xref: /linux/security/selinux/ss/services.c (revision 397d1d88af2670db9c73d2806ae270b147e6f949)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the security services.
4  *
5  * Authors : Stephen Smalley, <stephen.smalley.work@gmail.com>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *	Support for context based audit filters.
12  *
13  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14  *
15  *	Added conditional policy language extensions
16  *
17  * Updated: Hewlett-Packard <paul@paul-moore.com>
18  *
19  *      Added support for NetLabel
20  *      Added support for the policy capability bitmap
21  *
22  * Updated: Chad Sellers <csellers@tresys.com>
23  *
24  *  Added validation of kernel classes and permissions
25  *
26  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27  *
28  *  Added support for bounds domain and audit messaged on masked permissions
29  *
30  * Updated: Guido Trentalancia <guido@trentalancia.com>
31  *
32  *  Added support for runtime switching of the policy type
33  *
34  * Copyright (C) 2008, 2009 NEC Corporation
35  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39  */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <linux/lsm_hooks.h>
51 #include <net/netlabel.h>
52 
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68 #include "policycap_names.h"
69 #include "ima.h"
70 
71 struct selinux_policy_convert_data {
72 	struct convert_context_args args;
73 	struct sidtab_convert_params sidtab_params;
74 };
75 
76 /* Forward declaration. */
77 static int context_struct_to_string(struct policydb *policydb,
78 				    struct context *context,
79 				    char **scontext,
80 				    u32 *scontext_len);
81 
82 static int sidtab_entry_to_string(struct policydb *policydb,
83 				  struct sidtab *sidtab,
84 				  struct sidtab_entry *entry,
85 				  char **scontext,
86 				  u32 *scontext_len);
87 
88 static void context_struct_compute_av(struct policydb *policydb,
89 				      struct context *scontext,
90 				      struct context *tcontext,
91 				      u16 tclass,
92 				      struct av_decision *avd,
93 				      struct extended_perms *xperms);
94 
selinux_set_mapping(struct policydb * pol,const struct security_class_mapping * map,struct selinux_map * out_map)95 static int selinux_set_mapping(struct policydb *pol,
96 			       const struct security_class_mapping *map,
97 			       struct selinux_map *out_map)
98 {
99 	u16 i, j;
100 	bool print_unknown_handle = false;
101 
102 	/* Find number of classes in the input mapping */
103 	if (!map)
104 		return -EINVAL;
105 	i = 0;
106 	while (map[i].name)
107 		i++;
108 
109 	/* Allocate space for the class records, plus one for class zero */
110 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
111 	if (!out_map->mapping)
112 		return -ENOMEM;
113 
114 	/* Store the raw class and permission values */
115 	j = 0;
116 	while (map[j].name) {
117 		const struct security_class_mapping *p_in = map + (j++);
118 		struct selinux_mapping *p_out = out_map->mapping + j;
119 		u16 k;
120 
121 		/* An empty class string skips ahead */
122 		if (!strcmp(p_in->name, "")) {
123 			p_out->num_perms = 0;
124 			continue;
125 		}
126 
127 		p_out->value = string_to_security_class(pol, p_in->name);
128 		if (!p_out->value) {
129 			pr_info("SELinux:  Class %s not defined in policy.\n",
130 			       p_in->name);
131 			if (pol->reject_unknown)
132 				goto err;
133 			p_out->num_perms = 0;
134 			print_unknown_handle = true;
135 			continue;
136 		}
137 
138 		k = 0;
139 		while (p_in->perms[k]) {
140 			/* An empty permission string skips ahead */
141 			if (!*p_in->perms[k]) {
142 				k++;
143 				continue;
144 			}
145 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
146 							    p_in->perms[k]);
147 			if (!p_out->perms[k]) {
148 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
149 				       p_in->perms[k], p_in->name);
150 				if (pol->reject_unknown)
151 					goto err;
152 				print_unknown_handle = true;
153 			}
154 
155 			k++;
156 		}
157 		p_out->num_perms = k;
158 	}
159 
160 	if (print_unknown_handle)
161 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
162 		       pol->allow_unknown ? "allowed" : "denied");
163 
164 	out_map->size = i;
165 	return 0;
166 err:
167 	kfree(out_map->mapping);
168 	out_map->mapping = NULL;
169 	return -EINVAL;
170 }
171 
172 /*
173  * Get real, policy values from mapped values
174  */
175 
unmap_class(struct selinux_map * map,u16 tclass)176 static u16 unmap_class(struct selinux_map *map, u16 tclass)
177 {
178 	if (tclass < map->size)
179 		return map->mapping[tclass].value;
180 
181 	return tclass;
182 }
183 
184 /*
185  * Get kernel value for class from its policy value
186  */
map_class(struct selinux_map * map,u16 pol_value)187 static u16 map_class(struct selinux_map *map, u16 pol_value)
188 {
189 	u16 i;
190 
191 	for (i = 1; i < map->size; i++) {
192 		if (map->mapping[i].value == pol_value)
193 			return i;
194 	}
195 
196 	return SECCLASS_NULL;
197 }
198 
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)199 static void map_decision(struct selinux_map *map,
200 			 u16 tclass, struct av_decision *avd,
201 			 int allow_unknown)
202 {
203 	if (tclass < map->size) {
204 		struct selinux_mapping *mapping = &map->mapping[tclass];
205 		unsigned int i, n = mapping->num_perms;
206 		u32 result;
207 
208 		for (i = 0, result = 0; i < n; i++) {
209 			if (avd->allowed & mapping->perms[i])
210 				result |= (u32)1<<i;
211 			if (allow_unknown && !mapping->perms[i])
212 				result |= (u32)1<<i;
213 		}
214 		avd->allowed = result;
215 
216 		for (i = 0, result = 0; i < n; i++)
217 			if (avd->auditallow & mapping->perms[i])
218 				result |= (u32)1<<i;
219 		avd->auditallow = result;
220 
221 		for (i = 0, result = 0; i < n; i++) {
222 			if (avd->auditdeny & mapping->perms[i])
223 				result |= (u32)1<<i;
224 			if (!allow_unknown && !mapping->perms[i])
225 				result |= (u32)1<<i;
226 		}
227 		/*
228 		 * In case the kernel has a bug and requests a permission
229 		 * between num_perms and the maximum permission number, we
230 		 * should audit that denial
231 		 */
232 		for (; i < (sizeof(u32)*8); i++)
233 			result |= (u32)1<<i;
234 		avd->auditdeny = result;
235 	}
236 }
237 
security_mls_enabled(void)238 int security_mls_enabled(void)
239 {
240 	int mls_enabled;
241 	struct selinux_policy *policy;
242 
243 	if (!selinux_initialized())
244 		return 0;
245 
246 	rcu_read_lock();
247 	policy = rcu_dereference(selinux_state.policy);
248 	mls_enabled = policy->policydb.mls_enabled;
249 	rcu_read_unlock();
250 	return mls_enabled;
251 }
252 
253 /*
254  * Return the boolean value of a constraint expression
255  * when it is applied to the specified source and target
256  * security contexts.
257  *
258  * xcontext is a special beast...  It is used by the validatetrans rules
259  * only.  For these rules, scontext is the context before the transition,
260  * tcontext is the context after the transition, and xcontext is the context
261  * of the process performing the transition.  All other callers of
262  * constraint_expr_eval should pass in NULL for xcontext.
263  */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)264 static int constraint_expr_eval(struct policydb *policydb,
265 				struct context *scontext,
266 				struct context *tcontext,
267 				struct context *xcontext,
268 				struct constraint_expr *cexpr)
269 {
270 	u32 val1, val2;
271 	struct context *c;
272 	struct role_datum *r1, *r2;
273 	struct mls_level *l1, *l2;
274 	struct constraint_expr *e;
275 	int s[CEXPR_MAXDEPTH];
276 	int sp = -1;
277 
278 	for (e = cexpr; e; e = e->next) {
279 		switch (e->expr_type) {
280 		case CEXPR_NOT:
281 			BUG_ON(sp < 0);
282 			s[sp] = !s[sp];
283 			break;
284 		case CEXPR_AND:
285 			BUG_ON(sp < 1);
286 			sp--;
287 			s[sp] &= s[sp + 1];
288 			break;
289 		case CEXPR_OR:
290 			BUG_ON(sp < 1);
291 			sp--;
292 			s[sp] |= s[sp + 1];
293 			break;
294 		case CEXPR_ATTR:
295 			if (sp == (CEXPR_MAXDEPTH - 1))
296 				return 0;
297 			switch (e->attr) {
298 			case CEXPR_USER:
299 				val1 = scontext->user;
300 				val2 = tcontext->user;
301 				break;
302 			case CEXPR_TYPE:
303 				val1 = scontext->type;
304 				val2 = tcontext->type;
305 				break;
306 			case CEXPR_ROLE:
307 				val1 = scontext->role;
308 				val2 = tcontext->role;
309 				r1 = policydb->role_val_to_struct[val1 - 1];
310 				r2 = policydb->role_val_to_struct[val2 - 1];
311 				switch (e->op) {
312 				case CEXPR_DOM:
313 					s[++sp] = ebitmap_get_bit(&r1->dominates,
314 								  val2 - 1);
315 					continue;
316 				case CEXPR_DOMBY:
317 					s[++sp] = ebitmap_get_bit(&r2->dominates,
318 								  val1 - 1);
319 					continue;
320 				case CEXPR_INCOMP:
321 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
322 								    val2 - 1) &&
323 						   !ebitmap_get_bit(&r2->dominates,
324 								    val1 - 1));
325 					continue;
326 				default:
327 					break;
328 				}
329 				break;
330 			case CEXPR_L1L2:
331 				l1 = &(scontext->range.level[0]);
332 				l2 = &(tcontext->range.level[0]);
333 				goto mls_ops;
334 			case CEXPR_L1H2:
335 				l1 = &(scontext->range.level[0]);
336 				l2 = &(tcontext->range.level[1]);
337 				goto mls_ops;
338 			case CEXPR_H1L2:
339 				l1 = &(scontext->range.level[1]);
340 				l2 = &(tcontext->range.level[0]);
341 				goto mls_ops;
342 			case CEXPR_H1H2:
343 				l1 = &(scontext->range.level[1]);
344 				l2 = &(tcontext->range.level[1]);
345 				goto mls_ops;
346 			case CEXPR_L1H1:
347 				l1 = &(scontext->range.level[0]);
348 				l2 = &(scontext->range.level[1]);
349 				goto mls_ops;
350 			case CEXPR_L2H2:
351 				l1 = &(tcontext->range.level[0]);
352 				l2 = &(tcontext->range.level[1]);
353 				goto mls_ops;
354 mls_ops:
355 				switch (e->op) {
356 				case CEXPR_EQ:
357 					s[++sp] = mls_level_eq(l1, l2);
358 					continue;
359 				case CEXPR_NEQ:
360 					s[++sp] = !mls_level_eq(l1, l2);
361 					continue;
362 				case CEXPR_DOM:
363 					s[++sp] = mls_level_dom(l1, l2);
364 					continue;
365 				case CEXPR_DOMBY:
366 					s[++sp] = mls_level_dom(l2, l1);
367 					continue;
368 				case CEXPR_INCOMP:
369 					s[++sp] = mls_level_incomp(l2, l1);
370 					continue;
371 				default:
372 					BUG();
373 					return 0;
374 				}
375 				break;
376 			default:
377 				BUG();
378 				return 0;
379 			}
380 
381 			switch (e->op) {
382 			case CEXPR_EQ:
383 				s[++sp] = (val1 == val2);
384 				break;
385 			case CEXPR_NEQ:
386 				s[++sp] = (val1 != val2);
387 				break;
388 			default:
389 				BUG();
390 				return 0;
391 			}
392 			break;
393 		case CEXPR_NAMES:
394 			if (sp == (CEXPR_MAXDEPTH-1))
395 				return 0;
396 			c = scontext;
397 			if (e->attr & CEXPR_TARGET)
398 				c = tcontext;
399 			else if (e->attr & CEXPR_XTARGET) {
400 				c = xcontext;
401 				if (!c) {
402 					BUG();
403 					return 0;
404 				}
405 			}
406 			if (e->attr & CEXPR_USER)
407 				val1 = c->user;
408 			else if (e->attr & CEXPR_ROLE)
409 				val1 = c->role;
410 			else if (e->attr & CEXPR_TYPE)
411 				val1 = c->type;
412 			else {
413 				BUG();
414 				return 0;
415 			}
416 
417 			switch (e->op) {
418 			case CEXPR_EQ:
419 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
420 				break;
421 			case CEXPR_NEQ:
422 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
423 				break;
424 			default:
425 				BUG();
426 				return 0;
427 			}
428 			break;
429 		default:
430 			BUG();
431 			return 0;
432 		}
433 	}
434 
435 	BUG_ON(sp != 0);
436 	return s[0];
437 }
438 
439 /*
440  * security_dump_masked_av - dumps masked permissions during
441  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
442  */
dump_masked_av_helper(void * k,void * d,void * args)443 static int dump_masked_av_helper(void *k, void *d, void *args)
444 {
445 	struct perm_datum *pdatum = d;
446 	char **permission_names = args;
447 
448 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
449 
450 	permission_names[pdatum->value - 1] = (char *)k;
451 
452 	return 0;
453 }
454 
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)455 static void security_dump_masked_av(struct policydb *policydb,
456 				    struct context *scontext,
457 				    struct context *tcontext,
458 				    u16 tclass,
459 				    u32 permissions,
460 				    const char *reason)
461 {
462 	struct common_datum *common_dat;
463 	struct class_datum *tclass_dat;
464 	struct audit_buffer *ab;
465 	char *tclass_name;
466 	char *scontext_name = NULL;
467 	char *tcontext_name = NULL;
468 	char *permission_names[32];
469 	int index;
470 	u32 length;
471 	bool need_comma = false;
472 
473 	if (!permissions)
474 		return;
475 
476 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
477 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
478 	common_dat = tclass_dat->comdatum;
479 
480 	/* init permission_names */
481 	if (common_dat &&
482 	    hashtab_map(&common_dat->permissions.table,
483 			dump_masked_av_helper, permission_names) < 0)
484 		goto out;
485 
486 	if (hashtab_map(&tclass_dat->permissions.table,
487 			dump_masked_av_helper, permission_names) < 0)
488 		goto out;
489 
490 	/* get scontext/tcontext in text form */
491 	if (context_struct_to_string(policydb, scontext,
492 				     &scontext_name, &length) < 0)
493 		goto out;
494 
495 	if (context_struct_to_string(policydb, tcontext,
496 				     &tcontext_name, &length) < 0)
497 		goto out;
498 
499 	/* audit a message */
500 	ab = audit_log_start(audit_context(),
501 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
502 	if (!ab)
503 		goto out;
504 
505 	audit_log_format(ab, "op=security_compute_av reason=%s "
506 			 "scontext=%s tcontext=%s tclass=%s perms=",
507 			 reason, scontext_name, tcontext_name, tclass_name);
508 
509 	for (index = 0; index < 32; index++) {
510 		u32 mask = (1 << index);
511 
512 		if ((mask & permissions) == 0)
513 			continue;
514 
515 		audit_log_format(ab, "%s%s",
516 				 need_comma ? "," : "",
517 				 permission_names[index]
518 				 ? permission_names[index] : "????");
519 		need_comma = true;
520 	}
521 	audit_log_end(ab);
522 out:
523 	/* release scontext/tcontext */
524 	kfree(tcontext_name);
525 	kfree(scontext_name);
526 }
527 
528 /*
529  * security_boundary_permission - drops violated permissions
530  * on boundary constraint.
