = -EINVAL;
1327 		goto out_unlock;
1328 	}
1329 	if (only_invalid && !context->len) {
1330 		scontext = NULL;
1331 		scontext_len = 0;
1332 		rc = 0;
1333 	} else {
1334 		rc = context_struct_to_string(policydb, context, scontext,
1335 					      scontext_len);
1336 	}
1337 out_unlock:
1338 	read_unlock(&state->ss->policy_rwlock);
1339 out:
1340 	return rc;
1341 
1342 }
1343 
1344 /**
1345  * security_sid_to_context - Obtain a context for a given SID.
1346  * @sid: security identifier, SID
1347  * @scontext: security context
1348  * @scontext_len: length in bytes
1349  *
1350  * Write the string representation of the context associated with @sid
1351  * into a dynamically allocated string of the correct size.  Set @scontext
1352  * to point to this string and set @scontext_len to the length of the string.
1353  */
1354 int security_sid_to_context(struct selinux_state *state,
1355 			    u32 sid, char **scontext, u32 *scontext_len)
1356 {
1357 	return security_sid_to_context_core(state, sid, scontext,
1358 					    scontext_len, 0, 0);
1359 }
1360 
1361 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1362 				  char **scontext, u32 *scontext_len)
1363 {
1364 	return security_sid_to_context_core(state, sid, scontext,
1365 					    scontext_len, 1, 0);
1366 }
1367 
1368 /**
1369  * security_sid_to_context_inval - Obtain a context for a given SID if it
1370  *                                 is invalid.
1371  * @sid: security identifier, SID
1372  * @scontext: security context
1373  * @scontext_len: length in bytes
1374  *
1375  * Write the string representation of the context associated with @sid
1376  * into a dynamically allocated string of the correct size, but only if the
1377  * context is invalid in the current policy.  Set @scontext to point to
1378  * this string (or NULL if the context is valid) and set @scontext_len to
1379  * the length of the string (or 0 if the context is valid).
1380  */
1381 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1382 				  char **scontext, u32 *scontext_len)
1383 {
1384 	return security_sid_to_context_core(state, sid, scontext,
1385 					    scontext_len, 1, 1);
1386 }
1387 
1388 /*
1389  * Caveat:  Mutates scontext.
1390  */
1391 static int string_to_context_struct(struct policydb *pol,
1392 				    struct sidtab *sidtabp,
1393 				    char *scontext,
1394 				    struct context *ctx,
1395 				    u32 def_sid)
1396 {
1397 	struct role_datum *role;
1398 	struct type_datum *typdatum;
1399 	struct user_datum *usrdatum;
1400 	char *scontextp, *p, oldc;
1401 	int rc = 0;
1402 
1403 	context_init(ctx);
1404 
1405 	/* Parse the security context. */
1406 
1407 	rc = -EINVAL;
1408 	scontextp = (char *) scontext;
1409 
1410 	/* Extract the user. */
1411 	p = scontextp;
1412 	while (*p && *p != ':')
1413 		p++;
1414 
1415 	if (*p == 0)
1416 		goto out;
1417 
1418 	*p++ = 0;
1419 
1420 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1421 	if (!usrdatum)
1422 		goto out;
1423 
1424 	ctx->user = usrdatum->value;
1425 
1426 	/* Extract role. */
1427 	scontextp = p;
1428 	while (*p && *p != ':')
1429 		p++;
1430 
1431 	if (*p == 0)
1432 		goto out;
1433 
1434 	*p++ = 0;
1435 
1436 	role = hashtab_search(pol->p_roles.table, scontextp);
1437 	if (!role)
1438 		goto out;
1439 	ctx->role = role->value;
1440 
1441 	/* Extract type. */
1442 	scontextp = p;
1443 	while (*p && *p != ':')
1444 		p++;
1445 	oldc = *p;
1446 	*p++ = 0;
1447 
1448 	typdatum = hashtab_search(pol->p_types.table, scontextp);
1449 	if (!typdatum || typdatum->attribute)
1450 		goto out;
1451 
1452 	ctx->type = typdatum->value;
1453 
1454 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1455 	if (rc)
1456 		goto out;
1457 
1458 	/* Check the validity of the new context. */
1459 	rc = -EINVAL;
1460 	if (!policydb_context_isvalid(pol, ctx))
1461 		goto out;
1462 	rc = 0;
1463 out:
1464 	if (rc)
1465 		context_destroy(ctx);
1466 	return rc;
1467 }
1468 
1469 static int security_context_to_sid_core(struct selinux_state *state,
1470 					const char *scontext, u32 scontext_len,
1471 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1472 					int force)
1473 {
1474 	struct policydb *policydb;
1475 	struct sidtab *sidtab;
1476 	char *scontext2, *str = NULL;
1477 	struct context context;
1478 	int rc = 0;
1479 
1480 	/* An empty security context is never valid. */
1481 	if (!scontext_len)
1482 		return -EINVAL;
1483 
1484 	/* Copy the string to allow changes and ensure a NUL terminator */
1485 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1486 	if (!scontext2)
1487 		return -ENOMEM;
1488 
1489 	if (!state->initialized) {
1490 		int i;
1491 
1492 		for (i = 1; i < SECINITSID_NUM; i++) {
1493 			if (!strcmp(initial_sid_to_string[i], scontext2)) {
1494 				*sid = i;
1495 				goto out;
1496 			}
1497 		}
1498 		*sid = SECINITSID_KERNEL;
1499 		goto out;
1500 	}
1501 	*sid = SECSID_NULL;
1502 
1503 	if (force) {
1504 		/* Save another copy for storing in uninterpreted form */
1505 		rc = -ENOMEM;
1506 		str = kstrdup(scontext2, gfp_flags);
1507 		if (!str)
1508 			goto out;
1509 	}
1510 	read_lock(&state->ss->policy_rwlock);
1511 	policydb = &state->ss->policydb;
1512 	sidtab = state->ss->sidtab;
1513 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1514 				      &context, def_sid);
1515 	if (rc == -EINVAL && force) {
1516 		context.str = str;
1517 		context.len = strlen(str) + 1;
1518 		str = NULL;
1519 	} else if (rc)
1520 		goto out_unlock;
1521 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1522 	context_destroy(&context);
1523 out_unlock:
1524 	read_unlock(&state->ss->policy_rwlock);
1525 out:
1526 	kfree(scontext2);
1527 	kfree(str);
1528 	return rc;
1529 }
1530 
1531 /**
1532  * security_context_to_sid - Obtain a SID for a given security context.
1533  * @scontext: security context
1534  * @scontext_len: length in bytes
1535  * @sid: security identifier, SID
1536  * @gfp: context for the allocation
1537  *
1538  * Obtains a SID associated with the security context that
1539  * has the string representation specified by @scontext.
1540  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1541  * memory is available, or 0 on success.
1542  */
1543 int security_context_to_sid(struct selinux_state *state,
1544 			    const char *scontext, u32 scontext_len, u32 *sid,
1545 			    gfp_t gfp)
1546 {
1547 	return security_context_to_sid_core(state, scontext, scontext_len,
1548 					    sid, SECSID_NULL, gfp, 0);
1549 }
1550 
1551 int security_context_str_to_sid(struct selinux_state *state,
1552 				const char *scontext, u32 *sid, gfp_t gfp)
1553 {
1554 	return security_context_to_sid(state, scontext, strlen(scontext),
1555 				       sid, gfp);
1556 }
1557 
1558 /**
1559  * security_context_to_sid_default - Obtain a SID for a given security context,
1560  * falling back to specified default if needed.
1561  *
1562  * @scontext: security context
1563  * @scontext_len: length in bytes
1564  * @sid: security identifier, SID
1565  * @def_sid: default SID to assign on error
1566  *
1567  * Obtains a SID associated with the security context that
1568  * has the string representation specified by @scontext.
1569  * The default SID is passed to the MLS layer to be used to allow
1570  * kernel labeling of the MLS field if the MLS field is not present
1571  * (for upgrading to MLS without full relabel).
1572  * Implicitly forces adding of the context even if it cannot be mapped yet.
1573  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1574  * memory is available, or 0 on success.
1575  */
1576 int security_context_to_sid_default(struct selinux_state *state,
1577 				    const char *scontext, u32 scontext_len,
1578 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1579 {
1580 	return security_context_to_sid_core(state, scontext, scontext_len,
1581 					    sid, def_sid, gfp_flags, 1);
1582 }
1583 
1584 int security_context_to_sid_force(struct selinux_state *state,
1585 				  const char *scontext, u32 scontext_len,
1586 				  u32 *sid)
1587 {
1588 	return security_context_to_sid_core(state, scontext, scontext_len,
1589 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1590 }
1591 
1592 static int compute_sid_handle_invalid_context(
1593 	struct selinux_state *state,
1594 	struct context *scontext,
1595 	struct context *tcontext,
1596 	u16 tclass,
1597 	struct context *newcontext)
1598 {
1599 	struct policydb *policydb = &state->ss->policydb;
1600 	char *s = NULL, *t = NULL, *n = NULL;
1601 	u32 slen, tlen, nlen;
1602 
1603 	if (context_struct_to_string(policydb, scontext, &s, &slen))
1604 		goto out;
1605 	if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1606 		goto out;
1607 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1608 		goto out;
1609 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
1610 		  "op=security_compute_sid invalid_context=%s"
1611 		  " scontext=%s"
1612 		  " tcontext=%s"
1613 		  " tclass=%s",
1614 		  n, s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1615 out:
1616 	kfree(s);
1617 	kfree(t);
1618 	kfree(n);
1619 	if (!enforcing_enabled(state))
1620 		return 0;
1621 	return -EACCES;
1622 }
1623 
1624 static void filename_compute_type(struct policydb *policydb,
1625 				  struct context *newcontext,
1626 				  u32 stype, u32 ttype, u16 tclass,
1627 				  const char *objname)
1628 {
1629 	struct filename_trans ft;
1630 	struct filename_trans_datum *otype;
1631 
1632 	/*
1633 	 * Most filename trans rules are going to live in specific directories
1634 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1635 	 * if the ttype does not contain any rules.
