xref: /linux/security/selinux/ss/services.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *           James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *
11  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
12  *
13  * 	Added conditional policy language extensions
14  *
15  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
17  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
18  *	This program is free software; you can redistribute it and/or modify
19  *  	it under the terms of the GNU General Public License as published by
20  *	the Free Software Foundation, version 2.
21  */
22 #include <linux/kernel.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/spinlock.h>
26 #include <linux/errno.h>
27 #include <linux/in.h>
28 #include <linux/sched.h>
29 #include <linux/audit.h>
30 #include <asm/semaphore.h>
31 #include "flask.h"
32 #include "avc.h"
33 #include "avc_ss.h"
34 #include "security.h"
35 #include "context.h"
36 #include "policydb.h"
37 #include "sidtab.h"
38 #include "services.h"
39 #include "conditional.h"
40 #include "mls.h"
41 
42 extern void selnl_notify_policyload(u32 seqno);
43 unsigned int policydb_loaded_version;
44 
45 static DEFINE_RWLOCK(policy_rwlock);
46 #define POLICY_RDLOCK read_lock(&policy_rwlock)
47 #define POLICY_WRLOCK write_lock_irq(&policy_rwlock)
48 #define POLICY_RDUNLOCK read_unlock(&policy_rwlock)
49 #define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock)
50 
51 static DECLARE_MUTEX(load_sem);
52 #define LOAD_LOCK down(&load_sem)
53 #define LOAD_UNLOCK up(&load_sem)
54 
55 static struct sidtab sidtab;
56 struct policydb policydb;
57 int ss_initialized = 0;
58 
59 /*
60  * The largest sequence number that has been used when
61  * providing an access decision to the access vector cache.
62  * The sequence number only changes when a policy change
63  * occurs.
64  */
65 static u32 latest_granting = 0;
66 
67 /* Forward declaration. */
68 static int context_struct_to_string(struct context *context, char **scontext,
69 				    u32 *scontext_len);
70 
71 /*
72  * Return the boolean value of a constraint expression
73  * when it is applied to the specified source and target
74  * security contexts.
75  *
76  * xcontext is a special beast...  It is used by the validatetrans rules
77  * only.  For these rules, scontext is the context before the transition,
78  * tcontext is the context after the transition, and xcontext is the context
79  * of the process performing the transition.  All other callers of
80  * constraint_expr_eval should pass in NULL for xcontext.
81  */
82 static int constraint_expr_eval(struct context *scontext,
83 				struct context *tcontext,
84 				struct context *xcontext,
85 				struct constraint_expr *cexpr)
86 {
87 	u32 val1, val2;
88 	struct context *c;
89 	struct role_datum *r1, *r2;
90 	struct mls_level *l1, *l2;
91 	struct constraint_expr *e;
92 	int s[CEXPR_MAXDEPTH];
93 	int sp = -1;
94 
95 	for (e = cexpr; e; e = e->next) {
96 		switch (e->expr_type) {
97 		case CEXPR_NOT:
98 			BUG_ON(sp < 0);
99 			s[sp] = !s[sp];
100 			break;
101 		case CEXPR_AND:
102 			BUG_ON(sp < 1);
103 			sp--;
104 			s[sp] &= s[sp+1];
105 			break;
106 		case CEXPR_OR:
107 			BUG_ON(sp < 1);
108 			sp--;
109 			s[sp] |= s[sp+1];
110 			break;
111 		case CEXPR_ATTR:
112 			if (sp == (CEXPR_MAXDEPTH-1))
113 				return 0;
114 			switch (e->attr) {
115 			case CEXPR_USER:
116 				val1 = scontext->user;
117 				val2 = tcontext->user;
118 				break;
119 			case CEXPR_TYPE:
120 				val1 = scontext->type;
121 				val2 = tcontext->type;
122 				break;
123 			case CEXPR_ROLE:
124 				val1 = scontext->role;
125 				val2 = tcontext->role;
126 				r1 = policydb.role_val_to_struct[val1 - 1];
127 				r2 = policydb.role_val_to_struct[val2 - 1];
128 				switch (e->op) {
129 				case CEXPR_DOM:
130 					s[++sp] = ebitmap_get_bit(&r1->dominates,
131 								  val2 - 1);
132 					continue;
133 				case CEXPR_DOMBY:
134 					s[++sp] = ebitmap_get_bit(&r2->dominates,
135 								  val1 - 1);
136 					continue;
137 				case CEXPR_INCOMP:
138 					s[++sp] = ( !ebitmap_get_bit(&r1->dominates,
139 								     val2 - 1) &&
140 						    !ebitmap_get_bit(&r2->dominates,
141 								     val1 - 1) );
142 					continue;
143 				default:
144 					break;
145 				}
146 				break;
147 			case CEXPR_L1L2:
148 				l1 = &(scontext->range.level[0]);
149 				l2 = &(tcontext->range.level[0]);
150 				goto mls_ops;
151 			case CEXPR_L1H2:
152 				l1 = &(scontext->range.level[0]);
153 				l2 = &(tcontext->range.level[1]);
154 				goto mls_ops;
155 			case CEXPR_H1L2:
156 				l1 = &(scontext->range.level[1]);
157 				l2 = &(tcontext->range.level[0]);
158 				goto mls_ops;
159 			case CEXPR_H1H2:
160 				l1 = &(scontext->range.level[1]);
161 				l2 = &(tcontext->range.level[1]);
162 				goto mls_ops;
163 			case CEXPR_L1H1:
164 				l1 = &(scontext->range.level[0]);
165 				l2 = &(scontext->range.level[1]);
166 				goto mls_ops;
167 			case CEXPR_L2H2:
168 				l1 = &(tcontext->range.level[0]);
169 				l2 = &(tcontext->range.level[1]);
170 				goto mls_ops;
171 mls_ops:
172 			switch (e->op) {
173 			case CEXPR_EQ:
174 				s[++sp] = mls_level_eq(l1, l2);
175 				continue;
176 			case CEXPR_NEQ:
177 				s[++sp] = !mls_level_eq(l1, l2);
178 				continue;
179 			case CEXPR_DOM:
180 				s[++sp] = mls_level_dom(l1, l2);
181 				continue;
182 			case CEXPR_DOMBY:
183 				s[++sp] = mls_level_dom(l2, l1);
184 				continue;
185 			case CEXPR_INCOMP:
186 				s[++sp] = mls_level_incomp(l2, l1);
187 				continue;
188 			default:
189 				BUG();
190 				return 0;
191 			}
192 			break;
193 			default:
194 				BUG();
195 				return 0;
196 			}
197 
198 			switch (e->op) {
199 			case CEXPR_EQ:
200 				s[++sp] = (val1 == val2);
201 				break;
202 			case CEXPR_NEQ:
203 				s[++sp] = (val1 != val2);
204 				break;
205 			default:
206 				BUG();
207 				return 0;
208 			}
209 			break;
210 		case CEXPR_NAMES:
211 			if (sp == (CEXPR_MAXDEPTH-1))
212 				return 0;
213 			c = scontext;
214 			if (e->attr & CEXPR_TARGET)
215 				c = tcontext;
216 			else if (e->attr & CEXPR_XTARGET) {
217 				c = xcontext;
218 				if (!c) {
219 					BUG();
220 					return 0;
221 				}
222 			}
223 			if (e->attr & CEXPR_USER)
224 				val1 = c->user;
225 			else if (e->attr & CEXPR_ROLE)
226 				val1 = c->role;
227 			else if (e->attr & CEXPR_TYPE)
228 				val1 = c->type;
229 			else {
230 				BUG();
231 				return 0;
232 			}
233 
234 			switch (e->op) {
235 			case CEXPR_EQ:
236 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
237 				break;
238 			case CEXPR_NEQ:
239 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
240 				break;
241 			default:
242 				BUG();
243 				return 0;
244 			}
245 			break;
246 		default:
247 			BUG();
248 			return 0;
249 		}
250 	}
251 
252 	BUG_ON(sp != 0);
253 	return s[0];
254 }
255 
256 /*
257  * Compute access vectors based on a context structure pair for
258  * the permissions in a particular class.
