xref: /linux/security/selinux/ss/conditional.c (revision 5099dea0a59f1c89525bb0ceac36689178a4c125)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Authors: Karl MacMillan <kmacmillan@tresys.com>
3  *	    Frank Mayer <mayerf@tresys.com>
4  *
5  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/string.h>
11 #include <linux/spinlock.h>
12 #include <linux/slab.h>
13 
14 #include "security.h"
15 #include "conditional.h"
16 #include "services.h"
17 
18 /*
19  * cond_evaluate_expr evaluates a conditional expr
20  * in reverse polish notation. It returns true (1), false (0),
21  * or undefined (-1). Undefined occurs when the expression
22  * exceeds the stack depth of COND_EXPR_MAXDEPTH.
23  */
24 static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
25 {
26 	u32 i;
27 	int s[COND_EXPR_MAXDEPTH];
28 	int sp = -1;
29 
30 	for (i = 0; i < expr->len; i++) {
31 		struct cond_expr_node *node = &expr->nodes[i];
32 
33 		switch (node->expr_type) {
34 		case COND_BOOL:
35 			if (sp == (COND_EXPR_MAXDEPTH - 1))
36 				return -1;
37 			sp++;
38 			s[sp] = p->bool_val_to_struct[node->bool - 1]->state;
39 			break;
40 		case COND_NOT:
41 			if (sp < 0)
42 				return -1;
43 			s[sp] = !s[sp];
44 			break;
45 		case COND_OR:
46 			if (sp < 1)
47 				return -1;
48 			sp--;
49 			s[sp] |= s[sp + 1];
50 			break;
51 		case COND_AND:
52 			if (sp < 1)
53 				return -1;
54 			sp--;
55 			s[sp] &= s[sp + 1];
56 			break;
57 		case COND_XOR:
58 			if (sp < 1)
59 				return -1;
60 			sp--;
61 			s[sp] ^= s[sp + 1];
62 			break;
63 		case COND_EQ:
64 			if (sp < 1)
65 				return -1;
66 			sp--;
67 			s[sp] = (s[sp] == s[sp + 1]);
68 			break;
69 		case COND_NEQ:
70 			if (sp < 1)
71 				return -1;
72 			sp--;
73 			s[sp] = (s[sp] != s[sp + 1]);
74 			break;
75 		default:
76 			return -1;
77 		}
78 	}
79 	return s[0];
80 }
81 
82 /*
83  * evaluate_cond_node evaluates the conditional stored in
84  * a struct cond_node and if the result is different than the
85  * current state of the node it sets the rules in the true/false
86  * list appropriately. If the result of the expression is undefined
87  * all of the rules are disabled for safety.
88  */
89 static void evaluate_cond_node(struct policydb *p, struct cond_node *node)
90 {
91 	struct avtab_node *avnode;
92 	int new_state;
93 	u32 i;
94 
95 	new_state = cond_evaluate_expr(p, &node->expr);
96 	if (new_state != node->cur_state) {
97 		node->cur_state = new_state;
98 		if (new_state == -1)
99 			pr_err("SELinux: expression result was undefined - disabling all rules.\n");
100 		/* turn the rules on or off */
101 		for (i = 0; i < node->true_list.len; i++) {
102 			avnode = node->true_list.nodes[i];
103 			if (new_state <= 0)
104 				avnode->key.specified &= ~AVTAB_ENABLED;
105 			else
106 				avnode->key.specified |= AVTAB_ENABLED;
107 		}
108 
109 		for (i = 0; i < node->false_list.len; i++) {
110 			avnode = node->false_list.nodes[i];
111 			/* -1 or 1 */
112 			if (new_state)
113 				avnode->key.specified &= ~AVTAB_ENABLED;
114 			else
115 				avnode->key.specified |= AVTAB_ENABLED;
116 		}
117 	}
118 }
119 
120 void evaluate_cond_nodes(struct policydb *p)
121 {
122 	u32 i;
123 
124 	for (i = 0; i < p->cond_list_len; i++)
125 		evaluate_cond_node(p, &p->cond_list[i]);
126 }
127 
128 void cond_policydb_init(struct policydb *p)