1636 	 */
1637 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1638 		return;
1639 
1640 	ft.stype = stype;
1641 	ft.ttype = ttype;
1642 	ft.tclass = tclass;
1643 	ft.name = objname;
1644 
1645 	otype = hashtab_search(policydb->filename_trans, &ft);
1646 	if (otype)
1647 		newcontext->type = otype->otype;
1648 }
1649 
1650 static int security_compute_sid(struct selinux_state *state,
1651 				u32 ssid,
1652 				u32 tsid,
1653 				u16 orig_tclass,
1654 				u32 specified,
1655 				const char *objname,
1656 				u32 *out_sid,
1657 				bool kern)
1658 {
1659 	struct policydb *policydb;
1660 	struct sidtab *sidtab;
1661 	struct class_datum *cladatum = NULL;
1662 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1663 	struct role_trans *roletr = NULL;
1664 	struct avtab_key avkey;
1665 	struct avtab_datum *avdatum;
1666 	struct avtab_node *node;
1667 	u16 tclass;
1668 	int rc = 0;
1669 	bool sock;
1670 
1671 	if (!state->initialized) {
1672 		switch (orig_tclass) {
1673 		case SECCLASS_PROCESS: /* kernel value */
1674 			*out_sid = ssid;
1675 			break;
1676 		default:
1677 			*out_sid = tsid;
1678 			break;
1679 		}
1680 		goto out;
1681 	}
1682 
1683 	context_init(&newcontext);
1684 
1685 	read_lock(&state->ss->policy_rwlock);
1686 
1687 	if (kern) {
1688 		tclass = unmap_class(&state->ss->map, orig_tclass);
1689 		sock = security_is_socket_class(orig_tclass);
1690 	} else {
1691 		tclass = orig_tclass;
1692 		sock = security_is_socket_class(map_class(&state->ss->map,
1693 							  tclass));
1694 	}
1695 
1696 	policydb = &state->ss->policydb;
1697 	sidtab = state->ss->sidtab;
1698 
1699 	scontext = sidtab_search(sidtab, ssid);
1700 	if (!scontext) {
1701 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1702 		       __func__, ssid);
1703 		rc = -EINVAL;
1704 		goto out_unlock;
1705 	}
1706 	tcontext = sidtab_search(sidtab, tsid);
1707 	if (!tcontext) {
1708 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1709 		       __func__, tsid);
1710 		rc = -EINVAL;
1711 		goto out_unlock;
1712 	}
1713 
1714 	if (tclass && tclass <= policydb->p_classes.nprim)
1715 		cladatum = policydb->class_val_to_struct[tclass - 1];
1716 
1717 	/* Set the user identity. */
1718 	switch (specified) {
1719 	case AVTAB_TRANSITION:
1720 	case AVTAB_CHANGE:
1721 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1722 			newcontext.user = tcontext->user;
1723 		} else {
1724 			/* notice this gets both DEFAULT_SOURCE and unset */
1725 			/* Use the process user identity. */
1726 			newcontext.user = scontext->user;
1727 		}
1728 		break;
1729 	case AVTAB_MEMBER:
1730 		/* Use the related object owner. */
1731 		newcontext.user = tcontext->user;
1732 		break;
1733 	}
1734 
1735 	/* Set the role to default values. */
1736 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1737 		newcontext.role = scontext->role;
1738 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1739 		newcontext.role = tcontext->role;
1740 	} else {
1741 		if ((tclass == policydb->process_class) || (sock == true))
1742 			newcontext.role = scontext->role;
1743 		else
1744 			newcontext.role = OBJECT_R_VAL;
1745 	}
1746 
1747 	/* Set the type to default values. */
1748 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1749 		newcontext.type = scontext->type;
1750 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1751 		newcontext.type = tcontext->type;
1752 	} else {
1753 		if ((tclass == policydb->process_class) || (sock == true)) {
1754 			/* Use the type of process. */
1755 			newcontext.type = scontext->type;
1756 		} else {
1757 			/* Use the type of the related object. */
1758 			newcontext.type = tcontext->type;
1759 		}
1760 	}
1761 
1762 	/* Look for a type transition/member/change rule. */
1763 	avkey.source_type = scontext->type;
1764 	avkey.target_type = tcontext->type;
1765 	avkey.target_class = tclass;
1766 	avkey.specified = specified;
1767 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1768 
1769 	/* If no permanent rule, also check for enabled conditional rules */
1770 	if (!avdatum) {
1771 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1772 		for (; node; node = avtab_search_node_next(node, specified)) {
1773 			if (node->key.specified & AVTAB_ENABLED) {
1774 				avdatum = &node->datum;
1775 				break;
1776 			}
1777 		}
1778 	}
1779 
1780 	if (avdatum) {
1781 		/* Use the type from the type transition/member/change rule. */
1782 		newcontext.type = avdatum->u.data;
1783 	}
1784 
1785 	/* if we have a objname this is a file trans check so check those rules */
1786 	if (objname)
1787 		filename_compute_type(policydb, &newcontext, scontext->type,
1788 				      tcontext->type, tclass, objname);
1789 
1790 	/* Check for class-specific changes. */
1791 	if (specified & AVTAB_TRANSITION) {
1792 		/* Look for a role transition rule. */
1793 		for (roletr = policydb->role_tr; roletr;
1794 		     roletr = roletr->next) {
1795 			if ((roletr->role == scontext->role) &&
1796 			    (roletr->type == tcontext->type) &&
1797 			    (roletr->tclass == tclass)) {
1798 				/* Use the role transition rule. */
1799 				newcontext.role = roletr->new_role;
1800 				break;
1801 			}
1802 		}
1803 	}
1804 
1805 	/* Set the MLS attributes.
1806 	   This is done last because it may allocate memory. */
1807 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1808 			     &newcontext, sock);
1809 	if (rc)
1810 		goto out_unlock;
1811 
1812 	/* Check the validity of the context. */
1813 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1814 		rc = compute_sid_handle_invalid_context(state, scontext,
1815 							tcontext,
1816 							tclass,
1817 							&newcontext);
1818 		if (rc)
1819 			goto out_unlock;
1820 	}
1821 	/* Obtain the sid for the context. */
1822 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1823 out_unlock:
1824 	read_unlock(&state->ss->policy_rwlock);
1825 	context_destroy(&newcontext);
1826 out:
1827 	return rc;
1828 }
1829 
1830 /**
1831  * security_transition_sid - Compute the SID for a new subject/object.
1832  * @ssid: source security identifier
1833  * @tsid: target security identifier
1834  * @tclass: target security class
1835  * @out_sid: security identifier for new subject/object
1836  *
1837  * Compute a SID to use for labeling a new subject or object in the
1838  * class @tclass based on a SID pair (@ssid, @tsid).
1839  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1840  * if insufficient memory is available, or %0 if the new SID was
1841  * computed successfully.
1842  */
1843 int security_transition_sid(struct selinux_state *state,
1844 			    u32 ssid, u32 tsid, u16 tclass,
1845 			    const struct qstr *qstr, u32 *out_sid)
1846 {
1847 	return security_compute_sid(state, ssid, tsid, tclass,
1848 				    AVTAB_TRANSITION,
1849 				    qstr ? qstr->name : NULL, out_sid, true);
1850 }
1851 
1852 int security_transition_sid_user(struct selinux_state *state,
1853 				 u32 ssid, u32 tsid, u16 tclass,
1854 				 const char *objname, u32 *out_sid)
1855 {
1856 	return security_compute_sid(state, ssid, tsid, tclass,
1857 				    AVTAB_TRANSITION,
1858 				    objname, out_sid, false);
1859 }
1860 
1861 /**
1862  * security_member_sid - Compute the SID for member selection.
1863  * @ssid: source security identifier
1864  * @tsid: target security identifier
1865  * @tclass: target security class
1866  * @out_sid: security identifier for selected member
1867  *
1868  * Compute a SID to use when selecting a member of a polyinstantiated
1869  * object of class @tclass based on a SID pair (@ssid, @tsid).
1870  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1871  * if insufficient memory is available, or %0 if the SID was
1872  * computed successfully.
1873  */
1874 int security_member_sid(struct selinux_state *state,
1875 			u32 ssid,
1876 			u32 tsid,
1877 			u16 tclass,
1878 			u32 *out_sid)
1879 {
1880 	return security_compute_sid(state, ssid, tsid, tclass,
1881 				    AVTAB_MEMBER, NULL,
1882 				    out_sid, false);
1883 }
1884 
1885 /**
1886  * security_change_sid - Compute the SID for object relabeling.
1887  * @ssid: source security identifier
1888  * @tsid: target security identifier
1889  * @tclass: target security class
1890  * @out_sid: security identifier for selected member
1891  *
1892  * Compute a SID to use for relabeling an object of class @tclass
1893  * based on a SID pair (@ssid, @tsid).
1894  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1895  * if insufficient memory is available, or %0 if the SID was
1896  * computed successfully.
