xref: /linux/security/selinux/ss/conditional.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Authors: Karl MacMillan <kmacmillan@tresys.com>
3  *	    Frank Mayer <mayerf@tresys.com>
4  *
5  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/string.h>
11 #include <linux/spinlock.h>
12 #include <linux/slab.h>
13 
14 #include "security.h"
15 #include "conditional.h"
16 #include "services.h"
17 
18 /*
19  * cond_evaluate_expr evaluates a conditional expr
20  * in reverse polish notation. It returns true (1), false (0),
21  * or undefined (-1). Undefined occurs when the expression
22  * exceeds the stack depth of COND_EXPR_MAXDEPTH.
23  */
24 static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
25 {
26 
27 	struct cond_expr *cur;
28 	int s[COND_EXPR_MAXDEPTH];
29 	int sp = -1;
30 
31 	for (cur = expr; cur; cur = cur->next) {
32 		switch (cur->expr_type) {
33 		case COND_BOOL:
34 			if (sp == (COND_EXPR_MAXDEPTH - 1))
35 				return -1;
36 			sp++;
37 			s[sp] = p->bool_val_to_struct[cur->bool - 1]->state;
38 			break;
39 		case COND_NOT:
40 			if (sp < 0)
41 				return -1;
42 			s[sp] = !s[sp];
43 			break;
44 		case COND_OR:
45 			if (sp < 1)
46 				return -1;
47 			sp--;
48 			s[sp] |= s[sp + 1];
49 			break;
50 		case COND_AND:
51 			if (sp < 1)
52 				return -1;
53 			sp--;
54 			s[sp] &= s[sp + 1];
55 			break;
56 		case COND_XOR:
57 			if (sp < 1)
58 				return -1;
59 			sp--;
60 			s[sp] ^= s[sp + 1];
61 			break;
62 		case COND_EQ:
63 			if (sp < 1)
64 				return -1;
65 			sp--;
66 			s[sp] = (s[sp] == s[sp + 1]);
67 			break;
68 		case COND_NEQ:
69 			if (sp < 1)
70 				return -1;
71 			sp--;
72 			s[sp] = (s[sp] != s[sp + 1]);
73 			break;
74 		default:
75 			return -1;
76 		}
77 	}
78 	return s[0];
79 }
80 
81 /*
82  * evaluate_cond_node evaluates the conditional stored in
83  * a struct cond_node and if the result is different than the
84  * current state of the node it sets the rules in the true/false
85  * list appropriately. If the result of the expression is undefined
86  * all of the rules are disabled for safety.
87  */
88 int evaluate_cond_node(struct policydb *p, struct cond_node *node)
89 {
90 	int new_state;
91 	struct cond_av_list *cur;
92 
93 	new_state = cond_evaluate_expr(p, node->expr);
94 	if (new_state != node->cur_state) {
95 		node->cur_state = new_state;
96 		if (new_state == -1)
97 			pr_err("SELinux: expression result was undefined - disabling all rules.\n");
98 		/* turn the rules on or off */
99 		for (cur = node->true_list; cur; cur = cur->next) {
100 			if (new_state <= 0)
101 				cur->node->key.specified &= ~AVTAB_ENABLED;
102 			else
103 				cur->node->key.specified |= AVTAB_ENABLED;
104 		}
105 
106 		for (cur = node->false_list; cur; cur = cur->next) {
107 			/* -1 or 1 */
108 			if (new_state)
109 				cur->node->key.specified &= ~AVTAB_ENABLED;
110 			else
111 				cur->node->key.specified |= AVTAB_ENABLED;
112 		}
113 	}
114 	return 0;
115 }
116 
117 int cond_policydb_init(struct policydb *p)
118 {
119 	int rc;
120 
121 	p->bool_val_to_struct = NULL;
122 	p->cond_list = NULL;
123 
124 	rc = avtab_init(&p->te_cond_avtab);
125 	if (rc)
126 		return rc;
127 
128 	return 0;
129 }
130 
131 static void cond_av_list_destroy(struct cond_av_list *list)
132 {
133 	struct cond_av_list *cur, *next;
134 	for (cur = list; cur; cur = next) {
135 		next = cur->next;
136 		/* the avtab_ptr_t node is destroy by the avtab */
137 		kfree(cur);
