xref: /linux/security/selinux/ss/policydb.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6 
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  * 	Added conditional policy language extensions
15  *
16  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
17  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
18  *	This program is free software; you can redistribute it and/or modify
19  *  	it under the terms of the GNU General Public License as published by
20  *	the Free Software Foundation, version 2.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/errno.h>
27 #include "security.h"
28 
29 #include "policydb.h"
30 #include "conditional.h"
31 #include "mls.h"
32 
33 #define _DEBUG_HASHES
34 
35 #ifdef DEBUG_HASHES
36 static char *symtab_name[SYM_NUM] = {
37 	"common prefixes",
38 	"classes",
39 	"roles",
40 	"types",
41 	"users",
42 	"bools",
43 	"levels",
44 	"categories",
45 };
46 #endif
47 
48 int selinux_mls_enabled = 0;
49 
50 static unsigned int symtab_sizes[SYM_NUM] = {
51 	2,
52 	32,
53 	16,
54 	512,
55 	128,
56 	16,
57 	16,
58 	16,
59 };
60 
61 struct policydb_compat_info {
62 	int version;
63 	int sym_num;
64 	int ocon_num;
65 };
66 
67 /* These need to be updated if SYM_NUM or OCON_NUM changes */
68 static struct policydb_compat_info policydb_compat[] = {
69 	{
70 		.version        = POLICYDB_VERSION_BASE,
71 		.sym_num        = SYM_NUM - 3,
72 		.ocon_num       = OCON_NUM - 1,
73 	},
74 	{
75 		.version        = POLICYDB_VERSION_BOOL,
76 		.sym_num        = SYM_NUM - 2,
77 		.ocon_num       = OCON_NUM - 1,
78 	},
79 	{
80 		.version        = POLICYDB_VERSION_IPV6,
81 		.sym_num        = SYM_NUM - 2,
82 		.ocon_num       = OCON_NUM,
83 	},
84 	{
85 		.version        = POLICYDB_VERSION_NLCLASS,
86 		.sym_num        = SYM_NUM - 2,
87 		.ocon_num       = OCON_NUM,
88 	},
89 	{
90 		.version        = POLICYDB_VERSION_MLS,
91 		.sym_num        = SYM_NUM,
92 		.ocon_num       = OCON_NUM,
93 	},
94 	{
95 		.version        = POLICYDB_VERSION_AVTAB,
96 		.sym_num        = SYM_NUM,
97 		.ocon_num       = OCON_NUM,
98 	},
99 };
100 
101 static struct policydb_compat_info *policydb_lookup_compat(int version)
102 {
103 	int i;
104 	struct policydb_compat_info *info = NULL;
105 
106 	for (i = 0; i < sizeof(policydb_compat)/sizeof(*info); i++) {
107 		if (policydb_compat[i].version == version) {
108 			info = &policydb_compat[i];
109 			break;
110 		}
111 	}
112 	return info;
113 }
114 
115 /*
116  * Initialize the role table.
117  */
118 static int roles_init(struct policydb *p)
119 {
120 	char *key = NULL;
121 	int rc;
122 	struct role_datum *role;
123 
124 	role = kmalloc(sizeof(*role), GFP_KERNEL);
125 	if (!role) {
126 		rc = -ENOMEM;
127 		goto out;
128 	}
129 	memset(role, 0, sizeof(*role));
130 	role->value = ++p->p_roles.nprim;
131 	if (role->value != OBJECT_R_VAL) {
132 		rc = -EINVAL;
133 		goto out_free_role;
134 	}
135 	key = kmalloc(strlen(OBJECT_R)+1,GFP_KERNEL);
136 	if (!key) {
137 		rc = -ENOMEM;
138 		goto out_free_role;
139 	}
140 	strcpy(key, OBJECT_R);
141 	rc = hashtab_insert(p->p_roles.table, key, role);
142 	if (rc)
143 		goto out_free_key;
144 out:
145 	return rc;
146 
147 out_free_key:
148 	kfree(key);
149 out_free_role:
150 	kfree(role);
151 	goto out;
152 }
153 
154 /*
155  * Initialize a policy database structure.
156  */
157 static int policydb_init(struct policydb *p)
158 {
159 	int i, rc;
160 
161 	memset(p, 0, sizeof(*p));
162 
163 	for (i = 0; i < SYM_NUM; i++) {
164 		rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
165 		if (rc)
166 			goto out_free_symtab;
167 	}
168 
169 	rc = avtab_init(&p->te_avtab);
170 	if (rc)
171 		goto out_free_symtab;
172 
173 	rc = roles_init(p);
174 	if (rc)
175 		goto out_free_avtab;
176 
177 	rc = cond_policydb_init(p);
178 	if (rc)
179 		goto out_free_avtab;
180 
181 out:
182 	return rc;
183 
184 out_free_avtab:
185 	avtab_destroy(&p->te_avtab);
186 
187 out_free_symtab:
188 	for (i = 0; i < SYM_NUM; i++)
189 		hashtab_destroy(p->symtab[i].table);
190 	goto out;
191 }
192 
193 /*
194  * The following *_index functions are used to
195  * define the val_to_name and val_to_struct arrays
196  * in a policy database structure.  The val_to_name
197  * arrays are used when converting security context
198  * structures into string representations.  The
199  * val_to_struct arrays are used when the attributes
200  * of a class, role, or user are needed.
201  */
202 
203 static int common_index(void *key, void *datum, void *datap)
204 {
205 	struct policydb *p;
206 	struct common_datum *comdatum;
207 
208 	comdatum = datum;
209 	p = datap;
210 	if (!comdatum->value || comdatum->value > p->p_commons.nprim)
211 		return -EINVAL;
212 	p->p_common_val_to_name[comdatum->value - 1] = key;
213 	return 0;
214 }
215 
216 static int class_index(void *key, void *datum, void *datap)
217 {
218 	struct policydb *p;
219 	struct class_datum *cladatum;
220 
221 	cladatum = datum;
222 	p = datap;
223 	if (!cladatum->value || cladatum->value > p->p_classes.nprim)
224 		return -EINVAL;
225 	p->p_class_val_to_name[cladatum->value - 1] = key;
226 	p->class_val_to_struct[cladatum->value - 1] = cladatum;
227 	return 0;
228 }
229 
230 static int role_index(void *key, void *datum, void *datap)
231 {
232 	struct policydb *p;
233 	struct role_datum *role;
234 
235 	role = datum;
236 	p = datap;
237 	if (!role->value || role->value > p->p_roles.nprim)
238 		return -EINVAL;
239 	p->p_role_val_to_name[role->value - 1] = key;
240 	p->role_val_to_struct[role->value - 1] = role;
241 	return 0;
242 }
243 
244 static int type_index(void *key, void *datum, void *datap)
245 {
246 	struct policydb *p;
247 	struct type_datum *typdatum;
248 
249 	typdatum = datum;
250 	p = datap;
251 
252 	if (typdatum->primary) {
253 		if (!typdatum->value || typdatum->value > p->p_types.nprim)
254 			return -EINVAL;
255 		p->p_type_val_to_name[typdatum->value - 1] = key;
256 	}
257 
258 	return 0;
259 }
260 
261 static int user_index(void *key, void *datum, void *datap)
262 {
263 	struct policydb *p;
264 	struct user_datum *usrdatum;
265 
266 	usrdatum = datum;
267 	p = datap;
268 	if (!usrdatum->value || usrdatum->value > p->p_users.nprim)
269 		return -EINVAL;
270 	p->p_user_val_to_name[usrdatum->value - 1] = key;
271 	p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
272 	return 0;
273 }
274 
275 static int sens_index(void *key, void *datum, void *datap)
276 {
277 	struct policydb *p;
278 	struct level_datum *levdatum;
279 
280 	levdatum = datum;
281 	p = datap;
282 
283 	if (!levdatum->isalias) {
284 		if (!levdatum->level->sens ||
285 		    levdatum->level->sens > p->p_levels.nprim)
286 			return -EINVAL;
287 		p->p_sens_val_to_name[levdatum->level->sens - 1] = key;
288 	}
289 
290 	return 0;
291 }
292 
293 static int cat_index(void *key, void *datum, void *datap)
294 {
295 	struct policydb *p;
296 	struct cat_datum *catdatum;
297 
298 	catdatum = datum;
299 	p = datap;
300 
301 	if (!catdatum->isalias) {
302 		if (!catdatum->value || catdatum->value > p->p_cats.nprim)
303 			return -EINVAL;
304 		p->p_cat_val_to_name[catdatum->value - 1] = key;
305 	}
306 
307 	return 0;
308 }
309 
310 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
311 {
312 	common_index,
313 	class_index,
314 	role_index,
315 	type_index,
316 	user_index,
317 	cond_index_bool,
318 	sens_index,
319 	cat_index,
320 };
321 
322 /*
323  * Define the common val_to_name array and the class
324  * val_to_name and val_to_struct arrays in a policy
325  * database structure.
