1 /* 2 * Implementation of the policy database. 3 * 4 * Author : Stephen Smalley, <sds@epoch.ncsc.mil> 5 */ 6 7 /* 8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> 9 * 10 * Support for enhanced MLS infrastructure. 11 * 12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com> 13 * 14 * Added conditional policy language extensions 15 * 16 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 17 * Copyright (C) 2003 - 2004 Tresys Technology, LLC 18 * This program is free software; you can redistribute it and/or modify 19 * it under the terms of the GNU General Public License as published by 20 * the Free Software Foundation, version 2. 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/slab.h> 25 #include <linux/string.h> 26 #include <linux/errno.h> 27 #include "security.h" 28 29 #include "policydb.h" 30 #include "conditional.h" 31 #include "mls.h" 32 33 #define _DEBUG_HASHES 34 35 #ifdef DEBUG_HASHES 36 static char *symtab_name[SYM_NUM] = { 37 "common prefixes", 38 "classes", 39 "roles", 40 "types", 41 "users", 42 "bools", 43 "levels", 44 "categories", 45 }; 46 #endif 47 48 int selinux_mls_enabled = 0; 49 50 static unsigned int symtab_sizes[SYM_NUM] = { 51 2, 52 32, 53 16, 54 512, 55 128, 56 16, 57 16, 58 16, 59 }; 60 61 struct policydb_compat_info { 62 int version; 63 int sym_num; 64 int ocon_num; 65 }; 66 67 /* These need to be updated if SYM_NUM or OCON_NUM changes */ 68 static struct policydb_compat_info policydb_compat[] = { 69 { 70 .version = POLICYDB_VERSION_BASE, 71 .sym_num = SYM_NUM - 3, 72 .ocon_num = OCON_NUM - 1, 73 }, 74 { 75 .version = POLICYDB_VERSION_BOOL, 76 .sym_num = SYM_NUM - 2, 77 .ocon_num = OCON_NUM - 1, 78 }, 79 { 80 .version = POLICYDB_VERSION_IPV6, 81 .sym_num = SYM_NUM - 2, 82 .ocon_num = OCON_NUM, 83 }, 84 { 85 .version = POLICYDB_VERSION_NLCLASS, 86 .sym_num = SYM_NUM - 2, 87 .ocon_num = OCON_NUM, 88 }, 89 { 90 .version = POLICYDB_VERSION_MLS, 91 .sym_num = SYM_NUM, 92 .ocon_num = OCON_NUM, 93 }, 94 { 95 .version = POLICYDB_VERSION_AVTAB, 96 .sym_num = SYM_NUM, 97 .ocon_num = OCON_NUM, 98 }, 99 }; 100 101 static struct policydb_compat_info *policydb_lookup_compat(int version) 102 { 103 int i; 104 struct policydb_compat_info *info = NULL; 105 106 for (i = 0; i < sizeof(policydb_compat)/sizeof(*info); i++) { 107 if (policydb_compat[i].version == version) { 108 info = &policydb_compat[i]; 109 break; 110 } 111 } 112 return info; 113 } 114 115 /* 116 * Initialize the role table. 117 */ 118 static int roles_init(struct policydb *p) 119 { 120 char *key = NULL; 121 int rc; 122 struct role_datum *role; 123 124 role = kmalloc(sizeof(*role), GFP_KERNEL); 125 if (!role) { 126 rc = -ENOMEM; 127 goto out; 128 } 129 memset(role, 0, sizeof(*role)); 130 role->value = ++p->p_roles.nprim; 131 if (role->value != OBJECT_R_VAL) { 132 rc = -EINVAL; 133 goto out_free_role; 134 } 135 key = kmalloc(strlen(OBJECT_R)+1,GFP_KERNEL); 136 if (!key) { 137 rc = -ENOMEM; 138 goto out_free_role; 139 } 140 strcpy(key, OBJECT_R); 141 rc = hashtab_insert(p->p_roles.table, key, role); 142 if (rc) 143 goto out_free_key; 144 out: 145 return rc; 146 147 out_free_key: 148 kfree(key); 149 out_free_role: 150 kfree(role); 151 goto out; 152 } 153 154 /* 155 * Initialize a policy database structure. 156 */ 157 static int policydb_init(struct policydb *p) 158 { 159 int i, rc; 160 161 memset(p, 0, sizeof(*p)); 162 163 for (i = 0; i < SYM_NUM; i++) { 164 rc = symtab_init(&p->symtab[i], symtab_sizes[i]); 165 if (rc) 166 goto out_free_symtab; 167 } 168 169 rc = avtab_init(&p->te_avtab); 170 if (rc) 171 goto out_free_symtab; 172 173 rc = roles_init(p); 174 if (rc) 175 goto out_free_avtab; 176 177 rc = cond_policydb_init(p); 178 if (rc) 179 goto out_free_avtab; 180 181 out: 182 return rc; 183 184 out_free_avtab: 185 avtab_destroy(&p->te_avtab); 186 187 out_free_symtab: 188 for (i = 0; i < SYM_NUM; i++) 189 hashtab_destroy(p->symtab[i].table); 190 goto out; 191 } 192 193 /* 194 * The following *_index functions are used to 195 * define the val_to_name and val_to_struct arrays 196 * in a policy database structure. The val_to_name 197 * arrays are used when converting security context 198 * structures into string representations. The 199 * val_to_struct arrays are used when the attributes 200 * of a class, role, or user are needed. 201 */ 202 203 static int common_index(void *key, void *datum, void *datap) 204 { 205 struct policydb *p; 206 struct common_datum *comdatum; 207 208 comdatum = datum; 209 p = datap; 210 if (!comdatum->value || comdatum->value > p->p_commons.nprim) 211 return -EINVAL; 212 p->p_common_val_to_name[comdatum->value - 1] = key; 213 return 0; 214 } 215 216 static int class_index(void *key, void *datum, void *datap) 217 { 218 struct policydb *p; 219 struct class_datum *cladatum; 220 221 cladatum = datum; 222 p = datap; 223 if (!cladatum->value || cladatum->value > p->p_classes.nprim) 224 return -EINVAL; 225 p->p_class_val_to_name[cladatum->value - 1] = key; 226 p->class_val_to_struct[cladatum->value - 1] = cladatum; 227 return 0; 228 } 229 230 static int role_index(void *key, void *datum, void *datap) 231 { 232 struct policydb *p; 233 struct role_datum *role; 234 235 role = datum; 236 p = datap; 237 if (!role->value || role->value > p->p_roles.nprim) 238 return -EINVAL; 239 p->p_role_val_to_name[role->value - 1] = key; 240 p->role_val_to_struct[role->value - 1] = role; 241 return 0; 242 } 243 244 static int type_index(void *key, void *datum, void *datap) 245 { 246 