xref: /linux/security/selinux/ss/policydb.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6 
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul@paul-moore.com>
17  *
18  *      Added support for the policy capability bitmap
19  *
20  * Copyright (C) 2007 Hewlett-Packard Development Company, L.P.
21  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
22  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
23  *	This program is free software; you can redistribute it and/or modify
24  *	it under the terms of the GNU General Public License as published by
25  *	the Free Software Foundation, version 2.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/string.h>
32 #include <linux/errno.h>
33 #include <linux/audit.h>
34 #include <linux/flex_array.h>
35 #include "security.h"
36 
37 #include "policydb.h"
38 #include "conditional.h"
39 #include "mls.h"
40 #include "services.h"
41 
42 #define _DEBUG_HASHES
43 
44 #ifdef DEBUG_HASHES
45 static const char *symtab_name[SYM_NUM] = {
46 	"common prefixes",
47 	"classes",
48 	"roles",
49 	"types",
50 	"users",
51 	"bools",
52 	"levels",
53 	"categories",
54 };
55 #endif
56 
57 static unsigned int symtab_sizes[SYM_NUM] = {
58 	2,
59 	32,
60 	16,
61 	512,
62 	128,
63 	16,
64 	16,
65 	16,
66 };
67 
68 struct policydb_compat_info {
69 	int version;
70 	int sym_num;
71 	int ocon_num;
72 };
73 
74 /* These need to be updated if SYM_NUM or OCON_NUM changes */
75 static struct policydb_compat_info policydb_compat[] = {
76 	{
77 		.version	= POLICYDB_VERSION_BASE,
78 		.sym_num	= SYM_NUM - 3,
79 		.ocon_num	= OCON_NUM - 1,
80 	},
81 	{
82 		.version	= POLICYDB_VERSION_BOOL,
83 		.sym_num	= SYM_NUM - 2,
84 		.ocon_num	= OCON_NUM - 1,
85 	},
86 	{
87 		.version	= POLICYDB_VERSION_IPV6,
88 		.sym_num	= SYM_NUM - 2,
89 		.ocon_num	= OCON_NUM,
90 	},
91 	{
92 		.version	= POLICYDB_VERSION_NLCLASS,
93 		.sym_num	= SYM_NUM - 2,
94 		.ocon_num	= OCON_NUM,
95 	},
96 	{
97 		.version	= POLICYDB_VERSION_MLS,
98 		.sym_num	= SYM_NUM,
99 		.ocon_num	= OCON_NUM,
100 	},
101 	{
102 		.version	= POLICYDB_VERSION_AVTAB,
103 		.sym_num	= SYM_NUM,
104 		.ocon_num	= OCON_NUM,
105 	},
106 	{
107 		.version	= POLICYDB_VERSION_RANGETRANS,
108 		.sym_num	= SYM_NUM,
109 		.ocon_num	= OCON_NUM,
110 	},
111 	{
112 		.version	= POLICYDB_VERSION_POLCAP,
113 		.sym_num	= SYM_NUM,
114 		.ocon_num	= OCON_NUM,
115 	},
116 	{
117 		.version	= POLICYDB_VERSION_PERMISSIVE,
118 		.sym_num	= SYM_NUM,
119 		.ocon_num	= OCON_NUM,
120 	},
121 	{
122 		.version	= POLICYDB_VERSION_BOUNDARY,
123 		.sym_num	= SYM_NUM,
124 		.ocon_num	= OCON_NUM,
125 	},
126 	{
127 		.version	= POLICYDB_VERSION_FILENAME_TRANS,
128 		.sym_num	= SYM_NUM,
129 		.ocon_num	= OCON_NUM,
130 	},
131 	{
132 		.version	= POLICYDB_VERSION_ROLETRANS,
133 		.sym_num	= SYM_NUM,
134 		.ocon_num	= OCON_NUM,
135 	},
136 	{
137 		.version	= POLICYDB_VERSION_NEW_OBJECT_DEFAULTS,
138 		.sym_num	= SYM_NUM,
139 		.ocon_num	= OCON_NUM,
140 	},
141 	{
142 		.version	= POLICYDB_VERSION_DEFAULT_TYPE,
143 		.sym_num	= SYM_NUM,
144 		.ocon_num	= OCON_NUM,
145 	},
146 };
147 
148 static struct policydb_compat_info *policydb_lookup_compat(int version)
149 {
150 	int i;
151 	struct policydb_compat_info *info = NULL;
152 
153 	for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
154 		if (policydb_compat[i].version == version) {
155 			info = &policydb_compat[i];
156 			break;
157 		}
158 	}
159 	return info;
160 }
161 
162 /*
163  * Initialize the role table.
164  */
165 static int roles_init(struct policydb *p)
166 {
167 	char *key = NULL;
168 	int rc;
169 	struct role_datum *role;
170 
171 	rc = -ENOMEM;
172 	role = kzalloc(sizeof(*role), GFP_KERNEL);
173 	if (!role)
174 		goto out;
175 
176 	rc = -EINVAL;
177 	role->value = ++p->p_roles.nprim;
178 	if (role->value != OBJECT_R_VAL)
179 		goto out;
180 
181 	rc = -ENOMEM;
182 	key = kstrdup(OBJECT_R, GFP_KERNEL);
183 	if (!key)
184 		goto out;
185 
186 	rc = hashtab_insert(p->p_roles.table, key, role);
187 	if (rc)
188 		goto out;
189 
190 	return 0;
191 out:
192 	kfree(key);
193 	kfree(role);
194 	return rc;
195 }
196 
197 static u32 filenametr_hash(struct hashtab *h, const void *k)
198 {
199 	const struct filename_trans *ft = k;
200 	unsigned long hash;
201 	unsigned int byte_num;
202 	unsigned char focus;
203 
204 	hash = ft->stype ^ ft->ttype ^ ft->tclass;
205 
206 	byte_num = 0;
207 	while ((focus = ft->name[byte_num++]))
208 		hash = partial_name_hash(focus, hash);
209 	return hash & (h->size - 1);
210 }
211 
212 static int filenametr_cmp(struct hashtab *h, const void *k1, const void *k2)
213 {
214 	const struct filename_trans *ft1 = k1;
215 	const struct filename_trans *ft2 = k2;
216 	int v;
217 
218 	v = ft1->stype - ft2->stype;
219 	if (v)
220 		return v;
221 
222 	v = ft1->ttype - ft2->ttype;
223 	if (v)
224 		return v;
225 
226 	v = ft1->tclass - ft2->tclass;
227 	if (v)
228 		return v;
229 
230 	return strcmp(ft1->name, ft2->name);
231 
232 }
233 
234 static u32 rangetr_hash(struct hashtab *h, const void *k)
235 {
236 	const struct range_trans *key = k;
237 	return (key->source_type + (key->target_type << 3) +
238 		(key->target_class << 5)) & (h->size - 1);
239 }
240 
241 static int rangetr_cmp(struct hashtab *h, const void *k1, const void *k2)
242 {
243 	const struct range_trans *key1 = k1, *key2 = k2;
244 	int v;
245 
246 	v = key1->source_type - key2->source_type;
247 	if (v)
248 		return v;
249 
250 	v = key1->target_type - key2->target_type;
251 	if (v)
252 		return v;
253 
254 	v = key1->target_class - key2->target_class;
255 
256 	return v;
257 }
258 
259 /*
260  * Initialize a policy database structure.
261  */
262 static int policydb_init(struct policydb *p)
263 {
264 	int i, rc;
265 
266 	memset(p, 0, sizeof(*p));
267 
268 	for (i = 0; i < SYM_NUM; i++) {
269 		rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
270 		if (rc)
271 			goto out;
272 	}
273 
274 	rc = avtab_init(&p->te_avtab);
275 	if (rc)
276 		goto out;
277 
278 	rc = roles_init(p);
279 	if (rc)
280 		goto out;
281 
282 	rc = cond_policydb_init(p);
283 	if (rc)
284 		goto out;
285 
286 	p->filename_trans = hashtab_create(filenametr_hash, filenametr_cmp, (1 << 10));
287 	if (!p->filename_trans)
288 		goto out;
289 
290 	p->range_tr = hashtab_create(rangetr_hash, rangetr_cmp, 256);
291 	if (!p->range_tr)
292 		goto out;
293 
294 	ebitmap_init(&p->filename_trans_ttypes);
295 	ebitmap_init(&p->policycaps);
296 	ebitmap_init(&p->permissive_map);
297 
298 	return 0;
299 out:
300 	hashtab_destroy(p->filename_trans);
301 	hashtab_destroy(p->range_tr);
302 	for (i = 0; i < SYM_NUM; i++)
303 		hashtab_destroy(p->symtab[i].table);
304 	return rc;
305 }
306 
307 /*
308  * The following *_index functions are used to
309  * define the val_to_name and val_to_struct arrays
310  * in a policy database structure.  The val_to_name
311  * arrays are used when converting security context
312  * structures into string representations.  The
313  * val_to_struct arrays are used when the attributes
314  * of a class, role, or user are needed.
315  */
316 
317 static int common_index(void *key, void *datum, void *datap)
318 {
319 	struct policydb *p;
320 	struct common_datum *comdatum;
321 	struct flex_array *fa;
322 
323 	comdatum = datum;
324 	p = datap;
325 	if (!comdatum->value || comdatum->value > p->p_commons.nprim)
326 		return -EINVAL;
327 
328 	fa = p->sym_val_to_name[SYM_COMMONS];
329 	if (flex_array_put_ptr(fa, comdatum->value - 1, key,
330 			       GFP_KERNEL | __GFP_ZERO))
331 		BUG();
332 	return 0;
333 }
334 
335 static int class_index(void *key, void *datum, void *datap)
336 {
337 	struct policydb *p;
338 	struct class_datum *cladatum;
339 	struct flex_array *fa;
340 
341 	cladatum = datum;
342 	p = datap;
343 	if (!cladatum->value || cladatum->value > p->p_classes.nprim)
344 		return -EINVAL;
345 	fa = p->sym_val_to_name[SYM_CLASSES];
346 	if (flex_array_put_ptr(fa, cladatum->value - 1, key,
347 			       GFP_KERNEL | __GFP_ZERO))
348 		BUG();
349 	p->class_val_to_struct[cladatum->value - 1] = cladatum;
350 	return 0;
351 }
352 
353 static int role_index(void *key, void *datum, void *datap)
354 {
355 	struct policydb *p;
356 	struct role_datum *role;
357 	struct flex_array *fa;
358 
359 	role = datum;
360 	p = datap;
361 	if (!role->value
362 	    || role->value > p->p_roles.nprim
363 	    || role->bounds > p->p_roles.nprim)
364 		return -EINVAL;
365 
366 	fa = p->sym_val_to_name[SYM_ROLES];
367 	if (flex_array_put_ptr(fa, role->value - 1, key,
368 			       GFP_KERNEL | __GFP_ZERO))
369 		BUG();
370 	p->role_val_to_struct[role->value - 1] = role;
371 	return 0;
372 }
373 
374 static int type_index(void *key, void *datum, void *datap)
375 {
376 	struct policydb *p;
377 	struct type_datum *typdatum;
378 	struct flex_array *fa;
379 
380 	typdatum = datum;
381 	p = datap;
382 
383 	if (typdatum->primary) {
384 		if (!typdatum->value
385 		    || typdatum->value > p->p_types.nprim
386 		    || typdatum->bounds > p->p_types.nprim)
387 			return -EINVAL;
388 		fa = p->sym_val_to_name[SYM_TYPES];
389 		if (flex_array_put_ptr(fa, typdatum->value - 1, key,
390 				       GFP_KERNEL | __GFP_ZERO))
391 			BUG();
392 
393 		fa = p->type_val_to_struct_array;
394 		if (flex_array_put_ptr(fa, typdatum->value - 1, typdatum,
395 				       GFP_KERNEL | __GFP_ZERO))
396 			BUG();
397 	}
398 
399 	return 0;
400 }
401 
402 static int user_index(void *key, void *datum, void *datap)
403 {
404 	struct policydb *p;
405 	struct user_datum *usrdatum;
406 	struct flex_array *fa;
407 
408 	usrdatum = datum;
409 	p = datap;
410 	if (!usrdatum->value
411 	    || usrdatum->value > p->p_users.nprim
412 	    || usrdatum->bounds > p->p_users.nprim)
413 		return -EINVAL;
414 
415 	fa = p->sym_val_to_name[SYM_USERS];
416 	if (flex_array_put_ptr(fa, usrdatum->value - 1, key,
417 			       GFP_KERNEL | __GFP_ZERO))
418 		BUG();
419 	p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
420 	return 0;
421 }
422 
423 static int sens_index(void *key, void *datum, void *datap)
424 {
425 	struct policydb *p;
426 	struct level_datum *levdatum;
427 	struct flex_array *fa;
428 
429 	levdatum = datum;
430 	p = datap;
431 
432 	if (!levdatum->isalias) {
433 		if (!levdatum->level->sens ||
434 		    levdatum->level->sens > p->p_levels.nprim)
435 			return -EINVAL;
436 		fa = p->sym_val_to_name[SYM_LEVELS];
437 		if (flex_array_put_ptr(fa, levdatum->level->sens - 1, key,
438 				       GFP_KERNEL | __GFP_ZERO))
439 			BUG();
440 	}
441 
442 	return 0;
443 }
444 
445 static int cat_index(void *key, void *datum, void *datap)
446 {
447 	struct policydb *p;
448 	struct cat_datum *catdatum;
449 	struct flex_array *fa;
450 
451 	catdatum = datum;
452 	p = datap;
453 
454 	if (!catdatum->isalias) {
455 		if (!catdatum->value || catdatum->value > p->p_cats.nprim)
456 			return -EINVAL;
457 		fa = p->sym_val_to_name[SYM_CATS];
458 		if (flex_array_put_ptr(fa, catdatum->value - 1, key,
459 				       GFP_KERNEL | __GFP_ZERO))
460 			BUG();
461 	}
462 
463 	return 0;
464 }
465 
466 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
467 {
468 	common_index,
469 	class_index,
470 	role_index,
471 	type_index,
472 	user_index,
473 	cond_index_bool,
474 	sens_index,
475 	cat_index,
476 };
477 
478 #ifdef DEBUG_HASHES
479 static void hash_eval(struct hashtab *h, const char *hash_name)
480 {
481 	struct hashtab_info info;
482 
483 	hashtab_stat(h, &info);
484 	printk(KERN_DEBUG "SELinux: %s:  %d entries and %d/%d buckets used, "
485 	       "longest chain length %d\n", hash_name, h->nel,
486 	       info.slots_used, h->size, info.max_chain_len);
487 }
488 
489 static void symtab_hash_eval(struct symtab *s)
490 {
491 	int i;
492 
493 	for (i = 0; i < SYM_NUM; i++)
494 		hash_eval(s[i].table, symtab_name[i]);
495 }
496 
497 #else
498 static inline void hash_eval(struct hashtab *h, char *hash_name)
499 {
500 }
501 #endif
502 
503 /*
504  * Define the other val_to_name and val_to_struct arrays
505  * in a policy database structure.