1897  */
1898 int security_change_sid(struct selinux_state *state,
1899 			u32 ssid,
1900 			u32 tsid,
1901 			u16 tclass,
1902 			u32 *out_sid)
1903 {
1904 	return security_compute_sid(state,
1905 				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1906 				    out_sid, false);
1907 }
1908 
1909 static inline int convert_context_handle_invalid_context(
1910 	struct selinux_state *state,
1911 	struct context *context)
1912 {
1913 	struct policydb *policydb = &state->ss->policydb;
1914 	char *s;
1915 	u32 len;
1916 
1917 	if (enforcing_enabled(state))
1918 		return -EINVAL;
1919 
1920 	if (!context_struct_to_string(policydb, context, &s, &len)) {
1921 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1922 			s);
1923 		kfree(s);
1924 	}
1925 	return 0;
1926 }
1927 
1928 struct convert_context_args {
1929 	struct selinux_state *state;
1930 	struct policydb *oldp;
1931 	struct policydb *newp;
1932 };
1933 
1934 /*
1935  * Convert the values in the security context
1936  * structure `oldc' from the values specified
1937  * in the policy `p->oldp' to the values specified
1938  * in the policy `p->newp', storing the new context
1939  * in `newc'.  Verify that the context is valid
1940  * under the new policy.
1941  */
1942 static int convert_context(struct context *oldc, struct context *newc, void *p)
1943 {
1944 	struct convert_context_args *args;
1945 	struct ocontext *oc;
1946 	struct role_datum *role;
1947 	struct type_datum *typdatum;
1948 	struct user_datum *usrdatum;
1949 	char *s;
1950 	u32 len;
1951 	int rc;
1952 
1953 	args = p;
1954 
1955 	if (oldc->str) {
1956 		s = kstrdup(oldc->str, GFP_KERNEL);
1957 		if (!s)
1958 			return -ENOMEM;
1959 
1960 		rc = string_to_context_struct(args->newp, NULL, s,
1961 					      newc, SECSID_NULL);
1962 		if (rc == -EINVAL) {
1963 			/* Retain string representation for later mapping. */
1964 			context_init(newc);
1965 			newc->str = s;
1966 			newc->len = oldc->len;
1967 			return 0;
1968 		}
1969 		kfree(s);
1970 		if (rc) {
1971 			/* Other error condition, e.g. ENOMEM. */
1972 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
1973 			       oldc->str, -rc);
1974 			return rc;
1975 		}
1976 		pr_info("SELinux:  Context %s became valid (mapped).\n",
1977 			oldc->str);
1978 		return 0;
1979 	}
1980 
1981 	context_init(newc);
1982 
1983 	/* Convert the user. */
1984 	rc = -EINVAL;
1985 	usrdatum = hashtab_search(args->newp->p_users.table,
1986 				  sym_name(args->oldp,
1987 					   SYM_USERS, oldc->user - 1));
1988 	if (!usrdatum)
1989 		goto bad;
1990 	newc->user = usrdatum->value;
1991 
1992 	/* Convert the role. */
1993 	rc = -EINVAL;
1994 	role = hashtab_search(args->newp->p_roles.table,
1995 			      sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
1996 	if (!role)
1997 		goto bad;
1998 	newc->role = role->value;
1999 
2000 	/* Convert the type. */
2001 	rc = -EINVAL;
2002 	typdatum = hashtab_search(args->newp->p_types.table,
2003 				  sym_name(args->oldp,
2004 					   SYM_TYPES, oldc->type - 1));
2005 	if (!typdatum)
2006 		goto bad;
2007 	newc->type = typdatum->value;
2008 
2009 	/* Convert the MLS fields if dealing with MLS policies */
2010 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2011 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2012 		if (rc)
2013 			goto bad;
2014 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2015 		/*
2016 		 * Switching between non-MLS and MLS policy:
2017 		 * ensure that the MLS fields of the context for all
2018 		 * existing entries in the sidtab are filled in with a
2019 		 * suitable default value, likely taken from one of the
2020 		 * initial SIDs.
2021 		 */
2022 		oc = args->newp->ocontexts[OCON_ISID];
2023 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2024 			oc = oc->next;
2025 		rc = -EINVAL;
2026 		if (!oc) {
2027 			pr_err("SELinux:  unable to look up"
2028 				" the initial SIDs list\n");
2029 			goto bad;
2030 		}
2031 		rc = mls_range_set(newc, &oc->context[0].range);
2032 		if (rc)
2033 			goto bad;
2034 	}
2035 
2036 	/* Check the validity of the new context. */
2037 	if (!policydb_context_isvalid(args->newp, newc)) {
2038 		rc = convert_context_handle_invalid_context(args->state, oldc);
2039 		if (rc)
2040 			goto bad;
2041 	}
2042 
2043 	return 0;
2044 bad:
2045 	/* Map old representation to string and save it. */
2046 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2047 	if (rc)
2048 		return rc;
2049 	context_destroy(newc);
2050 	newc->str = s;
2051 	newc->len = len;
2052 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2053 		newc->str);
2054 	return 0;
2055 }
2056 
2057 static void security_load_policycaps(struct selinux_state *state)
2058 {
2059 	struct policydb *p = &state->ss->policydb;
2060 	unsigned int i;
2061 	struct ebitmap_node *node;
2062 
2063 	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2064 		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2065 
2066 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2067 		pr_info("SELinux:  policy capability %s=%d\n",
2068 			selinux_policycap_names[i],
2069 			ebitmap_get_bit(&p->policycaps, i));
2070 
2071 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2072 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2073 			pr_info("SELinux:  unknown policy capability %u\n",
2074 				i);
2075 	}
2076 }
2077 
2078 static int security_preserve_bools(struct selinux_state *state,
2079 				   struct policydb *newpolicydb);
2080 
2081 /**
2082  * security_load_policy - Load a security policy configuration.
2083  * @data: binary policy data
2084  * @len: length of data in bytes
2085  *
2086  * Load a new set of security policy configuration data,
2087  * validate it and convert the SID table as necessary.
2088  * This function will flush the access vector cache after
2089  * loading the new policy.
2090  */
2091 int security_load_policy(struct selinux_state *state, void *data, size_t len)
2092 {
2093 	struct policydb *policydb;
2094 	struct sidtab *oldsidtab, *newsidtab;
2095 	struct policydb *oldpolicydb, *newpolicydb;
2096 	struct selinux_mapping *oldmapping;
2097 	struct selinux_map newmap;
2098 	struct sidtab_convert_params convert_params;
2099 	struct convert_context_args args;
2100 	u32 seqno;
2101 	int rc = 0;
2102 	struct policy_file file = { data, len }, *fp = &file;
2103 
2104 	oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2105 	if (!oldpolicydb) {
2106 		rc = -ENOMEM;
2107 		goto out;
2108 	}
2109 	newpolicydb = oldpolicydb + 1;
2110 
2111 	policydb = &state->ss->policydb;
2112 
2113 	newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2114 	if (!newsidtab) {
2115 		rc = -ENOMEM;
2116 		goto out;
2117 	}
2118 
2119 	if (!state->initialized) {
2120 		rc = policydb_read(policydb, fp);
2121 		if (rc) {
2122 			kfree(newsidtab);
2123 			goto out;
2124 		}
2125 
2126 		policydb->len = len;
2127 		rc = selinux_set_mapping(policydb, secclass_map,
2128 					 &state->ss->map);
2129 		if (rc) {
2130 			kfree(newsidtab);
2131 			policydb_destroy(policydb);
2132 			goto out;
2133 		}
2134 
2135 		rc = policydb_load_isids(policydb, newsidtab);
2136 		if (rc) {
2137 			kfree(newsidtab);
2138 			policydb_destroy(policydb);
2139 			goto out;
2140 		}
2141 
2142 		state->ss->sidtab = newsidtab;
2143 		security_load_policycaps(state);
2144 		state->initialized = 1;
2145 		seqno = ++state->ss->latest_granting;
2146 		selinux_complete_init();
2147 		avc_ss_reset(state->avc, seqno);
2148 		selnl_notify_policyload(seqno);
2149 		selinux_status_update_policyload(state, seqno);
2150 		selinux_netlbl_cache_invalidate();
2151 		selinux_xfrm_notify_policyload();
2152 		goto out;
2153 	}
2154 
2155 	rc = policydb_read(newpolicydb, fp);
2156 	if (rc) {
2157 		kfree(newsidtab);
2158 		goto out;
2159 	}
2160 
2161 	newpolicydb->len = len;
2162 	/* If switching between different policy types, log MLS status */
2163 	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2164 		pr_info("SELinux: Disabling MLS support...\n");
2165 	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2166 		pr_info("SELinux: Enabling MLS support...\n");
2167 
2168 	rc = policydb_load_isids(newpolicydb, newsidtab);
2169 	if (rc) {
2170 		pr_err("SELinux:  unable to load the initial SIDs\n");
2171 		policydb_destroy(newpolicydb);
2172 		kfree(newsidtab);
2173 		goto out;
2174 	}
2175 
2176 	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2177 	if (rc)
2178 		goto err;
2179 
2180 	rc = security_preserve_bools(state, newpolicydb);
2181 	if (rc) {
2182 		pr_err("SELinux:  unable to preserve booleans\n");
2183 		goto err;
2184 	}
2185 
2186 	oldsidtab = state->ss->sidtab;
2187 
2188 	/*
2189 	 * Convert the internal representations of contexts
2190 	 * in the new SID table.
