xref: /linux/security/selinux/hooks.c (revision f9bff0e31881d03badf191d3b0005839391f5f2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  NSA Security-Enhanced Linux (SELinux) security module
4  *
5  *  This file contains the SELinux hook function implementations.
6  *
7  *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
8  *	      Chris Vance, <cvance@nai.com>
9  *	      Wayne Salamon, <wsalamon@nai.com>
10  *	      James Morris <jmorris@redhat.com>
11  *
12  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14  *					   Eric Paris <eparis@redhat.com>
15  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  *			    <dgoeddel@trustedcs.com>
17  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18  *	Paul Moore <paul@paul-moore.com>
19  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
21  *  Copyright (C) 2016 Mellanox Technologies
22  */
23 
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/errno.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/task.h>
31 #include <linux/lsm_hooks.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/swap.h>
41 #include <linux/spinlock.h>
42 #include <linux/syscalls.h>
43 #include <linux/dcache.h>
44 #include <linux/file.h>
45 #include <linux/fdtable.h>
46 #include <linux/namei.h>
47 #include <linux/mount.h>
48 #include <linux/fs_context.h>
49 #include <linux/fs_parser.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>		/* for local_port_range[] */
55 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>	/* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/sctp.h>
70 #include <net/sctp/structs.h>
71 #include <linux/quota.h>
72 #include <linux/un.h>		/* for Unix socket types */
73 #include <net/af_unix.h>	/* for Unix socket types */
74 #include <linux/parser.h>
75 #include <linux/nfs_mount.h>
76 #include <net/ipv6.h>
77 #include <linux/hugetlb.h>
78 #include <linux/personality.h>
79 #include <linux/audit.h>
80 #include <linux/string.h>
81 #include <linux/mutex.h>
82 #include <linux/posix-timers.h>
83 #include <linux/syslog.h>
84 #include <linux/user_namespace.h>
85 #include <linux/export.h>
86 #include <linux/msg.h>
87 #include <linux/shm.h>
88 #include <linux/bpf.h>
89 #include <linux/kernfs.h>
90 #include <linux/stringhash.h>	/* for hashlen_string() */
91 #include <uapi/linux/mount.h>
92 #include <linux/fsnotify.h>
93 #include <linux/fanotify.h>
94 #include <linux/io_uring.h>
95 
96 #include "avc.h"
97 #include "objsec.h"
98 #include "netif.h"
99 #include "netnode.h"
100 #include "netport.h"
101 #include "ibpkey.h"
102 #include "xfrm.h"
103 #include "netlabel.h"
104 #include "audit.h"
105 #include "avc_ss.h"
106 
107 struct selinux_state selinux_state;
108 
109 /* SECMARK reference count */
110 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
111 
112 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
113 static int selinux_enforcing_boot __initdata;
114 
115 static int __init enforcing_setup(char *str)
116 {
117 	unsigned long enforcing;
118 	if (!kstrtoul(str, 0, &enforcing))
119 		selinux_enforcing_boot = enforcing ? 1 : 0;
120 	return 1;
121 }
122 __setup("enforcing=", enforcing_setup);
123 #else
124 #define selinux_enforcing_boot 1
125 #endif
126 
127 int selinux_enabled_boot __initdata = 1;
128 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
129 static int __init selinux_enabled_setup(char *str)
130 {
131 	unsigned long enabled;
132 	if (!kstrtoul(str, 0, &enabled))
133 		selinux_enabled_boot = enabled ? 1 : 0;
134 	return 1;
135 }
136 __setup("selinux=", selinux_enabled_setup);
137 #endif
138 
139 static int __init checkreqprot_setup(char *str)
140 {
141 	unsigned long checkreqprot;
142 
143 	if (!kstrtoul(str, 0, &checkreqprot)) {
144 		if (checkreqprot)
145 			pr_err("SELinux: checkreqprot set to 1 via kernel parameter.  This is no longer supported.\n");
146 	}
147 	return 1;
148 }
149 __setup("checkreqprot=", checkreqprot_setup);
150 
151 /**
152  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
153  *
154  * Description:
155  * This function checks the SECMARK reference counter to see if any SECMARK
156  * targets are currently configured, if the reference counter is greater than
157  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
158  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
159  * policy capability is enabled, SECMARK is always considered enabled.
160  *
161  */
162 static int selinux_secmark_enabled(void)
163 {
164 	return (selinux_policycap_alwaysnetwork() ||
165 		atomic_read(&selinux_secmark_refcount));
166 }
167 
168 /**
169  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
170  *
171  * Description:
172  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
173  * (1) if any are enabled or false (0) if neither are enabled.  If the
174  * always_check_network policy capability is enabled, peer labeling
175  * is always considered enabled.
176  *
177  */
178 static int selinux_peerlbl_enabled(void)
179 {
180 	return (selinux_policycap_alwaysnetwork() ||
181 		netlbl_enabled() || selinux_xfrm_enabled());
182 }
183 
184 static int selinux_netcache_avc_callback(u32 event)
185 {
186 	if (event == AVC_CALLBACK_RESET) {
187 		sel_netif_flush();
188 		sel_netnode_flush();
189 		sel_netport_flush();
190 		synchronize_net();
191 	}
192 	return 0;
193 }
194 
195 static int selinux_lsm_notifier_avc_callback(u32 event)
196 {
197 	if (event == AVC_CALLBACK_RESET) {
198 		sel_ib_pkey_flush();
199 		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
200 	}
201 
202 	return 0;
203 }
204 
205 /*
206  * initialise the security for the init task
207  */
208 static void cred_init_security(void)
209 {
210 	struct task_security_struct *tsec;
211 
212 	tsec = selinux_cred(unrcu_pointer(current->real_cred));
213 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
214 }
215 
216 /*
217  * get the security ID of a set of credentials
218  */
219 static inline u32 cred_sid(const struct cred *cred)
220 {
221 	const struct task_security_struct *tsec;
222 
223 	tsec = selinux_cred(cred);
224 	return tsec->sid;
225 }
226 
227 /*
228  * get the objective security ID of a task
229  */
230 static inline u32 task_sid_obj(const struct task_struct *task)
231 {
232 	u32 sid;
233 
234 	rcu_read_lock();
235 	sid = cred_sid(__task_cred(task));
236 	rcu_read_unlock();
237 	return sid;
238 }
239 
240 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
241 
242 /*
243  * Try reloading inode security labels that have been marked as invalid.  The
244  * @may_sleep parameter indicates when sleeping and thus reloading labels is
245  * allowed; when set to false, returns -ECHILD when the label is
246  * invalid.  The @dentry parameter should be set to a dentry of the inode.
247  */
248 static int __inode_security_revalidate(struct inode *inode,
249 				       struct dentry *dentry,
250 				       bool may_sleep)
251 {
252 	struct inode_security_struct *isec = selinux_inode(inode);
253 
254 	might_sleep_if(may_sleep);
255 
256 	if (selinux_initialized() &&
257 	    isec->initialized != LABEL_INITIALIZED) {
258 		if (!may_sleep)
259 			return -ECHILD;
260 
261 		/*
262 		 * Try reloading the inode security label.  This will fail if
263 		 * @opt_dentry is NULL and no dentry for this inode can be
264 		 * found; in that case, continue using the old label.
265 		 */
266 		inode_doinit_with_dentry(inode, dentry);
267 	}
268 	return 0;
269 }
270 
271 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
272 {
273 	return selinux_inode(inode);
274 }
275 
276 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
277 {
278 	int error;
279 
280 	error = __inode_security_revalidate(inode, NULL, !rcu);
281 	if (error)
282 		return ERR_PTR(error);
283 	return selinux_inode(inode);
284 }
285 
286 /*
287  * Get the security label of an inode.
288  */
289 static struct inode_security_struct *inode_security(struct inode *inode)
290 {
291 	__inode_security_revalidate(inode, NULL, true);
292 	return selinux_inode(inode);
293 }
294 
295 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
296 {
297 	struct inode *inode = d_backing_inode(dentry);
298 
299 	return selinux_inode(inode);
300 }
301 
302 /*
303  * Get the security label of a dentry's backing inode.
304  */
305 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
306 {
307 	struct inode *inode = d_backing_inode(dentry);
308 
309 	__inode_security_revalidate(inode, dentry, true);
310 	return selinux_inode(inode);
311 }
312 
313 static void inode_free_security(struct inode *inode)
314 {
315 	struct inode_security_struct *isec = selinux_inode(inode);
316 	struct superblock_security_struct *sbsec;
317 
318 	if (!isec)
319 		return;
320 	sbsec = selinux_superblock(inode->i_sb);
321 	/*
322 	 * As not all inode security structures are in a list, we check for
323 	 * empty list outside of the lock to make sure that we won't waste
324 	 * time taking a lock doing nothing.
325 	 *
326 	 * The list_del_init() function can be safely called more than once.
327 	 * It should not be possible for this function to be called with
328 	 * concurrent list_add(), but for better safety against future changes
329 	 * in the code, we use list_empty_careful() here.
330 	 */
331 	if (!list_empty_careful(&isec->list)) {
332 		spin_lock(&sbsec->isec_lock);
333 		list_del_init(&isec->list);
334 		spin_unlock(&sbsec->isec_lock);
335 	}
336 }
337 
338 struct selinux_mnt_opts {
339 	u32 fscontext_sid;
340 	u32 context_sid;
341 	u32 rootcontext_sid;
342 	u32 defcontext_sid;
343 };
344 
345 static void selinux_free_mnt_opts(void *mnt_opts)
346 {
347 	kfree(mnt_opts);
348 }
349 
350 enum {
351 	Opt_error = -1,
352 	Opt_context = 0,
353 	Opt_defcontext = 1,
354 	Opt_fscontext = 2,
355 	Opt_rootcontext = 3,
356 	Opt_seclabel = 4,
357 };
358 
359 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
360 static const struct {
361 	const char *name;
362 	int len;
363 	int opt;
364 	bool has_arg;
365 } tokens[] = {
366 	A(context, true),
367 	A(fscontext, true),
368 	A(defcontext, true),
369 	A(rootcontext, true),
370 	A(seclabel, false),
371 };
372 #undef A
373 
374 static int match_opt_prefix(char *s, int l, char **arg)
375 {
376 	int i;
377 
378 	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
379 		size_t len = tokens[i].len;
380 		if (len > l || memcmp(s, tokens[i].name, len))
381 			continue;
382 		if (tokens[i].has_arg) {
383 			if (len == l || s[len] != '=')
384 				continue;
385 			*arg = s + len + 1;
386 		} else if (len != l)
387 			continue;
388 		return tokens[i].opt;
389 	}
390 	return Opt_error;
391 }
392 
393 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
394 
395 static int may_context_mount_sb_relabel(u32 sid,
396 			struct superblock_security_struct *sbsec,
397 			const struct cred *cred)
398 {
399 	const struct task_security_struct *tsec = selinux_cred(cred);
400 	int rc;
401 
402 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
403 			  FILESYSTEM__RELABELFROM, NULL);
404 	if (rc)
405 		return rc;
406 
407 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
408 			  FILESYSTEM__RELABELTO, NULL);
409 	return rc;
410 }
411 
412 static int may_context_mount_inode_relabel(u32 sid,
413 			struct superblock_security_struct *sbsec,
414 			const struct cred *cred)
415 {
416 	const struct task_security_struct *tsec = selinux_cred(cred);
417 	int rc;
418 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
419 			  FILESYSTEM__RELABELFROM, NULL);
420 	if (rc)
421 		return rc;
422 
423 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
424 			  FILESYSTEM__ASSOCIATE, NULL);
425 	return rc;
426 }
427 
428 static int selinux_is_genfs_special_handling(struct super_block *sb)
429 {
430 	/* Special handling. Genfs but also in-core setxattr handler */
431 	return	!strcmp(sb->s_type->name, "sysfs") ||
432 		!strcmp(sb->s_type->name, "pstore") ||
433 		!strcmp(sb->s_type->name, "debugfs") ||
434 		!strcmp(sb->s_type->name, "tracefs") ||
435 		!strcmp(sb->s_type->name, "rootfs") ||
436 		(selinux_policycap_cgroupseclabel() &&
437 		 (!strcmp(sb->s_type->name, "cgroup") ||
438 		  !strcmp(sb->s_type->name, "cgroup2")));
439 }
440 
441 static int selinux_is_sblabel_mnt(struct super_block *sb)
442 {
443 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
444 
445 	/*
446 	 * IMPORTANT: Double-check logic in this function when adding a new
447 	 * SECURITY_FS_USE_* definition!
448 	 */
449 	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
450 
451 	switch (sbsec->behavior) {
452 	case SECURITY_FS_USE_XATTR:
453 	case SECURITY_FS_USE_TRANS:
454 	case SECURITY_FS_USE_TASK:
455 	case SECURITY_FS_USE_NATIVE:
456 		return 1;
457 
458 	case SECURITY_FS_USE_GENFS:
459 		return selinux_is_genfs_special_handling(sb);
460 
461 	/* Never allow relabeling on context mounts */
462 	case SECURITY_FS_USE_MNTPOINT:
463 	case SECURITY_FS_USE_NONE:
464 	default:
465 		return 0;
466 	}
467 }
468 
469 static int sb_check_xattr_support(struct super_block *sb)
470 {
471 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
472 	struct dentry *root = sb->s_root;
473 	struct inode *root_inode = d_backing_inode(root);
474 	u32 sid;
475 	int rc;
476 
477 	/*
478 	 * Make sure that the xattr handler exists and that no
479 	 * error other than -ENODATA is returned by getxattr on
480 	 * the root directory.  -ENODATA is ok, as this may be
481 	 * the first boot of the SELinux kernel before we have
482 	 * assigned xattr values to the filesystem.
483 	 */
484 	if (!(root_inode->i_opflags & IOP_XATTR)) {
485 		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
486 			sb->s_id, sb->s_type->name);
487 		goto fallback;
488 	}
489 
490 	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
491 	if (rc < 0 && rc != -ENODATA) {
492 		if (rc == -EOPNOTSUPP) {
493 			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
494 				sb->s_id, sb->s_type->name);
495 			goto fallback;
496 		} else {
497 			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
498 				sb->s_id, sb->s_type->name, -rc);
499 			return rc;
500 		}
501 	}
502 	return 0;
503 
504 fallback:
505 	/* No xattr support - try to fallback to genfs if possible. */
506 	rc = security_genfs_sid(sb->s_type->name, "/",
507 				SECCLASS_DIR, &sid);
508 	if (rc)
509 		return -EOPNOTSUPP;
510 
511 	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
512 		sb->s_id, sb->s_type->name);
513 	sbsec->behavior = SECURITY_FS_USE_GENFS;
514 	sbsec->sid = sid;
515 	return 0;
516 }
517 
518 static int sb_finish_set_opts(struct super_block *sb)
519 {
520 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
521 	struct dentry *root = sb->s_root;
522 	struct inode *root_inode = d_backing_inode(root);
523 	int rc = 0;
524 
525 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
526 		rc = sb_check_xattr_support(sb);
527 		if (rc)
528 			return rc;
529 	}
530 
531 	sbsec->flags |= SE_SBINITIALIZED;
532 
533 	/*
534 	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
535 	 * leave the flag untouched because sb_clone_mnt_opts might be handing
536 	 * us a superblock that needs the flag to be cleared.
537 	 */
538 	if (selinux_is_sblabel_mnt(sb))
539 		sbsec->flags |= SBLABEL_MNT;
540 	else
541 		sbsec->flags &= ~SBLABEL_MNT;
542 
543 	/* Initialize the root inode. */
544 	rc = inode_doinit_with_dentry(root_inode, root);
545 
546 	/* Initialize any other inodes associated with the superblock, e.g.
547 	   inodes created prior to initial policy load or inodes created
548 	   during get_sb by a pseudo filesystem that directly
549 	   populates itself. */
550 	spin_lock(&sbsec->isec_lock);
551 	while (!list_empty(&sbsec->isec_head)) {
552 		struct inode_security_struct *isec =
553 				list_first_entry(&sbsec->isec_head,
554 					   struct inode_security_struct, list);
555 		struct inode *inode = isec->inode;
556 		list_del_init(&isec->list);
557 		spin_unlock(&sbsec->isec_lock);
558 		inode = igrab(inode);
559 		if (inode) {
560 			if (!IS_PRIVATE(inode))
561 				inode_doinit_with_dentry(inode, NULL);
562 			iput(inode);
563 		}
564 		spin_lock(&sbsec->isec_lock);
565 	}
566 	spin_unlock(&sbsec->isec_lock);
567 	return rc;
568 }
569 
570 static int bad_option(struct superblock_security_struct *sbsec, char flag,
571 		      u32 old_sid, u32 new_sid)
572 {
573 	char mnt_flags = sbsec->flags & SE_MNTMASK;
574 
575 	/* check if the old mount command had the same options */
576 	if (sbsec->flags & SE_SBINITIALIZED)
577 		if (!(sbsec->flags & flag) ||
578 		    (old_sid != new_sid))
579 			return 1;
580 
581 	/* check if we were passed the same options twice,
582 	 * aka someone passed context=a,context=b
583 	 */
584 	if (!(sbsec->flags & SE_SBINITIALIZED))
585 		if (mnt_flags & flag)
586 			return 1;
587 	return 0;
588 }
589 
590 /*
591  * Allow filesystems with binary mount data to explicitly set mount point
592  * labeling information.
593  */
594 static int selinux_set_mnt_opts(struct super_block *sb,
595 				void *mnt_opts,
596 				unsigned long kern_flags,
597 				unsigned long *set_kern_flags)
598 {
599 	const struct cred *cred = current_cred();
600 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
601 	struct dentry *root = sb->s_root;
602 	struct selinux_mnt_opts *opts = mnt_opts;
603 	struct inode_security_struct *root_isec;
604 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
605 	u32 defcontext_sid = 0;
606 	int rc = 0;
607 
608 	/*
609 	 * Specifying internal flags without providing a place to
610 	 * place the results is not allowed
611 	 */
612 	if (kern_flags && !set_kern_flags)
613 		return -EINVAL;
614 
615 	mutex_lock(&sbsec->lock);
616 
617 	if (!selinux_initialized()) {
618 		if (!opts) {
619 			/* Defer initialization until selinux_complete_init,
620 			   after the initial policy is loaded and the security
621 			   server is ready to handle calls. */
622 			if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
623 				sbsec->flags |= SE_SBNATIVE;
624 				*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
625 			}
626 			goto out;
627 		}
628 		rc = -EINVAL;
629 		pr_warn("SELinux: Unable to set superblock options "
630 			"before the security server is initialized\n");
631 		goto out;
632 	}
633 
634 	/*
635 	 * Binary mount data FS will come through this function twice.  Once
636 	 * from an explicit call and once from the generic calls from the vfs.
637 	 * Since the generic VFS calls will not contain any security mount data
638 	 * we need to skip the double mount verification.
639 	 *
640 	 * This does open a hole in which we will not notice if the first
641 	 * mount using this sb set explicit options and a second mount using
642 	 * this sb does not set any security options.  (The first options
643 	 * will be used for both mounts)
644 	 */
645 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
646 	    && !opts)
647 		goto out;
648 
649 	root_isec = backing_inode_security_novalidate(root);
650 
651 	/*
652 	 * parse the mount options, check if they are valid sids.
653 	 * also check if someone is trying to mount the same sb more
654 	 * than once with different security options.
655 	 */
656 	if (opts) {
657 		if (opts->fscontext_sid) {
658 			fscontext_sid = opts->fscontext_sid;
659 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
660 					fscontext_sid))
661 				goto out_double_mount;
662 			sbsec->flags |= FSCONTEXT_MNT;
663 		}
664 		if (opts->context_sid) {
665 			context_sid = opts->context_sid;
666 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
667 					context_sid))
668 				goto out_double_mount;
669 			sbsec->flags |= CONTEXT_MNT;
670 		}
671 		if (opts->rootcontext_sid) {
672 			rootcontext_sid = opts->rootcontext_sid;
673 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
674 					rootcontext_sid))
675 				goto out_double_mount;
676 			sbsec->flags |= ROOTCONTEXT_MNT;
677 		}
678 		if (opts->defcontext_sid) {
679 			defcontext_sid = opts->defcontext_sid;
680 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
681 					defcontext_sid))
682 				goto out_double_mount;
683 			sbsec->flags |= DEFCONTEXT_MNT;
684 		}
685 	}
686 
687 	if (sbsec->flags & SE_SBINITIALIZED) {
688 		/* previously mounted with options, but not on this attempt? */
689 		if ((sbsec->flags & SE_MNTMASK) && !opts)
690 			goto out_double_mount;
691 		rc = 0;
692 		goto out;
693 	}
694 
695 	if (strcmp(sb->s_type->name, "proc") == 0)
696 		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
697 
698 	if (!strcmp(sb->s_type->name, "debugfs") ||
699 	    !strcmp(sb->s_type->name, "tracefs") ||
700 	    !strcmp(sb->s_type->name, "binder") ||
701 	    !strcmp(sb->s_type->name, "bpf") ||
702 	    !strcmp(sb->s_type->name, "pstore") ||
703 	    !strcmp(sb->s_type->name, "securityfs"))
704 		sbsec->flags |= SE_SBGENFS;
705 
706 	if (!strcmp(sb->s_type->name, "sysfs") ||
707 	    !strcmp(sb->s_type->name, "cgroup") ||
708 	    !strcmp(sb->s_type->name, "cgroup2"))
709 		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
710 
711 	if (!sbsec->behavior) {
712 		/*
713 		 * Determine the labeling behavior to use for this
714 		 * filesystem type.
715 		 */
716 		rc = security_fs_use(sb);
717 		if (rc) {
718 			pr_warn("%s: security_fs_use(%s) returned %d\n",
719 					__func__, sb->s_type->name, rc);
720 			goto out;
721 		}
722 	}
723 
724 	/*
725 	 * If this is a user namespace mount and the filesystem type is not
726 	 * explicitly whitelisted, then no contexts are allowed on the command
727 	 * line and security labels must be ignored.
728 	 */
729 	if (sb->s_user_ns != &init_user_ns &&
730 	    strcmp(sb->s_type->name, "tmpfs") &&
731 	    strcmp(sb->s_type->name, "ramfs") &&
732 	    strcmp(sb->s_type->name, "devpts") &&
733 	    strcmp(sb->s_type->name, "overlay")) {
734 		if (context_sid || fscontext_sid || rootcontext_sid ||
735 		    defcontext_sid) {
736 			rc = -EACCES;
737 			goto out;
738 		}
739 		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
740 			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
741 			rc = security_transition_sid(current_sid(),
742 						     current_sid(),
743 						     SECCLASS_FILE, NULL,
744 						     &sbsec->mntpoint_sid);
745 			if (rc)
746 				goto out;
747 		}
748 		goto out_set_opts;
749 	}
750 
751 	/* sets the context of the superblock for the fs being mounted. */
752 	if (fscontext_sid) {
753 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
754 		if (rc)
755 			goto out;
756 
757 		sbsec->sid = fscontext_sid;
758 	}
759 
760 	/*
761 	 * Switch to using mount point labeling behavior.
762 	 * sets the label used on all file below the mountpoint, and will set
763 	 * the superblock context if not already set.
764 	 */
765 	if (sbsec->flags & SE_SBNATIVE) {
766 		/*
767 		 * This means we are initializing a superblock that has been
768 		 * mounted before the SELinux was initialized and the
769 		 * filesystem requested native labeling. We had already
770 		 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags
771 		 * in the original mount attempt, so now we just need to set
772 		 * the SECURITY_FS_USE_NATIVE behavior.