129 {
130 	p->bool_val_to_struct = NULL;
131 	p->cond_list = NULL;
132 	p->cond_list_len = 0;
133 
134 	avtab_init(&p->te_cond_avtab);
135 }
136 
137 static void cond_node_destroy(struct cond_node *node)
138 {
139 	kfree(node->expr.nodes);
140 	/* the avtab_ptr_t nodes are destroyed by the avtab */
141 	kfree(node->true_list.nodes);
142 	kfree(node->false_list.nodes);
143 }
144 
145 static void cond_list_destroy(struct policydb *p)
146 {
147 	u32 i;
148 
149 	for (i = 0; i < p->cond_list_len; i++)
150 		cond_node_destroy(&p->cond_list[i]);
151 	kfree(p->cond_list);
152 }
153 
154 void cond_policydb_destroy(struct policydb *p)
155 {
156 	kfree(p->bool_val_to_struct);
157 	avtab_destroy(&p->te_cond_avtab);
158 	cond_list_destroy(p);
159 }
160 
161 int cond_init_bool_indexes(struct policydb *p)
162 {
163 	kfree(p->bool_val_to_struct);
164 	p->bool_val_to_struct = kmalloc_array(p->p_bools.nprim,
165 					      sizeof(*p->bool_val_to_struct),
166 					      GFP_KERNEL);
167 	if (!p->bool_val_to_struct)
168 		return -ENOMEM;
169 	return 0;
170 }
171 
172 int cond_destroy_bool(void *key, void *datum, void *p)
173 {
174 	kfree(key);
175 	kfree(datum);
176 	return 0;
177 }
178 
179 int cond_index_bool(void *key, void *datum, void *datap)
180 {
181 	struct policydb *p;
182 	struct cond_bool_datum *booldatum;
183 
184 	booldatum = datum;
185 	p = datap;
186 
187 	if (!booldatum->value || booldatum->value > p->p_bools.nprim)
188 		return -EINVAL;
189 
190 	p->sym_val_to_name[SYM_BOOLS][booldatum->value - 1] = key;
191 	p->bool_val_to_struct[booldatum->value - 1] = booldatum;
192 
193 	return 0;
194 }
195 
196 static int bool_isvalid(struct cond_bool_datum *b)
197 {
198 	if (!(b->state == 0 || b->state == 1))
199 		return 0;
200 	return 1;
201 }
202 
203 int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp)
204 {
205 	char *key = NULL;
206 	struct cond_bool_datum *booldatum;
207 	__le32 buf[3];
208 	u32 len;
209 	int rc;
210 
211 	booldatum = kzalloc(sizeof(*booldatum), GFP_KERNEL);
212 	if (!booldatum)
213 		return -ENOMEM;
214 
215 	rc = next_entry(buf, fp, sizeof buf);
216 	if (rc)
217 		goto err;
218 
219 	booldatum->value = le32_to_cpu(buf[0]);
220 	booldatum->state = le32_to_cpu(buf[1]);
221 
222 	rc = -EINVAL;
223 	if (!bool_isvalid(booldatum))
224 		goto err;
225 
226 	len = le32_to_cpu(buf[2]);
227 	if (((len == 0) || (len == (u32)-1)))
228 		goto err;
229 
230 	rc = -ENOMEM;
231 	key = kmalloc(len + 1, GFP_KERNEL);
232 	if (!key)
233 		goto err;
234 	rc = next_entry(key, fp, len);
235 	if (rc)
236 		goto err;
237 	key[len] = '\0';
238 	rc = hashtab_insert(h, key, booldatum);
239 	if (rc)
240 		goto err;
241 
242 	return 0;
243 err:
244 	cond_destroy_bool(key, booldatum, NULL);
245 	return rc;
246 }
247 
248 struct cond_insertf_data {
249 	struct policydb *p;
250 	struct avtab_node **dst;
251 	struct cond_av_list *other;
252 };
253 
254 static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr)
255 {
256 	struct cond_insertf_data *data = ptr;
257 	struct policydb *p = data->p;
258 	struct cond_av_list *other = data->other;
259 	struct avtab_node *node_ptr;
260 	u32 i;
261 	bool found;
262 
263 	/*
264 	 * For type rules we have to make certain there aren't any
265 	 * conflicting rules by searching the te_avtab and the
266 	 * cond_te_avtab.