531  */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)532 static void type_attribute_bounds_av(struct policydb *policydb,
533 				     struct context *scontext,
534 				     struct context *tcontext,
535 				     u16 tclass,
536 				     struct av_decision *avd)
537 {
538 	struct context lo_scontext;
539 	struct context lo_tcontext, *tcontextp = tcontext;
540 	struct av_decision lo_avd;
541 	struct type_datum *source;
542 	struct type_datum *target;
543 	u32 masked = 0;
544 
545 	source = policydb->type_val_to_struct[scontext->type - 1];
546 	BUG_ON(!source);
547 
548 	if (!source->bounds)
549 		return;
550 
551 	target = policydb->type_val_to_struct[tcontext->type - 1];
552 	BUG_ON(!target);
553 
554 	memset(&lo_avd, 0, sizeof(lo_avd));
555 
556 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
557 	lo_scontext.type = source->bounds;
558 
559 	if (target->bounds) {
560 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
561 		lo_tcontext.type = target->bounds;
562 		tcontextp = &lo_tcontext;
563 	}
564 
565 	context_struct_compute_av(policydb, &lo_scontext,
566 				  tcontextp,
567 				  tclass,
568 				  &lo_avd,
569 				  NULL);
570 
571 	masked = ~lo_avd.allowed & avd->allowed;
572 
573 	if (likely(!masked))
574 		return;		/* no masked permission */
575 
576 	/* mask violated permissions */
577 	avd->allowed &= ~masked;
578 
579 	/* audit masked permissions */
580 	security_dump_masked_av(policydb, scontext, tcontext,
581 				tclass, masked, "bounds");
582 }
583 
584 /*
585  * Flag which drivers have permissions.
586  */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)587 void services_compute_xperms_drivers(
588 		struct extended_perms *xperms,
589 		struct avtab_node *node)
590 {
591 	unsigned int i;
592 
593 	switch (node->datum.u.xperms->specified) {
594 	case AVTAB_XPERMS_IOCTLDRIVER:
595 		/* if one or more driver has all permissions allowed */
596 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
597 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
598 		break;
599 	case AVTAB_XPERMS_IOCTLFUNCTION:
600 	case AVTAB_XPERMS_NLMSG:
601 		/* if allowing permissions within a driver */
602 		security_xperm_set(xperms->drivers.p,
603 					node->datum.u.xperms->driver);
604 		break;
605 	}
606 
607 	xperms->len = 1;
608 }
609 
610 /*
611  * Compute access vectors and extended permissions based on a context
612  * structure pair for the permissions in a particular class.
613  */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)614 static void context_struct_compute_av(struct policydb *policydb,
615 				      struct context *scontext,
616 				      struct context *tcontext,
617 				      u16 tclass,
618 				      struct av_decision *avd,
619 				      struct extended_perms *xperms)
620 {
621 	struct constraint_node *constraint;
622 	struct role_allow *ra;
623 	struct avtab_key avkey;
624 	struct avtab_node *node;
625 	struct class_datum *tclass_datum;
626 	struct ebitmap *sattr, *tattr;
627 	struct ebitmap_node *snode, *tnode;
628 	unsigned int i, j;
629 
630 	avd->allowed = 0;
631 	avd->auditallow = 0;
632 	avd->auditdeny = 0xffffffff;
633 	if (xperms) {
634 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
635 		xperms->len = 0;
636 	}
637 
638 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
639 		pr_warn_ratelimited("SELinux:  Invalid class %u\n", tclass);
640 		return;
641 	}
642 
643 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
644 
645 	/*
646 	 * If a specific type enforcement rule was defined for
647 	 * this permission check, then use it.
648 	 */
649 	avkey.target_class = tclass;
650 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
651 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
652 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
653 	ebitmap_for_each_positive_bit(sattr, snode, i) {
654 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
655 			avkey.source_type = i + 1;
656 			avkey.target_type = j + 1;
657 			for (node = avtab_search_node(&policydb->te_avtab,
658 						      &avkey);
659 			     node;
660 			     node = avtab_search_node_next(node, avkey.specified)) {
661 				if (node->key.specified == AVTAB_ALLOWED)
662 					avd->allowed |= node->datum.u.data;
663 				else if (node->key.specified == AVTAB_AUDITALLOW)
664 					avd->auditallow |= node->datum.u.data;
665 				else if (node->key.specified == AVTAB_AUDITDENY)
666 					avd->auditdeny &= node->datum.u.data;
667 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
668 					services_compute_xperms_drivers(xperms, node);
669 			}
670 
671 			/* Check conditional av table for additional permissions */
672 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
673 					avd, xperms);
674 
675 		}
676 	}
677 
678 	/*
679 	 * Remove any permissions prohibited by a constraint (this includes
680 	 * the MLS policy).
681 	 */
682 	constraint = tclass_datum->constraints;
683 	while (constraint) {
684 		if ((constraint->permissions & (avd->allowed)) &&
685 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
686 					  constraint->expr)) {
687 			avd->allowed &= ~(constraint->permissions);
688 		}
689 		constraint = constraint->next;
690 	}
691 
692 	/*
693 	 * If checking process transition permission and the
694 	 * role is changing, then check the (current_role, new_role)
695 	 * pair.
696 	 */
697 	if (tclass == policydb->process_class &&
698 	    (avd->allowed & policydb->process_trans_perms) &&
699 	    scontext->role != tcontext->role) {
700 		for (ra = policydb->role_allow; ra; ra = ra->next) {
701 			if (scontext->role == ra->role &&
702 			    tcontext->role == ra->new_role)
703 				break;
704 		}
705 		if (!ra)
706 			avd->allowed &= ~policydb->process_trans_perms;
707 	}
708 
709 	/*
710 	 * If the given source and target types have boundary
711 	 * constraint, lazy checks have to mask any violated
712 	 * permission and notice it to userspace via audit.
713 	 */
714 	type_attribute_bounds_av(policydb, scontext, tcontext,
715 				 tclass, avd);
716 }
717 
security_validtrans_handle_fail(struct selinux_policy * policy,struct sidtab_entry * oentry,struct sidtab_entry * nentry,struct sidtab_entry * tentry,u16 tclass)718 static int security_validtrans_handle_fail(struct selinux_policy *policy,
719 					struct sidtab_entry *oentry,
720 					struct sidtab_entry *nentry,
721 					struct sidtab_entry *tentry,
722 					u16 tclass)
723 {
724 	struct policydb *p = &policy->policydb;
725 	struct sidtab *sidtab = policy->sidtab;
726 	char *o = NULL, *n = NULL, *t = NULL;
727 	u32 olen, nlen, tlen;
728 
729 	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
730 		goto out;
731 	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
732 		goto out;
733 	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
734 		goto out;
735 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
736 		  "op=security_validate_transition seresult=denied"
737 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
738 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
739 out:
740 	kfree(o);
741 	kfree(n);
742 	kfree(t);
743 
744 	if (!enforcing_enabled())
745 		return 0;
746 	return -EPERM;
747 }
748 
security_compute_validatetrans(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)749 static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
750 					  u16 orig_tclass, bool user)
751 {
752 	struct selinux_policy *policy;
753 	struct policydb *policydb;
754 	struct sidtab *sidtab;
755 	struct sidtab_entry *oentry;
756 	struct sidtab_entry *nentry;
757 	struct sidtab_entry *tentry;
758 	struct class_datum *tclass_datum;
759 	struct constraint_node *constraint;
760 	u16 tclass;
761 	int rc = 0;
762 
763 
764 	if (!selinux_initialized())
765 		return 0;
766 
767 	rcu_read_lock();
768 
769 	policy = rcu_dereference(selinux_state.policy);
770 	policydb = &policy->policydb;
771 	sidtab = policy->sidtab;
772 
773 	if (!user)
774 		tclass = unmap_class(&policy->map, orig_tclass);
775 	else
776 		tclass = orig_tclass;
777 
778 	if (!tclass || tclass > policydb->p_classes.nprim) {
779 		rc = -EINVAL;
780 		goto out;
781 	}
782 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
783 
784 	oentry = sidtab_search_entry(sidtab, oldsid);
785 	if (!oentry) {
786 		pr_err("SELinux: %s:  unrecognized SID %d\n",
787 			__func__, oldsid);
788 		rc = -EINVAL;
789 		goto out;
790 	}
791 
792 	nentry = sidtab_search_entry(sidtab, newsid);
793 	if (!nentry) {
794 		pr_err("SELinux: %s:  unrecognized SID %d\n",
795 			__func__, newsid);
796 		rc = -EINVAL;
797 		goto out;
798 	}
799 
800 	tentry = sidtab_search_entry(sidtab, tasksid);
801 	if (!tentry) {
802 		pr_err("SELinux: %s:  unrecognized SID %d\n",
803 			__func__, tasksid);
804 		rc = -EINVAL;
805 		goto out;
806 	}
807 
808 	constraint = tclass_datum->validatetrans;
809 	while (constraint) {
810 		if (!constraint_expr_eval(policydb, &oentry->context,
811 					  &nentry->context, &tentry->context,
812 					  constraint->expr)) {
813 			if (user)
814 				rc = -EPERM;
815 			else
816 				rc = security_validtrans_handle_fail(policy,
817 								oentry,
818 								nentry,
819 								tentry,
820 								tclass);
821 			goto out;
822 		}
823 		constraint = constraint->next;
824 	}
825 
826 out:
827 	rcu_read_unlock();
828 	return rc;
829 }
830 
security_validate_transition_user(u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)831 int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
832 				      u16 tclass)
833 {
834 	return security_compute_validatetrans(oldsid, newsid, tasksid,
835 					      tclass, true);
836 }
837 
security_validate_transition(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)838 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
839 				 u16 orig_tclass)
840 {
841 	return security_compute_validatetrans(oldsid, newsid, tasksid,
842 					      orig_tclass, false);
843 }
844 
845 /*
846  * security_bounded_transition - check whether the given
847  * transition is directed to bounded, or not.
848  * It returns 0, if @newsid is bounded by @oldsid.
849  * Otherwise, it returns error code.
850  *
851  * @oldsid : current security identifier
852  * @newsid : destinated security identifier
853  */
security_bounded_transition(u32 old_sid,u32 new_sid)854 int security_bounded_transition(u32 old_sid, u32 new_sid)
855 {
856 	struct selinux_policy *policy;
857 	struct policydb *policydb;
858 	struct sidtab *sidtab;
859 	struct sidtab_entry *old_entry, *new_entry;
860 	struct type_datum *type;
861 	u32 index;
862 	int rc;
863 
864 	if (!selinux_initialized())
865 		return 0;
866 
867 	rcu_read_lock();
868 	policy = rcu_dereference(selinux_state.policy);
869 	policydb = &policy->policydb;
870 	sidtab = policy->sidtab;
871 
872 	rc = -EINVAL;
873 	old_entry = sidtab_search_entry(sidtab, old_sid);
874 	if (!old_entry) {
875 		pr_err("SELinux: %s: unrecognized SID %u\n",
876 		       __func__, old_sid);
877 		goto out;
878 	}
879 
880 	rc = -EINVAL;
881 	new_entry = sidtab_search_entry(sidtab, new_sid);
882 	if (!new_entry) {
883 		pr_err("SELinux: %s: unrecognized SID %u\n",
884 		       __func__, new_sid);
885 		goto out;
886 	}
887 
888 	rc = 0;
889 	/* type/domain unchanged */
890 	if (old_entry->context.type == new_entry->context.type)
891 		goto out;
892 
893 	index = new_entry->context.type;
894 	while (true) {
895 		type = policydb->type_val_to_struct[index - 1];
896 		BUG_ON(!type);
897 
898 		/* not bounded anymore */
899 		rc = -EPERM;
900 		if (!type->bounds)
901 			break;
902 
903 		/* @newsid is bounded by @oldsid */
904 		rc = 0;
905 		if (type->bounds == old_entry->context.type)
906 			break;
907 
908 		index = type->bounds;
909 	}
910 
911 	if (rc) {
912 		char *old_name = NULL;
913 		char *new_name = NULL;
914 		u32 length;
915 
916 		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
917 					    &old_name, &length) &&
918 		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
919 					    &new_name, &length)) {
920 			audit_log(audit_context(),
921 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
922 				  "op=security_bounded_transition "
923 				  "seresult=denied "
924 				  "oldcontext=%s newcontext=%s",
925 				  old_name, new_name);
926 		}
927 		kfree(new_name);
928 		kfree(old_name);
929 	}
930 out:
931 	rcu_read_unlock();
932 
933 	return rc;
934 }
935 
avd_init(struct selinux_policy * policy,struct av_decision * avd)936 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
937 {
938 	avd->allowed = 0;
939 	avd->auditallow = 0;
940 	avd->auditdeny = 0xffffffff;
941 	if (policy)
942 		avd->seqno = policy->latest_granting;
943 	else
944 		avd->seqno = 0;
945 	avd->flags = 0;
946 }
947 
update_xperms_extended_data(u8 specified,struct extended_perms_data * from,struct extended_perms_data * xp_data)948 static void update_xperms_extended_data(u8 specified,
949 					struct extended_perms_data *from,
950 					struct extended_perms_data *xp_data)
951 {
952 	unsigned int i;
953 
954 	switch (specified) {
955 	case AVTAB_XPERMS_IOCTLDRIVER:
956 		memset(xp_data->p, 0xff, sizeof(xp_data->p));
957 		break;
958 	case AVTAB_XPERMS_IOCTLFUNCTION:
959 	case AVTAB_XPERMS_NLMSG:
960 		for (i = 0; i < ARRAY_SIZE(xp_data->p); i++)
961 			xp_data->p[i] |= from->p[i];
962 		break;
963 	}
964 
965 }
966 
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)967 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
968 					struct avtab_node *node)
969 {
970 	switch (node->datum.u.xperms->specified) {
971 	case AVTAB_XPERMS_IOCTLFUNCTION:
972 	case AVTAB_XPERMS_NLMSG:
973 		if (xpermd->driver != node->datum.u.xperms->driver)
974 			return;
975 		break;
976 	case AVTAB_XPERMS_IOCTLDRIVER:
977 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
978 					xpermd->driver))
979 			return;
980 		break;
981 	default:
982 		pr_warn_once(
983 			"SELinux: unknown extended permission (%u) will be ignored\n",
984 			node->datum.u.xperms->specified);
985 		return;
986 	}
987 
988 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
989 		xpermd->used |= XPERMS_ALLOWED;
990 		update_xperms_extended_data(node->datum.u.xperms->specified,
991 					    &node->datum.u.xperms->perms,
992 					    xpermd->allowed);
993 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
994 		xpermd->used |= XPERMS_AUDITALLOW;
995 		update_xperms_extended_data(node->datum.u.xperms->specified,
996 					    &node->datum.u.xperms->perms,
997 					    xpermd->auditallow);
998 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
999 		xpermd->used |= XPERMS_DONTAUDIT;
1000 		update_xperms_extended_data(node->datum.u.xperms->specified,
1001 					    &node->datum.u.xperms->perms,
1002 					    xpermd->dontaudit);
1003 	} else {
1004 		pr_warn_once("SELinux: unknown specified key (%u)\n",
1005 			     node->key.specified);
1006 	}
1007 }
1008 
security_compute_xperms_decision(u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,struct extended_perms_decision * xpermd)1009 void security_compute_xperms_decision(u32 ssid,
1010 				      u32 tsid,
1011 				      u16 orig_tclass,
1012 				      u8 driver,
1013 				      struct extended_perms_decision *xpermd)
1014 {
1015 	struct selinux_policy *policy;
1016 	struct policydb *policydb;
1017 	struct sidtab *sidtab;
1018 	u16 tclass;
1019 	struct context *scontext, *tcontext;
1020 	struct avtab_key avkey;
1021 	struct avtab_node *node;
1022 	struct ebitmap *sattr, *tattr;
1023 	struct ebitmap_node *snode, *tnode;
1024 	unsigned int i, j;
1025 
1026 	xpermd->driver = driver;
1027 	xpermd->used = 0;
1028 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1029 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1030 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1031 
1032 	rcu_read_lock();
1033 	if (!selinux_initialized())
1034 		goto allow;
1035 
1036 	policy = rcu_dereference(selinux_state.policy);
1037 	policydb = &policy->policydb;
1038 	sidtab = policy->sidtab;
1039 
1040 	scontext = sidtab_search(sidtab, ssid);
1041 	if (!scontext) {
1042 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1043 		       __func__, ssid);
1044 		goto out;
1045 	}
1046 
1047 	tcontext = sidtab_search(sidtab, tsid);
1048 	if (!tcontext) {
1049 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1050 		       __func__, tsid);
1051 		goto out;
1052 	}
1053 
1054 	tclass = unmap_class(&policy->map, orig_tclass);
1055 	if (unlikely(orig_tclass && !tclass)) {
1056 		if (policydb->allow_unknown)
1057 			goto allow;
1058 		goto out;
1059 	}
1060 
1061 
1062 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1063 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1064 		goto out;
1065 	}
1066 
1067 	avkey.target_class = tclass;
1068 	avkey.specified = AVTAB_XPERMS;
1069 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1070 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1071 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1072 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1073 			avkey.source_type = i + 1;
1074 			avkey.target_type = j + 1;
1075 			for (node = avtab_search_node(&policydb->te_avtab,
1076 						      &avkey);
1077 			     node;
1078 			     node = avtab_search_node_next(node, avkey.specified))
1079 				services_compute_xperms_decision(xpermd, node);
1080 
1081 			cond_compute_xperms(&policydb->te_cond_avtab,
1082 						&avkey, xpermd);
1083 		}
1084 	}
1085 out:
1086 	rcu_read_unlock();
1087 	return;
1088 allow:
1089 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1090 	goto out;
1091 }
1092 
1093 /**
1094  * security_compute_av - Compute access vector decisions.
