xref: /linux/security/selinux/netnode.c (revision 121cc35cfb55ab0bcf04c8ba6b364a0990eb2449)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Network node table
4  *
5  * SELinux must keep a mapping of network nodes to labels/SIDs.  This
6  * mapping is maintained as part of the normal policy but a fast cache is
7  * needed to reduce the lookup overhead since most of these queries happen on
8  * a per-packet basis.
9  *
10  * Author: Paul Moore <paul@paul-moore.com>
11  *
12  * This code is heavily based on the "netif" concept originally developed by
13  * James Morris <jmorris@redhat.com>
14  *   (see security/selinux/netif.c for more information)
15  */
16 
17 /*
18  * (c) Copyright Hewlett-Packard Development Company, L.P., 2007
19  */
20 
21 #include <linux/types.h>
22 #include <linux/rcupdate.h>
23 #include <linux/list.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/in.h>
27 #include <linux/in6.h>
28 #include <linux/ip.h>
29 #include <linux/ipv6.h>
30 #include <net/ip.h>
31 #include <net/ipv6.h>
32 
33 #include "initcalls.h"
34 #include "netnode.h"
35 #include "objsec.h"
36 
37 #define SEL_NETNODE_HASH_SIZE       256
38 #define SEL_NETNODE_HASH_BKT_LIMIT   16
39 
40 struct sel_netnode_bkt {
41 	unsigned int size;
42 	struct list_head list;
43 };
44 
45 struct sel_netnode {
46 	struct netnode_security_struct nsec;
47 
48 	struct list_head list;
49 	struct rcu_head rcu;
50 };
51 
52 /* NOTE: we are using a combined hash table for both IPv4 and IPv6, the reason
53  * for this is that I suspect most users will not make heavy use of both
54  * address families at the same time so one table will usually end up wasted,
55  * if this becomes a problem we can always add a hash table for each address
56  * family later */
57 
58 static DEFINE_SPINLOCK(sel_netnode_lock);
59 static struct sel_netnode_bkt sel_netnode_hash[SEL_NETNODE_HASH_SIZE];
60 
61 /**
62  * sel_netnode_hashfn_ipv4 - IPv4 hashing function for the node table
63  * @addr: IPv4 address
64  *
65  * Description:
66  * This is the IPv4 hashing function for the node interface table, it returns
67  * the bucket number for the given IP address.
68  *
69  */
sel_netnode_hashfn_ipv4(__be32 addr)70 static unsigned int sel_netnode_hashfn_ipv4(__be32 addr)
71 {
72 	/* at some point we should determine if the mismatch in byte order
73 	 * affects the hash function dramatically */
74 	return (addr & (SEL_NETNODE_HASH_SIZE - 1));
75 }
76 
77 /**
78  * sel_netnode_hashfn_ipv6 - IPv6 hashing function for the node table
79  * @addr: IPv6 address
80  *
81  * Description:
82  * This is the IPv6 hashing function for the node interface table, it returns
83  * the bucket number for the given IP address.
84  *
85  */
sel_netnode_hashfn_ipv6(const struct in6_addr * addr)86 static unsigned int sel_netnode_hashfn_ipv6(const struct in6_addr *addr)
87 {
88 	/* just hash the least significant 32 bits to keep things fast (they
89 	 * are the most likely to be different anyway), we can revisit this
90 	 * later if needed */
91 	return (addr->s6_addr32[3] & (SEL_NETNODE_HASH_SIZE - 1));
92 }
93 
94 /**
95  * sel_netnode_find - Search for a node record
96  * @addr: IP address
97  * @family: address family
98  *
99  * Description:
100  * Search the network node table and return the record matching @addr.  If an
101  * entry can not be found in the table return NULL.
102  *
103  */
sel_netnode_find(const void * addr,u16 family)104 static struct sel_netnode *sel_netnode_find(const void *addr, u16 family)
105 {
106 	unsigned int idx;
107 	struct sel_netnode *node;
108 
109 	switch (family) {
110 	case PF_INET:
111 		idx = sel_netnode_hashfn_ipv4(*(const __be32 *)addr);
112 		break;
113 	case PF_INET6:
114 		idx = sel_netnode_hashfn_ipv6(addr);
115 		break;
116 	default:
117 		BUG();
118 		return NULL;
119 	}
120 
121 	list_for_each_entry_rcu(node, &sel_netnode_hash[idx].list, list)
122 		if (node->nsec.family == family)
123 			switch (family) {
124 			case PF_INET:
125 				if (node->nsec.addr.ipv4 == *(const __be32 *)addr)
126 					return node;
127 				break;
128 			case PF_INET6:
129 				if (ipv6_addr_equal(&node->nsec.addr.ipv6,
130 						    addr))
131 					return node;
132 				break;
133 			}
134 
135 	return NULL;
136 }
137 
138 /**
139  * sel_netnode_insert - Insert a new node into the table
140  * @node: the new node record
141  *
142  * Description:
143  * Add a new node record to the network address hash table.
