xref: /linux/security/selinux/ss/policydb.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6 
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  * 	Added conditional policy language extensions
15  *
16  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
17  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
18  *	This program is free software; you can redistribute it and/or modify
19  *  	it under the terms of the GNU General Public License as published by
20  *	the Free Software Foundation, version 2.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/errno.h>
27 #include "security.h"
28 
29 #include "policydb.h"
30 #include "conditional.h"
31 #include "mls.h"
32 
33 #define _DEBUG_HASHES
34 
35 #ifdef DEBUG_HASHES
36 static char *symtab_name[SYM_NUM] = {
37 	"common prefixes",
38 	"classes",
39 	"roles",
40 	"types",
41 	"users",
42 	"bools",
43 	"levels",
44 	"categories",
45 };
46 #endif
47 
48 int selinux_mls_enabled = 0;
49 
50 static unsigned int symtab_sizes[SYM_NUM] = {
51 	2,
52 	32,
53 	16,
54 	512,
55 	128,
56 	16,
57 	16,
58 	16,
59 };
60 
61 struct policydb_compat_info {
62 	int version;
63 	int sym_num;
64 	int ocon_num;
65 };
66 
67 /* These need to be updated if SYM_NUM or OCON_NUM changes */
68 static struct policydb_compat_info policydb_compat[] = {
69 	{
70 		.version        = POLICYDB_VERSION_BASE,
71 		.sym_num        = SYM_NUM - 3,
72 		.ocon_num       = OCON_NUM - 1,
73 	},
74 	{
75 		.version        = POLICYDB_VERSION_BOOL,
76 		.sym_num        = SYM_NUM - 2,
77 		.ocon_num       = OCON_NUM - 1,
78 	},
79 	{
80 		.version        = POLICYDB_VERSION_IPV6,
81 		.sym_num        = SYM_NUM - 2,
82 		.ocon_num       = OCON_NUM,
83 	},
84 	{
85 		.version        = POLICYDB_VERSION_NLCLASS,
86 		.sym_num        = SYM_NUM - 2,
87 		.ocon_num       = OCON_NUM,
88 	},
89 	{
90 		.version        = POLICYDB_VERSION_MLS,
91 		.sym_num        = SYM_NUM,
92 		.ocon_num       = OCON_NUM,
93 	},
94 	{
95 		.version        = POLICYDB_VERSION_AVTAB,
96 		.sym_num        = SYM_NUM,
97 		.ocon_num       = OCON_NUM,
98 	},
99 	{
100 		.version        = POLICYDB_VERSION_RANGETRANS,
101 		.sym_num        = SYM_NUM,
102 		.ocon_num       = OCON_NUM,
103 	},
104 };
105 
106 static struct policydb_compat_info *policydb_lookup_compat(int version)
107 {
108 	int i;
109 	struct policydb_compat_info *info = NULL;
110 
111 	for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
112 		if (policydb_compat[i].version == version) {
113 			info = &policydb_compat[i];
114 			break;
115 		}
116 	}
117 	return info;
118 }
119 
120 /*
121  * Initialize the role table.
122  */
123 static int roles_init(struct policydb *p)
124 {
125 	char *key = NULL;
126 	int rc;
127 	struct role_datum *role;
128 
129 	role = kzalloc(sizeof(*role), GFP_KERNEL);
130 	if (!role) {
131 		rc = -ENOMEM;
132 		goto out;
133 	}
134 	role->value = ++p->p_roles.nprim;
135 	if (role->value != OBJECT_R_VAL) {
136 		rc = -EINVAL;
137 		goto out_free_role;
138 	}
139 	key = kmalloc(strlen(OBJECT_R)+1,GFP_KERNEL);
140 	if (!key) {
141 		rc = -ENOMEM;
142 		goto out_free_role;
143 	}
144 	strcpy(key, OBJECT_R);
145 	rc = hashtab_insert(p->p_roles.table, key, role);
146 	if (rc)
147 		goto out_free_key;
148 out:
149 	return rc;
150 
151 out_free_key:
152 	kfree(key);
153 out_free_role:
154 	kfree(role);
155 	goto out;
156 }
157 
158 /*
159  * Initialize a policy database structure.
160  */
161 static int policydb_init(struct policydb *p)
162 {
163 	int i, rc;
164 
165 	memset(p, 0, sizeof(*p));
166 
167 	for (i = 0; i < SYM_NUM; i++) {
168 		rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
169 		if (rc)
170 			goto out_free_symtab;
171 	}
172 
173 	rc = avtab_init(&p->te_avtab);
174 	if (rc)
175 		goto out_free_symtab;
176 
177 	rc = roles_init(p);
178 	if (rc)
179 		goto out_free_avtab;
180 
181 	rc = cond_policydb_init(p);
182 	if (rc)
183 		goto out_free_avtab;
184 
185 out:
186 	return rc;
187 
188 out_free_avtab:
189 	avtab_destroy(&p->te_avtab);
190 
191 out_free_symtab:
192 	for (i = 0; i < SYM_NUM; i++)
193 		hashtab_destroy(p->symtab[i].table);
194 	goto out;
195 }
196 
197 /*
198  * The following *_index functions are used to
199  * define the val_to_name and val_to_struct arrays
200  * in a policy database structure.  The val_to_name
201  * arrays are used when converting security context
202  * structures into string representations.  The
203  * val_to_struct arrays are used when the attributes
204  * of a class, role, or user are needed.
205  */
206 
207 static int common_index(void *key, void *datum, void *datap)
208 {
209 	struct policydb *p;
210 	struct common_datum *comdatum;
211 
212 	comdatum = datum;
213 	p = datap;
214 	if (!comdatum->value || comdatum->value > p->p_commons.nprim)
215 		return -EINVAL;
216 	p->p_common_val_to_name[comdatum->value - 1] = key;
217 	return 0;
218 }
219 
220 static int class_index(void *key, void *datum, void *datap)
221 {
222 	struct policydb *p;
223 	struct class_datum *cladatum;
224 
225 	cladatum = datum;
226 	p = datap;
227 	if (!cladatum->value || cladatum->value > p->p_classes.nprim)
228 		return -EINVAL;
229 	p->p_class_val_to_name[cladatum->value - 1] = key;
230 	p->class_val_to_struct[cladatum->value - 1] = cladatum;
231 	return 0;
232 }
233 
234 static int role_index(void *key, void *datum, void *datap)
235 {
236 	struct policydb *p;
237 	struct role_datum *role;
238 
239 	role = datum;
240 	p = datap;
241 	if (!role->value || role->value > p->p_roles.nprim)
242 		return -EINVAL;
243 	p->p_role_val_to_name[role->value - 1] = key;
244 	p->role_val_to_struct[role->value - 1] = role;
245 	return 0;
246 }
247 
248 static int type_index(void *key, void *datum, void *datap)
249 {
250 	struct policydb *p;
251 	struct type_datum *typdatum;
252 
253 	typdatum = datum;
254 	p = datap;
255 
256 	if (typdatum->primary) {
257 		if (!typdatum->value || typdatum->value > p->p_types.nprim)
258 			return -EINVAL;
259 		p->p_type_val_to_name[typdatum->value - 1] = key;
260 	}
261 
262 	return 0;
263 }
264 
265 static int user_index(void *key, void *datum, void *datap)
266 {
267 	struct policydb *p;
268 	struct user_datum *usrdatum;
269 
270 	usrdatum = datum;
271 	p = datap;
272 	if (!usrdatum->value || usrdatum->value > p->p_users.nprim)
273 		return -EINVAL;
274 	p->p_user_val_to_name[usrdatum->value - 1] = key;
275 	p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
276 	return 0;
277 }
278 
279 static int sens_index(void *key, void *datum, void *datap)
280 {
281 	struct policydb *p;
282 	struct level_datum *levdatum;
283 
284 	levdatum = datum;
285 	p = datap;
286 
287 	if (!levdatum->isalias) {
288 		if (!levdatum->level->sens ||
289 		    levdatum->level->sens > p->p_levels.nprim)
290 			return -EINVAL;
291 		p->p_sens_val_to_name[levdatum->level->sens - 1] = key;
292 	}
293 
294 	return 0;
295 }
296 
297 static int cat_index(void *key, void *datum, void *datap)
298 {
299 	struct policydb *p;
300 	struct cat_datum *catdatum;
301 
302 	catdatum = datum;
303 	p = datap;
304 
305 	if (!catdatum->isalias) {
306 		if (!catdatum->value || catdatum->value > p->p_cats.nprim)
307 			return -EINVAL;
308 		p->p_cat_val_to_name[catdatum->value - 1] = key;
309 	}
310 
311 	return 0;
312 }
313 
314 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
315 {
316 	common_index,
317 	class_index,
318 	role_index,
319 	type_index,
320 	user_index,
321 	cond_index_bool,
322 	sens_index,
323 	cat_index,
324 };
325 
326 /*
327  * Define the common val_to_name array and the class
328  * val_to_name and val_to_struct arrays in a policy
329  * database structure.