326  *
327  * Caller must clean up upon failure.
328  */
329 static int policydb_index_classes(struct policydb *p)
330 {
331 	int rc;
332 
333 	p->p_common_val_to_name =
334 		kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL);
335 	if (!p->p_common_val_to_name) {
336 		rc = -ENOMEM;
337 		goto out;
338 	}
339 
340 	rc = hashtab_map(p->p_commons.table, common_index, p);
341 	if (rc)
342 		goto out;
343 
344 	p->class_val_to_struct =
345 		kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL);
346 	if (!p->class_val_to_struct) {
347 		rc = -ENOMEM;
348 		goto out;
349 	}
350 
351 	p->p_class_val_to_name =
352 		kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL);
353 	if (!p->p_class_val_to_name) {
354 		rc = -ENOMEM;
355 		goto out;
356 	}
357 
358 	rc = hashtab_map(p->p_classes.table, class_index, p);
359 out:
360 	return rc;
361 }
362 
363 #ifdef DEBUG_HASHES
364 static void symtab_hash_eval(struct symtab *s)
365 {
366 	int i;
367 
368 	for (i = 0; i < SYM_NUM; i++) {
369 		struct hashtab *h = s[i].table;
370 		struct hashtab_info info;
371 
372 		hashtab_stat(h, &info);
373 		printk(KERN_INFO "%s:  %d entries and %d/%d buckets used, "
374 		       "longest chain length %d\n", symtab_name[i], h->nel,
375 		       info.slots_used, h->size, info.max_chain_len);
376 	}
377 }
378 #endif
379 
380 /*
381  * Define the other val_to_name and val_to_struct arrays
382  * in a policy database structure.
383  *
384  * Caller must clean up on failure.
385  */
386 static int policydb_index_others(struct policydb *p)
387 {
388 	int i, rc = 0;
389 
390 	printk(KERN_INFO "security:  %d users, %d roles, %d types, %d bools",
391 	       p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
392 	if (selinux_mls_enabled)
393 		printk(", %d sens, %d cats", p->p_levels.nprim,
394 		       p->p_cats.nprim);
395 	printk("\n");
396 
397 	printk(KERN_INFO "security:  %d classes, %d rules\n",
398 	       p->p_classes.nprim, p->te_avtab.nel);
399 
400 #ifdef DEBUG_HASHES
401 	avtab_hash_eval(&p->te_avtab, "rules");
402 	symtab_hash_eval(p->symtab);
403 #endif
404 
405 	p->role_val_to_struct =
406 		kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
407 		        GFP_KERNEL);
408 	if (!p->role_val_to_struct) {
409 		rc = -ENOMEM;
410 		goto out;
411 	}
412 
413 	p->user_val_to_struct =
414 		kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
415 		        GFP_KERNEL);
416 	if (!p->user_val_to_struct) {
417 		rc = -ENOMEM;
418 		goto out;
419 	}
420 
421 	if (cond_init_bool_indexes(p)) {
422 		rc = -ENOMEM;
423 		goto out;
424 	}
425 
426 	for (i = SYM_ROLES; i < SYM_NUM; i++) {
427 		p->sym_val_to_name[i] =
428 			kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL);
429 		if (!p->sym_val_to_name[i]) {
430 			rc = -ENOMEM;
431 			goto out;
432 		}
433 		rc = hashtab_map(p->symtab[i].table, index_f[i], p);
434 		if (rc)
435 			goto out;
436 	}
437 
438 out:
439 	return rc;
440 }
441 
442 /*
443  * The following *_destroy functions are used to
444  * free any memory allocated for each kind of
445  * symbol data in the policy database.
446  */
447 
448 static int perm_destroy(void *key, void *datum, void *p)
449 {
450 	kfree(key);
451 	kfree(datum);
452 	return 0;
453 }
454 
455 static int common_destroy(void *key, void *datum, void *p)
456 {
457 	struct common_datum *comdatum;
458 
459 	kfree(key);
460 	comdatum = datum;
461 	hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
462 	hashtab_destroy(comdatum->permissions.table);
463 	kfree(datum);
464 	return 0;
465 }
466 
467 static int class_destroy(void *key, void *datum, void *p)
468 {
469 	struct class_datum *cladatum;
470 	struct constraint_node *constraint, *ctemp;
471 	struct constraint_expr *e, *etmp;
472 
473 	kfree(key);
474 	cladatum = datum;
475 	hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
476 	hashtab_destroy(cladatum->permissions.table);
477 	constraint = cladatum->constraints;
478 	while (constraint) {
479 		e = constraint->expr;
480 		while (e) {
481 			ebitmap_destroy(&e->names);
482 			etmp = e;
483 			e = e->next;
484 			kfree(etmp);
485 		}
486 		ctemp = constraint;
487 		constraint = constraint->next;
488 		kfree(ctemp);
489 	}
490 
491 	constraint = cladatum->validatetrans;
492 	while (constraint) {
493 		e = constraint->expr;
494 		while (e) {
495 			ebitmap_destroy(&e->names);
496 			etmp = e;
497 			e = e->next;
498 			kfree(etmp);
499 		}
500 		ctemp = constraint;
501 		constraint = constraint->next;
502 		kfree(ctemp);
503 	}
504 
505 	kfree(cladatum->comkey);
506 	kfree(datum);
507 	return 0;
508 }
509 
510 static int role_destroy(void *key, void *datum, void *p)
511 {
512 	struct role_datum *role;
513 
514 	kfree(key);
515 	role = datum;
516 	ebitmap_destroy(&role->dominates);
517 	ebitmap_destroy(&role->types);
518 	kfree(datum);
519 	return 0;
520 }
521 
522 static int type_destroy(void *key, void *datum, void *p)
523 {
524 	kfree(key);
525 	kfree(datum);
526 	return 0;
527 }
528 
529 static int user_destroy(void *key, void *datum, void *p)
530 {
531 	struct user_datum *usrdatum;
532 
533 	kfree(key);
534 	usrdatum = datum;
535 	ebitmap_destroy(&usrdatum->roles);
536 	ebitmap_destroy(&usrdatum->range.level[0].cat);
537 	ebitmap_destroy(&usrdatum->range.level[1].cat);
538 	ebitmap_destroy(&usrdatum->dfltlevel.cat);
539 	kfree(datum);
540 	return 0;
541 }
542 
543 static int sens_destroy(void *key, void *datum, void *p)
544 {
545 	struct level_datum *levdatum;
546 
547 	kfree(key);
548 	levdatum = datum;
549 	ebitmap_destroy(&levdatum->level->cat);
550 	kfree(levdatum->level);
551 	kfree(datum);
552 	return 0;
553 }
554 
555 static int cat_destroy(void *key, void *datum, void *p)
556 {
557 	kfree(key);
558 	kfree(datum);
559 	return 0;
560 }
561 
562 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
563 {
564 	common_destroy,
565 	class_destroy,
566 	role_destroy,
567 	type_destroy,
568 	user_destroy,
569 	cond_destroy_bool,
570 	sens_destroy,
571 	cat_destroy,
572 };
573 
574 static void ocontext_destroy(struct ocontext *c, int i)
575 {
576 	context_destroy(&c->context[0]);
577 	context_destroy(&c->context[1]);
578 	if (i == OCON_ISID || i == OCON_FS ||
579 	    i == OCON_NETIF || i == OCON_FSUSE)
580 		kfree(c->u.name);
581 	kfree(c);
582 }
583 
584 /*
585  * Free any memory allocated by a policy database structure.