144  *
145  */
sel_netnode_insert(struct sel_netnode * node)146 static void sel_netnode_insert(struct sel_netnode *node)
147 {
148 	unsigned int idx;
149 
150 	switch (node->nsec.family) {
151 	case PF_INET:
152 		idx = sel_netnode_hashfn_ipv4(node->nsec.addr.ipv4);
153 		break;
154 	case PF_INET6:
155 		idx = sel_netnode_hashfn_ipv6(&node->nsec.addr.ipv6);
156 		break;
157 	default:
158 		BUG();
159 		return;
160 	}
161 
162 	/* we need to impose a limit on the growth of the hash table so check
163 	 * this bucket to make sure it is within the specified bounds */
164 	list_add_rcu(&node->list, &sel_netnode_hash[idx].list);
165 	if (sel_netnode_hash[idx].size == SEL_NETNODE_HASH_BKT_LIMIT) {
166 		struct sel_netnode *tail;
167 		tail = list_entry(
168 			rcu_dereference_protected(
169 				list_tail_rcu(&sel_netnode_hash[idx].list),
170 				lockdep_is_held(&sel_netnode_lock)),
171 			struct sel_netnode, list);
172 		list_del_rcu(&tail->list);
173 		kfree_rcu(tail, rcu);
174 	} else
175 		sel_netnode_hash[idx].size++;
176 }
177 
178 /**
179  * sel_netnode_sid_slow - Lookup the SID of a network address using the policy
180  * @addr: the IP address
181  * @family: the address family
182  * @sid: node SID
183  *
184  * Description:
185  * This function determines the SID of a network address by querying the
186  * security policy.  The result is added to the network address table to
187  * speedup future queries.  Returns zero on success, negative values on
188  * failure.
189  *
190  */
sel_netnode_sid_slow(const void * addr,u16 family,u32 * sid)191 static int sel_netnode_sid_slow(const void *addr, u16 family, u32 *sid)
192 {
193 	int ret;
194 	struct sel_netnode *node;
195 	struct sel_netnode *new;
196 
197 	spin_lock_bh(&sel_netnode_lock);
198 	node = sel_netnode_find(addr, family);
199 	if (node != NULL) {
200 		*sid = node->nsec.sid;
201 		spin_unlock_bh(&sel_netnode_lock);
202 		return 0;
203 	}
204 
205 	/* If this memory allocation fails still return 0. The SID
206 	 * is valid, it just won't be added to the cache.
207 	 */
208 	new = kmalloc(sizeof(*new), GFP_ATOMIC);
209 	switch (family) {
210 	case PF_INET:
211 		ret = security_node_sid(PF_INET,
212 					addr, sizeof(struct in_addr), sid);
213 		if (new)
214 			new->nsec.addr.ipv4 = *(const __be32 *)addr;
215 		break;
216 	case PF_INET6:
217 		ret = security_node_sid(PF_INET6,
218 					addr, sizeof(struct in6_addr), sid);
219 		if (new)
220 			new->nsec.addr.ipv6 = *(const struct in6_addr *)addr;
221 		break;
222 	default:
223 		BUG();
224 		ret = -EINVAL;
225 	}
226 	if (ret == 0 && new) {
227 		new->nsec.family = family;
228 		new->nsec.sid = *sid;
229 		sel_netnode_insert(new);
230 	} else
231 		kfree(new);
232 
233 	spin_unlock_bh(&sel_netnode_lock);
234 	if (unlikely(ret))
235 		pr_warn("SELinux: failure in %s(), unable to determine network node label\n",
236 			__func__);
237 	return ret;
238 }
239 
240 /**
241  * sel_netnode_sid - Lookup the SID of a network address
242  * @addr: the IP address
243  * @family: the address family
244  * @sid: node SID
245  *
246  * Description:
247  * This function determines the SID of a network address using the fastest
248  * method possible.  First the address table is queried, but if an entry
249  * can't be found then the policy is queried and the result is added to the
250  * table to speedup future queries.  Returns zero on success, negative values
251  * on failure.
252  *
253  */
sel_netnode_sid(const void * addr,u16 family,u32 * sid)254 int sel_netnode_sid(const void *addr, u16 family, u32 *sid)
255 {
256 	struct sel_netnode *node;
257 
258 	rcu_read_lock();
259 	node = sel_netnode_find(addr, family);
260 	if (likely(node != NULL)) {
261 		*sid = node->nsec.sid;
262 		rcu_read_unlock();
263 		return 0;
264 	}
265 	rcu_read_unlock();
266 
267 	return sel_netnode_sid_slow(addr, family, sid);
268 }
269 
270 /**
271  * sel_netnode_flush - Flush the entire network address table
272  *
273  * Description:
274  * Remove all entries from the network address table.
275  *
276  */
sel_netnode_flush(void)277 void sel_netnode_flush(void)
278 {
279 	unsigned int idx;
280 	struct sel_netnode *node, *node_tmp;
281 
282 	spin_lock_bh(&sel_netnode_lock);
283 	for (idx = 0; idx < SEL_NETNODE_HASH_SIZE; idx++) {
284 		list_for_each_entry_safe(node, node_tmp,
285 					 &sel_netnode_hash[idx].list, list) {
286 				list_del_rcu(&node->list);
287 				kfree_rcu(node, rcu);
288 		}
289 		sel_netnode_hash[idx].size = 0;
290 	}
291 	spin_unlock_bh(&sel_netnode_lock);
292 }
293 
sel_netnode_init(void)294 int __init sel_netnode_init(void)
295 {
296 	int iter;
297 
298 	if (!selinux_enabled_boot)
299 		return 0;
300 
301 	for (iter = 0; iter < SEL_NETNODE_HASH_SIZE; iter++) {
302 		INIT_LIST_HEAD(&sel_netnode_hash[iter].list);
303 		sel_netnode_hash[iter].size = 0;
304 	}
305 
306 	return 0;
307 }
308