773 		 */
774 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
775 	} else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
776 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
777 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
778 	}
779 
780 	if (context_sid) {
781 		if (!fscontext_sid) {
782 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
783 							  cred);
784 			if (rc)
785 				goto out;
786 			sbsec->sid = context_sid;
787 		} else {
788 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
789 							     cred);
790 			if (rc)
791 				goto out;
792 		}
793 		if (!rootcontext_sid)
794 			rootcontext_sid = context_sid;
795 
796 		sbsec->mntpoint_sid = context_sid;
797 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
798 	}
799 
800 	if (rootcontext_sid) {
801 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
802 						     cred);
803 		if (rc)
804 			goto out;
805 
806 		root_isec->sid = rootcontext_sid;
807 		root_isec->initialized = LABEL_INITIALIZED;
808 	}
809 
810 	if (defcontext_sid) {
811 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
812 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
813 			rc = -EINVAL;
814 			pr_warn("SELinux: defcontext option is "
815 			       "invalid for this filesystem type\n");
816 			goto out;
817 		}
818 
819 		if (defcontext_sid != sbsec->def_sid) {
820 			rc = may_context_mount_inode_relabel(defcontext_sid,
821 							     sbsec, cred);
822 			if (rc)
823 				goto out;
824 		}
825 
826 		sbsec->def_sid = defcontext_sid;
827 	}
828 
829 out_set_opts:
830 	rc = sb_finish_set_opts(sb);
831 out:
832 	mutex_unlock(&sbsec->lock);
833 	return rc;
834 out_double_mount:
835 	rc = -EINVAL;
836 	pr_warn("SELinux: mount invalid.  Same superblock, different "
837 	       "security settings for (dev %s, type %s)\n", sb->s_id,
838 	       sb->s_type->name);
839 	goto out;
840 }
841 
842 static int selinux_cmp_sb_context(const struct super_block *oldsb,
843 				    const struct super_block *newsb)
844 {
845 	struct superblock_security_struct *old = selinux_superblock(oldsb);
846 	struct superblock_security_struct *new = selinux_superblock(newsb);
847 	char oldflags = old->flags & SE_MNTMASK;
848 	char newflags = new->flags & SE_MNTMASK;
849 
850 	if (oldflags != newflags)
851 		goto mismatch;
852 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
853 		goto mismatch;
854 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
855 		goto mismatch;
856 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
857 		goto mismatch;
858 	if (oldflags & ROOTCONTEXT_MNT) {
859 		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
860 		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
861 		if (oldroot->sid != newroot->sid)
862 			goto mismatch;
863 	}
864 	return 0;
865 mismatch:
866 	pr_warn("SELinux: mount invalid.  Same superblock, "
867 			    "different security settings for (dev %s, "
868 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
869 	return -EBUSY;
870 }
871 
872 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
873 					struct super_block *newsb,
874 					unsigned long kern_flags,
875 					unsigned long *set_kern_flags)
876 {
877 	int rc = 0;
878 	const struct superblock_security_struct *oldsbsec =
879 						selinux_superblock(oldsb);
880 	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
881 
882 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
883 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
884 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
885 
886 	/*
887 	 * Specifying internal flags without providing a place to
888 	 * place the results is not allowed.
889 	 */
890 	if (kern_flags && !set_kern_flags)
891 		return -EINVAL;
892 
893 	mutex_lock(&newsbsec->lock);
894 
895 	/*
896 	 * if the parent was able to be mounted it clearly had no special lsm
897 	 * mount options.  thus we can safely deal with this superblock later
898 	 */
899 	if (!selinux_initialized()) {
900 		if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
901 			newsbsec->flags |= SE_SBNATIVE;
902 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
903 		}
904 		goto out;
905 	}
906 
907 	/* how can we clone if the old one wasn't set up?? */
908 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
909 
910 	/* if fs is reusing a sb, make sure that the contexts match */
911 	if (newsbsec->flags & SE_SBINITIALIZED) {
912 		mutex_unlock(&newsbsec->lock);
913 		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
914 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
915 		return selinux_cmp_sb_context(oldsb, newsb);
916 	}
917 
918 	newsbsec->flags = oldsbsec->flags;
919 
920 	newsbsec->sid = oldsbsec->sid;
921 	newsbsec->def_sid = oldsbsec->def_sid;
922 	newsbsec->behavior = oldsbsec->behavior;
923 
924 	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
925 		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
926 		rc = security_fs_use(newsb);
927 		if (rc)
928 			goto out;
929 	}
930 
931 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
932 		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
933 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
934 	}
935 
936 	if (set_context) {
937 		u32 sid = oldsbsec->mntpoint_sid;
938 
939 		if (!set_fscontext)
940 			newsbsec->sid = sid;
941 		if (!set_rootcontext) {
942 			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
943 			newisec->sid = sid;
944 		}
945 		newsbsec->mntpoint_sid = sid;
946 	}
947 	if (set_rootcontext) {
948 		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
949 		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
950 
951 		newisec->sid = oldisec->sid;
952 	}
953 
954 	sb_finish_set_opts(newsb);
955 out:
956 	mutex_unlock(&newsbsec->lock);
957 	return rc;
958 }
959 
960 /*
961  * NOTE: the caller is responsible for freeing the memory even if on error.
962  */
963 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
964 {
965 	struct selinux_mnt_opts *opts = *mnt_opts;
966 	u32 *dst_sid;
967 	int rc;
968 
969 	if (token == Opt_seclabel)
970 		/* eaten and completely ignored */
971 		return 0;
972 	if (!s)
973 		return -EINVAL;
974 
975 	if (!selinux_initialized()) {
976 		pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
977 		return -EINVAL;
978 	}
979 
980 	if (!opts) {
981 		opts = kzalloc(sizeof(*opts), GFP_KERNEL);
982 		if (!opts)
983 			return -ENOMEM;
984 		*mnt_opts = opts;
985 	}
986 
987 	switch (token) {
988 	case Opt_context:
989 		if (opts->context_sid || opts->defcontext_sid)
990 			goto err;
991 		dst_sid = &opts->context_sid;
992 		break;
993 	case Opt_fscontext:
994 		if (opts->fscontext_sid)
995 			goto err;
996 		dst_sid = &opts->fscontext_sid;
997 		break;
998 	case Opt_rootcontext:
999 		if (opts->rootcontext_sid)
1000 			goto err;
1001 		dst_sid = &opts->rootcontext_sid;
1002 		break;
1003 	case Opt_defcontext:
1004 		if (opts->context_sid || opts->defcontext_sid)
1005 			goto err;
1006 		dst_sid = &opts->defcontext_sid;
1007 		break;
1008 	default:
1009 		WARN_ON(1);
1010 		return -EINVAL;
1011 	}
1012 	rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL);
1013 	if (rc)
1014 		pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1015 			s, rc);
1016 	return rc;
1017 
1018 err:
1019 	pr_warn(SEL_MOUNT_FAIL_MSG);
1020 	return -EINVAL;
1021 }
1022 
1023 static int show_sid(struct seq_file *m, u32 sid)
1024 {
1025 	char *context = NULL;
1026 	u32 len;
1027 	int rc;
1028 
1029 	rc = security_sid_to_context(sid, &context, &len);
1030 	if (!rc) {
1031 		bool has_comma = strchr(context, ',');
1032 
1033 		seq_putc(m, '=');
1034 		if (has_comma)
1035 			seq_putc(m, '\"');
1036 		seq_escape(m, context, "\"\n\\");
1037 		if (has_comma)
1038 			seq_putc(m, '\"');
1039 	}
1040 	kfree(context);
1041 	return rc;
1042 }
1043 
1044 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1045 {
1046 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1047 	int rc;
1048 
1049 	if (!(sbsec->flags & SE_SBINITIALIZED))
1050 		return 0;
1051 
1052 	if (!selinux_initialized())
1053 		return 0;
1054 
1055 	if (sbsec->flags & FSCONTEXT_MNT) {
1056 		seq_putc(m, ',');
1057 		seq_puts(m, FSCONTEXT_STR);
1058 		rc = show_sid(m, sbsec->sid);
1059 		if (rc)
1060 			return rc;
1061 	}
1062 	if (sbsec->flags & CONTEXT_MNT) {
1063 		seq_putc(m, ',');
1064 		seq_puts(m, CONTEXT_STR);
1065 		rc = show_sid(m, sbsec->mntpoint_sid);
1066 		if (rc)
1067 			return rc;
1068 	}
1069 	if (sbsec->flags & DEFCONTEXT_MNT) {
1070 		seq_putc(m, ',');
1071 		seq_puts(m, DEFCONTEXT_STR);
1072 		rc = show_sid(m, sbsec->def_sid);
1073 		if (rc)
1074 			return rc;
1075 	}
1076 	if (sbsec->flags & ROOTCONTEXT_MNT) {
1077 		struct dentry *root = sb->s_root;
1078 		struct inode_security_struct *isec = backing_inode_security(root);
1079 		seq_putc(m, ',');
1080 		seq_puts(m, ROOTCONTEXT_STR);
1081 		rc = show_sid(m, isec->sid);
1082 		if (rc)
1083 			return rc;
1084 	}
1085 	if (sbsec->flags & SBLABEL_MNT) {
1086 		seq_putc(m, ',');
1087 		seq_puts(m, SECLABEL_STR);
1088 	}
1089 	return 0;
1090 }
1091 
1092 static inline u16 inode_mode_to_security_class(umode_t mode)
1093 {
1094 	switch (mode & S_IFMT) {
1095 	case S_IFSOCK:
1096 		return SECCLASS_SOCK_FILE;
1097 	case S_IFLNK:
1098 		return SECCLASS_LNK_FILE;
1099 	case S_IFREG:
1100 		return SECCLASS_FILE;
1101 	case S_IFBLK:
1102 		return SECCLASS_BLK_FILE;
1103 	case S_IFDIR:
1104 		return SECCLASS_DIR;
1105 	case S_IFCHR:
1106 		return SECCLASS_CHR_FILE;
1107 	case S_IFIFO:
1108 		return SECCLASS_FIFO_FILE;
1109 
1110 	}
1111 
1112 	return SECCLASS_FILE;
1113 }
1114 
1115 static inline int default_protocol_stream(int protocol)
1116 {
1117 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1118 		protocol == IPPROTO_MPTCP);
1119 }
1120 
1121 static inline int default_protocol_dgram(int protocol)
1122 {
1123 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1124 }
1125 
1126 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1127 {
1128 	int extsockclass = selinux_policycap_extsockclass();
1129 
1130 	switch (family) {
1131 	case PF_UNIX:
1132 		switch (type) {
1133 		case SOCK_STREAM:
1134 		case SOCK_SEQPACKET:
1135 			return SECCLASS_UNIX_STREAM_SOCKET;
1136 		case SOCK_DGRAM:
1137 		case SOCK_RAW:
1138 			return SECCLASS_UNIX_DGRAM_SOCKET;
1139 		}
1140 		break;
1141 	case PF_INET:
1142 	case PF_INET6:
1143 		switch (type) {
1144 		case SOCK_STREAM:
1145 		case SOCK_SEQPACKET:
1146 			if (default_protocol_stream(protocol))
1147 				return SECCLASS_TCP_SOCKET;
1148 			else if (extsockclass && protocol == IPPROTO_SCTP)
1149 				return SECCLASS_SCTP_SOCKET;
1150 			else
1151 				return SECCLASS_RAWIP_SOCKET;
1152 		case SOCK_DGRAM:
1153 			if (default_protocol_dgram(protocol))
1154 				return SECCLASS_UDP_SOCKET;
1155 			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1156 						  protocol == IPPROTO_ICMPV6))
1157 				return SECCLASS_ICMP_SOCKET;
1158 			else
1159 				return SECCLASS_RAWIP_SOCKET;
1160 		case SOCK_DCCP:
1161 			return SECCLASS_DCCP_SOCKET;
1162 		default:
1163 			return SECCLASS_RAWIP_SOCKET;
1164 		}
1165 		break;
1166 	case PF_NETLINK:
1167 		switch (protocol) {
1168 		case NETLINK_ROUTE:
1169 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1170 		case NETLINK_SOCK_DIAG:
1171 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1172 		case NETLINK_NFLOG:
1173 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1174 		case NETLINK_XFRM:
1175 			return SECCLASS_NETLINK_XFRM_SOCKET;
1176 		case NETLINK_SELINUX:
1177 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1178 		case NETLINK_ISCSI:
1179 			return SECCLASS_NETLINK_ISCSI_SOCKET;
1180 		case NETLINK_AUDIT:
1181 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1182 		case NETLINK_FIB_LOOKUP:
1183 			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1184 		case NETLINK_CONNECTOR:
1185 			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1186 		case NETLINK_NETFILTER:
1187 			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1188 		case NETLINK_DNRTMSG:
1189 			return SECCLASS_NETLINK_DNRT_SOCKET;
1190 		case NETLINK_KOBJECT_UEVENT:
1191 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1192 		case NETLINK_GENERIC:
1193 			return SECCLASS_NETLINK_GENERIC_SOCKET;
1194 		case NETLINK_SCSITRANSPORT:
1195 			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1196 		case NETLINK_RDMA:
1197 			return SECCLASS_NETLINK_RDMA_SOCKET;
1198 		case NETLINK_CRYPTO:
1199 			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1200 		default:
1201 			return SECCLASS_NETLINK_SOCKET;
1202 		}
1203 	case PF_PACKET:
1204 		return SECCLASS_PACKET_SOCKET;
1205 	case PF_KEY:
1206 		return SECCLASS_KEY_SOCKET;
1207 	case PF_APPLETALK:
1208 		return SECCLASS_APPLETALK_SOCKET;
1209 	}
1210 
1211 	if (extsockclass) {
1212 		switch (family) {
1213 		case PF_AX25:
1214 			return SECCLASS_AX25_SOCKET;
1215 		case PF_IPX:
1216 			return SECCLASS_IPX_SOCKET;
1217 		case PF_NETROM:
1218 			return SECCLASS_NETROM_SOCKET;
1219 		case PF_ATMPVC:
1220 			return SECCLASS_ATMPVC_SOCKET;
1221 		case PF_X25:
1222 			return SECCLASS_X25_SOCKET;
1223 		case PF_ROSE:
1224 			return SECCLASS_ROSE_SOCKET;
1225 		case PF_DECnet:
1226 			return SECCLASS_DECNET_SOCKET;
1227 		case PF_ATMSVC:
1228 			return SECCLASS_ATMSVC_SOCKET;
1229 		case PF_RDS:
1230 			return SECCLASS_RDS_SOCKET;
1231 		case PF_IRDA:
1232 			return SECCLASS_IRDA_SOCKET;
1233 		case PF_PPPOX:
1234 			return SECCLASS_PPPOX_SOCKET;
1235 		case PF_LLC:
1236 			return SECCLASS_LLC_SOCKET;
1237 		case PF_CAN:
1238 			return SECCLASS_CAN_SOCKET;
1239 		case PF_TIPC:
1240 			return SECCLASS_TIPC_SOCKET;
1241 		case PF_BLUETOOTH:
1242 			return SECCLASS_BLUETOOTH_SOCKET;
1243 		case PF_IUCV:
1244 			return SECCLASS_IUCV_SOCKET;
1245 		case PF_RXRPC:
1246 			return SECCLASS_RXRPC_SOCKET;
1247 		case PF_ISDN:
1248 			return SECCLASS_ISDN_SOCKET;
1249 		case PF_PHONET:
1250 			return SECCLASS_PHONET_SOCKET;
1251 		case PF_IEEE802154:
1252 			return SECCLASS_IEEE802154_SOCKET;
1253 		case PF_CAIF:
1254 			return SECCLASS_CAIF_SOCKET;
1255 		case PF_ALG:
1256 			return SECCLASS_ALG_SOCKET;
1257 		case PF_NFC:
1258 			return SECCLASS_NFC_SOCKET;
1259 		case PF_VSOCK:
1260 			return SECCLASS_VSOCK_SOCKET;
1261 		case PF_KCM:
1262 			return SECCLASS_KCM_SOCKET;
1263 		case PF_QIPCRTR:
1264 			return SECCLASS_QIPCRTR_SOCKET;
1265 		case PF_SMC:
1266 			return SECCLASS_SMC_SOCKET;
1267 		case PF_XDP:
1268 			return SECCLASS_XDP_SOCKET;
1269 		case PF_MCTP:
1270 			return SECCLASS_MCTP_SOCKET;
1271 #if PF_MAX > 46
1272 #error New address family defined, please update this function.
1273 #endif
1274 		}
1275 	}
1276 
1277 	return SECCLASS_SOCKET;
1278 }
1279 
1280 static int selinux_genfs_get_sid(struct dentry *dentry,
1281 				 u16 tclass,
1282 				 u16 flags,
1283 				 u32 *sid)
1284 {
1285 	int rc;
1286 	struct super_block *sb = dentry->d_sb;
1287 	char *buffer, *path;
1288 
1289 	buffer = (char *)__get_free_page(GFP_KERNEL);
1290 	if (!buffer)
1291 		return -ENOMEM;
1292 
1293 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1294 	if (IS_ERR(path))
1295 		rc = PTR_ERR(path);
1296 	else {
1297 		if (flags & SE_SBPROC) {
1298 			/* each process gets a /proc/PID/ entry. Strip off the
1299 			 * PID part to get a valid selinux labeling.
1300 			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1301 			while (path[1] >= '0' && path[1] <= '9') {
1302 				path[1] = '/';
1303 				path++;
1304 			}
1305 		}
1306 		rc = security_genfs_sid(sb->s_type->name,
1307 					path, tclass, sid);
1308 		if (rc == -ENOENT) {
1309 			/* No match in policy, mark as unlabeled. */
1310 			*sid = SECINITSID_UNLABELED;
1311 			rc = 0;
1312 		}
1313 	}
1314 	free_page((unsigned long)buffer);
1315 	return rc;
1316 }
1317 
1318 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1319 				  u32 def_sid, u32 *sid)
1320 {
1321 #define INITCONTEXTLEN 255
1322 	char *context;
1323 	unsigned int len;
1324 	int rc;
1325 
1326 	len = INITCONTEXTLEN;
1327 	context = kmalloc(len + 1, GFP_NOFS);
1328 	if (!context)
1329 		return -ENOMEM;
1330 
1331 	context[len] = '\0';
1332 	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1333 	if (rc == -ERANGE) {
1334 		kfree(context);
1335 
1336 		/* Need a larger buffer.  Query for the right size. */
1337 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1338 		if (rc < 0)
1339 			return rc;
1340 
1341 		len = rc;
1342 		context = kmalloc(len + 1, GFP_NOFS);
1343 		if (!context)
1344 			return -ENOMEM;
1345 
1346 		context[len] = '\0';
1347 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1348 				    context, len);
1349 	}
1350 	if (rc < 0) {
1351 		kfree(context);
1352 		if (rc != -ENODATA) {
1353 			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1354 				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1355 			return rc;
1356 		}
1357 		*sid = def_sid;
1358 		return 0;
1359 	}
1360 
1361 	rc = security_context_to_sid_default(context, rc, sid,
1362 					     def_sid, GFP_NOFS);
1363 	if (rc) {
1364 		char *dev = inode->i_sb->s_id;
1365 		unsigned long ino = inode->i_ino;
1366 
1367 		if (rc == -EINVAL) {
1368 			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1369 					      ino, dev, context);
1370 		} else {
1371 			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1372 				__func__, context, -rc, dev, ino);
1373 		}
1374 	}
1375 	kfree(context);
1376 	return 0;
1377 }
1378 
1379 /* The inode's security attributes must be initialized before first use. */
1380 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1381 {
1382 	struct superblock_security_struct *sbsec = NULL;
1383 	struct inode_security_struct *isec = selinux_inode(inode);
1384 	u32 task_sid, sid = 0;
1385 	u16 sclass;
1386 	struct dentry *dentry;
1387 	int rc = 0;
1388 
1389 	if (isec->initialized == LABEL_INITIALIZED)
1390 		return 0;
1391 
1392 	spin_lock(&isec->lock);
1393 	if (isec->initialized == LABEL_INITIALIZED)
1394 		goto out_unlock;
1395 
1396 	if (isec->sclass == SECCLASS_FILE)
1397 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1398 
1399 	sbsec = selinux_superblock(inode->i_sb);
1400 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1401 		/* Defer initialization until selinux_complete_init,
1402 		   after the initial policy is loaded and the security
1403 		   server is ready to handle calls. */
1404 		spin_lock(&sbsec->isec_lock);
1405 		if (list_empty(&isec->list))
1406 			list_add(&isec->list, &sbsec->isec_head);
1407 		spin_unlock(&sbsec->isec_lock);
1408 		goto out_unlock;
1409 	}
1410 
1411 	sclass = isec->sclass;
1412 	task_sid = isec->task_sid;
1413 	sid = isec->sid;
1414 	isec->initialized = LABEL_PENDING;
1415 	spin_unlock(&isec->lock);
1416 
1417 	switch (sbsec->behavior) {
1418 	/*
1419 	 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels
1420 	 * via xattr when called from delayed_superblock_init().
1421 	 */
1422 	case SECURITY_FS_USE_NATIVE:
1423 	case SECURITY_FS_USE_XATTR:
1424 		if (!(inode->i_opflags & IOP_XATTR)) {
1425 			sid = sbsec->def_sid;
1426 			break;
1427 		}
1428 		/* Need a dentry, since the xattr API requires one.
1429 		   Life would be simpler if we could just pass the inode. */
1430 		if (opt_dentry) {
1431 			/* Called from d_instantiate or d_splice_alias. */
1432 			dentry = dget(opt_dentry);
1433 		} else {
1434 			/*
1435 			 * Called from selinux_complete_init, try to find a dentry.
1436 			 * Some filesystems really want a connected one, so try
1437 			 * that first.  We could split SECURITY_FS_USE_XATTR in
1438 			 * two, depending upon that...
1439 			 */
1440 			dentry = d_find_alias(inode);
1441 			if (!dentry)
1442 				dentry = d_find_any_alias(inode);
1443 		}
1444 		if (!dentry) {
1445 			/*
1446 			 * this is can be hit on boot when a file is accessed
1447 			 * before the policy is loaded.  When we load policy we
1448 			 * may find inodes that have no dentry on the
1449 			 * sbsec->isec_head list.  No reason to complain as these
1450 			 * will get fixed up the next time we go through
1451 			 * inode_doinit with a dentry, before these inodes could
1452 			 * be used again by userspace.
1453 			 */
1454 			goto out_invalid;
1455 		}
1456 
1457 		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1458 					    &sid);
1459 		dput(dentry);
1460 		if (rc)
1461 			goto out;
1462 		break;
1463 	case SECURITY_FS_USE_TASK:
1464 		sid = task_sid;
1465 		break;
1466 	case SECURITY_FS_USE_TRANS:
1467 		/* Default to the fs SID. */
1468 		sid = sbsec->sid;
1469 
1470 		/* Try to obtain a transition SID. */
1471 		rc = security_transition_sid(task_sid, sid,
1472 					     sclass, NULL, &sid);
1473 		if (rc)
1474 			goto out;
1475 		break;
1476 	case SECURITY_FS_USE_MNTPOINT:
1477 		sid = sbsec->mntpoint_sid;
1478 		break;
1479 	default:
1480 		/* Default to the fs superblock SID. */
1481 		sid = sbsec->sid;
1482 
1483 		if ((sbsec->flags & SE_SBGENFS) &&
1484 		     (!S_ISLNK(inode->i_mode) ||
1485 		      selinux_policycap_genfs_seclabel_symlinks())) {
1486 			/* We must have a dentry to determine the label on
1487 			 * procfs inodes */
1488 			if (opt_dentry) {
1489 				/* Called from d_instantiate or
1490 				 * d_splice_alias. */
1491 				dentry = dget(opt_dentry);
1492 			} else {
1493 				/* Called from selinux_complete_init, try to
1494 				 * find a dentry.  Some filesystems really want
1495 				 * a connected one, so try that first.
1496 				 */
1497 				dentry = d_find_alias(inode);
1498 				if (!dentry)
1499 					dentry = d_find_any_alias(inode);
1500 			}
1501 			/*
1502 			 * This can be hit on boot when a file is accessed
1503 			 * before the policy is loaded.  When we load policy we
1504 			 * may find inodes that have no dentry on the
1505 			 * sbsec->isec_head list.  No reason to complain as
1506 			 * these will get fixed up the next time we go through
1507 			 * inode_doinit() with a dentry, before these inodes
1508 			 * could be used again by userspace.