586  */
587 void policydb_destroy(struct policydb *p)
588 {
589 	struct ocontext *c, *ctmp;
590 	struct genfs *g, *gtmp;
591 	int i;
592 	struct role_allow *ra, *lra = NULL;
593 	struct role_trans *tr, *ltr = NULL;
594 	struct range_trans *rt, *lrt = NULL;
595 
596 	for (i = 0; i < SYM_NUM; i++) {
597 		hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
598 		hashtab_destroy(p->symtab[i].table);
599 	}
600 
601 	for (i = 0; i < SYM_NUM; i++)
602 		kfree(p->sym_val_to_name[i]);
603 
604 	kfree(p->class_val_to_struct);
605 	kfree(p->role_val_to_struct);
606 	kfree(p->user_val_to_struct);
607 
608 	avtab_destroy(&p->te_avtab);
609 
610 	for (i = 0; i < OCON_NUM; i++) {
611 		c = p->ocontexts[i];
612 		while (c) {
613 			ctmp = c;
614 			c = c->next;
615 			ocontext_destroy(ctmp,i);
616 		}
617 	}
618 
619 	g = p->genfs;
620 	while (g) {
621 		kfree(g->fstype);
622 		c = g->head;
623 		while (c) {
624 			ctmp = c;
625 			c = c->next;
626 			ocontext_destroy(ctmp,OCON_FSUSE);
627 		}
628 		gtmp = g;
629 		g = g->next;
630 		kfree(gtmp);
631 	}
632 
633 	cond_policydb_destroy(p);
634 
635 	for (tr = p->role_tr; tr; tr = tr->next) {
636 		if (ltr) kfree(ltr);
637 		ltr = tr;
638 	}
639 	if (ltr) kfree(ltr);
640 
641 	for (ra = p->role_allow; ra; ra = ra -> next) {
642 		if (lra) kfree(lra);
643 		lra = ra;
644 	}
645 	if (lra) kfree(lra);
646 
647 	for (rt = p->range_tr; rt; rt = rt -> next) {
648 		if (lrt) kfree(lrt);
649 		lrt = rt;
650 	}
651 	if (lrt) kfree(lrt);
652 
653 	for (i = 0; i < p->p_types.nprim; i++)
654 		ebitmap_destroy(&p->type_attr_map[i]);
655 	kfree(p->type_attr_map);
656 
657 	return;
658 }
659 
660 /*
661  * Load the initial SIDs specified in a policy database
662  * structure into a SID table.
663  */
664 int policydb_load_isids(struct policydb *p, struct sidtab *s)
665 {
666 	struct ocontext *head, *c;
667 	int rc;
668 
669 	rc = sidtab_init(s);
670 	if (rc) {
671 		printk(KERN_ERR "security:  out of memory on SID table init\n");
672 		goto out;
673 	}
674 
675 	head = p->ocontexts[OCON_ISID];
676 	for (c = head; c; c = c->next) {
677 		if (!c->context[0].user) {
678 			printk(KERN_ERR "security:  SID %s was never "
679 			       "defined.\n", c->u.name);
680 			rc = -EINVAL;
681 			goto out;
682 		}
683 		if (sidtab_insert(s, c->sid[0], &c->context[0])) {
684 			printk(KERN_ERR "security:  unable to load initial "
685 			       "SID %s.\n", c->u.name);
686 			rc = -EINVAL;
687 			goto out;
688 		}
689 	}
690 out:
691 	return rc;
692 }
693 
694 /*
695  * Return 1 if the fields in the security context
696  * structure `c' are valid.  Return 0 otherwise.
697  */
698 int policydb_context_isvalid(struct policydb *p, struct context *c)
699 {
700 	struct role_datum *role;
701 	struct user_datum *usrdatum;
702 
703 	if (!c->role || c->role > p->p_roles.nprim)
704 		return 0;
705 
706 	if (!c->user || c->user > p->p_users.nprim)
707 		return 0;
708 
709 	if (!c->type || c->type > p->p_types.nprim)
710 		return 0;
711 
712 	if (c->role != OBJECT_R_VAL) {
713 		/*
714 		 * Role must be authorized for the type.
715 		 */
716 		role = p->role_val_to_struct[c->role - 1];
717 		if (!ebitmap_get_bit(&role->types,
718 				     c->type - 1))
719 			/* role may not be associated with type */
720 			return 0;
721 
722 		/*
723 		 * User must be authorized for the role.
724 		 */
725 		usrdatum = p->user_val_to_struct[c->user - 1];
726 		if (!usrdatum)
727 			return 0;
728 
729 		if (!ebitmap_get_bit(&usrdatum->roles,
730 				     c->role - 1))
731 			/* user may not be associated with role */
732 			return 0;
733 	}
734 
735 	if (!mls_context_isvalid(p, c))
736 		return 0;
737 
738 	return 1;
739 }
740 
741 /*
742  * Read a MLS range structure from a policydb binary
743  * representation file.
744  */
745 static int mls_read_range_helper(struct mls_range *r, void *fp)
746 {
747 	__le32 buf[2];
748 	u32 items;
749 	int rc;
750 
751 	rc = next_entry(buf, fp, sizeof(u32));
752 	if (rc < 0)
753 		goto out;
754 
755 	items = le32_to_cpu(buf[0]);
756 	if (items > ARRAY_SIZE(buf)) {
757 		printk(KERN_ERR "security: mls:  range overflow\n");
758 		rc = -EINVAL;
759 		goto out;
760 	}
761 	rc = next_entry(buf, fp, sizeof(u32) * items);
762 	if (rc < 0) {
763 		printk(KERN_ERR "security: mls:  truncated range\n");
764 		goto out;
765 	}
766 	r->level[0].sens = le32_to_cpu(buf[0]);
767 	if (items > 1)
768 		r->level[1].sens = le32_to_cpu(buf[1]);
769 	else
770 		r->level[1].sens = r->level[0].sens;
771 
772 	rc = ebitmap_read(&r->level[0].cat, fp);
773 	if (rc) {
774 		printk(KERN_ERR "security: mls:  error reading low "
775 		       "categories\n");
776 		goto out;
777 	}
778 	if (items > 1) {
779 		rc = ebitmap_read(&r->level[1].cat, fp);
780 		if (rc) {
781 			printk(KERN_ERR "security: mls:  error reading high "
782 			       "categories\n");
783 			goto bad_high;
784 		}
785 	} else {
786 		rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
787 		if (rc) {
788 			printk(KERN_ERR "security: mls:  out of memory\n");
789 			goto bad_high;
790 		}
791 	}
792 
793 	rc = 0;
794 out:
795 	return rc;
796 bad_high:
797 	ebitmap_destroy(&r->level[0].cat);
798 	goto out;
799 }
800 
801 /*
802  * Read and validate a security context structure
803  * from a policydb binary representation file.