259  */
260 static int context_struct_compute_av(struct context *scontext,
261 				     struct context *tcontext,
262 				     u16 tclass,
263 				     u32 requested,
264 				     struct av_decision *avd)
265 {
266 	struct constraint_node *constraint;
267 	struct role_allow *ra;
268 	struct avtab_key avkey;
269 	struct avtab_node *node;
270 	struct class_datum *tclass_datum;
271 	struct ebitmap *sattr, *tattr;
272 	struct ebitmap_node *snode, *tnode;
273 	unsigned int i, j;
274 
275 	/*
276 	 * Remap extended Netlink classes for old policy versions.
277 	 * Do this here rather than socket_type_to_security_class()
278 	 * in case a newer policy version is loaded, allowing sockets
279 	 * to remain in the correct class.
280 	 */
281 	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
282 		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
283 		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
284 			tclass = SECCLASS_NETLINK_SOCKET;
285 
286 	if (!tclass || tclass > policydb.p_classes.nprim) {
287 		printk(KERN_ERR "security_compute_av:  unrecognized class %d\n",
288 		       tclass);
289 		return -EINVAL;
290 	}
291 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
292 
293 	/*
294 	 * Initialize the access vectors to the default values.
295 	 */
296 	avd->allowed = 0;
297 	avd->decided = 0xffffffff;
298 	avd->auditallow = 0;
299 	avd->auditdeny = 0xffffffff;
300 	avd->seqno = latest_granting;
301 
302 	/*
303 	 * If a specific type enforcement rule was defined for
304 	 * this permission check, then use it.
305 	 */
306 	avkey.target_class = tclass;
307 	avkey.specified = AVTAB_AV;
308 	sattr = &policydb.type_attr_map[scontext->type - 1];
309 	tattr = &policydb.type_attr_map[tcontext->type - 1];
310 	ebitmap_for_each_bit(sattr, snode, i) {
311 		if (!ebitmap_node_get_bit(snode, i))
312 			continue;
313 		ebitmap_for_each_bit(tattr, tnode, j) {
314 			if (!ebitmap_node_get_bit(tnode, j))
315 				continue;
316 			avkey.source_type = i + 1;
317 			avkey.target_type = j + 1;
318 			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
319 			     node != NULL;
320 			     node = avtab_search_node_next(node, avkey.specified)) {
321 				if (node->key.specified == AVTAB_ALLOWED)
322 					avd->allowed |= node->datum.data;
323 				else if (node->key.specified == AVTAB_AUDITALLOW)
324 					avd->auditallow |= node->datum.data;
325 				else if (node->key.specified == AVTAB_AUDITDENY)
326 					avd->auditdeny &= node->datum.data;
327 			}
328 
329 			/* Check conditional av table for additional permissions */
330 			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
331 
332 		}
333 	}
334 
335 	/*
336 	 * Remove any permissions prohibited by a constraint (this includes
337 	 * the MLS policy).
338 	 */
339 	constraint = tclass_datum->constraints;
340 	while (constraint) {
341 		if ((constraint->permissions & (avd->allowed)) &&
342 		    !constraint_expr_eval(scontext, tcontext, NULL,
343 					  constraint->expr)) {
344 			avd->allowed = (avd->allowed) & ~(constraint->permissions);
345 		}
346 		constraint = constraint->next;
347 	}
348 
349 	/*
350 	 * If checking process transition permission and the
351 	 * role is changing, then check the (current_role, new_role)
352 	 * pair.
353 	 */
354 	if (tclass == SECCLASS_PROCESS &&
355 	    (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
356 	    scontext->role != tcontext->role) {
357 		for (ra = policydb.role_allow; ra; ra = ra->next) {
358 			if (scontext->role == ra->role &&
359 			    tcontext->role == ra->new_role)
360 				break;
361 		}
362 		if (!ra)
363 			avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
364 			                                PROCESS__DYNTRANSITION);
365 	}
366 
367 	return 0;
368 }
369 
370 static int security_validtrans_handle_fail(struct context *ocontext,
371                                            struct context *ncontext,
372                                            struct context *tcontext,
373                                            u16 tclass)
374 {
375 	char *o = NULL, *n = NULL, *t = NULL;
376 	u32 olen, nlen, tlen;
377 
378 	if (context_struct_to_string(ocontext, &o, &olen) < 0)
379 		goto out;
380 	if (context_struct_to_string(ncontext, &n, &nlen) < 0)
381 		goto out;
382 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
383 		goto out;
384 	audit_log(current->audit_context, AUDIT_SELINUX_ERR,
385 	          "security_validate_transition:  denied for"
386 	          " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
387 	          o, n, t, policydb.p_class_val_to_name[tclass-1]);
388 out:
389 	kfree(o);
390 	kfree(n);
391 	kfree(t);
392 
393 	if (!selinux_enforcing)
394 		return 0;
395 	return -EPERM;
396 }
397 
398 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
399                                  u16 tclass)
400 {
401 	struct context *ocontext;
402 	struct context *ncontext;
403 	struct context *tcontext;
404 	struct class_datum *tclass_datum;
405 	struct constraint_node *constraint;
406 	int rc = 0;
407 
408 	if (!ss_initialized)
409 		return 0;
410 
411 	POLICY_RDLOCK;
412 
413 	/*
414 	 * Remap extended Netlink classes for old policy versions.
415 	 * Do this here rather than socket_type_to_security_class()
416 	 * in case a newer policy version is loaded, allowing sockets
417 	 * to remain in the correct class.
418 	 */
419 	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
420 		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
421 		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
422 			tclass = SECCLASS_NETLINK_SOCKET;
423 
424 	if (!tclass || tclass > policydb.p_classes.nprim) {
425 		printk(KERN_ERR "security_validate_transition:  "
426 		       "unrecognized class %d\n", tclass);
427 		rc = -EINVAL;
428 		goto out;
429 	}
430 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
431 
432 	ocontext = sidtab_search(&sidtab, oldsid);
433 	if (!ocontext) {
434 		printk(KERN_ERR "security_validate_transition: "
435 		       " unrecognized SID %d\n", oldsid);
436 		rc = -EINVAL;
437 		goto out;
438 	}
439 
440 	ncontext = sidtab_search(&sidtab, newsid);
441 	if (!ncontext) {
442 		printk(KERN_ERR "security_validate_transition: "
443 		       " unrecognized SID %d\n", newsid);
444 		rc = -EINVAL;
445 		goto out;
446 	}
447 
448 	tcontext = sidtab_search(&sidtab, tasksid);
449 	if (!tcontext) {
450 		printk(KERN_ERR "security_validate_transition: "
451 		       " unrecognized SID %d\n", tasksid);
452 		rc = -EINVAL;
453 		goto out;
454 	}
455 
456 	constraint = tclass_datum->validatetrans;
457 	while (constraint) {
458 		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
459 		                          constraint->expr)) {
460 			rc = security_validtrans_handle_fail(ocontext, ncontext,
461 			                                     tcontext, tclass);
462 			goto out;
463 		}
464 		constraint = constraint->next;
465 	}
466 
467 out:
468 	POLICY_RDUNLOCK;
469 	return rc;
470 }
471 
472 /**
473  * security_compute_av - Compute access vector decisions.