1509 			 */
1510 			if (!dentry)
1511 				goto out_invalid;
1512 			rc = selinux_genfs_get_sid(dentry, sclass,
1513 						   sbsec->flags, &sid);
1514 			if (rc) {
1515 				dput(dentry);
1516 				goto out;
1517 			}
1518 
1519 			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1520 			    (inode->i_opflags & IOP_XATTR)) {
1521 				rc = inode_doinit_use_xattr(inode, dentry,
1522 							    sid, &sid);
1523 				if (rc) {
1524 					dput(dentry);
1525 					goto out;
1526 				}
1527 			}
1528 			dput(dentry);
1529 		}
1530 		break;
1531 	}
1532 
1533 out:
1534 	spin_lock(&isec->lock);
1535 	if (isec->initialized == LABEL_PENDING) {
1536 		if (rc) {
1537 			isec->initialized = LABEL_INVALID;
1538 			goto out_unlock;
1539 		}
1540 		isec->initialized = LABEL_INITIALIZED;
1541 		isec->sid = sid;
1542 	}
1543 
1544 out_unlock:
1545 	spin_unlock(&isec->lock);
1546 	return rc;
1547 
1548 out_invalid:
1549 	spin_lock(&isec->lock);
1550 	if (isec->initialized == LABEL_PENDING) {
1551 		isec->initialized = LABEL_INVALID;
1552 		isec->sid = sid;
1553 	}
1554 	spin_unlock(&isec->lock);
1555 	return 0;
1556 }
1557 
1558 /* Convert a Linux signal to an access vector. */
1559 static inline u32 signal_to_av(int sig)
1560 {
1561 	u32 perm = 0;
1562 
1563 	switch (sig) {
1564 	case SIGCHLD:
1565 		/* Commonly granted from child to parent. */
1566 		perm = PROCESS__SIGCHLD;
1567 		break;
1568 	case SIGKILL:
1569 		/* Cannot be caught or ignored */
1570 		perm = PROCESS__SIGKILL;
1571 		break;
1572 	case SIGSTOP:
1573 		/* Cannot be caught or ignored */
1574 		perm = PROCESS__SIGSTOP;
1575 		break;
1576 	default:
1577 		/* All other signals. */
1578 		perm = PROCESS__SIGNAL;
1579 		break;
1580 	}
1581 
1582 	return perm;
1583 }
1584 
1585 #if CAP_LAST_CAP > 63
1586 #error Fix SELinux to handle capabilities > 63.
1587 #endif
1588 
1589 /* Check whether a task is allowed to use a capability. */
1590 static int cred_has_capability(const struct cred *cred,
1591 			       int cap, unsigned int opts, bool initns)
1592 {
1593 	struct common_audit_data ad;
1594 	struct av_decision avd;
1595 	u16 sclass;
1596 	u32 sid = cred_sid(cred);
1597 	u32 av = CAP_TO_MASK(cap);
1598 	int rc;
1599 
1600 	ad.type = LSM_AUDIT_DATA_CAP;
1601 	ad.u.cap = cap;
1602 
1603 	switch (CAP_TO_INDEX(cap)) {
1604 	case 0:
1605 		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1606 		break;
1607 	case 1:
1608 		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1609 		break;
1610 	default:
1611 		pr_err("SELinux:  out of range capability %d\n", cap);
1612 		BUG();
1613 		return -EINVAL;
1614 	}
1615 
1616 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1617 	if (!(opts & CAP_OPT_NOAUDIT)) {
1618 		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1619 		if (rc2)
1620 			return rc2;
1621 	}
1622 	return rc;
1623 }
1624 
1625 /* Check whether a task has a particular permission to an inode.
1626    The 'adp' parameter is optional and allows other audit
1627    data to be passed (e.g. the dentry). */
1628 static int inode_has_perm(const struct cred *cred,
1629 			  struct inode *inode,
1630 			  u32 perms,
1631 			  struct common_audit_data *adp)
1632 {
1633 	struct inode_security_struct *isec;
1634 	u32 sid;
1635 
1636 	validate_creds(cred);
1637 
1638 	if (unlikely(IS_PRIVATE(inode)))
1639 		return 0;
1640 
1641 	sid = cred_sid(cred);
1642 	isec = selinux_inode(inode);
1643 
1644 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1645 }
1646 
1647 /* Same as inode_has_perm, but pass explicit audit data containing
1648    the dentry to help the auditing code to more easily generate the
1649    pathname if needed. */
1650 static inline int dentry_has_perm(const struct cred *cred,
1651 				  struct dentry *dentry,
1652 				  u32 av)
1653 {
1654 	struct inode *inode = d_backing_inode(dentry);
1655 	struct common_audit_data ad;
1656 
1657 	ad.type = LSM_AUDIT_DATA_DENTRY;
1658 	ad.u.dentry = dentry;
1659 	__inode_security_revalidate(inode, dentry, true);
1660 	return inode_has_perm(cred, inode, av, &ad);
1661 }
1662 
1663 /* Same as inode_has_perm, but pass explicit audit data containing
1664    the path to help the auditing code to more easily generate the
1665    pathname if needed. */
1666 static inline int path_has_perm(const struct cred *cred,
1667 				const struct path *path,
1668 				u32 av)
1669 {
1670 	struct inode *inode = d_backing_inode(path->dentry);
1671 	struct common_audit_data ad;
1672 
1673 	ad.type = LSM_AUDIT_DATA_PATH;
1674 	ad.u.path = *path;
1675 	__inode_security_revalidate(inode, path->dentry, true);
1676 	return inode_has_perm(cred, inode, av, &ad);
1677 }
1678 
1679 /* Same as path_has_perm, but uses the inode from the file struct. */
1680 static inline int file_path_has_perm(const struct cred *cred,
1681 				     struct file *file,
1682 				     u32 av)
1683 {
1684 	struct common_audit_data ad;
1685 
1686 	ad.type = LSM_AUDIT_DATA_FILE;
1687 	ad.u.file = file;
1688 	return inode_has_perm(cred, file_inode(file), av, &ad);
1689 }
1690 
1691 #ifdef CONFIG_BPF_SYSCALL
1692 static int bpf_fd_pass(struct file *file, u32 sid);
1693 #endif
1694 
1695 /* Check whether a task can use an open file descriptor to
1696    access an inode in a given way.  Check access to the
1697    descriptor itself, and then use dentry_has_perm to
1698    check a particular permission to the file.
1699    Access to the descriptor is implicitly granted if it
1700    has the same SID as the process.  If av is zero, then
1701    access to the file is not checked, e.g. for cases
1702    where only the descriptor is affected like seek. */
1703 static int file_has_perm(const struct cred *cred,
1704 			 struct file *file,
1705 			 u32 av)
1706 {
1707 	struct file_security_struct *fsec = selinux_file(file);
1708 	struct inode *inode = file_inode(file);
1709 	struct common_audit_data ad;
1710 	u32 sid = cred_sid(cred);
1711 	int rc;
1712 
1713 	ad.type = LSM_AUDIT_DATA_FILE;
1714 	ad.u.file = file;
1715 
1716 	if (sid != fsec->sid) {
1717 		rc = avc_has_perm(sid, fsec->sid,
1718 				  SECCLASS_FD,
1719 				  FD__USE,
1720 				  &ad);
1721 		if (rc)
1722 			goto out;
1723 	}
1724 
1725 #ifdef CONFIG_BPF_SYSCALL
1726 	rc = bpf_fd_pass(file, cred_sid(cred));
1727 	if (rc)
1728 		return rc;
1729 #endif
1730 
1731 	/* av is zero if only checking access to the descriptor. */
1732 	rc = 0;
1733 	if (av)
1734 		rc = inode_has_perm(cred, inode, av, &ad);
1735 
1736 out:
1737 	return rc;
1738 }
1739 
1740 /*
1741  * Determine the label for an inode that might be unioned.
1742  */
1743 static int
1744 selinux_determine_inode_label(const struct task_security_struct *tsec,
1745 				 struct inode *dir,
1746 				 const struct qstr *name, u16 tclass,
1747 				 u32 *_new_isid)
1748 {
1749 	const struct superblock_security_struct *sbsec =
1750 						selinux_superblock(dir->i_sb);
1751 
1752 	if ((sbsec->flags & SE_SBINITIALIZED) &&
1753 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1754 		*_new_isid = sbsec->mntpoint_sid;
1755 	} else if ((sbsec->flags & SBLABEL_MNT) &&
1756 		   tsec->create_sid) {
1757 		*_new_isid = tsec->create_sid;
1758 	} else {
1759 		const struct inode_security_struct *dsec = inode_security(dir);
1760 		return security_transition_sid(tsec->sid,
1761 					       dsec->sid, tclass,
1762 					       name, _new_isid);
1763 	}
1764 
1765 	return 0;
1766 }
1767 
1768 /* Check whether a task can create a file. */
1769 static int may_create(struct inode *dir,
1770 		      struct dentry *dentry,
1771 		      u16 tclass)
1772 {
1773 	const struct task_security_struct *tsec = selinux_cred(current_cred());
1774 	struct inode_security_struct *dsec;
1775 	struct superblock_security_struct *sbsec;
1776 	u32 sid, newsid;
1777 	struct common_audit_data ad;
1778 	int rc;
1779 
1780 	dsec = inode_security(dir);
1781 	sbsec = selinux_superblock(dir->i_sb);
1782 
1783 	sid = tsec->sid;
1784 
1785 	ad.type = LSM_AUDIT_DATA_DENTRY;
1786 	ad.u.dentry = dentry;
1787 
1788 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1789 			  DIR__ADD_NAME | DIR__SEARCH,
1790 			  &ad);
1791 	if (rc)
1792 		return rc;
1793 
1794 	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1795 					   &newsid);
1796 	if (rc)
1797 		return rc;
1798 
1799 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1800 	if (rc)
1801 		return rc;
1802 
1803 	return avc_has_perm(newsid, sbsec->sid,
1804 			    SECCLASS_FILESYSTEM,
1805 			    FILESYSTEM__ASSOCIATE, &ad);
1806 }
1807 
1808 #define MAY_LINK	0
1809 #define MAY_UNLINK	1
1810 #define MAY_RMDIR	2
1811 
1812 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1813 static int may_link(struct inode *dir,
1814 		    struct dentry *dentry,
1815 		    int kind)
1816 
1817 {
1818 	struct inode_security_struct *dsec, *isec;
1819 	struct common_audit_data ad;
1820 	u32 sid = current_sid();
1821 	u32 av;
1822 	int rc;
1823 
1824 	dsec = inode_security(dir);
1825 	isec = backing_inode_security(dentry);
1826 
1827 	ad.type = LSM_AUDIT_DATA_DENTRY;
1828 	ad.u.dentry = dentry;
1829 
1830 	av = DIR__SEARCH;
1831 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1832 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1833 	if (rc)
1834 		return rc;
1835 
1836 	switch (kind) {
1837 	case MAY_LINK:
1838 		av = FILE__LINK;
1839 		break;
1840 	case MAY_UNLINK:
1841 		av = FILE__UNLINK;
1842 		break;
1843 	case MAY_RMDIR:
1844 		av = DIR__RMDIR;
1845 		break;
1846 	default:
1847 		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1848 			__func__, kind);
1849 		return 0;
1850 	}
1851 
1852 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1853 	return rc;
1854 }
1855 
1856 static inline int may_rename(struct inode *old_dir,
1857 			     struct dentry *old_dentry,
1858 			     struct inode *new_dir,
1859 			     struct dentry *new_dentry)
1860 {
1861 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1862 	struct common_audit_data ad;
1863 	u32 sid = current_sid();
1864 	u32 av;
1865 	int old_is_dir, new_is_dir;
1866 	int rc;
1867 
1868 	old_dsec = inode_security(old_dir);
1869 	old_isec = backing_inode_security(old_dentry);
1870 	old_is_dir = d_is_dir(old_dentry);
1871 	new_dsec = inode_security(new_dir);
1872 
1873 	ad.type = LSM_AUDIT_DATA_DENTRY;
1874 
1875 	ad.u.dentry = old_dentry;
1876 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1877 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1878 	if (rc)
1879 		return rc;
1880 	rc = avc_has_perm(sid, old_isec->sid,
1881 			  old_isec->sclass, FILE__RENAME, &ad);
1882 	if (rc)
1883 		return rc;
1884 	if (old_is_dir && new_dir != old_dir) {
1885 		rc = avc_has_perm(sid, old_isec->sid,
1886 				  old_isec->sclass, DIR__REPARENT, &ad);
1887 		if (rc)
1888 			return rc;
1889 	}
1890 
1891 	ad.u.dentry = new_dentry;
1892 	av = DIR__ADD_NAME | DIR__SEARCH;
1893 	if (d_is_positive(new_dentry))
1894 		av |= DIR__REMOVE_NAME;
1895 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1896 	if (rc)
1897 		return rc;
1898 	if (d_is_positive(new_dentry)) {
1899 		new_isec = backing_inode_security(new_dentry);
1900 		new_is_dir = d_is_dir(new_dentry);
1901 		rc = avc_has_perm(sid, new_isec->sid,
1902 				  new_isec->sclass,
1903 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1904 		if (rc)
1905 			return rc;
1906 	}
1907 
1908 	return 0;
1909 }
1910 
1911 /* Check whether a task can perform a filesystem operation. */
1912 static int superblock_has_perm(const struct cred *cred,
1913 			       struct super_block *sb,
1914 			       u32 perms,
1915 			       struct common_audit_data *ad)
1916 {
1917 	struct superblock_security_struct *sbsec;
1918 	u32 sid = cred_sid(cred);
1919 
1920 	sbsec = selinux_superblock(sb);
1921 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1922 }
1923 
1924 /* Convert a Linux mode and permission mask to an access vector. */
1925 static inline u32 file_mask_to_av(int mode, int mask)
1926 {
1927 	u32 av = 0;
1928 
1929 	if (!S_ISDIR(mode)) {
1930 		if (mask & MAY_EXEC)
1931 			av |= FILE__EXECUTE;
1932 		if (mask & MAY_READ)
1933 			av |= FILE__READ;
1934 
1935 		if (mask & MAY_APPEND)
1936 			av |= FILE__APPEND;
1937 		else if (mask & MAY_WRITE)
1938 			av |= FILE__WRITE;
1939 
1940 	} else {
1941 		if (mask & MAY_EXEC)
1942 			av |= DIR__SEARCH;
1943 		if (mask & MAY_WRITE)
1944 			av |= DIR__WRITE;
1945 		if (mask & MAY_READ)
1946 			av |= DIR__READ;
1947 	}
1948 
1949 	return av;
1950 }
1951 
1952 /* Convert a Linux file to an access vector. */
1953 static inline u32 file_to_av(struct file *file)
1954 {
1955 	u32 av = 0;
1956 
1957 	if (file->f_mode & FMODE_READ)
1958 		av |= FILE__READ;
1959 	if (file->f_mode & FMODE_WRITE) {
1960 		if (file->f_flags & O_APPEND)
1961 			av |= FILE__APPEND;
1962 		else
1963 			av |= FILE__WRITE;
1964 	}
1965 	if (!av) {
1966 		/*
1967 		 * Special file opened with flags 3 for ioctl-only use.
1968 		 */
1969 		av = FILE__IOCTL;
1970 	}
1971 
1972 	return av;
1973 }
1974 
1975 /*
1976  * Convert a file to an access vector and include the correct
1977  * open permission.
1978  */
1979 static inline u32 open_file_to_av(struct file *file)
1980 {
1981 	u32 av = file_to_av(file);
1982 	struct inode *inode = file_inode(file);
1983 
1984 	if (selinux_policycap_openperm() &&
1985 	    inode->i_sb->s_magic != SOCKFS_MAGIC)
1986 		av |= FILE__OPEN;
1987 
1988 	return av;
1989 }
1990 
1991 /* Hook functions begin here. */
1992 
1993 static int selinux_binder_set_context_mgr(const struct cred *mgr)
1994 {
1995 	return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER,
1996 			    BINDER__SET_CONTEXT_MGR, NULL);
1997 }
1998 
1999 static int selinux_binder_transaction(const struct cred *from,
2000 				      const struct cred *to)
2001 {
2002 	u32 mysid = current_sid();
2003 	u32 fromsid = cred_sid(from);
2004 	u32 tosid = cred_sid(to);
2005 	int rc;
2006 
2007 	if (mysid != fromsid) {
2008 		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2009 				  BINDER__IMPERSONATE, NULL);
2010 		if (rc)
2011 			return rc;
2012 	}
2013 
2014 	return avc_has_perm(fromsid, tosid,
2015 			    SECCLASS_BINDER, BINDER__CALL, NULL);
2016 }
2017 
2018 static int selinux_binder_transfer_binder(const struct cred *from,
2019 					  const struct cred *to)
2020 {
2021 	return avc_has_perm(cred_sid(from), cred_sid(to),
2022 			    SECCLASS_BINDER, BINDER__TRANSFER,
2023 			    NULL);
2024 }
2025 
2026 static int selinux_binder_transfer_file(const struct cred *from,
2027 					const struct cred *to,
2028 					struct file *file)
2029 {
2030 	u32 sid = cred_sid(to);
2031 	struct file_security_struct *fsec = selinux_file(file);
2032 	struct dentry *dentry = file->f_path.dentry;
2033 	struct inode_security_struct *isec;
2034 	struct common_audit_data ad;
2035 	int rc;
2036 
2037 	ad.type = LSM_AUDIT_DATA_PATH;
2038 	ad.u.path = file->f_path;
2039 
2040 	if (sid != fsec->sid) {
2041 		rc = avc_has_perm(sid, fsec->sid,
2042 				  SECCLASS_FD,
2043 				  FD__USE,
2044 				  &ad);
2045 		if (rc)
2046 			return rc;
2047 	}
2048 
2049 #ifdef CONFIG_BPF_SYSCALL
2050 	rc = bpf_fd_pass(file, sid);
2051 	if (rc)
2052 		return rc;
2053 #endif
2054 
2055 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2056 		return 0;
2057 
2058 	isec = backing_inode_security(dentry);
2059 	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2060 			    &ad);
2061 }
2062 
2063 static int selinux_ptrace_access_check(struct task_struct *child,
2064 				       unsigned int mode)
2065 {
2066 	u32 sid = current_sid();
2067 	u32 csid = task_sid_obj(child);
2068 
2069 	if (mode & PTRACE_MODE_READ)
2070 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ,
2071 				NULL);
2072 
2073 	return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE,
2074 			NULL);
2075 }
2076 
2077 static int selinux_ptrace_traceme(struct task_struct *parent)
2078 {
2079 	return avc_has_perm(task_sid_obj(parent), task_sid_obj(current),
2080 			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2081 }
2082 
2083 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2084 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2085 {
2086 	return avc_has_perm(current_sid(), task_sid_obj(target),
2087 			SECCLASS_PROCESS, PROCESS__GETCAP, NULL);
2088 }
2089 
2090 static int selinux_capset(struct cred *new, const struct cred *old,
2091 			  const kernel_cap_t *effective,
2092 			  const kernel_cap_t *inheritable,
2093 			  const kernel_cap_t *permitted)
2094 {
2095 	return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2096 			    PROCESS__SETCAP, NULL);
2097 }
2098 
2099 /*
2100  * (This comment used to live with the selinux_task_setuid hook,
2101  * which was removed).
2102  *
2103  * Since setuid only affects the current process, and since the SELinux
2104  * controls are not based on the Linux identity attributes, SELinux does not
2105  * need to control this operation.  However, SELinux does control the use of
2106  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2107  */
2108 
2109 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2110 			   int cap, unsigned int opts)
2111 {
2112 	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2113 }
2114 
2115 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2116 {
2117 	const struct cred *cred = current_cred();
2118 	int rc = 0;
2119 
2120 	if (!sb)
2121 		return 0;
2122 
2123 	switch (cmds) {
2124 	case Q_SYNC:
2125 	case Q_QUOTAON:
2126 	case Q_QUOTAOFF:
2127 	case Q_SETINFO:
2128 	case Q_SETQUOTA:
2129 	case Q_XQUOTAOFF:
2130 	case Q_XQUOTAON:
2131 	case Q_XSETQLIM:
2132 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2133 		break;
2134 	case Q_GETFMT:
2135 	case Q_GETINFO:
2136 	case Q_GETQUOTA:
2137 	case Q_XGETQUOTA:
2138 	case Q_XGETQSTAT:
2139 	case Q_XGETQSTATV:
2140 	case Q_XGETNEXTQUOTA:
2141 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2142 		break;
2143 	default:
2144 		rc = 0;  /* let the kernel handle invalid cmds */
2145 		break;
2146 	}
2147 	return rc;
2148 }
2149 
2150 static int selinux_quota_on(struct dentry *dentry)
2151 {
2152 	const struct cred *cred = current_cred();
2153 
2154 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2155 }
2156 
2157 static int selinux_syslog(int type)
2158 {
2159 	switch (type) {
2160 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2161 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2162 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2163 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2164 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2165 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2166 	/* Set level of messages printed to console */
2167 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2168 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2169 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2170 				    NULL);
2171 	}
2172 	/* All other syslog types */
2173 	return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2174 			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2175 }
2176 
2177 /*
2178  * Check that a process has enough memory to allocate a new virtual
2179  * mapping. 0 means there is enough memory for the allocation to
2180  * succeed and -ENOMEM implies there is not.
2181  *
2182  * Do not audit the selinux permission check, as this is applied to all
2183  * processes that allocate mappings.
2184  */
2185 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2186 {
2187 	int rc, cap_sys_admin = 0;
2188 
2189 	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2190 				 CAP_OPT_NOAUDIT, true);
2191 	if (rc == 0)
2192 		cap_sys_admin = 1;
2193 
2194 	return cap_sys_admin;
2195 }
2196 
2197 /* binprm security operations */
2198 
2199 static u32 ptrace_parent_sid(void)
2200 {
2201 	u32 sid = 0;
2202 	struct task_struct *tracer;
2203 
2204 	rcu_read_lock();
2205 	tracer = ptrace_parent(current);
2206 	if (tracer)
2207 		sid = task_sid_obj(tracer);
2208 	rcu_read_unlock();
2209 
2210 	return sid;
2211 }
2212 
2213 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2214 			    const struct task_security_struct *old_tsec,
2215 			    const struct task_security_struct *new_tsec)
2216 {
2217 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2218 	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2219 	int rc;
2220 	u32 av;
2221 
2222 	if (!nnp && !nosuid)
2223 		return 0; /* neither NNP nor nosuid */
2224 
2225 	if (new_tsec->sid == old_tsec->sid)
2226 		return 0; /* No change in credentials */
2227 
2228 	/*
2229 	 * If the policy enables the nnp_nosuid_transition policy capability,
2230 	 * then we permit transitions under NNP or nosuid if the
2231 	 * policy allows the corresponding permission between
2232 	 * the old and new contexts.
2233 	 */
2234 	if (selinux_policycap_nnp_nosuid_transition()) {
2235 		av = 0;
2236 		if (nnp)
2237 			av |= PROCESS2__NNP_TRANSITION;
2238 		if (nosuid)
2239 			av |= PROCESS2__NOSUID_TRANSITION;
2240 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2241 				  SECCLASS_PROCESS2, av, NULL);
2242 		if (!rc)
2243 			return 0;
2244 	}
2245 
2246 	/*
2247 	 * We also permit NNP or nosuid transitions to bounded SIDs,
2248 	 * i.e. SIDs that are guaranteed to only be allowed a subset
2249 	 * of the permissions of the current SID.
2250 	 */
2251 	rc = security_bounded_transition(old_tsec->sid,
2252 					 new_tsec->sid);
2253 	if (!rc)
2254 		return 0;
2255 
2256 	/*
2257 	 * On failure, preserve the errno values for NNP vs nosuid.
2258 	 * NNP:  Operation not permitted for caller.
2259 	 * nosuid:  Permission denied to file.
