xref: /linux/security/selinux/ss/hashtab.c (revision 5027ec19f1049a07df5b0a37b1f462514cf2724b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implementation of the hash table type.
4  *
5  * Author : Stephen Smalley, <stephen.smalley.work@gmail.com>
6  */
7 #include <linux/kernel.h>
8 #include <linux/slab.h>
9 #include <linux/errno.h>
10 #include "hashtab.h"
11 #include "security.h"
12 
13 static struct kmem_cache *hashtab_node_cachep __ro_after_init;
14 
15 /*
16  * Here we simply round the number of elements up to the nearest power of two.
17  * I tried also other options like rounding down or rounding to the closest
18  * power of two (up or down based on which is closer), but I was unable to
19  * find any significant difference in lookup/insert performance that would
20  * justify switching to a different (less intuitive) formula. It could be that
21  * a different formula is actually more optimal, but any future changes here
22  * should be supported with performance/memory usage data.
23  *
24  * The total memory used by the htable arrays (only) with Fedora policy loaded
25  * is approximately 163 KB at the time of writing.
26  */
27 static u32 hashtab_compute_size(u32 nel)
28 {
29 	return nel == 0 ? 0 : roundup_pow_of_two(nel);
30 }
31 
32 int hashtab_init(struct hashtab *h, u32 nel_hint)
33 {
34 	u32 size = hashtab_compute_size(nel_hint);
35 
36 	/* should already be zeroed, but better be safe */
37 	h->nel = 0;
38 	h->size = 0;
39 	h->htable = NULL;
40 
41 	if (size) {
42 		h->htable = kcalloc(size, sizeof(*h->htable), GFP_KERNEL);
43 		if (!h->htable)
44 			return -ENOMEM;
45 		h->size = size;
46 	}
47 	return 0;
48 }
49 
50 int __hashtab_insert(struct hashtab *h, struct hashtab_node **dst,
51 		     void *key, void *datum)
52 {
53 	struct hashtab_node *newnode;
54 
55 	newnode = kmem_cache_zalloc(hashtab_node_cachep, GFP_KERNEL);
56 	if (!newnode)
57 		return -ENOMEM;
58 	newnode->key = key;
59 	newnode->datum = datum;
60 	newnode->next = *dst;
61 	*dst = newnode;
62 
63 	h->nel++;
64 	return 0;
65 }
66 
67 void hashtab_destroy(struct hashtab *h)
68 {
69 	u32 i;
70 	struct hashtab_node *cur, *temp;
71 
72 	for (i = 0; i < h->size; i++) {
73 		cur = h->htable[i];
74 		while (cur) {
75 			temp = cur;
76 			cur = cur->next;
77 			kmem_cache_free(hashtab_node_cachep, temp);
78 		}
79 		h->htable[i] = NULL;
80 	}
81 
82 	kfree(h->htable);
83 	h->htable = NULL;
84 }
85 
86 int hashtab_map(struct hashtab *h,
87 		int (*apply)(void *k, void *d, void *args),
88 		void *args)
89 {
90 	u32 i;
91 	int ret;
92 	struct hashtab_node *cur;
93 
94 	for (i = 0; i < h->size; i++) {
95 		cur = h->htable[i];
96 		while (cur) {
97 			ret = apply(cur->key, cur->datum, args);
98 			if (ret)
99 				return ret;
100 			cur = cur->next;
101 		}
102 	}
103 	return 0;
104 }
105 
106 #ifdef CONFIG_SECURITY_SELINUX_DEBUG
107 void hashtab_stat(struct hashtab *h, struct hashtab_info *info)
108 {
109 	u32 i, chain_len, slots_used, max_chain_len;
110 	u64 chain2_len_sum;
111 	struct hashtab_node *cur;
112 
113 	slots_used = 0;
114 	max_chain_len = 0;
115 	chain2_len_sum = 0;
116 	for (i = 0; i < h->size; i++) {
117 		cur = h->htable[i];
118 		if (cur) {
119 			slots_used++;
120 			chain_len = 0;
121 			while (cur) {
122 				chain_len++;
123 				cur = cur->next;
124 			}
125 
126 			if (chain_len > max_chain_len)
127 				max_chain_len = chain_len;
128 
129 			chain2_len_sum += (u64)chain_len * chain_len;
130 		}
131 	}
132 
133 	info->slots_used = slots_used;
134 	info->max_chain_len = max_chain_len;
135 	info->chain2_len_sum = chain2_len_sum;
136 }
137 #endif /* CONFIG_SECURITY_SELINUX_DEBUG */
138 
139 int hashtab_duplicate(struct hashtab *new, struct hashtab *orig,
140 		int (*copy)(struct hashtab_node *new,
141 			struct hashtab_node *orig, void *args),
142 		int (*destroy)(void *k, void *d, void *args),
143 		void *args)
144 {
145 	struct hashtab_node *cur, *tmp, *tail;
146 	u32 i;
147 	int rc;
148 
149 	memset(new, 0, sizeof(*new));
150 
151 	new->htable = kcalloc(orig->size, sizeof(*new->htable), GFP_KERNEL);
152 	if (!new->htable)
153 		return -ENOMEM;
154 
155 	new->size = orig->size;
156 
157 	for (i = 0; i < orig->size; i++) {
158 		tail = NULL;
159 		for (cur = orig->htable[i]; cur; cur = cur->next) {
160 			tmp = kmem_cache_zalloc(hashtab_node_cachep,
161 						GFP_KERNEL);
162 			if (!tmp)
163 				goto error;
164 			rc = copy(tmp, cur, args);
165 			if (rc) {
166 				kmem_cache_free(hashtab_node_cachep, tmp);
167 				goto error;
168 			}
169 			tmp->next = NULL;
170 			if (!tail)
171 				new->htable[i] = tmp;
172 			else
173 				tail->next = tmp;
174 			tail = tmp;
175 			new->nel++;
176 		}
177 	}
178 
179 	return 0;
180 
181  error:
182 	for (i = 0; i < new->size; i++) {
183 		for (cur = new->htable[i]; cur; cur = tmp) {
184 			tmp = cur->next;
185 			destroy(cur->key, cur->datum, args);
186 			kmem_cache_free(hashtab_node_cachep, cur);
187 		}
188 	}
189 	kfree(new->htable);
190 	memset(new, 0, sizeof(*new));
191 	return -ENOMEM;
192 }
193 
194 void __init hashtab_cache_init(void)
195 {
196 		hashtab_node_cachep = kmem_cache_create("hashtab_node",
197 			sizeof(struct hashtab_node),
198 			0, SLAB_PANIC, NULL);
199 }
200