804  */
805 static int context_read_and_validate(struct context *c,
806 				     struct policydb *p,
807 				     void *fp)
808 {
809 	__le32 buf[3];
810 	int rc;
811 
812 	rc = next_entry(buf, fp, sizeof buf);
813 	if (rc < 0) {
814 		printk(KERN_ERR "security: context truncated\n");
815 		goto out;
816 	}
817 	c->user = le32_to_cpu(buf[0]);
818 	c->role = le32_to_cpu(buf[1]);
819 	c->type = le32_to_cpu(buf[2]);
820 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
821 		if (mls_read_range_helper(&c->range, fp)) {
822 			printk(KERN_ERR "security: error reading MLS range of "
823 			       "context\n");
824 			rc = -EINVAL;
825 			goto out;
826 		}
827 	}
828 
829 	if (!policydb_context_isvalid(p, c)) {
830 		printk(KERN_ERR "security:  invalid security context\n");
831 		context_destroy(c);
832 		rc = -EINVAL;
833 	}
834 out:
835 	return rc;
836 }
837 
838 /*
839  * The following *_read functions are used to
840  * read the symbol data from a policy database
841  * binary representation file.
842  */
843 
844 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
845 {
846 	char *key = NULL;
847 	struct perm_datum *perdatum;
848 	int rc;
849 	__le32 buf[2];
850 	u32 len;
851 
852 	perdatum = kmalloc(sizeof(*perdatum), GFP_KERNEL);
853 	if (!perdatum) {
854 		rc = -ENOMEM;
855 		goto out;
856 	}
857 	memset(perdatum, 0, sizeof(*perdatum));
858 
859 	rc = next_entry(buf, fp, sizeof buf);
860 	if (rc < 0)
861 		goto bad;
862 
863 	len = le32_to_cpu(buf[0]);
864 	perdatum->value = le32_to_cpu(buf[1]);
865 
866 	key = kmalloc(len + 1,GFP_KERNEL);
867 	if (!key) {
868 		rc = -ENOMEM;
869 		goto bad;
870 	}
871 	rc = next_entry(key, fp, len);
872 	if (rc < 0)
873 		goto bad;
874 	key[len] = 0;
875 
876 	rc = hashtab_insert(h, key, perdatum);
877 	if (rc)
878 		goto bad;
879 out:
880 	return rc;
881 bad:
882 	perm_destroy(key, perdatum, NULL);
883 	goto out;
884 }
885 
886 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
887 {
888 	char *key = NULL;
889 	struct common_datum *comdatum;
890 	__le32 buf[4];
891 	u32 len, nel;
892 	int i, rc;
893 
894 	comdatum = kmalloc(sizeof(*comdatum), GFP_KERNEL);
895 	if (!comdatum) {
896 		rc = -ENOMEM;
897 		goto out;
898 	}
899 	memset(comdatum, 0, sizeof(*comdatum));
900 
901 	rc = next_entry(buf, fp, sizeof buf);
902 	if (rc < 0)
903 		goto bad;
904 
905 	len = le32_to_cpu(buf[0]);
906 	comdatum->value = le32_to_cpu(buf[1]);
907 
908 	rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
909 	if (rc)
910 		goto bad;
911 	comdatum->permissions.nprim = le32_to_cpu(buf[2]);
912 	nel = le32_to_cpu(buf[3]);
913 
914 	key = kmalloc(len + 1,GFP_KERNEL);
915 	if (!key) {
916 		rc = -ENOMEM;
917 		goto bad;
918 	}
919 	rc = next_entry(key, fp, len);
920 	if (rc < 0)
921 		goto bad;
922 	key[len] = 0;
923 
924 	for (i = 0; i < nel; i++) {
925 		rc = perm_read(p, comdatum->permissions.table, fp);
926 		if (rc)
927 			goto bad;
928 	}
929 
930 	rc = hashtab_insert(h, key, comdatum);
931 	if (rc)
932 		goto bad;
933 out:
934 	return rc;
935 bad:
936 	common_destroy(key, comdatum, NULL);
937 	goto out;
938 }
939 
940 static int read_cons_helper(struct constraint_node **nodep, int ncons,
941                             int allowxtarget, void *fp)
942 {
943 	struct constraint_node *c, *lc;
944 	struct constraint_expr *e, *le;
945 	__le32 buf[3];
946 	u32 nexpr;
947 	int rc, i, j, depth;
948 
949 	lc = NULL;
950 	for (i = 0; i < ncons; i++) {
951 		c = kmalloc(sizeof(*c), GFP_KERNEL);
952 		if (!c)
953 			return -ENOMEM;
954 		memset(c, 0, sizeof(*c));
955 
956 		if (lc) {
957 			lc->next = c;
958 		} else {
959 			*nodep = c;
960 		}
961 
962 		rc = next_entry(buf, fp, (sizeof(u32) * 2));
963 		if (rc < 0)
964 			return rc;
965 		c->permissions = le32_to_cpu(buf[0]);
966 		nexpr = le32_to_cpu(buf[1]);
967 		le = NULL;
968 		depth = -1;
969 		for (j = 0; j < nexpr; j++) {
970 			e = kmalloc(sizeof(*e), GFP_KERNEL);
971 			if (!e)
972 				return -ENOMEM;
973 			memset(e, 0, sizeof(*e));
974 
975 			if (le) {
976 				le->next = e;
977 			} else {
978 				c->expr = e;
979 			}
980 
981 			rc = next_entry(buf, fp, (sizeof(u32) * 3));
982 			if (rc < 0)
983 				return rc;
984 			e->expr_type = le32_to_cpu(buf[0]);
985 			e->attr = le32_to_cpu(buf[1]);
986 			e->op = le32_to_cpu(buf[2]);
987 
988 			switch (e->expr_type) {
989 			case CEXPR_NOT:
990 				if (depth < 0)
991 					return -EINVAL;
992 				break;
993 			case CEXPR_AND:
994 			case CEXPR_OR:
995 				if (depth < 1)
996 					return -EINVAL;
997 				depth--;
998 				break;
999 			case CEXPR_ATTR:
1000 				if (depth == (CEXPR_MAXDEPTH - 1))
1001 					return -EINVAL;
1002 				depth++;
1003 				break;
1004 			case CEXPR_NAMES:
1005 				if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1006 					return -EINVAL;
1007 				if (depth == (CEXPR_MAXDEPTH - 1))
1008 					return -EINVAL;
1009 				depth++;
1010 				if (ebitmap_read(&e->names, fp))
1011 					return -EINVAL;