474  * @ssid: source security identifier
475  * @tsid: target security identifier
476  * @tclass: target security class
477  * @requested: requested permissions
478  * @avd: access vector decisions
479  *
480  * Compute a set of access vector decisions based on the
481  * SID pair (@ssid, @tsid) for the permissions in @tclass.
482  * Return -%EINVAL if any of the parameters are invalid or %0
483  * if the access vector decisions were computed successfully.
484  */
485 int security_compute_av(u32 ssid,
486 			u32 tsid,
487 			u16 tclass,
488 			u32 requested,
489 			struct av_decision *avd)
490 {
491 	struct context *scontext = NULL, *tcontext = NULL;
492 	int rc = 0;
493 
494 	if (!ss_initialized) {
495 		avd->allowed = 0xffffffff;
496 		avd->decided = 0xffffffff;
497 		avd->auditallow = 0;
498 		avd->auditdeny = 0xffffffff;
499 		avd->seqno = latest_granting;
500 		return 0;
501 	}
502 
503 	POLICY_RDLOCK;
504 
505 	scontext = sidtab_search(&sidtab, ssid);
506 	if (!scontext) {
507 		printk(KERN_ERR "security_compute_av:  unrecognized SID %d\n",
508 		       ssid);
509 		rc = -EINVAL;
510 		goto out;
511 	}
512 	tcontext = sidtab_search(&sidtab, tsid);
513 	if (!tcontext) {
514 		printk(KERN_ERR "security_compute_av:  unrecognized SID %d\n",
515 		       tsid);
516 		rc = -EINVAL;
517 		goto out;
518 	}
519 
520 	rc = context_struct_compute_av(scontext, tcontext, tclass,
521 				       requested, avd);
522 out:
523 	POLICY_RDUNLOCK;
524 	return rc;
525 }
526 
527 /*
528  * Write the security context string representation of
529  * the context structure `context' into a dynamically
530  * allocated string of the correct size.  Set `*scontext'
531  * to point to this string and set `*scontext_len' to
532  * the length of the string.
533  */
534 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
535 {
536 	char *scontextp;
537 
538 	*scontext = NULL;
539 	*scontext_len = 0;
540 
541 	/* Compute the size of the context. */
542 	*scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
543 	*scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
544 	*scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
545 	*scontext_len += mls_compute_context_len(context);
546 
547 	/* Allocate space for the context; caller must free this space. */
548 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
549 	if (!scontextp) {
550 		return -ENOMEM;
551 	}
552 	*scontext = scontextp;
553 
554 	/*
555 	 * Copy the user name, role name and type name into the context.
556 	 */
557 	sprintf(scontextp, "%s:%s:%s",
558 		policydb.p_user_val_to_name[context->user - 1],
559 		policydb.p_role_val_to_name[context->role - 1],
560 		policydb.p_type_val_to_name[context->type - 1]);
561 	scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
562 	             1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
563 	             1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
564 
565 	mls_sid_to_context(context, &scontextp);
566 
567 	*scontextp = 0;
568 
569 	return 0;
570 }
571 
572 #include "initial_sid_to_string.h"
573 
574 /**
575  * security_sid_to_context - Obtain a context for a given SID.
576  * @sid: security identifier, SID
577  * @scontext: security context
578  * @scontext_len: length in bytes
579  *
580  * Write the string representation of the context associated with @sid
581  * into a dynamically allocated string of the correct size.  Set @scontext
582  * to point to this string and set @scontext_len to the length of the string.
583  */
584 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
585 {
586 	struct context *context;
587 	int rc = 0;
588 
589 	if (!ss_initialized) {
590 		if (sid <= SECINITSID_NUM) {
591 			char *scontextp;
592 
593 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
594 			scontextp = kmalloc(*scontext_len,GFP_ATOMIC);
595 			strcpy(scontextp, initial_sid_to_string[sid]);
596 			*scontext = scontextp;
597 			goto out;
598 		}
599 		printk(KERN_ERR "security_sid_to_context:  called before initial "
600 		       "load_policy on unknown SID %d\n", sid);
601 		rc = -EINVAL;
602 		goto out;
603 	}
604 	POLICY_RDLOCK;
605 	context = sidtab_search(&sidtab, sid);
606 	if (!context) {
607 		printk(KERN_ERR "security_sid_to_context:  unrecognized SID "
608 		       "%d\n", sid);
609 		rc = -EINVAL;
610 		goto out_unlock;
611 	}
612 	rc = context_struct_to_string(context, scontext, scontext_len);
613 out_unlock:
614 	POLICY_RDUNLOCK;
615 out:
616 	return rc;
617 
618 }
619 
620 static int security_context_to_sid_core(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
621 {
622 	char *scontext2;
623 	struct context context;
624 	struct role_datum *role;
625 	struct type_datum *typdatum;
626 	struct user_datum *usrdatum;
627 	char *scontextp, *p, oldc;
628 	int rc = 0;
629 
630 	if (!ss_initialized) {
631 		int i;
632 
633 		for (i = 1; i < SECINITSID_NUM; i++) {
634 			if (!strcmp(initial_sid_to_string[i], scontext)) {
635 				*sid = i;
636 				goto out;
637 			}
638 		}
639 		*sid = SECINITSID_KERNEL;
640 		goto out;
641 	}
642 	*sid = SECSID_NULL;
643 
644 	/* Copy the string so that we can modify the copy as we parse it.