1095  * @ssid: source security identifier
1096  * @tsid: target security identifier
1097  * @orig_tclass: target security class
1098  * @avd: access vector decisions
1099  * @xperms: extended permissions
1100  *
1101  * Compute a set of access vector decisions based on the
1102  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1103  */
security_compute_av(u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1104 void security_compute_av(u32 ssid,
1105 			 u32 tsid,
1106 			 u16 orig_tclass,
1107 			 struct av_decision *avd,
1108 			 struct extended_perms *xperms)
1109 {
1110 	struct selinux_policy *policy;
1111 	struct policydb *policydb;
1112 	struct sidtab *sidtab;
1113 	u16 tclass;
1114 	struct context *scontext = NULL, *tcontext = NULL;
1115 
1116 	rcu_read_lock();
1117 	policy = rcu_dereference(selinux_state.policy);
1118 	avd_init(policy, avd);
1119 	xperms->len = 0;
1120 	if (!selinux_initialized())
1121 		goto allow;
1122 
1123 	policydb = &policy->policydb;
1124 	sidtab = policy->sidtab;
1125 
1126 	scontext = sidtab_search(sidtab, ssid);
1127 	if (!scontext) {
1128 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1129 		       __func__, ssid);
1130 		goto out;
1131 	}
1132 
1133 	/* permissive domain? */
1134 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1135 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1136 
1137 	tcontext = sidtab_search(sidtab, tsid);
1138 	if (!tcontext) {
1139 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1140 		       __func__, tsid);
1141 		goto out;
1142 	}
1143 
1144 	tclass = unmap_class(&policy->map, orig_tclass);
1145 	if (unlikely(orig_tclass && !tclass)) {
1146 		if (policydb->allow_unknown)
1147 			goto allow;
1148 		goto out;
1149 	}
1150 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1151 				  xperms);
1152 	map_decision(&policy->map, orig_tclass, avd,
1153 		     policydb->allow_unknown);
1154 out:
1155 	rcu_read_unlock();
1156 	return;
1157 allow:
1158 	avd->allowed = 0xffffffff;
1159 	goto out;
1160 }
1161 
security_compute_av_user(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1162 void security_compute_av_user(u32 ssid,
1163 			      u32 tsid,
1164 			      u16 tclass,
1165 			      struct av_decision *avd)
1166 {
1167 	struct selinux_policy *policy;
1168 	struct policydb *policydb;
1169 	struct sidtab *sidtab;
1170 	struct context *scontext = NULL, *tcontext = NULL;
1171 
1172 	rcu_read_lock();
1173 	policy = rcu_dereference(selinux_state.policy);
1174 	avd_init(policy, avd);
1175 	if (!selinux_initialized())
1176 		goto allow;
1177 
1178 	policydb = &policy->policydb;
1179 	sidtab = policy->sidtab;
1180 
1181 	scontext = sidtab_search(sidtab, ssid);
1182 	if (!scontext) {
1183 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1184 		       __func__, ssid);
1185 		goto out;
1186 	}
1187 
1188 	/* permissive domain? */
1189 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1190 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1191 
1192 	tcontext = sidtab_search(sidtab, tsid);
1193 	if (!tcontext) {
1194 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1195 		       __func__, tsid);
1196 		goto out;
1197 	}
1198 
1199 	if (unlikely(!tclass)) {
1200 		if (policydb->allow_unknown)
1201 			goto allow;
1202 		goto out;
1203 	}
1204 
1205 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1206 				  NULL);
1207  out:
1208 	rcu_read_unlock();
1209 	return;
1210 allow:
1211 	avd->allowed = 0xffffffff;
1212 	goto out;
1213 }
1214 
1215 /*
1216  * Write the security context string representation of
1217  * the context structure `context' into a dynamically
1218  * allocated string of the correct size.  Set `*scontext'
1219  * to point to this string and set `*scontext_len' to
1220  * the length of the string.
1221  */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1222 static int context_struct_to_string(struct policydb *p,
1223 				    struct context *context,
1224 				    char **scontext, u32 *scontext_len)
1225 {
1226 	char *scontextp;
1227 
1228 	if (scontext)
1229 		*scontext = NULL;
1230 	*scontext_len = 0;
1231 
1232 	if (context->len) {
1233 		*scontext_len = context->len;
1234 		if (scontext) {
1235 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1236 			if (!(*scontext))
1237 				return -ENOMEM;
1238 		}
1239 		return 0;
1240 	}
1241 
1242 	/* Compute the size of the context. */
1243 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1244 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1245 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1246 	*scontext_len += mls_compute_context_len(p, context);
1247 
1248 	if (!scontext)
1249 		return 0;
1250 
1251 	/* Allocate space for the context; caller must free this space. */
1252 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1253 	if (!scontextp)
1254 		return -ENOMEM;
1255 	*scontext = scontextp;
1256 
1257 	/*
1258 	 * Copy the user name, role name and type name into the context.
1259 	 */
1260 	scontextp += sprintf(scontextp, "%s:%s:%s",
1261 		sym_name(p, SYM_USERS, context->user - 1),
1262 		sym_name(p, SYM_ROLES, context->role - 1),
1263 		sym_name(p, SYM_TYPES, context->type - 1));
1264 
1265 	mls_sid_to_context(p, context, &scontextp);
1266 
1267 	*scontextp = 0;
1268 
1269 	return 0;
1270 }
1271 
sidtab_entry_to_string(struct policydb * p,struct sidtab * sidtab,struct sidtab_entry * entry,char ** scontext,u32 * scontext_len)1272 static int sidtab_entry_to_string(struct policydb *p,
1273 				  struct sidtab *sidtab,
1274 				  struct sidtab_entry *entry,
1275 				  char **scontext, u32 *scontext_len)
1276 {
1277 	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1278 
1279 	if (rc != -ENOENT)
1280 		return rc;
1281 
1282 	rc = context_struct_to_string(p, &entry->context, scontext,
1283 				      scontext_len);
1284 	if (!rc && scontext)
1285 		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1286 	return rc;
1287 }
1288 
1289 #include "initial_sid_to_string.h"
1290 
security_sidtab_hash_stats(char * page)1291 int security_sidtab_hash_stats(char *page)
1292 {
1293 	struct selinux_policy *policy;
1294 	int rc;
1295 
1296 	if (!selinux_initialized()) {
1297 		pr_err("SELinux: %s:  called before initial load_policy\n",
1298 		       __func__);
1299 		return -EINVAL;
1300 	}
1301 
1302 	rcu_read_lock();
1303 	policy = rcu_dereference(selinux_state.policy);
1304 	rc = sidtab_hash_stats(policy->sidtab, page);
1305 	rcu_read_unlock();
1306 
1307 	return rc;
1308 }
1309 
security_get_initial_sid_context(u32 sid)1310 const char *security_get_initial_sid_context(u32 sid)
1311 {
1312 	if (unlikely(sid > SECINITSID_NUM))
1313 		return NULL;
1314 	return initial_sid_to_string[sid];
1315 }
1316 
security_sid_to_context_core(u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1317 static int security_sid_to_context_core(u32 sid, char **scontext,
1318 					u32 *scontext_len, int force,
1319 					int only_invalid)
1320 {
1321 	struct selinux_policy *policy;
1322 	struct policydb *policydb;
1323 	struct sidtab *sidtab;
1324 	struct sidtab_entry *entry;
1325 	int rc = 0;
1326 
1327 	if (scontext)
1328 		*scontext = NULL;
1329 	*scontext_len  = 0;
1330 
1331 	if (!selinux_initialized()) {
1332 		if (sid <= SECINITSID_NUM) {
1333 			char *scontextp;
1334 			const char *s;
1335 
1336 			/*
1337 			 * Before the policy is loaded, translate
1338 			 * SECINITSID_INIT to "kernel", because systemd and
1339 			 * libselinux < 2.6 take a getcon_raw() result that is
1340 			 * both non-null and not "kernel" to mean that a policy
1341 			 * is already loaded.
1342 			 */
1343 			if (sid == SECINITSID_INIT)
1344 				sid = SECINITSID_KERNEL;
1345 
1346 			s = initial_sid_to_string[sid];
1347 			if (!s)
1348 				return -EINVAL;
1349 			*scontext_len = strlen(s) + 1;
1350 			if (!scontext)
1351 				return 0;
1352 			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1353 			if (!scontextp)
1354 				return -ENOMEM;
1355 			*scontext = scontextp;
1356 			return 0;
1357 		}
1358 		pr_err("SELinux: %s:  called before initial "
1359 		       "load_policy on unknown SID %d\n", __func__, sid);
1360 		return -EINVAL;
1361 	}
1362 	rcu_read_lock();
1363 	policy = rcu_dereference(selinux_state.policy);
1364 	policydb = &policy->policydb;
1365 	sidtab = policy->sidtab;
1366 
1367 	if (force)
1368 		entry = sidtab_search_entry_force(sidtab, sid);
1369 	else
1370 		entry = sidtab_search_entry(sidtab, sid);
1371 	if (!entry) {
1372 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1373 			__func__, sid);
1374 		rc = -EINVAL;
1375 		goto out_unlock;
1376 	}
1377 	if (only_invalid && !entry->context.len)
1378 		goto out_unlock;
1379 
1380 	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1381 				    scontext_len);
1382 
1383 out_unlock:
1384 	rcu_read_unlock();
1385 	return rc;
1386 
1387 }
1388 
1389 /**
1390  * security_sid_to_context - Obtain a context for a given SID.
1391  * @sid: security identifier, SID
1392  * @scontext: security context
1393  * @scontext_len: length in bytes
1394  *
1395  * Write the string representation of the context associated with @sid
1396  * into a dynamically allocated string of the correct size.  Set @scontext
1397  * to point to this string and set @scontext_len to the length of the string.
1398  */
security_sid_to_context(u32 sid,char ** scontext,u32 * scontext_len)1399 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1400 {
1401 	return security_sid_to_context_core(sid, scontext,
1402 					    scontext_len, 0, 0);
1403 }
1404 
security_sid_to_context_force(u32 sid,char ** scontext,u32 * scontext_len)1405 int security_sid_to_context_force(u32 sid,
1406 				  char **scontext, u32 *scontext_len)
1407 {
1408 	return security_sid_to_context_core(sid, scontext,
1409 					    scontext_len, 1, 0);
1410 }
1411 
1412 /**
1413  * security_sid_to_context_inval - Obtain a context for a given SID if it
1414  *                                 is invalid.
1415  * @sid: security identifier, SID
1416  * @scontext: security context
1417  * @scontext_len: length in bytes
1418  *
1419  * Write the string representation of the context associated with @sid
1420  * into a dynamically allocated string of the correct size, but only if the
1421  * context is invalid in the current policy.  Set @scontext to point to
1422  * this string (or NULL if the context is valid) and set @scontext_len to
1423  * the length of the string (or 0 if the context is valid).
1424  */
security_sid_to_context_inval(u32 sid,char ** scontext,u32 * scontext_len)1425 int security_sid_to_context_inval(u32 sid,
1426 				  char **scontext, u32 *scontext_len)
1427 {
1428 	return security_sid_to_context_core(sid, scontext,
1429 					    scontext_len, 1, 1);
1430 }
1431 
1432 /*
1433  * Caveat:  Mutates scontext.
1434  */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1435 static int string_to_context_struct(struct policydb *pol,
1436 				    struct sidtab *sidtabp,
1437 				    char *scontext,
1438 				    struct context *ctx,
1439 				    u32 def_sid)
1440 {
1441 	struct role_datum *role;
1442 	struct type_datum *typdatum;
1443 	struct user_datum *usrdatum;
1444 	char *scontextp, *p, oldc;
1445 	int rc = 0;
1446 
1447 	context_init(ctx);
1448 
1449 	/* Parse the security context. */
1450 
1451 	rc = -EINVAL;
1452 	scontextp = scontext;
1453 
1454 	/* Extract the user. */
1455 	p = scontextp;
1456 	while (*p && *p != ':')
1457 		p++;
1458 
1459 	if (*p == 0)
1460 		goto out;
1461 
1462 	*p++ = 0;
1463 
1464 	usrdatum = symtab_search(&pol->p_users, scontextp);
1465 	if (!usrdatum)
1466 		goto out;
1467 
1468 	ctx->user = usrdatum->value;
1469 
1470 	/* Extract role. */
1471 	scontextp = p;
1472 	while (*p && *p != ':')
1473 		p++;
1474 
1475 	if (*p == 0)
1476 		goto out;
1477 
1478 	*p++ = 0;
1479 
1480 	role = symtab_search(&pol->p_roles, scontextp);
1481 	if (!role)
1482 		goto out;
1483 	ctx->role = role->value;
1484 
1485 	/* Extract type. */
1486 	scontextp = p;
1487 	while (*p && *p != ':')
1488 		p++;
1489 	oldc = *p;
1490 	*p++ = 0;
1491 
1492 	typdatum = symtab_search(&pol->p_types, scontextp);
1493 	if (!typdatum || typdatum->attribute)
1494 		goto out;
1495 
1496 	ctx->type = typdatum->value;
1497 
1498 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1499 	if (rc)
1500 		goto out;
1501 
1502 	/* Check the validity of the new context. */
1503 	rc = -EINVAL;
1504 	if (!policydb_context_isvalid(pol, ctx))
1505 		goto out;
1506 	rc = 0;
1507 out:
1508 	if (rc)
1509 		context_destroy(ctx);
1510 	return rc;
1511 }
1512 
security_context_to_sid_core(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1513 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1514 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1515 					int force)
1516 {
1517 	struct selinux_policy *policy;
1518 	struct policydb *policydb;
1519 	struct sidtab *sidtab;
1520 	char *scontext2, *str = NULL;
1521 	struct context context;
1522 	int rc = 0;
1523 
1524 	/* An empty security context is never valid. */
1525 	if (!scontext_len)
1526 		return -EINVAL;
1527 
1528 	/* Copy the string to allow changes and ensure a NUL terminator */
1529 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1530 	if (!scontext2)
1531 		return -ENOMEM;
1532 
1533 	if (!selinux_initialized()) {
1534 		u32 i;
1535 
1536 		for (i = 1; i < SECINITSID_NUM; i++) {
1537 			const char *s = initial_sid_to_string[i];
1538 
1539 			if (s && !strcmp(s, scontext2)) {
1540 				*sid = i;
1541 				goto out;
1542 			}
1543 		}
1544 		*sid = SECINITSID_KERNEL;
1545 		goto out;
1546 	}
1547 	*sid = SECSID_NULL;
1548 
1549 	if (force) {
1550 		/* Save another copy for storing in uninterpreted form */
1551 		rc = -ENOMEM;
1552 		str = kstrdup(scontext2, gfp_flags);
1553 		if (!str)
1554 			goto out;
1555 	}
1556 retry:
1557 	rcu_read_lock();
1558 	policy = rcu_dereference(selinux_state.policy);
1559 	policydb = &policy->policydb;
1560 	sidtab = policy->sidtab;
1561 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1562 				      &context, def_sid);
1563 	if (rc == -EINVAL && force) {
1564 		context.str = str;
1565 		context.len = strlen(str) + 1;
1566 		str = NULL;
1567 	} else if (rc)
1568 		goto out_unlock;
1569 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1570 	if (rc == -ESTALE) {
1571 		rcu_read_unlock();
1572 		if (context.str) {
1573 			str = context.str;
1574 			context.str = NULL;
1575 		}
1576 		context_destroy(&context);
1577 		goto retry;
1578 	}
1579 	context_destroy(&context);
1580 out_unlock:
1581 	rcu_read_unlock();
1582 out:
1583 	kfree(scontext2);
1584 	kfree(str);
1585 	return rc;
1586 }
1587 
1588 /**
1589  * security_context_to_sid - Obtain a SID for a given security context.