2260 	 */
2261 	if (nnp)
2262 		return -EPERM;
2263 	return -EACCES;
2264 }
2265 
2266 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2267 {
2268 	const struct task_security_struct *old_tsec;
2269 	struct task_security_struct *new_tsec;
2270 	struct inode_security_struct *isec;
2271 	struct common_audit_data ad;
2272 	struct inode *inode = file_inode(bprm->file);
2273 	int rc;
2274 
2275 	/* SELinux context only depends on initial program or script and not
2276 	 * the script interpreter */
2277 
2278 	old_tsec = selinux_cred(current_cred());
2279 	new_tsec = selinux_cred(bprm->cred);
2280 	isec = inode_security(inode);
2281 
2282 	/* Default to the current task SID. */
2283 	new_tsec->sid = old_tsec->sid;
2284 	new_tsec->osid = old_tsec->sid;
2285 
2286 	/* Reset fs, key, and sock SIDs on execve. */
2287 	new_tsec->create_sid = 0;
2288 	new_tsec->keycreate_sid = 0;
2289 	new_tsec->sockcreate_sid = 0;
2290 
2291 	if (old_tsec->exec_sid) {
2292 		new_tsec->sid = old_tsec->exec_sid;
2293 		/* Reset exec SID on execve. */
2294 		new_tsec->exec_sid = 0;
2295 
2296 		/* Fail on NNP or nosuid if not an allowed transition. */
2297 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2298 		if (rc)
2299 			return rc;
2300 	} else {
2301 		/* Check for a default transition on this program. */
2302 		rc = security_transition_sid(old_tsec->sid,
2303 					     isec->sid, SECCLASS_PROCESS, NULL,
2304 					     &new_tsec->sid);
2305 		if (rc)
2306 			return rc;
2307 
2308 		/*
2309 		 * Fallback to old SID on NNP or nosuid if not an allowed
2310 		 * transition.
2311 		 */
2312 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2313 		if (rc)
2314 			new_tsec->sid = old_tsec->sid;
2315 	}
2316 
2317 	ad.type = LSM_AUDIT_DATA_FILE;
2318 	ad.u.file = bprm->file;
2319 
2320 	if (new_tsec->sid == old_tsec->sid) {
2321 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2322 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2323 		if (rc)
2324 			return rc;
2325 	} else {
2326 		/* Check permissions for the transition. */
2327 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2328 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2329 		if (rc)
2330 			return rc;
2331 
2332 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2333 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2334 		if (rc)
2335 			return rc;
2336 
2337 		/* Check for shared state */
2338 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2339 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2340 					  SECCLASS_PROCESS, PROCESS__SHARE,
2341 					  NULL);
2342 			if (rc)
2343 				return -EPERM;
2344 		}
2345 
2346 		/* Make sure that anyone attempting to ptrace over a task that
2347 		 * changes its SID has the appropriate permit */
2348 		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2349 			u32 ptsid = ptrace_parent_sid();
2350 			if (ptsid != 0) {
2351 				rc = avc_has_perm(ptsid, new_tsec->sid,
2352 						  SECCLASS_PROCESS,
2353 						  PROCESS__PTRACE, NULL);
2354 				if (rc)
2355 					return -EPERM;
2356 			}
2357 		}
2358 
2359 		/* Clear any possibly unsafe personality bits on exec: */
2360 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2361 
2362 		/* Enable secure mode for SIDs transitions unless
2363 		   the noatsecure permission is granted between
2364 		   the two SIDs, i.e. ahp returns 0. */
2365 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2366 				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2367 				  NULL);
2368 		bprm->secureexec |= !!rc;
2369 	}
2370 
2371 	return 0;
2372 }
2373 
2374 static int match_file(const void *p, struct file *file, unsigned fd)
2375 {
2376 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2377 }
2378 
2379 /* Derived from fs/exec.c:flush_old_files. */
2380 static inline void flush_unauthorized_files(const struct cred *cred,
2381 					    struct files_struct *files)
2382 {
2383 	struct file *file, *devnull = NULL;
2384 	struct tty_struct *tty;
2385 	int drop_tty = 0;
2386 	unsigned n;
2387 
2388 	tty = get_current_tty();
2389 	if (tty) {
2390 		spin_lock(&tty->files_lock);
2391 		if (!list_empty(&tty->tty_files)) {
2392 			struct tty_file_private *file_priv;
2393 
2394 			/* Revalidate access to controlling tty.
2395 			   Use file_path_has_perm on the tty path directly
2396 			   rather than using file_has_perm, as this particular
2397 			   open file may belong to another process and we are
2398 			   only interested in the inode-based check here. */
2399 			file_priv = list_first_entry(&tty->tty_files,
2400 						struct tty_file_private, list);
2401 			file = file_priv->file;
2402 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2403 				drop_tty = 1;
2404 		}
2405 		spin_unlock(&tty->files_lock);
2406 		tty_kref_put(tty);
2407 	}
2408 	/* Reset controlling tty. */
2409 	if (drop_tty)
2410 		no_tty();
2411 
2412 	/* Revalidate access to inherited open files. */
2413 	n = iterate_fd(files, 0, match_file, cred);
2414 	if (!n) /* none found? */
2415 		return;
2416 
2417 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2418 	if (IS_ERR(devnull))
2419 		devnull = NULL;
2420 	/* replace all the matching ones with this */
2421 	do {
2422 		replace_fd(n - 1, devnull, 0);
2423 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2424 	if (devnull)
2425 		fput(devnull);
2426 }
2427 
2428 /*
2429  * Prepare a process for imminent new credential changes due to exec
2430  */
2431 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2432 {
2433 	struct task_security_struct *new_tsec;
2434 	struct rlimit *rlim, *initrlim;
2435 	int rc, i;
2436 
2437 	new_tsec = selinux_cred(bprm->cred);
2438 	if (new_tsec->sid == new_tsec->osid)
2439 		return;
2440 
2441 	/* Close files for which the new task SID is not authorized. */
2442 	flush_unauthorized_files(bprm->cred, current->files);
2443 
2444 	/* Always clear parent death signal on SID transitions. */
2445 	current->pdeath_signal = 0;
2446 
2447 	/* Check whether the new SID can inherit resource limits from the old
2448 	 * SID.  If not, reset all soft limits to the lower of the current
2449 	 * task's hard limit and the init task's soft limit.
2450 	 *
2451 	 * Note that the setting of hard limits (even to lower them) can be
2452 	 * controlled by the setrlimit check.  The inclusion of the init task's
2453 	 * soft limit into the computation is to avoid resetting soft limits
2454 	 * higher than the default soft limit for cases where the default is
2455 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2456 	 */
2457 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2458 			  PROCESS__RLIMITINH, NULL);
2459 	if (rc) {
2460 		/* protect against do_prlimit() */
2461 		task_lock(current);
2462 		for (i = 0; i < RLIM_NLIMITS; i++) {
2463 			rlim = current->signal->rlim + i;
2464 			initrlim = init_task.signal->rlim + i;
2465 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2466 		}
2467 		task_unlock(current);
2468 		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2469 			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2470 	}
2471 }
2472 
2473 /*
2474  * Clean up the process immediately after the installation of new credentials
2475  * due to exec
2476  */
2477 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2478 {
2479 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2480 	u32 osid, sid;
2481 	int rc;
2482 
2483 	osid = tsec->osid;
2484 	sid = tsec->sid;
2485 
2486 	if (sid == osid)
2487 		return;
2488 
2489 	/* Check whether the new SID can inherit signal state from the old SID.
2490 	 * If not, clear itimers to avoid subsequent signal generation and
2491 	 * flush and unblock signals.
2492 	 *
2493 	 * This must occur _after_ the task SID has been updated so that any
2494 	 * kill done after the flush will be checked against the new SID.
2495 	 */
2496 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2497 	if (rc) {
2498 		clear_itimer();
2499 
2500 		spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2501 		if (!fatal_signal_pending(current)) {
2502 			flush_sigqueue(&current->pending);
2503 			flush_sigqueue(&current->signal->shared_pending);
2504 			flush_signal_handlers(current, 1);
2505 			sigemptyset(&current->blocked);
2506 			recalc_sigpending();
2507 		}
2508 		spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2509 	}
2510 
2511 	/* Wake up the parent if it is waiting so that it can recheck
2512 	 * wait permission to the new task SID. */
2513 	read_lock(&tasklist_lock);
2514 	__wake_up_parent(current, unrcu_pointer(current->real_parent));
2515 	read_unlock(&tasklist_lock);
2516 }
2517 
2518 /* superblock security operations */
2519 
2520 static int selinux_sb_alloc_security(struct super_block *sb)
2521 {
2522 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2523 
2524 	mutex_init(&sbsec->lock);
2525 	INIT_LIST_HEAD(&sbsec->isec_head);
2526 	spin_lock_init(&sbsec->isec_lock);
2527 	sbsec->sid = SECINITSID_UNLABELED;
2528 	sbsec->def_sid = SECINITSID_FILE;
2529 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2530 
2531 	return 0;
2532 }
2533 
2534 static inline int opt_len(const char *s)
2535 {
2536 	bool open_quote = false;
2537 	int len;
2538 	char c;
2539 
2540 	for (len = 0; (c = s[len]) != '\0'; len++) {
2541 		if (c == '"')
2542 			open_quote = !open_quote;
2543 		if (c == ',' && !open_quote)
2544 			break;
2545 	}
2546 	return len;
2547 }
2548 
2549 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2550 {
2551 	char *from = options;
2552 	char *to = options;
2553 	bool first = true;
2554 	int rc;
2555 
2556 	while (1) {
2557 		int len = opt_len(from);
2558 		int token;
2559 		char *arg = NULL;
2560 
2561 		token = match_opt_prefix(from, len, &arg);
2562 
2563 		if (token != Opt_error) {
2564 			char *p, *q;
2565 
2566 			/* strip quotes */
2567 			if (arg) {
2568 				for (p = q = arg; p < from + len; p++) {
2569 					char c = *p;
2570 					if (c != '"')
2571 						*q++ = c;
2572 				}
2573 				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2574 				if (!arg) {
2575 					rc = -ENOMEM;
2576 					goto free_opt;
2577 				}
2578 			}
2579 			rc = selinux_add_opt(token, arg, mnt_opts);
2580 			kfree(arg);
2581 			arg = NULL;
2582 			if (unlikely(rc)) {
2583 				goto free_opt;
2584 			}
2585 		} else {
2586 			if (!first) {	// copy with preceding comma
2587 				from--;
2588 				len++;
2589 			}
2590 			if (to != from)
2591 				memmove(to, from, len);
2592 			to += len;
2593 			first = false;
2594 		}
2595 		if (!from[len])
2596 			break;
2597 		from += len + 1;
2598 	}
2599 	*to = '\0';
2600 	return 0;
2601 
2602 free_opt:
2603 	if (*mnt_opts) {
2604 		selinux_free_mnt_opts(*mnt_opts);
2605 		*mnt_opts = NULL;
2606 	}
2607 	return rc;
2608 }
2609 
2610 static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2611 {
2612 	struct selinux_mnt_opts *opts = mnt_opts;
2613 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2614 
2615 	/*
2616 	 * Superblock not initialized (i.e. no options) - reject if any
2617 	 * options specified, otherwise accept.
2618 	 */
2619 	if (!(sbsec->flags & SE_SBINITIALIZED))
2620 		return opts ? 1 : 0;
2621 
2622 	/*
2623 	 * Superblock initialized and no options specified - reject if
2624 	 * superblock has any options set, otherwise accept.
2625 	 */
2626 	if (!opts)
2627 		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2628 
2629 	if (opts->fscontext_sid) {
2630 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2631 			       opts->fscontext_sid))
2632 			return 1;
2633 	}
2634 	if (opts->context_sid) {
2635 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2636 			       opts->context_sid))
2637 			return 1;
2638 	}
2639 	if (opts->rootcontext_sid) {
2640 		struct inode_security_struct *root_isec;
2641 
2642 		root_isec = backing_inode_security(sb->s_root);
2643 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2644 			       opts->rootcontext_sid))
2645 			return 1;
2646 	}
2647 	if (opts->defcontext_sid) {
2648 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2649 			       opts->defcontext_sid))
2650 			return 1;
2651 	}
2652 	return 0;
2653 }
2654 
2655 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2656 {
2657 	struct selinux_mnt_opts *opts = mnt_opts;
2658 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2659 
2660 	if (!(sbsec->flags & SE_SBINITIALIZED))
2661 		return 0;
2662 
2663 	if (!opts)
2664 		return 0;
2665 
2666 	if (opts->fscontext_sid) {
2667 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2668 			       opts->fscontext_sid))
2669 			goto out_bad_option;
2670 	}
2671 	if (opts->context_sid) {
2672 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2673 			       opts->context_sid))
2674 			goto out_bad_option;
2675 	}
2676 	if (opts->rootcontext_sid) {
2677 		struct inode_security_struct *root_isec;
2678 		root_isec = backing_inode_security(sb->s_root);
2679 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2680 			       opts->rootcontext_sid))
2681 			goto out_bad_option;
2682 	}
2683 	if (opts->defcontext_sid) {
2684 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2685 			       opts->defcontext_sid))
2686 			goto out_bad_option;
2687 	}
2688 	return 0;
2689 
2690 out_bad_option:
2691 	pr_warn("SELinux: unable to change security options "
2692 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2693 	       sb->s_type->name);
2694 	return -EINVAL;
2695 }
2696 
2697 static int selinux_sb_kern_mount(struct super_block *sb)
2698 {
2699 	const struct cred *cred = current_cred();
2700 	struct common_audit_data ad;
2701 
2702 	ad.type = LSM_AUDIT_DATA_DENTRY;
2703 	ad.u.dentry = sb->s_root;
2704 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2705 }
2706 
2707 static int selinux_sb_statfs(struct dentry *dentry)
2708 {
2709 	const struct cred *cred = current_cred();
2710 	struct common_audit_data ad;
2711 
2712 	ad.type = LSM_AUDIT_DATA_DENTRY;
2713 	ad.u.dentry = dentry->d_sb->s_root;
2714 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2715 }
2716 
2717 static int selinux_mount(const char *dev_name,
2718 			 const struct path *path,
2719 			 const char *type,
2720 			 unsigned long flags,
2721 			 void *data)
2722 {
2723 	const struct cred *cred = current_cred();
2724 
2725 	if (flags & MS_REMOUNT)
2726 		return superblock_has_perm(cred, path->dentry->d_sb,
2727 					   FILESYSTEM__REMOUNT, NULL);
2728 	else
2729 		return path_has_perm(cred, path, FILE__MOUNTON);
2730 }
2731 
2732 static int selinux_move_mount(const struct path *from_path,
2733 			      const struct path *to_path)
2734 {
2735 	const struct cred *cred = current_cred();
2736 
2737 	return path_has_perm(cred, to_path, FILE__MOUNTON);
2738 }
2739 
2740 static int selinux_umount(struct vfsmount *mnt, int flags)
2741 {
2742 	const struct cred *cred = current_cred();
2743 
2744 	return superblock_has_perm(cred, mnt->mnt_sb,
2745 				   FILESYSTEM__UNMOUNT, NULL);
2746 }
2747 
2748 static int selinux_fs_context_dup(struct fs_context *fc,
2749 				  struct fs_context *src_fc)
2750 {
2751 	const struct selinux_mnt_opts *src = src_fc->security;
2752 
2753 	if (!src)
2754 		return 0;
2755 
2756 	fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2757 	return fc->security ? 0 : -ENOMEM;
2758 }
2759 
2760 static const struct fs_parameter_spec selinux_fs_parameters[] = {
2761 	fsparam_string(CONTEXT_STR,	Opt_context),
2762 	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2763 	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2764 	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2765 	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2766 	{}
2767 };
2768 
2769 static int selinux_fs_context_parse_param(struct fs_context *fc,
2770 					  struct fs_parameter *param)
2771 {
2772 	struct fs_parse_result result;
2773 	int opt;
2774 
2775 	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2776 	if (opt < 0)
2777 		return opt;
2778 
2779 	return selinux_add_opt(opt, param->string, &fc->security);
2780 }
2781 
2782 /* inode security operations */
2783 
2784 static int selinux_inode_alloc_security(struct inode *inode)
2785 {
2786 	struct inode_security_struct *isec = selinux_inode(inode);
2787 	u32 sid = current_sid();
2788 
2789 	spin_lock_init(&isec->lock);
2790 	INIT_LIST_HEAD(&isec->list);
2791 	isec->inode = inode;
2792 	isec->sid = SECINITSID_UNLABELED;
2793 	isec->sclass = SECCLASS_FILE;
2794 	isec->task_sid = sid;
2795 	isec->initialized = LABEL_INVALID;
2796 
2797 	return 0;
2798 }
2799 
2800 static void selinux_inode_free_security(struct inode *inode)
2801 {
2802 	inode_free_security(inode);
2803 }
2804 
2805 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2806 					const struct qstr *name,
2807 					const char **xattr_name, void **ctx,
2808 					u32 *ctxlen)
2809 {
2810 	u32 newsid;
2811 	int rc;
2812 
2813 	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2814 					   d_inode(dentry->d_parent), name,
2815 					   inode_mode_to_security_class(mode),
2816 					   &newsid);
2817 	if (rc)
2818 		return rc;
2819 
2820 	if (xattr_name)
2821 		*xattr_name = XATTR_NAME_SELINUX;
2822 
2823 	return security_sid_to_context(newsid, (char **)ctx,
2824 				       ctxlen);
2825 }
2826 
2827 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2828 					  struct qstr *name,
2829 					  const struct cred *old,
2830 					  struct cred *new)
2831 {
2832 	u32 newsid;
2833 	int rc;
2834 	struct task_security_struct *tsec;
2835 
2836 	rc = selinux_determine_inode_label(selinux_cred(old),
2837 					   d_inode(dentry->d_parent), name,
2838 					   inode_mode_to_security_class(mode),
2839 					   &newsid);
2840 	if (rc)
2841 		return rc;
2842 
2843 	tsec = selinux_cred(new);
2844 	tsec->create_sid = newsid;
2845 	return 0;
2846 }
2847 
2848 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2849 				       const struct qstr *qstr,
2850 				       const char **name,
2851 				       void **value, size_t *len)
2852 {
2853 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2854 	struct superblock_security_struct *sbsec;
2855 	u32 newsid, clen;
2856 	int rc;
2857 	char *context;
2858 
2859 	sbsec = selinux_superblock(dir->i_sb);
2860 
2861 	newsid = tsec->create_sid;
2862 
2863 	rc = selinux_determine_inode_label(tsec, dir, qstr,
2864 		inode_mode_to_security_class(inode->i_mode),
2865 		&newsid);
2866 	if (rc)
2867 		return rc;
2868 
2869 	/* Possibly defer initialization to selinux_complete_init. */
2870 	if (sbsec->flags & SE_SBINITIALIZED) {
2871 		struct inode_security_struct *isec = selinux_inode(inode);
2872 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2873 		isec->sid = newsid;
2874 		isec->initialized = LABEL_INITIALIZED;
2875 	}
2876 
2877 	if (!selinux_initialized() ||
2878 	    !(sbsec->flags & SBLABEL_MNT))
2879 		return -EOPNOTSUPP;
2880 
2881 	if (name)
2882 		*name = XATTR_SELINUX_SUFFIX;
2883 
2884 	if (value && len) {
2885 		rc = security_sid_to_context_force(newsid,
2886 						   &context, &clen);
2887 		if (rc)
2888 			return rc;
2889 		*value = context;
2890 		*len = clen;
2891 	}
2892 
2893 	return 0;
2894 }
2895 
2896 static int selinux_inode_init_security_anon(struct inode *inode,
2897 					    const struct qstr *name,
2898 					    const struct inode *context_inode)
2899 {
2900 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2901 	struct common_audit_data ad;
2902 	struct inode_security_struct *isec;
2903 	int rc;
2904 
2905 	if (unlikely(!selinux_initialized()))
2906 		return 0;
2907 
2908 	isec = selinux_inode(inode);
2909 
2910 	/*
2911 	 * We only get here once per ephemeral inode.  The inode has
2912 	 * been initialized via inode_alloc_security but is otherwise
2913 	 * untouched.
2914 	 */
2915 
2916 	if (context_inode) {
2917 		struct inode_security_struct *context_isec =
2918 			selinux_inode(context_inode);
2919 		if (context_isec->initialized != LABEL_INITIALIZED) {
2920 			pr_err("SELinux:  context_inode is not initialized");
2921 			return -EACCES;
2922 		}
2923 
2924 		isec->sclass = context_isec->sclass;
2925 		isec->sid = context_isec->sid;
2926 	} else {
2927 		isec->sclass = SECCLASS_ANON_INODE;
2928 		rc = security_transition_sid(
2929 			tsec->sid, tsec->sid,
2930 			isec->sclass, name, &isec->sid);
2931 		if (rc)
2932 			return rc;
2933 	}
2934 
2935 	isec->initialized = LABEL_INITIALIZED;
2936 	/*
2937 	 * Now that we've initialized security, check whether we're
2938 	 * allowed to actually create this type of anonymous inode.