138 	}
139 }
140 
141 static void cond_node_destroy(struct cond_node *node)
142 {
143 	struct cond_expr *cur_expr, *next_expr;
144 
145 	for (cur_expr = node->expr; cur_expr; cur_expr = next_expr) {
146 		next_expr = cur_expr->next;
147 		kfree(cur_expr);
148 	}
149 	cond_av_list_destroy(node->true_list);
150 	cond_av_list_destroy(node->false_list);
151 	kfree(node);
152 }
153 
154 static void cond_list_destroy(struct cond_node *list)
155 {
156 	struct cond_node *next, *cur;
157 
158 	if (list == NULL)
159 		return;
160 
161 	for (cur = list; cur; cur = next) {
162 		next = cur->next;
163 		cond_node_destroy(cur);
164 	}
165 }
166 
167 void cond_policydb_destroy(struct policydb *p)
168 {
169 	kfree(p->bool_val_to_struct);
170 	avtab_destroy(&p->te_cond_avtab);
171 	cond_list_destroy(p->cond_list);
172 }
173 
174 int cond_init_bool_indexes(struct policydb *p)
175 {
176 	kfree(p->bool_val_to_struct);
177 	p->bool_val_to_struct = kmalloc_array(p->p_bools.nprim,
178 					      sizeof(*p->bool_val_to_struct),
179 					      GFP_KERNEL);
180 	if (!p->bool_val_to_struct)
181 		return -ENOMEM;
182 	return 0;
183 }
184 
185 int cond_destroy_bool(void *key, void *datum, void *p)
186 {
187 	kfree(key);
188 	kfree(datum);
189 	return 0;
190 }
191 
192 int cond_index_bool(void *key, void *datum, void *datap)
193 {
194 	struct policydb *p;
195 	struct cond_bool_datum *booldatum;
196 
197 	booldatum = datum;
198 	p = datap;
199 
200 	if (!booldatum->value || booldatum->value > p->p_bools.nprim)
201 		return -EINVAL;
202 
203 	p->sym_val_to_name[SYM_BOOLS][booldatum->value - 1] = key;
204 	p->bool_val_to_struct[booldatum->value - 1] = booldatum;
205 
206 	return 0;
207 }
208 
209 static int bool_isvalid(struct cond_bool_datum *b)
210 {
211 	if (!(b->state == 0 || b->state == 1))
212 		return 0;
213 	return 1;
214 }
215 
216 int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp)
217 {
218 	char *key = NULL;
219 	struct cond_bool_datum *booldatum;
220 	__le32 buf[3];
221 	u32 len;
222 	int rc;
223 
224 	booldatum = kzalloc(sizeof(*booldatum), GFP_KERNEL);
225 	if (!booldatum)
226 		return -ENOMEM;
227 
228 	rc = next_entry(buf, fp, sizeof buf);
229 	if (rc)
230 		goto err;
231 
232 	booldatum->value = le32_to_cpu(buf[0]);
233 	booldatum->state = le32_to_cpu(buf[1]);
234 
235 	rc = -EINVAL;
236 	if (!bool_isvalid(booldatum))
237 		goto err;
238 
239 	len = le32_to_cpu(buf[2]);
240 	if (((len == 0) || (len == (u32)-1)))
241 		goto err;
242 
243 	rc = -ENOMEM;
244 	key = kmalloc(len + 1, GFP_KERNEL);
245 	if (!key)
246 		goto err;
247 	rc = next_entry(key, fp, len);
248 	if (rc)
249 		goto err;
250 	key[len] = '\0';
251 	rc = hashtab_insert(h, key, booldatum);
252 	if (rc)
253 		goto err;
254 
255 	return 0;
256 err:
257 	cond_destroy_bool(key, booldatum, NULL);
258 	return rc;
259 }
260 
261 struct cond_insertf_data {
262 	struct policydb *p;
263 	struct cond_av_list *other;
264 	struct cond_av_list *head;
265 	struct cond_av_list *tail;
266 };
267 
268 static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr)
269 {
270 	struct cond_insertf_data *data = ptr;
271 	struct policydb *p = data->p;
272 	struct cond_av_list *other = data->other, *list, *cur;
273 	struct avtab_node *node_ptr;
274 	u8 found;
275 	int rc = -EINVAL;
276 
277 	/*
278 	 * For type rules we have to make certain there aren't any
279 	 * conflicting rules by searching the te_avtab and the
280 	 * cond_te_avtab.
