1 /* 2 * Implementation of the policy database. 3 * 4 * Author : Stephen Smalley, <sds@epoch.ncsc.mil> 5 */ 6 7 /* 8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> 9 * 10 * Support for enhanced MLS infrastructure. 11 * 12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com> 13 * 14 * Added conditional policy language extensions 15 * 16 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 17 * Copyright (C) 2003 - 2004 Tresys Technology, LLC 18 * This program is free software; you can redistribute it and/or modify 19 * it under the terms of the GNU General Public License as published by 20 * the Free Software Foundation, version 2. 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/slab.h> 25 #include <linux/string.h> 26 #include <linux/errno.h> 27 #include "security.h" 28 29 #include "policydb.h" 30 #include "conditional.h" 31 #include "mls.h" 32 33 #define _DEBUG_HASHES 34 35 #ifdef DEBUG_HASHES 36 static char *symtab_name[SYM_NUM] = { 37 "common prefixes", 38 "classes", 39 "roles", 40 "types", 41 "users", 42 "bools", 43 "levels", 44 "categories", 45 }; 46 #endif 47 48 int selinux_mls_enabled = 0; 49 50 static unsigned int symtab_sizes[SYM_NUM] = { 51 2, 52 32, 53 16, 54 512, 55 128, 56 16, 57 16, 58 16, 59 }; 60 61 struct policydb_compat_info { 62 int version; 63 int sym_num; 64 int ocon_num; 65 }; 66 67 /* These need to be updated if SYM_NUM or OCON_NUM changes */ 68 static struct policydb_compat_info policydb_compat[] = { 69 { 70 .version = POLICYDB_VERSION_BASE, 71 .sym_num = SYM_NUM - 3, 72 .ocon_num = OCON_NUM - 1, 73 }, 74 { 75 .version = POLICYDB_VERSION_BOOL, 76 .sym_num = SYM_NUM - 2, 77 .ocon_num = OCON_NUM - 1, 78 }, 79 { 80 .version = POLICYDB_VERSION_IPV6, 81 .sym_num = SYM_NUM - 2, 82 .ocon_num = OCON_NUM, 83 }, 84 { 85 .version = POLICYDB_VERSION_NLCLASS, 86 .sym_num = SYM_NUM - 2, 87 .ocon_num = OCON_NUM, 88 }, 89 { 90 .version = POLICYDB_VERSION_MLS, 91 .sym_num = SYM_NUM, 92 .ocon_num = OCON_NUM, 93 }, 94 { 95 .version = POLICYDB_VERSION_AVTAB, 96 .sym_num = SYM_NUM, 97 .ocon_num = OCON_NUM, 98 }, 99 }; 100 101 static struct policydb_compat_info *policydb_lookup_compat(int version) 102 { 103 int i; 104 struct policydb_compat_info *info = NULL; 105 106 for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) { 107 if (policydb_compat[i].version == version) { 108 info = &policydb_compat[i]; 109 break; 110 } 111 } 112 return info; 113 } 114 115 /* 116 * Initialize the role table. 117 */ 118 static int roles_init(struct policydb *p) 119 { 120 char *key = NULL; 121 int rc; 122 struct role_datum *role; 123 124 role = kzalloc(sizeof(*role), GFP_KERNEL); 125 if (!role) { 126 rc = -ENOMEM; 127 goto out; 128 } 129 role->value = ++p->p_roles.nprim; 130 if (role->value != OBJECT_R_VAL) { 131 rc = -EINVAL; 132 goto out_free_role; 133 } 134 key = kmalloc(strlen(OBJECT_R)+1,GFP_KERNEL); 135 if (!key) { 136 rc = -ENOMEM; 137 goto out_free_role; 138 } 139 strcpy(key, OBJECT_R); 140 rc = hashtab_insert(p->p_roles.table, key, role); 141 if (rc) 142 goto out_free_key; 143 out: 144 return rc; 145 146 out_free_key: 147 kfree(key); 148 out_free_role: 149 kfree(role); 150 goto out; 151 } 152 153 /* 154 * Initialize a policy database structure. 155 */ 156 static int policydb_init(struct policydb *p) 157 { 158 int i, rc; 159 160 memset(p, 0, sizeof(*p)); 161 162 for (i = 0; i < SYM_NUM; i++) { 163 rc = symtab_init(&p->symtab[i], symtab_sizes[i]); 164 if (rc) 165 goto out_free_symtab; 166 } 167 168 rc = avtab_init(&p->te_avtab); 169 if (rc) 170 goto out_free_symtab; 171 172 rc = roles_init(p); 173 if (rc) 174 goto out_free_avtab; 175 176 rc = cond_policydb_init(p); 177 if (rc) 178 goto out_free_avtab; 179 180 out: 181 return rc; 182 183 out_free_avtab: 184 avtab_destroy(&p->te_avtab); 185 186 out_free_symtab: 187 for (i = 0; i < SYM_NUM; i++) 188 hashtab_destroy(p->symtab[i].table); 189 goto out; 190 } 191 192 /* 193 * The following *_index functions are used to 194 * define the val_to_name and val_to_struct arrays 195 * in a policy database structure. The val_to_name 196 * arrays are used when converting security context 197 * structures into string representations. The 198 * val_to_struct arrays are used when the attributes 199 * of a class, role, or user are needed. 200 */ 201 202 static int common_index(void *key, void *datum, void *datap) 203 { 204 struct policydb *p; 205 struct common_datum *comdatum; 206 207 comdatum = datum; 208 p = datap; 209 if (!comdatum->value || comdatum->value > p->p_commons.nprim) 210 return -EINVAL; 211 p->p_common_val_to_name[comdatum->value - 1] = key; 212 return 0; 213 } 214 215 static int class_index(void *key, void *datum, void *datap) 216 { 217 struct policydb *p; 218 struct class_datum *cladatum; 219 220 cladatum = datum; 221 p = datap; 222 if (!cladatum->value || cladatum->value > p->p_classes.nprim) 223 return -EINVAL; 224 p->p_class_val_to_name[cladatum->value - 1] = key; 225 p->class_val_to_struct[cladatum->value - 1] = cladatum; 226 return 0; 227 } 228 229 static int role_index(void *key, void *datum, void *datap) 230 { 231 struct policydb *p; 232 struct role_datum *role; 233 234 role = datum; 235 p = datap; 236 if (!role->value || role->value > p->p_roles.nprim) 237 return -EINVAL; 238 p->p_role_val_to_name[role->value - 1] = key; 239 p->role_val_to_struct[role->value - 1] = role; 240 return 0; 241 } 242 243 static int type_index(void *key, void *datum, void *datap) 244 { 245 struct policydb *p; 246 struct type_datum *typdatum; 247 248 typdatum = datum; 249 p = datap; 250 251 if (typdatum->primary) { 252 if (!typdatum->value || typdatum->value > p->p_types.nprim) 253 return -EINVAL; 254 p->p_type_val_to_name[typdatum->value - 1] = key; 255 } 256 257 return 0; 258 } 259 260 static int user_index(void *key, void *datum, void *datap) 261 { 262 struct policydb *p; 263 struct user_datum *usrdatum; 264 265 usrdatum = datum; 266 p = datap; 267 if (!usrdatum->value || usrdatum->value > p->p_users.nprim) 268 return -EINVAL; 269 p->p_user_val_to_name[usrdatum->value - 1] = key; 270 p->user_val_to_struct[usrdatum->value - 1] = usrdatum; 271 return 0; 272 } 273 274 static int sens_index(void *key, void *datum, void *datap) 275 { 276 struct policydb *p; 277 struct level_datum *levdatum; 278 279 levdatum = datum; 280 p = datap; 281 282 if (!levdatum->isalias) { 283 if (!levdatum->level->sens || 284 levdatum->level->sens > p->p_levels.nprim) 285 return -EINVAL; 286 p->p_sens_val_to_name[levdatum->level->sens - 1] = key; 287 } 288 289 return 0; 290 } 291 292 static int cat_index(void *key, void *datum, void *datap) 293 { 294 struct policydb *p; 295 struct cat_datum *catdatum; 296 297 catdatum = datum; 298 p = datap; 299 300 if (!catdatum->isalias) { 301 if (!catdatum->value || catdatum->value > p->p_cats.nprim) 302 return -EINVAL; 303 p->p_cat_val_to_name[catdatum->value - 1] = key; 304 } 305 306 return 0; 307 } 308 309 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) = 310 { 311 common_index, 312 class_index, 313 role_index, 314 type_index, 315 user_index, 316 cond_index_bool, 317 sens_index, 318 cat_index, 319 }; 320 321 /* 322 * Define the common val_to_name array and the class 323 * val_to_name and val_to_struct arrays in a policy 324 * database structure. 325 * 326 * Caller must clean up upon failure. 327 */ 328 static int policydb_index_classes(struct policydb *p) 329 { 330 int rc; 331 332 p->p_common_val_to_name = 333 kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL); 334 if (!p->p_common_val_to_name) { 335 rc = -ENOMEM; 336 goto out; 337 } 338 339 rc = hashtab_map(p->p_commons.table, common_index, p); 340 if (rc) 341 goto out; 342 343 p->class_val_to_struct = 344 kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL); 345 if (!p->class_val_to_struct) { 346 rc = -ENOMEM; 347 goto out; 348 } 349 350 p->p_class_val_to_name = 351 kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL); 352 if (!p->p_class_val_to_name) { 353 rc = -ENOMEM; 354 goto out; 355 } 356 357 rc = hashtab_map(p->p_classes.table, class_index, p); 358 out: 359 return rc; 360 } 361 362 #ifdef DEBUG_HASHES 363 static void symtab_hash_eval(struct symtab *s) 364 { 365 int i; 366 367 for (i = 0; i < SYM_NUM; i++) { 368 struct hashtab *h = s[i].table; 369 struct hashtab_info info; 370 371 hashtab_stat(h, &info); 372 printk(KERN_INFO "%s: %d entries and %d/%d buckets used, " 373 "longest chain length %d\n", symtab_name[i], h->nel, 374 info.slots_used, h->size, info.max_chain_len); 375 } 376 } 377 #endif 378 379 /* 380 * Define the other val_to_name and val_to_struct arrays 381 * in a policy database structure. 382 * 383 * Caller must clean up on failure. 384 */ 385 static int policydb_index_others(struct policydb *p) 386 { 387 int i, rc = 0; 388 389 printk(KERN_INFO "security: %d users, %d roles, %d types, %d bools", 390 p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim); 391 if (selinux_mls_enabled) 392 printk(", %d sens, %d cats", p->p_levels.nprim, 393 p->p_cats.nprim); 394 printk("\n"); 395 396 printk(KERN_INFO "security: %d classes, %d rules\n", 397 p->p_classes.nprim, p->te_avtab.nel); 398 399 #ifdef DEBUG_HASHES 400 avtab_hash_eval(&p->te_avtab, "rules"); 401 symtab_hash_eval(p->symtab); 402 #endif 403 404 p->role_val_to_struct = 405 kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)), 406 GFP_KERNEL); 407 if (!p->role_val_to_struct) { 408 rc = -ENOMEM; 409 goto out; 410 } 411 412 p->user_val_to_struct = 413 kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)), 414 GFP_KERNEL); 415 if (!p->user_val_to_struct) { 416 rc = -ENOMEM; 417 goto out; 418 } 419 420 if (cond_init_bool_indexes(p)) { 421 rc = -ENOMEM; 422 goto out; 423 } 424 425 for (i = SYM_ROLES; i < SYM_NUM; i++) { 426 p->sym_val_to_name[i] = 427 kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL); 428 if (!p->sym_val_to_name[i]) { 429 rc = -ENOMEM; 430 goto out; 431 } 432 rc = hashtab_map(p->symtab[i].table, index_f[i], p); 433 if (rc) 434 goto out; 435 } 436 437 out: 438 return rc; 439 } 440 441 /* 442 * The following *_destroy functions are used to 443 * free any memory allocated for each kind of 444 * symbol data in the policy database. 