1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Network node table 4 * 5 * SELinux must keep a mapping of network nodes to labels/SIDs. This 6 * mapping is maintained as part of the normal policy but a fast cache is 7 * needed to reduce the lookup overhead since most of these queries happen on 8 * a per-packet basis. 9 * 10 * Author: Paul Moore <paul@paul-moore.com> 11 * 12 * This code is heavily based on the "netif" concept originally developed by 13 * James Morris <jmorris@redhat.com> 14 * (see security/selinux/netif.c for more information) 15 */ 16 17 /* 18 * (c) Copyright Hewlett-Packard Development Company, L.P., 2007 19 */ 20 21 #include <linux/types.h> 22 #include <linux/rcupdate.h> 23 #include <linux/list.h> 24 #include <linux/slab.h> 25 #include <linux/spinlock.h> 26 #include <linux/in.h> 27 #include <linux/in6.h> 28 #include <linux/ip.h> 29 #include <linux/ipv6.h> 30 #include <net/ip.h> 31 #include <net/ipv6.h> 32 33 #include "initcalls.h" 34 #include "netnode.h" 35 #include "objsec.h" 36 37 #define SEL_NETNODE_HASH_SIZE 256 38 #define SEL_NETNODE_HASH_BKT_LIMIT 16 39 40 struct sel_netnode_bkt { 41 unsigned int size; 42 struct list_head list; 43 }; 44 45 struct sel_netnode { 46 struct netnode_security_struct nsec; 47 48 struct list_head list; 49 struct rcu_head rcu; 50 }; 51 52 /* NOTE: we are using a combined hash table for both IPv4 and IPv6, the reason 53 * for this is that I suspect most users will not make heavy use of both 54 * address families at the same time so one table will usually end up wasted, 55 * if this becomes a problem we can always add a hash table for each address 56 * family later */ 57 58 static DEFINE_SPINLOCK(sel_netnode_lock); 59 static struct sel_netnode_bkt sel_netnode_hash[SEL_NETNODE_HASH_SIZE]; 60 61 /** 62 * sel_netnode_hashfn_ipv4 - IPv4 hashing function for the node table 63 * @addr: IPv4 address 64 * 65 * Description: 66 * This is the IPv4 hashing function for the node interface table, it returns 67 * the bucket number for the given IP address. 68 * 69 */ 70 static unsigned int sel_netnode_hashfn_ipv4(__be32 addr) 71 { 72 /* at some point we should determine if the mismatch in byte order 73 * affects the hash function dramatically */ 74 return (addr & (SEL_NETNODE_HASH_SIZE - 1)); 75 } 76 77 /** 78 * sel_netnode_hashfn_ipv6 - IPv6 hashing function for the node table 79 * @addr: IPv6 address 80 * 81 * Description: 82 * This is the IPv6 hashing function for the node interface table, it returns 83 * the bucket number for the given IP address. 84 * 85 */ 86 static unsigned int sel_netnode_hashfn_ipv6(const struct in6_addr *addr) 87 { 88 /* just hash the least significant 32 bits to keep things fast (they 89 * are the most likely to be different anyway), we can revisit this 90 * later if needed */ 91 return (addr->s6_addr32[3] & (SEL_NETNODE_HASH_SIZE - 1)); 92 } 93 94 /** 95 * sel_netnode_find - Search for a node record 96 * @addr: IP address 97 * @family: address family 98 * 99 * Description: 100 * Search the network node table and return the record matching @addr. If an 101 * entry can not be found in the table return NULL. 102 * 103 */ 104 static struct sel_netnode *sel_netnode_find(const void *addr, u16 family) 105 { 106 unsigned int idx; 107 struct sel_netnode *node; 108 109 switch (family) { 110 case PF_INET: 111 idx = sel_netnode_hashfn_ipv4(*(const __be32 *)addr); 112 break; 113 case PF_INET6: 114 idx = sel_netnode_hashfn_ipv6(addr); 115 break; 116 default: 117 BUG(); 118 return NULL; 119 } 120 121 list_for_each_entry_rcu(node, &sel_netnode_hash[idx].list, list) 122 if (node->nsec.family == family) 123 switch (family) { 124 case PF_INET: 125 if (node->nsec.addr.ipv4 == *(const __be32 *)addr) 126 return node; 127 break; 128 case PF_INET6: 129 if (ipv6_addr_equal(&node->nsec.addr.ipv6, 130 addr)) 131 return node; 132 break; 133 } 134 135 return NULL; 136 } 137 138 /** 139 * sel_netnode_insert - Insert a new node into the table 140 * @node: the new node record 141 * 142 * Description: 143 * Add a new node record to the network address hash table. 