506  *
507  * Caller must clean up on failure.
508  */
509 static int policydb_index(struct policydb *p)
510 {
511 	int i, rc;
512 
513 	printk(KERN_DEBUG "SELinux:  %d users, %d roles, %d types, %d bools",
514 	       p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
515 	if (p->mls_enabled)
516 		printk(", %d sens, %d cats", p->p_levels.nprim,
517 		       p->p_cats.nprim);
518 	printk("\n");
519 
520 	printk(KERN_DEBUG "SELinux:  %d classes, %d rules\n",
521 	       p->p_classes.nprim, p->te_avtab.nel);
522 
523 #ifdef DEBUG_HASHES
524 	avtab_hash_eval(&p->te_avtab, "rules");
525 	symtab_hash_eval(p->symtab);
526 #endif
527 
528 	rc = -ENOMEM;
529 	p->class_val_to_struct =
530 		kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)),
531 			GFP_KERNEL);
532 	if (!p->class_val_to_struct)
533 		goto out;
534 
535 	rc = -ENOMEM;
536 	p->role_val_to_struct =
537 		kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
538 			GFP_KERNEL);
539 	if (!p->role_val_to_struct)
540 		goto out;
541 
542 	rc = -ENOMEM;
543 	p->user_val_to_struct =
544 		kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
545 			GFP_KERNEL);
546 	if (!p->user_val_to_struct)
547 		goto out;
548 
549 	/* Yes, I want the sizeof the pointer, not the structure */
550 	rc = -ENOMEM;
551 	p->type_val_to_struct_array = flex_array_alloc(sizeof(struct type_datum *),
552 						       p->p_types.nprim,
553 						       GFP_KERNEL | __GFP_ZERO);
554 	if (!p->type_val_to_struct_array)
555 		goto out;
556 
557 	rc = flex_array_prealloc(p->type_val_to_struct_array, 0,
558 				 p->p_types.nprim, GFP_KERNEL | __GFP_ZERO);
559 	if (rc)
560 		goto out;
561 
562 	rc = cond_init_bool_indexes(p);
563 	if (rc)
564 		goto out;
565 
566 	for (i = 0; i < SYM_NUM; i++) {
567 		rc = -ENOMEM;
568 		p->sym_val_to_name[i] = flex_array_alloc(sizeof(char *),
569 							 p->symtab[i].nprim,
570 							 GFP_KERNEL | __GFP_ZERO);
571 		if (!p->sym_val_to_name[i])
572 			goto out;
573 
574 		rc = flex_array_prealloc(p->sym_val_to_name[i],
575 					 0, p->symtab[i].nprim,
576 					 GFP_KERNEL | __GFP_ZERO);
577 		if (rc)
578 			goto out;
579 
580 		rc = hashtab_map(p->symtab[i].table, index_f[i], p);
581 		if (rc)
582 			goto out;
583 	}
584 	rc = 0;
585 out:
586 	return rc;
587 }
588 
589 /*
590  * The following *_destroy functions are used to
591  * free any memory allocated for each kind of
592  * symbol data in the policy database.
593  */
594 
595 static int perm_destroy(void *key, void *datum, void *p)
596 {
597 	kfree(key);
598 	kfree(datum);
599 	return 0;
600 }
601 
602 static int common_destroy(void *key, void *datum, void *p)
603 {
604 	struct common_datum *comdatum;
605 
606 	kfree(key);
607 	if (datum) {
608 		comdatum = datum;
609 		hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
610 		hashtab_destroy(comdatum->permissions.table);
611 	}
612 	kfree(datum);
613 	return 0;
614 }
615 
616 static int cls_destroy(void *key, void *datum, void *p)
617 {
618 	struct class_datum *cladatum;
619 	struct constraint_node *constraint, *ctemp;
620 	struct constraint_expr *e, *etmp;
621 
622 	kfree(key);
623 	if (datum) {
624 		cladatum = datum;
625 		hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
626 		hashtab_destroy(cladatum->permissions.table);
627 		constraint = cladatum->constraints;
628 		while (constraint) {
629 			e = constraint->expr;
630 			while (e) {
631 				ebitmap_destroy(&e->names);
632 				etmp = e;
633 				e = e->next;
634 				kfree(etmp);
635 			}
636 			ctemp = constraint;
637 			constraint = constraint->next;
638 			kfree(ctemp);
639 		}
640 
641 		constraint = cladatum->validatetrans;
642 		while (constraint) {
643 			e = constraint->expr;
644 			while (e) {
645 				ebitmap_destroy(&e->names);
646 				etmp = e;
647 				e = e->next;
648 				kfree(etmp);
649 			}
650 			ctemp = constraint;
651 			constraint = constraint->next;
652 			kfree(ctemp);
653 		}
654 
655 		kfree(cladatum->comkey);
656 	}
657 	kfree(datum);
658 	return 0;
659 }
660 
661 static int role_destroy(void *key, void *datum, void *p)
662 {
663 	struct role_datum *role;
664 
665 	kfree(key);
666 	if (datum) {
667 		role = datum;
668 		ebitmap_destroy(&role->dominates);
669 		ebitmap_destroy(&role->types);
670 	}
671 	kfree(datum);
672 	return 0;
673 }
674 
675 static int type_destroy(void *key, void *datum, void *p)
676 {
677 	kfree(key);
678 	kfree(datum);
679 	return 0;
680 }
681 
682 static int user_destroy(void *key, void *datum, void *p)
683 {
684 	struct user_datum *usrdatum;
685 
686 	kfree(key);
687 	if (datum) {
688 		usrdatum = datum;
689 		ebitmap_destroy(&usrdatum->roles);
690 		ebitmap_destroy(&usrdatum->range.level[0].cat);
691 		ebitmap_destroy(&usrdatum->range.level[1].cat);
692 		ebitmap_destroy(&usrdatum->dfltlevel.cat);
693 	}
694 	kfree(datum);
695 	return 0;
696 }
697 
698 static int sens_destroy(void *key, void *datum, void *p)
699 {
700 	struct level_datum *levdatum;
701 
702 	kfree(key);
703 	if (datum) {
704 		levdatum = datum;
705 		ebitmap_destroy(&levdatum->level->cat);
706 		kfree(levdatum->level);
707 	}
708 	kfree(datum);
709 	return 0;
710 }
711 
712 static int cat_destroy(void *key, void *datum, void *p)
713 {
714 	kfree(key);
715 	kfree(datum);
716 	return 0;
717 }
718 
719 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
720 {
721 	common_destroy,
722 	cls_destroy,
723 	role_destroy,
724 	type_destroy,
725 	user_destroy,
726 	cond_destroy_bool,
727 	sens_destroy,
728 	cat_destroy,
729 };
730 
731 static int filenametr_destroy(void *key, void *datum, void *p)
732 {
733 	struct filename_trans *ft = key;
734 	kfree(ft->name);
735 	kfree(key);
736 	kfree(datum);
737 	cond_resched();
738 	return 0;
739 }
740 
741 static int range_tr_destroy(void *key, void *datum, void *p)
742 {
743 	struct mls_range *rt = datum;
744 	kfree(key);
745 	ebitmap_destroy(&rt->level[0].cat);
746 	ebitmap_destroy(&rt->level[1].cat);
747 	kfree(datum);
748 	cond_resched();
749 	return 0;
750 }
751 
752 static void ocontext_destroy(struct ocontext *c, int i)
753 {
754 	if (!c)
755 		return;
756 
757 	context_destroy(&c->context[0]);
758 	context_destroy(&c->context[1]);
759 	if (i == OCON_ISID || i == OCON_FS ||
760 	    i == OCON_NETIF || i == OCON_FSUSE)
761 		kfree(c->u.name);
762 	kfree(c);
763 }
764 
765 /*
766  * Free any memory allocated by a policy database structure.
767  */
768 void policydb_destroy(struct policydb *p)
769 {
770 	struct ocontext *c, *ctmp;
771 	struct genfs *g, *gtmp;
772 	int i;
773 	struct role_allow *ra, *lra = NULL;
774 	struct role_trans *tr, *ltr = NULL;
775 
776 	for (i = 0; i < SYM_NUM; i++) {
777 		cond_resched();
778 		hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
779 		hashtab_destroy(p->symtab[i].table);
780 	}
781 
782 	for (i = 0; i < SYM_NUM; i++) {
783 		if (p->sym_val_to_name[i])
784 			flex_array_free(p->sym_val_to_name[i]);
785 	}
786 
787 	kfree(p->class_val_to_struct);
788 	kfree(p->role_val_to_struct);
789 	kfree(p->user_val_to_struct);
790 	if (p->type_val_to_struct_array)
791 		flex_array_free(p->type_val_to_struct_array);
792 
793 	avtab_destroy(&p->te_avtab);
794 
795 	for (i = 0; i < OCON_NUM; i++) {
796 		cond_resched();
797 		c = p->ocontexts[i];
798 		while (c) {
799 			ctmp = c;
800 			c = c->next;
801 			ocontext_destroy(ctmp, i);
802 		}
803 		p->ocontexts[i] = NULL;
804 	}
805 
806 	g = p->genfs;
807 	while (g) {
808 		cond_resched();
809 		kfree(g->fstype);
810 		c = g->head;
811 		while (c) {
812 			ctmp = c;
813 			c = c->next;
814 			ocontext_destroy(ctmp, OCON_FSUSE);
815 		}
816 		gtmp = g;
817 		g = g->next;
818 		kfree(gtmp);
819 	}
820 	p->genfs = NULL;
821 
822 	cond_policydb_destroy(p);
823 
824 	for (tr = p->role_tr; tr; tr = tr->next) {
825 		cond_resched();
826 		kfree(ltr);
827 		ltr = tr;
828 	}
829 	kfree(ltr);
830 
831 	for (ra = p->role_allow; ra; ra = ra->next) {
832 		cond_resched();
833 		kfree(lra);
834 		lra = ra;
835 	}
836 	kfree(lra);
837 
838 	hashtab_map(p->filename_trans, filenametr_destroy, NULL);
839 	hashtab_destroy(p->filename_trans);
840 
841 	hashtab_map(p->range_tr, range_tr_destroy, NULL);
842 	hashtab_destroy(p->range_tr);
843 
844 	if (p->type_attr_map_array) {
845 		for (i = 0; i < p->p_types.nprim; i++) {
846 			struct ebitmap *e;
847 
848 			e = flex_array_get(p->type_attr_map_array, i);
849 			if (!e)
850 				continue;
851 			ebitmap_destroy(e);
852 		}
853 		flex_array_free(p->type_attr_map_array);
854 	}
855 
856 	ebitmap_destroy(&p->filename_trans_ttypes);
857 	ebitmap_destroy(&p->policycaps);
858 	ebitmap_destroy(&p->permissive_map);
859 
860 	return;
861 }
862 
863 /*
864  * Load the initial SIDs specified in a policy database
865  * structure into a SID table.
866  */
867 int policydb_load_isids(struct policydb *p, struct sidtab *s)
868 {
869 	struct ocontext *head, *c;
870 	int rc;
871 
872 	rc = sidtab_init(s);
873 	if (rc) {
874 		printk(KERN_ERR "SELinux:  out of memory on SID table init\n");
875 		goto out;
876 	}
877 
878 	head = p->ocontexts[OCON_ISID];
879 	for (c = head; c; c = c->next) {
880 		rc = -EINVAL;
881 		if (!c->context[0].user) {
882 			printk(KERN_ERR "SELinux:  SID %s was never defined.\n",
883 				c->u.name);
884 			goto out;
885 		}
886 
887 		rc = sidtab_insert(s, c->sid[0], &c->context[0]);
888 		if (rc) {
889 			printk(KERN_ERR "SELinux:  unable to load initial SID %s.\n",
890 				c->u.name);
891 			goto out;
892 		}
893 	}
894 	rc = 0;
895 out:
896 	return rc;
897 }
898 
899 int policydb_class_isvalid(struct policydb *p, unsigned int class)
900 {
901 	if (!class || class > p->p_classes.nprim)
902 		return 0;
903 	return 1;
904 }
905 
906 int policydb_role_isvalid(struct policydb *p, unsigned int role)
907 {
908 	if (!role || role > p->p_roles.nprim)
909 		return 0;
910 	return 1;
911 }
912 
913 int policydb_type_isvalid(struct policydb *p, unsigned int type)
914 {
915 	if (!type || type > p->p_types.nprim)
916 		return 0;
917 	return 1;
918 }
919 
920 /*
921  * Return 1 if the fields in the security context
922  * structure `c' are valid.  Return 0 otherwise.
923  */
924 int policydb_context_isvalid(struct policydb *p, struct context *c)
925 {
926 	struct role_datum *role;
927 	struct user_datum *usrdatum;
928 
929 	if (!c->role || c->role > p->p_roles.nprim)
930 		return 0;
931 
932 	if (!c->user || c->user > p->p_users.nprim)
933 		return 0;
934 
935 	if (!c->type || c->type > p->p_types.nprim)
936 		return 0;
937 
938 	if (c->role != OBJECT_R_VAL) {
939 		/*
940 		 * Role must be authorized for the type.