2191 	 */
2192 	args.state = state;
2193 	args.oldp = policydb;
2194 	args.newp = newpolicydb;
2195 
2196 	convert_params.func = convert_context;
2197 	convert_params.args = &args;
2198 	convert_params.target = newsidtab;
2199 
2200 	rc = sidtab_convert(oldsidtab, &convert_params);
2201 	if (rc) {
2202 		pr_err("SELinux:  unable to convert the internal"
2203 			" representation of contexts in the new SID"
2204 			" table\n");
2205 		goto err;
2206 	}
2207 
2208 	/* Save the old policydb and SID table to free later. */
2209 	memcpy(oldpolicydb, policydb, sizeof(*policydb));
2210 
2211 	/* Install the new policydb and SID table. */
2212 	write_lock_irq(&state->ss->policy_rwlock);
2213 	memcpy(policydb, newpolicydb, sizeof(*policydb));
2214 	state->ss->sidtab = newsidtab;
2215 	security_load_policycaps(state);
2216 	oldmapping = state->ss->map.mapping;
2217 	state->ss->map.mapping = newmap.mapping;
2218 	state->ss->map.size = newmap.size;
2219 	seqno = ++state->ss->latest_granting;
2220 	write_unlock_irq(&state->ss->policy_rwlock);
2221 
2222 	/* Free the old policydb and SID table. */
2223 	policydb_destroy(oldpolicydb);
2224 	sidtab_destroy(oldsidtab);
2225 	kfree(oldsidtab);
2226 	kfree(oldmapping);
2227 
2228 	avc_ss_reset(state->avc, seqno);
2229 	selnl_notify_policyload(seqno);
2230 	selinux_status_update_policyload(state, seqno);
2231 	selinux_netlbl_cache_invalidate();
2232 	selinux_xfrm_notify_policyload();
2233 
2234 	rc = 0;
2235 	goto out;
2236 
2237 err:
2238 	kfree(newmap.mapping);
2239 	sidtab_destroy(newsidtab);
2240 	kfree(newsidtab);
2241 	policydb_destroy(newpolicydb);
2242 
2243 out:
2244 	kfree(oldpolicydb);
2245 	return rc;
2246 }
2247 
2248 size_t security_policydb_len(struct selinux_state *state)
2249 {
2250 	struct policydb *p = &state->ss->policydb;
2251 	size_t len;
2252 
2253 	read_lock(&state->ss->policy_rwlock);
2254 	len = p->len;
2255 	read_unlock(&state->ss->policy_rwlock);
2256 
2257 	return len;
2258 }
2259 
2260 /**
2261  * security_port_sid - Obtain the SID for a port.
2262  * @protocol: protocol number
2263  * @port: port number
2264  * @out_sid: security identifier
2265  */
2266 int security_port_sid(struct selinux_state *state,
2267 		      u8 protocol, u16 port, u32 *out_sid)
2268 {
2269 	struct policydb *policydb;
2270 	struct sidtab *sidtab;
2271 	struct ocontext *c;
2272 	int rc = 0;
2273 
2274 	read_lock(&state->ss->policy_rwlock);
2275 
2276 	policydb = &state->ss->policydb;
2277 	sidtab = state->ss->sidtab;
2278 
2279 	c = policydb->ocontexts[OCON_PORT];
2280 	while (c) {
2281 		if (c->u.port.protocol == protocol &&
2282 		    c->u.port.low_port <= port &&
2283 		    c->u.port.high_port >= port)
2284 			break;
2285 		c = c->next;
2286 	}
2287 
2288 	if (c) {
2289 		if (!c->sid[0]) {
2290 			rc = sidtab_context_to_sid(sidtab,
2291 						   &c->context[0],
2292 						   &c->sid[0]);
2293 			if (rc)
2294 				goto out;
2295 		}
2296 		*out_sid = c->sid[0];
2297 	} else {
2298 		*out_sid = SECINITSID_PORT;
2299 	}
2300 
2301 out:
2302 	read_unlock(&state->ss->policy_rwlock);
2303 	return rc;
2304 }
2305 
2306 /**
2307  * security_pkey_sid - Obtain the SID for a pkey.
2308  * @subnet_prefix: Subnet Prefix
2309  * @pkey_num: pkey number
2310  * @out_sid: security identifier
2311  */
2312 int security_ib_pkey_sid(struct selinux_state *state,
2313 			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2314 {
2315 	struct policydb *policydb;
2316 	struct sidtab *sidtab;
2317 	struct ocontext *c;
2318 	int rc = 0;
2319 
2320 	read_lock(&state->ss->policy_rwlock);
2321 
2322 	policydb = &state->ss->policydb;
2323 	sidtab = state->ss->sidtab;
2324 
2325 	c = policydb->ocontexts[OCON_IBPKEY];
2326 	while (c) {
2327 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2328 		    c->u.ibpkey.high_pkey >= pkey_num &&
2329 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2330 			break;
2331 
2332 		c = c->next;
2333 	}
2334 
2335 	if (c) {
2336 		if (!c->sid[0]) {
2337 			rc = sidtab_context_to_sid(sidtab,
2338 						   &c->context[0],
2339 						   &c->sid[0]);
2340 			if (rc)
2341 				goto out;
2342 		}
2343 		*out_sid = c->sid[0];
2344 	} else
2345 		*out_sid = SECINITSID_UNLABELED;
2346 
2347 out:
2348 	read_unlock(&state->ss->policy_rwlock);
2349 	return rc;
2350 }
2351 
2352 /**
2353  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2354  * @dev_name: device name
2355  * @port: port number
2356  * @out_sid: security identifier
2357  */
2358 int security_ib_endport_sid(struct selinux_state *state,
2359 			    const char *dev_name, u8 port_num, u32 *out_sid)
2360 {
2361 	struct policydb *policydb;
2362 	struct sidtab *sidtab;
2363 	struct ocontext *c;
2364 	int rc = 0;
2365 
2366 	read_lock(&state->ss->policy_rwlock);
2367 
2368 	policydb = &state->ss->policydb;
2369 	sidtab = state->ss->sidtab;
2370 
2371 	c = policydb->ocontexts[OCON_IBENDPORT];
2372 	while (c) {
2373 		if (c->u.ibendport.port == port_num &&
2374 		    !strncmp(c->u.ibendport.dev_name,
2375 			     dev_name,
2376 			     IB_DEVICE_NAME_MAX))
2377 			break;
2378 
2379 		c = c->next;
2380 	}
2381 
2382 	if (c) {
2383 		if (!c->sid[0]) {
2384 			rc = sidtab_context_to_sid(sidtab,
2385 						   &c->context[0],
2386 						   &c->sid[0]);
2387 			if (rc)
2388 				goto out;
2389 		}
2390 		*out_sid = c->sid[0];
2391 	} else
2392 		*out_sid = SECINITSID_UNLABELED;
2393 
2394 out:
2395 	read_unlock(&state->ss->policy_rwlock);
2396 	return rc;
2397 }
2398 
2399 /**
2400  * security_netif_sid - Obtain the SID for a network interface.
2401  * @name: interface name
2402  * @if_sid: interface SID
2403  */
2404 int security_netif_sid(struct selinux_state *state,
2405 		       char *name, u32 *if_sid)
2406 {
2407 	struct policydb *policydb;
2408 	struct sidtab *sidtab;
2409 	int rc = 0;
2410 	struct ocontext *c;
2411 
2412 	read_lock(&state->ss->policy_rwlock);
2413 
2414 	policydb = &state->ss->policydb;
2415 	sidtab = state->ss->sidtab;
2416 
2417 	c = policydb->ocontexts[OCON_NETIF];
2418 	while (c) {
2419 		if (strcmp(name, c->u.name) == 0)
2420 			break;
2421 		c = c->next;
2422 	}
2423 
2424 	if (c) {
2425 		if (!c->sid[0] || !c->sid[1]) {
2426 			rc = sidtab_context_to_sid(sidtab,
2427 						  &c->context[0],
2428 						  &c->sid[0]);
2429 			if (rc)
2430 				goto out;
2431 			rc = sidtab_context_to_sid(sidtab,
2432 						   &c->context[1],
2433 						   &c->sid[1]);
2434 			if (rc)
2435 				goto out;
2436 		}
2437 		*if_sid = c->sid[0];
2438 	} else
2439 		*if_sid = SECINITSID_NETIF;
2440 
2441 out:
2442 	read_unlock(&state->ss->policy_rwlock);
2443 	return rc;
2444 }
2445 
2446 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2447 {
2448 	int i, fail = 0;
2449 
2450 	for (i = 0; i < 4; i++)
2451 		if (addr[i] != (input[i] & mask[i])) {
2452 			fail = 1;
2453 			break;
2454 		}
2455 
2456 	return !fail;
2457 }
2458 
2459 /**
2460  * security_node_sid - Obtain the SID for a node (host).