330  *
331  * Caller must clean up upon failure.
332  */
333 static int policydb_index_classes(struct policydb *p)
334 {
335 	int rc;
336 
337 	p->p_common_val_to_name =
338 		kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL);
339 	if (!p->p_common_val_to_name) {
340 		rc = -ENOMEM;
341 		goto out;
342 	}
343 
344 	rc = hashtab_map(p->p_commons.table, common_index, p);
345 	if (rc)
346 		goto out;
347 
348 	p->class_val_to_struct =
349 		kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL);
350 	if (!p->class_val_to_struct) {
351 		rc = -ENOMEM;
352 		goto out;
353 	}
354 
355 	p->p_class_val_to_name =
356 		kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL);
357 	if (!p->p_class_val_to_name) {
358 		rc = -ENOMEM;
359 		goto out;
360 	}
361 
362 	rc = hashtab_map(p->p_classes.table, class_index, p);
363 out:
364 	return rc;
365 }
366 
367 #ifdef DEBUG_HASHES
368 static void symtab_hash_eval(struct symtab *s)
369 {
370 	int i;
371 
372 	for (i = 0; i < SYM_NUM; i++) {
373 		struct hashtab *h = s[i].table;
374 		struct hashtab_info info;
375 
376 		hashtab_stat(h, &info);
377 		printk(KERN_DEBUG "%s:  %d entries and %d/%d buckets used, "
378 		       "longest chain length %d\n", symtab_name[i], h->nel,
379 		       info.slots_used, h->size, info.max_chain_len);
380 	}
381 }
382 #endif
383 
384 /*
385  * Define the other val_to_name and val_to_struct arrays
386  * in a policy database structure.
387  *
388  * Caller must clean up on failure.
389  */
390 static int policydb_index_others(struct policydb *p)
391 {
392 	int i, rc = 0;
393 
394 	printk(KERN_DEBUG "security:  %d users, %d roles, %d types, %d bools",
395 	       p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
396 	if (selinux_mls_enabled)
397 		printk(", %d sens, %d cats", p->p_levels.nprim,
398 		       p->p_cats.nprim);
399 	printk("\n");
400 
401 	printk(KERN_DEBUG "security:  %d classes, %d rules\n",
402 	       p->p_classes.nprim, p->te_avtab.nel);
403 
404 #ifdef DEBUG_HASHES
405 	avtab_hash_eval(&p->te_avtab, "rules");
406 	symtab_hash_eval(p->symtab);
407 #endif
408 
409 	p->role_val_to_struct =
410 		kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
411 		        GFP_KERNEL);
412 	if (!p->role_val_to_struct) {
413 		rc = -ENOMEM;
414 		goto out;
415 	}
416 
417 	p->user_val_to_struct =
418 		kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
419 		        GFP_KERNEL);
420 	if (!p->user_val_to_struct) {
421 		rc = -ENOMEM;
422 		goto out;
423 	}
424 
425 	if (cond_init_bool_indexes(p)) {
426 		rc = -ENOMEM;
427 		goto out;
428 	}
429 
430 	for (i = SYM_ROLES; i < SYM_NUM; i++) {
431 		p->sym_val_to_name[i] =
432 			kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL);
433 		if (!p->sym_val_to_name[i]) {
434 			rc = -ENOMEM;
435 			goto out;
436 		}
437 		rc = hashtab_map(p->symtab[i].table, index_f[i], p);
438 		if (rc)
439 			goto out;
440 	}
441 
442 out:
443 	return rc;
444 }
445 
446 /*
447  * The following *_destroy functions are used to
448  * free any memory allocated for each kind of
449  * symbol data in the policy database.
450  */
451 
452 static int perm_destroy(void *key, void *datum, void *p)
453 {
454 	kfree(key);
455 	kfree(datum);
456 	return 0;
457 }
458 
459 static int common_destroy(void *key, void *datum, void *p)
460 {
461 	struct common_datum *comdatum;
462 
463 	kfree(key);
464 	comdatum = datum;
465 	hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
466 	hashtab_destroy(comdatum->permissions.table);
467 	kfree(datum);
468 	return 0;
469 }
470 
471 static int cls_destroy(void *key, void *datum, void *p)
472 {
473 	struct class_datum *cladatum;
474 	struct constraint_node *constraint, *ctemp;
475 	struct constraint_expr *e, *etmp;
476 
477 	kfree(key);
478 	cladatum = datum;
479 	hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
480 	hashtab_destroy(cladatum->permissions.table);
481 	constraint = cladatum->constraints;
482 	while (constraint) {
483 		e = constraint->expr;
484 		while (e) {
485 			ebitmap_destroy(&e->names);
486 			etmp = e;
487 			e = e->next;
488 			kfree(etmp);
489 		}
490 		ctemp = constraint;
491 		constraint = constraint->next;
492 		kfree(ctemp);
493 	}
494 
495 	constraint = cladatum->validatetrans;
496 	while (constraint) {
497 		e = constraint->expr;
498 		while (e) {
499 			ebitmap_destroy(&e->names);
500 			etmp = e;
501 			e = e->next;
502 			kfree(etmp);
503 		}
504 		ctemp = constraint;
505 		constraint = constraint->next;
506 		kfree(ctemp);
507 	}
508 
509 	kfree(cladatum->comkey);
510 	kfree(datum);
511 	return 0;
512 }
513 
514 static int role_destroy(void *key, void *datum, void *p)
515 {
516 	struct role_datum *role;
517 
518 	kfree(key);
519 	role = datum;
520 	ebitmap_destroy(&role->dominates);
521 	ebitmap_destroy(&role->types);
522 	kfree(datum);
523 	return 0;
524 }
525 
526 static int type_destroy(void *key, void *datum, void *p)
527 {
528 	kfree(key);
529 	kfree(datum);
530 	return 0;
531 }
532 
533 static int user_destroy(void *key, void *datum, void *p)
534 {
535 	struct user_datum *usrdatum;
536 
537 	kfree(key);
538 	usrdatum = datum;
539 	ebitmap_destroy(&usrdatum->roles);
540 	ebitmap_destroy(&usrdatum->range.level[0].cat);
541 	ebitmap_destroy(&usrdatum->range.level[1].cat);
542 	ebitmap_destroy(&usrdatum->dfltlevel.cat);
543 	kfree(datum);
544 	return 0;
545 }
546 
547 static int sens_destroy(void *key, void *datum, void *p)
548 {
549 	struct level_datum *levdatum;
550 
551 	kfree(key);
552 	levdatum = datum;
553 	ebitmap_destroy(&levdatum->level->cat);
554 	kfree(levdatum->level);
555 	kfree(datum);
556 	return 0;
557 }
558 
559 static int cat_destroy(void *key, void *datum, void *p)
560 {
561 	kfree(key);
562 	kfree(datum);
563 	return 0;
564 }
565 
566 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
567 {
568 	common_destroy,
569 	cls_destroy,
570 	role_destroy,
571 	type_destroy,
572 	user_destroy,
573 	cond_destroy_bool,
574 	sens_destroy,
575 	cat_destroy,
576 };
577 
578 static void ocontext_destroy(struct ocontext *c, int i)
579 {
580 	context_destroy(&c->context[0]);
581 	context_destroy(&c->context[1]);
582 	if (i == OCON_ISID || i == OCON_FS ||
583 	    i == OCON_NETIF || i == OCON_FSUSE)
584 		kfree(c->u.name);
585 	kfree(c);
586 }
587 
588 /*
589  * Free any memory allocated by a policy database structure.