941 		 */
942 		role = p->role_val_to_struct[c->role - 1];
943 		if (!ebitmap_get_bit(&role->types, c->type - 1))
944 			/* role may not be associated with type */
945 			return 0;
946 
947 		/*
948 		 * User must be authorized for the role.
949 		 */
950 		usrdatum = p->user_val_to_struct[c->user - 1];
951 		if (!usrdatum)
952 			return 0;
953 
954 		if (!ebitmap_get_bit(&usrdatum->roles, c->role - 1))
955 			/* user may not be associated with role */
956 			return 0;
957 	}
958 
959 	if (!mls_context_isvalid(p, c))
960 		return 0;
961 
962 	return 1;
963 }
964 
965 /*
966  * Read a MLS range structure from a policydb binary
967  * representation file.
968  */
969 static int mls_read_range_helper(struct mls_range *r, void *fp)
970 {
971 	__le32 buf[2];
972 	u32 items;
973 	int rc;
974 
975 	rc = next_entry(buf, fp, sizeof(u32));
976 	if (rc)
977 		goto out;
978 
979 	rc = -EINVAL;
980 	items = le32_to_cpu(buf[0]);
981 	if (items > ARRAY_SIZE(buf)) {
982 		printk(KERN_ERR "SELinux: mls:  range overflow\n");
983 		goto out;
984 	}
985 
986 	rc = next_entry(buf, fp, sizeof(u32) * items);
987 	if (rc) {
988 		printk(KERN_ERR "SELinux: mls:  truncated range\n");
989 		goto out;
990 	}
991 
992 	r->level[0].sens = le32_to_cpu(buf[0]);
993 	if (items > 1)
994 		r->level[1].sens = le32_to_cpu(buf[1]);
995 	else
996 		r->level[1].sens = r->level[0].sens;
997 
998 	rc = ebitmap_read(&r->level[0].cat, fp);
999 	if (rc) {
1000 		printk(KERN_ERR "SELinux: mls:  error reading low categories\n");
1001 		goto out;
1002 	}
1003 	if (items > 1) {
1004 		rc = ebitmap_read(&r->level[1].cat, fp);
1005 		if (rc) {
1006 			printk(KERN_ERR "SELinux: mls:  error reading high categories\n");
1007 			goto bad_high;
1008 		}
1009 	} else {
1010 		rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
1011 		if (rc) {
1012 			printk(KERN_ERR "SELinux: mls:  out of memory\n");
1013 			goto bad_high;
1014 		}
1015 	}
1016 
1017 	return 0;
1018 bad_high:
1019 	ebitmap_destroy(&r->level[0].cat);
1020 out:
1021 	return rc;
1022 }
1023 
1024 /*
1025  * Read and validate a security context structure
1026  * from a policydb binary representation file.
1027  */
1028 static int context_read_and_validate(struct context *c,
1029 				     struct policydb *p,
1030 				     void *fp)
1031 {
1032 	__le32 buf[3];
1033 	int rc;
1034 
1035 	rc = next_entry(buf, fp, sizeof buf);
1036 	if (rc) {
1037 		printk(KERN_ERR "SELinux: context truncated\n");
1038 		goto out;
1039 	}
1040 	c->user = le32_to_cpu(buf[0]);
1041 	c->role = le32_to_cpu(buf[1]);
1042 	c->type = le32_to_cpu(buf[2]);
1043 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
1044 		rc = mls_read_range_helper(&c->range, fp);
1045 		if (rc) {
1046 			printk(KERN_ERR "SELinux: error reading MLS range of context\n");
1047 			goto out;
1048 		}
1049 	}
1050 
1051 	rc = -EINVAL;
1052 	if (!policydb_context_isvalid(p, c)) {
1053 		printk(KERN_ERR "SELinux:  invalid security context\n");
1054 		context_destroy(c);
1055 		goto out;
1056 	}
1057 	rc = 0;
1058 out:
1059 	return rc;
1060 }
1061 
1062 /*
1063  * The following *_read functions are used to
1064  * read the symbol data from a policy database
1065  * binary representation file.
1066  */
1067 
1068 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
1069 {
1070 	char *key = NULL;
1071 	struct perm_datum *perdatum;
1072 	int rc;
1073 	__le32 buf[2];
1074 	u32 len;
1075 
1076 	rc = -ENOMEM;
1077 	perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
1078 	if (!perdatum)
1079 		goto bad;
1080 
1081 	rc = next_entry(buf, fp, sizeof buf);
1082 	if (rc)
1083 		goto bad;
1084 
1085 	len = le32_to_cpu(buf[0]);
1086 	perdatum->value = le32_to_cpu(buf[1]);
1087 
1088 	rc = -ENOMEM;
1089 	key = kmalloc(len + 1, GFP_KERNEL);
1090 	if (!key)
1091 		goto bad;
1092 
1093 	rc = next_entry(key, fp, len);
1094 	if (rc)
1095 		goto bad;
1096 	key[len] = '\0';
1097 
1098 	rc = hashtab_insert(h, key, perdatum);
1099 	if (rc)
1100 		goto bad;
1101 
1102 	return 0;
1103 bad:
1104 	perm_destroy(key, perdatum, NULL);
1105 	return rc;
1106 }
1107 
1108 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
1109 {
1110 	char *key = NULL;
1111 	struct common_datum *comdatum;
1112 	__le32 buf[4];
1113 	u32 len, nel;
1114 	int i, rc;
1115 
1116 	rc = -ENOMEM;
1117 	comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
1118 	if (!comdatum)
1119 		goto bad;
1120 
1121 	rc = next_entry(buf, fp, sizeof buf);
1122 	if (rc)
1123 		goto bad;
1124 
1125 	len = le32_to_cpu(buf[0]);
1126 	comdatum->value = le32_to_cpu(buf[1]);
1127 
1128 	rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
1129 	if (rc)
1130 		goto bad;
1131 	comdatum->permissions.nprim = le32_to_cpu(buf[2]);
1132 	nel = le32_to_cpu(buf[3]);
1133 
1134 	rc = -ENOMEM;
1135 	key = kmalloc(len + 1, GFP_KERNEL);
1136 	if (!key)
1137 		goto bad;
1138 
1139 	rc = next_entry(key, fp, len);
1140 	if (rc)
1141 		goto bad;
1142 	key[len] = '\0';
1143 
1144 	for (i = 0; i < nel; i++) {
1145 		rc = perm_read(p, comdatum->permissions.table, fp);
1146 		if (rc)
1147 			goto bad;
1148 	}
1149 
1150 	rc = hashtab_insert(h, key, comdatum);
1151 	if (rc)
1152 		goto bad;
1153 	return 0;
1154 bad:
1155 	common_destroy(key, comdatum, NULL);
1156 	return rc;
1157 }
1158 
1159 static int read_cons_helper(struct constraint_node **nodep, int ncons,
1160 			    int allowxtarget, void *fp)
1161 {
1162 	struct constraint_node *c, *lc;
1163 	struct constraint_expr *e, *le;
1164 	__le32 buf[3];
1165 	u32 nexpr;
1166 	int rc, i, j, depth;
1167 
1168 	lc = NULL;
1169 	for (i = 0; i < ncons; i++) {
1170 		c = kzalloc(sizeof(*c), GFP_KERNEL);
1171 		if (!c)
1172 			return -ENOMEM;
1173 
1174 		if (lc)
1175 			lc->next = c;
1176 		else
1177 			*nodep = c;
1178 
1179 		rc = next_entry(buf, fp, (sizeof(u32) * 2));
1180 		if (rc)
1181 			return rc;
1182 		c->permissions = le32_to_cpu(buf[0]);
1183 		nexpr = le32_to_cpu(buf[1]);
1184 		le = NULL;
1185 		depth = -1;
1186 		for (j = 0; j < nexpr; j++) {
1187 			e = kzalloc(sizeof(*e), GFP_KERNEL);
1188 			if (!e)
1189 				return -ENOMEM;
1190 
1191 			if (le)
1192 				le->next = e;
1193 			else
1194 				c->expr = e;
1195 
1196 			rc = next_entry(buf, fp, (sizeof(u32) * 3));
1197 			if (rc)
1198 				return rc;
1199 			e->expr_type = le32_to_cpu(buf[0]);
1200 			e->attr = le32_to_cpu(buf[1]);
1201 			e->op = le32_to_cpu(buf[2]);
1202 
1203 			switch (e->expr_type) {
1204 			case CEXPR_NOT:
1205 				if (depth < 0)
1206 					return -EINVAL;
1207 				break;
1208 			case CEXPR_AND:
1209 			case CEXPR_OR:
1210 				if (depth < 1)
1211 					return -EINVAL;
1212 				depth--;
1213 				break;
1214 			case CEXPR_ATTR:
1215 				if (depth == (CEXPR_MAXDEPTH - 1))
1216 					return -EINVAL;
1217 				depth++;
1218 				break;
1219 			case CEXPR_NAMES:
1220 				if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1221 					return -EINVAL;
1222 				if (depth == (CEXPR_MAXDEPTH - 1))
1223 					return -EINVAL;
1224 				depth++;
1225 				rc = ebitmap_read(&e->names, fp);
1226 				if (rc)
1227 					return rc;
1228 				break;
1229 			default:
1230 				return -EINVAL;
1231 			}
1232 			le = e;
1233 		}
1234 		if (depth != 0)
1235 			return -EINVAL;
1236 		lc = c;
1237 	}
1238 
1239 	return 0;
1240 }
1241 
1242 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1243 {
1244 	char *key = NULL;
1245 	struct class_datum *cladatum;
1246 	__le32 buf[6];
1247 	u32 len, len2, ncons, nel;
1248 	int i, rc;
1249 
1250 	rc = -ENOMEM;
1251 	cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
1252 	if (!cladatum)
1253 		goto bad;
1254 
1255 	rc = next_entry(buf, fp, sizeof(u32)*6);
1256 	if (rc)
1257 		goto bad;
1258 
1259 	len = le32_to_cpu(buf[0]);
1260 	len2 = le32_to_cpu(buf[1]);
1261 	cladatum->value = le32_to_cpu(buf[2]);
1262 
1263 	rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1264 	if (rc)
1265 		goto bad;
1266 	cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1267 	nel = le32_to_cpu(buf[4]);
1268 
1269 	ncons = le32_to_cpu(buf[5]);
1270 
1271 	rc = -ENOMEM;
1272 	key = kmalloc(len + 1, GFP_KERNEL);
1273 	if (!key)
1274 		goto bad;
1275 
1276 	rc = next_entry(key, fp, len);
1277 	if (rc)
1278 		goto bad;
1279 	key[len] = '\0';
1280 
1281 	if (len2) {
1282 		rc = -ENOMEM;
1283 		cladatum->comkey = kmalloc(len2 + 1, GFP_KERNEL);
1284 		if (!cladatum->comkey)
1285 			goto bad;
1286 		rc = next_entry(cladatum->comkey, fp, len2);
1287 		if (rc)
1288 			goto bad;
1289 		cladatum->comkey[len2] = '\0';
1290 
1291 		rc = -EINVAL;
1292 		cladatum->comdatum = hashtab_search(p->p_commons.table, cladatum->comkey);
1293 		if (!cladatum->comdatum) {
1294 			printk(KERN_ERR "SELinux:  unknown common %s\n", cladatum->comkey);
1295 			goto bad;
1296 		}
1297 	}
1298 	for (i = 0; i < nel; i++) {
1299 		rc = perm_read(p, cladatum->permissions.table, fp);
1300 		if (rc)
1301 			goto bad;
1302 	}
1303 
1304 	rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1305 	if (rc)
1306 		goto bad;
1307 
1308 	if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1309 		/* grab the validatetrans rules */
1310 		rc = next_entry(buf, fp, sizeof(u32));
1311 		if (rc)
1312 			goto bad;
1313 		ncons = le32_to_cpu(buf[0]);
1314 		rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1315 		if (rc)
1316 			goto bad;
1317 	}
1318 
1319 	if (p->policyvers >= POLICYDB_VERSION_NEW_OBJECT_DEFAULTS) {
1320 		rc = next_entry(buf, fp, sizeof(u32) * 3);
1321 		if (rc)
1322 			goto bad;
1323 
1324 		cladatum->default_user = le32_to_cpu(buf[0]);
1325 		cladatum->default_role = le32_to_cpu(buf[1]);
1326 		cladatum->default_range = le32_to_cpu(buf[2]);
1327 	}
1328 
1329 	if (p->policyvers >= POLICYDB_VERSION_DEFAULT_TYPE) {
1330 		rc = next_entry(buf, fp, sizeof(u32) * 1);
1331 		if (rc)
1332 			goto bad;
1333 		cladatum->default_type = le32_to_cpu(buf[0]);
1334 	}
1335 
1336 	rc = hashtab_insert(h, key, cladatum);
1337 	if (rc)
1338 		goto bad;
1339 
1340 	return 0;
1341 bad:
1342 	cls_destroy(key, cladatum, NULL);
1343 	return rc;
1344 }
1345 
1346 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1347 {
1348 	char *key = NULL;
1349 	struct role_datum *role;
1350 	int rc, to_read = 2;
1351 	__le32 buf[3];
1352 	u32 len;
1353 
1354 	rc = -ENOMEM;
1355 	role = kzalloc(sizeof(*role), GFP_KERNEL);
1356 	if (!role)
1357 		goto bad;
1358 
1359 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1360 		to_read = 3;
1361 
1362 	rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1363 	if (rc)
1364 		goto bad;
1365 
1366 	len = le32_to_cpu(buf[0]);
1367 	role->value = le32_to_cpu(buf[1]);
1368 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1369 		role->bounds = le32_to_cpu(buf[2]);
1370 
1371 	rc = -ENOMEM;
1372 	key = kmalloc(len + 1, GFP_KERNEL);
1373 	if (!key)
1374 		goto bad;
1375 
1376 	rc = next_entry(key, fp, len);
1377 	if (rc)
1378 		goto bad;
1379 	key[len] = '\0';
1380 
1381 	rc = ebitmap_read(&role->dominates, fp);
1382 	if (rc)
1383 		goto bad;
1384 
1385 	rc = ebitmap_read(&role->types, fp);
1386 	if (rc)
1387 		goto bad;
1388 
1389 	if (strcmp(key, OBJECT_R) == 0) {
1390 		rc = -EINVAL;
1391 		if (role->value != OBJECT_R_VAL) {
1392 			printk(KERN_ERR "SELinux: Role %s has wrong value %d\n",
1393 			       OBJECT_R, role->value);
1394 			goto bad;
1395 		}
1396 		rc = 0;
1397 		goto bad;
1398 	}
1399 
1400 	rc = hashtab_insert(h, key, role);
1401 	if (rc)
1402 		goto bad;
1403 	return 0;
1404 bad:
1405 	role_destroy(key, role, NULL);
1406 	return rc;
1407 }
1408 
1409 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1410 {
1411 	char *key = NULL;
1412 	struct type_datum *typdatum;
1413 	int rc, to_read = 3;
1414 	__le32 buf[4];
1415 	u32 len;
1416 
1417 	rc = -ENOMEM;
1418 	typdatum = kzalloc(sizeof(*typdatum), GFP_KERNEL);
1419 	if (!typdatum)
1420 		goto bad;
1421 
1422 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1423 		to_read = 4;
1424 
1425 	rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1426 	if (rc)
1427 		goto bad;
1428 
1429 	len = le32_to_cpu(buf[0]);
1430 	typdatum->value = le32_to_cpu(buf[1]);
1431 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
1432 		u32 prop = le32_to_cpu(buf[2]);
1433 
1434 		if (prop & TYPEDATUM_PROPERTY_PRIMARY)
1435 			typdatum->primary = 1;
1436 		if (prop & TYPEDATUM_PROPERTY_ATTRIBUTE)
1437 			typdatum->attribute = 1;
1438 
1439 		typdatum->bounds = le32_to_cpu(buf[3]);
1440 	} else {
1441 		typdatum->primary = le32_to_cpu(buf[2]);
1442 	}
1443 
1444 	rc = -ENOMEM;
1445 	key = kmalloc(len + 1, GFP_KERNEL);
1446 	if (!key)
1447 		goto bad;
1448 	rc = next_entry(key, fp, len);
1449 	if (rc)
1450 		goto bad;
1451 	key[len] = '\0';
1452 
1453 	rc = hashtab_insert(h, key, typdatum);
1454 	if (rc)
1455 		goto bad;
1456 	return 0;
1457 bad:
1458 	type_destroy(key, typdatum, NULL);
1459 	return rc;
1460 }
1461 
1462 
1463 /*
1464  * Read a MLS level structure from a policydb binary
1465  * representation file.