2461  * @domain: communication domain aka address family
2462  * @addrp: address
2463  * @addrlen: address length in bytes
2464  * @out_sid: security identifier
2465  */
2466 int security_node_sid(struct selinux_state *state,
2467 		      u16 domain,
2468 		      void *addrp,
2469 		      u32 addrlen,
2470 		      u32 *out_sid)
2471 {
2472 	struct policydb *policydb;
2473 	struct sidtab *sidtab;
2474 	int rc;
2475 	struct ocontext *c;
2476 
2477 	read_lock(&state->ss->policy_rwlock);
2478 
2479 	policydb = &state->ss->policydb;
2480 	sidtab = state->ss->sidtab;
2481 
2482 	switch (domain) {
2483 	case AF_INET: {
2484 		u32 addr;
2485 
2486 		rc = -EINVAL;
2487 		if (addrlen != sizeof(u32))
2488 			goto out;
2489 
2490 		addr = *((u32 *)addrp);
2491 
2492 		c = policydb->ocontexts[OCON_NODE];
2493 		while (c) {
2494 			if (c->u.node.addr == (addr & c->u.node.mask))
2495 				break;
2496 			c = c->next;
2497 		}
2498 		break;
2499 	}
2500 
2501 	case AF_INET6:
2502 		rc = -EINVAL;
2503 		if (addrlen != sizeof(u64) * 2)
2504 			goto out;
2505 		c = policydb->ocontexts[OCON_NODE6];
2506 		while (c) {
2507 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2508 						c->u.node6.mask))
2509 				break;
2510 			c = c->next;
2511 		}
2512 		break;
2513 
2514 	default:
2515 		rc = 0;
2516 		*out_sid = SECINITSID_NODE;
2517 		goto out;
2518 	}
2519 
2520 	if (c) {
2521 		if (!c->sid[0]) {
2522 			rc = sidtab_context_to_sid(sidtab,
2523 						   &c->context[0],
2524 						   &c->sid[0]);
2525 			if (rc)
2526 				goto out;
2527 		}
2528 		*out_sid = c->sid[0];
2529 	} else {
2530 		*out_sid = SECINITSID_NODE;
2531 	}
2532 
2533 	rc = 0;
2534 out:
2535 	read_unlock(&state->ss->policy_rwlock);
2536 	return rc;
2537 }
2538 
2539 #define SIDS_NEL 25
2540 
2541 /**
2542  * security_get_user_sids - Obtain reachable SIDs for a user.
2543  * @fromsid: starting SID
2544  * @username: username
2545  * @sids: array of reachable SIDs for user
2546  * @nel: number of elements in @sids
2547  *
2548  * Generate the set of SIDs for legal security contexts
2549  * for a given user that can be reached by @fromsid.
2550  * Set *@sids to point to a dynamically allocated
2551  * array containing the set of SIDs.  Set *@nel to the
2552  * number of elements in the array.
2553  */
2554 
2555 int security_get_user_sids(struct selinux_state *state,
2556 			   u32 fromsid,
2557 			   char *username,
2558 			   u32 **sids,
2559 			   u32 *nel)
2560 {
2561 	struct policydb *policydb;
2562 	struct sidtab *sidtab;
2563 	struct context *fromcon, usercon;
2564 	u32 *mysids = NULL, *mysids2, sid;
2565 	u32 mynel = 0, maxnel = SIDS_NEL;
2566 	struct user_datum *user;
2567 	struct role_datum *role;
2568 	struct ebitmap_node *rnode, *tnode;
2569 	int rc = 0, i, j;
2570 
2571 	*sids = NULL;
2572 	*nel = 0;
2573 
2574 	if (!state->initialized)
2575 		goto out;
2576 
2577 	read_lock(&state->ss->policy_rwlock);
2578 
2579 	policydb = &state->ss->policydb;
2580 	sidtab = state->ss->sidtab;
2581 
2582 	context_init(&usercon);
2583 
2584 	rc = -EINVAL;
2585 	fromcon = sidtab_search(sidtab, fromsid);
2586 	if (!fromcon)
2587 		goto out_unlock;
2588 
2589 	rc = -EINVAL;
2590 	user = hashtab_search(policydb->p_users.table, username);
2591 	if (!user)
2592 		goto out_unlock;
2593 
2594 	usercon.user = user->value;
2595 
2596 	rc = -ENOMEM;
2597 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2598 	if (!mysids)
2599 		goto out_unlock;
2600 
2601 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2602 		role = policydb->role_val_to_struct[i];
2603 		usercon.role = i + 1;
2604 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2605 			usercon.type = j + 1;
2606 
2607 			if (mls_setup_user_range(policydb, fromcon, user,
2608 						 &usercon))
2609 				continue;
2610 
2611 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2612 			if (rc)
2613 				goto out_unlock;
2614 			if (mynel < maxnel) {
2615 				mysids[mynel++] = sid;
2616 			} else {
2617 				rc = -ENOMEM;
2618 				maxnel += SIDS_NEL;
2619 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2620 				if (!mysids2)
2621 					goto out_unlock;
2622 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2623 				kfree(mysids);
2624 				mysids = mysids2;
2625 				mysids[mynel++] = sid;
2626 			}
2627 		}
2628 	}
2629 	rc = 0;
2630 out_unlock:
2631 	read_unlock(&state->ss->policy_rwlock);
2632 	if (rc || !mynel) {
2633 		kfree(mysids);
2634 		goto out;
2635 	}
2636 
2637 	rc = -ENOMEM;
2638 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2639 	if (!mysids2) {
2640 		kfree(mysids);
2641 		goto out;
2642 	}
2643 	for (i = 0, j = 0; i < mynel; i++) {
2644 		struct av_decision dummy_avd;
2645 		rc = avc_has_perm_noaudit(state,
2646 					  fromsid, mysids[i],
2647 					  SECCLASS_PROCESS, /* kernel value */
2648 					  PROCESS__TRANSITION, AVC_STRICT,
2649 					  &dummy_avd);
2650 		if (!rc)
2651 			mysids2[j++] = mysids[i];
2652 		cond_resched();
2653 	}
2654 	rc = 0;
2655 	kfree(mysids);
2656 	*sids = mysids2;
2657 	*nel = j;
2658 out:
2659 	return rc;
2660 }
2661 
2662 /**
2663  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2664  * @fstype: filesystem type
2665  * @path: path from root of mount
2666  * @sclass: file security class
2667  * @sid: SID for path
2668  *
2669  * Obtain a SID to use for a file in a filesystem that
2670  * cannot support xattr or use a fixed labeling behavior like
2671  * transition SIDs or task SIDs.
2672  *
2673  * The caller must acquire the policy_rwlock before calling this function.
2674  */
2675 static inline int __security_genfs_sid(struct selinux_state *state,
2676 				       const char *fstype,
2677 				       char *path,
2678 				       u16 orig_sclass,
2679 				       u32 *sid)
2680 {
2681 	struct policydb *policydb = &state->ss->policydb;
2682 	struct sidtab *sidtab = state->ss->sidtab;
2683 	int len;
2684 	u16 sclass;
2685 	struct genfs *genfs;
2686 	struct ocontext *c;
2687 	int rc, cmp = 0;
2688 
2689 	while (path[0] == '/' && path[1] == '/')
2690 		path++;
2691 
2692 	sclass = unmap_class(&state->ss->map, orig_sclass);
2693 	*sid = SECINITSID_UNLABELED;
2694 
2695 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2696 		cmp = strcmp(fstype, genfs->fstype);
2697 		if (cmp <= 0)
2698 			break;
2699 	}
2700 
2701 	rc = -ENOENT;
2702 	if (!genfs || cmp)
2703 		goto out;
2704 
2705 	for (c = genfs->head; c; c = c->next) {
2706 		len = strlen(c->u.name);
2707 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2708 		    (strncmp(c->u.name, path, len) == 0))
2709 			break;
2710 	}
2711 
2712 	rc = -ENOENT;
2713 	if (!c)
2714 		goto out;
2715 
2716 	if (!c->sid[0]) {
2717 		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2718 		if (rc)
2719 			goto out;
2720 	}
2721 
2722 	*sid = c->sid[0];
2723 	rc = 0;
2724 out:
2725 	return rc;
2726 }
2727 
2728 /**
2729  * security_genfs_sid - Obtain a SID for a file in a filesystem
2730  * @fstype: filesystem type
2731  * @path: path from root of mount
2732  * @sclass: file security class
2733  * @sid: SID for path
2734  *
2735  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2736  * it afterward.
2737  */
2738 int security_genfs_sid(struct selinux_state *state,
2739 		       const char *fstype,
2740 		       char *path,
2741 		       u16 orig_sclass,
2742 		       u32 *sid)
2743 {
2744 	int retval;
2745 
2746 	read_lock(&state->ss->policy_rwlock);
2747 	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2748 	read_unlock(&state->ss->policy_rwlock);
2749 	return retval;
2750 }
2751 
2752 /**
2753  * security_fs_use - Determine how to handle labeling for a filesystem.