445 */ 446 447 static int perm_destroy(void *key, void *datum, void *p) 448 { 449 kfree(key); 450 kfree(datum); 451 return 0; 452 } 453 454 static int common_destroy(void *key, void *datum, void *p) 455 { 456 struct common_datum *comdatum; 457 458 kfree(key); 459 comdatum = datum; 460 hashtab_map(comdatum->permissions.table, perm_destroy, NULL); 461 hashtab_destroy(comdatum->permissions.table); 462 kfree(datum); 463 return 0; 464 } 465 466 static int class_destroy(void *key, void *datum, void *p) 467 { 468 struct class_datum *cladatum; 469 struct constraint_node *constraint, *ctemp; 470 struct constraint_expr *e, *etmp; 471 472 kfree(key); 473 cladatum = datum; 474 hashtab_map(cladatum->permissions.table, perm_destroy, NULL); 475 hashtab_destroy(cladatum->permissions.table); 476 constraint = cladatum->constraints; 477 while (constraint) { 478 e = constraint->expr; 479 while (e) { 480 ebitmap_destroy(&e->names); 481 etmp = e; 482 e = e->next; 483 kfree(etmp); 484 } 485 ctemp = constraint; 486 constraint = constraint->next; 487 kfree(ctemp); 488 } 489 490 constraint = cladatum->validatetrans; 491 while (constraint) { 492 e = constraint->expr; 493 while (e) { 494 ebitmap_destroy(&e->names); 495 etmp = e; 496 e = e->next; 497 kfree(etmp); 498 } 499 ctemp = constraint; 500 constraint = constraint->next; 501 kfree(ctemp); 502 } 503 504 kfree(cladatum->comkey); 505 kfree(datum); 506 return 0; 507 } 508 509 static int role_destroy(void *key, void *datum, void *p) 510 { 511 struct role_datum *role; 512 513 kfree(key); 514 role = datum; 515 ebitmap_destroy(&role->dominates); 516 ebitmap_destroy(&role->types); 517 kfree(datum); 518 return 0; 519 } 520 521 static int type_destroy(void *key, void *datum, void *p) 522 { 523 kfree(key); 524 kfree(datum); 525 return 0; 526 } 527 528 static int user_destroy(void *key, void *datum, void *p) 529 { 530 struct user_datum *usrdatum; 531 532 kfree(key); 533 usrdatum = datum; 534 ebitmap_destroy(&usrdatum->roles); 535 ebitmap_destroy(&usrdatum->range.level[0].cat); 536 ebitmap_destroy(&usrdatum->range.level[1].cat); 537 ebitmap_destroy(&usrdatum->dfltlevel.cat); 538 kfree(datum); 539 return 0; 540 } 541 542 static int sens_destroy(void *key, void *datum, void *p) 543 { 544 struct level_datum *levdatum; 545 546 kfree(key); 547 levdatum = datum; 548 ebitmap_destroy(&levdatum->level->cat); 549 kfree(levdatum->level); 550 kfree(datum); 551 return 0; 552 } 553 554 static int cat_destroy(void *key, void *datum, void *p) 555 { 556 kfree(key); 557 kfree(datum); 558 return 0; 559 } 560 561 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) = 562 { 563 common_destroy, 564 class_destroy, 565 role_destroy, 566 type_destroy, 567 user_destroy, 568 cond_destroy_bool, 569 sens_destroy, 570 cat_destroy, 571 }; 572 573 static void ocontext_destroy(struct ocontext *c, int i) 574 { 575 context_destroy(&c->context[0]); 576 context_destroy(&c->context[1]); 577 if (i == OCON_ISID || i == OCON_FS || 578 i == OCON_NETIF || i == OCON_FSUSE) 579 kfree(c->u.name); 580 kfree(c); 581 } 582 583 /* 584 * Free any memory allocated by a policy database structure. 585 */ 586 void policydb_destroy(struct policydb *p) 587 { 588 struct ocontext *c, *ctmp; 589 struct genfs *g, *gtmp; 590 int i; 591 struct role_allow *ra, *lra = NULL; 592 struct role_trans *tr, *ltr = NULL; 593 struct range_trans *rt, *lrt = NULL; 594 595 for (i = 0; i < SYM_NUM; i++) { 596 hashtab_map(p->symtab[i].table, destroy_f[i], NULL); 597 hashtab_destroy(p->symtab[i].table); 598 } 599 600 for (i = 0; i < SYM_NUM; i++) 601 kfree(p->sym_val_to_name[i]); 602 603 kfree(p->class_val_to_struct); 604 kfree(p->role_val_to_struct); 605 kfree(p->user_val_to_struct); 606 607 avtab_destroy(&p->te_avtab); 608 609 for (i = 0; i < OCON_NUM; i++) { 610 c = p->ocontexts[i]; 611 while (c) { 612 ctmp = c; 613 c = c->next; 614 ocontext_destroy(ctmp,i); 615 } 616 } 617 618 g = p->genfs; 619 while (g) { 620 kfree(g->fstype); 621 c = g->head; 622 while (c) { 623 ctmp = c; 624 c = c->next; 625 ocontext_destroy(ctmp,OCON_FSUSE); 626 } 627 gtmp = g; 628 g = g->next; 629 kfree(gtmp); 630 } 631 632 cond_policydb_destroy(p); 633 634 for (tr = p->role_tr; tr; tr = tr->next) { 635 kfree(ltr); 636 ltr = tr; 637 } 638 kfree(ltr); 639 640 for (ra = p->role_allow; ra; ra = ra -> next) { 641 kfree(lra); 642 lra = ra; 643 } 644 kfree(lra); 645 646 for (rt = p->range_tr; rt; rt = rt -> next) { 647 kfree(lrt); 648 lrt = rt; 649 } 650 kfree(lrt); 651 652 if (p->type_attr_map) { 653 for (i = 0; i < p->p_types.nprim; i++) 654 ebitmap_destroy(&p->type_attr_map[i]); 655 } 656 kfree(p->type_attr_map); 657 658 return; 659 } 660 661 /* 662 * Load the initial SIDs specified in a policy database 663 * structure into a SID table. 664 */ 665 int policydb_load_isids(struct policydb *p, struct sidtab *s) 666 { 667 struct ocontext *head, *c; 668 int rc; 669 670 rc = sidtab_init(s); 671 if (rc) { 672 printk(KERN_ERR "security: out of memory on SID table init\n"); 673 goto out; 674 } 675 676 head = p->ocontexts[OCON_ISID]; 677 for (c = head; c; c = c->next) { 678 if (!c->context[0].user) { 679 printk(KERN_ERR "security: SID %s was never " 680 "defined.\n", c->u.name); 681 rc = -EINVAL; 682 goto out; 683 } 684 if (sidtab_insert(s, c->sid[0], &c->context[0])) { 685 printk(KERN_ERR "security: unable to load initial " 686 "SID %s.\n", c->u.name); 687 rc = -EINVAL; 688 goto out; 689 } 690 } 691 out: 692 return rc; 693 } 694 695 /* 696 * Return 1 if the fields in the security context 697 * structure `c' are valid. Return 0 otherwise. 