1012 				break;
1013 			default:
1014 				return -EINVAL;
1015 			}
1016 			le = e;
1017 		}
1018 		if (depth != 0)
1019 			return -EINVAL;
1020 		lc = c;
1021 	}
1022 
1023 	return 0;
1024 }
1025 
1026 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1027 {
1028 	char *key = NULL;
1029 	struct class_datum *cladatum;
1030 	__le32 buf[6];
1031 	u32 len, len2, ncons, nel;
1032 	int i, rc;
1033 
1034 	cladatum = kmalloc(sizeof(*cladatum), GFP_KERNEL);
1035 	if (!cladatum) {
1036 		rc = -ENOMEM;
1037 		goto out;
1038 	}
1039 	memset(cladatum, 0, sizeof(*cladatum));
1040 
1041 	rc = next_entry(buf, fp, sizeof(u32)*6);
1042 	if (rc < 0)
1043 		goto bad;
1044 
1045 	len = le32_to_cpu(buf[0]);
1046 	len2 = le32_to_cpu(buf[1]);
1047 	cladatum->value = le32_to_cpu(buf[2]);
1048 
1049 	rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1050 	if (rc)
1051 		goto bad;
1052 	cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1053 	nel = le32_to_cpu(buf[4]);
1054 
1055 	ncons = le32_to_cpu(buf[5]);
1056 
1057 	key = kmalloc(len + 1,GFP_KERNEL);
1058 	if (!key) {
1059 		rc = -ENOMEM;
1060 		goto bad;
1061 	}
1062 	rc = next_entry(key, fp, len);
1063 	if (rc < 0)
1064 		goto bad;
1065 	key[len] = 0;
1066 
1067 	if (len2) {
1068 		cladatum->comkey = kmalloc(len2 + 1,GFP_KERNEL);
1069 		if (!cladatum->comkey) {
1070 			rc = -ENOMEM;
1071 			goto bad;
1072 		}
1073 		rc = next_entry(cladatum->comkey, fp, len2);
1074 		if (rc < 0)
1075 			goto bad;
1076 		cladatum->comkey[len2] = 0;
1077 
1078 		cladatum->comdatum = hashtab_search(p->p_commons.table,
1079 						    cladatum->comkey);
1080 		if (!cladatum->comdatum) {
1081 			printk(KERN_ERR "security:  unknown common %s\n",
1082 			       cladatum->comkey);
1083 			rc = -EINVAL;
1084 			goto bad;
1085 		}
1086 	}
1087 	for (i = 0; i < nel; i++) {
1088 		rc = perm_read(p, cladatum->permissions.table, fp);
1089 		if (rc)
1090 			goto bad;
1091 	}
1092 
1093 	rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1094 	if (rc)
1095 		goto bad;
1096 
1097 	if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1098 		/* grab the validatetrans rules */
1099 		rc = next_entry(buf, fp, sizeof(u32));
1100 		if (rc < 0)
1101 			goto bad;
1102 		ncons = le32_to_cpu(buf[0]);
1103 		rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1104 		if (rc)
1105 			goto bad;
1106 	}
1107 
1108 	rc = hashtab_insert(h, key, cladatum);
1109 	if (rc)
1110 		goto bad;
1111 
1112 	rc = 0;
1113 out:
1114 	return rc;
1115 bad:
1116 	class_destroy(key, cladatum, NULL);
1117 	goto out;
1118 }
1119 
1120 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1121 {
1122 	char *key = NULL;
1123 	struct role_datum *role;
1124 	int rc;
1125 	__le32 buf[2];
1126 	u32 len;
1127 
1128 	role = kmalloc(sizeof(*role), GFP_KERNEL);
1129 	if (!role) {
1130 		rc = -ENOMEM;
1131 		goto out;
1132 	}
1133 	memset(role, 0, sizeof(*role));
1134 
1135 	rc = next_entry(buf, fp, sizeof buf);
1136 	if (rc < 0)
1137 		goto bad;
1138 
1139 	len = le32_to_cpu(buf[0]);
1140 	role->value = le32_to_cpu(buf[1]);
1141 
1142 	key = kmalloc(len + 1,GFP_KERNEL);
1143 	if (!key) {
1144 		rc = -ENOMEM;
1145 		goto bad;
1146 	}
1147 	rc = next_entry(key, fp, len);
1148 	if (rc < 0)
1149 		goto bad;
1150 	key[len] = 0;
1151 
1152 	rc = ebitmap_read(&role->dominates, fp);
1153 	if (rc)
1154 		goto bad;
1155 
1156 	rc = ebitmap_read(&role->types, fp);
1157 	if (rc)
1158 		goto bad;
1159 
1160 	if (strcmp(key, OBJECT_R) == 0) {
1161 		if (role->value != OBJECT_R_VAL) {
1162 			printk(KERN_ERR "Role %s has wrong value %d\n",
1163 			       OBJECT_R, role->value);
1164 			rc = -EINVAL;
1165 			goto bad;
1166 		}
1167 		rc = 0;
1168 		goto bad;
1169 	}
1170 
1171 	rc = hashtab_insert(h, key, role);
1172 	if (rc)
1173 		goto bad;
1174 out:
1175 	return rc;
1176 bad:
1177 	role_destroy(key, role, NULL);
1178 	goto out;
1179 }
1180 
1181 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1182 {
1183 	char *key = NULL;
1184 	struct type_datum *typdatum;
1185 	int rc;
1186 	__le32 buf[3];
1187 	u32 len;
1188 
1189 	typdatum = kmalloc(sizeof(*typdatum),GFP_KERNEL);
1190 	if (!typdatum) {
1191 		rc = -ENOMEM;
1192 		return rc;
1193 	}
1194 	memset(typdatum, 0, sizeof(*typdatum));
1195 
1196 	rc = next_entry(buf, fp, sizeof buf);
1197 	if (rc < 0)
1198 		goto bad;
1199 
1200 	len = le32_to_cpu(buf[0]);
1201 	typdatum->value = le32_to_cpu(buf[1]);
1202 	typdatum->primary = le32_to_cpu(buf[2]);
1203 
1204 	key = kmalloc(len + 1,GFP_KERNEL);
1205 	if (!key) {
1206 		rc = -ENOMEM;
1207 		goto bad;
1208 	}
1209 	rc = next_entry(key, fp, len);
1210 	if (rc < 0)
1211 		goto bad;
1212 	key[len] = 0;
1213 
1214 	rc = hashtab_insert(h, key, typdatum);
1215 	if (rc)
1216 		goto bad;
1217 out:
1218 	return rc;
1219 bad:
1220 	type_destroy(key, typdatum, NULL);
1221 	goto out;
1222 }
1223 
1224 
1225 /*
1226  * Read a MLS level structure from a policydb binary
1227  * representation file.