645 	   The string should already by null terminated, but we append a
646 	   null suffix to the copy to avoid problems with the existing
647 	   attr package, which doesn't view the null terminator as part
648 	   of the attribute value. */
649 	scontext2 = kmalloc(scontext_len+1,GFP_KERNEL);
650 	if (!scontext2) {
651 		rc = -ENOMEM;
652 		goto out;
653 	}
654 	memcpy(scontext2, scontext, scontext_len);
655 	scontext2[scontext_len] = 0;
656 
657 	context_init(&context);
658 	*sid = SECSID_NULL;
659 
660 	POLICY_RDLOCK;
661 
662 	/* Parse the security context. */
663 
664 	rc = -EINVAL;
665 	scontextp = (char *) scontext2;
666 
667 	/* Extract the user. */
668 	p = scontextp;
669 	while (*p && *p != ':')
670 		p++;
671 
672 	if (*p == 0)
673 		goto out_unlock;
674 
675 	*p++ = 0;
676 
677 	usrdatum = hashtab_search(policydb.p_users.table, scontextp);
678 	if (!usrdatum)
679 		goto out_unlock;
680 
681 	context.user = usrdatum->value;
682 
683 	/* Extract role. */
684 	scontextp = p;
685 	while (*p && *p != ':')
686 		p++;
687 
688 	if (*p == 0)
689 		goto out_unlock;
690 
691 	*p++ = 0;
692 
693 	role = hashtab_search(policydb.p_roles.table, scontextp);
694 	if (!role)
695 		goto out_unlock;
696 	context.role = role->value;
697 
698 	/* Extract type. */
699 	scontextp = p;
700 	while (*p && *p != ':')
701 		p++;
702 	oldc = *p;
703 	*p++ = 0;
704 
705 	typdatum = hashtab_search(policydb.p_types.table, scontextp);
706 	if (!typdatum)
707 		goto out_unlock;
708 
709 	context.type = typdatum->value;
710 
711 	rc = mls_context_to_sid(oldc, &p, &context, &sidtab, def_sid);
712 	if (rc)
713 		goto out_unlock;
714 
715 	if ((p - scontext2) < scontext_len) {
716 		rc = -EINVAL;
717 		goto out_unlock;
718 	}
719 
720 	/* Check the validity of the new context. */
721 	if (!policydb_context_isvalid(&policydb, &context)) {
722 		rc = -EINVAL;
723 		goto out_unlock;
724 	}
725 	/* Obtain the new sid. */
726 	rc = sidtab_context_to_sid(&sidtab, &context, sid);
727 out_unlock:
728 	POLICY_RDUNLOCK;
729 	context_destroy(&context);
730 	kfree(scontext2);
731 out:
732 	return rc;
733 }
734 
735 /**
736  * security_context_to_sid - Obtain a SID for a given security context.
737  * @scontext: security context
738  * @scontext_len: length in bytes
739  * @sid: security identifier, SID
740  *
741  * Obtains a SID associated with the security context that
742  * has the string representation specified by @scontext.
743  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
744  * memory is available, or 0 on success.
745  */
746 int security_context_to_sid(char *scontext, u32 scontext_len, u32 *sid)
747 {
748 	return security_context_to_sid_core(scontext, scontext_len,
749 	                                    sid, SECSID_NULL);
750 }
751 
752 /**
753  * security_context_to_sid_default - Obtain a SID for a given security context,
754  * falling back to specified default if needed.
755  *
756  * @scontext: security context
757  * @scontext_len: length in bytes
758  * @sid: security identifier, SID
759  * @def_sid: default SID to assign on errror
760  *
761  * Obtains a SID associated with the security context that
762  * has the string representation specified by @scontext.
763  * The default SID is passed to the MLS layer to be used to allow
764  * kernel labeling of the MLS field if the MLS field is not present
765  * (for upgrading to MLS without full relabel).
766  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
767  * memory is available, or 0 on success.
768  */
769 int security_context_to_sid_default(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
770 {
771 	return security_context_to_sid_core(scontext, scontext_len,
772 	                                    sid, def_sid);
773 }
774 
775 static int compute_sid_handle_invalid_context(
776 	struct context *scontext,
777 	struct context *tcontext,
778 	u16 tclass,
779 	struct context *newcontext)
780 {
781 	char *s = NULL, *t = NULL, *n = NULL;
782 	u32 slen, tlen, nlen;
783 
784 	if (context_struct_to_string(scontext, &s, &slen) < 0)
785 		goto out;
786 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
787 		goto out;
788 	if (context_struct_to_string(newcontext, &n, &nlen) < 0)
789 		goto out;
790 	audit_log(current->audit_context, AUDIT_SELINUX_ERR,
791 		  "security_compute_sid:  invalid context %s"
792 		  " for scontext=%s"
793 		  " tcontext=%s"
794 		  " tclass=%s",
795 		  n, s, t, policydb.p_class_val_to_name[tclass-1]);
796 out:
797 	kfree(s);
798 	kfree(t);
799 	kfree(n);
800 	if (!selinux_enforcing)
801 		return 0;
802 	return -EACCES;
803 }
804 
805 static int security_compute_sid(u32 ssid,
806 				u32 tsid,
807 				u16 tclass,
808 				u32 specified,
809 				u32 *out_sid)
810 {
811 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
812 	struct role_trans *roletr = NULL;
813 	struct avtab_key avkey;
814 	struct avtab_datum *avdatum;
815 	struct avtab_node *node;
816 	int rc = 0;
817 
818 	if (!ss_initialized) {
819 		switch (tclass) {
820 		case SECCLASS_PROCESS:
821 			*out_sid = ssid;
822 			break;
823 		default:
824 			*out_sid = tsid;
825 			break;
826 		}
827 		goto out;
828 	}
829 
830 	POLICY_RDLOCK;
831 
832 	scontext = sidtab_search(&sidtab, ssid);
833 	if (!scontext) {
834 		printk(KERN_ERR "security_compute_sid:  unrecognized SID %d\n",
835 		       ssid);
836 		rc = -EINVAL;
837 		goto out_unlock;
838 	}
839 	tcontext = sidtab_search(&sidtab, tsid);
840 	if (!tcontext) {
841 		printk(KERN_ERR "security_compute_sid:  unrecognized SID %d\n",
842 		       tsid);
843 		rc = -EINVAL;
844 		goto out_unlock;
845 	}
846 
847 	context_init(&newcontext);
848 
849 	/* Set the user identity. */
850 	switch (specified) {
851 	case AVTAB_TRANSITION:
852 	case AVTAB_CHANGE:
853 		/* Use the process user identity. */
854 		newcontext.user = scontext->user;
855 		break;
856 	case AVTAB_MEMBER:
857 		/* Use the related object owner. */
858 		newcontext.user = tcontext->user;
859 		break;
860 	}
861 
862 	/* Set the role and type to default values. */
863 	switch (tclass) {
864 	case SECCLASS_PROCESS:
865 		/* Use the current role and type of process. */
866 		newcontext.role = scontext->role;
867 		newcontext.type = scontext->type;
868 		break;
869 	default:
870 		/* Use the well-defined object role. */
871 		newcontext.role = OBJECT_R_VAL;
872 		/* Use the type of the related object. */
873 		newcontext.type = tcontext->type;
874 	}
875 
876 	/* Look for a type transition/member/change rule. */
877 	avkey.source_type = scontext->type;
878 	avkey.target_type = tcontext->type;
879 	avkey.target_class = tclass;
880 	avkey.specified = specified;
881 	avdatum = avtab_search(&policydb.te_avtab, &avkey);
882 
883 	/* If no permanent rule, also check for enabled conditional rules */
884 	if(!avdatum) {
885 		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
886 		for (; node != NULL; node = avtab_search_node_next(node, specified)) {
887 			if (node->key.specified & AVTAB_ENABLED) {
888 				avdatum = &node->datum;
889 				break;
890 			}
891 		}
892 	}
893 
894 	if (avdatum) {
895 		/* Use the type from the type transition/member/change rule. */
896 		newcontext.type = avdatum->data;
897 	}
898 
899 	/* Check for class-specific changes. */
900 	switch (tclass) {
901 	case SECCLASS_PROCESS:
902 		if (specified & AVTAB_TRANSITION) {
903 			/* Look for a role transition rule. */
904 			for (roletr = policydb.role_tr; roletr;
905 			     roletr = roletr->next) {
906 				if (roletr->role == scontext->role &&
907 				    roletr->type == tcontext->type) {
908 					/* Use the role transition rule. */
909 					newcontext.role = roletr->new_role;
910 					break;
911 				}
912 			}
913 		}
914 		break;
915 	default:
916 		break;
917 	}
918 
919 	/* Set the MLS attributes.