590  */
591 void policydb_destroy(struct policydb *p)
592 {
593 	struct ocontext *c, *ctmp;
594 	struct genfs *g, *gtmp;
595 	int i;
596 	struct role_allow *ra, *lra = NULL;
597 	struct role_trans *tr, *ltr = NULL;
598 	struct range_trans *rt, *lrt = NULL;
599 
600 	for (i = 0; i < SYM_NUM; i++) {
601 		hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
602 		hashtab_destroy(p->symtab[i].table);
603 	}
604 
605 	for (i = 0; i < SYM_NUM; i++)
606 		kfree(p->sym_val_to_name[i]);
607 
608 	kfree(p->class_val_to_struct);
609 	kfree(p->role_val_to_struct);
610 	kfree(p->user_val_to_struct);
611 
612 	avtab_destroy(&p->te_avtab);
613 
614 	for (i = 0; i < OCON_NUM; i++) {
615 		c = p->ocontexts[i];
616 		while (c) {
617 			ctmp = c;
618 			c = c->next;
619 			ocontext_destroy(ctmp,i);
620 		}
621 		p->ocontexts[i] = NULL;
622 	}
623 
624 	g = p->genfs;
625 	while (g) {
626 		kfree(g->fstype);
627 		c = g->head;
628 		while (c) {
629 			ctmp = c;
630 			c = c->next;
631 			ocontext_destroy(ctmp,OCON_FSUSE);
632 		}
633 		gtmp = g;
634 		g = g->next;
635 		kfree(gtmp);
636 	}
637 	p->genfs = NULL;
638 
639 	cond_policydb_destroy(p);
640 
641 	for (tr = p->role_tr; tr; tr = tr->next) {
642 		kfree(ltr);
643 		ltr = tr;
644 	}
645 	kfree(ltr);
646 
647 	for (ra = p->role_allow; ra; ra = ra -> next) {
648 		kfree(lra);
649 		lra = ra;
650 	}
651 	kfree(lra);
652 
653 	for (rt = p->range_tr; rt; rt = rt -> next) {
654 		if (lrt) {
655 			ebitmap_destroy(&lrt->target_range.level[0].cat);
656 			ebitmap_destroy(&lrt->target_range.level[1].cat);
657 			kfree(lrt);
658 		}
659 		lrt = rt;
660 	}
661 	if (lrt) {
662 		ebitmap_destroy(&lrt->target_range.level[0].cat);
663 		ebitmap_destroy(&lrt->target_range.level[1].cat);
664 		kfree(lrt);
665 	}
666 
667 	if (p->type_attr_map) {
668 		for (i = 0; i < p->p_types.nprim; i++)
669 			ebitmap_destroy(&p->type_attr_map[i]);
670 	}
671 	kfree(p->type_attr_map);
672 
673 	return;
674 }
675 
676 /*
677  * Load the initial SIDs specified in a policy database
678  * structure into a SID table.
679  */
680 int policydb_load_isids(struct policydb *p, struct sidtab *s)
681 {
682 	struct ocontext *head, *c;
683 	int rc;
684 
685 	rc = sidtab_init(s);
686 	if (rc) {
687 		printk(KERN_ERR "security:  out of memory on SID table init\n");
688 		goto out;
689 	}
690 
691 	head = p->ocontexts[OCON_ISID];
692 	for (c = head; c; c = c->next) {
693 		if (!c->context[0].user) {
694 			printk(KERN_ERR "security:  SID %s was never "
695 			       "defined.\n", c->u.name);
696 			rc = -EINVAL;
697 			goto out;
698 		}
699 		if (sidtab_insert(s, c->sid[0], &c->context[0])) {
700 			printk(KERN_ERR "security:  unable to load initial "
701 			       "SID %s.\n", c->u.name);
702 			rc = -EINVAL;
703 			goto out;
704 		}
705 	}
706 out:
707 	return rc;
708 }
709 
710 /*
711  * Return 1 if the fields in the security context
712  * structure `c' are valid.  Return 0 otherwise.
713  */
714 int policydb_context_isvalid(struct policydb *p, struct context *c)
715 {
716 	struct role_datum *role;
717 	struct user_datum *usrdatum;
718 
719 	if (!c->role || c->role > p->p_roles.nprim)
720 		return 0;
721 
722 	if (!c->user || c->user > p->p_users.nprim)
723 		return 0;
724 
725 	if (!c->type || c->type > p->p_types.nprim)
726 		return 0;
727 
728 	if (c->role != OBJECT_R_VAL) {
729 		/*
730 		 * Role must be authorized for the type.
731 		 */
732 		role = p->role_val_to_struct[c->role - 1];
733 		if (!ebitmap_get_bit(&role->types,
734 				     c->type - 1))
735 			/* role may not be associated with type */
736 			return 0;
737 
738 		/*
739 		 * User must be authorized for the role.
740 		 */
741 		usrdatum = p->user_val_to_struct[c->user - 1];
742 		if (!usrdatum)
743 			return 0;
744 
745 		if (!ebitmap_get_bit(&usrdatum->roles,
746 				     c->role - 1))
747 			/* user may not be associated with role */
748 			return 0;
749 	}
750 
751 	if (!mls_context_isvalid(p, c))
752 		return 0;
753 
754 	return 1;
755 }
756 
757 /*
758  * Read a MLS range structure from a policydb binary
759  * representation file.