2939 	 */
2940 
2941 	ad.type = LSM_AUDIT_DATA_ANONINODE;
2942 	ad.u.anonclass = name ? (const char *)name->name : "?";
2943 
2944 	return avc_has_perm(tsec->sid,
2945 			    isec->sid,
2946 			    isec->sclass,
2947 			    FILE__CREATE,
2948 			    &ad);
2949 }
2950 
2951 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2952 {
2953 	return may_create(dir, dentry, SECCLASS_FILE);
2954 }
2955 
2956 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2957 {
2958 	return may_link(dir, old_dentry, MAY_LINK);
2959 }
2960 
2961 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2962 {
2963 	return may_link(dir, dentry, MAY_UNLINK);
2964 }
2965 
2966 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2967 {
2968 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2969 }
2970 
2971 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2972 {
2973 	return may_create(dir, dentry, SECCLASS_DIR);
2974 }
2975 
2976 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2977 {
2978 	return may_link(dir, dentry, MAY_RMDIR);
2979 }
2980 
2981 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2982 {
2983 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2984 }
2985 
2986 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2987 				struct inode *new_inode, struct dentry *new_dentry)
2988 {
2989 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2990 }
2991 
2992 static int selinux_inode_readlink(struct dentry *dentry)
2993 {
2994 	const struct cred *cred = current_cred();
2995 
2996 	return dentry_has_perm(cred, dentry, FILE__READ);
2997 }
2998 
2999 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3000 				     bool rcu)
3001 {
3002 	const struct cred *cred = current_cred();
3003 	struct common_audit_data ad;
3004 	struct inode_security_struct *isec;
3005 	u32 sid;
3006 
3007 	validate_creds(cred);
3008 
3009 	ad.type = LSM_AUDIT_DATA_DENTRY;
3010 	ad.u.dentry = dentry;
3011 	sid = cred_sid(cred);
3012 	isec = inode_security_rcu(inode, rcu);
3013 	if (IS_ERR(isec))
3014 		return PTR_ERR(isec);
3015 
3016 	return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad);
3017 }
3018 
3019 static noinline int audit_inode_permission(struct inode *inode,
3020 					   u32 perms, u32 audited, u32 denied,
3021 					   int result)
3022 {
3023 	struct common_audit_data ad;
3024 	struct inode_security_struct *isec = selinux_inode(inode);
3025 
3026 	ad.type = LSM_AUDIT_DATA_INODE;
3027 	ad.u.inode = inode;
3028 
3029 	return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3030 			    audited, denied, result, &ad);
3031 }
3032 
3033 static int selinux_inode_permission(struct inode *inode, int mask)
3034 {
3035 	const struct cred *cred = current_cred();
3036 	u32 perms;
3037 	bool from_access;
3038 	bool no_block = mask & MAY_NOT_BLOCK;
3039 	struct inode_security_struct *isec;
3040 	u32 sid;
3041 	struct av_decision avd;
3042 	int rc, rc2;
3043 	u32 audited, denied;
3044 
3045 	from_access = mask & MAY_ACCESS;
3046 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3047 
3048 	/* No permission to check.  Existence test. */
3049 	if (!mask)
3050 		return 0;
3051 
3052 	validate_creds(cred);
3053 
3054 	if (unlikely(IS_PRIVATE(inode)))
3055 		return 0;
3056 
3057 	perms = file_mask_to_av(inode->i_mode, mask);
3058 
3059 	sid = cred_sid(cred);
3060 	isec = inode_security_rcu(inode, no_block);
3061 	if (IS_ERR(isec))
3062 		return PTR_ERR(isec);
3063 
3064 	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0,
3065 				  &avd);
3066 	audited = avc_audit_required(perms, &avd, rc,
3067 				     from_access ? FILE__AUDIT_ACCESS : 0,
3068 				     &denied);
3069 	if (likely(!audited))
3070 		return rc;
3071 
3072 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3073 	if (rc2)
3074 		return rc2;
3075 	return rc;
3076 }
3077 
3078 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3079 {
3080 	const struct cred *cred = current_cred();
3081 	struct inode *inode = d_backing_inode(dentry);
3082 	unsigned int ia_valid = iattr->ia_valid;
3083 	__u32 av = FILE__WRITE;
3084 
3085 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3086 	if (ia_valid & ATTR_FORCE) {
3087 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3088 			      ATTR_FORCE);
3089 		if (!ia_valid)
3090 			return 0;
3091 	}
3092 
3093 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3094 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3095 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3096 
3097 	if (selinux_policycap_openperm() &&
3098 	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3099 	    (ia_valid & ATTR_SIZE) &&
3100 	    !(ia_valid & ATTR_FILE))
3101 		av |= FILE__OPEN;
3102 
3103 	return dentry_has_perm(cred, dentry, av);
3104 }
3105 
3106 static int selinux_inode_getattr(const struct path *path)
3107 {
3108 	return path_has_perm(current_cred(), path, FILE__GETATTR);
3109 }
3110 
3111 static bool has_cap_mac_admin(bool audit)
3112 {
3113 	const struct cred *cred = current_cred();
3114 	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3115 
3116 	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3117 		return false;
3118 	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3119 		return false;
3120 	return true;
3121 }
3122 
3123 static int selinux_inode_setxattr(struct mnt_idmap *idmap,
3124 				  struct dentry *dentry, const char *name,
3125 				  const void *value, size_t size, int flags)
3126 {
3127 	struct inode *inode = d_backing_inode(dentry);
3128 	struct inode_security_struct *isec;
3129 	struct superblock_security_struct *sbsec;
3130 	struct common_audit_data ad;
3131 	u32 newsid, sid = current_sid();
3132 	int rc = 0;
3133 
3134 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3135 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3136 		if (rc)
3137 			return rc;
3138 
3139 		/* Not an attribute we recognize, so just check the
3140 		   ordinary setattr permission. */
3141 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3142 	}
3143 
3144 	if (!selinux_initialized())
3145 		return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM);
3146 
3147 	sbsec = selinux_superblock(inode->i_sb);
3148 	if (!(sbsec->flags & SBLABEL_MNT))
3149 		return -EOPNOTSUPP;
3150 
3151 	if (!inode_owner_or_capable(idmap, inode))
3152 		return -EPERM;
3153 
3154 	ad.type = LSM_AUDIT_DATA_DENTRY;
3155 	ad.u.dentry = dentry;
3156 
3157 	isec = backing_inode_security(dentry);
3158 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
3159 			  FILE__RELABELFROM, &ad);
3160 	if (rc)
3161 		return rc;
3162 
3163 	rc = security_context_to_sid(value, size, &newsid,
3164 				     GFP_KERNEL);
3165 	if (rc == -EINVAL) {
3166 		if (!has_cap_mac_admin(true)) {
3167 			struct audit_buffer *ab;
3168 			size_t audit_size;
3169 
3170 			/* We strip a nul only if it is at the end, otherwise the
3171 			 * context contains a nul and we should audit that */
3172 			if (value) {
3173 				const char *str = value;
3174 
3175 				if (str[size - 1] == '\0')
3176 					audit_size = size - 1;
3177 				else
3178 					audit_size = size;
3179 			} else {
3180 				audit_size = 0;
3181 			}
3182 			ab = audit_log_start(audit_context(),
3183 					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3184 			if (!ab)
3185 				return rc;
3186 			audit_log_format(ab, "op=setxattr invalid_context=");
3187 			audit_log_n_untrustedstring(ab, value, audit_size);
3188 			audit_log_end(ab);
3189 
3190 			return rc;
3191 		}
3192 		rc = security_context_to_sid_force(value,
3193 						   size, &newsid);
3194 	}
3195 	if (rc)
3196 		return rc;
3197 
3198 	rc = avc_has_perm(sid, newsid, isec->sclass,
3199 			  FILE__RELABELTO, &ad);
3200 	if (rc)
3201 		return rc;
3202 
3203 	rc = security_validate_transition(isec->sid, newsid,
3204 					  sid, isec->sclass);
3205 	if (rc)
3206 		return rc;
3207 
3208 	return avc_has_perm(newsid,
3209 			    sbsec->sid,
3210 			    SECCLASS_FILESYSTEM,
3211 			    FILESYSTEM__ASSOCIATE,
3212 			    &ad);
3213 }
3214 
3215 static int selinux_inode_set_acl(struct mnt_idmap *idmap,
3216 				 struct dentry *dentry, const char *acl_name,
3217 				 struct posix_acl *kacl)
3218 {
3219 	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3220 }
3221 
3222 static int selinux_inode_get_acl(struct mnt_idmap *idmap,
3223 				 struct dentry *dentry, const char *acl_name)
3224 {
3225 	return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3226 }
3227 
3228 static int selinux_inode_remove_acl(struct mnt_idmap *idmap,
3229 				    struct dentry *dentry, const char *acl_name)
3230 {
3231 	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3232 }
3233 
3234 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3235 					const void *value, size_t size,
3236 					int flags)
3237 {
3238 	struct inode *inode = d_backing_inode(dentry);
3239 	struct inode_security_struct *isec;
3240 	u32 newsid;
3241 	int rc;
3242 
3243 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3244 		/* Not an attribute we recognize, so nothing to do. */
3245 		return;
3246 	}
3247 
3248 	if (!selinux_initialized()) {
3249 		/* If we haven't even been initialized, then we can't validate
3250 		 * against a policy, so leave the label as invalid. It may
3251 		 * resolve to a valid label on the next revalidation try if
3252 		 * we've since initialized.
3253 		 */
3254 		return;
3255 	}
3256 
3257 	rc = security_context_to_sid_force(value, size,
3258 					   &newsid);
3259 	if (rc) {
3260 		pr_err("SELinux:  unable to map context to SID"
3261 		       "for (%s, %lu), rc=%d\n",
3262 		       inode->i_sb->s_id, inode->i_ino, -rc);
3263 		return;
3264 	}
3265 
3266 	isec = backing_inode_security(dentry);
3267 	spin_lock(&isec->lock);
3268 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3269 	isec->sid = newsid;
3270 	isec->initialized = LABEL_INITIALIZED;
3271 	spin_unlock(&isec->lock);
3272 }
3273 
3274 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3275 {
3276 	const struct cred *cred = current_cred();
3277 
3278 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3279 }
3280 
3281 static int selinux_inode_listxattr(struct dentry *dentry)
3282 {
3283 	const struct cred *cred = current_cred();
3284 
3285 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3286 }
3287 
3288 static int selinux_inode_removexattr(struct mnt_idmap *idmap,
3289 				     struct dentry *dentry, const char *name)
3290 {
3291 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3292 		int rc = cap_inode_removexattr(idmap, dentry, name);
3293 		if (rc)
3294 			return rc;
3295 
3296 		/* Not an attribute we recognize, so just check the
3297 		   ordinary setattr permission. */
3298 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3299 	}
3300 
3301 	if (!selinux_initialized())
3302 		return 0;
3303 
3304 	/* No one is allowed to remove a SELinux security label.
3305 	   You can change the label, but all data must be labeled. */
3306 	return -EACCES;
3307 }
3308 
3309 static int selinux_path_notify(const struct path *path, u64 mask,
3310 						unsigned int obj_type)
3311 {
3312 	int ret;
3313 	u32 perm;
3314 
3315 	struct common_audit_data ad;
3316 
3317 	ad.type = LSM_AUDIT_DATA_PATH;
3318 	ad.u.path = *path;
3319 
3320 	/*
3321 	 * Set permission needed based on the type of mark being set.
3322 	 * Performs an additional check for sb watches.
3323 	 */
3324 	switch (obj_type) {
3325 	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3326 		perm = FILE__WATCH_MOUNT;
3327 		break;
3328 	case FSNOTIFY_OBJ_TYPE_SB:
3329 		perm = FILE__WATCH_SB;
3330 		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3331 						FILESYSTEM__WATCH, &ad);
3332 		if (ret)
3333 			return ret;
3334 		break;
3335 	case FSNOTIFY_OBJ_TYPE_INODE:
3336 		perm = FILE__WATCH;
3337 		break;
3338 	default:
3339 		return -EINVAL;
3340 	}
3341 
3342 	/* blocking watches require the file:watch_with_perm permission */
3343 	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3344 		perm |= FILE__WATCH_WITH_PERM;
3345 
3346 	/* watches on read-like events need the file:watch_reads permission */
3347 	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3348 		perm |= FILE__WATCH_READS;
3349 
3350 	return path_has_perm(current_cred(), path, perm);
3351 }
3352 
3353 /*
3354  * Copy the inode security context value to the user.
3355  *
3356  * Permission check is handled by selinux_inode_getxattr hook.
3357  */
3358 static int selinux_inode_getsecurity(struct mnt_idmap *idmap,
3359 				     struct inode *inode, const char *name,
3360 				     void **buffer, bool alloc)
3361 {
3362 	u32 size;
3363 	int error;
3364 	char *context = NULL;
3365 	struct inode_security_struct *isec;
3366 
3367 	/*
3368 	 * If we're not initialized yet, then we can't validate contexts, so
3369 	 * just let vfs_getxattr fall back to using the on-disk xattr.
3370 	 */
3371 	if (!selinux_initialized() ||
3372 	    strcmp(name, XATTR_SELINUX_SUFFIX))
3373 		return -EOPNOTSUPP;
3374 
3375 	/*
3376 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3377 	 * value even if it is not defined by current policy; otherwise,
3378 	 * use the in-core value under current policy.
3379 	 * Use the non-auditing forms of the permission checks since
3380 	 * getxattr may be called by unprivileged processes commonly
3381 	 * and lack of permission just means that we fall back to the
3382 	 * in-core context value, not a denial.
3383 	 */
3384 	isec = inode_security(inode);
3385 	if (has_cap_mac_admin(false))
3386 		error = security_sid_to_context_force(isec->sid, &context,
3387 						      &size);
3388 	else
3389 		error = security_sid_to_context(isec->sid,
3390 						&context, &size);
3391 	if (error)
3392 		return error;
3393 	error = size;
3394 	if (alloc) {
3395 		*buffer = context;
3396 		goto out_nofree;
3397 	}
3398 	kfree(context);
3399 out_nofree:
3400 	return error;
3401 }
3402 
3403 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3404 				     const void *value, size_t size, int flags)
3405 {
3406 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3407 	struct superblock_security_struct *sbsec;
3408 	u32 newsid;
3409 	int rc;
3410 
3411 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3412 		return -EOPNOTSUPP;
3413 
3414 	sbsec = selinux_superblock(inode->i_sb);
3415 	if (!(sbsec->flags & SBLABEL_MNT))
3416 		return -EOPNOTSUPP;
3417 
3418 	if (!value || !size)
3419 		return -EACCES;
3420 
3421 	rc = security_context_to_sid(value, size, &newsid,
3422 				     GFP_KERNEL);
3423 	if (rc)
3424 		return rc;
3425 
3426 	spin_lock(&isec->lock);
3427 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3428 	isec->sid = newsid;
3429 	isec->initialized = LABEL_INITIALIZED;
3430 	spin_unlock(&isec->lock);
3431 	return 0;
3432 }
3433 
3434 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3435 {
3436 	const int len = sizeof(XATTR_NAME_SELINUX);
3437 
3438 	if (!selinux_initialized())
3439 		return 0;
3440 
3441 	if (buffer && len <= buffer_size)
3442 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3443 	return len;
3444 }
3445 
3446 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3447 {
3448 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3449 	*secid = isec->sid;
3450 }
3451 
3452 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3453 {
3454 	u32 sid;
3455 	struct task_security_struct *tsec;
3456 	struct cred *new_creds = *new;
3457 
3458 	if (new_creds == NULL) {
3459 		new_creds = prepare_creds();
3460 		if (!new_creds)
3461 			return -ENOMEM;
3462 	}
3463 
3464 	tsec = selinux_cred(new_creds);
3465 	/* Get label from overlay inode and set it in create_sid */
3466 	selinux_inode_getsecid(d_inode(src), &sid);
3467 	tsec->create_sid = sid;
3468 	*new = new_creds;
3469 	return 0;
3470 }
3471 
3472 static int selinux_inode_copy_up_xattr(const char *name)
3473 {
3474 	/* The copy_up hook above sets the initial context on an inode, but we
3475 	 * don't then want to overwrite it by blindly copying all the lower
3476 	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3477 	 */
3478 	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3479 		return 1; /* Discard */
3480 	/*
3481 	 * Any other attribute apart from SELINUX is not claimed, supported
3482 	 * by selinux.
3483 	 */
3484 	return -EOPNOTSUPP;
3485 }
3486 
3487 /* kernfs node operations */
3488 
3489 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3490 					struct kernfs_node *kn)
3491 {
3492 	const struct task_security_struct *tsec = selinux_cred(current_cred());
3493 	u32 parent_sid, newsid, clen;
3494 	int rc;
3495 	char *context;
3496 
3497 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3498 	if (rc == -ENODATA)
3499 		return 0;
3500 	else if (rc < 0)
3501 		return rc;
3502 
3503 	clen = (u32)rc;
3504 	context = kmalloc(clen, GFP_KERNEL);
3505 	if (!context)
3506 		return -ENOMEM;
3507 
3508 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3509 	if (rc < 0) {
3510 		kfree(context);
3511 		return rc;
3512 	}
3513 
3514 	rc = security_context_to_sid(context, clen, &parent_sid,
3515 				     GFP_KERNEL);
3516 	kfree(context);
3517 	if (rc)
3518 		return rc;
3519 
3520 	if (tsec->create_sid) {
3521 		newsid = tsec->create_sid;
3522 	} else {
3523 		u16 secclass = inode_mode_to_security_class(kn->mode);
3524 		struct qstr q;
3525 
3526 		q.name = kn->name;
3527 		q.hash_len = hashlen_string(kn_dir, kn->name);
3528 
3529 		rc = security_transition_sid(tsec->sid,
3530 					     parent_sid, secclass, &q,
3531 					     &newsid);
3532 		if (rc)
3533 			return rc;
3534 	}
3535 
3536 	rc = security_sid_to_context_force(newsid,
3537 					   &context, &clen);
3538 	if (rc)
3539 		return rc;
3540 
3541 	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3542 			      XATTR_CREATE);
3543 	kfree(context);
3544 	return rc;
3545 }
3546 
3547 
3548 /* file security operations */
3549 
3550 static int selinux_revalidate_file_permission(struct file *file, int mask)
3551 {
3552 	const struct cred *cred = current_cred();
3553 	struct inode *inode = file_inode(file);
3554 
3555 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3556 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3557 		mask |= MAY_APPEND;
3558 
3559 	return file_has_perm(cred, file,
3560 			     file_mask_to_av(inode->i_mode, mask));
3561 }
3562 
3563 static int selinux_file_permission(struct file *file, int mask)
3564 {
3565 	struct inode *inode = file_inode(file);
3566 	struct file_security_struct *fsec = selinux_file(file);
3567 	struct inode_security_struct *isec;
3568 	u32 sid = current_sid();
3569 
3570 	if (!mask)
3571 		/* No permission to check.  Existence test. */
3572 		return 0;
3573 
3574 	isec = inode_security(inode);
3575 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3576 	    fsec->pseqno == avc_policy_seqno())
3577 		/* No change since file_open check. */
3578 		return 0;
3579 
3580 	return selinux_revalidate_file_permission(file, mask);
3581 }
3582 
3583 static int selinux_file_alloc_security(struct file *file)
3584 {
3585 	struct file_security_struct *fsec = selinux_file(file);
3586 	u32 sid = current_sid();
3587 
3588 	fsec->sid = sid;
3589 	fsec->fown_sid = sid;
3590 
3591 	return 0;
3592 }
3593 
3594 /*
3595  * Check whether a task has the ioctl permission and cmd
3596  * operation to an inode.
3597  */
3598 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3599 		u32 requested, u16 cmd)
3600 {
3601 	struct common_audit_data ad;
3602 	struct file_security_struct *fsec = selinux_file(file);
3603 	struct inode *inode = file_inode(file);
3604 	struct inode_security_struct *isec;
3605 	struct lsm_ioctlop_audit ioctl;
3606 	u32 ssid = cred_sid(cred);
3607 	int rc;
3608 	u8 driver = cmd >> 8;
3609 	u8 xperm = cmd & 0xff;
3610 
3611 	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3612 	ad.u.op = &ioctl;
3613 	ad.u.op->cmd = cmd;
3614 	ad.u.op->path = file->f_path;
3615 
3616 	if (ssid != fsec->sid) {
3617 		rc = avc_has_perm(ssid, fsec->sid,
3618 				SECCLASS_FD,
3619 				FD__USE,
3620 				&ad);
3621 		if (rc)
3622 			goto out;
3623 	}
3624 
3625 	if (unlikely(IS_PRIVATE(inode)))
3626 		return 0;
3627 
3628 	isec = inode_security(inode);
3629 	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3630 				    requested, driver, xperm, &ad);
3631 out:
3632 	return rc;
3633 }
3634 
3635 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3636 			      unsigned long arg)
3637 {
3638 	const struct cred *cred = current_cred();
3639 	int error = 0;
3640 
3641 	switch (cmd) {
3642 	case FIONREAD:
3643 	case FIBMAP:
3644 	case FIGETBSZ:
3645 	case FS_IOC_GETFLAGS:
3646 	case FS_IOC_GETVERSION:
3647 		error = file_has_perm(cred, file, FILE__GETATTR);
3648 		break;
3649 
3650 	case FS_IOC_SETFLAGS:
3651 	case FS_IOC_SETVERSION:
3652 		error = file_has_perm(cred, file, FILE__SETATTR);
3653 		break;
3654 
3655 	/* sys_ioctl() checks */
3656 	case FIONBIO:
3657 	case FIOASYNC:
3658 		error = file_has_perm(cred, file, 0);
3659 		break;
3660 
3661 	case KDSKBENT:
3662 	case KDSKBSENT:
3663 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3664 					    CAP_OPT_NONE, true);
3665 		break;
3666 
3667 	case FIOCLEX:
3668 	case FIONCLEX:
3669 		if (!selinux_policycap_ioctl_skip_cloexec())
3670 			error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3671 		break;
3672 
3673 	/* default case assumes that the command will go
3674 	 * to the file's ioctl() function.
3675 	 */
3676 	default:
3677 		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3678 	}
3679 	return error;
3680 }
3681 
3682 static int default_noexec __ro_after_init;
3683 
3684 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3685 {
3686 	const struct cred *cred = current_cred();
3687 	u32 sid = cred_sid(cred);
3688 	int rc = 0;
3689 
3690 	if (default_noexec &&
3691 	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3692 				   (!shared && (prot & PROT_WRITE)))) {
3693 		/*
3694 		 * We are making executable an anonymous mapping or a
3695 		 * private file mapping that will also be writable.
3696 		 * This has an additional check.
3697 		 */
3698 		rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3699 				  PROCESS__EXECMEM, NULL);
3700 		if (rc)
3701 			goto error;
3702 	}
3703 
3704 	if (file) {
3705 		/* read access is always possible with a mapping */
3706 		u32 av = FILE__READ;
3707 
3708 		/* write access only matters if the mapping is shared */
3709 		if (shared && (prot & PROT_WRITE))
3710 			av |= FILE__WRITE;
3711 
3712 		if (prot & PROT_EXEC)
3713 			av |= FILE__EXECUTE;
3714 
3715 		return file_has_perm(cred, file, av);
3716 	}
3717 
3718 error:
3719 	return rc;
3720 }
3721 
3722 static int selinux_mmap_addr(unsigned long addr)
3723 {
3724 	int rc = 0;
3725 
3726 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3727 		u32 sid = current_sid();
3728 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3729 				  MEMPROTECT__MMAP_ZERO, NULL);
3730 	}
3731 
3732 	return rc;
3733 }
3734 
3735 static int selinux_mmap_file(struct file *file,
3736 			     unsigned long reqprot __always_unused,
3737 			     unsigned long prot, unsigned long flags)
3738 {
3739 	struct common_audit_data ad;
3740 	int rc;
3741 
3742 	if (file) {
3743 		ad.type = LSM_AUDIT_DATA_FILE;
3744 		ad.u.file = file;
3745 		rc = inode_has_perm(current_cred(), file_inode(file),
3746 				    FILE__MAP, &ad);
3747 		if (rc)
3748 			return rc;
3749 	}
3750 
3751 	return file_map_prot_check(file, prot,
3752 				   (flags & MAP_TYPE) == MAP_SHARED);
3753 }
3754 
3755 static int selinux_file_mprotect(struct vm_area_struct *vma,
3756 				 unsigned long reqprot __always_unused,
3757 				 unsigned long prot)
3758 {
3759 	const struct cred *cred = current_cred();
3760 	u32 sid = cred_sid(cred);
3761 
3762 	if (default_noexec &&
3763 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3764 		int rc = 0;
3765 		if (vma_is_initial_heap(vma)) {
3766 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3767 					  PROCESS__EXECHEAP, NULL);
3768 		} else if (!vma->vm_file && (vma_is_initial_stack(vma) ||
3769 			    vma_is_stack_for_current(vma))) {
3770 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3771 					  PROCESS__EXECSTACK, NULL);
3772 		} else if (vma->vm_file && vma->anon_vma) {
3773 			/*
3774 			 * We are making executable a file mapping that has
3775 			 * had some COW done. Since pages might have been
3776 			 * written, check ability to execute the possibly
3777 			 * modified content.  This typically should only
3778 			 * occur for text relocations.
3779 			 */
3780 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3781 		}
3782 		if (rc)
3783 			return rc;
3784 	}
3785 
3786 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3787 }
3788 
3789 static int selinux_file_lock(struct file *file, unsigned int cmd)
3790 {
3791 	const struct cred *cred = current_cred();
3792 
3793 	return file_has_perm(cred, file, FILE__LOCK);
3794 }
3795 
3796 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3797 			      unsigned long arg)
3798 {
3799 	const struct cred *cred = current_cred();
3800 	int err = 0;
3801 
3802 	switch (cmd) {
3803 	case F_SETFL:
3804 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3805 			err = file_has_perm(cred, file, FILE__WRITE);
3806 			break;
3807 		}
3808 		fallthrough;
3809 	case F_SETOWN:
3810 	case F_SETSIG:
3811 	case F_GETFL:
3812 	case F_GETOWN:
3813 	case F_GETSIG:
3814 	case F_GETOWNER_UIDS:
3815 		/* Just check FD__USE permission */
3816 		err = file_has_perm(cred, file, 0);
3817 		break;
3818 	case F_GETLK:
3819 	case F_SETLK:
3820 	case F_SETLKW:
3821 	case F_OFD_GETLK:
3822 	case F_OFD_SETLK:
3823 	case F_OFD_SETLKW:
3824 #if BITS_PER_LONG == 32
3825 	case F_GETLK64:
3826 	case F_SETLK64:
3827 	case F_SETLKW64:
3828 #endif
3829 		err = file_has_perm(cred, file, FILE__LOCK);
3830 		break;
3831 	}
3832 
3833 	return err;
3834 }
3835 
3836 static void selinux_file_set_fowner(struct file *file)
3837 {
3838 	struct file_security_struct *fsec;
3839 
3840 	fsec = selinux_file(file);
3841 	fsec->fown_sid = current_sid();
3842 }
3843 
3844 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3845 				       struct fown_struct *fown, int signum)
3846 {
3847 	struct file *file;
3848 	u32 sid = task_sid_obj(tsk);
3849 	u32 perm;
3850 	struct file_security_struct *fsec;
3851 
3852 	/* struct fown_struct is never outside the context of a struct file */
3853 	file = container_of(fown, struct file, f_owner);
3854 
3855 	fsec = selinux_file(file);
3856 
3857 	if (!signum)
3858 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3859 	else
3860 		perm = signal_to_av(signum);
3861 
3862 	return avc_has_perm(fsec->fown_sid, sid,
3863 			    SECCLASS_PROCESS, perm, NULL);
3864 }
3865 
3866 static int selinux_file_receive(struct file *file)
3867 {
3868 	const struct cred *cred = current_cred();
3869 
3870 	return file_has_perm(cred, file, file_to_av(file));
3871 }
3872 
3873 static int selinux_file_open(struct file *file)
3874 {
3875 	struct file_security_struct *fsec;
3876 	struct inode_security_struct *isec;
3877 
3878 	fsec = selinux_file(file);
3879 	isec = inode_security(file_inode(file));
3880 	/*
3881 	 * Save inode label and policy sequence number
3882 	 * at open-time so that selinux_file_permission
3883 	 * can determine whether revalidation is necessary.