281 	 */
282 	if (k->specified & AVTAB_TYPE) {
283 		if (avtab_search(&p->te_avtab, k)) {
284 			pr_err("SELinux: type rule already exists outside of a conditional.\n");
285 			goto err;
286 		}
287 		/*
288 		 * If we are reading the false list other will be a pointer to
289 		 * the true list. We can have duplicate entries if there is only
290 		 * 1 other entry and it is in our true list.
291 		 *
292 		 * If we are reading the true list (other == NULL) there shouldn't
293 		 * be any other entries.
294 		 */
295 		if (other) {
296 			node_ptr = avtab_search_node(&p->te_cond_avtab, k);
297 			if (node_ptr) {
298 				if (avtab_search_node_next(node_ptr, k->specified)) {
299 					pr_err("SELinux: too many conflicting type rules.\n");
300 					goto err;
301 				}
302 				found = 0;
303 				for (cur = other; cur; cur = cur->next) {
304 					if (cur->node == node_ptr) {
305 						found = 1;
306 						break;
307 					}
308 				}
309 				if (!found) {
310 					pr_err("SELinux: conflicting type rules.\n");
311 					goto err;
312 				}
313 			}
314 		} else {
315 			if (avtab_search(&p->te_cond_avtab, k)) {
316 				pr_err("SELinux: conflicting type rules when adding type rule for true.\n");
317 				goto err;
318 			}
319 		}
320 	}
321 
322 	node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
323 	if (!node_ptr) {
324 		pr_err("SELinux: could not insert rule.\n");
325 		rc = -ENOMEM;
326 		goto err;
327 	}
328 
329 	list = kzalloc(sizeof(*list), GFP_KERNEL);
330 	if (!list) {
331 		rc = -ENOMEM;
332 		goto err;
333 	}
334 
335 	list->node = node_ptr;
336 	if (!data->head)
337 		data->head = list;
338 	else
339 		data->tail->next = list;
340 	data->tail = list;
341 	return 0;
342 
343 err:
344 	cond_av_list_destroy(data->head);
345 	data->head = NULL;
346 	return rc;
347 }
348 
349 static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list, struct cond_av_list *other)
350 {
351 	int i, rc;
352 	__le32 buf[1];
353 	u32 len;
354 	struct cond_insertf_data data;
355 
356 	*ret_list = NULL;
357 
358 	rc = next_entry(buf, fp, sizeof(u32));
359 	if (rc)
360 		return rc;
361 
362 	len = le32_to_cpu(buf[0]);
363 	if (len == 0)
364 		return 0;
365 
366 	data.p = p;
367 	data.other = other;
368 	data.head = NULL;
369 	data.tail = NULL;
370 	for (i = 0; i < len; i++) {
371 		rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
372 				     &data);
373 		if (rc)
374 			return rc;
375 	}
376 
377 	*ret_list = data.head;
378 	return 0;
379 }
380 
381 static int expr_isvalid(struct policydb *p, struct cond_expr *expr)
382 {
383 	if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
384 		pr_err("SELinux: conditional expressions uses unknown operator.\n");
385 		return 0;
386 	}
387 
388 	if (expr->bool > p->p_bools.nprim) {
389 		pr_err("SELinux: conditional expressions uses unknown bool.\n");
390 		return 0;
391 	}
392 	return 1;
393 }
394 
395 static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
396 {