698 */ 699 int policydb_context_isvalid(struct policydb *p, struct context *c) 700 { 701 struct role_datum *role; 702 struct user_datum *usrdatum; 703 704 if (!c->role || c->role > p->p_roles.nprim) 705 return 0; 706 707 if (!c->user || c->user > p->p_users.nprim) 708 return 0; 709 710 if (!c->type || c->type > p->p_types.nprim) 711 return 0; 712 713 if (c->role != OBJECT_R_VAL) { 714 /* 715 * Role must be authorized for the type. 716 */ 717 role = p->role_val_to_struct[c->role - 1]; 718 if (!ebitmap_get_bit(&role->types, 719 c->type - 1)) 720 /* role may not be associated with type */ 721 return 0; 722 723 /* 724 * User must be authorized for the role. 725 */ 726 usrdatum = p->user_val_to_struct[c->user - 1]; 727 if (!usrdatum) 728 return 0; 729 730 if (!ebitmap_get_bit(&usrdatum->roles, 731 c->role - 1)) 732 /* user may not be associated with role */ 733 return 0; 734 } 735 736 if (!mls_context_isvalid(p, c)) 737 return 0; 738 739 return 1; 740 } 741 742 /* 743 * Read a MLS range structure from a policydb binary 744 * representation file. 745 */ 746 static int mls_read_range_helper(struct mls_range *r, void *fp) 747 { 748 __le32 buf[2]; 749 u32 items; 750 int rc; 751 752 rc = next_entry(buf, fp, sizeof(u32)); 753 if (rc < 0) 754 goto out; 755 756 items = le32_to_cpu(buf[0]); 757 if (items > ARRAY_SIZE(buf)) { 758 printk(KERN_ERR "security: mls: range overflow\n"); 759 rc = -EINVAL; 760 goto out; 761 } 762 rc = next_entry(buf, fp, sizeof(u32) * items); 763 if (rc < 0) { 764 printk(KERN_ERR "security: mls: truncated range\n"); 765 goto out; 766 } 767 r->level[0].sens = le32_to_cpu(buf[0]); 768 if (items > 1) 769 r->level[1].sens = le32_to_cpu(buf[1]); 770 else 771 r->level[1].sens = r->level[0].sens; 772 773 rc = ebitmap_read(&r->level[0].cat, fp); 774 if (rc) { 775 printk(KERN_ERR "security: mls: error reading low " 776 "categories\n"); 777 goto out; 778 } 779 if (items > 1) { 780 rc = ebitmap_read(&r->level[1].cat, fp); 781 if (rc) { 782 printk(KERN_ERR "security: mls: error reading high " 783 "categories\n"); 784 goto bad_high; 785 } 786 } else { 787 rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat); 788 if (rc) { 789 printk(KERN_ERR "security: mls: out of memory\n"); 790 goto bad_high; 791 } 792 } 793 794 rc = 0; 795 out: 796 return rc; 797 bad_high: 798 ebitmap_destroy(&r->level[0].cat); 799 goto out; 800 } 801 802 /* 803 * Read and validate a security context structure 804 * from a policydb binary representation file. 805 */ 806 static int context_read_and_validate(struct context *c, 807 struct policydb *p, 808 void *fp) 809 { 810 __le32 buf[3]; 811 int rc; 812 813 rc = next_entry(buf, fp, sizeof buf); 814 if (rc < 0) { 815 printk(KERN_ERR "security: context truncated\n"); 816 goto out; 817 } 818 c->user = le32_to_cpu(buf[0]); 819 c->role = le32_to_cpu(buf[1]); 820 c->type = le32_to_cpu(buf[2]); 821 if (p->policyvers >= POLICYDB_VERSION_MLS) { 822 if (mls_read_range_helper(&c->range, fp)) { 823 printk(KERN_ERR "security: error reading MLS range of " 824 "context\n"); 825 rc = -EINVAL; 826 goto out; 827 } 828 } 829 830 if (!policydb_context_isvalid(p, c)) { 831 printk(KERN_ERR "security: invalid security context\n"); 832 context_destroy(c); 833 rc = -EINVAL; 834 } 835 out: 836 return rc; 837 } 838 839 /* 840 * The following *_read functions are used to 841 * read the symbol data from a policy database 842 * binary representation file. 843 */ 844 845 static int perm_read(struct policydb *p, struct hashtab *h, void *fp) 846 { 847 char *key = NULL; 848 struct perm_datum *perdatum; 849 int rc; 850 __le32 buf[2]; 851 u32 len; 852 853 perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL); 854 if (!perdatum) { 855 rc = -ENOMEM; 856 goto out; 857 } 858 859 rc = next_entry(buf, fp, sizeof buf); 860 if (rc < 0) 861 goto bad; 862 863 len = le32_to_cpu(buf[0]); 864 perdatum->value = le32_to_cpu(buf[1]); 865 866 key = kmalloc(len + 1,GFP_KERNEL); 867 if (!key) { 868 rc = -ENOMEM; 869 goto bad; 870 } 871 rc = next_entry(key, fp, len); 872 if (rc < 0) 873 goto bad; 874 key[len] = 0; 875 876 rc = hashtab_insert(h, key, perdatum); 877 if (rc) 878 goto bad; 879 out: 880 return rc; 881 bad: 882 perm_destroy(key, perdatum, NULL); 883 goto out; 884 } 885 886 static int common_read(struct policydb *p, struct hashtab *h, void *fp) 887 { 888 char *key = NULL; 889 struct common_datum *comdatum; 890 __le32 buf[4]; 891 u32 len, nel; 892 int i, rc; 893 894 comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL); 895 if (!comdatum) { 896 rc = -ENOMEM; 897 goto out; 898 } 899 900 rc = next_entry(buf, fp, sizeof buf); 901 if (rc < 0) 902 goto bad; 903 904 len = le32_to_cpu(buf[0]); 905 comdatum->value = le32_to_cpu(buf[1]); 906 907 rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE); 908 if (rc) 909 goto bad; 910 comdatum->permissions.nprim = le32_to_cpu(buf[2]); 911 nel = le32_to_cpu(buf[3]); 912 913 key = kmalloc(len + 1,GFP_KERNEL); 914 if (!key) { 915 rc = -ENOMEM; 916 goto bad; 917 } 918 rc = next_entry(key, fp, len); 919 if (rc < 0) 920 goto bad; 921 key[len] = 0; 922 923 for (i = 0; i < nel; i++) { 924 rc = perm_read(p, comdatum->permissions.table, fp); 925 if (rc) 926 goto bad; 927 } 928 929 rc = hashtab_insert(h, key, comdatum); 930 if (rc) 931 goto bad; 932 out: 933 return rc; 934 bad: 935 common_destroy(key, comdatum, NULL); 936 goto out; 937 } 938 939 static int read_cons_helper(struct constraint_node **nodep, int ncons, 940 int allowxtarget, void *fp) 941 { 942 struct constraint_node *c, *lc; 943 struct constraint_expr *e, *le; 944 __le32 buf[3]; 945 u32 nexpr; 946 int rc, i, j, depth; 947 948 lc = NULL; 949 for (i = 0; i < ncons; i++) { 950 c = kzalloc(sizeof(*c), GFP_KERNEL); 951 if (!c) 952 return -ENOMEM; 953 954 if (lc) { 955 lc->next = c; 956 } else { 957 *nodep = c; 958 } 959 960 rc = next_entry(buf, fp, (sizeof(u32) * 2)); 961 if (rc < 0) 962 return rc; 963 c->permissions = le32_to_cpu(buf[0]); 964 nexpr = le32_to_cpu(buf[1]); 965 le = NULL; 966 depth = -1; 967 for (j = 0; j < nexpr; j++) { 968 e = kzalloc(sizeof(*e), GFP_KERNEL); 969 if (!e) 970 return -ENOMEM; 971 972 if (le) { 973 le->next = e; 974 } else { 975 c->expr = e; 976 } 977 978 rc = next_entry(buf, fp, (sizeof(u32) * 3)); 979 if (rc < 0) 980 return rc; 981 e->expr_type = le32_to_cpu(buf[0]); 982 e->attr = le32_to_cpu(buf[1]); 983 e->op = le32_to_cpu(buf[2]); 984 985 switch (e->expr_type) { 986 case CEXPR_NOT: 987 if (depth < 0) 988 return -EINVAL; 989 break; 990 case CEXPR_AND: 991 case CEXPR_OR: 992 if (depth < 1) 993 return -EINVAL; 994 depth--; 995 break; 996 case CEXPR_ATTR: 997 if (depth == (CEXPR_MAXDEPTH - 1)) 998 return -EINVAL; 999 depth++; 1000 break; 1001 case CEXPR_NAMES: 1002 if (!allowxtarget && (e->attr & CEXPR_XTARGET)) 1003 return -EINVAL; 1004 if (depth == (CEXPR_MAXDEPTH - 1)) 1005 return -EINVAL; 1006 depth++; 1007 if (ebitmap_read(&e->names, fp)) 1008 return -EINVAL; 1009 break; 1010 default: 1011 return -EINVAL; 1012 } 1013 le = e; 1014 } 1015 if (depth != 0) 1016 return -EINVAL; 1017 lc = c; 1018 } 1019 1020 return 0; 1021 } 1022 1023 static int class_read(struct policydb *p, struct hashtab *h, void *fp) 1024 { 1025 char *key = NULL; 1026 struct class_datum *cladatum; 1027 __le32 buf[6]; 1028 u32 len, len2, ncons, nel; 1029 int i, rc; 1030 1031 cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL); 1032 if (!cladatum) { 1033 rc = -ENOMEM; 1034 goto out; 1035 } 1036 1037 rc = next_entry(buf, fp, sizeof(u32)*6); 1038 if (rc < 0) 1039 goto bad; 1040 1041 len = le32_to_cpu(buf[0]); 1042 len2 = le32_to_cpu(buf[1]); 1043 cladatum->value = le32_to_cpu(buf[2]); 1044 1045 rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE); 1046 if (rc) 1047 goto bad; 1048 cladatum->permissions.nprim = le32_to_cpu(buf[3]); 1049 nel = le32_to_cpu(buf[4]); 1050 1051 ncons = le32_to_cpu(buf[5]); 1052 1053 key = kmalloc(len + 1,GFP_KERNEL); 1054 if (!key) { 1055 rc = -ENOMEM; 1056 goto bad; 1057 } 1058 rc = next_entry(key, fp, len); 1059 if (rc < 0) 1060 goto bad; 1061 key[len] = 0; 1062 1063 if (len2) { 1064 cladatum->comkey = kmalloc(len2 + 1,GFP_KERNEL); 1065 if (!cladatum->comkey) { 1066 rc = -ENOMEM; 1067 goto bad; 1068 } 1069 rc = next_entry(cladatum->comkey, fp, len2); 1070 if (rc < 0) 1071 goto bad; 1072 cladatum->comkey[len2] = 0; 1073 1074 cladatum->comdatum = hashtab_search(p->p_commons.table, 1075 cladatum->comkey); 1076 if (!cladatum->comdatum) { 1077 printk(KERN_ERR "security: unknown common %s\n", 1078 cladatum->comkey); 1079 rc = -EINVAL; 1080 goto bad; 1081 } 1082 } 1083 for (i = 0; i < nel; i++) { 1084 rc = perm_read(p, cladatum->permissions.table, fp); 1085 if (rc) 1086 goto bad; 1087 } 1088 1089 rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp); 1090 if (rc) 1091 goto bad; 1092 1093 if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) { 1094 /* grab the validatetrans rules */ 1095 rc = next_entry(buf, fp, sizeof(u32)); 1096 if (rc < 0) 1097 goto bad; 1098 ncons = le32_to_cpu(buf[0]); 1099 rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp); 1100 if (rc) 1101 goto bad; 1102 } 1103 1104 rc = hashtab_insert(h, key, cladatum); 1105 if (rc) 1106 goto bad; 1107 1108 rc = 0; 1109 out: 1110 return rc; 1111 bad: 1112 class_destroy(key, cladatum, NULL); 1113 goto out; 1114 } 1115 1116 static int role_read(struct policydb *p, struct hashtab *h, void *fp) 1117 { 1118 char *key = NULL; 1119 struct role_datum *role; 1120 int rc; 1121 __le32 buf[2]; 1122 u32 len; 1123 1124 role = kzalloc(sizeof(*role), GFP_KERNEL); 1125 if (!role) { 1126 rc = -ENOMEM; 1127 goto out; 1128 } 1129 1130 rc = next_entry(buf, fp, sizeof buf); 1131 if (rc < 0) 1132 goto bad; 1133 1134 len = le32_to_cpu(buf[0]); 1135 role->value = le32_to_cpu(buf[1]); 1136 1137 key = kmalloc(len + 1,GFP_KERNEL); 1138 if (!key) { 1139 rc = -ENOMEM; 1140 goto bad; 1141 } 1142 rc = next_entry(key, fp, len); 1143 if (rc < 0) 1144 goto bad; 1145 key[len] = 0; 1146 1147 rc = ebitmap_read(&role->dominates, fp); 1148 if (rc) 1149 goto bad; 1150 1151 rc = ebitmap_read(&role->types, fp); 1152 if (rc) 1153 goto bad; 1154 1155 if (strcmp(key, OBJECT_R) == 0) { 1156 if (role->value != OBJECT_R_VAL) { 1157 printk(KERN_ERR "Role %s has wrong value %d\n", 1158 OBJECT_R, role->value); 1159 rc = -EINVAL; 1160 goto bad; 1161 } 1162 rc = 0; 1163 goto bad; 1164 } 1165 1166 rc = hashtab_insert(h, key, role); 1167 if (rc) 1168 goto bad; 1169 out: 1170 return rc; 1171 bad: 1172 role_destroy(key, role, NULL); 1173 goto out; 1174 } 1175 1176 static int type_read(struct policydb *p, struct hashtab *h, void *fp) 1177 { 1178 char *key = NULL; 1179 struct type_datum *typdatum; 1180 int rc; 1181 __le32 buf[3]; 1182 u32 len; 1183 1184 typdatum = kzalloc(sizeof(*typdatum),GFP_KERNEL); 1185 if (!typdatum) { 1186 rc = -ENOMEM; 1187 return rc; 1188 } 1189 1190 rc = next_entry(buf, fp, sizeof buf); 1191 if (rc < 0) 1192 goto bad; 1193 1194 len = le32_to_cpu(buf[0]); 1195 typdatum->value = le32_to_cpu(buf[1]); 1196 typdatum->primary = le32_to_cpu(buf[2]); 1197 1198 key = kmalloc(len + 1,GFP_KERNEL); 1199 if (!key) { 1200 rc = -ENOMEM; 1201 goto bad; 1202 } 1203 rc = next_entry(key, fp, len); 1204 if (rc < 0) 1205 goto bad; 1206 key[len] = 0; 1207 1208 rc = hashtab_insert(h, key, typdatum); 1209 if (rc) 1210 goto bad; 1211 out: 1212 return rc; 1213 bad: 1214 