267 	 */
268 	if (k->specified & AVTAB_TYPE) {
269 		if (avtab_search(&p->te_avtab, k)) {
270 			pr_err("SELinux: type rule already exists outside of a conditional.\n");
271 			return -EINVAL;
272 		}
273 		/*
274 		 * If we are reading the false list other will be a pointer to
275 		 * the true list. We can have duplicate entries if there is only
276 		 * 1 other entry and it is in our true list.
277 		 *
278 		 * If we are reading the true list (other == NULL) there shouldn't
279 		 * be any other entries.
280 		 */
281 		if (other) {
282 			node_ptr = avtab_search_node(&p->te_cond_avtab, k);
283 			if (node_ptr) {
284 				if (avtab_search_node_next(node_ptr, k->specified)) {
285 					pr_err("SELinux: too many conflicting type rules.\n");
286 					return -EINVAL;
287 				}
288 				found = false;
289 				for (i = 0; i < other->len; i++) {
290 					if (other->nodes[i] == node_ptr) {
291 						found = true;
292 						break;
293 					}
294 				}
295 				if (!found) {
296 					pr_err("SELinux: conflicting type rules.\n");
297 					return -EINVAL;
298 				}
299 			}
300 		} else {
301 			if (avtab_search(&p->te_cond_avtab, k)) {
302 				pr_err("SELinux: conflicting type rules when adding type rule for true.\n");
303 				return -EINVAL;
304 			}
305 		}
306 	}
307 
308 	node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
309 	if (!node_ptr) {
310 		pr_err("SELinux: could not insert rule.\n");
311 		return -ENOMEM;
312 	}
313 
314 	*data->dst = node_ptr;
315 	return 0;
316 }
317 
318 static int cond_read_av_list(struct policydb *p, void *fp,
319 			     struct cond_av_list *list,
320 			     struct cond_av_list *other)
321 {
322 	int rc;
323 	__le32 buf[1];
324 	u32 i, len;
325 	struct cond_insertf_data data;
326 
327 	rc = next_entry(buf, fp, sizeof(u32));
328 	if (rc)
329 		return rc;
330 
331 	len = le32_to_cpu(buf[0]);
332 	if (len == 0)
333 		return 0;
334 
335 	list->nodes = kcalloc(len, sizeof(*list->nodes), GFP_KERNEL);
336 	if (!list->nodes)
337 		return -ENOMEM;
338 
339 	data.p = p;
340 	data.other = other;
341 	for (i = 0; i < len; i++) {
342 		data.dst = &list->nodes[i];
343 		rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
344 				     &data);
345 		if (rc) {
346 			kfree(list->nodes);
347 			list->nodes = NULL;
348 			return rc;
349 		}
350 	}
351 
352 	list->len = len;
353 	return 0;
354 }
355 
356 static int expr_node_isvalid(struct policydb *p, struct cond_expr_node *expr)
357 {
358 	if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
359 		pr_err("SELinux: conditional expressions uses unknown operator.\n");
360 		return 0;
361 	}
362 
363 	if (expr->bool > p->p_bools.nprim) {
364 		pr_err("SELinux: conditional expressions uses unknown bool.\n");
365 		return 0;
366 	}
367 	return 1;
368 }
369 
370 static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