1590  * @scontext: security context
1591  * @scontext_len: length in bytes
1592  * @sid: security identifier, SID
1593  * @gfp: context for the allocation
1594  *
1595  * Obtains a SID associated with the security context that
1596  * has the string representation specified by @scontext.
1597  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1598  * memory is available, or 0 on success.
1599  */
security_context_to_sid(const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1600 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1601 			    gfp_t gfp)
1602 {
1603 	return security_context_to_sid_core(scontext, scontext_len,
1604 					    sid, SECSID_NULL, gfp, 0);
1605 }
1606 
security_context_str_to_sid(const char * scontext,u32 * sid,gfp_t gfp)1607 int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1608 {
1609 	return security_context_to_sid(scontext, strlen(scontext),
1610 				       sid, gfp);
1611 }
1612 
1613 /**
1614  * security_context_to_sid_default - Obtain a SID for a given security context,
1615  * falling back to specified default if needed.
1616  *
1617  * @scontext: security context
1618  * @scontext_len: length in bytes
1619  * @sid: security identifier, SID
1620  * @def_sid: default SID to assign on error
1621  * @gfp_flags: the allocator get-free-page (GFP) flags
1622  *
1623  * Obtains a SID associated with the security context that
1624  * has the string representation specified by @scontext.
1625  * The default SID is passed to the MLS layer to be used to allow
1626  * kernel labeling of the MLS field if the MLS field is not present
1627  * (for upgrading to MLS without full relabel).
1628  * Implicitly forces adding of the context even if it cannot be mapped yet.
1629  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1630  * memory is available, or 0 on success.
1631  */
security_context_to_sid_default(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1632 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1633 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1634 {
1635 	return security_context_to_sid_core(scontext, scontext_len,
1636 					    sid, def_sid, gfp_flags, 1);
1637 }
1638 
security_context_to_sid_force(const char * scontext,u32 scontext_len,u32 * sid)1639 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1640 				  u32 *sid)
1641 {
1642 	return security_context_to_sid_core(scontext, scontext_len,
1643 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1644 }
1645 
compute_sid_handle_invalid_context(struct selinux_policy * policy,struct sidtab_entry * sentry,struct sidtab_entry * tentry,u16 tclass,struct context * newcontext)1646 static int compute_sid_handle_invalid_context(
1647 	struct selinux_policy *policy,
1648 	struct sidtab_entry *sentry,
1649 	struct sidtab_entry *tentry,
1650 	u16 tclass,
1651 	struct context *newcontext)
1652 {
1653 	struct policydb *policydb = &policy->policydb;
1654 	struct sidtab *sidtab = policy->sidtab;
1655 	char *s = NULL, *t = NULL, *n = NULL;
1656 	u32 slen, tlen, nlen;
1657 	struct audit_buffer *ab;
1658 
1659 	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1660 		goto out;
1661 	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1662 		goto out;
1663 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1664 		goto out;
1665 	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1666 	if (!ab)
1667 		goto out;
1668 	audit_log_format(ab,
1669 			 "op=security_compute_sid invalid_context=");
1670 	/* no need to record the NUL with untrusted strings */
1671 	audit_log_n_untrustedstring(ab, n, nlen - 1);
1672 	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1673 			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1674 	audit_log_end(ab);
1675 out:
1676 	kfree(s);
1677 	kfree(t);
1678 	kfree(n);
1679 	if (!enforcing_enabled())
1680 		return 0;
1681 	return -EACCES;
1682 }
1683 
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1684 static void filename_compute_type(struct policydb *policydb,
1685 				  struct context *newcontext,
1686 				  u32 stype, u32 ttype, u16 tclass,
1687 				  const char *objname)
1688 {
1689 	struct filename_trans_key ft;
1690 	struct filename_trans_datum *datum;
1691 
1692 	/*
1693 	 * Most filename trans rules are going to live in specific directories
1694 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1695 	 * if the ttype does not contain any rules.
1696 	 */
1697 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1698 		return;
1699 
1700 	ft.ttype = ttype;
1701 	ft.tclass = tclass;
1702 	ft.name = objname;
1703 
1704 	datum = policydb_filenametr_search(policydb, &ft);
1705 	while (datum) {
1706 		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1707 			newcontext->type = datum->otype;
1708 			return;
1709 		}
1710 		datum = datum->next;
1711 	}
1712 }
1713 
security_compute_sid(u32 ssid,u32 tsid,u16 orig_tclass,u16 specified,const char * objname,u32 * out_sid,bool kern)1714 static int security_compute_sid(u32 ssid,
1715 				u32 tsid,
1716 				u16 orig_tclass,
1717 				u16 specified,
1718 				const char *objname,
1719 				u32 *out_sid,
1720 				bool kern)
1721 {
1722 	struct selinux_policy *policy;
1723 	struct policydb *policydb;
1724 	struct sidtab *sidtab;
1725 	struct class_datum *cladatum;
1726 	struct context *scontext, *tcontext, newcontext;
1727 	struct sidtab_entry *sentry, *tentry;
1728 	struct avtab_key avkey;
1729 	struct avtab_node *avnode, *node;
1730 	u16 tclass;
1731 	int rc = 0;
1732 	bool sock;
1733 
1734 	if (!selinux_initialized()) {
1735 		switch (orig_tclass) {
1736 		case SECCLASS_PROCESS: /* kernel value */
1737 			*out_sid = ssid;
1738 			break;
1739 		default:
1740 			*out_sid = tsid;
1741 			break;
1742 		}
1743 		goto out;
1744 	}
1745 
1746 retry:
1747 	cladatum = NULL;
1748 	context_init(&newcontext);
1749 
1750 	rcu_read_lock();
1751 
1752 	policy = rcu_dereference(selinux_state.policy);
1753 
1754 	if (kern) {
1755 		tclass = unmap_class(&policy->map, orig_tclass);
1756 		sock = security_is_socket_class(orig_tclass);
1757 	} else {
1758 		tclass = orig_tclass;
1759 		sock = security_is_socket_class(map_class(&policy->map,
1760 							  tclass));
1761 	}
1762 
1763 	policydb = &policy->policydb;
1764 	sidtab = policy->sidtab;
1765 
1766 	sentry = sidtab_search_entry(sidtab, ssid);
1767 	if (!sentry) {
1768 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1769 		       __func__, ssid);
1770 		rc = -EINVAL;
1771 		goto out_unlock;
1772 	}
1773 	tentry = sidtab_search_entry(sidtab, tsid);
1774 	if (!tentry) {
1775 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1776 		       __func__, tsid);
1777 		rc = -EINVAL;
1778 		goto out_unlock;
1779 	}
1780 
1781 	scontext = &sentry->context;
1782 	tcontext = &tentry->context;
1783 
1784 	if (tclass && tclass <= policydb->p_classes.nprim)
1785 		cladatum = policydb->class_val_to_struct[tclass - 1];
1786 
1787 	/* Set the user identity. */
1788 	switch (specified) {
1789 	case AVTAB_TRANSITION:
1790 	case AVTAB_CHANGE:
1791 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1792 			newcontext.user = tcontext->user;
1793 		} else {
1794 			/* notice this gets both DEFAULT_SOURCE and unset */
1795 			/* Use the process user identity. */
1796 			newcontext.user = scontext->user;
1797 		}
1798 		break;
1799 	case AVTAB_MEMBER:
1800 		/* Use the related object owner. */
1801 		newcontext.user = tcontext->user;
1802 		break;
1803 	}
1804 
1805 	/* Set the role to default values. */
1806 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1807 		newcontext.role = scontext->role;
1808 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1809 		newcontext.role = tcontext->role;
1810 	} else {
1811 		if ((tclass == policydb->process_class) || sock)
1812 			newcontext.role = scontext->role;
1813 		else
1814 			newcontext.role = OBJECT_R_VAL;
1815 	}
1816 
1817 	/* Set the type.
1818 	 * Look for a type transition/member/change rule.
1819 	 */
1820 	avkey.source_type = scontext->type;
1821 	avkey.target_type = tcontext->type;
1822 	avkey.target_class = tclass;
1823 	avkey.specified = specified;
1824 	avnode = avtab_search_node(&policydb->te_avtab, &avkey);
1825 
1826 	/* If no permanent rule, also check for enabled conditional rules */
1827 	if (!avnode) {
1828 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1829 		for (; node; node = avtab_search_node_next(node, specified)) {
1830 			if (node->key.specified & AVTAB_ENABLED) {
1831 				avnode = node;
1832 				break;
1833 			}
1834 		}
1835 	}
1836 
1837 	/* If a permanent rule is found, use the type from
1838 	 * the type transition/member/change rule. Otherwise,
1839 	 * set the type to its default values.
1840 	 */
1841 	if (avnode) {
1842 		newcontext.type = avnode->datum.u.data;
1843 	} else if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1844 		newcontext.type = scontext->type;
1845 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1846 		newcontext.type = tcontext->type;
1847 	} else {
1848 		if ((tclass == policydb->process_class) || sock) {
1849 			/* Use the type of process. */
1850 			newcontext.type = scontext->type;
1851 		} else {
1852 			/* Use the type of the related object. */
1853 			newcontext.type = tcontext->type;
1854 		}
1855 	}
1856 
1857 	/* if we have a objname this is a file trans check so check those rules */
1858 	if (objname)
1859 		filename_compute_type(policydb, &newcontext, scontext->type,
1860 				      tcontext->type, tclass, objname);
1861 
1862 	/* Check for class-specific changes. */
1863 	if (specified & AVTAB_TRANSITION) {
1864 		/* Look for a role transition rule. */
1865 		struct role_trans_datum *rtd;
1866 		struct role_trans_key rtk = {
1867 			.role = scontext->role,
1868 			.type = tcontext->type,
1869 			.tclass = tclass,
1870 		};
1871 
1872 		rtd = policydb_roletr_search(policydb, &rtk);
1873 		if (rtd)
1874 			newcontext.role = rtd->new_role;
1875 	}
1876 
1877 	/* Set the MLS attributes.
1878 	   This is done last because it may allocate memory. */
1879 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1880 			     &newcontext, sock);
1881 	if (rc)
1882 		goto out_unlock;
1883 
1884 	/* Check the validity of the context. */
1885 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1886 		rc = compute_sid_handle_invalid_context(policy, sentry,
1887 							tentry, tclass,
1888 							&newcontext);
1889 		if (rc)
1890 			goto out_unlock;
1891 	}
1892 	/* Obtain the sid for the context. */
1893 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1894 	if (rc == -ESTALE) {
1895 		rcu_read_unlock();
1896 		context_destroy(&newcontext);
1897 		goto retry;
1898 	}
1899 out_unlock:
1900 	rcu_read_unlock();
1901 	context_destroy(&newcontext);
1902 out:
1903 	return rc;
1904 }
1905 
1906 /**
1907  * security_transition_sid - Compute the SID for a new subject/object.
1908  * @ssid: source security identifier
1909  * @tsid: target security identifier
1910  * @tclass: target security class
1911  * @qstr: object name
1912  * @out_sid: security identifier for new subject/object
1913  *
1914  * Compute a SID to use for labeling a new subject or object in the
1915  * class @tclass based on a SID pair (@ssid, @tsid).
1916  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1917  * if insufficient memory is available, or %0 if the new SID was
1918  * computed successfully.
1919  */
security_transition_sid(u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1920 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1921 			    const struct qstr *qstr, u32 *out_sid)
1922 {
1923 	return security_compute_sid(ssid, tsid, tclass,
1924 				    AVTAB_TRANSITION,
1925 				    qstr ? qstr->name : NULL, out_sid, true);
1926 }
1927 
security_transition_sid_user(u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1928 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1929 				 const char *objname, u32 *out_sid)
1930 {
1931 	return security_compute_sid(ssid, tsid, tclass,
1932 				    AVTAB_TRANSITION,
1933 				    objname, out_sid, false);
1934 }
1935 
1936 /**
1937  * security_member_sid - Compute the SID for member selection.
1938  * @ssid: source security identifier
1939  * @tsid: target security identifier
1940  * @tclass: target security class
1941  * @out_sid: security identifier for selected member
1942  *
1943  * Compute a SID to use when selecting a member of a polyinstantiated
1944  * object of class @tclass based on a SID pair (@ssid, @tsid).
1945  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1946  * if insufficient memory is available, or %0 if the SID was
1947  * computed successfully.
1948  */
security_member_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1949 int security_member_sid(u32 ssid,
1950 			u32 tsid,
1951 			u16 tclass,
1952 			u32 *out_sid)
1953 {
1954 	return security_compute_sid(ssid, tsid, tclass,
1955 				    AVTAB_MEMBER, NULL,
1956 				    out_sid, false);
1957 }
1958 
1959 /**
1960  * security_change_sid - Compute the SID for object relabeling.
1961  * @ssid: source security identifier
1962  * @tsid: target security identifier
1963  * @tclass: target security class
1964  * @out_sid: security identifier for selected member
1965  *
1966  * Compute a SID to use for relabeling an object of class @tclass
1967  * based on a SID pair (@ssid, @tsid).
1968  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1969  * if insufficient memory is available, or %0 if the SID was
1970  * computed successfully.
1971  */
security_change_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1972 int security_change_sid(u32 ssid,
1973 			u32 tsid,
1974 			u16 tclass,
1975 			u32 *out_sid)
1976 {
1977 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1978 				    out_sid, false);
1979 }
1980 
convert_context_handle_invalid_context(struct policydb * policydb,struct context * context)1981 static inline int convert_context_handle_invalid_context(
1982 	struct policydb *policydb,
1983 	struct context *context)
1984 {
1985 	char *s;
1986 	u32 len;
1987 
1988 	if (enforcing_enabled())
1989 		return -EINVAL;
1990 
1991 	if (!context_struct_to_string(policydb, context, &s, &len)) {
1992 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1993 			s);
1994 		kfree(s);
1995 	}
1996 	return 0;
1997 }
1998 
1999 /**
2000  * services_convert_context - Convert a security context across policies.
2001  * @args: populated convert_context_args struct
2002  * @oldc: original context
2003  * @newc: converted context
2004  * @gfp_flags: allocation flags
2005  *
2006  * Convert the values in the security context structure @oldc from the values
2007  * specified in the policy @args->oldp to the values specified in the policy
2008  * @args->newp, storing the new context in @newc, and verifying that the
2009  * context is valid under the new policy.