3884 	 * Task label is already saved in the file security
3885 	 * struct as its SID.
3886 	 */
3887 	fsec->isid = isec->sid;
3888 	fsec->pseqno = avc_policy_seqno();
3889 	/*
3890 	 * Since the inode label or policy seqno may have changed
3891 	 * between the selinux_inode_permission check and the saving
3892 	 * of state above, recheck that access is still permitted.
3893 	 * Otherwise, access might never be revalidated against the
3894 	 * new inode label or new policy.
3895 	 * This check is not redundant - do not remove.
3896 	 */
3897 	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3898 }
3899 
3900 /* task security operations */
3901 
3902 static int selinux_task_alloc(struct task_struct *task,
3903 			      unsigned long clone_flags)
3904 {
3905 	u32 sid = current_sid();
3906 
3907 	return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3908 }
3909 
3910 /*
3911  * prepare a new set of credentials for modification
3912  */
3913 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3914 				gfp_t gfp)
3915 {
3916 	const struct task_security_struct *old_tsec = selinux_cred(old);
3917 	struct task_security_struct *tsec = selinux_cred(new);
3918 
3919 	*tsec = *old_tsec;
3920 	return 0;
3921 }
3922 
3923 /*
3924  * transfer the SELinux data to a blank set of creds
3925  */
3926 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3927 {
3928 	const struct task_security_struct *old_tsec = selinux_cred(old);
3929 	struct task_security_struct *tsec = selinux_cred(new);
3930 
3931 	*tsec = *old_tsec;
3932 }
3933 
3934 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3935 {
3936 	*secid = cred_sid(c);
3937 }
3938 
3939 /*
3940  * set the security data for a kernel service
3941  * - all the creation contexts are set to unlabelled
3942  */
3943 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3944 {
3945 	struct task_security_struct *tsec = selinux_cred(new);
3946 	u32 sid = current_sid();
3947 	int ret;
3948 
3949 	ret = avc_has_perm(sid, secid,
3950 			   SECCLASS_KERNEL_SERVICE,
3951 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3952 			   NULL);
3953 	if (ret == 0) {
3954 		tsec->sid = secid;
3955 		tsec->create_sid = 0;
3956 		tsec->keycreate_sid = 0;
3957 		tsec->sockcreate_sid = 0;
3958 	}
3959 	return ret;
3960 }
3961 
3962 /*
3963  * set the file creation context in a security record to the same as the
3964  * objective context of the specified inode
3965  */
3966 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3967 {
3968 	struct inode_security_struct *isec = inode_security(inode);
3969 	struct task_security_struct *tsec = selinux_cred(new);
3970 	u32 sid = current_sid();
3971 	int ret;
3972 
3973 	ret = avc_has_perm(sid, isec->sid,
3974 			   SECCLASS_KERNEL_SERVICE,
3975 			   KERNEL_SERVICE__CREATE_FILES_AS,
3976 			   NULL);
3977 
3978 	if (ret == 0)
3979 		tsec->create_sid = isec->sid;
3980 	return ret;
3981 }
3982 
3983 static int selinux_kernel_module_request(char *kmod_name)
3984 {
3985 	struct common_audit_data ad;
3986 
3987 	ad.type = LSM_AUDIT_DATA_KMOD;
3988 	ad.u.kmod_name = kmod_name;
3989 
3990 	return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3991 			    SYSTEM__MODULE_REQUEST, &ad);
3992 }
3993 
3994 static int selinux_kernel_module_from_file(struct file *file)
3995 {
3996 	struct common_audit_data ad;
3997 	struct inode_security_struct *isec;
3998 	struct file_security_struct *fsec;
3999 	u32 sid = current_sid();
4000 	int rc;
4001 
4002 	/* init_module */
4003 	if (file == NULL)
4004 		return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
4005 					SYSTEM__MODULE_LOAD, NULL);
4006 
4007 	/* finit_module */
4008 
4009 	ad.type = LSM_AUDIT_DATA_FILE;
4010 	ad.u.file = file;
4011 
4012 	fsec = selinux_file(file);
4013 	if (sid != fsec->sid) {
4014 		rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4015 		if (rc)
4016 			return rc;
4017 	}
4018 
4019 	isec = inode_security(file_inode(file));
4020 	return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
4021 				SYSTEM__MODULE_LOAD, &ad);
4022 }
4023 
4024 static int selinux_kernel_read_file(struct file *file,
4025 				    enum kernel_read_file_id id,
4026 				    bool contents)
4027 {
4028 	int rc = 0;
4029 
4030 	switch (id) {
4031 	case READING_MODULE:
4032 		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4033 		break;
4034 	default:
4035 		break;
4036 	}
4037 
4038 	return rc;
4039 }
4040 
4041 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4042 {
4043 	int rc = 0;
4044 
4045 	switch (id) {
4046 	case LOADING_MODULE:
4047 		rc = selinux_kernel_module_from_file(NULL);
4048 		break;
4049 	default:
4050 		break;
4051 	}
4052 
4053 	return rc;
4054 }
4055 
4056 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4057 {
4058 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4059 			    PROCESS__SETPGID, NULL);
4060 }
4061 
4062 static int selinux_task_getpgid(struct task_struct *p)
4063 {
4064 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4065 			    PROCESS__GETPGID, NULL);
4066 }
4067 
4068 static int selinux_task_getsid(struct task_struct *p)
4069 {
4070 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4071 			    PROCESS__GETSESSION, NULL);
4072 }
4073 
4074 static void selinux_current_getsecid_subj(u32 *secid)
4075 {
4076 	*secid = current_sid();
4077 }
4078 
4079 static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4080 {
4081 	*secid = task_sid_obj(p);
4082 }
4083 
4084 static int selinux_task_setnice(struct task_struct *p, int nice)
4085 {
4086 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4087 			    PROCESS__SETSCHED, NULL);
4088 }
4089 
4090 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4091 {
4092 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4093 			    PROCESS__SETSCHED, NULL);
4094 }
4095 
4096 static int selinux_task_getioprio(struct task_struct *p)
4097 {
4098 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4099 			    PROCESS__GETSCHED, NULL);
4100 }
4101 
4102 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4103 				unsigned int flags)
4104 {
4105 	u32 av = 0;
4106 
4107 	if (!flags)
4108 		return 0;
4109 	if (flags & LSM_PRLIMIT_WRITE)
4110 		av |= PROCESS__SETRLIMIT;
4111 	if (flags & LSM_PRLIMIT_READ)
4112 		av |= PROCESS__GETRLIMIT;
4113 	return avc_has_perm(cred_sid(cred), cred_sid(tcred),
4114 			    SECCLASS_PROCESS, av, NULL);
4115 }
4116 
4117 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4118 		struct rlimit *new_rlim)
4119 {
4120 	struct rlimit *old_rlim = p->signal->rlim + resource;
4121 
4122 	/* Control the ability to change the hard limit (whether
4123 	   lowering or raising it), so that the hard limit can
4124 	   later be used as a safe reset point for the soft limit
4125 	   upon context transitions.  See selinux_bprm_committing_creds. */
4126 	if (old_rlim->rlim_max != new_rlim->rlim_max)
4127 		return avc_has_perm(current_sid(), task_sid_obj(p),
4128 				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4129 
4130 	return 0;
4131 }
4132 
4133 static int selinux_task_setscheduler(struct task_struct *p)
4134 {
4135 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4136 			    PROCESS__SETSCHED, NULL);
4137 }
4138 
4139 static int selinux_task_getscheduler(struct task_struct *p)
4140 {
4141 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4142 			    PROCESS__GETSCHED, NULL);
4143 }
4144 
4145 static int selinux_task_movememory(struct task_struct *p)
4146 {
4147 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4148 			    PROCESS__SETSCHED, NULL);
4149 }
4150 
4151 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4152 				int sig, const struct cred *cred)
4153 {
4154 	u32 secid;
4155 	u32 perm;
4156 
4157 	if (!sig)
4158 		perm = PROCESS__SIGNULL; /* null signal; existence test */
4159 	else
4160 		perm = signal_to_av(sig);
4161 	if (!cred)
4162 		secid = current_sid();
4163 	else
4164 		secid = cred_sid(cred);
4165 	return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4166 }
4167 
4168 static void selinux_task_to_inode(struct task_struct *p,
4169 				  struct inode *inode)
4170 {
4171 	struct inode_security_struct *isec = selinux_inode(inode);
4172 	u32 sid = task_sid_obj(p);
4173 
4174 	spin_lock(&isec->lock);
4175 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4176 	isec->sid = sid;
4177 	isec->initialized = LABEL_INITIALIZED;
4178 	spin_unlock(&isec->lock);
4179 }
4180 
4181 static int selinux_userns_create(const struct cred *cred)
4182 {
4183 	u32 sid = current_sid();
4184 
4185 	return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE,
4186 			USER_NAMESPACE__CREATE, NULL);
4187 }
4188 
4189 /* Returns error only if unable to parse addresses */
4190 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4191 			struct common_audit_data *ad, u8 *proto)
4192 {
4193 	int offset, ihlen, ret = -EINVAL;
4194 	struct iphdr _iph, *ih;
4195 
4196 	offset = skb_network_offset(skb);
4197 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4198 	if (ih == NULL)
4199 		goto out;
4200 
4201 	ihlen = ih->ihl * 4;
4202 	if (ihlen < sizeof(_iph))
4203 		goto out;
4204 
4205 	ad->u.net->v4info.saddr = ih->saddr;
4206 	ad->u.net->v4info.daddr = ih->daddr;
4207 	ret = 0;
4208 
4209 	if (proto)
4210 		*proto = ih->protocol;
4211 
4212 	switch (ih->protocol) {
4213 	case IPPROTO_TCP: {
4214 		struct tcphdr _tcph, *th;
4215 
4216 		if (ntohs(ih->frag_off) & IP_OFFSET)
4217 			break;
4218 
4219 		offset += ihlen;
4220 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4221 		if (th == NULL)
4222 			break;
4223 
4224 		ad->u.net->sport = th->source;
4225 		ad->u.net->dport = th->dest;
4226 		break;
4227 	}
4228 
4229 	case IPPROTO_UDP: {
4230 		struct udphdr _udph, *uh;
4231 
4232 		if (ntohs(ih->frag_off) & IP_OFFSET)
4233 			break;
4234 
4235 		offset += ihlen;
4236 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4237 		if (uh == NULL)
4238 			break;
4239 
4240 		ad->u.net->sport = uh->source;
4241 		ad->u.net->dport = uh->dest;
4242 		break;
4243 	}
4244 
4245 	case IPPROTO_DCCP: {
4246 		struct dccp_hdr _dccph, *dh;
4247 
4248 		if (ntohs(ih->frag_off) & IP_OFFSET)
4249 			break;
4250 
4251 		offset += ihlen;
4252 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4253 		if (dh == NULL)
4254 			break;
4255 
4256 		ad->u.net->sport = dh->dccph_sport;
4257 		ad->u.net->dport = dh->dccph_dport;
4258 		break;
4259 	}
4260 
4261 #if IS_ENABLED(CONFIG_IP_SCTP)
4262 	case IPPROTO_SCTP: {
4263 		struct sctphdr _sctph, *sh;
4264 
4265 		if (ntohs(ih->frag_off) & IP_OFFSET)
4266 			break;
4267 
4268 		offset += ihlen;
4269 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4270 		if (sh == NULL)
4271 			break;
4272 
4273 		ad->u.net->sport = sh->source;
4274 		ad->u.net->dport = sh->dest;
4275 		break;
4276 	}
4277 #endif
4278 	default:
4279 		break;
4280 	}
4281 out:
4282 	return ret;
4283 }
4284 
4285 #if IS_ENABLED(CONFIG_IPV6)
4286 
4287 /* Returns error only if unable to parse addresses */
4288 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4289 			struct common_audit_data *ad, u8 *proto)
4290 {
4291 	u8 nexthdr;
4292 	int ret = -EINVAL, offset;
4293 	struct ipv6hdr _ipv6h, *ip6;
4294 	__be16 frag_off;
4295 
4296 	offset = skb_network_offset(skb);
4297 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4298 	if (ip6 == NULL)
4299 		goto out;
4300 
4301 	ad->u.net->v6info.saddr = ip6->saddr;
4302 	ad->u.net->v6info.daddr = ip6->daddr;
4303 	ret = 0;
4304 
4305 	nexthdr = ip6->nexthdr;
4306 	offset += sizeof(_ipv6h);
4307 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4308 	if (offset < 0)
4309 		goto out;
4310 
4311 	if (proto)
4312 		*proto = nexthdr;
4313 
4314 	switch (nexthdr) {
4315 	case IPPROTO_TCP: {
4316 		struct tcphdr _tcph, *th;
4317 
4318 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4319 		if (th == NULL)
4320 			break;
4321 
4322 		ad->u.net->sport = th->source;
4323 		ad->u.net->dport = th->dest;
4324 		break;
4325 	}
4326 
4327 	case IPPROTO_UDP: {
4328 		struct udphdr _udph, *uh;
4329 
4330 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4331 		if (uh == NULL)
4332 			break;
4333 
4334 		ad->u.net->sport = uh->source;
4335 		ad->u.net->dport = uh->dest;
4336 		break;
4337 	}
4338 
4339 	case IPPROTO_DCCP: {
4340 		struct dccp_hdr _dccph, *dh;
4341 
4342 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4343 		if (dh == NULL)
4344 			break;
4345 
4346 		ad->u.net->sport = dh->dccph_sport;
4347 		ad->u.net->dport = dh->dccph_dport;
4348 		break;
4349 	}
4350 
4351 #if IS_ENABLED(CONFIG_IP_SCTP)
4352 	case IPPROTO_SCTP: {
4353 		struct sctphdr _sctph, *sh;
4354 
4355 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4356 		if (sh == NULL)
4357 			break;
4358 
4359 		ad->u.net->sport = sh->source;
4360 		ad->u.net->dport = sh->dest;
4361 		break;
4362 	}
4363 #endif
4364 	/* includes fragments */
4365 	default:
4366 		break;
4367 	}
4368 out:
4369 	return ret;
4370 }
4371 
4372 #endif /* IPV6 */
4373 
4374 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4375 			     char **_addrp, int src, u8 *proto)
4376 {
4377 	char *addrp;
4378 	int ret;
4379 
4380 	switch (ad->u.net->family) {
4381 	case PF_INET:
4382 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4383 		if (ret)
4384 			goto parse_error;
4385 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4386 				       &ad->u.net->v4info.daddr);
4387 		goto okay;
4388 
4389 #if IS_ENABLED(CONFIG_IPV6)
4390 	case PF_INET6:
4391 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4392 		if (ret)
4393 			goto parse_error;
4394 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4395 				       &ad->u.net->v6info.daddr);
4396 		goto okay;
4397 #endif	/* IPV6 */
4398 	default:
4399 		addrp = NULL;
4400 		goto okay;
4401 	}
4402 
4403 parse_error:
4404 	pr_warn(
4405 	       "SELinux: failure in selinux_parse_skb(),"
4406 	       " unable to parse packet\n");
4407 	return ret;
4408 
4409 okay:
4410 	if (_addrp)
4411 		*_addrp = addrp;
4412 	return 0;
4413 }
4414 
4415 /**
4416  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4417  * @skb: the packet
4418  * @family: protocol family
4419  * @sid: the packet's peer label SID
4420  *
4421  * Description:
4422  * Check the various different forms of network peer labeling and determine
4423  * the peer label/SID for the packet; most of the magic actually occurs in
4424  * the security server function security_net_peersid_cmp().  The function
4425  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4426  * or -EACCES if @sid is invalid due to inconsistencies with the different
4427  * peer labels.
4428  *
4429  */
4430 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4431 {
4432 	int err;
4433 	u32 xfrm_sid;
4434 	u32 nlbl_sid;
4435 	u32 nlbl_type;
4436 
4437 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4438 	if (unlikely(err))
4439 		return -EACCES;
4440 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4441 	if (unlikely(err))
4442 		return -EACCES;
4443 
4444 	err = security_net_peersid_resolve(nlbl_sid,
4445 					   nlbl_type, xfrm_sid, sid);
4446 	if (unlikely(err)) {
4447 		pr_warn(
4448 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4449 		       " unable to determine packet's peer label\n");
4450 		return -EACCES;
4451 	}
4452 
4453 	return 0;
4454 }
4455 
4456 /**
4457  * selinux_conn_sid - Determine the child socket label for a connection
4458  * @sk_sid: the parent socket's SID
4459  * @skb_sid: the packet's SID
4460  * @conn_sid: the resulting connection SID
4461  *
4462  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4463  * combined with the MLS information from @skb_sid in order to create
4464  * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4465  * of @sk_sid.  Returns zero on success, negative values on failure.
4466  *
4467  */
4468 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4469 {
4470 	int err = 0;
4471 
4472 	if (skb_sid != SECSID_NULL)
4473 		err = security_sid_mls_copy(sk_sid, skb_sid,
4474 					    conn_sid);
4475 	else
4476 		*conn_sid = sk_sid;
4477 
4478 	return err;
4479 }
4480 
4481 /* socket security operations */
4482 
4483 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4484 				 u16 secclass, u32 *socksid)
4485 {
4486 	if (tsec->sockcreate_sid > SECSID_NULL) {
4487 		*socksid = tsec->sockcreate_sid;
4488 		return 0;
4489 	}
4490 
4491 	return security_transition_sid(tsec->sid, tsec->sid,
4492 				       secclass, NULL, socksid);
4493 }
4494 
4495 static int sock_has_perm(struct sock *sk, u32 perms)
4496 {
4497 	struct sk_security_struct *sksec = sk->sk_security;
4498 	struct common_audit_data ad;
4499 	struct lsm_network_audit net = {0,};
4500 
4501 	if (sksec->sid == SECINITSID_KERNEL)
4502 		return 0;
4503 
4504 	ad.type = LSM_AUDIT_DATA_NET;
4505 	ad.u.net = &net;
4506 	ad.u.net->sk = sk;
4507 
4508 	return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
4509 			    &ad);
4510 }
4511 
4512 static int selinux_socket_create(int family, int type,
4513 				 int protocol, int kern)
4514 {
4515 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4516 	u32 newsid;
4517 	u16 secclass;
4518 	int rc;
4519 
4520 	if (kern)
4521 		return 0;
4522 
4523 	secclass = socket_type_to_security_class(family, type, protocol);
4524 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4525 	if (rc)
4526 		return rc;
4527 
4528 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4529 }
4530 
4531 static int selinux_socket_post_create(struct socket *sock, int family,
4532 				      int type, int protocol, int kern)
4533 {
4534 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4535 	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4536 	struct sk_security_struct *sksec;
4537 	u16 sclass = socket_type_to_security_class(family, type, protocol);
4538 	u32 sid = SECINITSID_KERNEL;
4539 	int err = 0;
4540 
4541 	if (!kern) {
4542 		err = socket_sockcreate_sid(tsec, sclass, &sid);
4543 		if (err)
4544 			return err;
4545 	}
4546 
4547 	isec->sclass = sclass;
4548 	isec->sid = sid;
4549 	isec->initialized = LABEL_INITIALIZED;
4550 
4551 	if (sock->sk) {
4552 		sksec = sock->sk->sk_security;
4553 		sksec->sclass = sclass;
4554 		sksec->sid = sid;
4555 		/* Allows detection of the first association on this socket */
4556 		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4557 			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4558 
4559 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4560 	}
4561 
4562 	return err;
4563 }
4564 
4565 static int selinux_socket_socketpair(struct socket *socka,
4566 				     struct socket *sockb)
4567 {
4568 	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4569 	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4570 
4571 	sksec_a->peer_sid = sksec_b->sid;
4572 	sksec_b->peer_sid = sksec_a->sid;
4573 
4574 	return 0;
4575 }
4576 
4577 /* Range of port numbers used to automatically bind.
4578    Need to determine whether we should perform a name_bind
4579    permission check between the socket and the port number. */
4580 
4581 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4582 {
4583 	struct sock *sk = sock->sk;
4584 	struct sk_security_struct *sksec = sk->sk_security;
4585 	u16 family;
4586 	int err;
4587 
4588 	err = sock_has_perm(sk, SOCKET__BIND);
4589 	if (err)
4590 		goto out;
4591 
4592 	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4593 	family = sk->sk_family;
4594 	if (family == PF_INET || family == PF_INET6) {
4595 		char *addrp;
4596 		struct common_audit_data ad;
4597 		struct lsm_network_audit net = {0,};
4598 		struct sockaddr_in *addr4 = NULL;
4599 		struct sockaddr_in6 *addr6 = NULL;
4600 		u16 family_sa;
4601 		unsigned short snum;
4602 		u32 sid, node_perm;
4603 
4604 		/*
4605 		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4606 		 * that validates multiple binding addresses. Because of this
4607 		 * need to check address->sa_family as it is possible to have
4608 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4609 		 */
4610 		if (addrlen < offsetofend(struct sockaddr, sa_family))
4611 			return -EINVAL;
4612 		family_sa = address->sa_family;
4613 		switch (family_sa) {
4614 		case AF_UNSPEC:
4615 		case AF_INET:
4616 			if (addrlen < sizeof(struct sockaddr_in))
4617 				return -EINVAL;
4618 			addr4 = (struct sockaddr_in *)address;
4619 			if (family_sa == AF_UNSPEC) {
4620 				/* see __inet_bind(), we only want to allow
4621 				 * AF_UNSPEC if the address is INADDR_ANY
4622 				 */
4623 				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4624 					goto err_af;
4625 				family_sa = AF_INET;
4626 			}
4627 			snum = ntohs(addr4->sin_port);
4628 			addrp = (char *)&addr4->sin_addr.s_addr;
4629 			break;
4630 		case AF_INET6:
4631 			if (addrlen < SIN6_LEN_RFC2133)
4632 				return -EINVAL;
4633 			addr6 = (struct sockaddr_in6 *)address;
4634 			snum = ntohs(addr6->sin6_port);
4635 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4636 			break;
4637 		default:
4638 			goto err_af;
4639 		}
4640 
4641 		ad.type = LSM_AUDIT_DATA_NET;
4642 		ad.u.net = &net;
4643 		ad.u.net->sport = htons(snum);
4644 		ad.u.net->family = family_sa;
4645 
4646 		if (snum) {
4647 			int low, high;
4648 
4649 			inet_get_local_port_range(sock_net(sk), &low, &high);
4650 
4651 			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4652 			    snum < low || snum > high) {
4653 				err = sel_netport_sid(sk->sk_protocol,
4654 						      snum, &sid);
4655 				if (err)
4656 					goto out;
4657 				err = avc_has_perm(sksec->sid, sid,
4658 						   sksec->sclass,
4659 						   SOCKET__NAME_BIND, &ad);
4660 				if (err)
4661 					goto out;
4662 			}
4663 		}
4664 
4665 		switch (sksec->sclass) {
4666 		case SECCLASS_TCP_SOCKET:
4667 			node_perm = TCP_SOCKET__NODE_BIND;
4668 			break;
4669 
4670 		case SECCLASS_UDP_SOCKET:
4671 			node_perm = UDP_SOCKET__NODE_BIND;
4672 			break;
4673 
4674 		case SECCLASS_DCCP_SOCKET:
4675 			node_perm = DCCP_SOCKET__NODE_BIND;
4676 			break;
4677 
4678 		case SECCLASS_SCTP_SOCKET:
4679 			node_perm = SCTP_SOCKET__NODE_BIND;
4680 			break;
4681 
4682 		default:
4683 			node_perm = RAWIP_SOCKET__NODE_BIND;
4684 			break;
4685 		}
4686 
4687 		err = sel_netnode_sid(addrp, family_sa, &sid);
4688 		if (err)
4689 			goto out;
4690 
4691 		if (family_sa == AF_INET)
4692 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4693 		else
4694 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4695 
4696 		err = avc_has_perm(sksec->sid, sid,
4697 				   sksec->sclass, node_perm, &ad);
4698 		if (err)
4699 			goto out;
4700 	}
4701 out:
4702 	return err;
4703 err_af:
4704 	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4705 	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4706 		return -EINVAL;
4707 	return -EAFNOSUPPORT;
4708 }
4709 
4710 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4711  * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4712  */
4713 static int selinux_socket_connect_helper(struct socket *sock,
4714 					 struct sockaddr *address, int addrlen)
4715 {
4716 	struct sock *sk = sock->sk;
4717 	struct sk_security_struct *sksec = sk->sk_security;
4718 	int err;
4719 
4720 	err = sock_has_perm(sk, SOCKET__CONNECT);
4721 	if (err)
4722 		return err;
4723 	if (addrlen < offsetofend(struct sockaddr, sa_family))
4724 		return -EINVAL;
4725 
4726 	/* connect(AF_UNSPEC) has special handling, as it is a documented
4727 	 * way to disconnect the socket
4728 	 */
4729 	if (address->sa_family == AF_UNSPEC)
4730 		return 0;
4731 
4732 	/*
4733 	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4734 	 * for the port.
