1 /* 2 * Network node table 3 * 4 * SELinux must keep a mapping of network nodes to labels/SIDs. This 5 * mapping is maintained as part of the normal policy but a fast cache is 6 * needed to reduce the lookup overhead since most of these queries happen on 7 * a per-packet basis. 8 * 9 * Author: Paul Moore <paul@paul-moore.com> 10 * 11 * This code is heavily based on the "netif" concept originally developed by 12 * James Morris <jmorris@redhat.com> 13 * (see security/selinux/netif.c for more information) 14 * 15 */ 16 17 /* 18 * (c) Copyright Hewlett-Packard Development Company, L.P., 2007 19 * 20 * This program is free software: you can redistribute it and/or modify 21 * it under the terms of version 2 of the GNU General Public License as 22 * published by the Free Software Foundation. 23 * 24 * This program is distributed in the hope that it will be useful, 25 * but WITHOUT ANY WARRANTY; without even the implied warranty of 26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 27 * GNU General Public License for more details. 28 * 29 */ 30 31 #include <linux/types.h> 32 #include <linux/rcupdate.h> 33 #include <linux/list.h> 34 #include <linux/slab.h> 35 #include <linux/spinlock.h> 36 #include <linux/in.h> 37 #include <linux/in6.h> 38 #include <linux/ip.h> 39 #include <linux/ipv6.h> 40 #include <net/ip.h> 41 #include <net/ipv6.h> 42 43 #include "netnode.h" 44 #include "objsec.h" 45 46 #define SEL_NETNODE_HASH_SIZE 256 47 #define SEL_NETNODE_HASH_BKT_LIMIT 16 48 49 struct sel_netnode_bkt { 50 unsigned int size; 51 struct list_head list; 52 }; 53 54 struct sel_netnode { 55 struct netnode_security_struct nsec; 56 57 struct list_head list; 58 struct rcu_head rcu; 59 }; 60 61 /* NOTE: we are using a combined hash table for both IPv4 and IPv6, the reason 62 * for this is that I suspect most users will not make heavy use of both 63 * address families at the same time so one table will usually end up wasted, 64 * if this becomes a problem we can always add a hash table for each address 65 * family later */ 66 67 static LIST_HEAD(sel_netnode_list); 68 static DEFINE_SPINLOCK(sel_netnode_lock); 69 static struct sel_netnode_bkt sel_netnode_hash[SEL_NETNODE_HASH_SIZE]; 70 71 /** 72 * sel_netnode_hashfn_ipv4 - IPv4 hashing function for the node table 73 * @addr: IPv4 address 74 * 75 * Description: 76 * This is the IPv4 hashing function for the node interface table, it returns 77 * the bucket number for the given IP address. 78 * 79 */ 80 static unsigned int sel_netnode_hashfn_ipv4(__be32 addr) 81 { 82 /* at some point we should determine if the mismatch in byte order 83 * affects the hash function dramatically */ 84 return (addr & (SEL_NETNODE_HASH_SIZE - 1)); 85 } 86 87 /** 88 * sel_netnode_hashfn_ipv6 - IPv6 hashing function for the node table 89 * @addr: IPv6 address 90 * 91 * Description: 92 * This is the IPv6 hashing function for the node interface table, it returns 93 * the bucket number for the given IP address. 94 * 95 */ 96 static unsigned int sel_netnode_hashfn_ipv6(const struct in6_addr *addr) 97 { 98 /* just hash the least significant 32 bits to keep things fast (they 99 * are the most likely to be different anyway), we can revisit this 100 * later if needed */ 101 return (addr->s6_addr32[3] & (SEL_NETNODE_HASH_SIZE - 1)); 102 } 103 104 /** 105 * sel_netnode_find - Search for a node record 106 * @addr: IP address 107 * @family: address family 108 * 109 * Description: 110 * Search the network node table and return the record matching @addr. If an 111 * entry can not be found in the table return NULL. 112 * 113 */ 114 static struct sel_netnode *sel_netnode_find(const void *addr, u16 family) 115 { 116 unsigned int idx; 117 struct sel_netnode *node; 118 119 switch (family) { 120 case PF_INET: 121 idx = sel_netnode_hashfn_ipv4(*(__be32 *)addr); 122 break; 123 case PF_INET6: 124 idx = sel_netnode_hashfn_ipv6(addr); 125 break; 126 default: 127 BUG(); 128 return NULL; 129 } 130 131 list_for_each_entry_rcu(node, &sel_netnode_hash[idx].list, list) 132 if (node->nsec.family == family) 133 switch (family) { 134 case PF_INET: 135 if (node->nsec.addr.ipv4 == *(__be32 *)addr) 136 return node; 137 break; 138 case PF_INET6: 139 if (ipv6_addr_equal(&node->nsec.addr.ipv6, 140 addr)) 141 return node; 142 break; 143 } 144 145 return NULL; 146 } 147 148 /** 149 * sel_netnode_insert - Insert a new node into the table 150 * @node: the new node record 151 * 152 * Description: 153 * Add a new node record to the network address hash table. 