760  */
761 static int mls_read_range_helper(struct mls_range *r, void *fp)
762 {
763 	__le32 buf[2];
764 	u32 items;
765 	int rc;
766 
767 	rc = next_entry(buf, fp, sizeof(u32));
768 	if (rc < 0)
769 		goto out;
770 
771 	items = le32_to_cpu(buf[0]);
772 	if (items > ARRAY_SIZE(buf)) {
773 		printk(KERN_ERR "security: mls:  range overflow\n");
774 		rc = -EINVAL;
775 		goto out;
776 	}
777 	rc = next_entry(buf, fp, sizeof(u32) * items);
778 	if (rc < 0) {
779 		printk(KERN_ERR "security: mls:  truncated range\n");
780 		goto out;
781 	}
782 	r->level[0].sens = le32_to_cpu(buf[0]);
783 	if (items > 1)
784 		r->level[1].sens = le32_to_cpu(buf[1]);
785 	else
786 		r->level[1].sens = r->level[0].sens;
787 
788 	rc = ebitmap_read(&r->level[0].cat, fp);
789 	if (rc) {
790 		printk(KERN_ERR "security: mls:  error reading low "
791 		       "categories\n");
792 		goto out;
793 	}
794 	if (items > 1) {
795 		rc = ebitmap_read(&r->level[1].cat, fp);
796 		if (rc) {
797 			printk(KERN_ERR "security: mls:  error reading high "
798 			       "categories\n");
799 			goto bad_high;
800 		}
801 	} else {
802 		rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
803 		if (rc) {
804 			printk(KERN_ERR "security: mls:  out of memory\n");
805 			goto bad_high;
806 		}
807 	}
808 
809 	rc = 0;
810 out:
811 	return rc;
812 bad_high:
813 	ebitmap_destroy(&r->level[0].cat);
814 	goto out;
815 }
816 
817 /*
818  * Read and validate a security context structure
819  * from a policydb binary representation file.
820  */
821 static int context_read_and_validate(struct context *c,
822 				     struct policydb *p,
823 				     void *fp)
824 {
825 	__le32 buf[3];
826 	int rc;
827 
828 	rc = next_entry(buf, fp, sizeof buf);
829 	if (rc < 0) {
830 		printk(KERN_ERR "security: context truncated\n");
831 		goto out;
832 	}
833 	c->user = le32_to_cpu(buf[0]);
834 	c->role = le32_to_cpu(buf[1]);
835 	c->type = le32_to_cpu(buf[2]);
836 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
837 		if (mls_read_range_helper(&c->range, fp)) {
838 			printk(KERN_ERR "security: error reading MLS range of "
839 			       "context\n");
840 			rc = -EINVAL;
841 			goto out;
842 		}
843 	}
844 
845 	if (!policydb_context_isvalid(p, c)) {
846 		printk(KERN_ERR "security:  invalid security context\n");
847 		context_destroy(c);
848 		rc = -EINVAL;
849 	}
850 out:
851 	return rc;
852 }
853 
854 /*
855  * The following *_read functions are used to
856  * read the symbol data from a policy database
857  * binary representation file.
858  */
859 
860 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
861 {
862 	char *key = NULL;
863 	struct perm_datum *perdatum;
864 	int rc;
865 	__le32 buf[2];
866 	u32 len;
867 
868 	perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
869 	if (!perdatum) {
870 		rc = -ENOMEM;
871 		goto out;
872 	}
873 
874 	rc = next_entry(buf, fp, sizeof buf);
875 	if (rc < 0)
876 		goto bad;
877 
878 	len = le32_to_cpu(buf[0]);
879 	perdatum->value = le32_to_cpu(buf[1]);
880 
881 	key = kmalloc(len + 1,GFP_KERNEL);
882 	if (!key) {
883 		rc = -ENOMEM;
884 		goto bad;
885 	}
886 	rc = next_entry(key, fp, len);
887 	if (rc < 0)
888 		goto bad;
889 	key[len] = 0;
890 
891 	rc = hashtab_insert(h, key, perdatum);
892 	if (rc)
893 		goto bad;
894 out:
895 	return rc;
896 bad:
897 	perm_destroy(key, perdatum, NULL);
898 	goto out;
899 }
900 
901 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
902 {
903 	char *key = NULL;
904 	struct common_datum *comdatum;
905 	__le32 buf[4];
906 	u32 len, nel;
907 	int i, rc;
908 
909 	comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
910 	if (!comdatum) {
911 		rc = -ENOMEM;
912 		goto out;
913 	}
914 
915 	rc = next_entry(buf, fp, sizeof buf);
916 	if (rc < 0)
917 		goto bad;
918 
919 	len = le32_to_cpu(buf[0]);
920 	comdatum->value = le32_to_cpu(buf[1]);
921 
922 	rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
923 	if (rc)
924 		goto bad;
925 	comdatum->permissions.nprim = le32_to_cpu(buf[2]);
926 	nel = le32_to_cpu(buf[3]);
927 
928 	key = kmalloc(len + 1,GFP_KERNEL);
929 	if (!key) {
930 		rc = -ENOMEM;
931 		goto bad;
932 	}
933 	rc = next_entry(key, fp, len);
934 	if (rc < 0)
935 		goto bad;
936 	key[len] = 0;
937 
938 	for (i = 0; i < nel; i++) {
939 		rc = perm_read(p, comdatum->permissions.table, fp);
940 		if (rc)
941 			goto bad;
942 	}
943 
944 	rc = hashtab_insert(h, key, comdatum);
945 	if (rc)
946 		goto bad;
947 out:
948 	return rc;
949 bad:
950 	common_destroy(key, comdatum, NULL);
951 	goto out;
952 }
953 
954 static int read_cons_helper(struct constraint_node **nodep, int ncons,
955                             int allowxtarget, void *fp)
956 {
957 	struct constraint_node *c, *lc;
958 	struct constraint_expr *e, *le;
959 	__le32 buf[3];
960 	u32 nexpr;
961 	int rc, i, j, depth;
962 
963 	lc = NULL;
964 	for (i = 0; i < ncons; i++) {
965 		c = kzalloc(sizeof(*c), GFP_KERNEL);
966 		if (!c)
967 			return -ENOMEM;
968 
969 		if (lc) {
970 			lc->next = c;
971 		} else {
972 			*nodep = c;
973 		}
974 
975 		rc = next_entry(buf, fp, (sizeof(u32) * 2));
976 		if (rc < 0)
977 			return rc;
978 		c->permissions = le32_to_cpu(buf[0]);
979 		nexpr = le32_to_cpu(buf[1]);
980 		le = NULL;
981 		depth = -1;
982 		for (j = 0; j < nexpr; j++) {
983 			e = kzalloc(sizeof(*e), GFP_KERNEL);
984 			if (!e)
985 				return -ENOMEM;
986 
987 			if (le) {
988 				le->next = e;
989 			} else {
990 				c->expr = e;
991 			}
992 
993 			rc = next_entry(buf, fp, (sizeof(u32) * 3));
994 			if (rc < 0)
995 				return rc;