2754  * @sb: superblock in question
2755  */
2756 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2757 {
2758 	struct policydb *policydb;
2759 	struct sidtab *sidtab;
2760 	int rc = 0;
2761 	struct ocontext *c;
2762 	struct superblock_security_struct *sbsec = sb->s_security;
2763 	const char *fstype = sb->s_type->name;
2764 
2765 	read_lock(&state->ss->policy_rwlock);
2766 
2767 	policydb = &state->ss->policydb;
2768 	sidtab = state->ss->sidtab;
2769 
2770 	c = policydb->ocontexts[OCON_FSUSE];
2771 	while (c) {
2772 		if (strcmp(fstype, c->u.name) == 0)
2773 			break;
2774 		c = c->next;
2775 	}
2776 
2777 	if (c) {
2778 		sbsec->behavior = c->v.behavior;
2779 		if (!c->sid[0]) {
2780 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2781 						   &c->sid[0]);
2782 			if (rc)
2783 				goto out;
2784 		}
2785 		sbsec->sid = c->sid[0];
2786 	} else {
2787 		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2788 					  &sbsec->sid);
2789 		if (rc) {
2790 			sbsec->behavior = SECURITY_FS_USE_NONE;
2791 			rc = 0;
2792 		} else {
2793 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2794 		}
2795 	}
2796 
2797 out:
2798 	read_unlock(&state->ss->policy_rwlock);
2799 	return rc;
2800 }
2801 
2802 int security_get_bools(struct selinux_state *state,
2803 		       int *len, char ***names, int **values)
2804 {
2805 	struct policydb *policydb;
2806 	int i, rc;
2807 
2808 	if (!state->initialized) {
2809 		*len = 0;
2810 		*names = NULL;
2811 		*values = NULL;
2812 		return 0;
2813 	}
2814 
2815 	read_lock(&state->ss->policy_rwlock);
2816 
2817 	policydb = &state->ss->policydb;
2818 
2819 	*names = NULL;
2820 	*values = NULL;
2821 
2822 	rc = 0;
2823 	*len = policydb->p_bools.nprim;
2824 	if (!*len)
2825 		goto out;
2826 
2827 	rc = -ENOMEM;
2828 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2829 	if (!*names)
2830 		goto err;
2831 
2832 	rc = -ENOMEM;
2833 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2834 	if (!*values)
2835 		goto err;
2836 
2837 	for (i = 0; i < *len; i++) {
2838 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2839 
2840 		rc = -ENOMEM;
2841 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2842 				      GFP_ATOMIC);
2843 		if (!(*names)[i])
2844 			goto err;
2845 	}
2846 	rc = 0;
2847 out:
2848 	read_unlock(&state->ss->policy_rwlock);
2849 	return rc;
2850 err:
2851 	if (*names) {
2852 		for (i = 0; i < *len; i++)
2853 			kfree((*names)[i]);
2854 	}
2855 	kfree(*values);
2856 	goto out;
2857 }
2858 
2859 
2860 int security_set_bools(struct selinux_state *state, int len, int *values)
2861 {
2862 	struct policydb *policydb;
2863 	int i, rc;
2864 	int lenp, seqno = 0;
2865 	struct cond_node *cur;
2866 
2867 	write_lock_irq(&state->ss->policy_rwlock);
2868 
2869 	policydb = &state->ss->policydb;
2870 
2871 	rc = -EFAULT;
2872 	lenp = policydb->p_bools.nprim;
2873 	if (len != lenp)
2874 		goto out;
2875 
2876 	for (i = 0; i < len; i++) {
2877 		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2878 			audit_log(audit_context(), GFP_ATOMIC,
2879 				AUDIT_MAC_CONFIG_CHANGE,
2880 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2881 				sym_name(policydb, SYM_BOOLS, i),
2882 				!!values[i],
2883 				policydb->bool_val_to_struct[i]->state,
2884 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2885 				audit_get_sessionid(current));
2886 		}
2887 		if (values[i])
2888 			policydb->bool_val_to_struct[i]->state = 1;
2889 		else
2890 			policydb->bool_val_to_struct[i]->state = 0;
2891 	}
2892 
2893 	for (cur = policydb->cond_list; cur; cur = cur->next) {
2894 		rc = evaluate_cond_node(policydb, cur);
2895 		if (rc)
2896 			goto out;
2897 	}
2898 
2899 	seqno = ++state->ss->latest_granting;
2900 	rc = 0;
2901 out:
2902 	write_unlock_irq(&state->ss->policy_rwlock);
2903 	if (!rc) {
2904 		avc_ss_reset(state->avc, seqno);
2905 		selnl_notify_policyload(seqno);
2906 		selinux_status_update_policyload(state, seqno);
2907 		selinux_xfrm_notify_policyload();
2908 	}
2909 	return rc;
2910 }
2911 
2912 int security_get_bool_value(struct selinux_state *state,
2913 			    int index)
2914 {
2915 	struct policydb *policydb;
2916 	int rc;
2917 	int len;
2918 
2919 	read_lock(&state->ss->policy_rwlock);
2920 
2921 	policydb = &state->ss->policydb;
2922 
2923 	rc = -EFAULT;
2924 	len = policydb->p_bools.nprim;
2925 	if (index >= len)
2926 		goto out;
2927 
2928 	rc = policydb->bool_val_to_struct[index]->state;
2929 out:
2930 	read_unlock(&state->ss->policy_rwlock);
2931 	return rc;
2932 }
2933 
2934 static int security_preserve_bools(struct selinux_state *state,
2935 				   struct policydb *policydb)
2936 {
2937 	int rc, nbools = 0, *bvalues = NULL, i;
2938 	char **bnames = NULL;
2939 	struct cond_bool_datum *booldatum;
2940 	struct cond_node *cur;
2941 
2942 	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2943 	if (rc)
2944 		goto out;
2945 	for (i = 0; i < nbools; i++) {
2946 		booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2947 		if (booldatum)
2948 			booldatum->state = bvalues[i];
2949 	}
2950 	for (cur = policydb->cond_list; cur; cur = cur->next) {
2951 		rc = evaluate_cond_node(policydb, cur);
2952 		if (rc)
2953 			goto out;
2954 	}
2955 
2956 out:
2957 	if (bnames) {
2958 		for (i = 0; i < nbools; i++)
2959 			kfree(bnames[i]);
2960 	}
2961 	kfree(bnames);
2962 	kfree(bvalues);
2963 	return rc;
2964 }
2965 
2966 /*
2967  * security_sid_mls_copy() - computes a new sid based on the given
2968  * sid and the mls portion of mls_sid.
2969  */
2970 int security_sid_mls_copy(struct selinux_state *state,
2971 			  u32 sid, u32 mls_sid, u32 *new_sid)
2972 {
2973 	struct policydb *policydb = &state->ss->policydb;
2974 	struct sidtab *sidtab = state->ss->sidtab;
2975 	struct context *context1;
2976 	struct context *context2;
2977 	struct context newcon;
2978 	char *s;
2979 	u32 len;
2980 	int rc;
2981 
2982 	rc = 0;
2983 	if (!state->initialized || !policydb->mls_enabled) {
2984 		*new_sid = sid;
2985 		goto out;
2986 	}
2987 
2988 	context_init(&newcon);
2989 
2990 	read_lock(&state->ss->policy_rwlock);
2991 
2992 	rc = -EINVAL;
2993 	context1 = sidtab_search(sidtab, sid);
2994 	if (!context1) {
2995 		pr_err("SELinux: %s:  unrecognized SID %d\n",
2996 			__func__, sid);
2997 		goto out_unlock;
2998 	}
2999 
3000 	rc = -EINVAL;
3001 	context2 = sidtab_search(sidtab, mls_sid);
3002 	if (!context2) {
3003 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3004 			__func__, mls_sid);
3005 		goto out_unlock;
3006 	}
3007 
3008 	newcon.user = context1->user;
3009 	newcon.role = context1->role;
3010 	newcon.type = context1->type;
3011 	rc = mls_context_cpy(&newcon, context2);
3012 	if (rc)
3013 		goto out_unlock;
3014 
3015 	/* Check the validity of the new context. */
3016 	if (!policydb_context_isvalid(policydb, &newcon)) {
3017 		rc = convert_context_handle_invalid_context(state, &newcon);
3018 		if (rc) {
3019 			if (!context_struct_to_string(policydb, &newcon, &s,
3020 						      &len)) {
3021 				audit_log(audit_context(),
3022 					  GFP_ATOMIC, AUDIT_SELINUX_ERR,
3023 					  "op=security_sid_mls_copy "
3024 					  "invalid_context=%s", s);
3025 				kfree(s);
3026 			}
3027 			goto out_unlock;
3028 		}
3029 	}
3030 
3031 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3032 out_unlock:
3033 	read_unlock(&state->ss->policy_rwlock);
3034 	context_destroy(&newcon);
3035 out:
3036 	return rc;
3037 }
3038 
3039 /**
3040  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3041  * @nlbl_sid: NetLabel SID
3042  * @nlbl_type: NetLabel labeling protocol type
3043  * @xfrm_sid: XFRM SID
3044  *
3045  * Description:
3046  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3047  * resolved into a single SID it is returned via @peer_sid and the function
3048  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3049  * returns a negative value.  A table summarizing the behavior is below:
3050  *
3051  *                                 | function return |      @sid
3052  *   ------------------------------+-----------------+-----------------
3053  *   no peer labels                |        0        |    SECSID_NULL
3054  *   single peer label             |        0        |    <peer_label>
3055  *   multiple, consistent labels   |        0        |    <peer_label>
3056  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3057  *
3058  */
3059 int security_net_peersid_resolve(struct selinux_state *state,
3060 				 u32 nlbl_sid, u32 nlbl_type,
3061 				 u32 xfrm_sid,
3062 				 u32 *peer_sid)
3063 {
3064 	struct policydb *policydb = &state->ss->policydb;
3065 	struct sidtab *sidtab = state->ss->sidtab;
3066 	int rc;
3067 	struct context *nlbl_ctx;
3068 	struct context *xfrm_ctx;
3069 
3070 	*peer_sid = SECSID_NULL;
3071 
3072 	/* handle the common (which also happens to be the set of easy) cases
3073 	 * right away, these two if statements catch everything involving a
3074 	 * single or absent peer SID/label */
3075 	if (xfrm_sid == SECSID_NULL) {
3076 		*peer_sid = nlbl_sid;
3077 		return 0;
3078 	}
3079 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3080 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3081 	 * is present */
3082 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3083 		*peer_sid = xfrm_sid;
3084 		return 0;
3085 	}
3086 
3087 	/*
3088 	 * We don't need to check initialized here since the only way both
3089 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3090 	 * security server was initialized and state->initialized was true.