1466  */
1467 static int mls_read_level(struct mls_level *lp, void *fp)
1468 {
1469 	__le32 buf[1];
1470 	int rc;
1471 
1472 	memset(lp, 0, sizeof(*lp));
1473 
1474 	rc = next_entry(buf, fp, sizeof buf);
1475 	if (rc) {
1476 		printk(KERN_ERR "SELinux: mls: truncated level\n");
1477 		return rc;
1478 	}
1479 	lp->sens = le32_to_cpu(buf[0]);
1480 
1481 	rc = ebitmap_read(&lp->cat, fp);
1482 	if (rc) {
1483 		printk(KERN_ERR "SELinux: mls:  error reading level categories\n");
1484 		return rc;
1485 	}
1486 	return 0;
1487 }
1488 
1489 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1490 {
1491 	char *key = NULL;
1492 	struct user_datum *usrdatum;
1493 	int rc, to_read = 2;
1494 	__le32 buf[3];
1495 	u32 len;
1496 
1497 	rc = -ENOMEM;
1498 	usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
1499 	if (!usrdatum)
1500 		goto bad;
1501 
1502 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1503 		to_read = 3;
1504 
1505 	rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1506 	if (rc)
1507 		goto bad;
1508 
1509 	len = le32_to_cpu(buf[0]);
1510 	usrdatum->value = le32_to_cpu(buf[1]);
1511 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1512 		usrdatum->bounds = le32_to_cpu(buf[2]);
1513 
1514 	rc = -ENOMEM;
1515 	key = kmalloc(len + 1, GFP_KERNEL);
1516 	if (!key)
1517 		goto bad;
1518 	rc = next_entry(key, fp, len);
1519 	if (rc)
1520 		goto bad;
1521 	key[len] = '\0';
1522 
1523 	rc = ebitmap_read(&usrdatum->roles, fp);
1524 	if (rc)
1525 		goto bad;
1526 
1527 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
1528 		rc = mls_read_range_helper(&usrdatum->range, fp);
1529 		if (rc)
1530 			goto bad;
1531 		rc = mls_read_level(&usrdatum->dfltlevel, fp);
1532 		if (rc)
1533 			goto bad;
1534 	}
1535 
1536 	rc = hashtab_insert(h, key, usrdatum);
1537 	if (rc)
1538 		goto bad;
1539 	return 0;
1540 bad:
1541 	user_destroy(key, usrdatum, NULL);
1542 	return rc;
1543 }
1544 
1545 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1546 {
1547 	char *key = NULL;
1548 	struct level_datum *levdatum;
1549 	int rc;
1550 	__le32 buf[2];
1551 	u32 len;
1552 
1553 	rc = -ENOMEM;
1554 	levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
1555 	if (!levdatum)
1556 		goto bad;
1557 
1558 	rc = next_entry(buf, fp, sizeof buf);
1559 	if (rc)
1560 		goto bad;
1561 
1562 	len = le32_to_cpu(buf[0]);
1563 	levdatum->isalias = le32_to_cpu(buf[1]);
1564 
1565 	rc = -ENOMEM;
1566 	key = kmalloc(len + 1, GFP_ATOMIC);
1567 	if (!key)
1568 		goto bad;
1569 	rc = next_entry(key, fp, len);
1570 	if (rc)
1571 		goto bad;
1572 	key[len] = '\0';
1573 
1574 	rc = -ENOMEM;
1575 	levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1576 	if (!levdatum->level)
1577 		goto bad;
1578 
1579 	rc = mls_read_level(levdatum->level, fp);
1580 	if (rc)
1581 		goto bad;
1582 
1583 	rc = hashtab_insert(h, key, levdatum);
1584 	if (rc)
1585 		goto bad;
1586 	return 0;
1587 bad:
1588 	sens_destroy(key, levdatum, NULL);
1589 	return rc;
1590 }
1591 
1592 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1593 {
1594 	char *key = NULL;
1595 	struct cat_datum *catdatum;
1596 	int rc;
1597 	__le32 buf[3];
1598 	u32 len;
1599 
1600 	rc = -ENOMEM;
1601 	catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
1602 	if (!catdatum)
1603 		goto bad;
1604 
1605 	rc = next_entry(buf, fp, sizeof buf);
1606 	if (rc)
1607 		goto bad;
1608 
1609 	len = le32_to_cpu(buf[0]);
1610 	catdatum->value = le32_to_cpu(buf[1]);
1611 	catdatum->isalias = le32_to_cpu(buf[2]);
1612 
1613 	rc = -ENOMEM;
1614 	key = kmalloc(len + 1, GFP_ATOMIC);
1615 	if (!key)
1616 		goto bad;
1617 	rc = next_entry(key, fp, len);
1618 	if (rc)
1619 		goto bad;
1620 	key[len] = '\0';
1621 
1622 	rc = hashtab_insert(h, key, catdatum);
1623 	if (rc)
1624 		goto bad;
1625 	return 0;
1626 bad:
1627 	cat_destroy(key, catdatum, NULL);
1628 	return rc;
1629 }
1630 
1631 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1632 {
1633 	common_read,
1634 	class_read,
1635 	role_read,
1636 	type_read,
1637 	user_read,
1638 	cond_read_bool,
1639 	sens_read,
1640 	cat_read,
1641 };
1642 
1643 static int user_bounds_sanity_check(void *key, void *datum, void *datap)
1644 {
1645 	struct user_datum *upper, *user;
1646 	struct policydb *p = datap;
1647 	int depth = 0;
1648 
1649 	upper = user = datum;
1650 	while (upper->bounds) {
1651 		struct ebitmap_node *node;
1652 		unsigned long bit;
1653 
1654 		if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1655 			printk(KERN_ERR "SELinux: user %s: "
1656 			       "too deep or looped boundary",
1657 			       (char *) key);
1658 			return -EINVAL;
1659 		}
1660 
1661 		upper = p->user_val_to_struct[upper->bounds - 1];
1662 		ebitmap_for_each_positive_bit(&user->roles, node, bit) {
1663 			if (ebitmap_get_bit(&upper->roles, bit))
1664 				continue;
1665 
1666 			printk(KERN_ERR
1667 			       "SELinux: boundary violated policy: "
1668 			       "user=%s role=%s bounds=%s\n",
1669 			       sym_name(p, SYM_USERS, user->value - 1),
1670 			       sym_name(p, SYM_ROLES, bit),
1671 			       sym_name(p, SYM_USERS, upper->value - 1));
1672 
1673 			return -EINVAL;
1674 		}
1675 	}
1676 
1677 	return 0;
1678 }
1679 
1680 static int role_bounds_sanity_check(void *key, void *datum, void *datap)
1681 {
1682 	struct role_datum *upper, *role;
1683 	struct policydb *p = datap;
1684 	int depth = 0;
1685 
1686 	upper = role = datum;
1687 	while (upper->bounds) {
1688 		struct ebitmap_node *node;
1689 		unsigned long bit;
1690 
1691 		if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1692 			printk(KERN_ERR "SELinux: role %s: "
1693 			       "too deep or looped bounds\n",
1694 			       (char *) key);
1695 			return -EINVAL;
1696 		}
1697 
1698 		upper = p->role_val_to_struct[upper->bounds - 1];
1699 		ebitmap_for_each_positive_bit(&role->types, node, bit) {
1700 			if (ebitmap_get_bit(&upper->types, bit))
1701 				continue;
1702 
1703 			printk(KERN_ERR
1704 			       "SELinux: boundary violated policy: "
1705 			       "role=%s type=%s bounds=%s\n",
1706 			       sym_name(p, SYM_ROLES, role->value - 1),
1707 			       sym_name(p, SYM_TYPES, bit),
1708 			       sym_name(p, SYM_ROLES, upper->value - 1));
1709 
1710 			return -EINVAL;
1711 		}
1712 	}
1713 
1714 	return 0;
1715 }
1716 
1717 static int type_bounds_sanity_check(void *key, void *datum, void *datap)
1718 {
1719 	struct type_datum *upper;
1720 	struct policydb *p = datap;
1721 	int depth = 0;
1722 
1723 	upper = datum;
1724 	while (upper->bounds) {
1725 		if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1726 			printk(KERN_ERR "SELinux: type %s: "
1727 			       "too deep or looped boundary\n",
1728 			       (char *) key);
1729 			return -EINVAL;
1730 		}
1731 
1732 		upper = flex_array_get_ptr(p->type_val_to_struct_array,
1733 					   upper->bounds - 1);
1734 		BUG_ON(!upper);
1735 
1736 		if (upper->attribute) {
1737 			printk(KERN_ERR "SELinux: type %s: "
1738 			       "bounded by attribute %s",
1739 			       (char *) key,
1740 			       sym_name(p, SYM_TYPES, upper->value - 1));
1741 			return -EINVAL;
1742 		}
1743 	}
1744 
1745 	return 0;
1746 }
1747 
1748 static int policydb_bounds_sanity_check(struct policydb *p)
1749 {
1750 	int rc;
1751 
1752 	if (p->policyvers < POLICYDB_VERSION_BOUNDARY)
1753 		return 0;
1754 
1755 	rc = hashtab_map(p->p_users.table,
1756 			 user_bounds_sanity_check, p);
1757 	if (rc)
1758 		return rc;
1759 
1760 	rc = hashtab_map(p->p_roles.table,
1761 			 role_bounds_sanity_check, p);
1762 	if (rc)
1763 		return rc;
1764 
1765 	rc = hashtab_map(p->p_types.table,
1766 			 type_bounds_sanity_check, p);
1767 	if (rc)
1768 		return rc;
1769 
1770 	return 0;
1771 }
1772 
1773 u16 string_to_security_class(struct policydb *p, const char *name)
1774 {
1775 	struct class_datum *cladatum;
1776 
1777 	cladatum = hashtab_search(p->p_classes.table, name);
1778 	if (!cladatum)
1779 		return 0;
1780 
1781 	return cladatum->value;
1782 }
1783 
1784 u32 string_to_av_perm(struct policydb *p, u16 tclass, const char *name)
1785 {
1786 	struct class_datum *cladatum;
1787 	struct perm_datum *perdatum = NULL;
1788 	struct common_datum *comdatum;
1789 
1790 	if (!tclass || tclass > p->p_classes.nprim)
1791 		return 0;
1792 
1793 	cladatum = p->class_val_to_struct[tclass-1];
1794 	comdatum = cladatum->comdatum;
1795 	if (comdatum)
1796 		perdatum = hashtab_search(comdatum->permissions.table,
1797 					  name);
1798 	if (!perdatum)
1799 		perdatum = hashtab_search(cladatum->permissions.table,
1800 					  name);
1801 	if (!perdatum)
1802 		return 0;
1803 
1804 	return 1U << (perdatum->value-1);
1805 }
1806 
1807 static int range_read(struct policydb *p, void *fp)
1808 {
1809 	struct range_trans *rt = NULL;
1810 	struct mls_range *r = NULL;
1811 	int i, rc;
1812 	__le32 buf[2];
1813 	u32 nel;
1814 
1815 	if (p->policyvers < POLICYDB_VERSION_MLS)
1816 		return 0;
1817 
1818 	rc = next_entry(buf, fp, sizeof(u32));
1819 	if (rc)
1820 		goto out;
1821 
1822 	nel = le32_to_cpu(buf[0]);
1823 	for (i = 0; i < nel; i++) {
1824 		rc = -ENOMEM;
1825 		rt = kzalloc(sizeof(*rt), GFP_KERNEL);
1826 		if (!rt)
1827 			goto out;
1828 
1829 		rc = next_entry(buf, fp, (sizeof(u32) * 2));
1830 		if (rc)
1831 			goto out;
1832 
1833 		rt->source_type = le32_to_cpu(buf[0]);
1834 		rt->target_type = le32_to_cpu(buf[1]);
1835 		if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
1836 			rc = next_entry(buf, fp, sizeof(u32));
1837 			if (rc)
1838 				goto out;
1839 			rt->target_class = le32_to_cpu(buf[0]);
1840 		} else
1841 			rt->target_class = p->process_class;
1842 
1843 		rc = -EINVAL;
