xref: /linux/security/selinux/ss/hashtab.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implementation of the hash table type.
4  *
5  * Author : Stephen Smalley, <stephen.smalley.work@gmail.com>
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/errno.h>
11 #include "hashtab.h"
12 #include "security.h"
13 
14 static struct kmem_cache *hashtab_node_cachep __ro_after_init;
15 
16 /*
17  * Here we simply round the number of elements up to the nearest power of two.
18  * I tried also other options like rounding down or rounding to the closest
19  * power of two (up or down based on which is closer), but I was unable to
20  * find any significant difference in lookup/insert performance that would
21  * justify switching to a different (less intuitive) formula. It could be that
22  * a different formula is actually more optimal, but any future changes here
23  * should be supported with performance/memory usage data.
24  *
25  * The total memory used by the htable arrays (only) with Fedora policy loaded
26  * is approximately 163 KB at the time of writing.
27  */
28 static u32 hashtab_compute_size(u32 nel)
29 {
30 	return nel == 0 ? 0 : roundup_pow_of_two(nel);
31 }
32 
33 int hashtab_init(struct hashtab *h, u32 nel_hint)
34 {
35 	u32 size = hashtab_compute_size(nel_hint);
36 
37 	/* should already be zeroed, but better be safe */
38 	h->nel = 0;
39 	h->size = 0;
40 	h->htable = NULL;
41 
42 	if (size) {
43 		h->htable = kcalloc(size, sizeof(*h->htable), GFP_KERNEL);
44 		if (!h->htable)
45 			return -ENOMEM;
46 		h->size = size;
47 	}
48 	return 0;
49 }
50 
51 int __hashtab_insert(struct hashtab *h, struct hashtab_node **dst, void *key,
52 		     void *datum)
53 {
54 	struct hashtab_node *newnode;
55 
56 	newnode = kmem_cache_zalloc(hashtab_node_cachep, GFP_KERNEL);
57 	if (!newnode)
58 		return -ENOMEM;
59 	newnode->key = key;
60 	newnode->datum = datum;
61 	newnode->next = *dst;
62 	*dst = newnode;
63 
64 	h->nel++;
65 	return 0;
66 }
67 
68 void hashtab_destroy(struct hashtab *h)
69 {
70 	u32 i;
71 	struct hashtab_node *cur, *temp;
72 
73 	for (i = 0; i < h->size; i++) {
74 		cur = h->htable[i];
75 		while (cur) {
76 			temp = cur;
77 			cur = cur->next;
78 			kmem_cache_free(hashtab_node_cachep, temp);
79 		}
80 		h->htable[i] = NULL;
81 	}
82 
83 	kfree(h->htable);
84 	h->htable = NULL;
85 }
86 
87 int hashtab_map(struct hashtab *h, int (*apply)(void *k, void *d, void *args),
88 		void *args)
89 {
90 	u32 i;
91 	int ret;
92 	struct hashtab_node *cur;
93 
94 	for (i = 0; i < h->size; i++) {
95 		cur = h->htable[i];
96 		while (cur) {
97 			ret = apply(cur->key, cur->datum, args);
98 			if (ret)
99 				return ret;
100 			cur = cur->next;
101 		}
102 	}
103 	return 0;
104 }
105 
106 #ifdef CONFIG_SECURITY_SELINUX_DEBUG
107 void hashtab_stat(struct hashtab *h, struct hashtab_info *info)
108 {
109 	u32 i, chain_len, slots_used, max_chain_len;
110 	u64 chain2_len_sum;
111 	struct hashtab_node *cur;
112 
113 	slots_used = 0;
114 	max_chain_len = 0;
115 	chain2_len_sum = 0;
116 	for (i = 0; i < h->size; i++) {
117 		cur = h->htable[i];
118 		if (cur) {
119 			slots_used++;
120 			chain_len = 0;
121 			while (cur) {
122 				chain_len++;
123 				cur = cur->next;
124 			}
125 
126 			if (chain_len > max_chain_len)
127 				max_chain_len = chain_len;
128 
129 			chain2_len_sum += (u64)chain_len * chain_len;
130 		}
131 	}
132 
133 	info->slots_used = slots_used;
134 	info->max_chain_len = max_chain_len;
135 	info->chain2_len_sum = chain2_len_sum;
136 }
137 #endif /* CONFIG_SECURITY_SELINUX_DEBUG */
138 
139 int hashtab_duplicate(struct hashtab *new, const struct hashtab *orig,
140 		      int (*copy)(struct hashtab_node *new,
141 				  const struct hashtab_node *orig, void *args),
142 		      int (*destroy)(void *k, void *d, void *args), void *args)
143 {
144 	const struct hashtab_node *orig_cur;
145 	struct hashtab_node *cur, *tmp, *tail;
146 	u32 i;
147 	int rc;
148 
149 	memset(new, 0, sizeof(*new));
150 
151 	new->htable = kcalloc(orig->size, sizeof(*new->htable), GFP_KERNEL);
152 	if (!new->htable)
153 		return -ENOMEM;
154 
155 	new->size = orig->size;
156 
157 	for (i = 0; i < orig->size; i++) {
158 		tail = NULL;
159 		for (orig_cur = orig->htable[i]; orig_cur;
160 		     orig_cur = orig_cur->next) {
161 			tmp = kmem_cache_zalloc(hashtab_node_cachep,
162 						GFP_KERNEL);
163 			if (!tmp)
164 				goto error;
165 			rc = copy(tmp, orig_cur, args);
166 			if (rc) {
167 				kmem_cache_free(hashtab_node_cachep, tmp);
168 				goto error;
169 			}
170 			tmp->next = NULL;
171 			if (!tail)
172 				new->htable[i] = tmp;
173 			else
174 				tail->next = tmp;
175 			tail = tmp;
176 			new->nel++;
177 		}
178 	}
179 
180 	return 0;
181 
182 error:
183 	for (i = 0; i < new->size; i++) {
184 		for (cur = new->htable[i]; cur; cur = tmp) {
185 			tmp = cur->next;
186 			destroy(cur->key, cur->datum, args);
187 			kmem_cache_free(hashtab_node_cachep, cur);
188 		}
189 	}
190 	kfree(new->htable);
191 	memset(new, 0, sizeof(*new));
192 	return -ENOMEM;
193 }
194 
195 void __init hashtab_cache_init(void)
196 {
197 	hashtab_node_cachep = KMEM_CACHE(hashtab_node, SLAB_PANIC);
198 }
199