371 {
372 	__le32 buf[2];
373 	u32 i, len;
374 	int rc;
375 
376 	rc = next_entry(buf, fp, sizeof(u32) * 2);
377 	if (rc)
378 		return rc;
379 
380 	node->cur_state = le32_to_cpu(buf[0]);
381 
382 	/* expr */
383 	len = le32_to_cpu(buf[1]);
384 	node->expr.nodes = kcalloc(len, sizeof(*node->expr.nodes), GFP_KERNEL);
385 	if (!node->expr.nodes)
386 		return -ENOMEM;
387 
388 	node->expr.len = len;
389 
390 	for (i = 0; i < len; i++) {
391 		struct cond_expr_node *expr = &node->expr.nodes[i];
392 
393 		rc = next_entry(buf, fp, sizeof(u32) * 2);
394 		if (rc)
395 			goto err;
396 
397 		expr->expr_type = le32_to_cpu(buf[0]);
398 		expr->bool = le32_to_cpu(buf[1]);
399 
400 		if (!expr_node_isvalid(p, expr)) {
401 			rc = -EINVAL;
402 			goto err;
403 		}
404 	}
405 
406 	rc = cond_read_av_list(p, fp, &node->true_list, NULL);
407 	if (rc)
408 		goto err;
409 	rc = cond_read_av_list(p, fp, &node->false_list, &node->true_list);
410 	if (rc)
411 		goto err;
412 	return 0;
413 err:
414 	cond_node_destroy(node);
415 	return rc;
416 }
417 
418 int cond_read_list(struct policydb *p, void *fp)
419 {
420 	__le32 buf[1];
421 	u32 i, len;
422 	int rc;
423 
424 	rc = next_entry(buf, fp, sizeof buf);
425 	if (rc)
426 		return rc;
427 
428 	len = le32_to_cpu(buf[0]);
429 
430 	p->cond_list = kcalloc(len, sizeof(*p->cond_list), GFP_KERNEL);
431 	if (!p->cond_list)
432 		return -ENOMEM;
433 
434 	rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
435 	if (rc)
436 		goto err;
437 
438 	p->cond_list_len = len;
439 
440 	for (i = 0; i < len; i++) {
441 		rc = cond_read_node(p, &p->cond_list[i], fp);
442 		if (rc)
443 			goto err;
444 	}
445 	return 0;
446 err:
447 	cond_list_destroy(p);
448 	p->cond_list = NULL;
449 	return rc;
450 }
451 
452 int cond_write_bool(void *vkey, void *datum, void *ptr)
453 {
454 	char *key = vkey;
455 	struct cond_bool_datum *booldatum = datum;
456 	struct policy_data *pd = ptr;
457 	void *fp = pd->fp;
458 	__le32 buf[3];
459 	u32 len;
460 	int rc;
461 
462 	len = strlen(key);
463 	buf[0] = cpu_to_le32(booldatum->value);
464 	buf[1] = cpu_to_le32(booldatum->state);
465 	buf[2] = cpu_to_le32(len);
466 	rc = put_entry(buf, sizeof(u32), 3, fp);
467 	if (rc)
468 		return rc;
469 	rc = put_entry(key, 1, len, fp);
470 	if (rc)
471 		return rc;
472 	return 0;
473 }
474 
475 /*
476  * cond_write_cond_av_list doesn't write out the av_list nodes.
477  * Instead it writes out the key/value pairs from the avtab. This
478  * is necessary because there is no way to uniquely identifying rules
479  * in the avtab so it is not possible to associate individual rules
480  * in the avtab with a conditional without saving them as part of
481  * the conditional. This means that the avtab with the conditional
482  * rules will not be saved but will be rebuilt on policy load.