2010  */
services_convert_context(struct convert_context_args * args,struct context * oldc,struct context * newc,gfp_t gfp_flags)2011 int services_convert_context(struct convert_context_args *args,
2012 			     struct context *oldc, struct context *newc,
2013 			     gfp_t gfp_flags)
2014 {
2015 	struct ocontext *oc;
2016 	struct role_datum *role;
2017 	struct type_datum *typdatum;
2018 	struct user_datum *usrdatum;
2019 	char *s;
2020 	u32 len;
2021 	int rc;
2022 
2023 	if (oldc->str) {
2024 		s = kstrdup(oldc->str, gfp_flags);
2025 		if (!s)
2026 			return -ENOMEM;
2027 
2028 		rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2029 		if (rc == -EINVAL) {
2030 			/*
2031 			 * Retain string representation for later mapping.
2032 			 *
2033 			 * IMPORTANT: We need to copy the contents of oldc->str
2034 			 * back into s again because string_to_context_struct()
2035 			 * may have garbled it.
2036 			 */
2037 			memcpy(s, oldc->str, oldc->len);
2038 			context_init(newc);
2039 			newc->str = s;
2040 			newc->len = oldc->len;
2041 			return 0;
2042 		}
2043 		kfree(s);
2044 		if (rc) {
2045 			/* Other error condition, e.g. ENOMEM. */
2046 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2047 			       oldc->str, -rc);
2048 			return rc;
2049 		}
2050 		pr_info("SELinux:  Context %s became valid (mapped).\n",
2051 			oldc->str);
2052 		return 0;
2053 	}
2054 
2055 	context_init(newc);
2056 
2057 	/* Convert the user. */
2058 	usrdatum = symtab_search(&args->newp->p_users,
2059 				 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
2060 	if (!usrdatum)
2061 		goto bad;
2062 	newc->user = usrdatum->value;
2063 
2064 	/* Convert the role. */
2065 	role = symtab_search(&args->newp->p_roles,
2066 			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2067 	if (!role)
2068 		goto bad;
2069 	newc->role = role->value;
2070 
2071 	/* Convert the type. */
2072 	typdatum = symtab_search(&args->newp->p_types,
2073 				 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
2074 	if (!typdatum)
2075 		goto bad;
2076 	newc->type = typdatum->value;
2077 
2078 	/* Convert the MLS fields if dealing with MLS policies */
2079 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2080 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2081 		if (rc)
2082 			goto bad;
2083 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2084 		/*
2085 		 * Switching between non-MLS and MLS policy:
2086 		 * ensure that the MLS fields of the context for all
2087 		 * existing entries in the sidtab are filled in with a
2088 		 * suitable default value, likely taken from one of the
2089 		 * initial SIDs.
2090 		 */
2091 		oc = args->newp->ocontexts[OCON_ISID];
2092 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2093 			oc = oc->next;
2094 		if (!oc) {
2095 			pr_err("SELinux:  unable to look up"
2096 				" the initial SIDs list\n");
2097 			goto bad;
2098 		}
2099 		rc = mls_range_set(newc, &oc->context[0].range);
2100 		if (rc)
2101 			goto bad;
2102 	}
2103 
2104 	/* Check the validity of the new context. */
2105 	if (!policydb_context_isvalid(args->newp, newc)) {
2106 		rc = convert_context_handle_invalid_context(args->oldp, oldc);
2107 		if (rc)
2108 			goto bad;
2109 	}
2110 
2111 	return 0;
2112 bad:
2113 	/* Map old representation to string and save it. */
2114 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2115 	if (rc)
2116 		return rc;
2117 	context_destroy(newc);
2118 	newc->str = s;
2119 	newc->len = len;
2120 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2121 		newc->str);
2122 	return 0;
2123 }
2124 
security_load_policycaps(struct selinux_policy * policy)2125 static void security_load_policycaps(struct selinux_policy *policy)
2126 {
2127 	struct policydb *p;
2128 	unsigned int i;
2129 	struct ebitmap_node *node;
2130 
2131 	p = &policy->policydb;
2132 
2133 	for (i = 0; i < ARRAY_SIZE(selinux_state.policycap); i++)
2134 		WRITE_ONCE(selinux_state.policycap[i],
2135 			ebitmap_get_bit(&p->policycaps, i));
2136 
2137 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2138 		pr_info("SELinux:  policy capability %s=%d\n",
2139 			selinux_policycap_names[i],
2140 			ebitmap_get_bit(&p->policycaps, i));
2141 
2142 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2143 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2144 			pr_info("SELinux:  unknown policy capability %u\n",
2145 				i);
2146 	}
2147 }
2148 
2149 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2150 				struct selinux_policy *newpolicy);
2151 
selinux_policy_free(struct selinux_policy * policy)2152 static void selinux_policy_free(struct selinux_policy *policy)
2153 {
2154 	if (!policy)
2155 		return;
2156 
2157 	sidtab_destroy(policy->sidtab);
2158 	kfree(policy->map.mapping);
2159 	policydb_destroy(&policy->policydb);
2160 	kfree(policy->sidtab);
2161 	kfree(policy);
2162 }
2163 
selinux_policy_cond_free(struct selinux_policy * policy)2164 static void selinux_policy_cond_free(struct selinux_policy *policy)
2165 {
2166 	cond_policydb_destroy_dup(&policy->policydb);
2167 	kfree(policy);
2168 }
2169 
selinux_policy_cancel(struct selinux_load_state * load_state)2170 void selinux_policy_cancel(struct selinux_load_state *load_state)
2171 {
2172 	struct selinux_state *state = &selinux_state;
2173 	struct selinux_policy *oldpolicy;
2174 
2175 	oldpolicy = rcu_dereference_protected(state->policy,
2176 					lockdep_is_held(&state->policy_mutex));
2177 
2178 	sidtab_cancel_convert(oldpolicy->sidtab);
2179 	selinux_policy_free(load_state->policy);
2180 	kfree(load_state->convert_data);
2181 }
2182 
selinux_notify_policy_change(u32 seqno)2183 static void selinux_notify_policy_change(u32 seqno)
2184 {
2185 	/* Flush external caches and notify userspace of policy load */
2186 	avc_ss_reset(seqno);
2187 	selnl_notify_policyload(seqno);
2188 	selinux_status_update_policyload(seqno);
2189 	selinux_netlbl_cache_invalidate();
2190 	selinux_xfrm_notify_policyload();
2191 	selinux_ima_measure_state_locked();
2192 }
2193 
selinux_policy_commit(struct selinux_load_state * load_state)2194 void selinux_policy_commit(struct selinux_load_state *load_state)
2195 {
2196 	struct selinux_state *state = &selinux_state;
2197 	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2198 	unsigned long flags;
2199 	u32 seqno;
2200 
2201 	oldpolicy = rcu_dereference_protected(state->policy,
2202 					lockdep_is_held(&state->policy_mutex));
2203 
2204 	/* If switching between different policy types, log MLS status */
2205 	if (oldpolicy) {
2206 		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2207 			pr_info("SELinux: Disabling MLS support...\n");
2208 		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2209 			pr_info("SELinux: Enabling MLS support...\n");
2210 	}
2211 
2212 	/* Set latest granting seqno for new policy. */
2213 	if (oldpolicy)
2214 		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2215 	else
2216 		newpolicy->latest_granting = 1;
2217 	seqno = newpolicy->latest_granting;
2218 
2219 	/* Install the new policy. */
2220 	if (oldpolicy) {
2221 		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2222 		rcu_assign_pointer(state->policy, newpolicy);
2223 		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2224 	} else {
2225 		rcu_assign_pointer(state->policy, newpolicy);
2226 	}
2227 
2228 	/* Load the policycaps from the new policy */
2229 	security_load_policycaps(newpolicy);
2230 
2231 	if (!selinux_initialized()) {
2232 		/*
2233 		 * After first policy load, the security server is
2234 		 * marked as initialized and ready to handle requests and
2235 		 * any objects created prior to policy load are then labeled.
2236 		 */
2237 		selinux_mark_initialized();
2238 		selinux_complete_init();
2239 	}
2240 
2241 	/* Free the old policy */
2242 	synchronize_rcu();
2243 	selinux_policy_free(oldpolicy);
2244 	kfree(load_state->convert_data);
2245 
2246 	/* Notify others of the policy change */
2247 	selinux_notify_policy_change(seqno);
2248 }
2249 
2250 /**
2251  * security_load_policy - Load a security policy configuration.
2252  * @data: binary policy data
2253  * @len: length of data in bytes
2254  * @load_state: policy load state
2255  *
2256  * Load a new set of security policy configuration data,
2257  * validate it and convert the SID table as necessary.
2258  * This function will flush the access vector cache after
2259  * loading the new policy.
2260  */
security_load_policy(void * data,size_t len,struct selinux_load_state * load_state)2261 int security_load_policy(void *data, size_t len,
2262 			 struct selinux_load_state *load_state)
2263 {
2264 	struct selinux_state *state = &selinux_state;
2265 	struct selinux_policy *newpolicy, *oldpolicy;
2266 	struct selinux_policy_convert_data *convert_data;
2267 	int rc = 0;
2268 	struct policy_file file = { data, len }, *fp = &file;
2269 
2270 	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2271 	if (!newpolicy)
2272 		return -ENOMEM;
2273 
2274 	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2275 	if (!newpolicy->sidtab) {
2276 		rc = -ENOMEM;
2277 		goto err_policy;
2278 	}
2279 
2280 	rc = policydb_read(&newpolicy->policydb, fp);
2281 	if (rc)
2282 		goto err_sidtab;
2283 
2284 	newpolicy->policydb.len = len;
2285 	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2286 				&newpolicy->map);
2287 	if (rc)
2288 		goto err_policydb;
2289 
2290 	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2291 	if (rc) {
2292 		pr_err("SELinux:  unable to load the initial SIDs\n");
2293 		goto err_mapping;
2294 	}
2295 
2296 	if (!selinux_initialized()) {
2297 		/* First policy load, so no need to preserve state from old policy */
2298 		load_state->policy = newpolicy;
2299 		load_state->convert_data = NULL;
2300 		return 0;
2301 	}
2302 
2303 	oldpolicy = rcu_dereference_protected(state->policy,
2304 					lockdep_is_held(&state->policy_mutex));
2305 
2306 	/* Preserve active boolean values from the old policy */
2307 	rc = security_preserve_bools(oldpolicy, newpolicy);
2308 	if (rc) {
2309 		pr_err("SELinux:  unable to preserve booleans\n");
2310 		goto err_free_isids;
2311 	}
2312 
2313 	/*
2314 	 * Convert the internal representations of contexts
2315 	 * in the new SID table.
2316 	 */
2317 
2318 	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2319 	if (!convert_data) {
2320 		rc = -ENOMEM;
2321 		goto err_free_isids;
2322 	}
2323 
2324 	convert_data->args.oldp = &oldpolicy->policydb;
2325 	convert_data->args.newp = &newpolicy->policydb;
2326 
2327 	convert_data->sidtab_params.args = &convert_data->args;
2328 	convert_data->sidtab_params.target = newpolicy->sidtab;
2329 
2330 	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2331 	if (rc) {
2332 		pr_err("SELinux:  unable to convert the internal"
2333 			" representation of contexts in the new SID"
2334 			" table\n");
2335 		goto err_free_convert_data;
2336 	}
2337 
2338 	load_state->policy = newpolicy;
2339 	load_state->convert_data = convert_data;
2340 	return 0;
2341 
2342 err_free_convert_data:
2343 	kfree(convert_data);
2344 err_free_isids:
2345 	sidtab_destroy(newpolicy->sidtab);
2346 err_mapping:
2347 	kfree(newpolicy->map.mapping);
2348 err_policydb:
2349 	policydb_destroy(&newpolicy->policydb);
2350 err_sidtab:
2351 	kfree(newpolicy->sidtab);
2352 err_policy:
2353 	kfree(newpolicy);
2354 
2355 	return rc;
2356 }
2357 
2358 /**
2359  * ocontext_to_sid - Helper to safely get sid for an ocontext
2360  * @sidtab: SID table
2361  * @c: ocontext structure
2362  * @index: index of the context entry (0 or 1)
2363  * @out_sid: pointer to the resulting SID value
2364  *
2365  * For all ocontexts except OCON_ISID the SID fields are populated
2366  * on-demand when needed. Since updating the SID value is an SMP-sensitive
2367  * operation, this helper must be used to do that safely.
2368  *
2369  * WARNING: This function may return -ESTALE, indicating that the caller
2370  * must retry the operation after re-acquiring the policy pointer!
2371  */
ocontext_to_sid(struct sidtab * sidtab,struct ocontext * c,size_t index,u32 * out_sid)2372 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2373 			   size_t index, u32 *out_sid)
2374 {
2375 	int rc;
2376 	u32 sid;
2377 
2378 	/* Ensure the associated sidtab entry is visible to this thread. */
2379 	sid = smp_load_acquire(&c->sid[index]);
2380 	if (!sid) {
2381 		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2382 		if (rc)
2383 			return rc;
2384 
2385 		/*
2386 		 * Ensure the new sidtab entry is visible to other threads
2387 		 * when they see the SID.
2388 		 */
2389 		smp_store_release(&c->sid[index], sid);
2390 	}
2391 	*out_sid = sid;
2392 	return 0;
2393 }
2394 
2395 /**
2396  * security_port_sid - Obtain the SID for a port.
2397  * @protocol: protocol number
2398  * @port: port number
2399  * @out_sid: security identifier
2400  */
security_port_sid(u8 protocol,u16 port,u32 * out_sid)2401 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2402 {
2403 	struct selinux_policy *policy;
2404 	struct policydb *policydb;
2405 	struct sidtab *sidtab;
2406 	struct ocontext *c;
2407 	int rc;
2408 
2409 	if (!selinux_initialized()) {
2410 		*out_sid = SECINITSID_PORT;
2411 		return 0;
2412 	}
2413 
2414 retry:
2415 	rc = 0;
2416 	rcu_read_lock();
2417 	policy = rcu_dereference(selinux_state.policy);
2418 	policydb = &policy->policydb;
2419 	sidtab = policy->sidtab;
2420 
2421 	c = policydb->ocontexts[OCON_PORT];
2422 	while (c) {
2423 		if (c->u.port.protocol == protocol &&
2424 		    c->u.port.low_port <= port &&
2425 		    c->u.port.high_port >= port)
2426 			break;
2427 		c = c->next;
2428 	}
2429 
2430 	if (c) {
2431 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2432 		if (rc == -ESTALE) {
2433 			rcu_read_unlock();
2434 			goto retry;
2435 		}
2436 		if (rc)
2437 			goto out;
2438 	} else {
2439 		*out_sid = SECINITSID_PORT;
2440 	}
2441 
2442 out:
2443 	rcu_read_unlock();
2444 	return rc;
2445 }
2446 
2447 /**
2448  * security_ib_pkey_sid - Obtain the SID for a pkey.