struct policydb *p; 247 struct type_datum *typdatum; 248 249 typdatum = datum; 250 p = datap; 251 252 if (typdatum->primary) { 253 if (!typdatum->value || typdatum->value > p->p_types.nprim) 254 return -EINVAL; 255 p->p_type_val_to_name[typdatum->value - 1] = key; 256 } 257 258 return 0; 259 } 260 261 static int user_index(void *key, void *datum, void *datap) 262 { 263 struct policydb *p; 264 struct user_datum *usrdatum; 265 266 usrdatum = datum; 267 p = datap; 268 if (!usrdatum->value || usrdatum->value > p->p_users.nprim) 269 return -EINVAL; 270 p->p_user_val_to_name[usrdatum->value - 1] = key; 271 p->user_val_to_struct[usrdatum->value - 1] = usrdatum; 272 return 0; 273 } 274 275 static int sens_index(void *key, void *datum, void *datap) 276 { 277 struct policydb *p; 278 struct level_datum *levdatum; 279 280 levdatum = datum; 281 p = datap; 282 283 if (!levdatum->isalias) { 284 if (!levdatum->level->sens || 285 levdatum->level->sens > p->p_levels.nprim) 286 return -EINVAL; 287 p->p_sens_val_to_name[levdatum->level->sens - 1] = key; 288 } 289 290 return 0; 291 } 292 293 static int cat_index(void *key, void *datum, void *datap) 294 { 295 struct policydb *p; 296 struct cat_datum *catdatum; 297 298 catdatum = datum; 299 p = datap; 300 301 if (!catdatum->isalias) { 302 if (!catdatum->value || catdatum->value > p->p_cats.nprim) 303 return -EINVAL; 304 p->p_cat_val_to_name[catdatum->value - 1] = key; 305 } 306 307 return 0; 308 } 309 310 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) = 311 { 312 common_index, 313 class_index, 314 role_index, 315 type_index, 316 user_index, 317 cond_index_bool, 318 sens_index, 319 cat_index, 320 }; 321 322 /* 323 * Define the common val_to_name array and the class 324 * val_to_name and val_to_struct arrays in a policy 325 * database structure. 326 * 327 * Caller must clean up upon failure. 328 */ 329 static int policydb_index_classes(struct policydb *p) 330 { 331 int rc; 332 333 p->p_common_val_to_name = 334 kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL); 335 if (!p->p_common_val_to_name) { 336 rc = -ENOMEM; 337 goto out; 338 } 339 340 rc = hashtab_map(p->p_commons.table, common_index, p); 341 if (rc) 342 goto out; 343 344 p->class_val_to_struct = 345 kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL); 346 if (!p->class_val_to_struct) { 347 rc = -ENOMEM; 348 goto out; 349 } 350 351 p->p_class_val_to_name = 352 kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL); 353 if (!p->p_class_val_to_name) { 354 rc = -ENOMEM; 355 goto out; 356 } 357 358 rc = hashtab_map(p->p_classes.table, class_index, p); 359 out: 360 return rc; 361 } 362 363 #ifdef DEBUG_HASHES 364 static void symtab_hash_eval(struct symtab *s) 365 { 366 int i; 367 368 for (i = 0; i < SYM_NUM; i++) { 369 struct hashtab *h = s[i].table; 370 struct hashtab_info info; 371 372 hashtab_stat(h, &info); 373 printk(KERN_INFO "%s: %d entries and %d/%d buckets used, " 374 "longest chain length %d\n", symtab_name[i], h->nel, 375 info.slots_used, h->size, info.max_chain_len); 376 } 377 } 378 #endif 379 380 /* 381 * Define the other val_to_name and val_to_struct arrays 382 * in a policy database structure. 383 * 384 * Caller must clean up on failure. 385 */ 386 static int policydb_index_others(struct policydb *p) 387 { 388 int i, rc = 0; 389 390 printk(KERN_INFO "security: %d users, %d roles, %d types, %d bools", 391 p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim); 392 if (selinux_mls_enabled) 393 printk(", %d sens, %d cats", p->p_levels.nprim, 394 p->p_cats.nprim); 395 printk("\n"); 396 397 printk(KERN_INFO "security: %d classes, %d rules\n", 398 p->p_classes.nprim, p->te_avtab.nel); 399 400 #ifdef DEBUG_HASHES 401 avtab_hash_eval(&p->te_avtab, "rules"); 402 symtab_hash_eval(p->symtab); 403 #endif 404 405 p->role_val_to_struct = 406 kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)), 407 GFP_KERNEL); 408 if (!p->role_val_to_struct) { 409 rc = -ENOMEM; 410 goto out; 411 } 412 413 p->user_val_to_struct = 414 kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)), 415 GFP_KERNEL); 416 if (!p->user_val_to_struct) { 417 rc = -ENOMEM; 418 goto out; 419 } 420 421 if (cond_init_bool_indexes(p)) { 422 rc = -ENOMEM; 423 goto out; 424 } 425 426 for (i = SYM_ROLES; i < SYM_NUM; i++) { 427 p->sym_val_to_name[i] = 428 kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL); 429 if (!p->sym_val_to_name[i]) { 430 rc = -ENOMEM; 431 goto out; 432 } 433 rc = hashtab_map(p->symtab[i].table, index_f[i], p); 434 if (rc) 435 goto out; 436 } 437 438 out: 439 return rc; 440 } 441 442 /* 443 * The following *_destroy functions are used to 444 * free any memory allocated for each kind of 445 * symbol data in the policy database. 