996 			e->expr_type = le32_to_cpu(buf[0]);
997 			e->attr = le32_to_cpu(buf[1]);
998 			e->op = le32_to_cpu(buf[2]);
999 
1000 			switch (e->expr_type) {
1001 			case CEXPR_NOT:
1002 				if (depth < 0)
1003 					return -EINVAL;
1004 				break;
1005 			case CEXPR_AND:
1006 			case CEXPR_OR:
1007 				if (depth < 1)
1008 					return -EINVAL;
1009 				depth--;
1010 				break;
1011 			case CEXPR_ATTR:
1012 				if (depth == (CEXPR_MAXDEPTH - 1))
1013 					return -EINVAL;
1014 				depth++;
1015 				break;
1016 			case CEXPR_NAMES:
1017 				if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1018 					return -EINVAL;
1019 				if (depth == (CEXPR_MAXDEPTH - 1))
1020 					return -EINVAL;
1021 				depth++;
1022 				if (ebitmap_read(&e->names, fp))
1023 					return -EINVAL;
1024 				break;
1025 			default:
1026 				return -EINVAL;
1027 			}
1028 			le = e;
1029 		}
1030 		if (depth != 0)
1031 			return -EINVAL;
1032 		lc = c;
1033 	}
1034 
1035 	return 0;
1036 }
1037 
1038 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1039 {
1040 	char *key = NULL;
1041 	struct class_datum *cladatum;
1042 	__le32 buf[6];
1043 	u32 len, len2, ncons, nel;
1044 	int i, rc;
1045 
1046 	cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
1047 	if (!cladatum) {
1048 		rc = -ENOMEM;
1049 		goto out;
1050 	}
1051 
1052 	rc = next_entry(buf, fp, sizeof(u32)*6);
1053 	if (rc < 0)
1054 		goto bad;
1055 
1056 	len = le32_to_cpu(buf[0]);
1057 	len2 = le32_to_cpu(buf[1]);
1058 	cladatum->value = le32_to_cpu(buf[2]);
1059 
1060 	rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1061 	if (rc)
1062 		goto bad;
1063 	cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1064 	nel = le32_to_cpu(buf[4]);
1065 
1066 	ncons = le32_to_cpu(buf[5]);
1067 
1068 	key = kmalloc(len + 1,GFP_KERNEL);
1069 	if (!key) {
1070 		rc = -ENOMEM;
1071 		goto bad;
1072 	}
1073 	rc = next_entry(key, fp, len);
1074 	if (rc < 0)
1075 		goto bad;
1076 	key[len] = 0;
1077 
1078 	if (len2) {
1079 		cladatum->comkey = kmalloc(len2 + 1,GFP_KERNEL);
1080 		if (!cladatum->comkey) {
1081 			rc = -ENOMEM;
1082 			goto bad;
1083 		}
1084 		rc = next_entry(cladatum->comkey, fp, len2);
1085 		if (rc < 0)
1086 			goto bad;
1087 		cladatum->comkey[len2] = 0;
1088 
1089 		cladatum->comdatum = hashtab_search(p->p_commons.table,
1090 						    cladatum->comkey);
1091 		if (!cladatum->comdatum) {
1092 			printk(KERN_ERR "security:  unknown common %s\n",
1093 			       cladatum->comkey);
1094 			rc = -EINVAL;
1095 			goto bad;
1096 		}
1097 	}
1098 	for (i = 0; i < nel; i++) {
1099 		rc = perm_read(p, cladatum->permissions.table, fp);
1100 		if (rc)
1101 			goto bad;
1102 	}
1103 
1104 	rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1105 	if (rc)
1106 		goto bad;
1107 
1108 	if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1109 		/* grab the validatetrans rules */
1110 		rc = next_entry(buf, fp, sizeof(u32));
1111 		if (rc < 0)
1112 			goto bad;
1113 		ncons = le32_to_cpu(buf[0]);
1114 		rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1115 		if (rc)
1116 			goto bad;
1117 	}
1118 
1119 	rc = hashtab_insert(h, key, cladatum);
1120 	if (rc)
1121 		goto bad;
1122 
1123 	rc = 0;
1124 out:
1125 	return rc;
1126 bad:
1127 	cls_destroy(key, cladatum, NULL);
1128 	goto out;
1129 }
1130 
1131 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1132 {
1133 	char *key = NULL;
1134 	struct role_datum *role;
1135 	int rc;
1136 	__le32 buf[2];
1137 	u32 len;
1138 
1139 	role = kzalloc(sizeof(*role), GFP_KERNEL);
1140 	if (!role) {
1141 		rc = -ENOMEM;
1142 		goto out;
1143 	}
1144 
1145 	rc = next_entry(buf, fp, sizeof buf);
1146 	if (rc < 0)
1147 		goto bad;
1148 
1149 	len = le32_to_cpu(buf[0]);
1150 	role->value = le32_to_cpu(buf[1]);
1151 
1152 	key = kmalloc(len + 1,GFP_KERNEL);
1153 	if (!key) {
1154 		rc = -ENOMEM;
1155 		goto bad;
1156 	}
1157 	rc = next_entry(key, fp, len);
1158 	if (rc < 0)
1159 		goto bad;
1160 	key[len] = 0;
1161 
1162 	rc = ebitmap_read(&role->dominates, fp);
1163 	if (rc)
1164 		goto bad;
1165 
1166 	rc = ebitmap_read(&role->types, fp);
1167 	if (rc)
1168 		goto bad;
1169 
1170 	if (strcmp(key, OBJECT_R) == 0) {
1171 		if (role->value != OBJECT_R_VAL) {
1172 			printk(KERN_ERR "Role %s has wrong value %d\n",
1173 			       OBJECT_R, role->value);
1174 			rc = -EINVAL;
1175 			goto bad;
1176 		}
1177 		rc = 0;
1178 		goto bad;
1179 	}
1180 
1181 	rc = hashtab_insert(h, key, role);
1182 	if (rc)
1183 		goto bad;
1184 out:
1185 	return rc;
1186 bad:
1187 	role_destroy(key, role, NULL);
1188 	goto out;
1189 }
1190 
1191 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1192 {
1193 	char *key = NULL;
1194 	struct type_datum *typdatum;
1195 	int rc;
1196 	__le32 buf[3];
1197 	u32 len;
1198 
1199 	typdatum = kzalloc(sizeof(*typdatum),GFP_KERNEL);
1200 	if (!typdatum) {
1201 		rc = -ENOMEM;
1202 		return rc;
1203 	}
1204 
1205 	rc = next_entry(buf, fp, sizeof buf);
1206 	if (rc < 0)
1207 		goto bad;
1208 
1209 	len = le32_to_cpu(buf[0]);
1210 	typdatum->value = le32_to_cpu(buf[1]);
1211 	typdatum->primary = le32_to_cpu(buf[2]);
1212 
1213 	key = kmalloc(len + 1,GFP_KERNEL);
1214 	if (!key) {
1215 		rc = -ENOMEM;
1216 		goto bad;
1217 	}
1218 	rc = next_entry(key, fp, len);
1219 	if (rc < 0)
1220 		goto bad;
1221 	key[len] = 0;
1222 
1223 	rc = hashtab_insert(h, key, typdatum);
1224 	if (rc)
1225 		goto bad;
1226 out:
1227 	return rc;
1228 bad:
1229 	type_destroy(key, typdatum, NULL);
1230 	goto out;
1231 }
1232 
1233 
1234 /*
1235  * Read a MLS level structure from a policydb binary
1236  * representation file.