type_destroy(key, typdatum, NULL); 1215 goto out; 1216 } 1217 1218 1219 /* 1220 * Read a MLS level structure from a policydb binary 1221 * representation file. 1222 */ 1223 static int mls_read_level(struct mls_level *lp, void *fp) 1224 { 1225 __le32 buf[1]; 1226 int rc; 1227 1228 memset(lp, 0, sizeof(*lp)); 1229 1230 rc = next_entry(buf, fp, sizeof buf); 1231 if (rc < 0) { 1232 printk(KERN_ERR "security: mls: truncated level\n"); 1233 goto bad; 1234 } 1235 lp->sens = le32_to_cpu(buf[0]); 1236 1237 if (ebitmap_read(&lp->cat, fp)) { 1238 printk(KERN_ERR "security: mls: error reading level " 1239 "categories\n"); 1240 goto bad; 1241 } 1242 return 0; 1243 1244 bad: 1245 return -EINVAL; 1246 } 1247 1248 static int user_read(struct policydb *p, struct hashtab *h, void *fp) 1249 { 1250 char *key = NULL; 1251 struct user_datum *usrdatum; 1252 int rc; 1253 __le32 buf[2]; 1254 u32 len; 1255 1256 usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL); 1257 if (!usrdatum) { 1258 rc = -ENOMEM; 1259 goto out; 1260 } 1261 1262 rc = next_entry(buf, fp, sizeof buf); 1263 if (rc < 0) 1264 goto bad; 1265 1266 len = le32_to_cpu(buf[0]); 1267 usrdatum->value = le32_to_cpu(buf[1]); 1268 1269 key = kmalloc(len + 1,GFP_KERNEL); 1270 if (!key) { 1271 rc = -ENOMEM; 1272 goto bad; 1273 } 1274 rc = next_entry(key, fp, len); 1275 if (rc < 0) 1276 goto bad; 1277 key[len] = 0; 1278 1279 rc = ebitmap_read(&usrdatum->roles, fp); 1280 if (rc) 1281 goto bad; 1282 1283 if (p->policyvers >= POLICYDB_VERSION_MLS) { 1284 rc = mls_read_range_helper(&usrdatum->range, fp); 1285 if (rc) 1286 goto bad; 1287 rc = mls_read_level(&usrdatum->dfltlevel, fp); 1288 if (rc) 1289 goto bad; 1290 } 1291 1292 rc = hashtab_insert(h, key, usrdatum); 1293 if (rc) 1294 goto bad; 1295 out: 1296 return rc; 1297 bad: 1298 user_destroy(key, usrdatum, NULL); 1299 goto out; 1300 } 1301 1302 static int sens_read(struct policydb *p, struct hashtab *h, void *fp) 1303 { 1304 char *key = NULL; 1305 struct level_datum *levdatum; 1306 int rc; 1307 __le32 buf[2]; 1308 u32 len; 1309 1310 levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC); 1311 if (!levdatum) { 1312 rc = -ENOMEM; 1313 goto out; 1314 } 1315 1316 rc = next_entry(buf, fp, sizeof buf); 1317 if (rc < 0) 1318 goto bad; 1319 1320 len = le32_to_cpu(buf[0]); 1321 levdatum->isalias = le32_to_cpu(buf[1]); 1322 1323 key = kmalloc(len + 1,GFP_ATOMIC); 1324 if (!key) { 1325 rc = -ENOMEM; 1326 goto bad; 1327 } 1328 rc = next_entry(key, fp, len); 1329 if (rc < 0) 1330 goto bad; 1331 key[len] = 0; 1332 1333 levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC); 1334 if (!levdatum->level) { 1335 rc = -ENOMEM; 1336 goto bad; 1337 } 1338 if (mls_read_level(levdatum->level, fp)) { 1339 rc = -EINVAL; 1340 goto bad; 1341 } 1342 1343 rc = hashtab_insert(h, key, levdatum); 1344 if (rc) 1345 goto bad; 1346 out: 1347 return rc; 1348 bad: 1349 sens_destroy(key, levdatum, NULL); 1350 goto out; 1351 } 1352 1353 static int cat_read(struct policydb *p, struct hashtab *h, void *fp) 1354 { 1355 char *key = NULL; 1356 struct cat_datum *catdatum; 1357 int rc; 1358 __le32 buf[3]; 1359 u32 len; 1360 1361 catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC); 1362 if (!catdatum) { 1363 rc = -ENOMEM; 1364 goto out; 1365 } 1366 1367 rc = next_entry(buf, fp, sizeof buf); 1368 if (rc < 0) 1369 goto bad; 1370 1371 len = le32_to_cpu(buf[0]); 1372 catdatum->value = le32_to_cpu(buf[1]); 1373 catdatum->isalias = le32_to_cpu(buf[2]); 1374 1375 key = kmalloc(len + 1,GFP_ATOMIC); 1376 if (!key) { 1377 rc = -ENOMEM; 1378 goto bad; 1379 } 1380 rc = next_entry(key, fp, len); 1381 if (rc < 0) 1382 goto bad; 1383 key[len] = 0; 1384 1385 rc = hashtab_insert(h, key, catdatum); 1386 if (rc) 1387 goto bad; 1388 out: 1389 return rc; 1390 1391 bad: 1392 cat_destroy(key, catdatum, NULL); 1393 goto out; 1394 } 1395 1396 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) = 1397 { 1398 common_read, 1399 class_read, 1400 role_read, 1401 type_read, 1402 user_read, 1403 cond_read_bool, 1404 sens_read, 1405 cat_read, 1406 }; 1407 1408 extern int ss_initialized; 1409 1410 /* 1411 * Read the configuration data from a policy database binary 1412 * representation file into a policy database structure. 1413 */ 1414 int policydb_read(struct policydb *p, void *fp) 1415 { 1416 struct role_allow *ra, *lra; 1417 struct role_trans *tr, *ltr; 1418 struct ocontext *l, *c, *newc; 1419 struct genfs *genfs_p, *genfs, *newgenfs; 1420 int i, j, rc; 1421 __le32 buf[8]; 1422 u32 len, len2, config, nprim, nel, nel2; 1423 char *policydb_str; 1424 struct policydb_compat_info *info; 1425 struct range_trans *rt, *lrt; 1426 1427 config = 0; 1428 1429 rc = policydb_init(p); 1430 if (rc) 1431 goto out; 1432 1433 /* Read the magic number and string length. */ 1434 rc = next_entry(buf, fp, sizeof(u32)* 2); 1435 if (rc < 0) 1436 goto bad; 1437 1438 if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) { 1439 printk(KERN_ERR "security: policydb magic number 0x%x does " 1440 "not match expected magic number 0x%x\n", 1441 le32_to_cpu(buf[0]), POLICYDB_MAGIC); 1442 goto bad; 1443 } 1444 1445 len = le32_to_cpu(buf[1]); 1446 if (len != strlen(POLICYDB_STRING)) { 1447 printk(KERN_ERR "security: policydb string length %d does not " 1448 "match expected length %Zu\n", 1449 len, strlen(POLICYDB_STRING)); 1450 goto bad; 1451 } 1452 policydb_str = kmalloc(len + 1,GFP_KERNEL); 1453 if (!policydb_str) { 1454 printk(KERN_ERR "security: unable to allocate memory for policydb " 1455 "string of length %d\n", len); 1456 rc = -ENOMEM; 1457 goto bad; 1458 } 1459 rc = next_entry(policydb_str, fp, len); 1460 if (rc < 0) { 1461 printk(KERN_ERR "security: truncated policydb string identifier\n"); 1462 kfree(policydb_str); 1463 goto bad; 1464 } 1465 policydb_str[len] = 0; 1466 if (strcmp(policydb_str, POLICYDB_STRING)) { 1467 printk(KERN_ERR "security: policydb string %s does not match " 1468 "my string %s\n", policydb_str, POLICYDB_STRING); 1469 kfree(policydb_str); 1470 goto bad; 1471 } 1472 /* Done with policydb_str. */ 1473 kfree(policydb_str); 1474 policydb_str = NULL; 1475 1476 /* Read the version, config, and table sizes. */ 1477 rc = next_entry(buf, fp, sizeof(u32)*4); 1478 if (rc < 0) 1479 goto bad; 1480 1481 p->policyvers = le32_to_cpu(buf[0]); 1482 if (p->policyvers < POLICYDB_VERSION_MIN || 1483 p->policyvers > POLICYDB_VERSION_MAX) { 1484 printk(KERN_ERR "security: policydb version %d does not match " 1485 "my version range %d-%d\n", 1486 le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX); 1487 goto bad; 1488 } 1489 1490 if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) { 1491 if (ss_initialized && !selinux_mls_enabled) { 1492 printk(KERN_ERR "Cannot switch between non-MLS and MLS " 1493 "policies\n"); 1494 goto bad; 1495 } 1496 selinux_mls_enabled = 1; 1497 config |= POLICYDB_CONFIG_MLS; 1498 1499 if (p->policyvers < POLICYDB_VERSION_MLS) { 1500 printk(KERN_ERR "security policydb version %d (MLS) " 1501 "not backwards compatible\n", p->policyvers); 1502 goto bad; 1503 } 1504 } else { 1505 if (ss_initialized && selinux_mls_enabled) { 1506 printk(KERN_ERR "Cannot switch between MLS and non-MLS " 1507 "policies\n"); 1508 goto bad; 1509 } 1510 } 1511 1512 info = policydb_lookup_compat(p->policyvers); 1513 if (!info) { 1514 printk(KERN_ERR "security: unable to find policy compat info " 1515 "for version %d\n", p->policyvers); 1516 goto bad; 1517 } 1518 1519 if (le32_to_cpu(buf[2]) != info->sym_num || 1520 le32_to_cpu(buf[3]) != info->ocon_num) { 1521 printk(KERN_ERR "security: policydb table sizes (%d,%d) do " 1522 "not match mine (%d,%d)\n", le32_to_cpu(buf[2]), 1523 le32_to_cpu(buf[3]), 1524 info->sym_num, info->ocon_num); 1525 goto bad; 1526 } 1527 1528 for (i = 0; i < info->sym_num; i++) { 1529 rc = next_entry(buf, fp, sizeof(u32)*2); 1530 if (rc < 0) 1531 goto bad; 1532 nprim = le32_to_cpu(buf[0]); 1533 nel = le32_to_cpu(buf[1]); 1534 for (j = 0; j < nel; j++) { 1535 rc = read_f[i](p, p->symtab[i].table, fp); 1536 if (rc) 1537 goto bad; 1538 } 1539 1540 p->symtab[i].nprim = nprim; 1541 } 1542 1543 rc = avtab_read(&p->te_avtab, fp, p->policyvers); 1544 if (rc) 1545 goto bad; 1546 1547 if (p->policyvers >= POLICYDB_VERSION_BOOL) { 1548 rc = cond_read_list(p, fp); 1549 if (rc) 1550 goto bad; 1551 } 1552 1553 rc = next_entry(buf, fp, sizeof(u32)); 1554 if (rc < 0) 1555 goto bad; 1556 nel = le32_to_cpu(buf[0]); 1557 ltr = NULL; 1558 for (i = 0; i < nel; i++) { 1559 tr = kzalloc(sizeof(*tr), GFP_KERNEL); 1560 if (!tr) { 1561 rc = -ENOMEM; 1562 goto bad; 1563 } 1564 if (ltr) { 1565 ltr->next = tr; 1566 } else { 1567 p->role_tr = tr; 1568 } 1569 rc = next_entry(buf, fp, sizeof(u32)*3); 1570 if (rc < 0) 1571 goto bad; 1572 tr->role = le32_to_cpu(buf[0]); 1573 tr->type = le32_to_cpu(buf[1]); 1574 tr->new_role = le32_to_cpu(buf[2]); 1575 ltr = tr; 1576 } 1577 1578 rc = next_entry(buf, fp, sizeof(u32)); 1579 if (rc < 0) 1580 goto bad; 1581 nel = le32_to_cpu(buf[0]); 1582 lra = NULL; 1583 for (i = 0; i < nel; i++) { 1584 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1585 if (!ra) { 1586 rc = -ENOMEM; 1587 goto bad; 1588 } 1589 if (lra) { 1590 lra->next = ra; 1591 } else { 1592 p->role_allow = ra; 1593 } 1594 rc = next_entry(buf, fp, sizeof(u32)*2); 1595 if (rc < 0) 1596 goto bad; 1597 ra->role = le32_to_cpu(buf[0]); 1598 ra->new_role = le32_to_cpu(buf[1]); 1599 lra = ra; 1600 } 1601 1602 rc = policydb_index_classes(p); 1603 if (rc) 1604 goto bad; 1605 1606 rc = policydb_index_others(p); 1607 if (rc) 1608 goto bad; 1609 1610 for (i = 0; i < info->ocon_num; i++) { 1611 rc = next_entry(buf, fp, sizeof(u32)); 1612 if (rc < 0) 1613 goto bad; 1614 nel = le32_to_cpu(buf[0]); 1615 l = NULL; 1616 for (j = 0; j < nel; j++) { 1617 c = kzalloc(sizeof(*c), GFP_KERNEL); 1618 if (!c) { 1619 rc = -ENOMEM; 1620 goto bad; 1621 } 1622 if (l) { 1623 l->next = c; 1624 } else { 1625 p->ocontexts[i] = c; 1626 } 1627 l = c; 1628 rc = -EINVAL; 1629 switch (i) { 1630 case OCON_ISID: 1631 rc = next_entry(buf, fp, sizeof(u32)); 1632 if (rc < 0) 1633 goto bad; 1634 c->sid[0] = le32_to_cpu(buf[0]); 1635 rc = context_read_and_validate(&c->context[0], p, fp); 1636 if (rc) 1637 goto bad; 1638 break; 1639 case OCON_FS: 1640 case OCON_NETIF: 1641 rc = next_entry(buf, fp, sizeof(u32)); 1642 if (rc < 0) 1643 goto bad; 1644 len = le32_to_cpu(buf[0]); 1645 c->u.name = kmalloc(len + 1,GFP_KERNEL); 1646 if (!c->u.name) { 1647 rc = -ENOMEM; 1648 goto bad; 1649 } 1650 rc = next_entry(c->u.name, fp, len); 1651 if (rc < 0) 1652 goto bad; 1653 c->u.name[len] = 0; 1654 rc = context_read_and_validate(&c->context[0], p, fp); 1655 if (rc) 1656 goto bad; 1657 rc = context_read_and_validate(&c->context[1], p, fp); 1658 if (rc) 1659 goto bad; 1660 break; 1661 case OCON_PORT: 1662 rc = next_entry(buf, fp, sizeof(u32)*3); 