920 	   This is done last because it may allocate memory. */
921 	rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
922 	if (rc)
923 		goto out_unlock;
924 
925 	/* Check the validity of the context. */
926 	if (!policydb_context_isvalid(&policydb, &newcontext)) {
927 		rc = compute_sid_handle_invalid_context(scontext,
928 							tcontext,
929 							tclass,
930 							&newcontext);
931 		if (rc)
932 			goto out_unlock;
933 	}
934 	/* Obtain the sid for the context. */
935 	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
936 out_unlock:
937 	POLICY_RDUNLOCK;
938 	context_destroy(&newcontext);
939 out:
940 	return rc;
941 }
942 
943 /**
944  * security_transition_sid - Compute the SID for a new subject/object.
945  * @ssid: source security identifier
946  * @tsid: target security identifier
947  * @tclass: target security class
948  * @out_sid: security identifier for new subject/object
949  *
950  * Compute a SID to use for labeling a new subject or object in the
951  * class @tclass based on a SID pair (@ssid, @tsid).
952  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
953  * if insufficient memory is available, or %0 if the new SID was
954  * computed successfully.
955  */
956 int security_transition_sid(u32 ssid,
957 			    u32 tsid,
958 			    u16 tclass,
959 			    u32 *out_sid)
960 {
961 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
962 }
963 
964 /**
965  * security_member_sid - Compute the SID for member selection.
966  * @ssid: source security identifier
967  * @tsid: target security identifier
968  * @tclass: target security class
969  * @out_sid: security identifier for selected member
970  *
971  * Compute a SID to use when selecting a member of a polyinstantiated
972  * object of class @tclass based on a SID pair (@ssid, @tsid).
973  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
974  * if insufficient memory is available, or %0 if the SID was
975  * computed successfully.
976  */
977 int security_member_sid(u32 ssid,
978 			u32 tsid,
979 			u16 tclass,
980 			u32 *out_sid)
981 {
982 	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
983 }
984 
985 /**
986  * security_change_sid - Compute the SID for object relabeling.
987  * @ssid: source security identifier
988  * @tsid: target security identifier
989  * @tclass: target security class
990  * @out_sid: security identifier for selected member
991  *
992  * Compute a SID to use for relabeling an object of class @tclass
993  * based on a SID pair (@ssid, @tsid).
994  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
995  * if insufficient memory is available, or %0 if the SID was
996  * computed successfully.
997  */
998 int security_change_sid(u32 ssid,
999 			u32 tsid,
1000 			u16 tclass,
1001 			u32 *out_sid)
1002 {
1003 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1004 }
1005 
1006 /*
1007  * Verify that each permission that is defined under the
1008  * existing policy is still defined with the same value
1009  * in the new policy.
1010  */
1011 static int validate_perm(void *key, void *datum, void *p)
1012 {
1013 	struct hashtab *h;
1014 	struct perm_datum *perdatum, *perdatum2;
1015 	int rc = 0;
1016 
1017 
1018 	h = p;
1019 	perdatum = datum;
1020 
1021 	perdatum2 = hashtab_search(h, key);
1022 	if (!perdatum2) {
1023 		printk(KERN_ERR "security:  permission %s disappeared",
1024 		       (char *)key);
1025 		rc = -ENOENT;
1026 		goto out;
1027 	}
1028 	if (perdatum->value != perdatum2->value) {
1029 		printk(KERN_ERR "security:  the value of permission %s changed",
1030 		       (char *)key);
1031 		rc = -EINVAL;
1032 	}
1033 out:
1034 	return rc;
1035 }
1036 
1037 /*
1038  * Verify that each class that is defined under the
1039  * existing policy is still defined with the same
1040  * attributes in the new policy.
1041  */
1042 static int validate_class(void *key, void *datum, void *p)
1043 {
1044 	struct policydb *newp;
1045 	struct class_datum *cladatum, *cladatum2;
1046 	int rc;
1047 
1048 	newp = p;
1049 	cladatum = datum;
1050 
1051 	cladatum2 = hashtab_search(newp->p_classes.table, key);
1052 	if (!cladatum2) {
1053 		printk(KERN_ERR "security:  class %s disappeared\n",
1054 		       (char *)key);
1055 		rc = -ENOENT;
1056 		goto out;
1057 	}
1058 	if (cladatum->value != cladatum2->value) {
1059 		printk(KERN_ERR "security:  the value of class %s changed\n",
1060 		       (char *)key);
1061 		rc = -EINVAL;
1062 		goto out;
1063 	}
1064 	if ((cladatum->comdatum && !cladatum2->comdatum) ||
1065 	    (!cladatum->comdatum && cladatum2->comdatum)) {
1066 		printk(KERN_ERR "security:  the inherits clause for the access "
1067 		       "vector definition for class %s changed\n", (char *)key);
1068 		rc = -EINVAL;
1069 		goto out;
1070 	}
1071 	if (cladatum->comdatum) {
1072 		rc = hashtab_map(cladatum->comdatum->permissions.table, validate_perm,
1073 		                 cladatum2->comdatum->permissions.table);
1074 		if (rc) {
1075 			printk(" in the access vector definition for class "
1076 			       "%s\n", (char *)key);
1077 			goto out;
1078 		}
1079 	}
1080 	rc = hashtab_map(cladatum->permissions.table, validate_perm,
1081 	                 cladatum2->permissions.table);
1082 	if (rc)
1083 		printk(" in access vector definition for class %s\n",
1084 		       (char *)key);
1085 out:
1086 	return rc;
1087 }
1088 
1089 /* Clone the SID into the new SID table. */
1090 static int clone_sid(u32 sid,
1091 		     struct context *context,
1092 		     void *arg)
1093 {
1094 	struct sidtab *s = arg;
1095 
1096 	return sidtab_insert(s, sid, context);
1097 }
1098 
1099 static inline int convert_context_handle_invalid_context(struct context *context)
1100 {
1101 	int rc = 0;
1102 
1103 	if (selinux_enforcing) {
1104 		rc = -EINVAL;
1105 	} else {
1106 		char *s;
1107 		u32 len;
1108 
1109 		context_struct_to_string(context, &s, &len);
1110 		printk(KERN_ERR "security:  context %s is invalid\n", s);
1111 		kfree(s);
1112 	}
1113 	return rc;
1114 }
1115 
1116 struct convert_context_args {
1117 	struct policydb *oldp;
1118 	struct policydb *newp;
1119 };
1120 
1121 /*
1122  * Convert the values in the security context
1123  * structure `c' from the values specified
1124  * in the policy `p->oldp' to the values specified
1125  * in the policy `p->newp'.  Verify that the
1126  * context is valid under the new policy.