1237  */
1238 static int mls_read_level(struct mls_level *lp, void *fp)
1239 {
1240 	__le32 buf[1];
1241 	int rc;
1242 
1243 	memset(lp, 0, sizeof(*lp));
1244 
1245 	rc = next_entry(buf, fp, sizeof buf);
1246 	if (rc < 0) {
1247 		printk(KERN_ERR "security: mls: truncated level\n");
1248 		goto bad;
1249 	}
1250 	lp->sens = le32_to_cpu(buf[0]);
1251 
1252 	if (ebitmap_read(&lp->cat, fp)) {
1253 		printk(KERN_ERR "security: mls:  error reading level "
1254 		       "categories\n");
1255 		goto bad;
1256 	}
1257 	return 0;
1258 
1259 bad:
1260 	return -EINVAL;
1261 }
1262 
1263 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1264 {
1265 	char *key = NULL;
1266 	struct user_datum *usrdatum;
1267 	int rc;
1268 	__le32 buf[2];
1269 	u32 len;
1270 
1271 	usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
1272 	if (!usrdatum) {
1273 		rc = -ENOMEM;
1274 		goto out;
1275 	}
1276 
1277 	rc = next_entry(buf, fp, sizeof buf);
1278 	if (rc < 0)
1279 		goto bad;
1280 
1281 	len = le32_to_cpu(buf[0]);
1282 	usrdatum->value = le32_to_cpu(buf[1]);
1283 
1284 	key = kmalloc(len + 1,GFP_KERNEL);
1285 	if (!key) {
1286 		rc = -ENOMEM;
1287 		goto bad;
1288 	}
1289 	rc = next_entry(key, fp, len);
1290 	if (rc < 0)
1291 		goto bad;
1292 	key[len] = 0;
1293 
1294 	rc = ebitmap_read(&usrdatum->roles, fp);
1295 	if (rc)
1296 		goto bad;
1297 
1298 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
1299 		rc = mls_read_range_helper(&usrdatum->range, fp);
1300 		if (rc)
1301 			goto bad;
1302 		rc = mls_read_level(&usrdatum->dfltlevel, fp);
1303 		if (rc)
1304 			goto bad;
1305 	}
1306 
1307 	rc = hashtab_insert(h, key, usrdatum);
1308 	if (rc)
1309 		goto bad;
1310 out:
1311 	return rc;
1312 bad:
1313 	user_destroy(key, usrdatum, NULL);
1314 	goto out;
1315 }
1316 
1317 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1318 {
1319 	char *key = NULL;
1320 	struct level_datum *levdatum;
1321 	int rc;
1322 	__le32 buf[2];
1323 	u32 len;
1324 
1325 	levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
1326 	if (!levdatum) {
1327 		rc = -ENOMEM;
1328 		goto out;
1329 	}
1330 
1331 	rc = next_entry(buf, fp, sizeof buf);
1332 	if (rc < 0)
1333 		goto bad;
1334 
1335 	len = le32_to_cpu(buf[0]);
1336 	levdatum->isalias = le32_to_cpu(buf[1]);
1337 
1338 	key = kmalloc(len + 1,GFP_ATOMIC);
1339 	if (!key) {
1340 		rc = -ENOMEM;
1341 		goto bad;
1342 	}
1343 	rc = next_entry(key, fp, len);
1344 	if (rc < 0)
1345 		goto bad;
1346 	key[len] = 0;
1347 
1348 	levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1349 	if (!levdatum->level) {
1350 		rc = -ENOMEM;
1351 		goto bad;
1352 	}
1353 	if (mls_read_level(levdatum->level, fp)) {
1354 		rc = -EINVAL;
1355 		goto bad;
1356 	}
1357 
1358 	rc = hashtab_insert(h, key, levdatum);
1359 	if (rc)
1360 		goto bad;
1361 out:
1362 	return rc;
1363 bad:
1364 	sens_destroy(key, levdatum, NULL);
1365 	goto out;
1366 }
1367 
1368 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1369 {
1370 	char *key = NULL;
1371 	struct cat_datum *catdatum;
1372 	int rc;
1373 	__le32 buf[3];
1374 	u32 len;
1375 
1376 	catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
1377 	if (!catdatum) {
1378 		rc = -ENOMEM;
1379 		goto out;
1380 	}
1381 
1382 	rc = next_entry(buf, fp, sizeof buf);
1383 	if (rc < 0)
1384 		goto bad;
1385 
1386 	len = le32_to_cpu(buf[0]);
1387 	catdatum->value = le32_to_cpu(buf[1]);
1388 	catdatum->isalias = le32_to_cpu(buf[2]);
1389 
1390 	key = kmalloc(len + 1,GFP_ATOMIC);
1391 	if (!key) {
1392 		rc = -ENOMEM;
1393 		goto bad;
1394 	}
1395 	rc = next_entry(key, fp, len);
1396 	if (rc < 0)
1397 		goto bad;
1398 	key[len] = 0;
1399 
1400 	rc = hashtab_insert(h, key, catdatum);
1401 	if (rc)
1402 		goto bad;
1403 out:
1404 	return rc;
1405 
1406 bad:
1407 	cat_destroy(key, catdatum, NULL);
1408 	goto out;
1409 }
1410 
1411 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1412 {
1413 	common_read,
1414 	class_read,
1415 	role_read,
1416 	type_read,
1417 	user_read,
1418 	cond_read_bool,
1419 	sens_read,
1420 	cat_read,
1421 };
1422 
1423 extern int ss_initialized;
1424 
1425 /*
1426  * Read the configuration data from a policy database binary
1427  * representation file into a policy database structure.
1428  */
1429 int policydb_read(struct policydb *p, void *fp)
1430 {
1431 	struct role_allow *ra, *lra;
1432 	struct role_trans *tr, *ltr;
1433 	struct ocontext *l, *c, *newc;
1434 	struct genfs *genfs_p, *genfs, *newgenfs;
1435 	int i, j, rc;
1436 	__le32 buf[8];
1437 	u32 len, len2, config, nprim, nel, nel2;
1438 	char *policydb_str;
1439 	struct policydb_compat_info *info;
1440 	struct range_trans *rt, *lrt;
1441 
1442 	config = 0;
1443 
1444 	rc = policydb_init(p);
1445 	if (rc)
1446 		goto out;
1447 
1448 	/* Read the magic number and string length. */
1449 	rc = next_entry(buf, fp, sizeof(u32)* 2);
1450 	if (rc < 0)
1451 		goto bad;
1452 
1453 	if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
1454 		printk(KERN_ERR "security:  policydb magic number 0x%x does "
1455 		       "not match expected magic number 0x%x\n",
1456 		       le32_to_cpu(buf[0]), POLICYDB_MAGIC);
1457 		goto bad;
1458 	}
1459 
1460 	len = le32_to_cpu(buf[1]);
1461 	if (len != strlen(POLICYDB_STRING)) {
1462 		printk(KERN_ERR "security:  policydb string length %d does not "
1463 		       "match expected length %Zu\n",
1464 		       len, strlen(POLICYDB_STRING));
1465 		goto bad;
1466 	}
1467 	policydb_str = kmalloc(len + 1,GFP_KERNEL);
1468 	if (!policydb_str) {
1469 		printk(KERN_ERR "security:  unable to allocate memory for policydb "
1470 		       "string of length %d\n", len);
1471 		rc = -ENOMEM;
1472 		goto bad;
1473 	}
1474 	rc = next_entry(policydb_str, fp, len);
1475 	if (rc < 0) {
1476 		printk(KERN_ERR "security:  truncated policydb string identifier\n");
1477 		kfree(policydb_str);
1478 		goto bad;
1479 	}
1480 	policydb_str[len] = 0;
1481 	if (strcmp(policydb_str, POLICYDB_STRING)) {