3091 	 */
3092 	if (!policydb->mls_enabled)
3093 		return 0;
3094 
3095 	read_lock(&state->ss->policy_rwlock);
3096 
3097 	rc = -EINVAL;
3098 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3099 	if (!nlbl_ctx) {
3100 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3101 		       __func__, nlbl_sid);
3102 		goto out;
3103 	}
3104 	rc = -EINVAL;
3105 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3106 	if (!xfrm_ctx) {
3107 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3108 		       __func__, xfrm_sid);
3109 		goto out;
3110 	}
3111 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3112 	if (rc)
3113 		goto out;
3114 
3115 	/* at present NetLabel SIDs/labels really only carry MLS
3116 	 * information so if the MLS portion of the NetLabel SID
3117 	 * matches the MLS portion of the labeled XFRM SID/label
3118 	 * then pass along the XFRM SID as it is the most
3119 	 * expressive */
3120 	*peer_sid = xfrm_sid;
3121 out:
3122 	read_unlock(&state->ss->policy_rwlock);
3123 	return rc;
3124 }
3125 
3126 static int get_classes_callback(void *k, void *d, void *args)
3127 {
3128 	struct class_datum *datum = d;
3129 	char *name = k, **classes = args;
3130 	int value = datum->value - 1;
3131 
3132 	classes[value] = kstrdup(name, GFP_ATOMIC);
3133 	if (!classes[value])
3134 		return -ENOMEM;
3135 
3136 	return 0;
3137 }
3138 
3139 int security_get_classes(struct selinux_state *state,
3140 			 char ***classes, int *nclasses)
3141 {
3142 	struct policydb *policydb = &state->ss->policydb;
3143 	int rc;
3144 
3145 	if (!state->initialized) {
3146 		*nclasses = 0;
3147 		*classes = NULL;
3148 		return 0;
3149 	}
3150 
3151 	read_lock(&state->ss->policy_rwlock);
3152 
3153 	rc = -ENOMEM;
3154 	*nclasses = policydb->p_classes.nprim;
3155 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3156 	if (!*classes)
3157 		goto out;
3158 
3159 	rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3160 			*classes);
3161 	if (rc) {
3162 		int i;
3163 		for (i = 0; i < *nclasses; i++)
3164 			kfree((*classes)[i]);
3165 		kfree(*classes);
3166 	}
3167 
3168 out:
3169 	read_unlock(&state->ss->policy_rwlock);
3170 	return rc;
3171 }
3172 
3173 static int get_permissions_callback(void *k, void *d, void *args)
3174 {
3175 	struct perm_datum *datum = d;
3176 	char *name = k, **perms = args;
3177 	int value = datum->value - 1;
3178 
3179 	perms[value] = kstrdup(name, GFP_ATOMIC);
3180 	if (!perms[value])
3181 		return -ENOMEM;
3182 
3183 	return 0;
3184 }
3185 
3186 int security_get_permissions(struct selinux_state *state,
3187 			     char *class, char ***perms, int *nperms)
3188 {
3189 	struct policydb *policydb = &state->ss->policydb;
3190 	int rc, i;
3191 	struct class_datum *match;
3192 
3193 	read_lock(&state->ss->policy_rwlock);
3194 
3195 	rc = -EINVAL;
3196 	match = hashtab_search(policydb->p_classes.table, class);
3197 	if (!match) {
3198 		pr_err("SELinux: %s:  unrecognized class %s\n",
3199 			__func__, class);
3200 		goto out;
3201 	}
3202 
3203 	rc = -ENOMEM;
3204 	*nperms = match->permissions.nprim;
3205 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3206 	if (!*perms)
3207 		goto out;
3208 
3209 	if (match->comdatum) {
3210 		rc = hashtab_map(match->comdatum->permissions.table,
3211 				get_permissions_callback, *perms);
3212 		if (rc)
3213 			goto err;
3214 	}
3215 
3216 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
3217 			*perms);
3218 	if (rc)
3219 		goto err;
3220 
3221 out:
3222 	read_unlock(&state->ss->policy_rwlock);
3223 	return rc;
3224 
3225 err:
3226 	read_unlock(&state->ss->policy_rwlock);
3227 	for (i = 0; i < *nperms; i++)
3228 		kfree((*perms)[i]);
3229 	kfree(*perms);
3230 	return rc;
3231 }
3232 
3233 int security_get_reject_unknown(struct selinux_state *state)
3234 {
3235 	return state->ss->policydb.reject_unknown;
3236 }
3237 
3238 int security_get_allow_unknown(struct selinux_state *state)
3239 {
3240 	return state->ss->policydb.allow_unknown;
3241 }
3242 
3243 /**
3244  * security_policycap_supported - Check for a specific policy capability
3245  * @req_cap: capability
3246  *
3247  * Description:
3248  * This function queries the currently loaded policy to see if it supports the
3249  * capability specified by @req_cap.  Returns true (1) if the capability is
3250  * supported, false (0) if it isn't supported.
3251  *
3252  */
3253 int security_policycap_supported(struct selinux_state *state,
3254 				 unsigned int req_cap)
3255 {
3256 	struct policydb *policydb = &state->ss->policydb;
3257 	int rc;
3258 
3259 	read_lock(&state->ss->policy_rwlock);
3260 	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3261 	read_unlock(&state->ss->policy_rwlock);
3262 
3263 	return rc;
3264 }
3265 
3266 struct selinux_audit_rule {
3267 	u32 au_seqno;
3268 	struct context au_ctxt;
3269 };
3270 
3271 void selinux_audit_rule_free(void *vrule)
3272 {
3273 	struct selinux_audit_rule *rule = vrule;
3274 
3275 	if (rule) {
3276 		context_destroy(&rule->au_ctxt);
3277 		kfree(rule);
3278 	}
3279 }
3280 
3281 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3282 {
3283 	struct selinux_state *state = &selinux_state;
3284 	struct policydb *policydb = &state->ss->policydb;
3285 	struct selinux_audit_rule *tmprule;
3286 	struct role_datum *roledatum;
3287 	struct type_datum *typedatum;
3288 	struct user_datum *userdatum;
3289 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3290 	int rc = 0;
3291 
3292 	*rule = NULL;
3293 
3294 	if (!state->initialized)
3295 		return -EOPNOTSUPP;
3296 
3297 	switch (field) {
3298 	case AUDIT_SUBJ_USER:
3299 	case AUDIT_SUBJ_ROLE:
3300 	case AUDIT_SUBJ_TYPE:
3301 	case AUDIT_OBJ_USER:
3302 	case AUDIT_OBJ_ROLE:
3303 	case AUDIT_OBJ_TYPE:
3304 		/* only 'equals' and 'not equals' fit user, role, and type */
3305 		if (op != Audit_equal && op != Audit_not_equal)
3306 			return -EINVAL;
3307 		break;
3308 	case AUDIT_SUBJ_SEN:
3309 	case AUDIT_SUBJ_CLR:
3310 	case AUDIT_OBJ_LEV_LOW:
3311 	case AUDIT_OBJ_LEV_HIGH:
3312 		/* we do not allow a range, indicated by the presence of '-' */
3313 		if (strchr(rulestr, '-'))
3314 			return -EINVAL;
3315 		break;
3316 	default:
3317 		/* only the above fields are valid */
3318 		return -EINVAL;
3319 	}
3320 
3321 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3322 	if (!tmprule)
3323 		return -ENOMEM;
3324 
3325 	context_init(&tmprule->au_ctxt);
3326 
3327 	read_lock(&state->ss->policy_rwlock);
3328 
3329 	tmprule->au_seqno = state->ss->latest_granting;
3330 
3331 	switch (field) {
3332 	case AUDIT_SUBJ_USER:
3333 	case AUDIT_OBJ_USER:
3334 		rc = -EINVAL;
3335 		userdatum = hashtab_search(policydb->p_users.table, rulestr);
3336 		if (!userdatum)
3337 			goto out;
3338 		tmprule->au_ctxt.user = userdatum->value;
3339 		break;
3340 	case AUDIT_SUBJ_ROLE:
3341 	case AUDIT_OBJ_ROLE:
3342 		rc = -EINVAL;
3343 		roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3344 		if (!roledatum)
3345 			goto out;
3346 		tmprule->au_ctxt.role = roledatum->value;
3347 		break;
3348 	case AUDIT_SUBJ_TYPE:
3349 	case AUDIT_OBJ_TYPE:
3350 		rc = -EINVAL;
3351 		typedatum = hashtab_search(policydb->p_types.table, rulestr);
3352 		if (!typedatum)
3353 			goto out;
3354 		tmprule->au_ctxt.type = typedatum->value;
3355 		break;
3356 	case AUDIT_SUBJ_SEN:
3357 	case AUDIT_SUBJ_CLR:
3358 	case AUDIT_OBJ_LEV_LOW:
3359 	case AUDIT_OBJ_LEV_HIGH:
3360 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3361 				     GFP_ATOMIC);
3362 		if (rc)
3363 			goto out;
3364 		break;
3365 	}
3366 	rc = 0;
3367 out:
3368 	read_unlock(&state->ss->policy_rwlock);
3369 
3370 	if (rc) {
3371 		selinux_audit_rule_free(tmprule);
3372 		tmprule = NULL;
3373 	}
3374 
3375 	*rule = tmprule;
3376 
3377 	return rc;
3378 }
3379 
3380 /* Check to see if the rule contains any selinux fields */
3381 int selinux_audit_rule_known(struct audit_krule *rule)
3382 {
3383 	int i;
3384 
3385 	for (i = 0; i < rule->field_count; i++) {
3386 		struct audit_field *f = &rule->fields[i];
3387 		switch (f->type) {
3388 		case AUDIT_SUBJ_USER:
3389 		case AUDIT_SUBJ_ROLE:
3390 		case AUDIT_SUBJ_TYPE:
3391 		case AUDIT_SUBJ_SEN:
3392 		case AUDIT_SUBJ_CLR:
3393 		case AUDIT_OBJ_USER:
3394 		case AUDIT_OBJ_ROLE:
3395 		case AUDIT_OBJ_TYPE:
3396 		case AUDIT_OBJ_LEV_LOW:
3397 		case AUDIT_OBJ_LEV_HIGH:
3398 			return 1;
3399 		}
3400 	}
3401 
3402 	return 0;
3403 }
3404 
3405 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3406 {
3407 	struct selinux_state *state = &selinux_state;
3408 	struct context *ctxt;
3409 	struct mls_level *level;
3410 	struct selinux_audit_rule *rule = vrule;
3411 	int match = 0;
3412 
3413 	if (unlikely(!rule)) {
3414 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3415 		return -ENOENT;
3416 	}
3417 
3418 	read_lock(&state->ss->policy_rwlock);
3419 
3420 	if (rule->au_seqno < state->ss->latest_granting) {
3421 		match = -ESTALE;
3422 		goto out;
3423 	}
3424 
3425 	ctxt = sidtab_search(state->ss->sidtab, sid);
3426 	if (unlikely(!ctxt)) {
3427 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3428 			  sid);
3429 		match = -ENOENT;
3430 		goto out;
3431 	}
3432 
3433 	/* a field/op pair that is not caught here will simply fall through
3434 	   without a match */
3435 	switch (field) {
3436 	case AUDIT_SUBJ_USER:
3437 	case AUDIT_OBJ_USER:
3438 		switch (op) {
3439 		case Audit_equal:
3440 			match = (ctxt->user == rule->au_ctxt.user);
3441 			break;
3442 		case Audit_not_equal:
3443 			match = (ctxt->user != rule->au_ctxt.user);
3444 			break;
3445 		}
3446 		break;
3447 	case AUDIT_SUBJ_ROLE:
3448 	case AUDIT_OBJ_ROLE:
3449 		switch (op) {
3450 		case Audit_equal:
3451 			match = (ctxt->role == rule->au_ctxt.role);
3452 			break;
3453 		case Audit_not_equal:
3454 			match = (ctxt->role != rule->au_ctxt.role);
3455 			break;
3456 		}
3457 		break;
3458 	case AUDIT_SUBJ_TYPE:
3459 	case AUDIT_OBJ_TYPE:
3460 		switch (op) {
3461 		case Audit_equal:
3462 			match = (ctxt->type == rule->au_ctxt.type);
3463 			break;
3464 		case Audit_not_equal:
3465 			match = (ctxt->type != rule->au_ctxt.type);
3466 			break;
3467 		}
3468 		break;
3469 	case AUDIT_SUBJ_SEN:
3470 	case AUDIT_SUBJ_CLR:
3471 	case AUDIT_OBJ_LEV_LOW:
3472 	case AUDIT_OBJ_LEV_HIGH:
3473 		level = ((field == AUDIT_SUBJ_SEN ||
3474 			  field == AUDIT_OBJ_LEV_LOW) ?