1127  */
1128 static int convert_context(u32 key,
1129 			   struct context *c,
1130 			   void *p)
1131 {
1132 	struct convert_context_args *args;
1133 	struct context oldc;
1134 	struct role_datum *role;
1135 	struct type_datum *typdatum;
1136 	struct user_datum *usrdatum;
1137 	char *s;
1138 	u32 len;
1139 	int rc;
1140 
1141 	args = p;
1142 
1143 	rc = context_cpy(&oldc, c);
1144 	if (rc)
1145 		goto out;
1146 
1147 	rc = -EINVAL;
1148 
1149 	/* Convert the user. */
1150 	usrdatum = hashtab_search(args->newp->p_users.table,
1151 	                          args->oldp->p_user_val_to_name[c->user - 1]);
1152 	if (!usrdatum) {
1153 		goto bad;
1154 	}
1155 	c->user = usrdatum->value;
1156 
1157 	/* Convert the role. */
1158 	role = hashtab_search(args->newp->p_roles.table,
1159 	                      args->oldp->p_role_val_to_name[c->role - 1]);
1160 	if (!role) {
1161 		goto bad;
1162 	}
1163 	c->role = role->value;
1164 
1165 	/* Convert the type. */
1166 	typdatum = hashtab_search(args->newp->p_types.table,
1167 	                          args->oldp->p_type_val_to_name[c->type - 1]);
1168 	if (!typdatum) {
1169 		goto bad;
1170 	}
1171 	c->type = typdatum->value;
1172 
1173 	rc = mls_convert_context(args->oldp, args->newp, c);
1174 	if (rc)
1175 		goto bad;
1176 
1177 	/* Check the validity of the new context. */
1178 	if (!policydb_context_isvalid(args->newp, c)) {
1179 		rc = convert_context_handle_invalid_context(&oldc);
1180 		if (rc)
1181 			goto bad;
1182 	}
1183 
1184 	context_destroy(&oldc);
1185 out:
1186 	return rc;
1187 bad:
1188 	context_struct_to_string(&oldc, &s, &len);
1189 	context_destroy(&oldc);
1190 	printk(KERN_ERR "security:  invalidating context %s\n", s);
1191 	kfree(s);
1192 	goto out;
1193 }
1194 
1195 extern void selinux_complete_init(void);
1196 
1197 /**
1198  * security_load_policy - Load a security policy configuration.
1199  * @data: binary policy data
1200  * @len: length of data in bytes
1201  *
1202  * Load a new set of security policy configuration data,
1203  * validate it and convert the SID table as necessary.
1204  * This function will flush the access vector cache after
1205  * loading the new policy.
1206  */
1207 int security_load_policy(void *data, size_t len)
1208 {
1209 	struct policydb oldpolicydb, newpolicydb;
1210 	struct sidtab oldsidtab, newsidtab;
1211 	struct convert_context_args args;
1212 	u32 seqno;
1213 	int rc = 0;
1214 	struct policy_file file = { data, len }, *fp = &file;
1215 
1216 	LOAD_LOCK;
1217 
1218 	if (!ss_initialized) {
1219 		avtab_cache_init();
1220 		if (policydb_read(&policydb, fp)) {
1221 			LOAD_UNLOCK;
1222 			avtab_cache_destroy();
1223 			return -EINVAL;
1224 		}
1225 		if (policydb_load_isids(&policydb, &sidtab)) {
1226 			LOAD_UNLOCK;
1227 			policydb_destroy(&policydb);
1228 			avtab_cache_destroy();
1229 			return -EINVAL;
1230 		}
1231 		policydb_loaded_version = policydb.policyvers;
1232 		ss_initialized = 1;
1233 		seqno = ++latest_granting;
1234 		LOAD_UNLOCK;
1235 		selinux_complete_init();
1236 		avc_ss_reset(seqno);
1237 		selnl_notify_policyload(seqno);
1238 		return 0;
1239 	}
1240 
1241 #if 0
1242 	sidtab_hash_eval(&sidtab, "sids");
1243 #endif
1244 
1245 	if (policydb_read(&newpolicydb, fp)) {
1246 		LOAD_UNLOCK;
1247 		return -EINVAL;
1248 	}
1249 
1250 	sidtab_init(&newsidtab);
1251 
1252 	/* Verify that the existing classes did not change. */
1253 	if (hashtab_map(policydb.p_classes.table, validate_class, &newpolicydb)) {
1254 		printk(KERN_ERR "security:  the definition of an existing "
1255 		       "class changed\n");
1256 		rc = -EINVAL;
1257 		goto err;
1258 	}
1259 
1260 	/* Clone the SID table. */
1261 	sidtab_shutdown(&sidtab);
1262 	if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1263 		rc = -ENOMEM;
1264 		goto err;
1265 	}
1266 
1267 	/* Convert the internal representations of contexts
1268 	   in the new SID table and remove invalid SIDs. */
1269 	args.oldp = &policydb;
1270 	args.newp = &newpolicydb;
1271 	sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1272 
1273 	/* Save the old policydb and SID table to free later. */
1274 	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1275 	sidtab_set(&oldsidtab, &sidtab);
1276 
1277 	/* Install the new policydb and SID table. */
1278 	POLICY_WRLOCK;
1279 	memcpy(&policydb, &newpolicydb, sizeof policydb);
1280 	sidtab_set(&sidtab, &newsidtab);
1281 	seqno = ++latest_granting;
1282 	policydb_loaded_version = policydb.policyvers;
1283 	POLICY_WRUNLOCK;
1284 	LOAD_UNLOCK;
1285 
1286 	/* Free the old policydb and SID table. */
1287 	policydb_destroy(&oldpolicydb);
1288 	sidtab_destroy(&oldsidtab);
1289 
1290 	avc_ss_reset(seqno);
1291 	selnl_notify_policyload(seqno);
1292 
1293 	return 0;
1294 
1295 err:
1296 	LOAD_UNLOCK;
1297 	sidtab_destroy(&newsidtab);
1298 	policydb_destroy(&newpolicydb);
1299 	return rc;
1300 
1301 }
1302 
1303 /**
1304  * security_port_sid - Obtain the SID for a port.
1305  * @domain: communication domain aka address family
1306  * @type: socket type
1307  * @protocol: protocol number
1308  * @port: port number
1309  * @out_sid: security identifier
1310  */
1311 int security_port_sid(u16 domain,
1312 		      u16 type,
1313 		      u8 protocol,
1314 		      u16 port,
1315 		      u32 *out_sid)
1316 {
1317 	struct ocontext *c;
1318 	int rc = 0;
1319 
1320 	POLICY_RDLOCK;
1321 
1322 	c = policydb.ocontexts[OCON_PORT];
1323 	while (c) {
1324 		if (c->u.port.protocol == protocol &&
1325 		    c->u.port.low_port <= port &&
1326 		    c->u.port.high_port >= port)
1327 			break;
1328 		c = c->next;
1329 	}
1330 
1331 	if (c) {
1332 		if (!c->sid[0]) {
1333 			rc = sidtab_context_to_sid(&sidtab,
1334 						   &c->context[0],
1335 						   &c->sid[0]);
1336 			if (rc)
1337 				goto out;
1338 		}
1339 		*out_sid = c->sid[0];
1340 	} else {
1341 		*out_sid = SECINITSID_PORT;
1342 	}
1343 
1344 out:
1345 	POLICY_RDUNLOCK;
1346 	return rc;
1347 }
1348 
1349 /**
1350  * security_netif_sid - Obtain the SID for a network interface.