483  */
484 static int cond_write_av_list(struct policydb *p,
485 			      struct cond_av_list *list, struct policy_file *fp)
486 {
487 	__le32 buf[1];
488 	u32 i;
489 	int rc;
490 
491 	buf[0] = cpu_to_le32(list->len);
492 	rc = put_entry(buf, sizeof(u32), 1, fp);
493 	if (rc)
494 		return rc;
495 
496 	for (i = 0; i < list->len; i++) {
497 		rc = avtab_write_item(p, list->nodes[i], fp);
498 		if (rc)
499 			return rc;
500 	}
501 
502 	return 0;
503 }
504 
505 static int cond_write_node(struct policydb *p, struct cond_node *node,
506 		    struct policy_file *fp)
507 {
508 	__le32 buf[2];
509 	int rc;
510 	u32 i;
511 
512 	buf[0] = cpu_to_le32(node->cur_state);
513 	rc = put_entry(buf, sizeof(u32), 1, fp);
514 	if (rc)
515 		return rc;
516 
517 	buf[0] = cpu_to_le32(node->expr.len);
518 	rc = put_entry(buf, sizeof(u32), 1, fp);
519 	if (rc)
520 		return rc;
521 
522 	for (i = 0; i < node->expr.len; i++) {
523 		buf[0] = cpu_to_le32(node->expr.nodes[i].expr_type);
524 		buf[1] = cpu_to_le32(node->expr.nodes[i].bool);
525 		rc = put_entry(buf, sizeof(u32), 2, fp);
526 		if (rc)
527 			return rc;
528 	}
529 
530 	rc = cond_write_av_list(p, &node->true_list, fp);
531 	if (rc)
532 		return rc;
533 	rc = cond_write_av_list(p, &node->false_list, fp);
534 	if (rc)
535 		return rc;
536 
537 	return 0;
538 }
539 
540 int cond_write_list(struct policydb *p, void *fp)
541 {
542 	u32 i;
543 	__le32 buf[1];
544 	int rc;
545 
546 	buf[0] = cpu_to_le32(p->cond_list_len);
547 	rc = put_entry(buf, sizeof(u32), 1, fp);
548 	if (rc)
549 		return rc;
550 
551 	for (i = 0; i < p->cond_list_len; i++) {
552 		rc = cond_write_node(p, &p->cond_list[i], fp);
553 		if (rc)
554 			return rc;
555 	}
556 
557 	return 0;
558 }
559 
560 void cond_compute_xperms(struct avtab *ctab, struct avtab_key *key,
561 		struct extended_perms_decision *xpermd)
562 {
563 	struct avtab_node *node;
564 
565 	if (!ctab || !key || !xpermd)
566 		return;
567 
568 	for (node = avtab_search_node(ctab, key); node;
569 			node = avtab_search_node_next(node, key->specified)) {
570 		if (node->key.specified & AVTAB_ENABLED)
571 			services_compute_xperms_decision(xpermd, node);
572 	}
573 	return;
574 
575 }
576 /* Determine whether additional permissions are granted by the conditional
577  * av table, and if so, add them to the result
578  */
579 void cond_compute_av(struct avtab *ctab, struct avtab_key *key,
580 		struct av_decision *avd, struct extended_perms *xperms)
581 {
582 	struct avtab_node *node;
583 
584 	if (!ctab || !key || !avd)
585 		return;
586 
587 	for (node = avtab_search_node(ctab, key); node;
588 				node = avtab_search_node_next(node, key->specified)) {
589 		if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
590 		    (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
591 			avd->allowed |= node->datum.u.data;
592 		if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
593 		    (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
594 			/* Since a '0' in an auditdeny mask represents a
595 			 * permission we do NOT want to audit (dontaudit), we use
596 			 * the '&' operand to ensure that all '0's in the mask
597 			 * are retained (much unlike the allow and auditallow cases).
598 			 */
599 			avd->auditdeny &= node->datum.u.data;
600 		if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
601 		    (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
602 			avd->auditallow |= node->datum.u.data;
603 		if (xperms && (node->key.specified & AVTAB_ENABLED) &&
604 				(node->key.specified & AVTAB_XPERMS))
605 			services_compute_xperms_drivers(xperms, node);
606 	}
607 }
608