1482 		printk(KERN_ERR "security:  policydb string %s does not match "
1483 		       "my string %s\n", policydb_str, POLICYDB_STRING);
1484 		kfree(policydb_str);
1485 		goto bad;
1486 	}
1487 	/* Done with policydb_str. */
1488 	kfree(policydb_str);
1489 	policydb_str = NULL;
1490 
1491 	/* Read the version, config, and table sizes. */
1492 	rc = next_entry(buf, fp, sizeof(u32)*4);
1493 	if (rc < 0)
1494 		goto bad;
1495 
1496 	p->policyvers = le32_to_cpu(buf[0]);
1497 	if (p->policyvers < POLICYDB_VERSION_MIN ||
1498 	    p->policyvers > POLICYDB_VERSION_MAX) {
1499 	    	printk(KERN_ERR "security:  policydb version %d does not match "
1500 	    	       "my version range %d-%d\n",
1501 	    	       le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
1502 	    	goto bad;
1503 	}
1504 
1505 	if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
1506 		if (ss_initialized && !selinux_mls_enabled) {
1507 			printk(KERN_ERR "Cannot switch between non-MLS and MLS "
1508 			       "policies\n");
1509 			goto bad;
1510 		}
1511 		selinux_mls_enabled = 1;
1512 		config |= POLICYDB_CONFIG_MLS;
1513 
1514 		if (p->policyvers < POLICYDB_VERSION_MLS) {
1515 			printk(KERN_ERR "security policydb version %d (MLS) "
1516 			       "not backwards compatible\n", p->policyvers);
1517 			goto bad;
1518 		}
1519 	} else {
1520 		if (ss_initialized && selinux_mls_enabled) {
1521 			printk(KERN_ERR "Cannot switch between MLS and non-MLS "
1522 			       "policies\n");
1523 			goto bad;
1524 		}
1525 	}
1526 
1527 	info = policydb_lookup_compat(p->policyvers);
1528 	if (!info) {
1529 		printk(KERN_ERR "security:  unable to find policy compat info "
1530 		       "for version %d\n", p->policyvers);
1531 		goto bad;
1532 	}
1533 
1534 	if (le32_to_cpu(buf[2]) != info->sym_num ||
1535 		le32_to_cpu(buf[3]) != info->ocon_num) {
1536 		printk(KERN_ERR "security:  policydb table sizes (%d,%d) do "
1537 		       "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
1538 			le32_to_cpu(buf[3]),
1539 		       info->sym_num, info->ocon_num);
1540 		goto bad;
1541 	}
1542 
1543 	for (i = 0; i < info->sym_num; i++) {
1544 		rc = next_entry(buf, fp, sizeof(u32)*2);
1545 		if (rc < 0)
1546 			goto bad;
1547 		nprim = le32_to_cpu(buf[0]);
1548 		nel = le32_to_cpu(buf[1]);
1549 		for (j = 0; j < nel; j++) {
1550 			rc = read_f[i](p, p->symtab[i].table, fp);
1551 			if (rc)
1552 				goto bad;
1553 		}
1554 
1555 		p->symtab[i].nprim = nprim;
1556 	}
1557 
1558 	rc = avtab_read(&p->te_avtab, fp, p->policyvers);
1559 	if (rc)
1560 		goto bad;
1561 
1562 	if (p->policyvers >= POLICYDB_VERSION_BOOL) {
1563 		rc = cond_read_list(p, fp);
1564 		if (rc)
1565 			goto bad;
1566 	}
1567 
1568 	rc = next_entry(buf, fp, sizeof(u32));
1569 	if (rc < 0)
1570 		goto bad;
1571 	nel = le32_to_cpu(buf[0]);
1572 	ltr = NULL;
1573 	for (i = 0; i < nel; i++) {
1574 		tr = kzalloc(sizeof(*tr), GFP_KERNEL);
1575 		if (!tr) {
1576 			rc = -ENOMEM;
1577 			goto bad;
1578 		}
1579 		if (ltr) {
1580 			ltr->next = tr;
1581 		} else {
1582 			p->role_tr = tr;
1583 		}
1584 		rc = next_entry(buf, fp, sizeof(u32)*3);
1585 		if (rc < 0)
1586 			goto bad;
1587 		tr->role = le32_to_cpu(buf[0]);
1588 		tr->type = le32_to_cpu(buf[1]);
1589 		tr->new_role = le32_to_cpu(buf[2]);
1590 		ltr = tr;
1591 	}
1592 
1593 	rc = next_entry(buf, fp, sizeof(u32));
1594 	if (rc < 0)
1595 		goto bad;
1596 	nel = le32_to_cpu(buf[0]);
1597 	lra = NULL;
1598 	for (i = 0; i < nel; i++) {
1599 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1600 		if (!ra) {
1601 			rc = -ENOMEM;
1602 			goto bad;
1603 		}
1604 		if (lra) {
1605 			lra->next = ra;
1606 		} else {
1607 			p->role_allow = ra;
1608 		}
1609 		rc = next_entry(buf, fp, sizeof(u32)*2);
1610 		if (rc < 0)
1611 			goto bad;
1612 		ra->role = le32_to_cpu(buf[0]);
1613 		ra->new_role = le32_to_cpu(buf[1]);
1614 		lra = ra;
1615 	}
1616 
1617 	rc = policydb_index_classes(p);
1618 	if (rc)
1619 		goto bad;
1620 
1621 	rc = policydb_index_others(p);
1622 	if (rc)
1623 		goto bad;
1624 
1625 	for (i = 0; i < info->ocon_num; i++) {
1626 		rc = next_entry(buf, fp, sizeof(u32));
1627 		if (rc < 0)
1628 			goto bad;
1629 		nel = le32_to_cpu(buf[0]);
1630 		l = NULL;
1631 		for (j = 0; j < nel; j++) {
1632 			c = kzalloc(sizeof(*c), GFP_KERNEL);
1633 			if (!c) {
1634 				rc = -ENOMEM;
1635 				goto bad;
1636 			}
1637 			if (l) {
1638 				l->next = c;
1639 			} else {
1640 				p->ocontexts[i] = c;
1641 			}
1642 			l = c;
1643 			rc = -EINVAL;
1644 			switch (i) {
1645 			case OCON_ISID:
1646 				rc = next_entry(buf, fp, sizeof(u32));
1647 				if (rc < 0)
1648 					goto bad;
1649 				c->sid[0] = le32_to_cpu(buf[0]);
1650 				rc = context_read_and_validate(&c->context[0], p, fp);
1651 				if (rc)
1652 					goto bad;
1653 				break;
1654 			case OCON_FS:
1655 			case OCON_NETIF:
1656 				rc = next_entry(buf, fp, sizeof(u32));
1657 				if (rc < 0)
1658 					goto bad;
1659 				len = le32_to_cpu(buf[0]);
1660 				c->u.name = kmalloc(len + 1,GFP_KERNEL);
1661 				if (!c->u.name) {
1662 					rc = -ENOMEM;
1663 					goto bad;
1664 				}
1665 				rc = next_entry(c->u.name, fp, len);
1666 				if (rc < 0)
1667 					goto bad;
1668 				c->u.name[len] = 0;
1669 				rc = context_read_and_validate(&c->context[0], p, fp);
1670 				if (rc)
1671 					goto bad;
1672 				rc = context_read_and_validate(&c->context[1], p, fp);
1673 				if (rc)
1674 					goto bad;
1675 				break;
1676 			case OCON_PORT:
1677 				rc = next_entry(buf, fp, sizeof(u32)*3);
1678 				if (rc < 0)
1679 					goto bad;
1680 				c->u.port.protocol = le32_to_cpu(buf[0]);
1681 				c->u.port.low_port = le32_to_cpu(buf[1]);
1682 				c->u.port.high_port = le32_to_cpu(buf[2]);
1683 				rc = context_read_and_validate(&c->context[0], p, fp);
1684 				if (rc)
1685 					goto bad;
1686 				break;
1687 			case OCON_NODE:
1688 				rc = next_entry(buf, fp, sizeof(u32)* 2);
1689 				if (rc < 0)
1690 					goto bad;
1691 				c->u.node.addr = le32_to_cpu(buf[0]);