446 */ 447 448 static int perm_destroy(void *key, void *datum, void *p) 449 { 450 kfree(key); 451 kfree(datum); 452 return 0; 453 } 454 455 static int common_destroy(void *key, void *datum, void *p) 456 { 457 struct common_datum *comdatum; 458 459 kfree(key); 460 comdatum = datum; 461 hashtab_map(comdatum->permissions.table, perm_destroy, NULL); 462 hashtab_destroy(comdatum->permissions.table); 463 kfree(datum); 464 return 0; 465 } 466 467 static int class_destroy(void *key, void *datum, void *p) 468 { 469 struct class_datum *cladatum; 470 struct constraint_node *constraint, *ctemp; 471 struct constraint_expr *e, *etmp; 472 473 kfree(key); 474 cladatum = datum; 475 hashtab_map(cladatum->permissions.table, perm_destroy, NULL); 476 hashtab_destroy(cladatum->permissions.table); 477 constraint = cladatum->constraints; 478 while (constraint) { 479 e = constraint->expr; 480 while (e) { 481 ebitmap_destroy(&e->names); 482 etmp = e; 483 e = e->next; 484 kfree(etmp); 485 } 486 ctemp = constraint; 487 constraint = constraint->next; 488 kfree(ctemp); 489 } 490 491 constraint = cladatum->validatetrans; 492 while (constraint) { 493 e = constraint->expr; 494 while (e) { 495 ebitmap_destroy(&e->names); 496 etmp = e; 497 e = e->next; 498 kfree(etmp); 499 } 500 ctemp = constraint; 501 constraint = constraint->next; 502 kfree(ctemp); 503 } 504 505 kfree(cladatum->comkey); 506 kfree(datum); 507 return 0; 508 } 509 510 static int role_destroy(void *key, void *datum, void *p) 511 { 512 struct role_datum *role; 513 514 kfree(key); 515 role = datum; 516 ebitmap_destroy(&role->dominates); 517 ebitmap_destroy(&role->types); 518 kfree(datum); 519 return 0; 520 } 521 522 static int type_destroy(void *key, void *datum, void *p) 523 { 524 kfree(key); 525 kfree(datum); 526 return 0; 527 } 528 529 static int user_destroy(void *key, void *datum, void *p) 530 { 531 struct user_datum *usrdatum; 532 533 kfree(key); 534 usrdatum = datum; 535 ebitmap_destroy(&usrdatum->roles); 536 ebitmap_destroy(&usrdatum->range.level[0].cat); 537 ebitmap_destroy(&usrdatum->range.level[1].cat); 538 ebitmap_destroy(&usrdatum->dfltlevel.cat); 539 kfree(datum); 540 return 0; 541 } 542 543 static int sens_destroy(void *key, void *datum, void *p) 544 { 545 struct level_datum *levdatum; 546 547 kfree(key); 548 levdatum = datum; 549 ebitmap_destroy(&levdatum->level->cat); 550 kfree(levdatum->level); 551 kfree(datum); 552 return 0; 553 } 554 555 static int cat_destroy(void *key, void *datum, void *p) 556 { 557 kfree(key); 558 kfree(datum); 559 return 0; 560 } 561 562 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) = 563 { 564 common_destroy, 565 class_destroy, 566 role_destroy, 567 type_destroy, 568 user_destroy, 569 cond_destroy_bool, 570 sens_destroy, 571 cat_destroy, 572 }; 573 574 static void ocontext_destroy(struct ocontext *c, int i) 575 { 576 context_destroy(&c->context[0]); 577 context_destroy(&c->context[1]); 578 if (i == OCON_ISID || i == OCON_FS || 579 i == OCON_NETIF || i == OCON_FSUSE) 580 kfree(c->u.name); 581 kfree(c); 582 } 583 584 /* 585 * Free any memory allocated by a policy database structure. 586 */ 587 void policydb_destroy(struct policydb *p) 588 { 589 struct ocontext *c, *ctmp; 590 struct genfs *g, *gtmp; 591 int i; 592 struct role_allow *ra, *lra = NULL; 593 struct role_trans *tr, *ltr = NULL; 594 struct range_trans *rt, *lrt = NULL; 595 596 for (i = 0; i < SYM_NUM; i++) { 597 hashtab_map(p->symtab[i].table, destroy_f[i], NULL); 598 hashtab_destroy(p->symtab[i].table); 599 } 600 601 for (i = 0; i < SYM_NUM; i++) 602 kfree(p->sym_val_to_name[i]); 603 604 kfree(p->class_val_to_struct); 605 kfree(p->role_val_to_struct); 606 kfree(p->user_val_to_struct); 607 608 avtab_destroy(&p->te_avtab); 609 610 for (i = 0; i < OCON_NUM; i++) { 611 c = p->ocontexts[i]; 612 while (c) { 613 ctmp = c; 614 c = c->next; 615 ocontext_destroy(ctmp,i); 616 } 617 } 618 619 g = p->genfs; 620 while (g) { 621 kfree(g->fstype); 622 c = g->head; 623 while (c) { 624 ctmp = c; 625 c = c->next; 626 ocontext_destroy(ctmp,OCON_FSUSE); 627 } 628 gtmp = g; 629 g = g->next; 630 kfree(gtmp); 631 } 632 633 cond_policydb_destroy(p); 634 635 for (tr = p->role_tr; tr; tr = tr->next) { 636 if (ltr) kfree(ltr); 637 ltr = tr; 638 } 639 if (ltr) kfree(ltr); 640 641 for (ra = p->role_allow; ra; ra = ra -> next) { 642 if (lra) kfree(lra); 643 lra = ra; 644 } 645 if (lra) kfree(lra); 646 647 for (rt = p->range_tr; rt; rt = rt -> next) { 648 if (lrt) kfree(lrt); 649 lrt = rt; 650 } 651 if (lrt) kfree(lrt); 652 653 for (i = 0; i < p->p_types.nprim; i++) 654 ebitmap_destroy(&p->type_attr_map[i]); 655 kfree(p->type_attr_map); 656 657 return; 658 } 659 660 /* 661 * Load the initial SIDs specified in a policy database 662 * structure into a SID table. 663 */ 664 int policydb_load_isids(struct policydb *p, struct sidtab *s) 665 { 666 struct ocontext *head, *c; 667 int rc; 668 669 rc = sidtab_init(s); 670 if (rc) { 671 printk(KERN_ERR "security: out of memory on SID table init\n"); 672 goto out; 673 } 674 675 head = p->ocontexts[OCON_ISID]; 676 for (c = head; c; c = c->next) { 677 if (!c->context[0].user) { 678 printk(KERN_ERR "security: SID %s was never " 679 "defined.\n", c->u.name); 680 rc = -EINVAL; 681 goto out; 682 } 683 if (sidtab_insert(s, c->sid[0], &c->context[0])) { 684 printk(KERN_ERR "security: unable to load initial " 685 "SID %s.\n", c->u.name); 686 rc = -EINVAL; 687 goto out; 688 } 689 } 690 out: 691 return rc; 692 } 693 694 /* 695 * Return 1 if the fields in the security context 696 * structure `c' are valid. Return 0 otherwise. 