1844 		if (!policydb_type_isvalid(p, rt->source_type) ||
1845 		    !policydb_type_isvalid(p, rt->target_type) ||
1846 		    !policydb_class_isvalid(p, rt->target_class))
1847 			goto out;
1848 
1849 		rc = -ENOMEM;
1850 		r = kzalloc(sizeof(*r), GFP_KERNEL);
1851 		if (!r)
1852 			goto out;
1853 
1854 		rc = mls_read_range_helper(r, fp);
1855 		if (rc)
1856 			goto out;
1857 
1858 		rc = -EINVAL;
1859 		if (!mls_range_isvalid(p, r)) {
1860 			printk(KERN_WARNING "SELinux:  rangetrans:  invalid range\n");
1861 			goto out;
1862 		}
1863 
1864 		rc = hashtab_insert(p->range_tr, rt, r);
1865 		if (rc)
1866 			goto out;
1867 
1868 		rt = NULL;
1869 		r = NULL;
1870 	}
1871 	hash_eval(p->range_tr, "rangetr");
1872 	rc = 0;
1873 out:
1874 	kfree(rt);
1875 	kfree(r);
1876 	return rc;
1877 }
1878 
1879 static int filename_trans_read(struct policydb *p, void *fp)
1880 {
1881 	struct filename_trans *ft;
1882 	struct filename_trans_datum *otype;
1883 	char *name;
1884 	u32 nel, len;
1885 	__le32 buf[4];
1886 	int rc, i;
1887 
1888 	if (p->policyvers < POLICYDB_VERSION_FILENAME_TRANS)
1889 		return 0;
1890 
1891 	rc = next_entry(buf, fp, sizeof(u32));
1892 	if (rc)
1893 		return rc;
1894 	nel = le32_to_cpu(buf[0]);
1895 
1896 	for (i = 0; i < nel; i++) {
1897 		ft = NULL;
1898 		otype = NULL;
1899 		name = NULL;
1900 
1901 		rc = -ENOMEM;
1902 		ft = kzalloc(sizeof(*ft), GFP_KERNEL);
1903 		if (!ft)
1904 			goto out;
1905 
1906 		rc = -ENOMEM;
1907 		otype = kmalloc(sizeof(*otype), GFP_KERNEL);
1908 		if (!otype)
1909 			goto out;
1910 
1911 		/* length of the path component string */
1912 		rc = next_entry(buf, fp, sizeof(u32));
1913 		if (rc)
1914 			goto out;
1915 		len = le32_to_cpu(buf[0]);
1916 
1917 		rc = -ENOMEM;
1918 		name = kmalloc(len + 1, GFP_KERNEL);
1919 		if (!name)
1920 			goto out;
1921 
1922 		ft->name = name;
1923 
1924 		/* path component string */
1925 		rc = next_entry(name, fp, len);
1926 		if (rc)
1927 			goto out;
1928 		name[len] = 0;
1929 
1930 		rc = next_entry(buf, fp, sizeof(u32) * 4);
1931 		if (rc)
1932 			goto out;
1933 
1934 		ft->stype = le32_to_cpu(buf[0]);
1935 		ft->ttype = le32_to_cpu(buf[1]);
1936 		ft->tclass = le32_to_cpu(buf[2]);
1937 
1938 		otype->otype = le32_to_cpu(buf[3]);
1939 
1940 		rc = ebitmap_set_bit(&p->filename_trans_ttypes, ft->ttype, 1);
1941 		if (rc)
1942 			goto out;
1943 
1944 		hashtab_insert(p->filename_trans, ft, otype);
1945 	}
1946 	hash_eval(p->filename_trans, "filenametr");
1947 	return 0;
1948 out:
1949 	kfree(ft);
1950 	kfree(name);
1951 	kfree(otype);
1952 
1953 	return rc;
1954 }
1955 
1956 static int genfs_read(struct policydb *p, void *fp)
1957 {
1958 	int i, j, rc;
1959 	u32 nel, nel2, len, len2;
1960 	__le32 buf[1];
1961 	struct ocontext *l, *c;
1962 	struct ocontext *newc = NULL;
1963 	struct genfs *genfs_p, *genfs;
1964 	struct genfs *newgenfs = NULL;
1965 
1966 	rc = next_entry(buf, fp, sizeof(u32));
1967 	if (rc)
1968 		goto out;
1969 	nel = le32_to_cpu(buf[0]);
1970 
1971 	for (i = 0; i < nel; i++) {
1972 		rc = next_entry(buf, fp, sizeof(u32));
1973 		if (rc)
1974 			goto out;
1975 		len = le32_to_cpu(buf[0]);
1976 
1977 		rc = -ENOMEM;
1978 		newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
1979 		if (!newgenfs)
1980 			goto out;
1981 
1982 		rc = -ENOMEM;
1983 		newgenfs->fstype = kmalloc(len + 1, GFP_KERNEL);
1984 		if (!newgenfs->fstype)
1985 			goto out;
1986 
1987 		rc = next_entry(newgenfs->fstype, fp, len);
1988 		if (rc)
1989 			goto out;
1990 
1991 		newgenfs->fstype[len] = 0;
1992 
1993 		for (genfs_p = NULL, genfs = p->genfs; genfs;
1994 		     genfs_p = genfs, genfs = genfs->next) {
1995 			rc = -EINVAL;
1996 			if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1997 				printk(KERN_ERR "SELinux:  dup genfs fstype %s\n",
1998 				       newgenfs->fstype);
1999 				goto out;
2000 			}
2001 			if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
2002 				break;
2003 		}
2004 		newgenfs->next = genfs;
2005 		if (genfs_p)
2006 			genfs_p->next = newgenfs;
2007 		else
2008 			p->genfs = newgenfs;
2009 		genfs = newgenfs;
2010 		newgenfs = NULL;
2011 
2012 		rc = next_entry(buf, fp, sizeof(u32));
2013 		if (rc)
2014 			goto out;
2015 
2016 		nel2 = le32_to_cpu(buf[0]);
2017 		for (j = 0; j < nel2; j++) {
2018 			rc = next_entry(buf, fp, sizeof(u32));
2019 			if (rc)
2020 				goto out;
2021 			len = le32_to_cpu(buf[0]);
2022 
2023 			rc = -ENOMEM;
2024 			newc = kzalloc(sizeof(*newc), GFP_KERNEL);
2025 			if (!newc)
2026 				goto out;
2027 
2028 			rc = -ENOMEM;
2029 			newc->u.name = kmalloc(len + 1, GFP_KERNEL);
2030 			if (!newc->u.name)
2031 				goto out;
2032 
2033 			rc = next_entry(newc->u.name, fp, len);
2034 			if (rc)
2035 				goto out;
2036 			newc->u.name[len] = 0;
2037 
2038 			rc = next_entry(buf, fp, sizeof(u32));
2039 			if (rc)
2040 				goto out;
2041 
2042 			newc->v.sclass = le32_to_cpu(buf[0]);
2043 			rc = context_read_and_validate(&newc->context[0], p, fp);
2044 			if (rc)
2045 				goto out;
2046 
2047 			for (l = NULL, c = genfs->head; c;
2048 			     l = c, c = c->next) {
2049 				rc = -EINVAL;
2050 				if (!strcmp(newc->u.name, c->u.name) &&
2051 				    (!c->v.sclass || !newc->v.sclass ||
2052 				     newc->v.sclass == c->v.sclass)) {
2053 					printk(KERN_ERR "SELinux:  dup genfs entry (%s,%s)\n",
2054 					       genfs->fstype, c->u.name);
2055 					goto out;
2056 				}
2057 				len = strlen(newc->u.name);
2058 				len2 = strlen(c->u.name);
2059 				if (len > len2)
2060 					break;
2061 			}
2062 
2063 			newc->next = c;
2064 			if (l)
2065 				l->next = newc;
2066 			else
2067 				genfs->head = newc;
2068 			newc = NULL;
2069 		}
2070 	}
2071 	rc = 0;
2072 out:
2073 	if (newgenfs)
2074 		kfree(newgenfs->fstype);
2075 	kfree(newgenfs);
2076 	ocontext_destroy(newc, OCON_FSUSE);
2077 
2078 	return rc;
2079 }
2080 
2081 static int ocontext_read(struct policydb *p, struct policydb_compat_info *info,
2082 			 void *fp)
2083 {
2084 	int i, j, rc;
2085 	u32 nel, len;
2086 	__le32 buf[3];
2087 	struct ocontext *l, *c;
2088 	u32 nodebuf[8];
2089 
2090 	for (i = 0; i < info->ocon_num; i++) {
2091 		rc = next_entry(buf, fp, sizeof(u32));
2092 		if (rc)
2093 			goto out;
2094 		nel = le32_to_cpu(buf[0]);
2095 
2096 		l = NULL;
2097 		for (j = 0; j < nel; j++) {
2098 			rc = -ENOMEM;
2099 			c = kzalloc(sizeof(*c), GFP_KERNEL);
2100 			if (!c)
2101 				goto out;
2102 			if (l)
2103 				l->next = c;
2104 			else
2105 				p->ocontexts[i] = c;
2106 			l = c;
2107 
2108 			switch (i) {
2109 			case OCON_ISID:
2110 				rc = next_entry(buf, fp, sizeof(u32));
2111 				if (rc)
2112 					goto out;
2113 
2114 				c->sid[0] = le32_to_cpu(buf[0]);
2115 				rc = context_read_and_validate(&c->context[0], p, fp);
2116 				if (rc)
2117 					goto out;
2118 				break;
2119 			case OCON_FS:
2120 			case OCON_NETIF:
2121 				rc = next_entry(buf, fp, sizeof(u32));
2122 				if (rc)
2123 					goto out;
2124 				len = le32_to_cpu(buf[0]);
2125 
2126 				rc = -ENOMEM;
2127 				c->u.name = kmalloc(len + 1, GFP_KERNEL);
2128 				if (!c->u.name)
2129 					goto out;
2130 
2131 				rc = next_entry(c->u.name, fp, len);
2132 				if (rc)
2133 					goto out;
2134 
2135 				c->u.name[len] = 0;
2136 				rc = context_read_and_validate(&c->context[0], p, fp);
2137 				if (rc)
2138 					goto out;
2139 				rc = context_read_and_validate(&c->context[1], p, fp);
2140 				if (rc)
2141 					goto out;
2142 				break;
2143 			case OCON_PORT:
2144 				rc = next_entry(buf, fp, sizeof(u32)*3);
2145 				if (rc)
2146 					goto out;
2147 				c->u.port.protocol = le32_to_cpu(buf[0]);
2148 				c->u.port.low_port = le32_to_cpu(buf[1]);
2149 				c->u.port.high_port = le32_to_cpu(buf[2]);
2150 				rc = context_read_and_validate(&c->context[0], p, fp);
2151 				if (rc)
2152 					goto out;
2153 				break;
2154 			case OCON_NODE:
2155 				rc = next_entry(nodebuf, fp, sizeof(u32) * 2);
2156 				if (rc)
2157 					goto out;
2158 				c->u.node.addr = nodebuf[0]; /* network order */
2159 				c->u.node.mask = nodebuf[1]; /* network order */
2160 				rc = context_read_and_validate(&c->context[0], p, fp);
2161 				if (rc)
2162 					goto out;
2163 				break;
2164 			case OCON_FSUSE:
2165 				rc = next_entry(buf, fp, sizeof(u32)*2);
2166 				if (rc)
2167 					goto out;
2168 
2169 				rc = -EINVAL;
2170 				c->v.behavior = le32_to_cpu(buf[0]);
2171 				/* Determined at runtime, not in policy DB. */
2172 				if (c->v.behavior == SECURITY_FS_USE_MNTPOINT)
2173 					goto out;
2174 				if (c->v.behavior > SECURITY_FS_USE_MAX)
2175 					goto out;
2176 
2177 				rc = -ENOMEM;
2178 				len = le32_to_cpu(buf[1]);
2179 				c->u.name = kmalloc(len + 1, GFP_KERNEL);
2180 				if (!c->u.name)
2181 					goto out;
2182 
2183 				rc = next_entry(c->u.name, fp, len);
2184 				if (rc)
2185 					goto out;
2186 				c->u.name[len] = 0;
2187 				rc = context_read_and_validate(&c->context[0], p, fp);
2188 				if (rc)
2189 					goto out;
2190 				break;
2191 			case OCON_NODE6: {
2192 				int k;
2193 
2194 				rc = next_entry(nodebuf, fp, sizeof(u32) * 8);
2195 				if (rc)
2196 					goto out;
2197 				for (k = 0; k < 4; k++)
2198 					c->u.node6.addr[k] = nodebuf[k];
2199 				for (k = 0; k < 4; k++)
2200 					c->u.node6.mask[k] = nodebuf[k+4];
2201 				rc = context_read_and_validate(&c->context[0], p, fp);
2202 				if (rc)
2203 					goto out;
2204 				break;
2205 			}
2206 			}
2207 		}
2208 	}
2209 	rc = 0;
2210 out:
2211 	return rc;
2212 }
2213 
2214 /*
2215  * Read the configuration data from a policy database binary
2216  * representation file into a policy database structure.