4735 	 */
4736 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4737 	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4738 	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4739 		struct common_audit_data ad;
4740 		struct lsm_network_audit net = {0,};
4741 		struct sockaddr_in *addr4 = NULL;
4742 		struct sockaddr_in6 *addr6 = NULL;
4743 		unsigned short snum;
4744 		u32 sid, perm;
4745 
4746 		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4747 		 * that validates multiple connect addresses. Because of this
4748 		 * need to check address->sa_family as it is possible to have
4749 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4750 		 */
4751 		switch (address->sa_family) {
4752 		case AF_INET:
4753 			addr4 = (struct sockaddr_in *)address;
4754 			if (addrlen < sizeof(struct sockaddr_in))
4755 				return -EINVAL;
4756 			snum = ntohs(addr4->sin_port);
4757 			break;
4758 		case AF_INET6:
4759 			addr6 = (struct sockaddr_in6 *)address;
4760 			if (addrlen < SIN6_LEN_RFC2133)
4761 				return -EINVAL;
4762 			snum = ntohs(addr6->sin6_port);
4763 			break;
4764 		default:
4765 			/* Note that SCTP services expect -EINVAL, whereas
4766 			 * others expect -EAFNOSUPPORT.
4767 			 */
4768 			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4769 				return -EINVAL;
4770 			else
4771 				return -EAFNOSUPPORT;
4772 		}
4773 
4774 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4775 		if (err)
4776 			return err;
4777 
4778 		switch (sksec->sclass) {
4779 		case SECCLASS_TCP_SOCKET:
4780 			perm = TCP_SOCKET__NAME_CONNECT;
4781 			break;
4782 		case SECCLASS_DCCP_SOCKET:
4783 			perm = DCCP_SOCKET__NAME_CONNECT;
4784 			break;
4785 		case SECCLASS_SCTP_SOCKET:
4786 			perm = SCTP_SOCKET__NAME_CONNECT;
4787 			break;
4788 		}
4789 
4790 		ad.type = LSM_AUDIT_DATA_NET;
4791 		ad.u.net = &net;
4792 		ad.u.net->dport = htons(snum);
4793 		ad.u.net->family = address->sa_family;
4794 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4795 		if (err)
4796 			return err;
4797 	}
4798 
4799 	return 0;
4800 }
4801 
4802 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4803 static int selinux_socket_connect(struct socket *sock,
4804 				  struct sockaddr *address, int addrlen)
4805 {
4806 	int err;
4807 	struct sock *sk = sock->sk;
4808 
4809 	err = selinux_socket_connect_helper(sock, address, addrlen);
4810 	if (err)
4811 		return err;
4812 
4813 	return selinux_netlbl_socket_connect(sk, address);
4814 }
4815 
4816 static int selinux_socket_listen(struct socket *sock, int backlog)
4817 {
4818 	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4819 }
4820 
4821 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4822 {
4823 	int err;
4824 	struct inode_security_struct *isec;
4825 	struct inode_security_struct *newisec;
4826 	u16 sclass;
4827 	u32 sid;
4828 
4829 	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4830 	if (err)
4831 		return err;
4832 
4833 	isec = inode_security_novalidate(SOCK_INODE(sock));
4834 	spin_lock(&isec->lock);
4835 	sclass = isec->sclass;
4836 	sid = isec->sid;
4837 	spin_unlock(&isec->lock);
4838 
4839 	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4840 	newisec->sclass = sclass;
4841 	newisec->sid = sid;
4842 	newisec->initialized = LABEL_INITIALIZED;
4843 
4844 	return 0;
4845 }
4846 
4847 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4848 				  int size)
4849 {
4850 	return sock_has_perm(sock->sk, SOCKET__WRITE);
4851 }
4852 
4853 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4854 				  int size, int flags)
4855 {
4856 	return sock_has_perm(sock->sk, SOCKET__READ);
4857 }
4858 
4859 static int selinux_socket_getsockname(struct socket *sock)
4860 {
4861 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4862 }
4863 
4864 static int selinux_socket_getpeername(struct socket *sock)
4865 {
4866 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4867 }
4868 
4869 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4870 {
4871 	int err;
4872 
4873 	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4874 	if (err)
4875 		return err;
4876 
4877 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4878 }
4879 
4880 static int selinux_socket_getsockopt(struct socket *sock, int level,
4881 				     int optname)
4882 {
4883 	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4884 }
4885 
4886 static int selinux_socket_shutdown(struct socket *sock, int how)
4887 {
4888 	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4889 }
4890 
4891 static int selinux_socket_unix_stream_connect(struct sock *sock,
4892 					      struct sock *other,
4893 					      struct sock *newsk)
4894 {
4895 	struct sk_security_struct *sksec_sock = sock->sk_security;
4896 	struct sk_security_struct *sksec_other = other->sk_security;
4897 	struct sk_security_struct *sksec_new = newsk->sk_security;
4898 	struct common_audit_data ad;
4899 	struct lsm_network_audit net = {0,};
4900 	int err;
4901 
4902 	ad.type = LSM_AUDIT_DATA_NET;
4903 	ad.u.net = &net;
4904 	ad.u.net->sk = other;
4905 
4906 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4907 			   sksec_other->sclass,
4908 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4909 	if (err)
4910 		return err;
4911 
4912 	/* server child socket */
4913 	sksec_new->peer_sid = sksec_sock->sid;
4914 	err = security_sid_mls_copy(sksec_other->sid,
4915 				    sksec_sock->sid, &sksec_new->sid);
4916 	if (err)
4917 		return err;
4918 
4919 	/* connecting socket */
4920 	sksec_sock->peer_sid = sksec_new->sid;
4921 
4922 	return 0;
4923 }
4924 
4925 static int selinux_socket_unix_may_send(struct socket *sock,
4926 					struct socket *other)
4927 {
4928 	struct sk_security_struct *ssec = sock->sk->sk_security;
4929 	struct sk_security_struct *osec = other->sk->sk_security;
4930 	struct common_audit_data ad;
4931 	struct lsm_network_audit net = {0,};
4932 
4933 	ad.type = LSM_AUDIT_DATA_NET;
4934 	ad.u.net = &net;
4935 	ad.u.net->sk = other->sk;
4936 
4937 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4938 			    &ad);
4939 }
4940 
4941 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4942 				    char *addrp, u16 family, u32 peer_sid,
4943 				    struct common_audit_data *ad)
4944 {
4945 	int err;
4946 	u32 if_sid;
4947 	u32 node_sid;
4948 
4949 	err = sel_netif_sid(ns, ifindex, &if_sid);
4950 	if (err)
4951 		return err;
4952 	err = avc_has_perm(peer_sid, if_sid,
4953 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4954 	if (err)
4955 		return err;
4956 
4957 	err = sel_netnode_sid(addrp, family, &node_sid);
4958 	if (err)
4959 		return err;
4960 	return avc_has_perm(peer_sid, node_sid,
4961 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4962 }
4963 
4964 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4965 				       u16 family)
4966 {
4967 	int err = 0;
4968 	struct sk_security_struct *sksec = sk->sk_security;
4969 	u32 sk_sid = sksec->sid;
4970 	struct common_audit_data ad;
4971 	struct lsm_network_audit net = {0,};
4972 	char *addrp;
4973 
4974 	ad.type = LSM_AUDIT_DATA_NET;
4975 	ad.u.net = &net;
4976 	ad.u.net->netif = skb->skb_iif;
4977 	ad.u.net->family = family;
4978 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4979 	if (err)
4980 		return err;
4981 
4982 	if (selinux_secmark_enabled()) {
4983 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4984 				   PACKET__RECV, &ad);
4985 		if (err)
4986 			return err;
4987 	}
4988 
4989 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4990 	if (err)
4991 		return err;
4992 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4993 
4994 	return err;
4995 }
4996 
4997 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4998 {
4999 	int err;
5000 	struct sk_security_struct *sksec = sk->sk_security;
5001 	u16 family = sk->sk_family;
5002 	u32 sk_sid = sksec->sid;
5003 	struct common_audit_data ad;
5004 	struct lsm_network_audit net = {0,};
5005 	char *addrp;
5006 	u8 secmark_active;
5007 	u8 peerlbl_active;
5008 
5009 	if (family != PF_INET && family != PF_INET6)
5010 		return 0;
5011 
5012 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5013 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5014 		family = PF_INET;
5015 
5016 	/* If any sort of compatibility mode is enabled then handoff processing
5017 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5018 	 * special handling.  We do this in an attempt to keep this function
5019 	 * as fast and as clean as possible. */
5020 	if (!selinux_policycap_netpeer())
5021 		return selinux_sock_rcv_skb_compat(sk, skb, family);
5022 
5023 	secmark_active = selinux_secmark_enabled();
5024 	peerlbl_active = selinux_peerlbl_enabled();
5025 	if (!secmark_active && !peerlbl_active)
5026 		return 0;
5027 
5028 	ad.type = LSM_AUDIT_DATA_NET;
5029 	ad.u.net = &net;
5030 	ad.u.net->netif = skb->skb_iif;
5031 	ad.u.net->family = family;
5032 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5033 	if (err)
5034 		return err;
5035 
5036 	if (peerlbl_active) {
5037 		u32 peer_sid;
5038 
5039 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5040 		if (err)
5041 			return err;
5042 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5043 					       addrp, family, peer_sid, &ad);
5044 		if (err) {
5045 			selinux_netlbl_err(skb, family, err, 0);
5046 			return err;
5047 		}
5048 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
5049 				   PEER__RECV, &ad);
5050 		if (err) {
5051 			selinux_netlbl_err(skb, family, err, 0);
5052 			return err;
5053 		}
5054 	}
5055 
5056 	if (secmark_active) {
5057 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5058 				   PACKET__RECV, &ad);
5059 		if (err)
5060 			return err;
5061 	}
5062 
5063 	return err;
5064 }
5065 
5066 static int selinux_socket_getpeersec_stream(struct socket *sock,
5067 					    sockptr_t optval, sockptr_t optlen,
5068 					    unsigned int len)
5069 {
5070 	int err = 0;
5071 	char *scontext = NULL;
5072 	u32 scontext_len;
5073 	struct sk_security_struct *sksec = sock->sk->sk_security;
5074 	u32 peer_sid = SECSID_NULL;
5075 
5076 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5077 	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5078 	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5079 		peer_sid = sksec->peer_sid;
5080 	if (peer_sid == SECSID_NULL)
5081 		return -ENOPROTOOPT;
5082 
5083 	err = security_sid_to_context(peer_sid, &scontext,
5084 				      &scontext_len);
5085 	if (err)
5086 		return err;
5087 	if (scontext_len > len) {
5088 		err = -ERANGE;
5089 		goto out_len;
5090 	}
5091 
5092 	if (copy_to_sockptr(optval, scontext, scontext_len))
5093 		err = -EFAULT;
5094 out_len:
5095 	if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5096 		err = -EFAULT;
5097 	kfree(scontext);
5098 	return err;
5099 }
5100 
5101 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5102 {
5103 	u32 peer_secid = SECSID_NULL;
5104 	u16 family;
5105 	struct inode_security_struct *isec;
5106 
5107 	if (skb && skb->protocol == htons(ETH_P_IP))
5108 		family = PF_INET;
5109 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5110 		family = PF_INET6;
5111 	else if (sock)
5112 		family = sock->sk->sk_family;
5113 	else
5114 		goto out;
5115 
5116 	if (sock && family == PF_UNIX) {
5117 		isec = inode_security_novalidate(SOCK_INODE(sock));
5118 		peer_secid = isec->sid;
5119 	} else if (skb)
5120 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5121 
5122 out:
5123 	*secid = peer_secid;
5124 	if (peer_secid == SECSID_NULL)
5125 		return -EINVAL;
5126 	return 0;
5127 }
5128 
5129 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5130 {
5131 	struct sk_security_struct *sksec;
5132 
5133 	sksec = kzalloc(sizeof(*sksec), priority);
5134 	if (!sksec)
5135 		return -ENOMEM;
5136 
5137 	sksec->peer_sid = SECINITSID_UNLABELED;
5138 	sksec->sid = SECINITSID_UNLABELED;
5139 	sksec->sclass = SECCLASS_SOCKET;
5140 	selinux_netlbl_sk_security_reset(sksec);
5141 	sk->sk_security = sksec;
5142 
5143 	return 0;
5144 }
5145 
5146 static void selinux_sk_free_security(struct sock *sk)
5147 {
5148 	struct sk_security_struct *sksec = sk->sk_security;
5149 
5150 	sk->sk_security = NULL;
5151 	selinux_netlbl_sk_security_free(sksec);
5152 	kfree(sksec);
5153 }
5154 
5155 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5156 {
5157 	struct sk_security_struct *sksec = sk->sk_security;
5158 	struct sk_security_struct *newsksec = newsk->sk_security;
5159 
5160 	newsksec->sid = sksec->sid;
5161 	newsksec->peer_sid = sksec->peer_sid;
5162 	newsksec->sclass = sksec->sclass;
5163 
5164 	selinux_netlbl_sk_security_reset(newsksec);
5165 }
5166 
5167 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5168 {
5169 	if (!sk)
5170 		*secid = SECINITSID_ANY_SOCKET;
5171 	else {
5172 		struct sk_security_struct *sksec = sk->sk_security;
5173 
5174 		*secid = sksec->sid;
5175 	}
5176 }
5177 
5178 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5179 {
5180 	struct inode_security_struct *isec =
5181 		inode_security_novalidate(SOCK_INODE(parent));
5182 	struct sk_security_struct *sksec = sk->sk_security;
5183 
5184 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5185 	    sk->sk_family == PF_UNIX)
5186 		isec->sid = sksec->sid;
5187 	sksec->sclass = isec->sclass;
5188 }
5189 
5190 /*
5191  * Determines peer_secid for the asoc and updates socket's peer label
5192  * if it's the first association on the socket.
5193  */
5194 static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5195 					  struct sk_buff *skb)
5196 {
5197 	struct sock *sk = asoc->base.sk;
5198 	u16 family = sk->sk_family;
5199 	struct sk_security_struct *sksec = sk->sk_security;
5200 	struct common_audit_data ad;
5201 	struct lsm_network_audit net = {0,};
5202 	int err;
5203 
5204 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5205 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5206 		family = PF_INET;
5207 
5208 	if (selinux_peerlbl_enabled()) {
5209 		asoc->peer_secid = SECSID_NULL;
5210 
5211 		/* This will return peer_sid = SECSID_NULL if there are
5212 		 * no peer labels, see security_net_peersid_resolve().
5213 		 */
5214 		err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5215 		if (err)
5216 			return err;
5217 
5218 		if (asoc->peer_secid == SECSID_NULL)
5219 			asoc->peer_secid = SECINITSID_UNLABELED;
5220 	} else {
5221 		asoc->peer_secid = SECINITSID_UNLABELED;
5222 	}
5223 
5224 	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5225 		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5226 
5227 		/* Here as first association on socket. As the peer SID
5228 		 * was allowed by peer recv (and the netif/node checks),
5229 		 * then it is approved by policy and used as the primary
5230 		 * peer SID for getpeercon(3).
5231 		 */
5232 		sksec->peer_sid = asoc->peer_secid;
5233 	} else if (sksec->peer_sid != asoc->peer_secid) {
5234 		/* Other association peer SIDs are checked to enforce
5235 		 * consistency among the peer SIDs.
5236 		 */
5237 		ad.type = LSM_AUDIT_DATA_NET;
5238 		ad.u.net = &net;
5239 		ad.u.net->sk = asoc->base.sk;
5240 		err = avc_has_perm(sksec->peer_sid, asoc->peer_secid,
5241 				   sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5242 				   &ad);
5243 		if (err)
5244 			return err;
5245 	}
5246 	return 0;
5247 }
5248 
5249 /* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5250  * happens on an incoming connect(2), sctp_connectx(3) or
5251  * sctp_sendmsg(3) (with no association already present).
5252  */
5253 static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5254 				      struct sk_buff *skb)
5255 {
5256 	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5257 	u32 conn_sid;
5258 	int err;
5259 
5260 	if (!selinux_policycap_extsockclass())
5261 		return 0;
5262 
5263 	err = selinux_sctp_process_new_assoc(asoc, skb);
5264 	if (err)
5265 		return err;
5266 
5267 	/* Compute the MLS component for the connection and store
5268 	 * the information in asoc. This will be used by SCTP TCP type
5269 	 * sockets and peeled off connections as they cause a new
5270 	 * socket to be generated. selinux_sctp_sk_clone() will then
5271 	 * plug this into the new socket.
5272 	 */
5273 	err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5274 	if (err)
5275 		return err;
5276 
5277 	asoc->secid = conn_sid;
5278 
5279 	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5280 	return selinux_netlbl_sctp_assoc_request(asoc, skb);
5281 }
5282 
5283 /* Called when SCTP receives a COOKIE ACK chunk as the final
5284  * response to an association request (initited by us).
5285  */
5286 static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5287 					  struct sk_buff *skb)
5288 {
5289 	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5290 
5291 	if (!selinux_policycap_extsockclass())
5292 		return 0;
5293 
5294 	/* Inherit secid from the parent socket - this will be picked up
5295 	 * by selinux_sctp_sk_clone() if the association gets peeled off
5296 	 * into a new socket.
5297 	 */
5298 	asoc->secid = sksec->sid;
5299 
5300 	return selinux_sctp_process_new_assoc(asoc, skb);
5301 }
5302 
5303 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5304  * based on their @optname.
5305  */
5306 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5307 				     struct sockaddr *address,
5308 				     int addrlen)
5309 {
5310 	int len, err = 0, walk_size = 0;
5311 	void *addr_buf;
5312 	struct sockaddr *addr;
5313 	struct socket *sock;
5314 
5315 	if (!selinux_policycap_extsockclass())
5316 		return 0;
5317 
5318 	/* Process one or more addresses that may be IPv4 or IPv6 */
5319 	sock = sk->sk_socket;
5320 	addr_buf = address;
5321 
5322 	while (walk_size < addrlen) {
5323 		if (walk_size + sizeof(sa_family_t) > addrlen)
5324 			return -EINVAL;
5325 
5326 		addr = addr_buf;
5327 		switch (addr->sa_family) {
5328 		case AF_UNSPEC:
5329 		case AF_INET:
5330 			len = sizeof(struct sockaddr_in);
5331 			break;
5332 		case AF_INET6:
5333 			len = sizeof(struct sockaddr_in6);
5334 			break;
5335 		default:
5336 			return -EINVAL;
5337 		}
5338 
5339 		if (walk_size + len > addrlen)
5340 			return -EINVAL;
5341 
5342 		err = -EINVAL;
5343 		switch (optname) {
5344 		/* Bind checks */
5345 		case SCTP_PRIMARY_ADDR:
5346 		case SCTP_SET_PEER_PRIMARY_ADDR:
5347 		case SCTP_SOCKOPT_BINDX_ADD:
5348 			err = selinux_socket_bind(sock, addr, len);
5349 			break;
5350 		/* Connect checks */
5351 		case SCTP_SOCKOPT_CONNECTX:
5352 		case SCTP_PARAM_SET_PRIMARY:
5353 		case SCTP_PARAM_ADD_IP:
5354 		case SCTP_SENDMSG_CONNECT:
5355 			err = selinux_socket_connect_helper(sock, addr, len);
5356 			if (err)
5357 				return err;
5358 
5359 			/* As selinux_sctp_bind_connect() is called by the
5360 			 * SCTP protocol layer, the socket is already locked,
5361 			 * therefore selinux_netlbl_socket_connect_locked()
5362 			 * is called here. The situations handled are:
5363 			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5364 			 * whenever a new IP address is added or when a new
5365 			 * primary address is selected.
5366 			 * Note that an SCTP connect(2) call happens before
5367 			 * the SCTP protocol layer and is handled via
5368 			 * selinux_socket_connect().
5369 			 */
5370 			err = selinux_netlbl_socket_connect_locked(sk, addr);
5371 			break;
5372 		}
5373 
5374 		if (err)
5375 			return err;
5376 
5377 		addr_buf += len;
5378 		walk_size += len;
5379 	}
5380 
5381 	return 0;
5382 }
5383 
5384 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5385 static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5386 				  struct sock *newsk)
5387 {
5388 	struct sk_security_struct *sksec = sk->sk_security;
5389 	struct sk_security_struct *newsksec = newsk->sk_security;
5390 
5391 	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5392 	 * the non-sctp clone version.
5393 	 */
5394 	if (!selinux_policycap_extsockclass())
5395 		return selinux_sk_clone_security(sk, newsk);
5396 
5397 	newsksec->sid = asoc->secid;
5398 	newsksec->peer_sid = asoc->peer_secid;
5399 	newsksec->sclass = sksec->sclass;
5400 	selinux_netlbl_sctp_sk_clone(sk, newsk);
5401 }
5402 
5403 static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5404 {
5405 	struct sk_security_struct *ssksec = ssk->sk_security;
5406 	struct sk_security_struct *sksec = sk->sk_security;
5407 
5408 	ssksec->sclass = sksec->sclass;
5409 	ssksec->sid = sksec->sid;
5410 
5411 	/* replace the existing subflow label deleting the existing one
5412 	 * and re-recreating a new label using the updated context
5413 	 */
5414 	selinux_netlbl_sk_security_free(ssksec);
5415 	return selinux_netlbl_socket_post_create(ssk, ssk->sk_family);
5416 }
5417 
5418 static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5419 				     struct request_sock *req)
5420 {
5421 	struct sk_security_struct *sksec = sk->sk_security;
5422 	int err;
5423 	u16 family = req->rsk_ops->family;
5424 	u32 connsid;
5425 	u32 peersid;
5426 
5427 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5428 	if (err)
5429 		return err;
5430 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5431 	if (err)
5432 		return err;
5433 	req->secid = connsid;
5434 	req->peer_secid = peersid;
5435 
5436 	return selinux_netlbl_inet_conn_request(req, family);
5437 }
5438 
5439 static void selinux_inet_csk_clone(struct sock *newsk,
5440 				   const struct request_sock *req)
5441 {
5442 	struct sk_security_struct *newsksec = newsk->sk_security;
5443 
5444 	newsksec->sid = req->secid;
5445 	newsksec->peer_sid = req->peer_secid;
5446 	/* NOTE: Ideally, we should also get the isec->sid for the
5447 	   new socket in sync, but we don't have the isec available yet.