697 */ 698 int policydb_context_isvalid(struct policydb *p, struct context *c) 699 { 700 struct role_datum *role; 701 struct user_datum *usrdatum; 702 703 if (!c->role || c->role > p->p_roles.nprim) 704 return 0; 705 706 if (!c->user || c->user > p->p_users.nprim) 707 return 0; 708 709 if (!c->type || c->type > p->p_types.nprim) 710 return 0; 711 712 if (c->role != OBJECT_R_VAL) { 713 /* 714 * Role must be authorized for the type. 715 */ 716 role = p->role_val_to_struct[c->role - 1]; 717 if (!ebitmap_get_bit(&role->types, 718 c->type - 1)) 719 /* role may not be associated with type */ 720 return 0; 721 722 /* 723 * User must be authorized for the role. 724 */ 725 usrdatum = p->user_val_to_struct[c->user - 1]; 726 if (!usrdatum) 727 return 0; 728 729 if (!ebitmap_get_bit(&usrdatum->roles, 730 c->role - 1)) 731 /* user may not be associated with role */ 732 return 0; 733 } 734 735 if (!mls_context_isvalid(p, c)) 736 return 0; 737 738 return 1; 739 } 740 741 /* 742 * Read a MLS range structure from a policydb binary 743 * representation file. 744 */ 745 static int mls_read_range_helper(struct mls_range *r, void *fp) 746 { 747 __le32 buf[2]; 748 u32 items; 749 int rc; 750 751 rc = next_entry(buf, fp, sizeof(u32)); 752 if (rc < 0) 753 goto out; 754 755 items = le32_to_cpu(buf[0]); 756 if (items > ARRAY_SIZE(buf)) { 757 printk(KERN_ERR "security: mls: range overflow\n"); 758 rc = -EINVAL; 759 goto out; 760 } 761 rc = next_entry(buf, fp, sizeof(u32) * items); 762 if (rc < 0) { 763 printk(KERN_ERR "security: mls: truncated range\n"); 764 goto out; 765 } 766 r->level[0].sens = le32_to_cpu(buf[0]); 767 if (items > 1) 768 r->level[1].sens = le32_to_cpu(buf[1]); 769 else 770 r->level[1].sens = r->level[0].sens; 771 772 rc = ebitmap_read(&r->level[0].cat, fp); 773 if (rc) { 774 printk(KERN_ERR "security: mls: error reading low " 775 "categories\n"); 776 goto out; 777 } 778 if (items > 1) { 779 rc = ebitmap_read(&r->level[1].cat, fp); 780 if (rc) { 781 printk(KERN_ERR "security: mls: error reading high " 782 "categories\n"); 783 goto bad_high; 784 } 785 } else { 786 rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat); 787 if (rc) { 788 printk(KERN_ERR "security: mls: out of memory\n"); 789 goto bad_high; 790 } 791 } 792 793 rc = 0; 794 out: 795 return rc; 796 bad_high: 797 ebitmap_destroy(&r->level[0].cat); 798 goto out; 799 } 800 801 /* 802 * Read and validate a security context structure 803 * from a policydb binary representation file. 804 */ 805 static int context_read_and_validate(struct context *c, 806 struct policydb *p, 807 void *fp) 808 { 809 __le32 buf[3]; 810 int rc; 811 812 rc = next_entry(buf, fp, sizeof buf); 813 if (rc < 0) { 814 printk(KERN_ERR "security: context truncated\n"); 815 goto out; 816 } 817 c->user = le32_to_cpu(buf[0]); 818 c->role = le32_to_cpu(buf[1]); 819 c->type = le32_to_cpu(buf[2]); 820 if (p->policyvers >= POLICYDB_VERSION_MLS) { 821 if (mls_read_range_helper(&c->range, fp)) { 822 printk(KERN_ERR "security: error reading MLS range of " 823 "context\n"); 824 rc = -EINVAL; 825 goto out; 826 } 827 } 828 829 if (!policydb_context_isvalid(p, c)) { 830 printk(KERN_ERR "security: invalid security context\n"); 831 context_destroy(c); 832 rc = -EINVAL; 833 } 834 out: 835 return rc; 836 } 837 838 /* 839 * The following *_read functions are used to 840 * read the symbol data from a policy database 841 * binary representation file. 842 */ 843 844 static int perm_read(struct policydb *p, struct hashtab *h, void *fp) 845 { 846 char *key = NULL; 847 struct perm_datum *perdatum; 848 int rc; 849 __le32 buf[2]; 850 u32 len; 851 852 perdatum = kmalloc(sizeof(*perdatum), GFP_KERNEL); 853 if (!perdatum) { 854 rc = -ENOMEM; 855 goto out; 856 } 857 memset(perdatum, 0, sizeof(*perdatum)); 858 859 rc = next_entry(buf, fp, sizeof buf); 860 if (rc < 0) 861 goto bad; 862 863 len = le32_to_cpu(buf[0]); 864 perdatum->value = le32_to_cpu(buf[1]); 865 866 key = kmalloc(len + 1,GFP_KERNEL); 867 if (!key) { 868 rc = -ENOMEM; 869 goto bad; 870 } 871 rc = next_entry(key, fp, len); 872 if (rc < 0) 873 goto bad; 874 key[len] = 0; 875 876 rc = hashtab_insert(h, key, perdatum); 877 if (rc) 878 goto bad; 879 out: 880 return rc; 881 bad: 882 perm_destroy(key, perdatum, NULL); 883 goto out; 884 } 885 886 static int common_read(struct policydb *p, struct hashtab *h, void *fp) 887 { 888 char *key = NULL; 889 struct common_datum *comdatum; 890 __le32 buf[4]; 891 u32 len, nel; 892 int i, rc; 893 894 comdatum = kmalloc(sizeof(*comdatum), GFP_KERNEL); 895 if (!comdatum) { 896 rc = -ENOMEM; 897 goto out; 898 } 899 memset(comdatum, 0, sizeof(*comdatum)); 900 901 rc = next_entry(buf, fp, sizeof buf); 902 if (rc < 0) 903 goto bad; 904 905 len = le32_to_cpu(buf[0]); 906 comdatum->value = le32_to_cpu(buf[1]); 907 908 rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE); 909 if (rc) 910 goto bad; 911 comdatum->permissions.nprim = le32_to_cpu(buf[2]); 912 nel = le32_to_cpu(buf[3]); 913 914 key = kmalloc(len + 1,GFP_KERNEL); 915 if (!key) { 916 rc = -ENOMEM; 917 goto bad; 918 } 919 rc = next_entry(key, fp, len); 920 if (rc < 0) 921 goto bad; 922 key[len] = 0; 923 924 for (i = 0; i < nel; i++) { 925 rc = perm_read(p, comdatum->permissions.table, fp); 926 if (rc) 927 goto bad; 928 } 929 930 rc = hashtab_insert(h, key, comdatum); 931 if (rc) 932 goto bad; 933 out: 934 return rc; 935 bad: 936 common_destroy(key, comdatum, NULL); 937 goto out; 938 } 939 940 static int read_cons_helper(struct constraint_node **nodep, int ncons, 941 int allowxtarget, void *fp) 942 { 943 struct constraint_node *c, *lc; 944 struct constraint_expr *e, *le; 945 __le32 buf[3]; 946 u32 nexpr; 947 int rc, i, j, depth; 948 949 lc = NULL; 950 for (i = 0; i < ncons; i++) { 951 c = kmalloc(sizeof(*c), GFP_KERNEL); 952 if (!c) 953 return -ENOMEM; 954 memset(c, 0, sizeof(*c)); 955 956 if (lc) { 957 lc->next = c; 958 } else { 959 *nodep = c; 960 } 961 962 rc = next_entry(buf, fp, (sizeof(u32) * 2)); 963 if (rc < 0) 964 return rc; 965 c->permissions = le32_to_cpu(buf[0]); 966 nexpr = le32_to_cpu(buf[1]); 967 le = NULL; 968 depth = -1; 969 for (j = 0; j < nexpr; j++) { 970 e = kmalloc(sizeof(*e), GFP_KERNEL); 