1351  * @name: interface name
1352  * @if_sid: interface SID
1353  * @msg_sid: default SID for received packets
1354  */
1355 int security_netif_sid(char *name,
1356 		       u32 *if_sid,
1357 		       u32 *msg_sid)
1358 {
1359 	int rc = 0;
1360 	struct ocontext *c;
1361 
1362 	POLICY_RDLOCK;
1363 
1364 	c = policydb.ocontexts[OCON_NETIF];
1365 	while (c) {
1366 		if (strcmp(name, c->u.name) == 0)
1367 			break;
1368 		c = c->next;
1369 	}
1370 
1371 	if (c) {
1372 		if (!c->sid[0] || !c->sid[1]) {
1373 			rc = sidtab_context_to_sid(&sidtab,
1374 						  &c->context[0],
1375 						  &c->sid[0]);
1376 			if (rc)
1377 				goto out;
1378 			rc = sidtab_context_to_sid(&sidtab,
1379 						   &c->context[1],
1380 						   &c->sid[1]);
1381 			if (rc)
1382 				goto out;
1383 		}
1384 		*if_sid = c->sid[0];
1385 		*msg_sid = c->sid[1];
1386 	} else {
1387 		*if_sid = SECINITSID_NETIF;
1388 		*msg_sid = SECINITSID_NETMSG;
1389 	}
1390 
1391 out:
1392 	POLICY_RDUNLOCK;
1393 	return rc;
1394 }
1395 
1396 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1397 {
1398 	int i, fail = 0;
1399 
1400 	for(i = 0; i < 4; i++)
1401 		if(addr[i] != (input[i] & mask[i])) {
1402 			fail = 1;
1403 			break;
1404 		}
1405 
1406 	return !fail;
1407 }
1408 
1409 /**
1410  * security_node_sid - Obtain the SID for a node (host).
1411  * @domain: communication domain aka address family
1412  * @addrp: address
1413  * @addrlen: address length in bytes
1414  * @out_sid: security identifier
1415  */
1416 int security_node_sid(u16 domain,
1417 		      void *addrp,
1418 		      u32 addrlen,
1419 		      u32 *out_sid)
1420 {
1421 	int rc = 0;
1422 	struct ocontext *c;
1423 
1424 	POLICY_RDLOCK;
1425 
1426 	switch (domain) {
1427 	case AF_INET: {
1428 		u32 addr;
1429 
1430 		if (addrlen != sizeof(u32)) {
1431 			rc = -EINVAL;
1432 			goto out;
1433 		}
1434 
1435 		addr = *((u32 *)addrp);
1436 
1437 		c = policydb.ocontexts[OCON_NODE];
1438 		while (c) {
1439 			if (c->u.node.addr == (addr & c->u.node.mask))
1440 				break;
1441 			c = c->next;
1442 		}
1443 		break;
1444 	}
1445 
1446 	case AF_INET6:
1447 		if (addrlen != sizeof(u64) * 2) {
1448 			rc = -EINVAL;
1449 			goto out;
1450 		}
1451 		c = policydb.ocontexts[OCON_NODE6];
1452 		while (c) {
1453 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1454 						c->u.node6.mask))
1455 				break;
1456 			c = c->next;
1457 		}
1458 		break;
1459 
1460 	default:
1461 		*out_sid = SECINITSID_NODE;
1462 		goto out;
1463 	}
1464 
1465 	if (c) {
1466 		if (!c->sid[0]) {
1467 			rc = sidtab_context_to_sid(&sidtab,
1468 						   &c->context[0],
1469 						   &c->sid[0]);
1470 			if (rc)
1471 				goto out;
1472 		}
1473 		*out_sid = c->sid[0];
1474 	} else {
1475 		*out_sid = SECINITSID_NODE;
1476 	}
1477 
1478 out:
1479 	POLICY_RDUNLOCK;
1480 	return rc;
1481 }
1482 
1483 #define SIDS_NEL 25
1484 
1485 /**
1486  * security_get_user_sids - Obtain reachable SIDs for a user.
1487  * @fromsid: starting SID
1488  * @username: username
1489  * @sids: array of reachable SIDs for user
1490  * @nel: number of elements in @sids
1491  *
1492  * Generate the set of SIDs for legal security contexts
1493  * for a given user that can be reached by @fromsid.
1494  * Set *@sids to point to a dynamically allocated
1495  * array containing the set of SIDs.  Set *@nel to the
1496  * number of elements in the array.
1497  */
1498 
1499 int security_get_user_sids(u32 fromsid,
1500 	                   char *username,
1501 			   u32 **sids,
1502 			   u32 *nel)
1503 {
1504 	struct context *fromcon, usercon;
1505 	u32 *mysids, *mysids2, sid;
1506 	u32 mynel = 0, maxnel = SIDS_NEL;
1507 	struct user_datum *user;
1508 	struct role_datum *role;
1509 	struct av_decision avd;
1510 	struct ebitmap_node *rnode, *tnode;
1511 	int rc = 0, i, j;
1512 
1513 	if (!ss_initialized) {
1514 		*sids = NULL;
1515 		*nel = 0;
1516 		goto out;
1517 	}
1518 
1519 	POLICY_RDLOCK;
1520 
1521 	fromcon = sidtab_search(&sidtab, fromsid);
1522 	if (!fromcon) {
1523 		rc = -EINVAL;
1524 		goto out_unlock;
1525 	}
1526 
1527 	user = hashtab_search(policydb.p_users.table, username);
1528 	if (!user) {
1529 		rc = -EINVAL;
1530 		goto out_unlock;
1531 	}
1532 	usercon.user = user->value;
1533 
1534 	mysids = kmalloc(maxnel*sizeof(*mysids), GFP_ATOMIC);
1535 	if (!mysids) {
1536 		rc = -ENOMEM;
1537 		goto out_unlock;
1538 	}
1539 	memset(mysids, 0, maxnel*sizeof(*mysids));
1540 
1541 	ebitmap_for_each_bit(&user->roles, rnode, i) {
1542 		if (!ebitmap_node_get_bit(rnode, i))
1543 			continue;
1544 		role = policydb.role_val_to_struct[i];
1545 		usercon.role = i+1;
1546 		ebitmap_for_each_bit(&role->types, tnode, j) {
1547 			if (!ebitmap_node_get_bit(tnode, j))
1548 				continue;
1549 			usercon.type = j+1;
1550 
1551 			if (mls_setup_user_range(fromcon, user, &usercon))
1552 				continue;
1553 
1554 			rc = context_struct_compute_av(fromcon, &usercon,
1555 						       SECCLASS_PROCESS,
1556 						       PROCESS__TRANSITION,
1557 						       &avd);
1558 			if (rc ||  !(avd.allowed & PROCESS__TRANSITION))
1559 				continue;
1560 			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1561 			if (rc) {
1562 				kfree(mysids);
1563 				goto out_unlock;
1564 			}
1565 			if (mynel < maxnel) {
1566 				mysids[mynel++] = sid;
1567 			} else {
1568 				maxnel += SIDS_NEL;
1569 				mysids2 = kmalloc(maxnel*sizeof(*mysids2), GFP_ATOMIC);
1570 				if (!mysids2) {
1571 					rc = -ENOMEM;
1572 					kfree(mysids);
1573 					goto out_unlock;
1574 				}
1575 				memset(mysids2, 0, maxnel*sizeof(*mysids2));
1576 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1577 				kfree(mysids);
1578 				mysids = mysids2;
1579 				mysids[mynel++] = sid;
1580 			}
1581 		}
1582 	}
1583 
1584 	*sids = mysids;
1585 	*nel = mynel;
1586 
1587 out_unlock:
1588 	POLICY_RDUNLOCK;
1589 out:
1590 	return rc;
1591 }
1592 
1593 /**
1594  * security_genfs_sid - Obtain a SID for a file in a filesystem
1595  * @fstype: filesystem type
1596  * @path: path from root of mount
1597  * @sclass: file security class
1598  * @sid: SID for path
1599  *
1600  * Obtain a SID to use for a file in a filesystem that
1601  * cannot support xattr or use a fixed labeling behavior like
1602  * transition SIDs or task SIDs.