1228  */
1229 static int mls_read_level(struct mls_level *lp, void *fp)
1230 {
1231 	__le32 buf[1];
1232 	int rc;
1233 
1234 	memset(lp, 0, sizeof(*lp));
1235 
1236 	rc = next_entry(buf, fp, sizeof buf);
1237 	if (rc < 0) {
1238 		printk(KERN_ERR "security: mls: truncated level\n");
1239 		goto bad;
1240 	}
1241 	lp->sens = le32_to_cpu(buf[0]);
1242 
1243 	if (ebitmap_read(&lp->cat, fp)) {
1244 		printk(KERN_ERR "security: mls:  error reading level "
1245 		       "categories\n");
1246 		goto bad;
1247 	}
1248 	return 0;
1249 
1250 bad:
1251 	return -EINVAL;
1252 }
1253 
1254 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1255 {
1256 	char *key = NULL;
1257 	struct user_datum *usrdatum;
1258 	int rc;
1259 	__le32 buf[2];
1260 	u32 len;
1261 
1262 	usrdatum = kmalloc(sizeof(*usrdatum), GFP_KERNEL);
1263 	if (!usrdatum) {
1264 		rc = -ENOMEM;
1265 		goto out;
1266 	}
1267 	memset(usrdatum, 0, sizeof(*usrdatum));
1268 
1269 	rc = next_entry(buf, fp, sizeof buf);
1270 	if (rc < 0)
1271 		goto bad;
1272 
1273 	len = le32_to_cpu(buf[0]);
1274 	usrdatum->value = le32_to_cpu(buf[1]);
1275 
1276 	key = kmalloc(len + 1,GFP_KERNEL);
1277 	if (!key) {
1278 		rc = -ENOMEM;
1279 		goto bad;
1280 	}
1281 	rc = next_entry(key, fp, len);
1282 	if (rc < 0)
1283 		goto bad;
1284 	key[len] = 0;
1285 
1286 	rc = ebitmap_read(&usrdatum->roles, fp);
1287 	if (rc)
1288 		goto bad;
1289 
1290 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
1291 		rc = mls_read_range_helper(&usrdatum->range, fp);
1292 		if (rc)
1293 			goto bad;
1294 		rc = mls_read_level(&usrdatum->dfltlevel, fp);
1295 		if (rc)
1296 			goto bad;
1297 	}
1298 
1299 	rc = hashtab_insert(h, key, usrdatum);
1300 	if (rc)
1301 		goto bad;
1302 out:
1303 	return rc;
1304 bad:
1305 	user_destroy(key, usrdatum, NULL);
1306 	goto out;
1307 }
1308 
1309 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1310 {
1311 	char *key = NULL;
1312 	struct level_datum *levdatum;
1313 	int rc;
1314 	__le32 buf[2];
1315 	u32 len;
1316 
1317 	levdatum = kmalloc(sizeof(*levdatum), GFP_ATOMIC);
1318 	if (!levdatum) {
1319 		rc = -ENOMEM;
1320 		goto out;
1321 	}
1322 	memset(levdatum, 0, sizeof(*levdatum));
1323 
1324 	rc = next_entry(buf, fp, sizeof buf);
1325 	if (rc < 0)
1326 		goto bad;
1327 
1328 	len = le32_to_cpu(buf[0]);
1329 	levdatum->isalias = le32_to_cpu(buf[1]);
1330 
1331 	key = kmalloc(len + 1,GFP_ATOMIC);
1332 	if (!key) {
1333 		rc = -ENOMEM;
1334 		goto bad;
1335 	}
1336 	rc = next_entry(key, fp, len);
1337 	if (rc < 0)
1338 		goto bad;
1339 	key[len] = 0;
1340 
1341 	levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1342 	if (!levdatum->level) {
1343 		rc = -ENOMEM;
1344 		goto bad;
1345 	}
1346 	if (mls_read_level(levdatum->level, fp)) {
1347 		rc = -EINVAL;
1348 		goto bad;
1349 	}
1350 
1351 	rc = hashtab_insert(h, key, levdatum);
1352 	if (rc)
1353 		goto bad;
1354 out:
1355 	return rc;
1356 bad:
1357 	sens_destroy(key, levdatum, NULL);
1358 	goto out;
1359 }
1360 
1361 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1362 {
1363 	char *key = NULL;
1364 	struct cat_datum *catdatum;
1365 	int rc;
1366 	__le32 buf[3];
1367 	u32 len;
1368 
1369 	catdatum = kmalloc(sizeof(*catdatum), GFP_ATOMIC);
1370 	if (!catdatum) {
1371 		rc = -ENOMEM;
1372 		goto out;
1373 	}
1374 	memset(catdatum, 0, sizeof(*catdatum));
1375 
1376 	rc = next_entry(buf, fp, sizeof buf);
1377 	if (rc < 0)
1378 		goto bad;
1379 
1380 	len = le32_to_cpu(buf[0]);
1381 	catdatum->value = le32_to_cpu(buf[1]);
1382 	catdatum->isalias = le32_to_cpu(buf[2]);
1383 
1384 	key = kmalloc(len + 1,GFP_ATOMIC);
1385 	if (!key) {
1386 		rc = -ENOMEM;
1387 		goto bad;
1388 	}
1389 	rc = next_entry(key, fp, len);
1390 	if (rc < 0)
1391 		goto bad;
1392 	key[len] = 0;
1393 
1394 	rc = hashtab_insert(h, key, catdatum);
1395 	if (rc)
1396 		goto bad;
1397 out:
1398 	return rc;
1399 
1400 bad:
1401 	cat_destroy(key, catdatum, NULL);
1402 	goto out;
1403 }
1404 
1405 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1406 {
1407 	common_read,
1408 	class_read,
1409 	role_read,
1410 	type_read,
1411 	user_read,
1412 	cond_read_bool,
1413 	sens_read,
1414 	cat_read,
1415 };
1416 
1417 extern int ss_initialized;
1418 
1419 /*
1420  * Read the configuration data from a policy database binary
1421  * representation file into a policy database structure.
1422  */
1423 int policydb_read(struct policydb *p, void *fp)
1424 {
1425 	struct role_allow *ra, *lra;
1426 	struct role_trans *tr, *ltr;
1427 	struct ocontext *l, *c, *newc;
1428 	struct genfs *genfs_p, *genfs, *newgenfs;
1429 	int i, j, rc;
1430 	__le32 buf[8];
1431 	u32 len, len2, config, nprim, nel, nel2;
1432 	char *policydb_str;
1433 	struct policydb_compat_info *info;
1434 	struct range_trans *rt, *lrt;
1435 
1436 	config = 0;
1437 
1438 	rc = policydb_init(p);
1439 	if (rc)
1440 		goto out;
1441 
1442 	/* Read the magic number and string length. */
1443 	rc = next_entry(buf, fp, sizeof(u32)* 2);
1444 	if (rc < 0)
1445 		goto bad;
1446 
1447 	if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
1448 		printk(KERN_ERR "security:  policydb magic number 0x%x does "
1449 		       "not match expected magic number 0x%x\n",
1450 		       le32_to_cpu(buf[0]), POLICYDB_MAGIC);
1451 		goto bad;
1452 	}
1453 
1454 	len = le32_to_cpu(buf[1]);
1455 	if (len != strlen(POLICYDB_STRING)) {
1456 		printk(KERN_ERR "security:  policydb string length %d does not "
1457 		       "match expected length %Zu\n",
1458 		       len, strlen(POLICYDB_STRING));
1459 		goto bad;
1460 	}
1461 	policydb_str = kmalloc(len + 1,GFP_KERNEL);
1462 	if (!policydb_str) {
1463 		printk(KERN_ERR "security:  unable to allocate memory for policydb "
1464 		       "string of length %d\n", len);
1465 		rc = -ENOMEM;
1466 		goto bad;
1467 	}
1468 	rc = next_entry(policydb_str, fp, len);
1469 	if (rc < 0) {
1470 		printk(KERN_ERR "security:  truncated policydb string identifier\n");
1471 		kfree(policydb_str);
1472 		goto bad;