971 if (!e) 972 return -ENOMEM; 973 memset(e, 0, sizeof(*e)); 974 975 if (le) { 976 le->next = e; 977 } else { 978 c->expr = e; 979 } 980 981 rc = next_entry(buf, fp, (sizeof(u32) * 3)); 982 if (rc < 0) 983 return rc; 984 e->expr_type = le32_to_cpu(buf[0]); 985 e->attr = le32_to_cpu(buf[1]); 986 e->op = le32_to_cpu(buf[2]); 987 988 switch (e->expr_type) { 989 case CEXPR_NOT: 990 if (depth < 0) 991 return -EINVAL; 992 break; 993 case CEXPR_AND: 994 case CEXPR_OR: 995 if (depth < 1) 996 return -EINVAL; 997 depth--; 998 break; 999 case CEXPR_ATTR: 1000 if (depth == (CEXPR_MAXDEPTH - 1)) 1001 return -EINVAL; 1002 depth++; 1003 break; 1004 case CEXPR_NAMES: 1005 if (!allowxtarget && (e->attr & CEXPR_XTARGET)) 1006 return -EINVAL; 1007 if (depth == (CEXPR_MAXDEPTH - 1)) 1008 return -EINVAL; 1009 depth++; 1010 if (ebitmap_read(&e->names, fp)) 1011 return -EINVAL; 1012 break; 1013 default: 1014 return -EINVAL; 1015 } 1016 le = e; 1017 } 1018 if (depth != 0) 1019 return -EINVAL; 1020 lc = c; 1021 } 1022 1023 return 0; 1024 } 1025 1026 static int class_read(struct policydb *p, struct hashtab *h, void *fp) 1027 { 1028 char *key = NULL; 1029 struct class_datum *cladatum; 1030 __le32 buf[6]; 1031 u32 len, len2, ncons, nel; 1032 int i, rc; 1033 1034 cladatum = kmalloc(sizeof(*cladatum), GFP_KERNEL); 1035 if (!cladatum) { 1036 rc = -ENOMEM; 1037 goto out; 1038 } 1039 memset(cladatum, 0, sizeof(*cladatum)); 1040 1041 rc = next_entry(buf, fp, sizeof(u32)*6); 1042 if (rc < 0) 1043 goto bad; 1044 1045 len = le32_to_cpu(buf[0]); 1046 len2 = le32_to_cpu(buf[1]); 1047 cladatum->value = le32_to_cpu(buf[2]); 1048 1049 rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE); 1050 if (rc) 1051 goto bad; 1052 cladatum->permissions.nprim = le32_to_cpu(buf[3]); 1053 nel = le32_to_cpu(buf[4]); 1054 1055 ncons = le32_to_cpu(buf[5]); 1056 1057 key = kmalloc(len + 1,GFP_KERNEL); 1058 if (!key) { 1059 rc = -ENOMEM; 1060 goto bad; 1061 } 1062 rc = next_entry(key, fp, len); 1063 if (rc < 0) 1064 goto bad; 1065 key[len] = 0; 1066 1067 if (len2) { 1068 cladatum->comkey = kmalloc(len2 + 1,GFP_KERNEL); 1069 if (!cladatum->comkey) { 1070 rc = -ENOMEM; 1071 goto bad; 1072 } 1073 rc = next_entry(cladatum->comkey, fp, len2); 1074 if (rc < 0) 1075 goto bad; 1076 cladatum->comkey[len2] = 0; 1077 1078 cladatum->comdatum = hashtab_search(p->p_commons.table, 1079 cladatum->comkey); 1080 if (!cladatum->comdatum) { 1081 printk(KERN_ERR "security: unknown common %s\n", 1082 cladatum->comkey); 1083 rc = -EINVAL; 1084 goto bad; 1085 } 1086 } 1087 for (i = 0; i < nel; i++) { 1088 rc = perm_read(p, cladatum->permissions.table, fp); 1089 if (rc) 1090 goto bad; 1091 } 1092 1093 rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp); 1094 if (rc) 1095 goto bad; 1096 1097 if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) { 1098 /* grab the validatetrans rules */ 1099 rc = next_entry(buf, fp, sizeof(u32)); 1100 if (rc < 0) 1101 goto bad; 1102 ncons = le32_to_cpu(buf[0]); 1103 rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp); 1104 if (rc) 1105 goto bad; 1106 } 1107 1108 rc = hashtab_insert(h, key, cladatum); 1109 if (rc) 1110 goto bad; 1111 1112 rc = 0; 1113 out: 1114 return rc; 1115 bad: 1116 class_destroy(key, cladatum, NULL); 1117 goto out; 1118 } 1119 1120 static int role_read(struct policydb *p, struct hashtab *h, void *fp) 1121 { 1122 char *key = NULL; 1123 struct role_datum *role; 1124 int rc; 1125 __le32 buf[2]; 1126 u32 len; 1127 1128 role = kmalloc(sizeof(*role), GFP_KERNEL); 1129 if (!role) { 1130 rc = -ENOMEM; 1131 goto out; 1132 } 1133 memset(role, 0, sizeof(*role)); 1134 1135 rc = next_entry(buf, fp, sizeof buf); 1136 if (rc < 0) 1137 goto bad; 1138 1139 len = le32_to_cpu(buf[0]); 1140 role->value = le32_to_cpu(buf[1]); 1141 1142 key = kmalloc(len + 1,GFP_KERNEL); 1143 if (!key) { 1144 rc = -ENOMEM; 1145 goto bad; 1146 } 1147 rc = next_entry(key, fp, len); 1148 if (rc < 0) 1149 goto bad; 1150 key[len] = 0; 1151 1152 rc = ebitmap_read(&role->dominates, fp); 1153 if (rc) 1154 goto bad; 1155 1156 rc = ebitmap_read(&role->types, fp); 1157 if (rc) 1158 goto bad; 1159 1160 if (strcmp(key, OBJECT_R) == 0) { 1161 if (role->value != OBJECT_R_VAL) { 1162 printk(KERN_ERR "Role %s has wrong value %d\n", 1163 OBJECT_R, role->value); 1164 rc = -EINVAL; 1165 goto bad; 1166 } 1167 rc = 0; 1168 goto bad; 1169 } 1170 1171 rc = hashtab_insert(h, key, role); 1172 if (rc) 1173 goto bad; 1174 out: 1175 return rc; 1176 bad: 1177 role_destroy(key, role, NULL); 1178 goto out; 1179 } 1180 1181 static int type_read(struct policydb *p, struct hashtab *h, void *fp) 1182 { 1183 char *key = NULL; 1184 struct type_datum *typdatum; 1185 int rc; 1186 __le32 buf[3]; 1187 u32 len; 1188 1189 typdatum = kmalloc(sizeof(*typdatum),GFP_KERNEL); 1190 if (!typdatum) { 1191 rc = -ENOMEM; 1192 return rc; 1193 } 1194 memset(typdatum, 0, sizeof(*typdatum)); 1195 1196 rc = next_entry(buf, fp, sizeof buf); 1197 if (rc < 0) 1198 goto bad; 1199 1200 len = le32_to_cpu(buf[0]); 1201 typdatum->value = le32_to_cpu(buf[1]); 1202 typdatum->primary = le32_to_cpu(buf[2]); 1203 1204 key = kmalloc(len + 1,GFP_KERNEL); 1205 if (!key) { 1206 rc = -ENOMEM; 1207 goto bad; 1208 } 1209 rc = next_entry(key, fp, len); 1210 if (rc < 0) 1211 goto bad; 1212 key[len] = 0; 1213 1214 rc = hashtab_insert(h, key, typdatum); 1215 if (rc) 1216 goto bad; 1217 out: 1218 return rc; 1219 bad: 1220 type_destroy(key, typdatum, NULL); 1221 goto out; 1222 } 1223 1224 1225 /* 1226 * Read a MLS level structure from a policydb binary 1227 * representation file. 1228 */ 1229 static int mls_read_level(struct mls_level *lp, void *fp) 1230 { 1231 __le32 buf[1]; 1232 int rc; 1233 1234 memset(lp, 0, sizeof(*lp)); 1235 1236 rc = next_entry(buf, fp, sizeof buf); 1237 if (rc < 0) { 1238 printk(KERN_ERR "security: mls: truncated level\n"); 1239 goto bad; 1240 } 1241 lp->sens = le32_to_cpu(buf[0]); 1242 1243 if (ebitmap_read(&lp->cat, fp)) { 1244 printk(KERN_ERR "security: mls: error reading level " 1245 "categories\n"); 1246 goto bad; 1247 } 1248 return 0; 1249 1250 bad: 1251 return -EINVAL; 1252 } 1253 1254 static int user_read(struct policydb *p, struct hashtab *h, void *fp) 1255 { 1256 char *key = NULL; 1257 struct user_datum *usrdatum; 1258 int rc; 1259 __le32 buf[2]; 1260 u32 len; 1261 1262 usrdatum = kmalloc(sizeof(*usrdatum), GFP_KERNEL); 1263 if (!usrdatum) { 1264 rc = -ENOMEM; 1265 goto out; 1266 } 1267 memset(usrdatum, 0, sizeof(*usrdatum)); 1268 1269 rc = next_entry(buf, fp, sizeof buf); 1270 if (rc < 0) 1271 goto bad; 1272 1273 len = le32_to_cpu(buf[0]); 1274 usrdatum->value = le32_to_cpu(buf[1]); 1275 1276 key = kmalloc(len + 1,GFP_KERNEL); 1277 if (!key) { 1278 rc = -ENOMEM; 1279 goto bad; 1280 } 1281 rc = next_entry(key, fp, len); 1282 if (rc < 0) 1283 goto bad; 1284 key[len] = 0; 1285 1286 rc = ebitmap_read(&usrdatum->roles, fp); 1287 if (rc) 1288 goto bad; 1289 1290 if (p->policyvers >= POLICYDB_VERSION_MLS) { 1291 rc = mls_read_range_helper(&usrdatum->range, fp); 1292 if (rc) 1293 goto bad; 1294 rc = mls_read_level(&usrdatum->dfltlevel, fp); 1295 if (rc) 1296 goto bad; 1297 } 1298 1299 rc = hashtab_insert(h, key, usrdatum); 1300 if (rc) 1301 goto bad; 1302 out: 1303 return rc; 1304 bad: 1305 user_destroy(key, usrdatum, NULL); 1306 goto out; 1307 } 1308 1309 static int sens_read(struct policydb *p, struct hashtab *h, void *fp) 1310 { 1311 char *key = NULL; 1312 struct level_datum *levdatum; 1313 int rc; 1314 __le32 buf[2]; 1315 u32 len; 1316 1317 levdatum = kmalloc(sizeof(*levdatum), GFP_ATOMIC); 1318 if (!levdatum) { 1319 rc = -ENOMEM; 1320 goto out; 1321 } 1322 memset(levdatum, 0, sizeof(*levdatum)); 1323 1324 rc = next_entry(buf, fp, sizeof buf); 1325 if (rc < 0) 1326 goto bad; 1327 1328 len = le32_to_cpu(buf[0]); 1329 levdatum->isalias = le32_to_cpu(buf[1]); 1330 1331 key = kmalloc(len + 1,GFP_ATOMIC); 1332 if (!key) { 1333 rc = -ENOMEM; 1334 goto bad; 1335 } 1336 rc = next_entry(key, fp, len); 1337 if (rc < 0) 1338 goto bad; 1339 key[len] = 0; 1340 1341 levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC); 1342 if (!levdatum->level) { 1343 rc = -ENOMEM; 1344 goto bad; 1345 } 1346 if (mls_read_level(levdatum->level, fp)) { 1347 rc = -EINVAL; 1348 goto bad; 1349 } 1350 1351 rc = hashtab_insert(h, key, levdatum); 1352 if (rc) 1353 goto bad; 1354 out: 1355 return rc; 1356 bad: 1357 sens_destroy(key, levdatum, NULL); 1358 goto out; 1359 } 1360 1361 static int cat_read(struct policydb *p, struct hashtab *h, void *fp) 1362 { 1363 char *key = NULL; 1364 struct cat_datum *catdatum; 1365 int rc; 1366 __le32 buf[3]; 1367 u32 len; 1368 1369 catdatum = kmalloc(sizeof(*catdatum), GFP_ATOMIC); 1370 if (!catdatum) { 1371 rc = -ENOMEM; 1372 goto out; 1373 } 1374 memset(catdatum, 0, sizeof(*catdatum)); 1375 1376 rc = next_entry(buf, fp, sizeof buf); 1377 if (rc < 0) 1378 goto bad; 1379 1380 len = le32_to_cpu(buf[0]); 1381 catdatum->value = le32_to_cpu(buf[1]); 1382 catdatum->isalias = le32_to_cpu(buf[2]); 1383 1384 key = kmalloc(len + 1,GFP_ATOMIC); 1385 if (!key) { 1386 rc = -ENOMEM; 1387 goto bad; 1388 } 1389 rc = next_entry(key, fp, len); 1390 if (rc < 0) 1391 goto bad; 1392 key[len] = 0; 1393 1394 rc = hashtab_insert(h, key, catdatum); 1395 if (rc) 1396 goto bad; 1397 out: 1398 return rc; 1399 1400 bad: 1401 cat_destroy(key, catdatum, NULL); 1402 goto out; 1403 } 1404 1405 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) = 1406 { 1407 common_read, 1408 class_read, 1409 role_read, 1410 type_read, 1411 user_read, 1412 cond_read_bool, 1413 sens_read, 1414 cat_read, 1415 }; 1416 1417 extern int ss_initialized; 1418 1419 /* 1420 * Read the configuration data from a policy database binary 1421 * representation file into a policy database structure. 1422 */ 1423 int policydb_read(struct policydb *p, void *fp) 1424 { 1425 struct role_allow *ra, *lra; 1426 struct role_trans *tr, *ltr; 1427 struct ocontext *l, *c, *newc; 1428 struct genfs *genfs_p, *genfs, *newgenfs; 1429 int i, j, rc; 1430 __le32 buf[8]; 1431 u32 len, len2, config, nprim, nel, nel2; 1432 char *policydb_str; 1433 struct policydb_compat_info *info; 1434 struct range_trans *rt, *lrt; 1435 1436 config = 0; 1437 1438 rc = policydb_init(p); 1439 if (rc) 1440 goto out; 1441 1442 /* Read the magic number and string length. */ 1443 rc = next_entry(buf, fp, sizeof(u32)* 2); 1444 if (rc < 0) 1445 goto bad; 1446 1447 if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) { 1448 printk(KERN_ERR "security: policydb magic number 0x%x does " 1449 "not match expected magic number 0x%x\n", 1450 le32_to_cpu(buf[0]), POLICYDB_MAGIC); 1451 goto bad; 1452 } 1453 1454 len = le32_to_cpu(buf[1]); 1455 if (len != strlen(POLICYDB_STRING)) { 1456 printk(KERN_ERR "security: policydb string length %d does not " 1457 "match expected length %Zu\n", 1458 len, strlen(POLICYDB_STRING)); 1459 goto bad; 1460 } 1461 policydb_str = kmalloc(len + 1,GFP_KERNEL); 1462 if (!policydb_str) { 1463 printk(KERN_ERR "security: unable to allocate memory for policydb " 1464 "string of length %d\n", len); 1465 rc = -ENOMEM; 1466 goto bad; 1467 } 1468 rc = next_entry(policydb_str, fp, len); 1469 if (rc < 0) { 1470 printk(KERN_ERR "security: truncated policydb string identifier\n"); 1471 kfree(policydb_str); 1472 goto bad; 1473 } 1474 policydb_str[len] = 0; 1475 if (strcmp(policydb_str, POLICYDB_STRING)) { 1476 printk(KERN_ERR "security: policydb string %s does not match " 1477 "my string %s\n", policydb_str, POLICYDB_STRING); 1478 kfree(policydb_str); 1479 goto bad; 1480 } 1481 /* Done with policydb_str. */ 1482 kfree(policydb_str); 1483 policydb_str = NULL; 1484 1485 /* Read the version, config, and table sizes. */ 1486 rc = next_entry(buf, fp, sizeof(u32)*4); 1487 if (rc < 0) 1488 goto bad; 1489 1490 p->policyvers = le32_to_cpu(buf[0]); 1491 if (p->policyvers < POLICYDB_VERSION_MIN || 1492 p->policyvers > POLICYDB_VERSION_MAX) { 1493 printk(KERN_ERR "security: policydb version %d does not match " 1494 "my version range %d-%d\n", 1495 le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX); 1496 goto bad; 1497 } 1498 1499 if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) { 1500 if (ss_initialized && !selinux_mls_enabled) { 1501 printk(KERN_ERR "Cannot switch between non-MLS and MLS " 1502 "policies\n"); 1503 goto bad; 1504 } 1505 selinux_mls_enabled = 1; 1506 config |= POLICYDB_CONFIG_MLS; 1507 1508 if (p->policyvers < POLICYDB_VERSION_MLS) { 1509 printk(KERN_ERR "security policydb version %d (MLS) " 1510 "not backwards compatible\n", p->policyvers); 1511 goto bad; 1512 } 1513 } else { 1514 if (ss_initialized && selinux_mls_enabled) { 1515 printk(KERN_ERR "Cannot switch between MLS and non-MLS " 1516 "policies\n"); 1517 goto bad; 1518 } 1519 } 1520 1521 info = policydb_lookup_compat(p->policyvers); 1522 if (!info) { 1523 printk(KERN_ERR "security: unable to find policy compat info " 1524 "for version %d\n", p->policyvers); 1525 goto bad; 1526 } 1527 1528 if (le32_to_cpu(buf[2]) != info->sym_num || 1529 le32_to_cpu(buf[3]) != info->ocon_num) { 1530 printk(KERN_ERR "security: policydb table sizes (%d,%d) do " 1531 "not match mine (%d,%d)\n", le32_to_cpu(buf[2]), 1532 le32_to_cpu(buf[3]), 1533 info->sym_num, info->ocon_num); 1534 goto bad; 1535 } 1536 1537 for (i = 0; i < info->sym_num; i++) { 1538 rc = next_entry(buf, fp, sizeof(u32)*2); 1539 if (rc < 0) 1540 goto bad; 1541 nprim = le32_to_cpu(buf[0]); 1542 nel = le32_to_cpu(buf[1]); 1543 for (j = 0; j < nel; j++) { 1544 rc = read_f[i](p, p->symtab[i].table, fp); 1545 if (rc) 1546 goto bad; 1547 } 1548 1549 p->symtab[i].nprim = nprim; 1550 } 1551 1552 rc = avtab_read(&p->te_avtab, fp, p->policyvers); 1553 if (rc) 1554 goto bad; 1555 1556 if (p->policyvers >= POLICYDB_VERSION_BOOL) { 1557 rc = cond_read_list(p, fp); 1558 if (rc) 1559 goto bad; 1560 } 1561 1562 rc = next_entry(buf, fp, sizeof(u32)); 1563 if (rc < 0) 1564 goto bad; 1565 nel = le32_to_cpu(buf[0]); 1566 ltr = NULL; 1567 for (i = 0; i < nel; i++) { 1568 tr = kmalloc(sizeof(*tr), GFP_KERNEL); 1569 if (!tr) { 1570 rc = -ENOMEM; 1571 goto bad; 1572 } 1573 memset(tr, 0, sizeof(*tr)); 1574 if (ltr) { 1575 ltr->next = tr; 1576 } else { 1577 p->role_tr = tr; 1578 } 1579 rc = next_entry(buf, fp, sizeof(u32)*3); 1580 if (rc < 0) 1581 goto bad; 1582 tr->role = le32_to_cpu(buf[0]); 1583 tr->type = le32_to_cpu(buf[1]); 1584 tr->new_role = le32_to_cpu(buf[2]); 1585 ltr = tr; 1586 } 1587 1588 rc = next_entry(buf, fp, sizeof(u32)); 1589 if (rc < 0) 1590 goto bad; 1591 nel = le32_to_cpu(buf[0]); 1592 lra = NULL; 1593 for (i = 0; i < nel; i++) { 1594 ra = kmalloc(sizeof(*ra), GFP_KERNEL); 1595 if (!ra) { 1596 rc = -ENOMEM; 1597 goto bad; 1598 } 1599 memset(ra, 0, sizeof(*ra)); 1600 if (lra) { 1601 lra->next = ra; 1602 } else { 1603 p->role_allow = ra; 1604 } 1605 rc = next_entry(buf, fp, sizeof(u32)*2); 1606 if (rc < 0) 1607 goto bad; 1608 ra->role = le32_to_cpu(buf[0]); 1609 ra->new_role = le32_to_cpu(buf[1]); 1610 lra = ra; 1611 } 1612 1613 rc = policydb_index_classes(p); 1614 if (rc) 1615 goto bad; 1616 1617 rc = policydb_index_others(p); 1618 if (rc) 1619 goto bad; 1620 1621 for (i = 0; i < info->ocon_num; i++) { 1622 rc = next_entry(buf, fp, sizeof(u32)); 1623 if (rc < 0) 1624 goto bad; 1625 nel = le32_to_cpu(buf[0]); 1626 l = NULL; 1627 for (j = 0; j < nel; j++) { 1628 c = kmalloc(sizeof(*c), GFP_KERNEL); 1629 if (!c) { 1630 rc = -ENOMEM; 1631 goto bad; 1632 } 1633 memset(c, 0, sizeof(*c)); 1634 if (l) { 1635 l->next = c; 1636 } else { 1637 p->ocontexts[i] = c; 1638 } 1639 l = c; 1640 rc = -EINVAL; 1641 switch (i) { 1642 case OCON_ISID: 1643 rc = next_entry(buf, fp, sizeof(u32)); 1644 if (rc < 0) 1645 goto bad; 1646 c->sid[0] = le32_to_cpu(buf[0]); 1647 rc = context_read_and_validate(&c->context[0], p, fp); 1648 if (rc) 1649 goto bad; 1650 break; 1651 case OCON_FS: 1652 case OCON_NETIF: 1653 rc = next_entry(buf, fp, sizeof(u32)); 1654 if (rc < 0) 1655 goto bad; 1656 len = le32_to_cpu(buf[0]); 1657 c->u.name = kmalloc(len + 1,GFP_KERNEL); 1658 if (!c->u.name) { 1659 rc = -ENOMEM; 1660 goto bad; 1661 } 1662 rc = next_entry(c->u.name, fp, len); 1663 if (rc < 0) 1664 goto bad; 1665 c->u.name[len] = 0; 1666 rc = context_read_and_validate(&c->context[0], p, fp); 1667 if (rc) 1668 goto bad; 1669 rc = context_read_and_validate(&c->context[1], p, fp); 1670 if (rc) 1671 goto bad; 1672 break; 1673 case OCON_PORT: 1674 rc = next_entry(buf, fp, sizeof(u32)*3); 1675 if (rc < 0) 1676 goto bad; 