2217  */
2218 int policydb_read(struct policydb *p, void *fp)
2219 {
2220 	struct role_allow *ra, *lra;
2221 	struct role_trans *tr, *ltr;
2222 	int i, j, rc;
2223 	__le32 buf[4];
2224 	u32 len, nprim, nel;
2225 
2226 	char *policydb_str;
2227 	struct policydb_compat_info *info;
2228 
2229 	rc = policydb_init(p);
2230 	if (rc)
2231 		return rc;
2232 
2233 	/* Read the magic number and string length. */
2234 	rc = next_entry(buf, fp, sizeof(u32) * 2);
2235 	if (rc)
2236 		goto bad;
2237 
2238 	rc = -EINVAL;
2239 	if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
2240 		printk(KERN_ERR "SELinux:  policydb magic number 0x%x does "
2241 		       "not match expected magic number 0x%x\n",
2242 		       le32_to_cpu(buf[0]), POLICYDB_MAGIC);
2243 		goto bad;
2244 	}
2245 
2246 	rc = -EINVAL;
2247 	len = le32_to_cpu(buf[1]);
2248 	if (len != strlen(POLICYDB_STRING)) {
2249 		printk(KERN_ERR "SELinux:  policydb string length %d does not "
2250 		       "match expected length %Zu\n",
2251 		       len, strlen(POLICYDB_STRING));
2252 		goto bad;
2253 	}
2254 
2255 	rc = -ENOMEM;
2256 	policydb_str = kmalloc(len + 1, GFP_KERNEL);
2257 	if (!policydb_str) {
2258 		printk(KERN_ERR "SELinux:  unable to allocate memory for policydb "
2259 		       "string of length %d\n", len);
2260 		goto bad;
2261 	}
2262 
2263 	rc = next_entry(policydb_str, fp, len);
2264 	if (rc) {
2265 		printk(KERN_ERR "SELinux:  truncated policydb string identifier\n");
2266 		kfree(policydb_str);
2267 		goto bad;
2268 	}
2269 
2270 	rc = -EINVAL;
2271 	policydb_str[len] = '\0';
2272 	if (strcmp(policydb_str, POLICYDB_STRING)) {
2273 		printk(KERN_ERR "SELinux:  policydb string %s does not match "
2274 		       "my string %s\n", policydb_str, POLICYDB_STRING);
2275 		kfree(policydb_str);
2276 		goto bad;
2277 	}
2278 	/* Done with policydb_str. */
2279 	kfree(policydb_str);
2280 	policydb_str = NULL;
2281 
2282 	/* Read the version and table sizes. */
2283 	rc = next_entry(buf, fp, sizeof(u32)*4);
2284 	if (rc)
2285 		goto bad;
2286 
2287 	rc = -EINVAL;
2288 	p->policyvers = le32_to_cpu(buf[0]);
2289 	if (p->policyvers < POLICYDB_VERSION_MIN ||
2290 	    p->policyvers > POLICYDB_VERSION_MAX) {
2291 		printk(KERN_ERR "SELinux:  policydb version %d does not match "
2292 		       "my version range %d-%d\n",
2293 		       le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
2294 		goto bad;
2295 	}
2296 
2297 	if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
2298 		p->mls_enabled = 1;
2299 
2300 		rc = -EINVAL;
2301 		if (p->policyvers < POLICYDB_VERSION_MLS) {
2302 			printk(KERN_ERR "SELinux: security policydb version %d "
2303 				"(MLS) not backwards compatible\n",
2304 				p->policyvers);
2305 			goto bad;
2306 		}
2307 	}
2308 	p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN);
2309 	p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN);
2310 
2311 	if (p->policyvers >= POLICYDB_VERSION_POLCAP) {
2312 		rc = ebitmap_read(&p->policycaps, fp);
2313 		if (rc)
2314 			goto bad;
2315 	}
2316 
2317 	if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) {
2318 		rc = ebitmap_read(&p->permissive_map, fp);
2319 		if (rc)
2320 			goto bad;
2321 	}
2322 
2323 	rc = -EINVAL;
2324 	info = policydb_lookup_compat(p->policyvers);
2325 	if (!info) {
2326 		printk(KERN_ERR "SELinux:  unable to find policy compat info "
2327 		       "for version %d\n", p->policyvers);
2328 		goto bad;
2329 	}
2330 
2331 	rc = -EINVAL;
2332 	if (le32_to_cpu(buf[2]) != info->sym_num ||
2333 		le32_to_cpu(buf[3]) != info->ocon_num) {
2334 		printk(KERN_ERR "SELinux:  policydb table sizes (%d,%d) do "
2335 		       "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
2336 			le32_to_cpu(buf[3]),
2337 		       info->sym_num, info->ocon_num);
2338 		goto bad;
2339 	}
2340 
2341 	for (i = 0; i < info->sym_num; i++) {
2342 		rc = next_entry(buf, fp, sizeof(u32)*2);
2343 		if (rc)
2344 			goto bad;
2345 		nprim = le32_to_cpu(buf[0]);
2346 		nel = le32_to_cpu(buf[1]);
2347 		for (j = 0; j < nel; j++) {
2348 			rc = read_f[i](p, p->symtab[i].table, fp);
2349 			if (rc)
2350 				goto bad;
2351 		}
2352 
2353 		p->symtab[i].nprim = nprim;
2354 	}
2355 
2356 	rc = -EINVAL;
2357 	p->process_class = string_to_security_class(p, "process");
2358 	if (!p->process_class)
2359 		goto bad;
2360 
2361 	rc = avtab_read(&p->te_avtab, fp, p);
2362 	if (rc)
2363 		goto bad;
2364 
2365 	if (p->policyvers >= POLICYDB_VERSION_BOOL) {
2366 		rc = cond_read_list(p, fp);
2367 		if (rc)
2368 			goto bad;
2369 	}
2370 
2371 	rc = next_entry(buf, fp, sizeof(u32));
2372 	if (rc)
2373 		goto bad;
2374 	nel = le32_to_cpu(buf[0]);
2375 	ltr = NULL;
2376 	for (i = 0; i < nel; i++) {
2377 		rc = -ENOMEM;
2378 		tr = kzalloc(sizeof(*tr), GFP_KERNEL);
2379 		if (!tr)
2380 			goto bad;
2381 		if (ltr)
2382 			ltr->next = tr;
2383 		else
2384 			p->role_tr = tr;
2385 		rc = next_entry(buf, fp, sizeof(u32)*3);
2386 		if (rc)
2387 			goto bad;
2388 
2389 		rc = -EINVAL;
2390 		tr->role = le32_to_cpu(buf[0]);
2391 		tr->type = le32_to_cpu(buf[1]);
2392 		tr->new_role = le32_to_cpu(buf[2]);
2393 		if (p->policyvers >= POLICYDB_VERSION_ROLETRANS) {
2394 			rc = next_entry(buf, fp, sizeof(u32));
2395 			if (rc)
2396 				goto bad;
2397 			tr->tclass = le32_to_cpu(buf[0]);
2398 		} else
2399 			tr->tclass = p->process_class;
2400 
2401 		if (!policydb_role_isvalid(p, tr->role) ||
2402 		    !policydb_type_isvalid(p, tr->type) ||
2403 		    !policydb_class_isvalid(p, tr->tclass) ||
2404 		    !policydb_role_isvalid(p, tr->new_role))
2405 			goto bad;
2406 		ltr = tr;
2407 	}
2408 
2409 	rc = next_entry(buf, fp, sizeof(u32));
2410 	if (rc)
2411 		goto bad;
2412 	nel = le32_to_cpu(buf[0]);
2413 	lra = NULL;
2414 	for (i = 0; i < nel; i++) {
2415 		rc = -ENOMEM;
2416 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
2417 		if (!ra)
2418 			goto bad;
2419 		if (lra)
2420 			lra->next = ra;
2421 		else
2422 			p->role_allow = ra;
2423 		rc = next_entry(buf, fp, sizeof(u32)*2);
2424 		if (rc)
2425 			goto bad;
2426 
2427 		rc = -EINVAL;
2428 		ra->role = le32_to_cpu(buf[0]);
2429 		ra->new_role = le32_to_cpu(buf[1]);
2430 		if (!policydb_role_isvalid(p, ra->role) ||
2431 		    !policydb_role_isvalid(p, ra->new_role))
2432 			goto bad;
2433 		lra = ra;
2434 	}
2435 
2436 	rc = filename_trans_read(p, fp);
2437 	if (rc)
2438 		goto bad;
2439 
2440 	rc = policydb_index(p);
2441 	if (rc)
2442 		goto bad;
2443 
2444 	rc = -EINVAL;
2445 	p->process_trans_perms = string_to_av_perm(p, p->process_class, "transition");
2446 	p->process_trans_perms |= string_to_av_perm(p, p->process_class, "dyntransition");
2447 	if (!p->process_trans_perms)
2448 		goto bad;
2449 
2450 	rc = ocontext_read(p, info, fp);
2451 	if (rc)
2452 		goto bad;
2453 
2454 	rc = genfs_read(p, fp);
2455 	if (rc)
2456 		goto bad;
2457 
2458 	rc = range_read(p, fp);
2459 	if (rc)
2460 		goto bad;
2461 
2462 	rc = -ENOMEM;
2463 	p->type_attr_map_array = flex_array_alloc(sizeof(struct ebitmap),
2464 						  p->p_types.nprim,
2465 						  GFP_KERNEL | __GFP_ZERO);
2466 	if (!p->type_attr_map_array)
2467 		goto bad;
2468 
2469 	/* preallocate so we don't have to worry about the put ever failing */
2470 	rc = flex_array_prealloc(p->type_attr_map_array, 0, p->p_types.nprim,
2471 				 GFP_KERNEL | __GFP_ZERO);
2472 	if (rc)
2473 		goto bad;
2474 
2475 	for (i = 0; i < p->p_types.nprim; i++) {
2476 		struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
2477 
2478 		BUG_ON(!e);
2479 		ebitmap_init(e);
2480 		if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
2481 			rc = ebitmap_read(e, fp);
2482 			if (rc)
2483 				goto bad;
2484 		}
2485 		/* add the type itself as the degenerate case */
2486 		rc = ebitmap_set_bit(e, i, 1);
2487 		if (rc)
2488 			goto bad;
2489 	}
2490 
2491 	rc = policydb_bounds_sanity_check(p);
2492 	if (rc)
2493 		goto bad;
2494 
2495 	rc = 0;
2496 out:
2497 	return rc;
2498 bad:
2499 	policydb_destroy(p);
2500 	goto out;
2501 }
2502 
2503 /*
2504  * Write a MLS level structure to a policydb binary
2505  * representation file.
2506  */
2507 static int mls_write_level(struct mls_level *l, void *fp)
2508 {
2509 	__le32 buf[1];
2510 	int rc;
2511 
2512 	buf[0] = cpu_to_le32(l->sens);
2513 	rc = put_entry(buf, sizeof(u32), 1, fp);
2514 	if (rc)
2515 		return rc;
2516 
2517 	rc = ebitmap_write(&l->cat, fp);
2518 	if (rc)
2519 		return rc;
2520 
2521 	return 0;
2522 }
2523 
2524 /*
2525  * Write a MLS range structure to a policydb binary
2526  * representation file.
2527  */
2528 static int mls_write_range_helper(struct mls_range *r, void *fp)
2529 {
2530 	__le32 buf[3];
2531 	size_t items;
2532 	int rc, eq;
2533 
2534 	eq = mls_level_eq(&r->level[1], &r->level[0]);
2535 
2536 	if (eq)
2537 		items = 2;
2538 	else
2539 		items = 3;
2540 	buf[0] = cpu_to_le32(items-1);
2541 	buf[1] = cpu_to_le32(r->level[0].sens);
2542 	if (!eq)
2543 		buf[2] = cpu_to_le32(r->level[1].sens);
2544 
2545 	BUG_ON(items > (sizeof(buf)/sizeof(buf[0])));
2546 
2547 	rc = put_entry(buf, sizeof(u32), items, fp);
2548 	if (rc)
2549 		return rc;
2550 
2551 	rc = ebitmap_write(&r->level[0].cat, fp);
2552 	if (rc)
2553 		return rc;
2554 	if (!eq) {
2555 		rc = ebitmap_write(&r->level[1].cat, fp);
2556 		if (rc)
2557 			return rc;
2558 	}
2559 
2560 	return 0;
2561 }
2562 
2563 static int sens_write(void *vkey, void *datum, void *ptr)
2564 {
2565 	char *key = vkey;
2566 	struct level_datum *levdatum = datum;
2567 	struct policy_data *pd = ptr;
2568 	void *fp = pd->fp;
2569 	__le32 buf[2];
2570 	size_t len;
2571 	int rc;
2572 
2573 	len = strlen(key);
2574 	buf[0] = cpu_to_le32(len);
2575 	buf[1] = cpu_to_le32(levdatum->isalias);
2576 	rc = put_entry(buf, sizeof(u32), 2, fp);
2577 	if (rc)
2578 		return rc;
2579 
2580 	rc = put_entry(key, 1, len, fp);
2581 	if (rc)
2582 		return rc;
2583 
2584 	rc = mls_write_level(levdatum->level, fp);
2585 	if (rc)
2586 		return rc;
2587 
2588 	return 0;
2589 }
2590 
2591 static int cat_write(void *vkey, void *datum, void *ptr)
2592 {
2593 	char *key = vkey;
2594 	struct cat_datum *catdatum = datum;
2595 	struct policy_data *pd = ptr;
2596 	void *fp = pd->fp;
2597 	__le32 buf[3];
2598 	size_t len;
2599 	int rc;
2600 
2601 	len = strlen(key);
2602 	buf[0] = cpu_to_le32(len);
2603 	buf[1] = cpu_to_le32(catdatum->value);
2604 	buf[2] = cpu_to_le32(catdatum->isalias);
2605 	rc = put_entry(buf, sizeof(u32), 3, fp);
2606 	if (rc)
2607 		return rc;
2608 
2609 	rc = put_entry(key, 1, len, fp);
2610 	if (rc)
2611 		return rc;
2612 
2613 	return 0;
2614 }
2615 
2616 static int role_trans_write(struct policydb *p, void *fp)
2617 {
2618 	struct role_trans *r = p->role_tr;
2619 	struct role_trans *tr;
2620 	u32 buf[3];
2621 	size_t nel;
2622 	int rc;
2623 
2624 	nel = 0;
2625 	for (tr = r; tr; tr = tr->next)
2626 		nel++;
2627 	buf[0] = cpu_to_le32(nel);
2628 	rc = put_entry(buf, sizeof(u32), 1, fp);
2629 	if (rc)
2630 		return rc;
2631 	for (tr = r; tr; tr = tr->next) {
2632 		buf[0] = cpu_to_le32(tr->role);
2633 		buf[1] = cpu_to_le32(tr->type);
2634 		buf[2] = cpu_to_le32(tr->new_role);
2635 		rc = put_entry(buf, sizeof(u32), 3, fp);
2636 		if (rc)
2637 			return rc;
2638 		if (p->policyvers >= POLICYDB_VERSION_ROLETRANS) {
2639 			buf[0] = cpu_to_le32(tr->tclass);
2640 			rc = put_entry(buf, sizeof(u32), 1, fp);
2641 			if (rc)
2642 				return rc;
2643 		}
2644 	}
2645 
2646 	return 0;
2647 }
2648 
2649 static int role_allow_write(struct role_allow *r, void *fp)
2650 {
2651 	struct role_allow *ra;
2652 	u32 buf[2];
2653 	size_t nel;
2654 	int rc;
2655 
2656 	nel = 0;
2657 	for (ra = r; ra; ra = ra->next)
2658 		nel++;
2659 	buf[0] = cpu_to_le32(nel);
2660 	rc = put_entry(buf, sizeof(u32), 1, fp);
2661 	if (rc)
2662 		return rc;
2663 	for (ra = r; ra; ra = ra->next) {
2664 		buf[0] = cpu_to_le32(ra->role);
2665 		buf[1] = cpu_to_le32(ra->new_role);
2666 		rc = put_entry(buf, sizeof(u32), 2, fp);
2667 		if (rc)
2668 			return rc;
2669 	}
2670 	return 0;
2671 }
2672 
2673 /*
2674  * Write a security context structure
2675  * to a policydb binary representation file.
