1 /* 2 * Network node table 3 * 4 * SELinux must keep a mapping of network nodes to labels/SIDs. This 5 * mapping is maintained as part of the normal policy but a fast cache is 6 * needed to reduce the lookup overhead since most of these queries happen on 7 * a per-packet basis. 8 * 9 * Author: Paul Moore <paul.moore@hp.com> 10 * 11 * This code is heavily based on the "netif" concept originally developed by 12 * James Morris <jmorris@redhat.com> 13 * (see security/selinux/netif.c for more information) 14 * 15 */ 16 17 /* 18 * (c) Copyright Hewlett-Packard Development Company, L.P., 2007 19 * 20 * This program is free software: you can redistribute it and/or modify 21 * it under the terms of version 2 of the GNU General Public License as 22 * published by the Free Software Foundation. 23 * 24 * This program is distributed in the hope that it will be useful, 25 * but WITHOUT ANY WARRANTY; without even the implied warranty of 26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 27 * GNU General Public License for more details. 28 * 29 */ 30 31 #include <linux/types.h> 32 #include <linux/rcupdate.h> 33 #include <linux/list.h> 34 #include <linux/slab.h> 35 #include <linux/spinlock.h> 36 #include <linux/in.h> 37 #include <linux/in6.h> 38 #include <linux/ip.h> 39 #include <linux/ipv6.h> 40 #include <net/ip.h> 41 #include <net/ipv6.h> 42 43 #include "netnode.h" 44 #include "objsec.h" 45 46 #define SEL_NETNODE_HASH_SIZE 256 47 #define SEL_NETNODE_HASH_BKT_LIMIT 16 48 49 struct sel_netnode_bkt { 50 unsigned int size; 51 struct list_head list; 52 }; 53 54 struct sel_netnode { 55 struct netnode_security_struct nsec; 56 57 struct list_head list; 58 struct rcu_head rcu; 59 }; 60 61 /* NOTE: we are using a combined hash table for both IPv4 and IPv6, the reason 62 * for this is that I suspect most users will not make heavy use of both 63 * address families at the same time so one table will usually end up wasted, 64 * if this becomes a problem we can always add a hash table for each address 65 * family later */ 66 67 static LIST_HEAD(sel_netnode_list); 68 static DEFINE_SPINLOCK(sel_netnode_lock); 69 static struct sel_netnode_bkt sel_netnode_hash[SEL_NETNODE_HASH_SIZE]; 70 71 /** 72 * sel_netnode_free - Frees a node entry 73 * @p: the entry's RCU field 74 * 75 * Description: 76 * This function is designed to be used as a callback to the call_rcu() 77 * function so that memory allocated to a hash table node entry can be 78 * released safely. 79 * 80 */ 81 static void sel_netnode_free(struct rcu_head *p) 82 { 83 struct sel_netnode *node = container_of(p, struct sel_netnode, rcu); 84 kfree(node); 85 } 86 87 /** 88 * sel_netnode_hashfn_ipv4 - IPv4 hashing function for the node table 89 * @addr: IPv4 address 90 * 91 * Description: 92 * This is the IPv4 hashing function for the node interface table, it returns 93 * the bucket number for the given IP address. 94 * 95 */ 96 static unsigned int sel_netnode_hashfn_ipv4(__be32 addr) 97 { 98 /* at some point we should determine if the mismatch in byte order 99 * affects the hash function dramatically */ 100 return (addr & (SEL_NETNODE_HASH_SIZE - 1)); 101 } 102 103 /** 104 * sel_netnode_hashfn_ipv6 - IPv6 hashing function for the node table 105 * @addr: IPv6 address 106 * 107 * Description: 108 * This is the IPv6 hashing function for the node interface table, it returns 109 * the bucket number for the given IP address. 110 * 111 */ 112 static unsigned int sel_netnode_hashfn_ipv6(const struct in6_addr *addr) 113 { 114 /* just hash the least significant 32 bits to keep things fast (they 115 * are the most likely to be different anyway), we can revisit this 116 * later if needed */ 117 return (addr->s6_addr32[3] & (SEL_NETNODE_HASH_SIZE - 1)); 118 } 119 120 /** 121 * sel_netnode_find - Search for a node record 122 * @addr: IP address 123 * @family: address family 124 * 125 * Description: 126 * Search the network node table and return the record matching @addr. If an 127 * entry can not be found in the table return NULL. 128 * 129 */ 130 static struct sel_netnode *sel_netnode_find(const void *addr, u16 family) 131 { 132 unsigned int idx; 133 struct sel_netnode *node; 134 135 switch (family) { 136 case PF_INET: 137 idx = sel_netnode_hashfn_ipv4(*(__be32 *)addr); 138 break; 139 case PF_INET6: 140 idx = sel_netnode_hashfn_ipv6(addr); 141 break; 142 default: 143 BUG(); 144 } 145 146 list_for_each_entry_rcu(node, &sel_netnode_hash[idx].list, list) 147 if (node->nsec.family == family) 148 switch (family) { 149 case PF_INET: 150 if (node->nsec.addr.ipv4 == *(__be32 *)addr) 151 return node; 152 break; 153 case PF_INET6: 154 if (ipv6_addr_equal(&node->nsec.addr.ipv6, 155 addr)) 156 return node; 157 break; 158 } 159 160 return NULL; 161 } 162 163 /** 164 * sel_netnode_insert - Insert a new node into the table 165 * @node: the new node record 166 * 167 * Description: 168 * Add a new node record to the network address hash table. 