2449  * @subnet_prefix: Subnet Prefix
2450  * @pkey_num: pkey number
2451  * @out_sid: security identifier
2452  */
security_ib_pkey_sid(u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2453 int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2454 {
2455 	struct selinux_policy *policy;
2456 	struct policydb *policydb;
2457 	struct sidtab *sidtab;
2458 	struct ocontext *c;
2459 	int rc;
2460 
2461 	if (!selinux_initialized()) {
2462 		*out_sid = SECINITSID_UNLABELED;
2463 		return 0;
2464 	}
2465 
2466 retry:
2467 	rc = 0;
2468 	rcu_read_lock();
2469 	policy = rcu_dereference(selinux_state.policy);
2470 	policydb = &policy->policydb;
2471 	sidtab = policy->sidtab;
2472 
2473 	c = policydb->ocontexts[OCON_IBPKEY];
2474 	while (c) {
2475 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2476 		    c->u.ibpkey.high_pkey >= pkey_num &&
2477 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2478 			break;
2479 
2480 		c = c->next;
2481 	}
2482 
2483 	if (c) {
2484 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2485 		if (rc == -ESTALE) {
2486 			rcu_read_unlock();
2487 			goto retry;
2488 		}
2489 		if (rc)
2490 			goto out;
2491 	} else
2492 		*out_sid = SECINITSID_UNLABELED;
2493 
2494 out:
2495 	rcu_read_unlock();
2496 	return rc;
2497 }
2498 
2499 /**
2500  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2501  * @dev_name: device name
2502  * @port_num: port number
2503  * @out_sid: security identifier
2504  */
security_ib_endport_sid(const char * dev_name,u8 port_num,u32 * out_sid)2505 int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2506 {
2507 	struct selinux_policy *policy;
2508 	struct policydb *policydb;
2509 	struct sidtab *sidtab;
2510 	struct ocontext *c;
2511 	int rc;
2512 
2513 	if (!selinux_initialized()) {
2514 		*out_sid = SECINITSID_UNLABELED;
2515 		return 0;
2516 	}
2517 
2518 retry:
2519 	rc = 0;
2520 	rcu_read_lock();
2521 	policy = rcu_dereference(selinux_state.policy);
2522 	policydb = &policy->policydb;
2523 	sidtab = policy->sidtab;
2524 
2525 	c = policydb->ocontexts[OCON_IBENDPORT];
2526 	while (c) {
2527 		if (c->u.ibendport.port == port_num &&
2528 		    !strncmp(c->u.ibendport.dev_name,
2529 			     dev_name,
2530 			     IB_DEVICE_NAME_MAX))
2531 			break;
2532 
2533 		c = c->next;
2534 	}
2535 
2536 	if (c) {
2537 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2538 		if (rc == -ESTALE) {
2539 			rcu_read_unlock();
2540 			goto retry;
2541 		}
2542 		if (rc)
2543 			goto out;
2544 	} else
2545 		*out_sid = SECINITSID_UNLABELED;
2546 
2547 out:
2548 	rcu_read_unlock();
2549 	return rc;
2550 }
2551 
2552 /**
2553  * security_netif_sid - Obtain the SID for a network interface.
2554  * @name: interface name
2555  * @if_sid: interface SID
2556  */
security_netif_sid(char * name,u32 * if_sid)2557 int security_netif_sid(char *name, u32 *if_sid)
2558 {
2559 	struct selinux_policy *policy;
2560 	struct policydb *policydb;
2561 	struct sidtab *sidtab;
2562 	int rc;
2563 	struct ocontext *c;
2564 
2565 	if (!selinux_initialized()) {
2566 		*if_sid = SECINITSID_NETIF;
2567 		return 0;
2568 	}
2569 
2570 retry:
2571 	rc = 0;
2572 	rcu_read_lock();
2573 	policy = rcu_dereference(selinux_state.policy);
2574 	policydb = &policy->policydb;
2575 	sidtab = policy->sidtab;
2576 
2577 	c = policydb->ocontexts[OCON_NETIF];
2578 	while (c) {
2579 		if (strcmp(name, c->u.name) == 0)
2580 			break;
2581 		c = c->next;
2582 	}
2583 
2584 	if (c) {
2585 		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2586 		if (rc == -ESTALE) {
2587 			rcu_read_unlock();
2588 			goto retry;
2589 		}
2590 		if (rc)
2591 			goto out;
2592 	} else
2593 		*if_sid = SECINITSID_NETIF;
2594 
2595 out:
2596 	rcu_read_unlock();
2597 	return rc;
2598 }
2599 
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2600 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2601 {
2602 	int i, fail = 0;
2603 
2604 	for (i = 0; i < 4; i++)
2605 		if (addr[i] != (input[i] & mask[i])) {
2606 			fail = 1;
2607 			break;
2608 		}
2609 
2610 	return !fail;
2611 }
2612 
2613 /**
2614  * security_node_sid - Obtain the SID for a node (host).
2615  * @domain: communication domain aka address family
2616  * @addrp: address
2617  * @addrlen: address length in bytes
2618  * @out_sid: security identifier
2619  */
security_node_sid(u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2620 int security_node_sid(u16 domain,
2621 		      void *addrp,
2622 		      u32 addrlen,
2623 		      u32 *out_sid)
2624 {
2625 	struct selinux_policy *policy;
2626 	struct policydb *policydb;
2627 	struct sidtab *sidtab;
2628 	int rc;
2629 	struct ocontext *c;
2630 
2631 	if (!selinux_initialized()) {
2632 		*out_sid = SECINITSID_NODE;
2633 		return 0;
2634 	}
2635 
2636 retry:
2637 	rcu_read_lock();
2638 	policy = rcu_dereference(selinux_state.policy);
2639 	policydb = &policy->policydb;
2640 	sidtab = policy->sidtab;
2641 
2642 	switch (domain) {
2643 	case AF_INET: {
2644 		u32 addr;
2645 
2646 		rc = -EINVAL;
2647 		if (addrlen != sizeof(u32))
2648 			goto out;
2649 
2650 		addr = *((u32 *)addrp);
2651 
2652 		c = policydb->ocontexts[OCON_NODE];
2653 		while (c) {
2654 			if (c->u.node.addr == (addr & c->u.node.mask))
2655 				break;
2656 			c = c->next;
2657 		}
2658 		break;
2659 	}
2660 
2661 	case AF_INET6:
2662 		rc = -EINVAL;
2663 		if (addrlen != sizeof(u64) * 2)
2664 			goto out;
2665 		c = policydb->ocontexts[OCON_NODE6];
2666 		while (c) {
2667 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2668 						c->u.node6.mask))
2669 				break;
2670 			c = c->next;
2671 		}
2672 		break;
2673 
2674 	default:
2675 		rc = 0;
2676 		*out_sid = SECINITSID_NODE;
2677 		goto out;
2678 	}
2679 
2680 	if (c) {
2681 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2682 		if (rc == -ESTALE) {
2683 			rcu_read_unlock();
2684 			goto retry;
2685 		}
2686 		if (rc)
2687 			goto out;
2688 	} else {
2689 		*out_sid = SECINITSID_NODE;
2690 	}
2691 
2692 	rc = 0;
2693 out:
2694 	rcu_read_unlock();
2695 	return rc;
2696 }
2697 
2698 #define SIDS_NEL 25
2699 
2700 /**
2701  * security_get_user_sids - Obtain reachable SIDs for a user.
2702  * @fromsid: starting SID
2703  * @username: username
2704  * @sids: array of reachable SIDs for user
2705  * @nel: number of elements in @sids
2706  *
2707  * Generate the set of SIDs for legal security contexts
2708  * for a given user that can be reached by @fromsid.
2709  * Set *@sids to point to a dynamically allocated
2710  * array containing the set of SIDs.  Set *@nel to the
2711  * number of elements in the array.
2712  */
2713 
security_get_user_sids(u32 fromsid,char * username,u32 ** sids,u32 * nel)2714 int security_get_user_sids(u32 fromsid,
2715 			   char *username,
2716 			   u32 **sids,
2717 			   u32 *nel)
2718 {
2719 	struct selinux_policy *policy;
2720 	struct policydb *policydb;
2721 	struct sidtab *sidtab;
2722 	struct context *fromcon, usercon;
2723 	u32 *mysids = NULL, *mysids2, sid;
2724 	u32 i, j, mynel, maxnel = SIDS_NEL;
2725 	struct user_datum *user;
2726 	struct role_datum *role;
2727 	struct ebitmap_node *rnode, *tnode;
2728 	int rc;
2729 
2730 	*sids = NULL;
2731 	*nel = 0;
2732 
2733 	if (!selinux_initialized())
2734 		return 0;
2735 
2736 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2737 	if (!mysids)
2738 		return -ENOMEM;
2739 
2740 retry:
2741 	mynel = 0;
2742 	rcu_read_lock();
2743 	policy = rcu_dereference(selinux_state.policy);
2744 	policydb = &policy->policydb;
2745 	sidtab = policy->sidtab;
2746 
2747 	context_init(&usercon);
2748 
2749 	rc = -EINVAL;
2750 	fromcon = sidtab_search(sidtab, fromsid);
2751 	if (!fromcon)
2752 		goto out_unlock;
2753 
2754 	rc = -EINVAL;
2755 	user = symtab_search(&policydb->p_users, username);
2756 	if (!user)
2757 		goto out_unlock;
2758 
2759 	usercon.user = user->value;
2760 
2761 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2762 		role = policydb->role_val_to_struct[i];
2763 		usercon.role = i + 1;
2764 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2765 			usercon.type = j + 1;
2766 
2767 			if (mls_setup_user_range(policydb, fromcon, user,
2768 						 &usercon))
2769 				continue;
2770 
2771 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2772 			if (rc == -ESTALE) {
2773 				rcu_read_unlock();
2774 				goto retry;
2775 			}
2776 			if (rc)
2777 				goto out_unlock;
2778 			if (mynel < maxnel) {
2779 				mysids[mynel++] = sid;
2780 			} else {
2781 				rc = -ENOMEM;
2782 				maxnel += SIDS_NEL;
2783 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2784 				if (!mysids2)
2785 					goto out_unlock;
2786 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2787 				kfree(mysids);
2788 				mysids = mysids2;
2789 				mysids[mynel++] = sid;
2790 			}
2791 		}
2792 	}
2793 	rc = 0;
2794 out_unlock:
2795 	rcu_read_unlock();
2796 	if (rc || !mynel) {
2797 		kfree(mysids);
2798 		return rc;
2799 	}
2800 
2801 	rc = -ENOMEM;
2802 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2803 	if (!mysids2) {
2804 		kfree(mysids);
2805 		return rc;
2806 	}
2807 	for (i = 0, j = 0; i < mynel; i++) {
2808 		struct av_decision dummy_avd;
2809 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2810 					  SECCLASS_PROCESS, /* kernel value */
2811 					  PROCESS__TRANSITION, AVC_STRICT,
2812 					  &dummy_avd);
2813 		if (!rc)
2814 			mysids2[j++] = mysids[i];
2815 		cond_resched();
2816 	}
2817 	kfree(mysids);
2818 	*sids = mysids2;
2819 	*nel = j;
2820 	return 0;
2821 }
2822 
2823 /**
2824  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2825  * @policy: policy
2826  * @fstype: filesystem type
2827  * @path: path from root of mount
2828  * @orig_sclass: file security class
2829  * @sid: SID for path
2830  *
2831  * Obtain a SID to use for a file in a filesystem that
2832  * cannot support xattr or use a fixed labeling behavior like
2833  * transition SIDs or task SIDs.
2834  *
2835  * WARNING: This function may return -ESTALE, indicating that the caller
2836  * must retry the operation after re-acquiring the policy pointer!
2837  */
__security_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2838 static inline int __security_genfs_sid(struct selinux_policy *policy,
2839 				       const char *fstype,
2840 				       const char *path,
2841 				       u16 orig_sclass,
2842 				       u32 *sid)
2843 {
2844 	struct policydb *policydb = &policy->policydb;
2845 	struct sidtab *sidtab = policy->sidtab;
2846 	u16 sclass;
2847 	struct genfs *genfs;
2848 	struct ocontext *c;
2849 	int cmp = 0;
2850 
2851 	while (path[0] == '/' && path[1] == '/')
2852 		path++;
2853 
2854 	sclass = unmap_class(&policy->map, orig_sclass);
2855 	*sid = SECINITSID_UNLABELED;
2856 
2857 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2858 		cmp = strcmp(fstype, genfs->fstype);
2859 		if (cmp <= 0)
2860 			break;
2861 	}
2862 
2863 	if (!genfs || cmp)
2864 		return -ENOENT;
2865 
2866 	for (c = genfs->head; c; c = c->next) {
2867 		size_t len = strlen(c->u.name);
2868 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2869 		    (strncmp(c->u.name, path, len) == 0))
2870 			break;
2871 	}
2872 
2873 	if (!c)
2874 		return -ENOENT;
2875 
2876 	return ocontext_to_sid(sidtab, c, 0, sid);
2877 }
2878 
2879 /**
2880  * security_genfs_sid - Obtain a SID for a file in a filesystem
2881  * @fstype: filesystem type
2882  * @path: path from root of mount
2883  * @orig_sclass: file security class
2884  * @sid: SID for path
2885  *
2886  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2887  * it afterward.
2888  */
security_genfs_sid(const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2889 int security_genfs_sid(const char *fstype,
2890 		       const char *path,
2891 		       u16 orig_sclass,
2892 		       u32 *sid)
2893 {
2894 	struct selinux_policy *policy;
2895 	int retval;
2896 
2897 	if (!selinux_initialized()) {
2898 		*sid = SECINITSID_UNLABELED;
2899 		return 0;
2900 	}
2901 
2902 	do {
2903 		rcu_read_lock();
2904 		policy = rcu_dereference(selinux_state.policy);
2905 		retval = __security_genfs_sid(policy, fstype, path,
2906 					      orig_sclass, sid);
2907 		rcu_read_unlock();
2908 	} while (retval == -ESTALE);
2909 	return retval;
2910 }
2911 
selinux_policy_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2912 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2913 			const char *fstype,
2914 			const char *path,
2915 			u16 orig_sclass,
2916 			u32 *sid)
2917 {
2918 	/* no lock required, policy is not yet accessible by other threads */
2919 	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2920 }
2921 
2922 /**
2923  * security_fs_use - Determine how to handle labeling for a filesystem.
2924  * @sb: superblock in question
2925  */
security_fs_use(struct super_block * sb)2926 int security_fs_use(struct super_block *sb)
2927 {
2928 	struct selinux_policy *policy;
2929 	struct policydb *policydb;
2930 	struct sidtab *sidtab;
2931 	int rc;
2932 	struct ocontext *c;
2933 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2934 	const char *fstype = sb->s_type->name;
2935 
2936 	if (!selinux_initialized()) {
2937 		sbsec->behavior = SECURITY_FS_USE_NONE;
2938 		sbsec->sid = SECINITSID_UNLABELED;
2939 		return 0;
2940 	}
2941 
2942 retry:
2943 	rcu_read_lock();
2944 	policy = rcu_dereference(selinux_state.policy);
2945 	policydb = &policy->policydb;
2946 	sidtab = policy->sidtab;
2947 
2948 	c = policydb->ocontexts[OCON_FSUSE];
2949 	while (c) {
2950 		if (strcmp(fstype, c->u.name) == 0)
2951 			break;
2952 		c = c->next;
2953 	}
2954 
2955 	if (c) {
2956 		sbsec->behavior = c->v.behavior;
2957 		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2958 		if (rc == -ESTALE) {
2959 			rcu_read_unlock();
2960 			goto retry;
2961 		}
2962 		if (rc)
2963 			goto out;
2964 	} else {
2965 		rc = __security_genfs_sid(policy, fstype, "/",
2966 					SECCLASS_DIR, &sbsec->sid);
2967 		if (rc == -ESTALE) {
2968 			rcu_read_unlock();
2969 			goto retry;
2970 		}
2971 		if (rc) {
2972 			sbsec->behavior = SECURITY_FS_USE_NONE;
2973 			rc = 0;
2974 		} else {
2975 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2976 		}
2977 	}
2978 
2979 out:
2980 	rcu_read_unlock();
2981 	return rc;
2982 }
2983 
security_get_bools(struct selinux_policy * policy,u32 * len,char *** names,int ** values)2984 int security_get_bools(struct selinux_policy *policy,
2985 		       u32 *len, char ***names, int **values)
2986 {
2987 	struct policydb *policydb;
2988 	u32 i;
2989 	int rc;
2990 
2991 	policydb = &policy->policydb;
2992 
2993 	*names = NULL;
2994 	*values = NULL;
2995 
2996 	rc = 0;
2997 	*len = policydb->p_bools.nprim;
2998 	if (!*len)
2999 		goto out;
3000 
3001 	rc = -ENOMEM;
3002 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3003 	if (!*names)
3004 		goto err;
3005 
3006 	rc = -ENOMEM;
3007 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3008 	if (!*values)
3009 		goto err;
3010 
3011 	for (i = 0; i < *len; i++) {
3012 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3013 
3014 		rc = -ENOMEM;
3015 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3016 				      GFP_ATOMIC);
3017 		if (!(*names)[i])
3018 			goto err;
3019 	}
3020 	rc = 0;
3021 out:
3022 	return rc;
3023 err:
3024 	if (*names) {
3025 		for (i = 0; i < *len; i++)
3026 			kfree((*names)[i]);
3027 		kfree(*names);
3028 	}
3029 	kfree(*values);
3030 	*len = 0;
3031 	*names = NULL;
3032 	*values = NULL;
3033 	goto out;
3034 }
3035 
3036 
security_set_bools(u32 len,int * values)3037 int security_set_bools(u32 len, int *values)
3038 {
3039 	struct selinux_state *state = &selinux_state;
3040 	struct selinux_policy *newpolicy, *oldpolicy;
3041 	int rc;
3042 	u32 i, seqno = 0;
3043 
3044 	if (!selinux_initialized())
3045 		return -EINVAL;
3046 
3047 	oldpolicy = rcu_dereference_protected(state->policy,
3048 					lockdep_is_held(&state->policy_mutex));
3049 
3050 	/* Consistency check on number of booleans, should never fail */
3051 	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3052 		return -EINVAL;
3053 
3054 	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3055 	if (!newpolicy)
3056 		return -ENOMEM;
3057 
3058 	/*
3059 	 * Deep copy only the parts of the policydb that might be
3060 	 * modified as a result of changing booleans.