144 * 145 */ 146 static void sel_netnode_insert(struct sel_netnode *node) 147 { 148 unsigned int idx; 149 150 switch (node->nsec.family) { 151 case PF_INET: 152 idx = sel_netnode_hashfn_ipv4(node->nsec.addr.ipv4); 153 break; 154 case PF_INET6: 155 idx = sel_netnode_hashfn_ipv6(&node->nsec.addr.ipv6); 156 break; 157 default: 158 BUG(); 159 return; 160 } 161 162 /* we need to impose a limit on the growth of the hash table so check 163 * this bucket to make sure it is within the specified bounds */ 164 list_add_rcu(&node->list, &sel_netnode_hash[idx].list); 165 if (sel_netnode_hash[idx].size == SEL_NETNODE_HASH_BKT_LIMIT) { 166 struct sel_netnode *tail; 167 tail = list_entry( 168 rcu_dereference_protected( 169 list_tail_rcu(&sel_netnode_hash[idx].list), 170 lockdep_is_held(&sel_netnode_lock)), 171 struct sel_netnode, list); 172 list_del_rcu(&tail->list); 173 kfree_rcu(tail, rcu); 174 } else 175 sel_netnode_hash[idx].size++; 176 } 177 178 /** 179 * sel_netnode_sid_slow - Lookup the SID of a network address using the policy 180 * @addr: the IP address 181 * @family: the address family 182 * @sid: node SID 183 * 184 * Description: 185 * This function determines the SID of a network address by querying the 186 * security policy. The result is added to the network address table to 187 * speedup future queries. Returns zero on success, negative values on 188 * failure. 189 * 190 */ 191 static int sel_netnode_sid_slow(const void *addr, u16 family, u32 *sid) 192 { 193 int ret; 194 struct sel_netnode *node; 195 struct sel_netnode *new; 196 197 spin_lock_bh(&sel_netnode_lock); 198 node = sel_netnode_find(addr, family); 199 if (node != NULL) { 200 *sid = node->nsec.sid; 201 spin_unlock_bh(&sel_netnode_lock); 202 return 0; 203 } 204 205 /* If this memory allocation fails still return 0. The SID 206 * is valid, it just won't be added to the cache. 207 */ 208 new = kmalloc(sizeof(*new), GFP_ATOMIC); 209 switch (family) { 210 case PF_INET: 211 ret = security_node_sid(PF_INET, 212 addr, sizeof(struct in_addr), sid); 213 if (new) 214 new->nsec.addr.ipv4 = *(const __be32 *)addr; 215 break; 216 case PF_INET6: 217 ret = security_node_sid(PF_INET6, 218 addr, sizeof(struct in6_addr), sid); 219 if (new) 220 new->nsec.addr.ipv6 = *(const struct in6_addr *)addr; 221 break; 222 default: 223 BUG(); 224 ret = -EINVAL; 225 } 226 if (ret == 0 && new) { 227 new->nsec.family = family; 228 new->nsec.sid = *sid; 229 sel_netnode_insert(new); 230 } else 231 kfree(new); 232 233 spin_unlock_bh(&sel_netnode_lock); 234 if (unlikely(ret)) 235 pr_warn("SELinux: failure in %s(), unable to determine network node label\n", 236 __func__); 237 return ret; 238 } 239 240 /** 241 * sel_netnode_sid - Lookup the SID of a network address 242 * @addr: the IP address 243 * @family: the address family 244 * @sid: node SID 245 * 246 * Description: 247 * This function determines the SID of a network address using the fastest 248 * method possible. First the address table is queried, but if an entry 249 * can't be found then the policy is queried and the result is added to the 250 * table to speedup future queries. Returns zero on success, negative values 251 * on failure. 252 * 253 */ 254 int sel_netnode_sid(const void *addr, u16 family, u32 *sid) 255 { 256 struct sel_netnode *node; 257 258 rcu_read_lock(); 259 node = sel_netnode_find(addr, family); 260 if (likely(node != NULL)) { 261 *sid = node->nsec.sid; 262 rcu_read_unlock(); 263 return 0; 264 } 265 rcu_read_unlock(); 266 267 return sel_netnode_sid_slow(addr, family, sid); 268 } 269 270 /** 271 * sel_netnode_flush - Flush the entire network address table 272 * 273 * Description: 274 * Remove all entries from the network address table. 275 * 276 */ 277 void sel_netnode_flush(void) 278 { 279 unsigned int idx; 280 struct sel_netnode *node, *node_tmp; 281 282 spin_lock_bh(&sel_netnode_lock); 283 for (idx = 0; idx < SEL_NETNODE_HASH_SIZE; idx++) { 284 list_for_each_entry_safe(node, node_tmp, 285 &sel_netnode_hash[idx].list, list) { 286 list_del_rcu(&node->list); 287 kfree_rcu(node, rcu); 288 } 289 sel_netnode_hash[idx].size = 0; 290 } 291 spin_unlock_bh(&sel_netnode_lock); 292 } 293 294 int __init sel_netnode_init(void) 295 { 296 int iter; 297 298 if (!selinux_enabled_boot) 299 return 0; 300 301 for (iter = 0; iter < SEL_NETNODE_HASH_SIZE; iter++) { 302 INIT_LIST_HEAD(&sel_netnode_hash[iter].list); 303 sel_netnode_hash[iter].size = 0; 304 } 305 306 return 0; 307 } 308