397 	__le32 buf[2];
398 	u32 len, i;
399 	int rc;
400 	struct cond_expr *expr = NULL, *last = NULL;
401 
402 	rc = next_entry(buf, fp, sizeof(u32) * 2);
403 	if (rc)
404 		goto err;
405 
406 	node->cur_state = le32_to_cpu(buf[0]);
407 
408 	/* expr */
409 	len = le32_to_cpu(buf[1]);
410 
411 	for (i = 0; i < len; i++) {
412 		rc = next_entry(buf, fp, sizeof(u32) * 2);
413 		if (rc)
414 			goto err;
415 
416 		rc = -ENOMEM;
417 		expr = kzalloc(sizeof(*expr), GFP_KERNEL);
418 		if (!expr)
419 			goto err;
420 
421 		expr->expr_type = le32_to_cpu(buf[0]);
422 		expr->bool = le32_to_cpu(buf[1]);
423 
424 		if (!expr_isvalid(p, expr)) {
425 			rc = -EINVAL;
426 			kfree(expr);
427 			goto err;
428 		}
429 
430 		if (i == 0)
431 			node->expr = expr;
432 		else
433 			last->next = expr;
434 		last = expr;
435 	}
436 
437 	rc = cond_read_av_list(p, fp, &node->true_list, NULL);
438 	if (rc)
439 		goto err;
440 	rc = cond_read_av_list(p, fp, &node->false_list, node->true_list);
441 	if (rc)
442 		goto err;
443 	return 0;
444 err:
445 	cond_node_destroy(node);
446 	return rc;
447 }
448 
449 int cond_read_list(struct policydb *p, void *fp)
450 {
451 	struct cond_node *node, *last = NULL;
452 	__le32 buf[1];
453 	u32 i, len;
454 	int rc;
455 
456 	rc = next_entry(buf, fp, sizeof buf);
457 	if (rc)
458 		return rc;
459 
460 	len = le32_to_cpu(buf[0]);
461 
462 	rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
463 	if (rc)
464 		goto err;
465 
466 	for (i = 0; i < len; i++) {
467 		rc = -ENOMEM;
468 		node = kzalloc(sizeof(*node), GFP_KERNEL);
469 		if (!node)
470 			goto err;
471 
472 		rc = cond_read_node(p, node, fp);
473 		if (rc)
474 			goto err;
475 
476 		if (i == 0)
477 			p->cond_list = node;
478 		else
479 			last->next = node;
480 		last = node;
481 	}
482 	return 0;
483 err:
484 	cond_list_destroy(p->cond_list);
485 	p->cond_list = NULL;
486 	return rc;
487 }
488 
489 int cond_write_bool(void *vkey, void *datum, void *ptr)
490 {
491 	char *key = vkey;
492 	struct cond_bool_datum *booldatum = datum;
493 	struct policy_data *pd = ptr;
494 	void *fp = pd->fp;
495 	__le32 buf[3];
496 	u32 len;
497 	int rc;
498 
499 	len = strlen(key);
500 	buf[0] = cpu_to_le32(booldatum->value);
501 	buf[1] = cpu_to_le32(booldatum->state);
502 	buf[2] = cpu_to_le32(len);
503 	rc = put_entry(buf, sizeof(u32), 3, fp);
504 	if (rc)
505 		return rc;
506 	rc = put_entry(key, 1, len, fp);
507 	if (rc)
508 		return rc;
509 	return 0;
510 }
511 
512 /*
513  * cond_write_cond_av_list doesn't write out the av_list nodes.
514  * Instead it writes out the key/value pairs from the avtab. This
515  * is necessary because there is no way to uniquely identifying rules
516  * in the avtab so it is not possible to associate individual rules
517  * in the avtab with a conditional without saving them as part of
518  * the conditional. This means that the avtab with the conditional
519  * rules will not be saved but will be rebuilt on policy load.