2676  */
2677 static int context_write(struct policydb *p, struct context *c,
2678 			 void *fp)
2679 {
2680 	int rc;
2681 	__le32 buf[3];
2682 
2683 	buf[0] = cpu_to_le32(c->user);
2684 	buf[1] = cpu_to_le32(c->role);
2685 	buf[2] = cpu_to_le32(c->type);
2686 
2687 	rc = put_entry(buf, sizeof(u32), 3, fp);
2688 	if (rc)
2689 		return rc;
2690 
2691 	rc = mls_write_range_helper(&c->range, fp);
2692 	if (rc)
2693 		return rc;
2694 
2695 	return 0;
2696 }
2697 
2698 /*
2699  * The following *_write functions are used to
2700  * write the symbol data to a policy database
2701  * binary representation file.
2702  */
2703 
2704 static int perm_write(void *vkey, void *datum, void *fp)
2705 {
2706 	char *key = vkey;
2707 	struct perm_datum *perdatum = datum;
2708 	__le32 buf[2];
2709 	size_t len;
2710 	int rc;
2711 
2712 	len = strlen(key);
2713 	buf[0] = cpu_to_le32(len);
2714 	buf[1] = cpu_to_le32(perdatum->value);
2715 	rc = put_entry(buf, sizeof(u32), 2, fp);
2716 	if (rc)
2717 		return rc;
2718 
2719 	rc = put_entry(key, 1, len, fp);
2720 	if (rc)
2721 		return rc;
2722 
2723 	return 0;
2724 }
2725 
2726 static int common_write(void *vkey, void *datum, void *ptr)
2727 {
2728 	char *key = vkey;
2729 	struct common_datum *comdatum = datum;
2730 	struct policy_data *pd = ptr;
2731 	void *fp = pd->fp;
2732 	__le32 buf[4];
2733 	size_t len;
2734 	int rc;
2735 
2736 	len = strlen(key);
2737 	buf[0] = cpu_to_le32(len);
2738 	buf[1] = cpu_to_le32(comdatum->value);
2739 	buf[2] = cpu_to_le32(comdatum->permissions.nprim);
2740 	buf[3] = cpu_to_le32(comdatum->permissions.table->nel);
2741 	rc = put_entry(buf, sizeof(u32), 4, fp);
2742 	if (rc)
2743 		return rc;
2744 
2745 	rc = put_entry(key, 1, len, fp);
2746 	if (rc)
2747 		return rc;
2748 
2749 	rc = hashtab_map(comdatum->permissions.table, perm_write, fp);
2750 	if (rc)
2751 		return rc;
2752 
2753 	return 0;
2754 }
2755 
2756 static int write_cons_helper(struct policydb *p, struct constraint_node *node,
2757 			     void *fp)
2758 {
2759 	struct constraint_node *c;
2760 	struct constraint_expr *e;
2761 	__le32 buf[3];
2762 	u32 nel;
2763 	int rc;
2764 
2765 	for (c = node; c; c = c->next) {
2766 		nel = 0;
2767 		for (e = c->expr; e; e = e->next)
2768 			nel++;
2769 		buf[0] = cpu_to_le32(c->permissions);
2770 		buf[1] = cpu_to_le32(nel);
2771 		rc = put_entry(buf, sizeof(u32), 2, fp);
2772 		if (rc)
2773 			return rc;
2774 		for (e = c->expr; e; e = e->next) {
2775 			buf[0] = cpu_to_le32(e->expr_type);
2776 			buf[1] = cpu_to_le32(e->attr);
2777 			buf[2] = cpu_to_le32(e->op);
2778 			rc = put_entry(buf, sizeof(u32), 3, fp);
2779 			if (rc)
2780 				return rc;
2781 
2782 			switch (e->expr_type) {
2783 			case CEXPR_NAMES:
2784 				rc = ebitmap_write(&e->names, fp);
2785 				if (rc)
2786 					return rc;
2787 				break;
2788 			default:
2789 				break;
2790 			}
2791 		}
2792 	}
2793 
2794 	return 0;
2795 }
2796 
2797 static int class_write(void *vkey, void *datum, void *ptr)
2798 {
2799 	char *key = vkey;
2800 	struct class_datum *cladatum = datum;
2801 	struct policy_data *pd = ptr;
2802 	void *fp = pd->fp;
2803 	struct policydb *p = pd->p;
2804 	struct constraint_node *c;
2805 	__le32 buf[6];
2806 	u32 ncons;
2807 	size_t len, len2;
2808 	int rc;
2809 
2810 	len = strlen(key);
2811 	if (cladatum->comkey)
2812 		len2 = strlen(cladatum->comkey);
2813 	else
2814 		len2 = 0;
2815 
2816 	ncons = 0;
2817 	for (c = cladatum->constraints; c; c = c->next)
2818 		ncons++;
2819 
2820 	buf[0] = cpu_to_le32(len);
2821 	buf[1] = cpu_to_le32(len2);
2822 	buf[2] = cpu_to_le32(cladatum->value);
2823 	buf[3] = cpu_to_le32(cladatum->permissions.nprim);
2824 	if (cladatum->permissions.table)
2825 		buf[4] = cpu_to_le32(cladatum->permissions.table->nel);
2826 	else
2827 		buf[4] = 0;
2828 	buf[5] = cpu_to_le32(ncons);
2829 	rc = put_entry(buf, sizeof(u32), 6, fp);
2830 	if (rc)
2831 		return rc;
2832 
2833 	rc = put_entry(key, 1, len, fp);
2834 	if (rc)
2835 		return rc;
2836 
2837 	if (cladatum->comkey) {
2838 		rc = put_entry(cladatum->comkey, 1, len2, fp);
2839 		if (rc)
2840 			return rc;
2841 	}
2842 
2843 	rc = hashtab_map(cladatum->permissions.table, perm_write, fp);
2844 	if (rc)
2845 		return rc;
2846 
2847 	rc = write_cons_helper(p, cladatum->constraints, fp);
2848 	if (rc)
2849 		return rc;
2850 
2851 	/* write out the validatetrans rule */
2852 	ncons = 0;
2853 	for (c = cladatum->validatetrans; c; c = c->next)
2854 		ncons++;
2855 
2856 	buf[0] = cpu_to_le32(ncons);
2857 	rc = put_entry(buf, sizeof(u32), 1, fp);
2858 	if (rc)
2859 		return rc;
2860 
2861 	rc = write_cons_helper(p, cladatum->validatetrans, fp);
2862 	if (rc)
2863 		return rc;
2864 
2865 	if (p->policyvers >= POLICYDB_VERSION_NEW_OBJECT_DEFAULTS) {
2866 		buf[0] = cpu_to_le32(cladatum->default_user);
2867 		buf[1] = cpu_to_le32(cladatum->default_role);
2868 		buf[2] = cpu_to_le32(cladatum->default_range);
2869 
2870 		rc = put_entry(buf, sizeof(uint32_t), 3, fp);
2871 		if (rc)
2872 			return rc;
2873 	}
2874 
2875 	if (p->policyvers >= POLICYDB_VERSION_DEFAULT_TYPE) {
2876 		buf[0] = cpu_to_le32(cladatum->default_type);
2877 		rc = put_entry(buf, sizeof(uint32_t), 1, fp);
2878 		if (rc)
2879 			return rc;
2880 	}
2881 
2882 	return 0;
2883 }
2884 
2885 static int role_write(void *vkey, void *datum, void *ptr)
2886 {
2887 	char *key = vkey;
2888 	struct role_datum *role = datum;
2889 	struct policy_data *pd = ptr;
2890 	void *fp = pd->fp;
2891 	struct policydb *p = pd->p;
2892 	__le32 buf[3];
2893 	size_t items, len;
2894 	int rc;
2895 
2896 	len = strlen(key);
2897 	items = 0;
2898 	buf[items++] = cpu_to_le32(len);
2899 	buf[items++] = cpu_to_le32(role->value);
2900 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
2901 		buf[items++] = cpu_to_le32(role->bounds);
2902 
2903 	BUG_ON(items > (sizeof(buf)/sizeof(buf[0])));
2904 
2905 	rc = put_entry(buf, sizeof(u32), items, fp);
2906 	if (rc)
2907 		return rc;
2908 
2909 	rc = put_entry(key, 1, len, fp);
2910 	if (rc)
2911 		return rc;
2912 
2913 	rc = ebitmap_write(&role->dominates, fp);
2914 	if (rc)
2915 		return rc;
2916 
2917 	rc = ebitmap_write(&role->types, fp);
2918 	if (rc)
2919 		return rc;
2920 
2921 	return 0;
2922 }
2923 
2924 static int type_write(void *vkey, void *datum, void *ptr)
2925 {
2926 	char *key = vkey;
2927 	struct type_datum *typdatum = datum;
2928 	struct policy_data *pd = ptr;
2929 	struct policydb *p = pd->p;
2930 	void *fp = pd->fp;
2931 	__le32 buf[4];
2932 	int rc;
2933 	size_t items, len;
2934 
2935 	len = strlen(key);
2936 	items = 0;
2937 	buf[items++] = cpu_to_le32(len);
2938 	buf[items++] = cpu_to_le32(typdatum->value);
2939 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
2940 		u32 properties = 0;
2941 
2942 		if (typdatum->primary)
2943 			properties |= TYPEDATUM_PROPERTY_PRIMARY;
2944 
2945 		if (typdatum->attribute)
2946 			properties |= TYPEDATUM_PROPERTY_ATTRIBUTE;
2947 
2948 		buf[items++] = cpu_to_le32(properties);
2949 		buf[items++] = cpu_to_le32(typdatum->bounds);
2950 	} else {
2951 		buf[items++] = cpu_to_le32(typdatum->primary);
2952 	}
2953 	BUG_ON(items > (sizeof(buf) / sizeof(buf[0])));
2954 	rc = put_entry(buf, sizeof(u32), items, fp);
2955 	if (rc)
2956 		return rc;
2957 
2958 	rc = put_entry(key, 1, len, fp);
2959 	if (rc)
2960 		return rc;
2961 
2962 	return 0;
2963 }
2964 
2965 static int user_write(void *vkey, void *datum, void *ptr)
2966 {
2967 	char *key = vkey;
2968 	struct user_datum *usrdatum = datum;
2969 	struct policy_data *pd = ptr;
2970 	struct policydb *p = pd->p;
2971 	void *fp = pd->fp;
2972 	__le32 buf[3];
2973 	size_t items, len;
2974 	int rc;
2975 
2976 	len = strlen(key);
2977 	items = 0;
2978 	buf[items++] = cpu_to_le32(len);
2979 	buf[items++] = cpu_to_le32(usrdatum->value);
2980 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
2981 		buf[items++] = cpu_to_le32(usrdatum->bounds);
2982 	BUG_ON(items > (sizeof(buf) / sizeof(buf[0])));
2983 	rc = put_entry(buf, sizeof(u32), items, fp);
2984 	if (rc)
2985 		return rc;
2986 
2987 	rc = put_entry(key, 1, len, fp);
2988 	if (rc)
2989 		return rc;
2990 
2991 	rc = ebitmap_write(&usrdatum->roles, fp);
2992 	if (rc)
2993 		return rc;
2994 
2995 	rc = mls_write_range_helper(&usrdatum->range, fp);
2996 	if (rc)
2997 		return rc;
2998 
2999 	rc = mls_write_level(&usrdatum->dfltlevel, fp);
3000 	if (rc)
3001 		return rc;
3002 
3003 	return 0;
3004 }
3005 
3006 static int (*write_f[SYM_NUM]) (void *key, void *datum,
3007 				void *datap) =
3008 {
3009 	common_write,
3010 	class_write,
3011 	role_write,
3012 	type_write,
3013 	user_write,
3014 	cond_write_bool,
3015 	sens_write,
3016 	cat_write,
3017 };
3018 
3019 static int ocontext_write(struct policydb *p, struct policydb_compat_info *info,
3020 			  void *fp)
3021 {
3022 	unsigned int i, j, rc;
3023 	size_t nel, len;
3024 	__le32 buf[3];
3025 	u32 nodebuf[8];
3026 	struct ocontext *c;
3027 	for (i = 0; i < info->ocon_num; i++) {
3028 		nel = 0;
3029 		for (c = p->ocontexts[i]; c; c = c->next)
3030 			nel++;
3031 		buf[0] = cpu_to_le32(nel);
3032 		rc = put_entry(buf, sizeof(u32), 1, fp);
3033 		if (rc)
3034 			return rc;
3035 		for (c = p->ocontexts[i]; c; c = c->next) {
3036 			switch (i) {
3037 			case OCON_ISID:
3038 				buf[0] = cpu_to_le32(c->sid[0]);
3039 				rc = put_entry(buf, sizeof(u32), 1, fp);
3040 				if (rc)
3041 					return rc;
3042 				rc = context_write(p, &c->context[0], fp);
3043 				if (rc)
3044 					return rc;
3045 				break;
3046 			case OCON_FS:
3047 			case OCON_NETIF:
3048 				len = strlen(c->u.name);
3049 				buf[0] = cpu_to_le32(len);
3050 				rc = put_entry(buf, sizeof(u32), 1, fp);
3051 				if (rc)
3052 					return rc;
3053 				rc = put_entry(c->u.name, 1, len, fp);