1692 				c->u.node.mask = le32_to_cpu(buf[1]);
1693 				rc = context_read_and_validate(&c->context[0], p, fp);
1694 				if (rc)
1695 					goto bad;
1696 				break;
1697 			case OCON_FSUSE:
1698 				rc = next_entry(buf, fp, sizeof(u32)*2);
1699 				if (rc < 0)
1700 					goto bad;
1701 				c->v.behavior = le32_to_cpu(buf[0]);
1702 				if (c->v.behavior > SECURITY_FS_USE_NONE)
1703 					goto bad;
1704 				len = le32_to_cpu(buf[1]);
1705 				c->u.name = kmalloc(len + 1,GFP_KERNEL);
1706 				if (!c->u.name) {
1707 					rc = -ENOMEM;
1708 					goto bad;
1709 				}
1710 				rc = next_entry(c->u.name, fp, len);
1711 				if (rc < 0)
1712 					goto bad;
1713 				c->u.name[len] = 0;
1714 				rc = context_read_and_validate(&c->context[0], p, fp);
1715 				if (rc)
1716 					goto bad;
1717 				break;
1718 			case OCON_NODE6: {
1719 				int k;
1720 
1721 				rc = next_entry(buf, fp, sizeof(u32) * 8);
1722 				if (rc < 0)
1723 					goto bad;
1724 				for (k = 0; k < 4; k++)
1725 					c->u.node6.addr[k] = le32_to_cpu(buf[k]);
1726 				for (k = 0; k < 4; k++)
1727 					c->u.node6.mask[k] = le32_to_cpu(buf[k+4]);
1728 				if (context_read_and_validate(&c->context[0], p, fp))
1729 					goto bad;
1730 				break;
1731 			}
1732 			}
1733 		}
1734 	}
1735 
1736 	rc = next_entry(buf, fp, sizeof(u32));
1737 	if (rc < 0)
1738 		goto bad;
1739 	nel = le32_to_cpu(buf[0]);
1740 	genfs_p = NULL;
1741 	rc = -EINVAL;
1742 	for (i = 0; i < nel; i++) {
1743 		rc = next_entry(buf, fp, sizeof(u32));
1744 		if (rc < 0)
1745 			goto bad;
1746 		len = le32_to_cpu(buf[0]);
1747 		newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
1748 		if (!newgenfs) {
1749 			rc = -ENOMEM;
1750 			goto bad;
1751 		}
1752 
1753 		newgenfs->fstype = kmalloc(len + 1,GFP_KERNEL);
1754 		if (!newgenfs->fstype) {
1755 			rc = -ENOMEM;
1756 			kfree(newgenfs);
1757 			goto bad;
1758 		}
1759 		rc = next_entry(newgenfs->fstype, fp, len);
1760 		if (rc < 0) {
1761 			kfree(newgenfs->fstype);
1762 			kfree(newgenfs);
1763 			goto bad;
1764 		}
1765 		newgenfs->fstype[len] = 0;
1766 		for (genfs_p = NULL, genfs = p->genfs; genfs;
1767 		     genfs_p = genfs, genfs = genfs->next) {
1768 			if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1769 				printk(KERN_ERR "security:  dup genfs "
1770 				       "fstype %s\n", newgenfs->fstype);
1771 				kfree(newgenfs->fstype);
1772 				kfree(newgenfs);
1773 				goto bad;
1774 			}
1775 			if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1776 				break;
1777 		}
1778 		newgenfs->next = genfs;
1779 		if (genfs_p)
1780 			genfs_p->next = newgenfs;
1781 		else
1782 			p->genfs = newgenfs;
1783 		rc = next_entry(buf, fp, sizeof(u32));
1784 		if (rc < 0)
1785 			goto bad;
1786 		nel2 = le32_to_cpu(buf[0]);
1787 		for (j = 0; j < nel2; j++) {
1788 			rc = next_entry(buf, fp, sizeof(u32));
1789 			if (rc < 0)
1790 				goto bad;
1791 			len = le32_to_cpu(buf[0]);
1792 
1793 			newc = kzalloc(sizeof(*newc), GFP_KERNEL);
1794 			if (!newc) {
1795 				rc = -ENOMEM;
1796 				goto bad;
1797 			}
1798 
1799 			newc->u.name = kmalloc(len + 1,GFP_KERNEL);
1800 			if (!newc->u.name) {
1801 				rc = -ENOMEM;
1802 				goto bad_newc;
1803 			}
1804 			rc = next_entry(newc->u.name, fp, len);
1805 			if (rc < 0)
1806 				goto bad_newc;
1807 			newc->u.name[len] = 0;
1808 			rc = next_entry(buf, fp, sizeof(u32));
1809 			if (rc < 0)
1810 				goto bad_newc;
1811 			newc->v.sclass = le32_to_cpu(buf[0]);
1812 			if (context_read_and_validate(&newc->context[0], p, fp))
1813 				goto bad_newc;
1814 			for (l = NULL, c = newgenfs->head; c;
1815 			     l = c, c = c->next) {
1816 				if (!strcmp(newc->u.name, c->u.name) &&
1817 				    (!c->v.sclass || !newc->v.sclass ||
1818 				     newc->v.sclass == c->v.sclass)) {
1819 					printk(KERN_ERR "security:  dup genfs "
1820 					       "entry (%s,%s)\n",
1821 					       newgenfs->fstype, c->u.name);
1822 					goto bad_newc;
1823 				}
1824 				len = strlen(newc->u.name);
1825 				len2 = strlen(c->u.name);
1826 				if (len > len2)
1827 					break;
1828 			}
1829 
1830 			newc->next = c;
1831 			if (l)
1832 				l->next = newc;
1833 			else
1834 				newgenfs->head = newc;
1835 		}
1836 	}
1837 
1838 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
1839 		int new_rangetr = p->policyvers >= POLICYDB_VERSION_RANGETRANS;
1840 		rc = next_entry(buf, fp, sizeof(u32));
1841 		if (rc < 0)
1842 			goto bad;
1843 		nel = le32_to_cpu(buf[0]);
1844 		lrt = NULL;
1845 		for (i = 0; i < nel; i++) {
1846 			rt = kzalloc(sizeof(*rt), GFP_KERNEL);
1847 			if (!rt) {
1848 				rc = -ENOMEM;
1849 				goto bad;
1850 			}
1851 			if (lrt)
1852 				lrt->next = rt;
1853 			else
1854 				p->range_tr = rt;
1855 			rc = next_entry(buf, fp, (sizeof(u32) * 2));
1856 			if (rc < 0)
1857 				goto bad;
1858 			rt->source_type = le32_to_cpu(buf[0]);
1859 			rt->target_type = le32_to_cpu(buf[1]);
1860 			if (new_rangetr) {
1861 				rc = next_entry(buf, fp, sizeof(u32));
1862 				if (rc < 0)
1863 					goto bad;
1864 				rt->target_class = le32_to_cpu(buf[0]);
1865 			} else
1866 				rt->target_class = SECCLASS_PROCESS;
1867 			rc = mls_read_range_helper(&rt->target_range, fp);
1868 			if (rc)
1869 				goto bad;
1870 			lrt = rt;
1871 		}
1872 	}
1873 
1874 	p->type_attr_map = kmalloc(p->p_types.nprim*sizeof(struct ebitmap), GFP_KERNEL);
1875 	if (!p->type_attr_map)
1876 		goto bad;
1877 
1878 	for (i = 0; i < p->p_types.nprim; i++) {
1879 		ebitmap_init(&p->type_attr_map[i]);
1880 		if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
1881 			if (ebitmap_read(&p->type_attr_map[i], fp))
1882 				goto bad;
1883 		}
1884 		/* add the type itself as the degenerate case */
1885 		if (ebitmap_set_bit(&p->type_attr_map[i], i, 1))
1886 				goto bad;
1887 	}
1888 
1889 	rc = 0;
1890 out:
1891 	return rc;
1892 bad_newc:
1893 	ocontext_destroy(newc,OCON_FSUSE);
1894 bad:
1895 	if (!rc)
1896 		rc = -EINVAL;
1897 	policydb_destroy(p);
1898 	goto out;
1899 }
1900