154 * 155 */ 156 static void sel_netnode_insert(struct sel_netnode *node) 157 { 158 unsigned int idx; 159 160 switch (node->nsec.family) { 161 case PF_INET: 162 idx = sel_netnode_hashfn_ipv4(node->nsec.addr.ipv4); 163 break; 164 case PF_INET6: 165 idx = sel_netnode_hashfn_ipv6(&node->nsec.addr.ipv6); 166 break; 167 default: 168 BUG(); 169 } 170 171 /* we need to impose a limit on the growth of the hash table so check 172 * this bucket to make sure it is within the specified bounds */ 173 list_add_rcu(&node->list, &sel_netnode_hash[idx].list); 174 if (sel_netnode_hash[idx].size == SEL_NETNODE_HASH_BKT_LIMIT) { 175 struct sel_netnode *tail; 176 tail = list_entry( 177 rcu_dereference_protected(sel_netnode_hash[idx].list.prev, 178 lockdep_is_held(&sel_netnode_lock)), 179 struct sel_netnode, list); 180 list_del_rcu(&tail->list); 181 kfree_rcu(tail, rcu); 182 } else 183 sel_netnode_hash[idx].size++; 184 } 185 186 /** 187 * sel_netnode_sid_slow - Lookup the SID of a network address using the policy 188 * @addr: the IP address 189 * @family: the address family 190 * @sid: node SID 191 * 192 * Description: 193 * This function determines the SID of a network address by quering the 194 * security policy. The result is added to the network address table to 195 * speedup future queries. Returns zero on success, negative values on 196 * failure. 197 * 198 */ 199 static int sel_netnode_sid_slow(void *addr, u16 family, u32 *sid) 200 { 201 int ret = -ENOMEM; 202 struct sel_netnode *node; 203 struct sel_netnode *new = NULL; 204 205 spin_lock_bh(&sel_netnode_lock); 206 node = sel_netnode_find(addr, family); 207 if (node != NULL) { 208 *sid = node->nsec.sid; 209 spin_unlock_bh(&sel_netnode_lock); 210 return 0; 211 } 212 new = kzalloc(sizeof(*new), GFP_ATOMIC); 213 if (new == NULL) 214 goto out; 215 switch (family) { 216 case PF_INET: 217 ret = security_node_sid(PF_INET, 218 addr, sizeof(struct in_addr), sid); 219 new->nsec.addr.ipv4 = *(__be32 *)addr; 220 break; 221 case PF_INET6: 222 ret = security_node_sid(PF_INET6, 223 addr, sizeof(struct in6_addr), sid); 224 new->nsec.addr.ipv6 = *(struct in6_addr *)addr; 225 break; 226 default: 227 BUG(); 228 } 229 if (ret != 0) 230 goto out; 231 232 new->nsec.family = family; 233 new->nsec.sid = *sid; 234 sel_netnode_insert(new); 235 236 out: 237 spin_unlock_bh(&sel_netnode_lock); 238 if (unlikely(ret)) { 239 printk(KERN_WARNING 240 "SELinux: failure in sel_netnode_sid_slow()," 241 " unable to determine network node label\n"); 242 kfree(new); 243 } 244 return ret; 245 } 246 247 /** 248 * sel_netnode_sid - Lookup the SID of a network address 249 * @addr: the IP address 250 * @family: the address family 251 * @sid: node SID 252 * 253 * Description: 254 * This function determines the SID of a network address using the fastest 255 * method possible. First the address table is queried, but if an entry 256 * can't be found then the policy is queried and the result is added to the 257 * table to speedup future queries. Returns zero on success, negative values 258 * on failure. 259 * 260 */ 261 int sel_netnode_sid(void *addr, u16 family, u32 *sid) 262 { 263 struct sel_netnode *node; 264 265 rcu_read_lock(); 266 node = sel_netnode_find(addr, family); 267 if (node != NULL) { 268 *sid = node->nsec.sid; 269 rcu_read_unlock(); 270 return 0; 271 } 272 rcu_read_unlock(); 273 274 return sel_netnode_sid_slow(addr, family, sid); 275 } 276 277 /** 278 * sel_netnode_flush - Flush the entire network address table 279 * 280 * Description: 281 * Remove all entries from the network address table. 282 * 283 */ 284 static void sel_netnode_flush(void) 285 { 286 unsigned int idx; 287 struct sel_netnode *node, *node_tmp; 288 289 spin_lock_bh(&sel_netnode_lock); 290 for (idx = 0; idx < SEL_NETNODE_HASH_SIZE; idx++) { 291 list_for_each_entry_safe(node, node_tmp, 292 &sel_netnode_hash[idx].list, list) { 293 list_del_rcu(&node->list); 294 kfree_rcu(node, rcu); 295 } 296 sel_netnode_hash[idx].size = 0; 297 } 298 spin_unlock_bh(&sel_netnode_lock); 299 } 300 301 static int sel_netnode_avc_callback(u32 event) 302 { 303 if (event == AVC_CALLBACK_RESET) { 304 sel_netnode_flush(); 305 synchronize_net(); 306 } 307 return 0; 308 } 309 310 static __init int sel_netnode_init(void) 311 { 312 int iter; 313 int ret; 314 315 if (!selinux_enabled) 316 return 0; 317 318 for (iter = 0; iter < SEL_NETNODE_HASH_SIZE; iter++) { 319 INIT_LIST_HEAD(&sel_netnode_hash[iter].list); 320 sel_netnode_hash[iter].size = 0; 321 } 322 323 ret = avc_add_callback(sel_netnode_avc_callback, AVC_CALLBACK_RESET); 324 if (ret != 0) 325 panic("avc_add_callback() failed, error %d\n", ret); 326 327 return ret; 328 } 329 330 __initcall(sel_netnode_init); 331