1603  */
1604 int security_genfs_sid(const char *fstype,
1605 	               char *path,
1606 		       u16 sclass,
1607 		       u32 *sid)
1608 {
1609 	int len;
1610 	struct genfs *genfs;
1611 	struct ocontext *c;
1612 	int rc = 0, cmp = 0;
1613 
1614 	POLICY_RDLOCK;
1615 
1616 	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
1617 		cmp = strcmp(fstype, genfs->fstype);
1618 		if (cmp <= 0)
1619 			break;
1620 	}
1621 
1622 	if (!genfs || cmp) {
1623 		*sid = SECINITSID_UNLABELED;
1624 		rc = -ENOENT;
1625 		goto out;
1626 	}
1627 
1628 	for (c = genfs->head; c; c = c->next) {
1629 		len = strlen(c->u.name);
1630 		if ((!c->v.sclass || sclass == c->v.sclass) &&
1631 		    (strncmp(c->u.name, path, len) == 0))
1632 			break;
1633 	}
1634 
1635 	if (!c) {
1636 		*sid = SECINITSID_UNLABELED;
1637 		rc = -ENOENT;
1638 		goto out;
1639 	}
1640 
1641 	if (!c->sid[0]) {
1642 		rc = sidtab_context_to_sid(&sidtab,
1643 					   &c->context[0],
1644 					   &c->sid[0]);
1645 		if (rc)
1646 			goto out;
1647 	}
1648 
1649 	*sid = c->sid[0];
1650 out:
1651 	POLICY_RDUNLOCK;
1652 	return rc;
1653 }
1654 
1655 /**
1656  * security_fs_use - Determine how to handle labeling for a filesystem.
1657  * @fstype: filesystem type
1658  * @behavior: labeling behavior
1659  * @sid: SID for filesystem (superblock)
1660  */
1661 int security_fs_use(
1662 	const char *fstype,
1663 	unsigned int *behavior,
1664 	u32 *sid)
1665 {
1666 	int rc = 0;
1667 	struct ocontext *c;
1668 
1669 	POLICY_RDLOCK;
1670 
1671 	c = policydb.ocontexts[OCON_FSUSE];
1672 	while (c) {
1673 		if (strcmp(fstype, c->u.name) == 0)
1674 			break;
1675 		c = c->next;
1676 	}
1677 
1678 	if (c) {
1679 		*behavior = c->v.behavior;
1680 		if (!c->sid[0]) {
1681 			rc = sidtab_context_to_sid(&sidtab,
1682 						   &c->context[0],
1683 						   &c->sid[0]);
1684 			if (rc)
1685 				goto out;
1686 		}
1687 		*sid = c->sid[0];
1688 	} else {
1689 		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
1690 		if (rc) {
1691 			*behavior = SECURITY_FS_USE_NONE;
1692 			rc = 0;
1693 		} else {
1694 			*behavior = SECURITY_FS_USE_GENFS;
1695 		}
1696 	}
1697 
1698 out:
1699 	POLICY_RDUNLOCK;
1700 	return rc;
1701 }
1702 
1703 int security_get_bools(int *len, char ***names, int **values)
1704 {
1705 	int i, rc = -ENOMEM;
1706 
1707 	POLICY_RDLOCK;
1708 	*names = NULL;
1709 	*values = NULL;
1710 
1711 	*len = policydb.p_bools.nprim;
1712 	if (!*len) {
1713 		rc = 0;
1714 		goto out;
1715 	}
1716 
1717 	*names = (char**)kmalloc(sizeof(char*) * *len, GFP_ATOMIC);
1718 	if (!*names)
1719 		goto err;
1720 	memset(*names, 0, sizeof(char*) * *len);
1721 
1722 	*values = (int*)kmalloc(sizeof(int) * *len, GFP_ATOMIC);
1723 	if (!*values)
1724 		goto err;
1725 
1726 	for (i = 0; i < *len; i++) {
1727 		size_t name_len;
1728 		(*values)[i] = policydb.bool_val_to_struct[i]->state;
1729 		name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
1730 		(*names)[i] = (char*)kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
1731 		if (!(*names)[i])
1732 			goto err;
1733 		strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
1734 		(*names)[i][name_len - 1] = 0;
1735 	}
1736 	rc = 0;
1737 out:
1738 	POLICY_RDUNLOCK;
1739 	return rc;
1740 err:
1741 	if (*names) {
1742 		for (i = 0; i < *len; i++)
1743 			kfree((*names)[i]);
1744 	}
1745 	kfree(*values);
1746 	goto out;
1747 }
1748 
1749 
1750 int security_set_bools(int len, int *values)
1751 {
1752 	int i, rc = 0;
1753 	int lenp, seqno = 0;
1754 	struct cond_node *cur;
1755 
1756 	POLICY_WRLOCK;
1757 
1758 	lenp = policydb.p_bools.nprim;
1759 	if (len != lenp) {
1760 		rc = -EFAULT;
1761 		goto out;
1762 	}
1763 
1764 	printk(KERN_INFO "security: committed booleans { ");
1765 	for (i = 0; i < len; i++) {
1766 		if (values[i]) {
1767 			policydb.bool_val_to_struct[i]->state = 1;
1768 		} else {
1769 			policydb.bool_val_to_struct[i]->state = 0;
1770 		}
1771 		if (i != 0)
1772 			printk(", ");
1773 		printk("%s:%d", policydb.p_bool_val_to_name[i],
1774 		       policydb.bool_val_to_struct[i]->state);
1775 	}
1776 	printk(" }\n");
1777 
1778 	for (cur = policydb.cond_list; cur != NULL; cur = cur->next) {
1779 		rc = evaluate_cond_node(&policydb, cur);
1780 		if (rc)
1781 			goto out;
1782 	}
1783 
1784 	seqno = ++latest_granting;
1785 
1786 out:
1787 	POLICY_WRUNLOCK;
1788 	if (!rc) {
1789 		avc_ss_reset(seqno);
1790 		selnl_notify_policyload(seqno);
1791 	}
1792 	return rc;
1793 }
1794 
1795 int security_get_bool_value(int bool)
1796 {
1797 	int rc = 0;
1798 	int len;
1799 
1800 	POLICY_RDLOCK;
1801 
1802 	len = policydb.p_bools.nprim;
1803 	if (bool >= len) {
1804 		rc = -EFAULT;
1805 		goto out;
1806 	}
1807 
1808 	rc = policydb.bool_val_to_struct[bool]->state;
1809 out:
1810 	POLICY_RDUNLOCK;
1811 	return rc;
1812 }
1813