3054 				if (rc)
3055 					return rc;
3056 				rc = context_write(p, &c->context[0], fp);
3057 				if (rc)
3058 					return rc;
3059 				rc = context_write(p, &c->context[1], fp);
3060 				if (rc)
3061 					return rc;
3062 				break;
3063 			case OCON_PORT:
3064 				buf[0] = cpu_to_le32(c->u.port.protocol);
3065 				buf[1] = cpu_to_le32(c->u.port.low_port);
3066 				buf[2] = cpu_to_le32(c->u.port.high_port);
3067 				rc = put_entry(buf, sizeof(u32), 3, fp);
3068 				if (rc)
3069 					return rc;
3070 				rc = context_write(p, &c->context[0], fp);
3071 				if (rc)
3072 					return rc;
3073 				break;
3074 			case OCON_NODE:
3075 				nodebuf[0] = c->u.node.addr; /* network order */
3076 				nodebuf[1] = c->u.node.mask; /* network order */
3077 				rc = put_entry(nodebuf, sizeof(u32), 2, fp);
3078 				if (rc)
3079 					return rc;
3080 				rc = context_write(p, &c->context[0], fp);
3081 				if (rc)
3082 					return rc;
3083 				break;
3084 			case OCON_FSUSE:
3085 				buf[0] = cpu_to_le32(c->v.behavior);
3086 				len = strlen(c->u.name);
3087 				buf[1] = cpu_to_le32(len);
3088 				rc = put_entry(buf, sizeof(u32), 2, fp);
3089 				if (rc)
3090 					return rc;
3091 				rc = put_entry(c->u.name, 1, len, fp);
3092 				if (rc)
3093 					return rc;
3094 				rc = context_write(p, &c->context[0], fp);
3095 				if (rc)
3096 					return rc;
3097 				break;
3098 			case OCON_NODE6:
3099 				for (j = 0; j < 4; j++)
3100 					nodebuf[j] = c->u.node6.addr[j]; /* network order */
3101 				for (j = 0; j < 4; j++)
3102 					nodebuf[j + 4] = c->u.node6.mask[j]; /* network order */
3103 				rc = put_entry(nodebuf, sizeof(u32), 8, fp);
3104 				if (rc)
3105 					return rc;
3106 				rc = context_write(p, &c->context[0], fp);
3107 				if (rc)
3108 					return rc;
3109 				break;
3110 			}
3111 		}
3112 	}
3113 	return 0;
3114 }
3115 
3116 static int genfs_write(struct policydb *p, void *fp)
3117 {
3118 	struct genfs *genfs;
3119 	struct ocontext *c;
3120 	size_t len;
3121 	__le32 buf[1];
3122 	int rc;
3123 
3124 	len = 0;
3125 	for (genfs = p->genfs; genfs; genfs = genfs->next)
3126 		len++;
3127 	buf[0] = cpu_to_le32(len);
3128 	rc = put_entry(buf, sizeof(u32), 1, fp);
3129 	if (rc)
3130 		return rc;
3131 	for (genfs = p->genfs; genfs; genfs = genfs->next) {
3132 		len = strlen(genfs->fstype);
3133 		buf[0] = cpu_to_le32(len);
3134 		rc = put_entry(buf, sizeof(u32), 1, fp);
3135 		if (rc)
3136 			return rc;
3137 		rc = put_entry(genfs->fstype, 1, len, fp);
3138 		if (rc)
3139 			return rc;
3140 		len = 0;
3141 		for (c = genfs->head; c; c = c->next)
3142 			len++;
3143 		buf[0] = cpu_to_le32(len);
3144 		rc = put_entry(buf, sizeof(u32), 1, fp);
3145 		if (rc)
3146 			return rc;
3147 		for (c = genfs->head; c; c = c->next) {
3148 			len = strlen(c->u.name);
3149 			buf[0] = cpu_to_le32(len);
3150 			rc = put_entry(buf, sizeof(u32), 1, fp);
3151 			if (rc)
3152 				return rc;
3153 			rc = put_entry(c->u.name, 1, len, fp);
3154 			if (rc)
3155 				return rc;
3156 			buf[0] = cpu_to_le32(c->v.sclass);
3157 			rc = put_entry(buf, sizeof(u32), 1, fp);
3158 			if (rc)
3159 				return rc;
3160 			rc = context_write(p, &c->context[0], fp);
3161 			if (rc)
3162 				return rc;
3163 		}
3164 	}
3165 	return 0;
3166 }
3167 
3168 static int hashtab_cnt(void *key, void *data, void *ptr)
3169 {
3170 	int *cnt = ptr;
3171 	*cnt = *cnt + 1;
3172 
3173 	return 0;
3174 }
3175 
3176 static int range_write_helper(void *key, void *data, void *ptr)
3177 {
3178 	__le32 buf[2];
3179 	struct range_trans *rt = key;
3180 	struct mls_range *r = data;
3181 	struct policy_data *pd = ptr;
3182 	void *fp = pd->fp;
3183 	struct policydb *p = pd->p;
3184 	int rc;
3185 
3186 	buf[0] = cpu_to_le32(rt->source_type);
3187 	buf[1] = cpu_to_le32(rt->target_type);
3188 	rc = put_entry(buf, sizeof(u32), 2, fp);
3189 	if (rc)
3190 		return rc;
3191 	if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
3192 		buf[0] = cpu_to_le32(rt->target_class);
3193 		rc = put_entry(buf, sizeof(u32), 1, fp);
3194 		if (rc)
3195 			return rc;
3196 	}
3197 	rc = mls_write_range_helper(r, fp);
3198 	if (rc)
3199 		return rc;
3200 
3201 	return 0;
3202 }
3203 
3204 static int range_write(struct policydb *p, void *fp)
3205 {
3206 	__le32 buf[1];
3207 	int rc, nel;
3208 	struct policy_data pd;
3209 
3210 	pd.p = p;
3211 	pd.fp = fp;
3212 
3213 	/* count the number of entries in the hashtab */
3214 	nel = 0;
3215 	rc = hashtab_map(p->range_tr, hashtab_cnt, &nel);
3216 	if (rc)
3217 		return rc;
3218 
3219 	buf[0] = cpu_to_le32(nel);
3220 	rc = put_entry(buf, sizeof(u32), 1, fp);
3221 	if (rc)
3222 		return rc;
3223 
3224 	/* actually write all of the entries */
3225 	rc = hashtab_map(p->range_tr, range_write_helper, &pd);
3226 	if (rc)
3227 		return rc;
3228 
3229 	return 0;
3230 }
3231 
3232 static int filename_write_helper(void *key, void *data, void *ptr)
3233 {
3234 	__le32 buf[4];
3235 	struct filename_trans *ft = key;
3236 	struct filename_trans_datum *otype = data;
3237 	void *fp = ptr;
3238 	int rc;
3239 	u32 len;
3240 
3241 	len = strlen(ft->name);
3242 	buf[0] = cpu_to_le32(len);
3243 	rc = put_entry(buf, sizeof(u32), 1, fp);
3244 	if (rc)
3245 		return rc;
3246 
3247 	rc = put_entry(ft->name, sizeof(char), len, fp);
3248 	if (rc)
3249 		return rc;
3250 
3251 	buf[0] = ft->stype;
3252 	buf[1] = ft->ttype;
3253 	buf[2] = ft->tclass;
3254 	buf[3] = otype->otype;
3255 
3256 	rc = put_entry(buf, sizeof(u32), 4, fp);
3257 	if (rc)
3258 		return rc;
3259 
3260 	return 0;
3261 }
3262 
3263 static int filename_trans_write(struct policydb *p, void *fp)
3264 {
3265 	u32 nel;
3266 	__le32 buf[1];
3267 	int rc;
3268 
3269 	if (p->policyvers < POLICYDB_VERSION_FILENAME_TRANS)
3270 		return 0;
3271 
3272 	nel = 0;
3273 	rc = hashtab_map(p->filename_trans, hashtab_cnt, &nel);
3274 	if (rc)
3275 		return rc;
3276 
3277 	buf[0] = cpu_to_le32(nel);
3278 	rc = put_entry(buf, sizeof(u32), 1, fp);
3279 	if (rc)
3280 		return rc;
3281 
3282 	rc = hashtab_map(p->filename_trans, filename_write_helper, fp);
3283 	if (rc)
3284 		return rc;
3285 
3286 	return 0;
3287 }
3288 
3289 /*
3290  * Write the configuration data in a policy database
3291  * structure to a policy database binary representation
3292  * file.
3293  */
3294 int policydb_write(struct policydb *p, void *fp)
3295 {
3296 	unsigned int i, num_syms;
3297 	int rc;
3298 	__le32 buf[4];
3299 	u32 config;
3300 	size_t len;
3301 	struct policydb_compat_info *info;
3302 
3303 	/*
3304 	 * refuse to write policy older than compressed avtab
3305 	 * to simplify the writer.  There are other tests dropped
3306 	 * since we assume this throughout the writer code.  Be
3307 	 * careful if you ever try to remove this restriction
3308 	 */
3309 	if (p->policyvers < POLICYDB_VERSION_AVTAB) {
3310 		printk(KERN_ERR "SELinux: refusing to write policy version %d."
3311 		       "  Because it is less than version %d\n", p->policyvers,
3312 		       POLICYDB_VERSION_AVTAB);
3313 		return -EINVAL;
3314 	}
3315 
3316 	config = 0;
3317 	if (p->mls_enabled)
3318 		config |= POLICYDB_CONFIG_MLS;
3319 
3320 	if (p->reject_unknown)
3321 		config |= REJECT_UNKNOWN;
3322 	if (p->allow_unknown)
3323 		config |= ALLOW_UNKNOWN;
3324 
3325 	/* Write the magic number and string identifiers. */
3326 	buf[0] = cpu_to_le32(POLICYDB_MAGIC);
3327 	len = strlen(POLICYDB_STRING);
3328 	buf[1] = cpu_to_le32(len);
3329 	rc = put_entry(buf, sizeof(u32), 2, fp);
3330 	if (rc)
3331 		return rc;
3332 	rc = put_entry(POLICYDB_STRING, 1, len, fp);
3333 	if (rc)
3334 		return rc;
3335 
3336 	/* Write the version, config, and table sizes. */
3337 	info = policydb_lookup_compat(p->policyvers);
3338 	if (!info) {
3339 		printk(KERN_ERR "SELinux: compatibility lookup failed for policy "
3340 		    "version %d", p->policyvers);
3341 		return -EINVAL;
3342 	}
3343 
3344 	buf[0] = cpu_to_le32(p->policyvers);
3345 	buf[1] = cpu_to_le32(config);
3346 	buf[2] = cpu_to_le32(info->sym_num);
3347 	buf[3] = cpu_to_le32(info->ocon_num);
3348 
3349 	rc = put_entry(buf, sizeof(u32), 4, fp);
3350 	if (rc)
3351 		return rc;
3352 
3353 	if (p->policyvers >= POLICYDB_VERSION_POLCAP) {
3354 		rc = ebitmap_write(&p->policycaps, fp);
3355 		if (rc)
3356 			return rc;
3357 	}
3358 
3359 	if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) {
3360 		rc = ebitmap_write(&p->permissive_map, fp);
3361 		if (rc)
3362 			return rc;
3363 	}
3364 
3365 	num_syms = info->sym_num;
3366 	for (i = 0; i < num_syms; i++) {
3367 		struct policy_data pd;
3368 
3369 		pd.fp = fp;
3370 		pd.p = p;
3371 
3372 		buf[0] = cpu_to_le32(p->symtab[i].nprim);
3373 		buf[1] = cpu_to_le32(p->symtab[i].table->nel);
3374 
3375 		rc = put_entry(buf, sizeof(u32), 2, fp);
3376 		if (rc)
3377 			return rc;
3378 		rc = hashtab_map(p->symtab[i].table, write_f[i], &pd);
3379 		if (rc)
3380 			return rc;
3381 	}
3382 
3383 	rc = avtab_write(p, &p->te_avtab, fp);
3384 	if (rc)
3385 		return rc;
3386 
3387 	rc = cond_write_list(p, p->cond_list, fp);
3388 	if (rc)
3389 		return rc;
3390 
3391 	rc = role_trans_write(p, fp);
3392 	if (rc)
3393 		return rc;
3394 
3395 	rc = role_allow_write(p->role_allow, fp);
3396 	if (rc)
3397 		return rc;
3398 
3399 	rc = filename_trans_write(p, fp);
3400 	if (rc)
3401 		return rc;
3402 
3403 	rc = ocontext_write(p, info, fp);
3404 	if (rc)
3405 		return rc;
3406 
3407 	rc = genfs_write(p, fp);
3408 	if (rc)
3409 		return rc;
3410 
3411 	rc = range_write(p, fp);
3412 	if (rc)
3413 		return rc;
3414 
3415 	for (i = 0; i < p->p_types.nprim; i++) {
3416 		struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
3417 
3418 		BUG_ON(!e);
3419 		rc = ebitmap_write(e, fp);
3420 		if (rc)
3421 			return rc;
3422 	}
3423 
3424 	return 0;
3425 }
3426