1473 	}
1474 	policydb_str[len] = 0;
1475 	if (strcmp(policydb_str, POLICYDB_STRING)) {
1476 		printk(KERN_ERR "security:  policydb string %s does not match "
1477 		       "my string %s\n", policydb_str, POLICYDB_STRING);
1478 		kfree(policydb_str);
1479 		goto bad;
1480 	}
1481 	/* Done with policydb_str. */
1482 	kfree(policydb_str);
1483 	policydb_str = NULL;
1484 
1485 	/* Read the version, config, and table sizes. */
1486 	rc = next_entry(buf, fp, sizeof(u32)*4);
1487 	if (rc < 0)
1488 		goto bad;
1489 
1490 	p->policyvers = le32_to_cpu(buf[0]);
1491 	if (p->policyvers < POLICYDB_VERSION_MIN ||
1492 	    p->policyvers > POLICYDB_VERSION_MAX) {
1493 	    	printk(KERN_ERR "security:  policydb version %d does not match "
1494 	    	       "my version range %d-%d\n",
1495 	    	       le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
1496 	    	goto bad;
1497 	}
1498 
1499 	if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
1500 		if (ss_initialized && !selinux_mls_enabled) {
1501 			printk(KERN_ERR "Cannot switch between non-MLS and MLS "
1502 			       "policies\n");
1503 			goto bad;
1504 		}
1505 		selinux_mls_enabled = 1;
1506 		config |= POLICYDB_CONFIG_MLS;
1507 
1508 		if (p->policyvers < POLICYDB_VERSION_MLS) {
1509 			printk(KERN_ERR "security policydb version %d (MLS) "
1510 			       "not backwards compatible\n", p->policyvers);
1511 			goto bad;
1512 		}
1513 	} else {
1514 		if (ss_initialized && selinux_mls_enabled) {
1515 			printk(KERN_ERR "Cannot switch between MLS and non-MLS "
1516 			       "policies\n");
1517 			goto bad;
1518 		}
1519 	}
1520 
1521 	info = policydb_lookup_compat(p->policyvers);
1522 	if (!info) {
1523 		printk(KERN_ERR "security:  unable to find policy compat info "
1524 		       "for version %d\n", p->policyvers);
1525 		goto bad;
1526 	}
1527 
1528 	if (le32_to_cpu(buf[2]) != info->sym_num ||
1529 		le32_to_cpu(buf[3]) != info->ocon_num) {
1530 		printk(KERN_ERR "security:  policydb table sizes (%d,%d) do "
1531 		       "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
1532 			le32_to_cpu(buf[3]),
1533 		       info->sym_num, info->ocon_num);
1534 		goto bad;
1535 	}
1536 
1537 	for (i = 0; i < info->sym_num; i++) {
1538 		rc = next_entry(buf, fp, sizeof(u32)*2);
1539 		if (rc < 0)
1540 			goto bad;
1541 		nprim = le32_to_cpu(buf[0]);
1542 		nel = le32_to_cpu(buf[1]);
1543 		for (j = 0; j < nel; j++) {
1544 			rc = read_f[i](p, p->symtab[i].table, fp);
1545 			if (rc)
1546 				goto bad;
1547 		}
1548 
1549 		p->symtab[i].nprim = nprim;
1550 	}
1551 
1552 	rc = avtab_read(&p->te_avtab, fp, p->policyvers);
1553 	if (rc)
1554 		goto bad;
1555 
1556 	if (p->policyvers >= POLICYDB_VERSION_BOOL) {
1557 		rc = cond_read_list(p, fp);
1558 		if (rc)
1559 			goto bad;
1560 	}
1561 
1562 	rc = next_entry(buf, fp, sizeof(u32));
1563 	if (rc < 0)
1564 		goto bad;
1565 	nel = le32_to_cpu(buf[0]);
1566 	ltr = NULL;
1567 	for (i = 0; i < nel; i++) {
1568 		tr = kmalloc(sizeof(*tr), GFP_KERNEL);
1569 		if (!tr) {
1570 			rc = -ENOMEM;
1571 			goto bad;
1572 		}
1573 		memset(tr, 0, sizeof(*tr));
1574 		if (ltr) {
1575 			ltr->next = tr;
1576 		} else {
1577 			p->role_tr = tr;
1578 		}
1579 		rc = next_entry(buf, fp, sizeof(u32)*3);
1580 		if (rc < 0)
1581 			goto bad;
1582 		tr->role = le32_to_cpu(buf[0]);
1583 		tr->type = le32_to_cpu(buf[1]);
1584 		tr->new_role = le32_to_cpu(buf[2]);
1585 		ltr = tr;
1586 	}
1587 
1588 	rc = next_entry(buf, fp, sizeof(u32));
1589 	if (rc < 0)
1590 		goto bad;
1591 	nel = le32_to_cpu(buf[0]);
1592 	lra = NULL;
1593 	for (i = 0; i < nel; i++) {
1594 		ra = kmalloc(sizeof(*ra), GFP_KERNEL);
1595 		if (!ra) {
1596 			rc = -ENOMEM;
1597 			goto bad;
1598 		}
1599 		memset(ra, 0, sizeof(*ra));
1600 		if (lra) {
1601 			lra->next = ra;
1602 		} else {
1603 			p->role_allow = ra;
1604 		}
1605 		rc = next_entry(buf, fp, sizeof(u32)*2);
1606 		if (rc < 0)
1607 			goto bad;
1608 		ra->role = le32_to_cpu(buf[0]);
1609 		ra->new_role = le32_to_cpu(buf[1]);
1610 		lra = ra;
1611 	}
1612 
1613 	rc = policydb_index_classes(p);
1614 	if (rc)
1615 		goto bad;
1616 
1617 	rc = policydb_index_others(p);
1618 	if (rc)
1619 		goto bad;
1620 
1621 	for (i = 0; i < info->ocon_num; i++) {
1622 		rc = next_entry(buf, fp, sizeof(u32));
1623 		if (rc < 0)
1624 			goto bad;
1625 		nel = le32_to_cpu(buf[0]);
1626 		l = NULL;
1627 		for (j = 0; j < nel; j++) {
1628 			c = kmalloc(sizeof(*c), GFP_KERNEL);
1629 			if (!c) {
1630 				rc = -ENOMEM;
1631 				goto bad;
1632 			}
1633 			memset(c, 0, sizeof(*c));
1634 			if (l) {
1635 				l->next = c;
1636 			} else {
1637 				p->ocontexts[i] = c;
1638 			}
1639 			l = c;
1640 			rc = -EINVAL;
1641 			switch (i) {
1642 			case OCON_ISID:
1643 				rc = next_entry(buf, fp, sizeof(u32));
1644 				if (rc < 0)
1645 					goto bad;
1646 				c->sid[0] = le32_to_cpu(buf[0]);
1647 				rc = context_read_and_validate(&c->context[0], p, fp);
1648 				if (rc)
1649 					goto bad;
1650 				break;
1651 			case OCON_FS:
1652 			case OCON_NETIF:
1653 				rc = next_entry(buf, fp, sizeof(u32));
1654 				if (rc < 0)
1655 					goto bad;
1656 				len = le32_to_cpu(buf[0]);
1657 				c->u.name = kmalloc(len + 1,GFP_KERNEL);
1658 				if (!c->u.name) {
1659 					rc = -ENOMEM;
1660 					goto bad;
1661 				}
1662 				rc = next_entry(c->u.name, fp, len);
1663 				if (rc < 0)
1664 					goto bad;
1665 				c->u.name[len] = 0;
1666 				rc = context_read_and_validate(&c->context[0], p, fp);
1667 				if (rc)
1668 					goto bad;
1669 				rc = context_read_and_validate(&c->context[1], p, fp);
1670 				if (rc)
1671 					goto bad;
1672 				break;
1673 			case OCON_PORT:
1674 				rc = next_entry(buf, fp, sizeof(u32)*3);
1675 				if (rc < 0)
1676 					goto bad;
1677 				c->u.port.protocol = le32_to_cpu(buf[0]);
1678 				c->u.port.low_port = le32_to_cpu(buf[1]);
1679 				c->u.port.high_port = le32_to_cpu(buf[2]);
1680 				rc = context_read_and_validate(&c->context[0], p, fp);
