xref: /linux/security/selinux/ss/hashtab.c (revision dffb641bea1d0c5a4017771aafb39513701095be)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implementation of the hash table type.
4  *
5  * Author : Stephen Smalley, <stephen.smalley.work@gmail.com>
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/errno.h>
11 #include "hashtab.h"
12 #include "security.h"
13 
14 static struct kmem_cache *hashtab_node_cachep __ro_after_init;
15 
16 /*
17  * Here we simply round the number of elements up to the nearest power of two.
18  * I tried also other options like rounding down or rounding to the closest
19  * power of two (up or down based on which is closer), but I was unable to
20  * find any significant difference in lookup/insert performance that would
21  * justify switching to a different (less intuitive) formula. It could be that
22  * a different formula is actually more optimal, but any future changes here
23  * should be supported with performance/memory usage data.
24  *
25  * The total memory used by the htable arrays (only) with Fedora policy loaded
26  * is approximately 163 KB at the time of writing.
27  */
hashtab_compute_size(u32 nel)28 static u32 hashtab_compute_size(u32 nel)
29 {
30 	return nel == 0 ? 0 : roundup_pow_of_two(nel);
31 }
32 
hashtab_init(struct hashtab * h,u32 nel_hint)33 int hashtab_init(struct hashtab *h, u32 nel_hint)
34 {
35 	u32 size = hashtab_compute_size(nel_hint);
36 
37 	/* should already be zeroed, but better be safe */
38 	h->nel = 0;
39 	h->size = 0;
40 	h->htable = NULL;
41 
42 	if (size) {
43 		h->htable = kcalloc(size, sizeof(*h->htable),
44 				    GFP_KERNEL | __GFP_NOWARN);
45 		if (!h->htable)
46 			return -ENOMEM;
47 		h->size = size;
48 	}
49 	return 0;
50 }
51 
__hashtab_insert(struct hashtab * h,struct hashtab_node ** dst,void * key,void * datum)52 int __hashtab_insert(struct hashtab *h, struct hashtab_node **dst, void *key,
53 		     void *datum)
54 {
55 	struct hashtab_node *newnode;
56 
57 	newnode = kmem_cache_zalloc(hashtab_node_cachep, GFP_KERNEL);
58 	if (!newnode)
59 		return -ENOMEM;
60 	newnode->key = key;
61 	newnode->datum = datum;
62 	newnode->next = *dst;
63 	*dst = newnode;
64 
65 	h->nel++;
66 	return 0;
67 }
68 
hashtab_destroy(struct hashtab * h)69 void hashtab_destroy(struct hashtab *h)
70 {
71 	u32 i;
72 	struct hashtab_node *cur, *temp;
73 
74 	for (i = 0; i < h->size; i++) {
75 		cur = h->htable[i];
76 		while (cur) {
77 			temp = cur;
78 			cur = cur->next;
79 			kmem_cache_free(hashtab_node_cachep, temp);
80 		}
81 		h->htable[i] = NULL;
82 	}
83 
84 	kfree(h->htable);
85 	h->htable = NULL;
86 }
87 
hashtab_map(struct hashtab * h,int (* apply)(void * k,void * d,void * args),void * args)88 int hashtab_map(struct hashtab *h, int (*apply)(void *k, void *d, void *args),
89 		void *args)
90 {
91 	u32 i;
92 	int ret;
93 	struct hashtab_node *cur;
94 
95 	for (i = 0; i < h->size; i++) {
96 		cur = h->htable[i];
97 		while (cur) {
98 			ret = apply(cur->key, cur->datum, args);
99 			if (ret)
100 				return ret;
101 			cur = cur->next;
102 		}
103 	}
104 	return 0;
105 }
106 
107 #ifdef CONFIG_SECURITY_SELINUX_DEBUG
hashtab_stat(struct hashtab * h,struct hashtab_info * info)108 void hashtab_stat(struct hashtab *h, struct hashtab_info *info)
109 {
110 	u32 i, chain_len, slots_used, max_chain_len;
111 	u64 chain2_len_sum;
112 	struct hashtab_node *cur;
113 
114 	slots_used = 0;
115 	max_chain_len = 0;
116 	chain2_len_sum = 0;
117 	for (i = 0; i < h->size; i++) {
118 		cur = h->htable[i];
119 		if (cur) {
120 			slots_used++;
121 			chain_len = 0;
122 			while (cur) {
123 				chain_len++;
124 				cur = cur->next;
125 			}
126 
127 			if (chain_len > max_chain_len)
128 				max_chain_len = chain_len;
129 
130 			chain2_len_sum += (u64)chain_len * chain_len;
131 		}
132 	}
133 
134 	info->slots_used = slots_used;
135 	info->max_chain_len = max_chain_len;
136 	info->chain2_len_sum = chain2_len_sum;
137 }
138 #endif /* CONFIG_SECURITY_SELINUX_DEBUG */
139 
hashtab_duplicate(struct hashtab * new,const struct hashtab * orig,int (* copy)(struct hashtab_node * new,const struct hashtab_node * orig,void * args),int (* destroy)(void * k,void * d,void * args),void * args)140 int hashtab_duplicate(struct hashtab *new, const struct hashtab *orig,
141 		      int (*copy)(struct hashtab_node *new,
142 				  const struct hashtab_node *orig, void *args),
143 		      int (*destroy)(void *k, void *d, void *args), void *args)
144 {
145 	const struct hashtab_node *orig_cur;
146 	struct hashtab_node *cur, *tmp, *tail;
147 	u32 i;
148 	int rc;
149 
150 	memset(new, 0, sizeof(*new));
151 
152 	new->htable = kcalloc(orig->size, sizeof(*new->htable), GFP_KERNEL);
153 	if (!new->htable)
154 		return -ENOMEM;
155 
156 	new->size = orig->size;
157 
158 	for (i = 0; i < orig->size; i++) {
159 		tail = NULL;
160 		for (orig_cur = orig->htable[i]; orig_cur;
161 		     orig_cur = orig_cur->next) {
162 			tmp = kmem_cache_zalloc(hashtab_node_cachep,
163 						GFP_KERNEL);
164 			if (!tmp)
165 				goto error;
166 			rc = copy(tmp, orig_cur, args);
167 			if (rc) {
168 				kmem_cache_free(hashtab_node_cachep, tmp);
169 				goto error;
170 			}
171 			tmp->next = NULL;
172 			if (!tail)
173 				new->htable[i] = tmp;
174 			else
175 				tail->next = tmp;
176 			tail = tmp;
177 			new->nel++;
178 		}
179 	}
180 
181 	return 0;
182 
183 error:
184 	for (i = 0; i < new->size; i++) {
185 		for (cur = new->htable[i]; cur; cur = tmp) {
186 			tmp = cur->next;
187 			destroy(cur->key, cur->datum, args);
188 			kmem_cache_free(hashtab_node_cachep, cur);
189 		}
190 	}
191 	kfree(new->htable);
192 	memset(new, 0, sizeof(*new));
193 	return -ENOMEM;
194 }
195 
hashtab_cache_init(void)196 void __init hashtab_cache_init(void)
197 {
198 	hashtab_node_cachep = KMEM_CACHE(hashtab_node, SLAB_PANIC);
199 }
200