169 * 170 */ 171 static void sel_netnode_insert(struct sel_netnode *node) 172 { 173 unsigned int idx; 174 175 switch (node->nsec.family) { 176 case PF_INET: 177 idx = sel_netnode_hashfn_ipv4(node->nsec.addr.ipv4); 178 break; 179 case PF_INET6: 180 idx = sel_netnode_hashfn_ipv6(&node->nsec.addr.ipv6); 181 break; 182 default: 183 BUG(); 184 } 185 186 /* we need to impose a limit on the growth of the hash table so check 187 * this bucket to make sure it is within the specified bounds */ 188 list_add_rcu(&node->list, &sel_netnode_hash[idx].list); 189 if (sel_netnode_hash[idx].size == SEL_NETNODE_HASH_BKT_LIMIT) { 190 struct sel_netnode *tail; 191 tail = list_entry( 192 rcu_dereference(sel_netnode_hash[idx].list.prev), 193 struct sel_netnode, list); 194 list_del_rcu(&tail->list); 195 call_rcu(&tail->rcu, sel_netnode_free); 196 } else 197 sel_netnode_hash[idx].size++; 198 } 199 200 /** 201 * sel_netnode_sid_slow - Lookup the SID of a network address using the policy 202 * @addr: the IP address 203 * @family: the address family 204 * @sid: node SID 205 * 206 * Description: 207 * This function determines the SID of a network address by quering the 208 * security policy. The result is added to the network address table to 209 * speedup future queries. Returns zero on success, negative values on 210 * failure. 211 * 212 */ 213 static int sel_netnode_sid_slow(void *addr, u16 family, u32 *sid) 214 { 215 int ret = -ENOMEM; 216 struct sel_netnode *node; 217 struct sel_netnode *new = NULL; 218 219 spin_lock_bh(&sel_netnode_lock); 220 node = sel_netnode_find(addr, family); 221 if (node != NULL) { 222 *sid = node->nsec.sid; 223 spin_unlock_bh(&sel_netnode_lock); 224 return 0; 225 } 226 new = kzalloc(sizeof(*new), GFP_ATOMIC); 227 if (new == NULL) 228 goto out; 229 switch (family) { 230 case PF_INET: 231 ret = security_node_sid(PF_INET, 232 addr, sizeof(struct in_addr), sid); 233 new->nsec.addr.ipv4 = *(__be32 *)addr; 234 break; 235 case PF_INET6: 236 ret = security_node_sid(PF_INET6, 237 addr, sizeof(struct in6_addr), sid); 238 ipv6_addr_copy(&new->nsec.addr.ipv6, addr); 239 break; 240 default: 241 BUG(); 242 } 243 if (ret != 0) 244 goto out; 245 246 new->nsec.family = family; 247 new->nsec.sid = *sid; 248 sel_netnode_insert(new); 249 250 out: 251 spin_unlock_bh(&sel_netnode_lock); 252 if (unlikely(ret)) { 253 printk(KERN_WARNING 254 "SELinux: failure in sel_netnode_sid_slow()," 255 " unable to determine network node label\n"); 256 kfree(new); 257 } 258 return ret; 259 } 260 261 /** 262 * sel_netnode_sid - Lookup the SID of a network address 263 * @addr: the IP address 264 * @family: the address family 265 * @sid: node SID 266 * 267 * Description: 268 * This function determines the SID of a network address using the fastest 269 * method possible. First the address table is queried, but if an entry 270 * can't be found then the policy is queried and the result is added to the 271 * table to speedup future queries. Returns zero on success, negative values 272 * on failure. 273 * 274 */ 275 int sel_netnode_sid(void *addr, u16 family, u32 *sid) 276 { 277 struct sel_netnode *node; 278 279 rcu_read_lock(); 280 node = sel_netnode_find(addr, family); 281 if (node != NULL) { 282 *sid = node->nsec.sid; 283 rcu_read_unlock(); 284 return 0; 285 } 286 rcu_read_unlock(); 287 288 return sel_netnode_sid_slow(addr, family, sid); 289 } 290 291 /** 292 * sel_netnode_flush - Flush the entire network address table 293 * 294 * Description: 295 * Remove all entries from the network address table. 296 * 297 */ 298 static void sel_netnode_flush(void) 299 { 300 unsigned int idx; 301 struct sel_netnode *node, *node_tmp; 302 303 spin_lock_bh(&sel_netnode_lock); 304 for (idx = 0; idx < SEL_NETNODE_HASH_SIZE; idx++) { 305 list_for_each_entry_safe(node, node_tmp, 306 &sel_netnode_hash[idx].list, list) { 307 list_del_rcu(&node->list); 308 call_rcu(&node->rcu, sel_netnode_free); 309 } 310 sel_netnode_hash[idx].size = 0; 311 } 312 spin_unlock_bh(&sel_netnode_lock); 313 } 314 315 static int sel_netnode_avc_callback(u32 event, u32 ssid, u32 tsid, 316 u16 class, u32 perms, u32 *retained) 317 { 318 if (event == AVC_CALLBACK_RESET) { 319 sel_netnode_flush(); 320 synchronize_net(); 321 } 322 return 0; 323 } 324 325 static __init int sel_netnode_init(void) 326 { 327 int iter; 328 int ret; 329 330 if (!selinux_enabled) 331 return 0; 332 333 for (iter = 0; iter < SEL_NETNODE_HASH_SIZE; iter++) { 334 INIT_LIST_HEAD(&sel_netnode_hash[iter].list); 335 sel_netnode_hash[iter].size = 0; 336 } 337 338 ret = avc_add_callback(sel_netnode_avc_callback, AVC_CALLBACK_RESET, 339 SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0); 340 if (ret != 0) 341 panic("avc_add_callback() failed, error %d\n", ret); 342 343 return ret; 344 } 345 346 __initcall(sel_netnode_init); 347