1681 				if (rc)
1682 					goto bad;
1683 				break;
1684 			case OCON_NODE:
1685 				rc = next_entry(buf, fp, sizeof(u32)* 2);
1686 				if (rc < 0)
1687 					goto bad;
1688 				c->u.node.addr = le32_to_cpu(buf[0]);
1689 				c->u.node.mask = le32_to_cpu(buf[1]);
1690 				rc = context_read_and_validate(&c->context[0], p, fp);
1691 				if (rc)
1692 					goto bad;
1693 				break;
1694 			case OCON_FSUSE:
1695 				rc = next_entry(buf, fp, sizeof(u32)*2);
1696 				if (rc < 0)
1697 					goto bad;
1698 				c->v.behavior = le32_to_cpu(buf[0]);
1699 				if (c->v.behavior > SECURITY_FS_USE_NONE)
1700 					goto bad;
1701 				len = le32_to_cpu(buf[1]);
1702 				c->u.name = kmalloc(len + 1,GFP_KERNEL);
1703 				if (!c->u.name) {
1704 					rc = -ENOMEM;
1705 					goto bad;
1706 				}
1707 				rc = next_entry(c->u.name, fp, len);
1708 				if (rc < 0)
1709 					goto bad;
1710 				c->u.name[len] = 0;
1711 				rc = context_read_and_validate(&c->context[0], p, fp);
1712 				if (rc)
1713 					goto bad;
1714 				break;
1715 			case OCON_NODE6: {
1716 				int k;
1717 
1718 				rc = next_entry(buf, fp, sizeof(u32) * 8);
1719 				if (rc < 0)
1720 					goto bad;
1721 				for (k = 0; k < 4; k++)
1722 					c->u.node6.addr[k] = le32_to_cpu(buf[k]);
1723 				for (k = 0; k < 4; k++)
1724 					c->u.node6.mask[k] = le32_to_cpu(buf[k+4]);
1725 				if (context_read_and_validate(&c->context[0], p, fp))
1726 					goto bad;
1727 				break;
1728 			}
1729 			}
1730 		}
1731 	}
1732 
1733 	rc = next_entry(buf, fp, sizeof(u32));
1734 	if (rc < 0)
1735 		goto bad;
1736 	nel = le32_to_cpu(buf[0]);
1737 	genfs_p = NULL;
1738 	rc = -EINVAL;
1739 	for (i = 0; i < nel; i++) {
1740 		rc = next_entry(buf, fp, sizeof(u32));
1741 		if (rc < 0)
1742 			goto bad;
1743 		len = le32_to_cpu(buf[0]);
1744 		newgenfs = kmalloc(sizeof(*newgenfs), GFP_KERNEL);
1745 		if (!newgenfs) {
1746 			rc = -ENOMEM;
1747 			goto bad;
1748 		}
1749 		memset(newgenfs, 0, sizeof(*newgenfs));
1750 
1751 		newgenfs->fstype = kmalloc(len + 1,GFP_KERNEL);
1752 		if (!newgenfs->fstype) {
1753 			rc = -ENOMEM;
1754 			kfree(newgenfs);
1755 			goto bad;
1756 		}
1757 		rc = next_entry(newgenfs->fstype, fp, len);
1758 		if (rc < 0) {
1759 			kfree(newgenfs->fstype);
1760 			kfree(newgenfs);
1761 			goto bad;
1762 		}
1763 		newgenfs->fstype[len] = 0;
1764 		for (genfs_p = NULL, genfs = p->genfs; genfs;
1765 		     genfs_p = genfs, genfs = genfs->next) {
1766 			if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1767 				printk(KERN_ERR "security:  dup genfs "
1768 				       "fstype %s\n", newgenfs->fstype);
1769 				kfree(newgenfs->fstype);
1770 				kfree(newgenfs);
1771 				goto bad;
1772 			}
1773 			if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1774 				break;
1775 		}
1776 		newgenfs->next = genfs;
1777 		if (genfs_p)
1778 			genfs_p->next = newgenfs;
1779 		else
1780 			p->genfs = newgenfs;
1781 		rc = next_entry(buf, fp, sizeof(u32));
1782 		if (rc < 0)
1783 			goto bad;
1784 		nel2 = le32_to_cpu(buf[0]);
1785 		for (j = 0; j < nel2; j++) {
1786 			rc = next_entry(buf, fp, sizeof(u32));
1787 			if (rc < 0)
1788 				goto bad;
1789 			len = le32_to_cpu(buf[0]);
1790 
1791 			newc = kmalloc(sizeof(*newc), GFP_KERNEL);
1792 			if (!newc) {
1793 				rc = -ENOMEM;
1794 				goto bad;
1795 			}
1796 			memset(newc, 0, sizeof(*newc));
1797 
1798 			newc->u.name = kmalloc(len + 1,GFP_KERNEL);
1799 			if (!newc->u.name) {
1800 				rc = -ENOMEM;
1801 				goto bad_newc;
1802 			}
1803 			rc = next_entry(newc->u.name, fp, len);
1804 			if (rc < 0)
1805 				goto bad_newc;
1806 			newc->u.name[len] = 0;
1807 			rc = next_entry(buf, fp, sizeof(u32));
1808 			if (rc < 0)
1809 				goto bad_newc;
1810 			newc->v.sclass = le32_to_cpu(buf[0]);
1811 			if (context_read_and_validate(&newc->context[0], p, fp))
1812 				goto bad_newc;
1813 			for (l = NULL, c = newgenfs->head; c;
1814 			     l = c, c = c->next) {
1815 				if (!strcmp(newc->u.name, c->u.name) &&
1816 				    (!c->v.sclass || !newc->v.sclass ||
1817 				     newc->v.sclass == c->v.sclass)) {
1818 					printk(KERN_ERR "security:  dup genfs "
1819 					       "entry (%s,%s)\n",
1820 					       newgenfs->fstype, c->u.name);
1821 					goto bad_newc;
1822 				}
1823 				len = strlen(newc->u.name);
1824 				len2 = strlen(c->u.name);
1825 				if (len > len2)
1826 					break;
1827 			}
1828 
1829 			newc->next = c;
1830 			if (l)
1831 				l->next = newc;
1832 			else
1833 				newgenfs->head = newc;
1834 		}
1835 	}
1836 
1837 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
1838 		rc = next_entry(buf, fp, sizeof(u32));
1839 		if (rc < 0)
1840 			goto bad;
1841 		nel = le32_to_cpu(buf[0]);
1842 		lrt = NULL;
1843 		for (i = 0; i < nel; i++) {
1844 			rt = kmalloc(sizeof(*rt), GFP_KERNEL);
1845 			if (!rt) {
1846 				rc = -ENOMEM;
1847 				goto bad;
1848 			}
1849 			memset(rt, 0, sizeof(*rt));
1850 			if (lrt)
1851 				lrt->next = rt;
1852 			else
1853 				p->range_tr = rt;
1854 			rc = next_entry(buf, fp, (sizeof(u32) * 2));
1855 			if (rc < 0)
1856 				goto bad;
1857 			rt->dom = le32_to_cpu(buf[0]);
1858 			rt->type = le32_to_cpu(buf[1]);
1859 			rc = mls_read_range_helper(&rt->range, fp);
1860 			if (rc)
1861 				goto bad;
1862 			lrt = rt;
1863 		}
1864 	}
1865 
1866 	p->type_attr_map = kmalloc(p->p_types.nprim*sizeof(struct ebitmap), GFP_KERNEL);
1867 	if (!p->type_attr_map)
1868 		goto bad;
1869 
1870 	for (i = 0; i < p->p_types.nprim; i++) {
1871 		ebitmap_init(&p->type_attr_map[i]);
1872 		if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
1873 			if (ebitmap_read(&p->type_attr_map[i], fp))
1874 				goto bad;
1875 		}
1876 		/* add the type itself as the degenerate case */
1877 		if (ebitmap_set_bit(&p->type_attr_map[i], i, 1))
1878 				goto bad;
1879 	}
1880 
1881 	rc = 0;
1882 out:
1883 	return rc;
1884 bad_newc:
1885 	ocontext_destroy(newc,OCON_FSUSE);
1886 bad:
1887 	if (!rc)
1888 		rc = -EINVAL;
1889 	policydb_destroy(p);
1890 	goto out;
1891 }
1892