1677 c->u.port.protocol = le32_to_cpu(buf[0]); 1678 c->u.port.low_port = le32_to_cpu(buf[1]); 1679 c->u.port.high_port = le32_to_cpu(buf[2]); 1680 rc = context_read_and_validate(&c->context[0], p, fp); 1681 if (rc) 1682 goto bad; 1683 break; 1684 case OCON_NODE: 1685 rc = next_entry(buf, fp, sizeof(u32)* 2); 1686 if (rc < 0) 1687 goto bad; 1688 c->u.node.addr = le32_to_cpu(buf[0]); 1689 c->u.node.mask = le32_to_cpu(buf[1]); 1690 rc = context_read_and_validate(&c->context[0], p, fp); 1691 if (rc) 1692 goto bad; 1693 break; 1694 case OCON_FSUSE: 1695 rc = next_entry(buf, fp, sizeof(u32)*2); 1696 if (rc < 0) 1697 goto bad; 1698 c->v.behavior = le32_to_cpu(buf[0]); 1699 if (c->v.behavior > SECURITY_FS_USE_NONE) 1700 goto bad; 1701 len = le32_to_cpu(buf[1]); 1702 c->u.name = kmalloc(len + 1,GFP_KERNEL); 1703 if (!c->u.name) { 1704 rc = -ENOMEM; 1705 goto bad; 1706 } 1707 rc = next_entry(c->u.name, fp, len); 1708 if (rc < 0) 1709 goto bad; 1710 c->u.name[len] = 0; 1711 rc = context_read_and_validate(&c->context[0], p, fp); 1712 if (rc) 1713 goto bad; 1714 break; 1715 case OCON_NODE6: { 1716 int k; 1717 1718 rc = next_entry(buf, fp, sizeof(u32) * 8); 1719 if (rc < 0) 1720 goto bad; 1721 for (k = 0; k < 4; k++) 1722 c->u.node6.addr[k] = le32_to_cpu(buf[k]); 1723 for (k = 0; k < 4; k++) 1724 c->u.node6.mask[k] = le32_to_cpu(buf[k+4]); 1725 if (context_read_and_validate(&c->context[0], p, fp)) 1726 goto bad; 1727 break; 1728 } 1729 } 1730 } 1731 } 1732 1733 rc = next_entry(buf, fp, sizeof(u32)); 1734 if (rc < 0) 1735 goto bad; 1736 nel = le32_to_cpu(buf[0]); 1737 genfs_p = NULL; 1738 rc = -EINVAL; 1739 for (i = 0; i < nel; i++) { 1740 rc = next_entry(buf, fp, sizeof(u32)); 1741 if (rc < 0) 1742 goto bad; 1743 len = le32_to_cpu(buf[0]); 1744 newgenfs = kmalloc(sizeof(*newgenfs), GFP_KERNEL); 1745 if (!newgenfs) { 1746 rc = -ENOMEM; 1747 goto bad; 1748 } 1749 memset(newgenfs, 0, sizeof(*newgenfs)); 1750 1751 newgenfs->fstype = kmalloc(len + 1,GFP_KERNEL); 1752 if (!newgenfs->fstype) { 1753 rc = -ENOMEM; 1754 kfree(newgenfs); 1755 goto bad; 1756 } 1757 rc = next_entry(newgenfs->fstype, fp, len); 1758 if (rc < 0) { 1759 kfree(newgenfs->fstype); 1760 kfree(newgenfs); 1761 goto bad; 1762 } 1763 newgenfs->fstype[len] = 0; 1764 for (genfs_p = NULL, genfs = p->genfs; genfs; 1765 genfs_p = genfs, genfs = genfs->next) { 1766 if (strcmp(newgenfs->fstype, genfs->fstype) == 0) { 1767 printk(KERN_ERR "security: dup genfs " 1768 "fstype %s\n", newgenfs->fstype); 1769 kfree(newgenfs->fstype); 1770 kfree(newgenfs); 1771 goto bad; 1772 } 1773 if (strcmp(newgenfs->fstype, genfs->fstype) < 0) 1774 break; 1775 } 1776 newgenfs->next = genfs; 1777 if (genfs_p) 1778 genfs_p->next = newgenfs; 1779 else 1780 p->genfs = newgenfs; 1781 rc = next_entry(buf, fp, sizeof(u32)); 1782 if (rc < 0) 1783 goto bad; 1784 nel2 = le32_to_cpu(buf[0]); 1785 for (j = 0; j < nel2; j++) { 1786 rc = next_entry(buf, fp, sizeof(u32)); 1787 if (rc < 0) 1788 goto bad; 1789 len = le32_to_cpu(buf[0]); 1790 1791 newc = kmalloc(sizeof(*newc), GFP_KERNEL); 1792 if (!newc) { 1793 rc = -ENOMEM; 1794 goto bad; 1795 } 1796 memset(newc, 0, sizeof(*newc)); 1797 1798 newc->u.name = kmalloc(len + 1,GFP_KERNEL); 1799 if (!newc->u.name) { 1800 rc = -ENOMEM; 1801 goto bad_newc; 1802 } 1803 rc = next_entry(newc->u.name, fp, len); 1804 if (rc < 0) 1805 goto bad_newc; 1806 newc->u.name[len] = 0; 1807 rc = next_entry(buf, fp, sizeof(u32)); 1808 if (rc < 0) 1809 goto bad_newc; 1810 newc->v.sclass = le32_to_cpu(buf[0]); 1811 if (context_read_and_validate(&newc->context[0], p, fp)) 1812 goto bad_newc; 1813 for (l = NULL, c = newgenfs->head; c; 1814 l = c, c = c->next) { 1815 if (!strcmp(newc->u.name, c->u.name) && 1816 (!c->v.sclass || !newc->v.sclass || 1817 newc->v.sclass == c->v.sclass)) { 1818 printk(KERN_ERR "security: dup genfs " 1819 "entry (%s,%s)\n", 1820 newgenfs->fstype, c->u.name); 1821 goto bad_newc; 1822 } 1823 len = strlen(newc->u.name); 1824 len2 = strlen(c->u.name); 1825 if (len > len2) 1826 break; 1827 } 1828 1829 newc->next = c; 1830 if (l) 1831 l->next = newc; 1832 else 1833 newgenfs->head = newc; 1834 } 1835 } 1836 1837 if (p->policyvers >= POLICYDB_VERSION_MLS) { 1838 rc = next_entry(buf, fp, sizeof(u32)); 1839 if (rc < 0) 1840 goto bad; 1841 nel = le32_to_cpu(buf[0]); 1842 lrt = NULL; 1843 for (i = 0; i < nel; i++) { 1844 rt = kmalloc(sizeof(*rt), GFP_KERNEL); 1845 if (!rt) { 1846 rc = -ENOMEM; 1847 goto bad; 1848 } 1849 memset(rt, 0, sizeof(*rt)); 1850 if (lrt) 1851 lrt->next = rt; 1852 else 1853 p->range_tr = rt; 1854 rc = next_entry(buf, fp, (sizeof(u32) * 2)); 1855 if (rc < 0) 1856 goto bad; 1857 rt->dom = le32_to_cpu(buf[0]); 1858 rt->type = le32_to_cpu(buf[1]); 1859 rc = mls_read_range_helper(&rt->range, fp); 1860 if (rc) 1861 goto bad; 1862 lrt = rt; 1863 } 1864 } 1865 1866 p->type_attr_map = kmalloc(p->p_types.nprim*sizeof(struct ebitmap), GFP_KERNEL); 1867 if (!p->type_attr_map) 1868 goto bad; 1869 1870 for (i = 0; i < p->p_types.nprim; i++) { 1871 ebitmap_init(&p->type_attr_map[i]); 1872 if (p->policyvers >= POLICYDB_VERSION_AVTAB) { 1873 if (ebitmap_read(&p->type_attr_map[i], fp)) 1874 goto bad; 1875 } 1876 /* add the type itself as the degenerate case */ 1877 if (ebitmap_set_bit(&p->type_attr_map[i], i, 1)) 1878 goto bad; 1879 } 1880 1881 rc = 0; 1882 out: 1883 return rc; 1884 bad_newc: 1885 ocontext_destroy(newc,OCON_FSUSE); 1886 bad: 1887 if (!rc) 1888 rc = -EINVAL; 1889 policydb_destroy(p); 1890 goto out; 1891 } 1892