3061 	 */
3062 	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3063 	if (rc) {
3064 		kfree(newpolicy);
3065 		return -ENOMEM;
3066 	}
3067 
3068 	/* Update the boolean states in the copy */
3069 	for (i = 0; i < len; i++) {
3070 		int new_state = !!values[i];
3071 		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3072 
3073 		if (new_state != old_state) {
3074 			audit_log(audit_context(), GFP_ATOMIC,
3075 				AUDIT_MAC_CONFIG_CHANGE,
3076 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3077 				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3078 				new_state,
3079 				old_state,
3080 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3081 				audit_get_sessionid(current));
3082 			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3083 		}
3084 	}
3085 
3086 	/* Re-evaluate the conditional rules in the copy */
3087 	evaluate_cond_nodes(&newpolicy->policydb);
3088 
3089 	/* Set latest granting seqno for new policy */
3090 	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3091 	seqno = newpolicy->latest_granting;
3092 
3093 	/* Install the new policy */
3094 	rcu_assign_pointer(state->policy, newpolicy);
3095 
3096 	/*
3097 	 * Free the conditional portions of the old policydb
3098 	 * that were copied for the new policy, and the oldpolicy
3099 	 * structure itself but not what it references.
3100 	 */
3101 	synchronize_rcu();
3102 	selinux_policy_cond_free(oldpolicy);
3103 
3104 	/* Notify others of the policy change */
3105 	selinux_notify_policy_change(seqno);
3106 	return 0;
3107 }
3108 
security_get_bool_value(u32 index)3109 int security_get_bool_value(u32 index)
3110 {
3111 	struct selinux_policy *policy;
3112 	struct policydb *policydb;
3113 	int rc;
3114 	u32 len;
3115 
3116 	if (!selinux_initialized())
3117 		return 0;
3118 
3119 	rcu_read_lock();
3120 	policy = rcu_dereference(selinux_state.policy);
3121 	policydb = &policy->policydb;
3122 
3123 	rc = -EFAULT;
3124 	len = policydb->p_bools.nprim;
3125 	if (index >= len)
3126 		goto out;
3127 
3128 	rc = policydb->bool_val_to_struct[index]->state;
3129 out:
3130 	rcu_read_unlock();
3131 	return rc;
3132 }
3133 
security_preserve_bools(struct selinux_policy * oldpolicy,struct selinux_policy * newpolicy)3134 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3135 				struct selinux_policy *newpolicy)
3136 {
3137 	int rc, *bvalues = NULL;
3138 	char **bnames = NULL;
3139 	struct cond_bool_datum *booldatum;
3140 	u32 i, nbools = 0;
3141 
3142 	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3143 	if (rc)
3144 		goto out;
3145 	for (i = 0; i < nbools; i++) {
3146 		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3147 					bnames[i]);
3148 		if (booldatum)
3149 			booldatum->state = bvalues[i];
3150 	}
3151 	evaluate_cond_nodes(&newpolicy->policydb);
3152 
3153 out:
3154 	if (bnames) {
3155 		for (i = 0; i < nbools; i++)
3156 			kfree(bnames[i]);
3157 	}
3158 	kfree(bnames);
3159 	kfree(bvalues);
3160 	return rc;
3161 }
3162 
3163 /*
3164  * security_sid_mls_copy() - computes a new sid based on the given
3165  * sid and the mls portion of mls_sid.
3166  */
security_sid_mls_copy(u32 sid,u32 mls_sid,u32 * new_sid)3167 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
3168 {
3169 	struct selinux_policy *policy;
3170 	struct policydb *policydb;
3171 	struct sidtab *sidtab;
3172 	struct context *context1;
3173 	struct context *context2;
3174 	struct context newcon;
3175 	char *s;
3176 	u32 len;
3177 	int rc;
3178 
3179 	if (!selinux_initialized()) {
3180 		*new_sid = sid;
3181 		return 0;
3182 	}
3183 
3184 retry:
3185 	rc = 0;
3186 	context_init(&newcon);
3187 
3188 	rcu_read_lock();
3189 	policy = rcu_dereference(selinux_state.policy);
3190 	policydb = &policy->policydb;
3191 	sidtab = policy->sidtab;
3192 
3193 	if (!policydb->mls_enabled) {
3194 		*new_sid = sid;
3195 		goto out_unlock;
3196 	}
3197 
3198 	rc = -EINVAL;
3199 	context1 = sidtab_search(sidtab, sid);
3200 	if (!context1) {
3201 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3202 			__func__, sid);
3203 		goto out_unlock;
3204 	}
3205 
3206 	rc = -EINVAL;
3207 	context2 = sidtab_search(sidtab, mls_sid);
3208 	if (!context2) {
3209 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3210 			__func__, mls_sid);
3211 		goto out_unlock;
3212 	}
3213 
3214 	newcon.user = context1->user;
3215 	newcon.role = context1->role;
3216 	newcon.type = context1->type;
3217 	rc = mls_context_cpy(&newcon, context2);
3218 	if (rc)
3219 		goto out_unlock;
3220 
3221 	/* Check the validity of the new context. */
3222 	if (!policydb_context_isvalid(policydb, &newcon)) {
3223 		rc = convert_context_handle_invalid_context(policydb,
3224 							&newcon);
3225 		if (rc) {
3226 			if (!context_struct_to_string(policydb, &newcon, &s,
3227 						      &len)) {
3228 				struct audit_buffer *ab;
3229 
3230 				ab = audit_log_start(audit_context(),
3231 						     GFP_ATOMIC,
3232 						     AUDIT_SELINUX_ERR);
3233 				audit_log_format(ab,
3234 						 "op=security_sid_mls_copy invalid_context=");
3235 				/* don't record NUL with untrusted strings */
3236 				audit_log_n_untrustedstring(ab, s, len - 1);
3237 				audit_log_end(ab);
3238 				kfree(s);
3239 			}
3240 			goto out_unlock;
3241 		}
3242 	}
3243 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3244 	if (rc == -ESTALE) {
3245 		rcu_read_unlock();
3246 		context_destroy(&newcon);
3247 		goto retry;
3248 	}
3249 out_unlock:
3250 	rcu_read_unlock();
3251 	context_destroy(&newcon);
3252 	return rc;
3253 }
3254 
3255 /**
3256  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3257  * @nlbl_sid: NetLabel SID
3258  * @nlbl_type: NetLabel labeling protocol type
3259  * @xfrm_sid: XFRM SID
3260  * @peer_sid: network peer sid
3261  *
3262  * Description:
3263  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3264  * resolved into a single SID it is returned via @peer_sid and the function
3265  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3266  * returns a negative value.  A table summarizing the behavior is below:
3267  *
3268  *                                 | function return |      @sid
3269  *   ------------------------------+-----------------+-----------------
3270  *   no peer labels                |        0        |    SECSID_NULL
3271  *   single peer label             |        0        |    <peer_label>
3272  *   multiple, consistent labels   |        0        |    <peer_label>
3273  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3274  *
3275  */
security_net_peersid_resolve(u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3276 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
3277 				 u32 xfrm_sid,
3278 				 u32 *peer_sid)
3279 {
3280 	struct selinux_policy *policy;
3281 	struct policydb *policydb;
3282 	struct sidtab *sidtab;
3283 	int rc;
3284 	struct context *nlbl_ctx;
3285 	struct context *xfrm_ctx;
3286 
3287 	*peer_sid = SECSID_NULL;
3288 
3289 	/* handle the common (which also happens to be the set of easy) cases
3290 	 * right away, these two if statements catch everything involving a
3291 	 * single or absent peer SID/label */
3292 	if (xfrm_sid == SECSID_NULL) {
3293 		*peer_sid = nlbl_sid;
3294 		return 0;
3295 	}
3296 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3297 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3298 	 * is present */
3299 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3300 		*peer_sid = xfrm_sid;
3301 		return 0;
3302 	}
3303 
3304 	if (!selinux_initialized())
3305 		return 0;
3306 
3307 	rcu_read_lock();
3308 	policy = rcu_dereference(selinux_state.policy);
3309 	policydb = &policy->policydb;
3310 	sidtab = policy->sidtab;
3311 
3312 	/*
3313 	 * We don't need to check initialized here since the only way both
3314 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3315 	 * security server was initialized and state->initialized was true.
3316 	 */
3317 	if (!policydb->mls_enabled) {
3318 		rc = 0;
3319 		goto out;
3320 	}
3321 
3322 	rc = -EINVAL;
3323 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3324 	if (!nlbl_ctx) {
3325 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3326 		       __func__, nlbl_sid);
3327 		goto out;
3328 	}
3329 	rc = -EINVAL;
3330 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3331 	if (!xfrm_ctx) {
3332 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3333 		       __func__, xfrm_sid);
3334 		goto out;
3335 	}
3336 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3337 	if (rc)
3338 		goto out;
3339 
3340 	/* at present NetLabel SIDs/labels really only carry MLS
3341 	 * information so if the MLS portion of the NetLabel SID
3342 	 * matches the MLS portion of the labeled XFRM SID/label
3343 	 * then pass along the XFRM SID as it is the most
3344 	 * expressive */
3345 	*peer_sid = xfrm_sid;
3346 out:
3347 	rcu_read_unlock();
3348 	return rc;
3349 }
3350 
get_classes_callback(void * k,void * d,void * args)3351 static int get_classes_callback(void *k, void *d, void *args)
3352 {
3353 	struct class_datum *datum = d;
3354 	char *name = k, **classes = args;
3355 	u32 value = datum->value - 1;
3356 
3357 	classes[value] = kstrdup(name, GFP_ATOMIC);
3358 	if (!classes[value])
3359 		return -ENOMEM;
3360 
3361 	return 0;
3362 }
3363 
security_get_classes(struct selinux_policy * policy,char *** classes,u32 * nclasses)3364 int security_get_classes(struct selinux_policy *policy,
3365 			 char ***classes, u32 *nclasses)
3366 {
3367 	struct policydb *policydb;
3368 	int rc;
3369 
3370 	policydb = &policy->policydb;
3371 
3372 	rc = -ENOMEM;
3373 	*nclasses = policydb->p_classes.nprim;
3374 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3375 	if (!*classes)
3376 		goto out;
3377 
3378 	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3379 			 *classes);
3380 	if (rc) {
3381 		u32 i;
3382 
3383 		for (i = 0; i < *nclasses; i++)
3384 			kfree((*classes)[i]);
3385 		kfree(*classes);
3386 	}
3387 
3388 out:
3389 	return rc;
3390 }
3391 
get_permissions_callback(void * k,void * d,void * args)3392 static int get_permissions_callback(void *k, void *d, void *args)
3393 {
3394 	struct perm_datum *datum = d;
3395 	char *name = k, **perms = args;
3396 	u32 value = datum->value - 1;
3397 
3398 	perms[value] = kstrdup(name, GFP_ATOMIC);
3399 	if (!perms[value])
3400 		return -ENOMEM;
3401 
3402 	return 0;
3403 }
3404 
security_get_permissions(struct selinux_policy * policy,const char * class,char *** perms,u32 * nperms)3405 int security_get_permissions(struct selinux_policy *policy,
3406 			     const char *class, char ***perms, u32 *nperms)
3407 {
3408 	struct policydb *policydb;
3409 	u32 i;
3410 	int rc;
3411 	struct class_datum *match;
3412 
3413 	policydb = &policy->policydb;
3414 
3415 	rc = -EINVAL;
3416 	match = symtab_search(&policydb->p_classes, class);
3417 	if (!match) {
3418 		pr_err("SELinux: %s:  unrecognized class %s\n",
3419 			__func__, class);
3420 		goto out;
3421 	}
3422 
3423 	rc = -ENOMEM;
3424 	*nperms = match->permissions.nprim;
3425 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3426 	if (!*perms)
3427 		goto out;
3428 
3429 	if (match->comdatum) {
3430 		rc = hashtab_map(&match->comdatum->permissions.table,
3431 				 get_permissions_callback, *perms);
3432 		if (rc)
3433 			goto err;
3434 	}
3435 
3436 	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3437 			 *perms);
3438 	if (rc)
3439 		goto err;
3440 
3441 out:
3442 	return rc;
3443 
3444 err:
3445 	for (i = 0; i < *nperms; i++)
3446 		kfree((*perms)[i]);
3447 	kfree(*perms);
3448 	return rc;
3449 }
3450 
security_get_reject_unknown(void)3451 int security_get_reject_unknown(void)
3452 {
3453 	struct selinux_policy *policy;
3454 	int value;
3455 
3456 	if (!selinux_initialized())
3457 		return 0;
3458 
3459 	rcu_read_lock();
3460 	policy = rcu_dereference(selinux_state.policy);
3461 	value = policy->policydb.reject_unknown;
3462 	rcu_read_unlock();
3463 	return value;
3464 }
3465 
security_get_allow_unknown(void)3466 int security_get_allow_unknown(void)
3467 {
3468 	struct selinux_policy *policy;
3469 	int value;
3470 
3471 	if (!selinux_initialized())
3472 		return 0;
3473 
3474 	rcu_read_lock();
3475 	policy = rcu_dereference(selinux_state.policy);
3476 	value = policy->policydb.allow_unknown;
3477 	rcu_read_unlock();
3478 	return value;
3479 }
3480 
3481 /**
3482  * security_policycap_supported - Check for a specific policy capability
3483  * @req_cap: capability
3484  *
3485  * Description:
3486  * This function queries the currently loaded policy to see if it supports the
3487  * capability specified by @req_cap.  Returns true (1) if the capability is
3488  * supported, false (0) if it isn't supported.