1663 if (rc < 0) 1664 goto bad; 1665 c->u.port.protocol = le32_to_cpu(buf[0]); 1666 c->u.port.low_port = le32_to_cpu(buf[1]); 1667 c->u.port.high_port = le32_to_cpu(buf[2]); 1668 rc = context_read_and_validate(&c->context[0], p, fp); 1669 if (rc) 1670 goto bad; 1671 break; 1672 case OCON_NODE: 1673 rc = next_entry(buf, fp, sizeof(u32)* 2); 1674 if (rc < 0) 1675 goto bad; 1676 c->u.node.addr = le32_to_cpu(buf[0]); 1677 c->u.node.mask = le32_to_cpu(buf[1]); 1678 rc = context_read_and_validate(&c->context[0], p, fp); 1679 if (rc) 1680 goto bad; 1681 break; 1682 case OCON_FSUSE: 1683 rc = next_entry(buf, fp, sizeof(u32)*2); 1684 if (rc < 0) 1685 goto bad; 1686 c->v.behavior = le32_to_cpu(buf[0]); 1687 if (c->v.behavior > SECURITY_FS_USE_NONE) 1688 goto bad; 1689 len = le32_to_cpu(buf[1]); 1690 c->u.name = kmalloc(len + 1,GFP_KERNEL); 1691 if (!c->u.name) { 1692 rc = -ENOMEM; 1693 goto bad; 1694 } 1695 rc = next_entry(c->u.name, fp, len); 1696 if (rc < 0) 1697 goto bad; 1698 c->u.name[len] = 0; 1699 rc = context_read_and_validate(&c->context[0], p, fp); 1700 if (rc) 1701 goto bad; 1702 break; 1703 case OCON_NODE6: { 1704 int k; 1705 1706 rc = next_entry(buf, fp, sizeof(u32) * 8); 1707 if (rc < 0) 1708 goto bad; 1709 for (k = 0; k < 4; k++) 1710 c->u.node6.addr[k] = le32_to_cpu(buf[k]); 1711 for (k = 0; k < 4; k++) 1712 c->u.node6.mask[k] = le32_to_cpu(buf[k+4]); 1713 if (context_read_and_validate(&c->context[0], p, fp)) 1714 goto bad; 1715 break; 1716 } 1717 } 1718 } 1719 } 1720 1721 rc = next_entry(buf, fp, sizeof(u32)); 1722 if (rc < 0) 1723 goto bad; 1724 nel = le32_to_cpu(buf[0]); 1725 genfs_p = NULL; 1726 rc = -EINVAL; 1727 for (i = 0; i < nel; i++) { 1728 rc = next_entry(buf, fp, sizeof(u32)); 1729 if (rc < 0) 1730 goto bad; 1731 len = le32_to_cpu(buf[0]); 1732 newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL); 1733 if (!newgenfs) { 1734 rc = -ENOMEM; 1735 goto bad; 1736 } 1737 1738 newgenfs->fstype = kmalloc(len + 1,GFP_KERNEL); 1739 if (!newgenfs->fstype) { 1740 rc = -ENOMEM; 1741 kfree(newgenfs); 1742 goto bad; 1743 } 1744 rc = next_entry(newgenfs->fstype, fp, len); 1745 if (rc < 0) { 1746 kfree(newgenfs->fstype); 1747 kfree(newgenfs); 1748 goto bad; 1749 } 1750 newgenfs->fstype[len] = 0; 1751 for (genfs_p = NULL, genfs = p->genfs; genfs; 1752 genfs_p = genfs, genfs = genfs->next) { 1753 if (strcmp(newgenfs->fstype, genfs->fstype) == 0) { 1754 printk(KERN_ERR "security: dup genfs " 1755 "fstype %s\n", newgenfs->fstype); 1756 kfree(newgenfs->fstype); 1757 kfree(newgenfs); 1758 goto bad; 1759 } 1760 if (strcmp(newgenfs->fstype, genfs->fstype) < 0) 1761 break; 1762 } 1763 newgenfs->next = genfs; 1764 if (genfs_p) 1765 genfs_p->next = newgenfs; 1766 else 1767 p->genfs = newgenfs; 1768 rc = next_entry(buf, fp, sizeof(u32)); 1769 if (rc < 0) 1770 goto bad; 1771 nel2 = le32_to_cpu(buf[0]); 1772 for (j = 0; j < nel2; j++) { 1773 rc = next_entry(buf, fp, sizeof(u32)); 1774 if (rc < 0) 1775 goto bad; 1776 len = le32_to_cpu(buf[0]); 1777 1778 newc = kzalloc(sizeof(*newc), GFP_KERNEL); 1779 if (!newc) { 1780 rc = -ENOMEM; 1781 goto bad; 1782 } 1783 1784 newc->u.name = kmalloc(len + 1,GFP_KERNEL); 1785 if (!newc->u.name) { 1786 rc = -ENOMEM; 1787 goto bad_newc; 1788 } 1789 rc = next_entry(newc->u.name, fp, len); 1790 if (rc < 0) 1791 goto bad_newc; 1792 newc->u.name[len] = 0; 1793 rc = next_entry(buf, fp, sizeof(u32)); 1794 if (rc < 0) 1795 goto bad_newc; 1796 newc->v.sclass = le32_to_cpu(buf[0]); 1797 if (context_read_and_validate(&newc->context[0], p, fp)) 1798 goto bad_newc; 1799 for (l = NULL, c = newgenfs->head; c; 1800 l = c, c = c->next) { 1801 if (!strcmp(newc->u.name, c->u.name) && 1802 (!c->v.sclass || !newc->v.sclass || 1803 newc->v.sclass == c->v.sclass)) { 1804 printk(KERN_ERR "security: dup genfs " 1805 "entry (%s,%s)\n", 1806 newgenfs->fstype, c->u.name); 1807 goto bad_newc; 1808 } 1809 len = strlen(newc->u.name); 1810 len2 = strlen(c->u.name); 1811 if (len > len2) 1812 break; 1813 } 1814 1815 newc->next = c; 1816 if (l) 1817 l->next = newc; 1818 else 1819 newgenfs->head = newc; 1820 } 1821 } 1822 1823 if (p->policyvers >= POLICYDB_VERSION_MLS) { 1824 rc = next_entry(buf, fp, sizeof(u32)); 1825 if (rc < 0) 1826 goto bad; 1827 nel = le32_to_cpu(buf[0]); 1828 lrt = NULL; 1829 for (i = 0; i < nel; i++) { 1830 rt = kzalloc(sizeof(*rt), GFP_KERNEL); 1831 if (!rt) { 1832 rc = -ENOMEM; 1833 goto bad; 1834 } 1835 if (lrt) 1836 lrt->next = rt; 1837 else 1838 p->range_tr = rt; 1839 rc = next_entry(buf, fp, (sizeof(u32) * 2)); 1840 if (rc < 0) 1841 goto bad; 1842 rt->dom = le32_to_cpu(buf[0]); 1843 rt->type = le32_to_cpu(buf[1]); 1844 rc = mls_read_range_helper(&rt->range, fp); 1845 if (rc) 1846 goto bad; 1847 lrt = rt; 1848 } 1849 } 1850 1851 p->type_attr_map = kmalloc(p->p_types.nprim*sizeof(struct ebitmap), GFP_KERNEL); 1852 if (!p->type_attr_map) 1853 goto bad; 1854 1855 for (i = 0; i < p->p_types.nprim; i++) { 1856 ebitmap_init(&p->type_attr_map[i]); 1857 if (p->policyvers >= POLICYDB_VERSION_AVTAB) { 1858 if (ebitmap_read(&p->type_attr_map[i], fp)) 1859 goto bad; 1860 } 1861 /* add the type itself as the degenerate case */ 1862 if (ebitmap_set_bit(&p->type_attr_map[i], i, 1)) 1863 goto bad; 1864 } 1865 1866 rc = 0; 1867 out: 1868 return rc; 1869 bad_newc: 1870 ocontext_destroy(newc,OCON_FSUSE); 1871 bad: 1872 if (!rc) 1873 rc = -EINVAL; 1874 policydb_destroy(p); 1875 goto out; 1876 } 1877