520  */
521 static int cond_write_av_list(struct policydb *p,
522 			      struct cond_av_list *list, struct policy_file *fp)
523 {
524 	__le32 buf[1];
525 	struct cond_av_list *cur_list;
526 	u32 len;
527 	int rc;
528 
529 	len = 0;
530 	for (cur_list = list; cur_list != NULL; cur_list = cur_list->next)
531 		len++;
532 
533 	buf[0] = cpu_to_le32(len);
534 	rc = put_entry(buf, sizeof(u32), 1, fp);
535 	if (rc)
536 		return rc;
537 
538 	if (len == 0)
539 		return 0;
540 
541 	for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) {
542 		rc = avtab_write_item(p, cur_list->node, fp);
543 		if (rc)
544 			return rc;
545 	}
546 
547 	return 0;
548 }
549 
550 static int cond_write_node(struct policydb *p, struct cond_node *node,
551 		    struct policy_file *fp)
552 {
553 	struct cond_expr *cur_expr;
554 	__le32 buf[2];
555 	int rc;
556 	u32 len = 0;
557 
558 	buf[0] = cpu_to_le32(node->cur_state);
559 	rc = put_entry(buf, sizeof(u32), 1, fp);
560 	if (rc)
561 		return rc;
562 
563 	for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next)
564 		len++;
565 
566 	buf[0] = cpu_to_le32(len);
567 	rc = put_entry(buf, sizeof(u32), 1, fp);
568 	if (rc)
569 		return rc;
570 
571 	for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) {
572 		buf[0] = cpu_to_le32(cur_expr->expr_type);
573 		buf[1] = cpu_to_le32(cur_expr->bool);
574 		rc = put_entry(buf, sizeof(u32), 2, fp);
575 		if (rc)
576 			return rc;
577 	}
578 
579 	rc = cond_write_av_list(p, node->true_list, fp);
580 	if (rc)
581 		return rc;
582 	rc = cond_write_av_list(p, node->false_list, fp);
583 	if (rc)
584 		return rc;
585 
586 	return 0;
587 }
588 
589 int cond_write_list(struct policydb *p, struct cond_node *list, void *fp)
590 {
591 	struct cond_node *cur;
592 	u32 len;
593 	__le32 buf[1];
594 	int rc;
595 
596 	len = 0;
597 	for (cur = list; cur != NULL; cur = cur->next)
598 		len++;
599 	buf[0] = cpu_to_le32(len);
600 	rc = put_entry(buf, sizeof(u32), 1, fp);
601 	if (rc)
602 		return rc;
603 
604 	for (cur = list; cur != NULL; cur = cur->next) {
605 		rc = cond_write_node(p, cur, fp);
606 		if (rc)
607 			return rc;
608 	}
609 
610 	return 0;
611 }
612 
613 void cond_compute_xperms(struct avtab *ctab, struct avtab_key *key,
614 		struct extended_perms_decision *xpermd)
615 {
616 	struct avtab_node *node;
617 
618 	if (!ctab || !key || !xpermd)
619 		return;
620 
621 	for (node = avtab_search_node(ctab, key); node;
622 			node = avtab_search_node_next(node, key->specified)) {
623 		if (node->key.specified & AVTAB_ENABLED)
624 			services_compute_xperms_decision(xpermd, node);
625 	}
626 	return;
627 
628 }
629 /* Determine whether additional permissions are granted by the conditional
630  * av table, and if so, add them to the result
631  */
632 void cond_compute_av(struct avtab *ctab, struct avtab_key *key,
633 		struct av_decision *avd, struct extended_perms *xperms)
634 {
635 	struct avtab_node *node;
636 
637 	if (!ctab || !key || !avd)
638 		return;
639 
640 	for (node = avtab_search_node(ctab, key); node;
641 				node = avtab_search_node_next(node, key->specified)) {
642 		if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
643 		    (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
644 			avd->allowed |= node->datum.u.data;
645 		if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
646 		    (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
647 			/* Since a '0' in an auditdeny mask represents a
648 			 * permission we do NOT want to audit (dontaudit), we use
649 			 * the '&' operand to ensure that all '0's in the mask
650 			 * are retained (much unlike the allow and auditallow cases).
651 			 */
652 			avd->auditdeny &= node->datum.u.data;
653 		if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
654 		    (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
655 			avd->auditallow |= node->datum.u.data;
656 		if (xperms && (node->key.specified & AVTAB_ENABLED) &&
657 				(node->key.specified & AVTAB_XPERMS))
658 			services_compute_xperms_drivers(xperms, node);
659 	}
660 }
661