3489  *
3490  */
security_policycap_supported(unsigned int req_cap)3491 int security_policycap_supported(unsigned int req_cap)
3492 {
3493 	struct selinux_policy *policy;
3494 	int rc;
3495 
3496 	if (!selinux_initialized())
3497 		return 0;
3498 
3499 	rcu_read_lock();
3500 	policy = rcu_dereference(selinux_state.policy);
3501 	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3502 	rcu_read_unlock();
3503 
3504 	return rc;
3505 }
3506 
3507 struct selinux_audit_rule {
3508 	u32 au_seqno;
3509 	struct context au_ctxt;
3510 };
3511 
selinux_audit_rule_free(void * vrule)3512 void selinux_audit_rule_free(void *vrule)
3513 {
3514 	struct selinux_audit_rule *rule = vrule;
3515 
3516 	if (rule) {
3517 		context_destroy(&rule->au_ctxt);
3518 		kfree(rule);
3519 	}
3520 }
3521 
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule,gfp_t gfp)3522 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule,
3523 			    gfp_t gfp)
3524 {
3525 	struct selinux_state *state = &selinux_state;
3526 	struct selinux_policy *policy;
3527 	struct policydb *policydb;
3528 	struct selinux_audit_rule *tmprule;
3529 	struct role_datum *roledatum;
3530 	struct type_datum *typedatum;
3531 	struct user_datum *userdatum;
3532 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3533 	int rc = 0;
3534 
3535 	*rule = NULL;
3536 
3537 	if (!selinux_initialized())
3538 		return -EOPNOTSUPP;
3539 
3540 	switch (field) {
3541 	case AUDIT_SUBJ_USER:
3542 	case AUDIT_SUBJ_ROLE:
3543 	case AUDIT_SUBJ_TYPE:
3544 	case AUDIT_OBJ_USER:
3545 	case AUDIT_OBJ_ROLE:
3546 	case AUDIT_OBJ_TYPE:
3547 		/* only 'equals' and 'not equals' fit user, role, and type */
3548 		if (op != Audit_equal && op != Audit_not_equal)
3549 			return -EINVAL;
3550 		break;
3551 	case AUDIT_SUBJ_SEN:
3552 	case AUDIT_SUBJ_CLR:
3553 	case AUDIT_OBJ_LEV_LOW:
3554 	case AUDIT_OBJ_LEV_HIGH:
3555 		/* we do not allow a range, indicated by the presence of '-' */
3556 		if (strchr(rulestr, '-'))
3557 			return -EINVAL;
3558 		break;
3559 	default:
3560 		/* only the above fields are valid */
3561 		return -EINVAL;
3562 	}
3563 
3564 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), gfp);
3565 	if (!tmprule)
3566 		return -ENOMEM;
3567 	context_init(&tmprule->au_ctxt);
3568 
3569 	rcu_read_lock();
3570 	policy = rcu_dereference(state->policy);
3571 	policydb = &policy->policydb;
3572 	tmprule->au_seqno = policy->latest_granting;
3573 	switch (field) {
3574 	case AUDIT_SUBJ_USER:
3575 	case AUDIT_OBJ_USER:
3576 		userdatum = symtab_search(&policydb->p_users, rulestr);
3577 		if (!userdatum) {
3578 			rc = -EINVAL;
3579 			goto err;
3580 		}
3581 		tmprule->au_ctxt.user = userdatum->value;
3582 		break;
3583 	case AUDIT_SUBJ_ROLE:
3584 	case AUDIT_OBJ_ROLE:
3585 		roledatum = symtab_search(&policydb->p_roles, rulestr);
3586 		if (!roledatum) {
3587 			rc = -EINVAL;
3588 			goto err;
3589 		}
3590 		tmprule->au_ctxt.role = roledatum->value;
3591 		break;
3592 	case AUDIT_SUBJ_TYPE:
3593 	case AUDIT_OBJ_TYPE:
3594 		typedatum = symtab_search(&policydb->p_types, rulestr);
3595 		if (!typedatum) {
3596 			rc = -EINVAL;
3597 			goto err;
3598 		}
3599 		tmprule->au_ctxt.type = typedatum->value;
3600 		break;
3601 	case AUDIT_SUBJ_SEN:
3602 	case AUDIT_SUBJ_CLR:
3603 	case AUDIT_OBJ_LEV_LOW:
3604 	case AUDIT_OBJ_LEV_HIGH:
3605 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3606 				     GFP_ATOMIC);
3607 		if (rc)
3608 			goto err;
3609 		break;
3610 	}
3611 	rcu_read_unlock();
3612 
3613 	*rule = tmprule;
3614 	return 0;
3615 
3616 err:
3617 	rcu_read_unlock();
3618 	selinux_audit_rule_free(tmprule);
3619 	*rule = NULL;
3620 	return rc;
3621 }
3622 
3623 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3624 int selinux_audit_rule_known(struct audit_krule *rule)
3625 {
3626 	u32 i;
3627 
3628 	for (i = 0; i < rule->field_count; i++) {
3629 		struct audit_field *f = &rule->fields[i];
3630 		switch (f->type) {
3631 		case AUDIT_SUBJ_USER:
3632 		case AUDIT_SUBJ_ROLE:
3633 		case AUDIT_SUBJ_TYPE:
3634 		case AUDIT_SUBJ_SEN:
3635 		case AUDIT_SUBJ_CLR:
3636 		case AUDIT_OBJ_USER:
3637 		case AUDIT_OBJ_ROLE:
3638 		case AUDIT_OBJ_TYPE:
3639 		case AUDIT_OBJ_LEV_LOW:
3640 		case AUDIT_OBJ_LEV_HIGH:
3641 			return 1;
3642 		}
3643 	}
3644 
3645 	return 0;
3646 }
3647 
selinux_audit_rule_match(struct lsm_prop * prop,u32 field,u32 op,void * vrule)3648 int selinux_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op, void *vrule)
3649 {
3650 	struct selinux_state *state = &selinux_state;
3651 	struct selinux_policy *policy;
3652 	struct context *ctxt;
3653 	struct mls_level *level;
3654 	struct selinux_audit_rule *rule = vrule;
3655 	int match = 0;
3656 
3657 	if (unlikely(!rule)) {
3658 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3659 		return -ENOENT;
3660 	}
3661 
3662 	if (!selinux_initialized())
3663 		return 0;
3664 
3665 	rcu_read_lock();
3666 
3667 	policy = rcu_dereference(state->policy);
3668 
3669 	if (rule->au_seqno < policy->latest_granting) {
3670 		match = -ESTALE;
3671 		goto out;
3672 	}
3673 
3674 	ctxt = sidtab_search(policy->sidtab, prop->selinux.secid);
3675 	if (unlikely(!ctxt)) {
3676 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3677 			  prop->selinux.secid);
3678 		match = -ENOENT;
3679 		goto out;
3680 	}
3681 
3682 	/* a field/op pair that is not caught here will simply fall through
3683 	   without a match */
3684 	switch (field) {
3685 	case AUDIT_SUBJ_USER:
3686 	case AUDIT_OBJ_USER:
3687 		switch (op) {
3688 		case Audit_equal:
3689 			match = (ctxt->user == rule->au_ctxt.user);
3690 			break;
3691 		case Audit_not_equal:
3692 			match = (ctxt->user != rule->au_ctxt.user);
3693 			break;
3694 		}
3695 		break;
3696 	case AUDIT_SUBJ_ROLE:
3697 	case AUDIT_OBJ_ROLE:
3698 		switch (op) {
3699 		case Audit_equal:
3700 			match = (ctxt->role == rule->au_ctxt.role);
3701 			break;
3702 		case Audit_not_equal:
3703 			match = (ctxt->role != rule->au_ctxt.role);
3704 			break;
3705 		}
3706 		break;
3707 	case AUDIT_SUBJ_TYPE:
3708 	case AUDIT_OBJ_TYPE:
3709 		switch (op) {
3710 		case Audit_equal:
3711 			match = (ctxt->type == rule->au_ctxt.type);
3712 			break;
3713 		case Audit_not_equal:
3714 			match = (ctxt->type != rule->au_ctxt.type);
3715 			break;
3716 		}
3717 		break;
3718 	case AUDIT_SUBJ_SEN:
3719 	case AUDIT_SUBJ_CLR:
3720 	case AUDIT_OBJ_LEV_LOW:
3721 	case AUDIT_OBJ_LEV_HIGH:
3722 		level = ((field == AUDIT_SUBJ_SEN ||
3723 			  field == AUDIT_OBJ_LEV_LOW) ?
3724 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3725 		switch (op) {
3726 		case Audit_equal:
3727 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3728 					     level);
3729 			break;
3730 		case Audit_not_equal:
3731 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3732 					      level);
3733 			break;
3734 		case Audit_lt:
3735 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3736 					       level) &&
3737 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3738 					       level));
3739 			break;
3740 		case Audit_le:
3741 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3742 					      level);
3743 			break;
3744 		case Audit_gt:
3745 			match = (mls_level_dom(level,
3746 					      &rule->au_ctxt.range.level[0]) &&
3747 				 !mls_level_eq(level,
3748 					       &rule->au_ctxt.range.level[0]));
3749 			break;
3750 		case Audit_ge:
3751 			match = mls_level_dom(level,
3752 					      &rule->au_ctxt.range.level[0]);
3753 			break;
3754 		}
3755 	}
3756 
3757 out:
3758 	rcu_read_unlock();
3759 	return match;
3760 }
3761 
aurule_avc_callback(u32 event)3762 static int aurule_avc_callback(u32 event)
3763 {
3764 	if (event == AVC_CALLBACK_RESET)
3765 		return audit_update_lsm_rules();
3766 	return 0;
3767 }
3768 
aurule_init(void)3769 static int __init aurule_init(void)
3770 {
3771 	int err;
3772 
3773 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3774 	if (err)
3775 		panic("avc_add_callback() failed, error %d\n", err);
3776 
3777 	return err;
3778 }
3779 __initcall(aurule_init);
3780 
3781 #ifdef CONFIG_NETLABEL
3782 /**
3783  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3784  * @secattr: the NetLabel packet security attributes
3785  * @sid: the SELinux SID
3786  *
3787  * Description:
3788  * Attempt to cache the context in @ctx, which was derived from the packet in
3789  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3790  * already been initialized.
3791  *
3792  */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3793 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3794 				      u32 sid)
3795 {
3796 	u32 *sid_cache;
3797 
3798 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3799 	if (sid_cache == NULL)
3800 		return;
3801 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3802 	if (secattr->cache == NULL) {
3803 		kfree(sid_cache);
3804 		return;
3805 	}
3806 
3807 	*sid_cache = sid;
3808 	secattr->cache->free = kfree;
3809 	secattr->cache->data = sid_cache;
3810 	secattr->flags |= NETLBL_SECATTR_CACHE;
3811 }
3812 
3813 /**
3814  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3815  * @secattr: the NetLabel packet security attributes
3816  * @sid: the SELinux SID
3817  *
3818  * Description:
3819  * Convert the given NetLabel security attributes in @secattr into a
3820  * SELinux SID.  If the @secattr field does not contain a full SELinux
3821  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3822  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3823  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3824  * conversion for future lookups.  Returns zero on success, negative values on
3825  * failure.
3826  *
3827  */
security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr * secattr,u32 * sid)3828 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3829 				   u32 *sid)
3830 {
3831 	struct selinux_policy *policy;
3832 	struct policydb *policydb;
3833 	struct sidtab *sidtab;
3834 	int rc;
3835 	struct context *ctx;
3836 	struct context ctx_new;
3837 
3838 	if (!selinux_initialized()) {
3839 		*sid = SECSID_NULL;
3840 		return 0;
3841 	}
3842 
3843 retry:
3844 	rc = 0;
3845 	rcu_read_lock();
3846 	policy = rcu_dereference(selinux_state.policy);
3847 	policydb = &policy->policydb;
3848 	sidtab = policy->sidtab;
3849 
3850 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3851 		*sid = *(u32 *)secattr->cache->data;
3852 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3853 		*sid = secattr->attr.secid;
3854 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3855 		rc = -EIDRM;
3856 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3857 		if (ctx == NULL)
3858 			goto out;
3859 
3860 		context_init(&ctx_new);
3861 		ctx_new.user = ctx->user;
3862 		ctx_new.role = ctx->role;
3863 		ctx_new.type = ctx->type;
3864 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3865 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3866 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3867 			if (rc)
3868 				goto out;
3869 		}
3870 		rc = -EIDRM;
3871 		if (!mls_context_isvalid(policydb, &ctx_new)) {
3872 			ebitmap_destroy(&ctx_new.range.level[0].cat);
3873 			goto out;
3874 		}
3875 
3876 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3877 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3878 		if (rc == -ESTALE) {
3879 			rcu_read_unlock();
3880 			goto retry;
3881 		}
3882 		if (rc)
3883 			goto out;
3884 
3885 		security_netlbl_cache_add(secattr, *sid);
3886 	} else
3887 		*sid = SECSID_NULL;
3888 
3889 out:
3890 	rcu_read_unlock();
3891 	return rc;
3892 }
3893 
3894 /**
3895  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3896  * @sid: the SELinux SID
3897  * @secattr: the NetLabel packet security attributes
3898  *
3899  * Description:
3900  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3901  * Returns zero on success, negative values on failure.
3902  *
3903  */
security_netlbl_sid_to_secattr(u32 sid,struct netlbl_lsm_secattr * secattr)3904 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3905 {
3906 	struct selinux_policy *policy;
3907 	struct policydb *policydb;
3908 	int rc;
3909 	struct context *ctx;
3910 
3911 	if (!selinux_initialized())
3912 		return 0;
3913 
3914 	rcu_read_lock();
3915 	policy = rcu_dereference(selinux_state.policy);
3916 	policydb = &policy->policydb;
3917 
3918 	rc = -ENOENT;
3919 	ctx = sidtab_search(policy->sidtab, sid);
3920 	if (ctx == NULL)
3921 		goto out;
3922 
3923 	rc = -ENOMEM;
3924 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3925 				  GFP_ATOMIC);
3926 	if (secattr->domain == NULL)
3927 		goto out;
3928 
3929 	secattr->attr.secid = sid;
3930 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3931 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3932 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3933 out:
3934 	rcu_read_unlock();
3935 	return rc;
3936 }
3937 #endif /* CONFIG_NETLABEL */
3938 
3939 /**
3940  * __security_read_policy - read the policy.
3941  * @policy: SELinux policy
3942  * @data: binary policy data
3943  * @len: length of data in bytes
3944  *
3945  */
__security_read_policy(struct selinux_policy * policy,void * data,size_t * len)3946 static int __security_read_policy(struct selinux_policy *policy,
3947 				  void *data, size_t *len)
3948 {
3949 	int rc;
3950 	struct policy_file fp;
3951 
3952 	fp.data = data;
3953 	fp.len = *len;
3954 
3955 	rc = policydb_write(&policy->policydb, &fp);
3956 	if (rc)
3957 		return rc;
3958 
3959 	*len = (unsigned long)fp.data - (unsigned long)data;
3960 	return 0;
3961 }
3962 
3963 /**
3964  * security_read_policy - read the policy.
3965  * @data: binary policy data
3966  * @len: length of data in bytes
3967  *
3968  */
security_read_policy(void ** data,size_t * len)3969 int security_read_policy(void **data, size_t *len)
3970 {
3971 	struct selinux_state *state = &selinux_state;
3972 	struct selinux_policy *policy;
3973 
3974 	policy = rcu_dereference_protected(
3975 			state->policy, lockdep_is_held(&state->policy_mutex));
3976 	if (!policy)
3977 		return -EINVAL;
3978 
3979 	*len = policy->policydb.len;
3980 	*data = vmalloc_user(*len);
3981 	if (!*data)
3982 		return -ENOMEM;
3983 
3984 	return __security_read_policy(policy, *data, len);
3985 }
3986 
3987 /**
3988  * security_read_state_kernel - read the policy.
3989  * @data: binary policy data
3990  * @len: length of data in bytes
3991  *
3992  * Allocates kernel memory for reading SELinux policy.
3993  * This function is for internal use only and should not
3994  * be used for returning data to user space.
3995  *
3996  * This function must be called with policy_mutex held.
3997  */
security_read_state_kernel(void ** data,size_t * len)3998 int security_read_state_kernel(void **data, size_t *len)
3999 {
4000 	int err;
4001 	struct selinux_state *state = &selinux_state;
4002 	struct selinux_policy *policy;
4003 
4004 	policy = rcu_dereference_protected(
4005 			state->policy, lockdep_is_held(&state->policy_mutex));
4006 	if (!policy)
4007 		return -EINVAL;
4008 
4009 	*len = policy->policydb.len;
4010 	*data = vmalloc(*len);
4011 	if (!*data)
4012 		return -ENOMEM;
4013 
4014 	err = __security_read_policy(policy, *data, len);
4015 	if (err) {
4016 		vfree(*data);
4017 		*data = NULL;
4018 		*len = 0;
4019 	}
4020 	return err;
4021 }
4022