3475 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3476 		switch (op) {
3477 		case Audit_equal:
3478 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3479 					     level);
3480 			break;
3481 		case Audit_not_equal:
3482 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3483 					      level);
3484 			break;
3485 		case Audit_lt:
3486 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3487 					       level) &&
3488 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3489 					       level));
3490 			break;
3491 		case Audit_le:
3492 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3493 					      level);
3494 			break;
3495 		case Audit_gt:
3496 			match = (mls_level_dom(level,
3497 					      &rule->au_ctxt.range.level[0]) &&
3498 				 !mls_level_eq(level,
3499 					       &rule->au_ctxt.range.level[0]));
3500 			break;
3501 		case Audit_ge:
3502 			match = mls_level_dom(level,
3503 					      &rule->au_ctxt.range.level[0]);
3504 			break;
3505 		}
3506 	}
3507 
3508 out:
3509 	read_unlock(&state->ss->policy_rwlock);
3510 	return match;
3511 }
3512 
3513 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3514 
3515 static int aurule_avc_callback(u32 event)
3516 {
3517 	int err = 0;
3518 
3519 	if (event == AVC_CALLBACK_RESET && aurule_callback)
3520 		err = aurule_callback();
3521 	return err;
3522 }
3523 
3524 static int __init aurule_init(void)
3525 {
3526 	int err;
3527 
3528 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3529 	if (err)
3530 		panic("avc_add_callback() failed, error %d\n", err);
3531 
3532 	return err;
3533 }
3534 __initcall(aurule_init);
3535 
3536 #ifdef CONFIG_NETLABEL
3537 /**
3538  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3539  * @secattr: the NetLabel packet security attributes
3540  * @sid: the SELinux SID
3541  *
3542  * Description:
3543  * Attempt to cache the context in @ctx, which was derived from the packet in
3544  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3545  * already been initialized.
3546  *
3547  */
3548 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3549 				      u32 sid)
3550 {
3551 	u32 *sid_cache;
3552 
3553 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3554 	if (sid_cache == NULL)
3555 		return;
3556 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3557 	if (secattr->cache == NULL) {
3558 		kfree(sid_cache);
3559 		return;
3560 	}
3561 
3562 	*sid_cache = sid;
3563 	secattr->cache->free = kfree;
3564 	secattr->cache->data = sid_cache;
3565 	secattr->flags |= NETLBL_SECATTR_CACHE;
3566 }
3567 
3568 /**
3569  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3570  * @secattr: the NetLabel packet security attributes
3571  * @sid: the SELinux SID
3572  *
3573  * Description:
3574  * Convert the given NetLabel security attributes in @secattr into a
3575  * SELinux SID.  If the @secattr field does not contain a full SELinux
3576  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3577  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3578  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3579  * conversion for future lookups.  Returns zero on success, negative values on
3580  * failure.
3581  *
3582  */
3583 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3584 				   struct netlbl_lsm_secattr *secattr,
3585 				   u32 *sid)
3586 {
3587 	struct policydb *policydb = &state->ss->policydb;
3588 	struct sidtab *sidtab = state->ss->sidtab;
3589 	int rc;
3590 	struct context *ctx;
3591 	struct context ctx_new;
3592 
3593 	if (!state->initialized) {
3594 		*sid = SECSID_NULL;
3595 		return 0;
3596 	}
3597 
3598 	read_lock(&state->ss->policy_rwlock);
3599 
3600 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3601 		*sid = *(u32 *)secattr->cache->data;
3602 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3603 		*sid = secattr->attr.secid;
3604 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3605 		rc = -EIDRM;
3606 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3607 		if (ctx == NULL)
3608 			goto out;
3609 
3610 		context_init(&ctx_new);
3611 		ctx_new.user = ctx->user;
3612 		ctx_new.role = ctx->role;
3613 		ctx_new.type = ctx->type;
3614 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3615 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3616 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3617 			if (rc)
3618 				goto out;
3619 		}
3620 		rc = -EIDRM;
3621 		if (!mls_context_isvalid(policydb, &ctx_new))
3622 			goto out_free;
3623 
3624 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3625 		if (rc)
3626 			goto out_free;
3627 
3628 		security_netlbl_cache_add(secattr, *sid);
3629 
3630 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3631 	} else
3632 		*sid = SECSID_NULL;
3633 
3634 	read_unlock(&state->ss->policy_rwlock);
3635 	return 0;
3636 out_free:
3637 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3638 out:
3639 	read_unlock(&state->ss->policy_rwlock);
3640 	return rc;
3641 }
3642 
3643 /**
3644  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3645  * @sid: the SELinux SID
3646  * @secattr: the NetLabel packet security attributes
3647  *
3648  * Description:
3649  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3650  * Returns zero on success, negative values on failure.
3651  *
3652  */
3653 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3654 				   u32 sid, struct netlbl_lsm_secattr *secattr)
3655 {
3656 	struct policydb *policydb = &state->ss->policydb;
3657 	int rc;
3658 	struct context *ctx;
3659 
3660 	if (!state->initialized)
3661 		return 0;
3662 
3663 	read_lock(&state->ss->policy_rwlock);
3664 
3665 	rc = -ENOENT;
3666 	ctx = sidtab_search(state->ss->sidtab, sid);
3667 	if (ctx == NULL)
3668 		goto out;
3669 
3670 	rc = -ENOMEM;
3671 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3672 				  GFP_ATOMIC);
3673 	if (secattr->domain == NULL)
3674 		goto out;
3675 
3676 	secattr->attr.secid = sid;
3677 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3678 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3679 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3680 out:
3681 	read_unlock(&state->ss->policy_rwlock);
3682 	return rc;
3683 }
3684 #endif /* CONFIG_NETLABEL */
3685 
3686 /**
3687  * security_read_policy - read the policy.
3688  * @data: binary policy data
3689  * @len: length of data in bytes
3690  *
3691  */
3692 int security_read_policy(struct selinux_state *state,
3693 			 void **data, size_t *len)
3694 {
3695 	struct policydb *policydb = &state->ss->policydb;
3696 	int rc;
3697 	struct policy_file fp;
3698 
3699 	if (!state->initialized)
3700 		return -EINVAL;
3701 
3702 	*len = security_policydb_len(state);
3703 
3704 	*data = vmalloc_user(*len);
3705 	if (!*data)
3706 		return -ENOMEM;
3707 
3708 	fp.data = *data;
3709 	fp.len = *len;
3710 
3711 	read_lock(&state->ss->policy_rwlock);
3712 	rc = policydb_write(policydb, &fp);
3713 	read_unlock(&state->ss->policy_rwlock);
3714 
3715 	if (rc)
3716 		return rc;
3717 
3718 	*len = (unsigned long)fp.data - (unsigned long)*data;
3719 	return 0;
3720 
3721 }
3722