5448 	   So we will wait until sock_graft to do it, by which
5449 	   time it will have been created and available. */
5450 
5451 	/* We don't need to take any sort of lock here as we are the only
5452 	 * thread with access to newsksec */
5453 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5454 }
5455 
5456 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5457 {
5458 	u16 family = sk->sk_family;
5459 	struct sk_security_struct *sksec = sk->sk_security;
5460 
5461 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5462 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5463 		family = PF_INET;
5464 
5465 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5466 }
5467 
5468 static int selinux_secmark_relabel_packet(u32 sid)
5469 {
5470 	const struct task_security_struct *__tsec;
5471 	u32 tsid;
5472 
5473 	__tsec = selinux_cred(current_cred());
5474 	tsid = __tsec->sid;
5475 
5476 	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5477 			    NULL);
5478 }
5479 
5480 static void selinux_secmark_refcount_inc(void)
5481 {
5482 	atomic_inc(&selinux_secmark_refcount);
5483 }
5484 
5485 static void selinux_secmark_refcount_dec(void)
5486 {
5487 	atomic_dec(&selinux_secmark_refcount);
5488 }
5489 
5490 static void selinux_req_classify_flow(const struct request_sock *req,
5491 				      struct flowi_common *flic)
5492 {
5493 	flic->flowic_secid = req->secid;
5494 }
5495 
5496 static int selinux_tun_dev_alloc_security(void **security)
5497 {
5498 	struct tun_security_struct *tunsec;
5499 
5500 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5501 	if (!tunsec)
5502 		return -ENOMEM;
5503 	tunsec->sid = current_sid();
5504 
5505 	*security = tunsec;
5506 	return 0;
5507 }
5508 
5509 static void selinux_tun_dev_free_security(void *security)
5510 {
5511 	kfree(security);
5512 }
5513 
5514 static int selinux_tun_dev_create(void)
5515 {
5516 	u32 sid = current_sid();
5517 
5518 	/* we aren't taking into account the "sockcreate" SID since the socket
5519 	 * that is being created here is not a socket in the traditional sense,
5520 	 * instead it is a private sock, accessible only to the kernel, and
5521 	 * representing a wide range of network traffic spanning multiple
5522 	 * connections unlike traditional sockets - check the TUN driver to
5523 	 * get a better understanding of why this socket is special */
5524 
5525 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5526 			    NULL);
5527 }
5528 
5529 static int selinux_tun_dev_attach_queue(void *security)
5530 {
5531 	struct tun_security_struct *tunsec = security;
5532 
5533 	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5534 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5535 }
5536 
5537 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5538 {
5539 	struct tun_security_struct *tunsec = security;
5540 	struct sk_security_struct *sksec = sk->sk_security;
5541 
5542 	/* we don't currently perform any NetLabel based labeling here and it
5543 	 * isn't clear that we would want to do so anyway; while we could apply
5544 	 * labeling without the support of the TUN user the resulting labeled
5545 	 * traffic from the other end of the connection would almost certainly
5546 	 * cause confusion to the TUN user that had no idea network labeling
5547 	 * protocols were being used */
5548 
5549 	sksec->sid = tunsec->sid;
5550 	sksec->sclass = SECCLASS_TUN_SOCKET;
5551 
5552 	return 0;
5553 }
5554 
5555 static int selinux_tun_dev_open(void *security)
5556 {
5557 	struct tun_security_struct *tunsec = security;
5558 	u32 sid = current_sid();
5559 	int err;
5560 
5561 	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5562 			   TUN_SOCKET__RELABELFROM, NULL);
5563 	if (err)
5564 		return err;
5565 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5566 			   TUN_SOCKET__RELABELTO, NULL);
5567 	if (err)
5568 		return err;
5569 	tunsec->sid = sid;
5570 
5571 	return 0;
5572 }
5573 
5574 #ifdef CONFIG_NETFILTER
5575 
5576 static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5577 				       const struct nf_hook_state *state)
5578 {
5579 	int ifindex;
5580 	u16 family;
5581 	char *addrp;
5582 	u32 peer_sid;
5583 	struct common_audit_data ad;
5584 	struct lsm_network_audit net = {0,};
5585 	int secmark_active, peerlbl_active;
5586 
5587 	if (!selinux_policycap_netpeer())
5588 		return NF_ACCEPT;
5589 
5590 	secmark_active = selinux_secmark_enabled();
5591 	peerlbl_active = selinux_peerlbl_enabled();
5592 	if (!secmark_active && !peerlbl_active)
5593 		return NF_ACCEPT;
5594 
5595 	family = state->pf;
5596 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5597 		return NF_DROP;
5598 
5599 	ifindex = state->in->ifindex;
5600 	ad.type = LSM_AUDIT_DATA_NET;
5601 	ad.u.net = &net;
5602 	ad.u.net->netif = ifindex;
5603 	ad.u.net->family = family;
5604 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5605 		return NF_DROP;
5606 
5607 	if (peerlbl_active) {
5608 		int err;
5609 
5610 		err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5611 					       addrp, family, peer_sid, &ad);
5612 		if (err) {
5613 			selinux_netlbl_err(skb, family, err, 1);
5614 			return NF_DROP;
5615 		}
5616 	}
5617 
5618 	if (secmark_active)
5619 		if (avc_has_perm(peer_sid, skb->secmark,
5620 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5621 			return NF_DROP;
5622 
5623 	if (netlbl_enabled())
5624 		/* we do this in the FORWARD path and not the POST_ROUTING
5625 		 * path because we want to make sure we apply the necessary
5626 		 * labeling before IPsec is applied so we can leverage AH
5627 		 * protection */
5628 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5629 			return NF_DROP;
5630 
5631 	return NF_ACCEPT;
5632 }
5633 
5634 static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5635 				      const struct nf_hook_state *state)
5636 {
5637 	struct sock *sk;
5638 	u32 sid;
5639 
5640 	if (!netlbl_enabled())
5641 		return NF_ACCEPT;
5642 
5643 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5644 	 * because we want to make sure we apply the necessary labeling
5645 	 * before IPsec is applied so we can leverage AH protection */
5646 	sk = skb->sk;
5647 	if (sk) {
5648 		struct sk_security_struct *sksec;
5649 
5650 		if (sk_listener(sk))
5651 			/* if the socket is the listening state then this
5652 			 * packet is a SYN-ACK packet which means it needs to
5653 			 * be labeled based on the connection/request_sock and
5654 			 * not the parent socket.  unfortunately, we can't
5655 			 * lookup the request_sock yet as it isn't queued on
5656 			 * the parent socket until after the SYN-ACK is sent.
5657 			 * the "solution" is to simply pass the packet as-is
5658 			 * as any IP option based labeling should be copied
5659 			 * from the initial connection request (in the IP
5660 			 * layer).  it is far from ideal, but until we get a
5661 			 * security label in the packet itself this is the
5662 			 * best we can do. */
5663 			return NF_ACCEPT;
5664 
5665 		/* standard practice, label using the parent socket */
5666 		sksec = sk->sk_security;
5667 		sid = sksec->sid;
5668 	} else
5669 		sid = SECINITSID_KERNEL;
5670 	if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5671 		return NF_DROP;
5672 
5673 	return NF_ACCEPT;
5674 }
5675 
5676 
5677 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5678 					const struct nf_hook_state *state)
5679 {
5680 	struct sock *sk;
5681 	struct sk_security_struct *sksec;
5682 	struct common_audit_data ad;
5683 	struct lsm_network_audit net = {0,};
5684 	u8 proto = 0;
5685 
5686 	sk = skb_to_full_sk(skb);
5687 	if (sk == NULL)
5688 		return NF_ACCEPT;
5689 	sksec = sk->sk_security;
5690 
5691 	ad.type = LSM_AUDIT_DATA_NET;
5692 	ad.u.net = &net;
5693 	ad.u.net->netif = state->out->ifindex;
5694 	ad.u.net->family = state->pf;
5695 	if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5696 		return NF_DROP;
5697 
5698 	if (selinux_secmark_enabled())
5699 		if (avc_has_perm(sksec->sid, skb->secmark,
5700 				 SECCLASS_PACKET, PACKET__SEND, &ad))
5701 			return NF_DROP_ERR(-ECONNREFUSED);
5702 
5703 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5704 		return NF_DROP_ERR(-ECONNREFUSED);
5705 
5706 	return NF_ACCEPT;
5707 }
5708 
5709 static unsigned int selinux_ip_postroute(void *priv,
5710 					 struct sk_buff *skb,
5711 					 const struct nf_hook_state *state)
5712 {
5713 	u16 family;
5714 	u32 secmark_perm;
5715 	u32 peer_sid;
5716 	int ifindex;
5717 	struct sock *sk;
5718 	struct common_audit_data ad;
5719 	struct lsm_network_audit net = {0,};
5720 	char *addrp;
5721 	int secmark_active, peerlbl_active;
5722 
5723 	/* If any sort of compatibility mode is enabled then handoff processing
5724 	 * to the selinux_ip_postroute_compat() function to deal with the
5725 	 * special handling.  We do this in an attempt to keep this function
5726 	 * as fast and as clean as possible. */
5727 	if (!selinux_policycap_netpeer())
5728 		return selinux_ip_postroute_compat(skb, state);
5729 
5730 	secmark_active = selinux_secmark_enabled();
5731 	peerlbl_active = selinux_peerlbl_enabled();
5732 	if (!secmark_active && !peerlbl_active)
5733 		return NF_ACCEPT;
5734 
5735 	sk = skb_to_full_sk(skb);
5736 
5737 #ifdef CONFIG_XFRM
5738 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5739 	 * packet transformation so allow the packet to pass without any checks
5740 	 * since we'll have another chance to perform access control checks
5741 	 * when the packet is on it's final way out.
5742 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5743 	 *       is NULL, in this case go ahead and apply access control.
5744 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5745 	 *       TCP listening state we cannot wait until the XFRM processing
5746 	 *       is done as we will miss out on the SA label if we do;
5747 	 *       unfortunately, this means more work, but it is only once per
5748 	 *       connection. */
5749 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5750 	    !(sk && sk_listener(sk)))
5751 		return NF_ACCEPT;
5752 #endif
5753 
5754 	family = state->pf;
5755 	if (sk == NULL) {
5756 		/* Without an associated socket the packet is either coming
5757 		 * from the kernel or it is being forwarded; check the packet
5758 		 * to determine which and if the packet is being forwarded
5759 		 * query the packet directly to determine the security label. */
5760 		if (skb->skb_iif) {
5761 			secmark_perm = PACKET__FORWARD_OUT;
5762 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5763 				return NF_DROP;
5764 		} else {
5765 			secmark_perm = PACKET__SEND;
5766 			peer_sid = SECINITSID_KERNEL;
5767 		}
5768 	} else if (sk_listener(sk)) {
5769 		/* Locally generated packet but the associated socket is in the
5770 		 * listening state which means this is a SYN-ACK packet.  In
5771 		 * this particular case the correct security label is assigned
5772 		 * to the connection/request_sock but unfortunately we can't
5773 		 * query the request_sock as it isn't queued on the parent
5774 		 * socket until after the SYN-ACK packet is sent; the only
5775 		 * viable choice is to regenerate the label like we do in
5776 		 * selinux_inet_conn_request().  See also selinux_ip_output()
5777 		 * for similar problems. */
5778 		u32 skb_sid;
5779 		struct sk_security_struct *sksec;
5780 
5781 		sksec = sk->sk_security;
5782 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5783 			return NF_DROP;
5784 		/* At this point, if the returned skb peerlbl is SECSID_NULL
5785 		 * and the packet has been through at least one XFRM
5786 		 * transformation then we must be dealing with the "final"
5787 		 * form of labeled IPsec packet; since we've already applied
5788 		 * all of our access controls on this packet we can safely
5789 		 * pass the packet. */
5790 		if (skb_sid == SECSID_NULL) {
5791 			switch (family) {
5792 			case PF_INET:
5793 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5794 					return NF_ACCEPT;
5795 				break;
5796 			case PF_INET6:
5797 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5798 					return NF_ACCEPT;
5799 				break;
5800 			default:
5801 				return NF_DROP_ERR(-ECONNREFUSED);
5802 			}
5803 		}
5804 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5805 			return NF_DROP;
5806 		secmark_perm = PACKET__SEND;
5807 	} else {
5808 		/* Locally generated packet, fetch the security label from the
5809 		 * associated socket. */
5810 		struct sk_security_struct *sksec = sk->sk_security;
5811 		peer_sid = sksec->sid;
5812 		secmark_perm = PACKET__SEND;
5813 	}
5814 
5815 	ifindex = state->out->ifindex;
5816 	ad.type = LSM_AUDIT_DATA_NET;
5817 	ad.u.net = &net;
5818 	ad.u.net->netif = ifindex;
5819 	ad.u.net->family = family;
5820 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5821 		return NF_DROP;
5822 
5823 	if (secmark_active)
5824 		if (avc_has_perm(peer_sid, skb->secmark,
5825 				 SECCLASS_PACKET, secmark_perm, &ad))
5826 			return NF_DROP_ERR(-ECONNREFUSED);
5827 
5828 	if (peerlbl_active) {
5829 		u32 if_sid;
5830 		u32 node_sid;
5831 
5832 		if (sel_netif_sid(state->net, ifindex, &if_sid))
5833 			return NF_DROP;
5834 		if (avc_has_perm(peer_sid, if_sid,
5835 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5836 			return NF_DROP_ERR(-ECONNREFUSED);
5837 
5838 		if (sel_netnode_sid(addrp, family, &node_sid))
5839 			return NF_DROP;
5840 		if (avc_has_perm(peer_sid, node_sid,
5841 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5842 			return NF_DROP_ERR(-ECONNREFUSED);
5843 	}
5844 
5845 	return NF_ACCEPT;
5846 }
5847 #endif	/* CONFIG_NETFILTER */
5848 
5849 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5850 {
5851 	int rc = 0;
5852 	unsigned int msg_len;
5853 	unsigned int data_len = skb->len;
5854 	unsigned char *data = skb->data;
5855 	struct nlmsghdr *nlh;
5856 	struct sk_security_struct *sksec = sk->sk_security;
5857 	u16 sclass = sksec->sclass;
5858 	u32 perm;
5859 
5860 	while (data_len >= nlmsg_total_size(0)) {
5861 		nlh = (struct nlmsghdr *)data;
5862 
5863 		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5864 		 *       users which means we can't reject skb's with bogus
5865 		 *       length fields; our solution is to follow what
5866 		 *       netlink_rcv_skb() does and simply skip processing at
5867 		 *       messages with length fields that are clearly junk
5868 		 */
5869 		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5870 			return 0;
5871 
5872 		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5873 		if (rc == 0) {
5874 			rc = sock_has_perm(sk, perm);
5875 			if (rc)
5876 				return rc;
5877 		} else if (rc == -EINVAL) {
5878 			/* -EINVAL is a missing msg/perm mapping */
5879 			pr_warn_ratelimited("SELinux: unrecognized netlink"
5880 				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5881 				" pid=%d comm=%s\n",
5882 				sk->sk_protocol, nlh->nlmsg_type,
5883 				secclass_map[sclass - 1].name,
5884 				task_pid_nr(current), current->comm);
5885 			if (enforcing_enabled() &&
5886 			    !security_get_allow_unknown())
5887 				return rc;
5888 			rc = 0;
5889 		} else if (rc == -ENOENT) {
5890 			/* -ENOENT is a missing socket/class mapping, ignore */
5891 			rc = 0;
5892 		} else {
5893 			return rc;
5894 		}
5895 
5896 		/* move to the next message after applying netlink padding */
5897 		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5898 		if (msg_len >= data_len)
5899 			return 0;
5900 		data_len -= msg_len;
5901 		data += msg_len;
5902 	}
5903 
5904 	return rc;
5905 }
5906 
5907 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5908 {
5909 	isec->sclass = sclass;
5910 	isec->sid = current_sid();
5911 }
5912 
5913 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5914 			u32 perms)
5915 {
5916 	struct ipc_security_struct *isec;
5917 	struct common_audit_data ad;
5918 	u32 sid = current_sid();
5919 
5920 	isec = selinux_ipc(ipc_perms);
5921 
5922 	ad.type = LSM_AUDIT_DATA_IPC;
5923 	ad.u.ipc_id = ipc_perms->key;
5924 
5925 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5926 }
5927 
5928 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5929 {
5930 	struct msg_security_struct *msec;
5931 
5932 	msec = selinux_msg_msg(msg);
5933 	msec->sid = SECINITSID_UNLABELED;
5934 
5935 	return 0;
5936 }
5937 
5938 /* message queue security operations */
5939 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5940 {
5941 	struct ipc_security_struct *isec;
5942 	struct common_audit_data ad;
5943 	u32 sid = current_sid();
5944 
5945 	isec = selinux_ipc(msq);
5946 	ipc_init_security(isec, SECCLASS_MSGQ);
5947 
5948 	ad.type = LSM_AUDIT_DATA_IPC;
5949 	ad.u.ipc_id = msq->key;
5950 
5951 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5952 			    MSGQ__CREATE, &ad);
5953 }
5954 
5955 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5956 {
5957 	struct ipc_security_struct *isec;
5958 	struct common_audit_data ad;
5959 	u32 sid = current_sid();
5960 
5961 	isec = selinux_ipc(msq);
5962 
5963 	ad.type = LSM_AUDIT_DATA_IPC;
5964 	ad.u.ipc_id = msq->key;
5965 
5966 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5967 			    MSGQ__ASSOCIATE, &ad);
5968 }
5969 
5970 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5971 {
5972 	int err;
5973 	int perms;
5974 
5975 	switch (cmd) {
5976 	case IPC_INFO:
5977 	case MSG_INFO:
5978 		/* No specific object, just general system-wide information. */
5979 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
5980 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5981 	case IPC_STAT:
5982 	case MSG_STAT:
5983 	case MSG_STAT_ANY:
5984 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5985 		break;
5986 	case IPC_SET:
5987 		perms = MSGQ__SETATTR;
5988 		break;
5989 	case IPC_RMID:
5990 		perms = MSGQ__DESTROY;
5991 		break;
5992 	default:
5993 		return 0;
5994 	}
5995 
5996 	err = ipc_has_perm(msq, perms);
5997 	return err;
5998 }
5999 
6000 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6001 {
6002 	struct ipc_security_struct *isec;
6003 	struct msg_security_struct *msec;
6004 	struct common_audit_data ad;
6005 	u32 sid = current_sid();
6006 	int rc;
6007 
6008 	isec = selinux_ipc(msq);
6009 	msec = selinux_msg_msg(msg);
6010 
6011 	/*
6012 	 * First time through, need to assign label to the message
6013 	 */
6014 	if (msec->sid == SECINITSID_UNLABELED) {
6015 		/*
6016 		 * Compute new sid based on current process and
6017 		 * message queue this message will be stored in
6018 		 */
6019 		rc = security_transition_sid(sid, isec->sid,
6020 					     SECCLASS_MSG, NULL, &msec->sid);
6021 		if (rc)
6022 			return rc;
6023 	}
6024 
6025 	ad.type = LSM_AUDIT_DATA_IPC;
6026 	ad.u.ipc_id = msq->key;
6027 
6028 	/* Can this process write to the queue? */
6029 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6030 			  MSGQ__WRITE, &ad);
6031 	if (!rc)
6032 		/* Can this process send the message */
6033 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
6034 				  MSG__SEND, &ad);
6035 	if (!rc)
6036 		/* Can the message be put in the queue? */
6037 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
6038 				  MSGQ__ENQUEUE, &ad);
6039 
6040 	return rc;
6041 }
6042 
6043 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6044 				    struct task_struct *target,
6045 				    long type, int mode)
6046 {
6047 	struct ipc_security_struct *isec;
6048 	struct msg_security_struct *msec;
6049 	struct common_audit_data ad;
6050 	u32 sid = task_sid_obj(target);
6051 	int rc;
6052 
6053 	isec = selinux_ipc(msq);
6054 	msec = selinux_msg_msg(msg);
6055 
6056 	ad.type = LSM_AUDIT_DATA_IPC;
6057 	ad.u.ipc_id = msq->key;
6058 
6059 	rc = avc_has_perm(sid, isec->sid,
6060 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6061 	if (!rc)
6062 		rc = avc_has_perm(sid, msec->sid,
6063 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6064 	return rc;
6065 }
6066 
6067 /* Shared Memory security operations */
6068 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6069 {
6070 	struct ipc_security_struct *isec;
6071 	struct common_audit_data ad;
6072 	u32 sid = current_sid();
6073 
6074 	isec = selinux_ipc(shp);
6075 	ipc_init_security(isec, SECCLASS_SHM);
6076 
6077 	ad.type = LSM_AUDIT_DATA_IPC;
6078 	ad.u.ipc_id = shp->key;
6079 
6080 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6081 			    SHM__CREATE, &ad);
6082 }
6083 
6084 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6085 {
6086 	struct ipc_security_struct *isec;
6087 	struct common_audit_data ad;
6088 	u32 sid = current_sid();
6089 
6090 	isec = selinux_ipc(shp);
6091 
6092 	ad.type = LSM_AUDIT_DATA_IPC;
6093 	ad.u.ipc_id = shp->key;
6094 
6095 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6096 			    SHM__ASSOCIATE, &ad);
6097 }
6098 
6099 /* Note, at this point, shp is locked down */
6100 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6101 {
6102 	int perms;
6103 	int err;
6104 
6105 	switch (cmd) {
6106 	case IPC_INFO:
6107 	case SHM_INFO:
6108 		/* No specific object, just general system-wide information. */
6109 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6110 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6111 	case IPC_STAT:
6112 	case SHM_STAT:
6113 	case SHM_STAT_ANY:
6114 		perms = SHM__GETATTR | SHM__ASSOCIATE;
6115 		break;
6116 	case IPC_SET:
6117 		perms = SHM__SETATTR;
6118 		break;
6119 	case SHM_LOCK:
6120 	case SHM_UNLOCK:
6121 		perms = SHM__LOCK;
6122 		break;
6123 	case IPC_RMID:
6124 		perms = SHM__DESTROY;
6125 		break;
6126 	default:
6127 		return 0;
6128 	}
6129 
6130 	err = ipc_has_perm(shp, perms);
6131 	return err;
6132 }
6133 
6134 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6135 			     char __user *shmaddr, int shmflg)
6136 {
6137 	u32 perms;
6138 
6139 	if (shmflg & SHM_RDONLY)
6140 		perms = SHM__READ;
6141 	else
6142 		perms = SHM__READ | SHM__WRITE;
6143 
6144 	return ipc_has_perm(shp, perms);
6145 }
6146 
6147 /* Semaphore security operations */
6148 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6149 {
6150 	struct ipc_security_struct *isec;
6151 	struct common_audit_data ad;
6152 	u32 sid = current_sid();
6153 
6154 	isec = selinux_ipc(sma);
6155 	ipc_init_security(isec, SECCLASS_SEM);
6156 
6157 	ad.type = LSM_AUDIT_DATA_IPC;
6158 	ad.u.ipc_id = sma->key;
6159 
6160 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6161 			    SEM__CREATE, &ad);
6162 }
6163 
6164 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6165 {
6166 	struct ipc_security_struct *isec;
6167 	struct common_audit_data ad;
6168 	u32 sid = current_sid();
6169 
6170 	isec = selinux_ipc(sma);
6171 
6172 	ad.type = LSM_AUDIT_DATA_IPC;
6173 	ad.u.ipc_id = sma->key;
6174 
6175 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6176 			    SEM__ASSOCIATE, &ad);
6177 }
6178 
6179 /* Note, at this point, sma is locked down */
6180 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6181 {
6182 	int err;
6183 	u32 perms;
6184 
6185 	switch (cmd) {
6186 	case IPC_INFO:
6187 	case SEM_INFO:
6188 		/* No specific object, just general system-wide information. */
6189 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6190 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6191 	case GETPID:
6192 	case GETNCNT:
6193 	case GETZCNT:
6194 		perms = SEM__GETATTR;
6195 		break;
6196 	case GETVAL:
6197 	case GETALL:
6198 		perms = SEM__READ;
6199 		break;
6200 	case SETVAL:
6201 	case SETALL:
6202 		perms = SEM__WRITE;
6203 		break;
6204 	case IPC_RMID:
6205 		perms = SEM__DESTROY;
6206 		break;
6207 	case IPC_SET:
6208 		perms = SEM__SETATTR;
6209 		break;
6210 	case IPC_STAT:
6211 	case SEM_STAT:
6212 	case SEM_STAT_ANY:
6213 		perms = SEM__GETATTR | SEM__ASSOCIATE;
6214 		break;
6215 	default:
6216 		return 0;
6217 	}
6218 
6219 	err = ipc_has_perm(sma, perms);
6220 	return err;
6221 }
6222 
6223 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6224 			     struct sembuf *sops, unsigned nsops, int alter)
6225 {
6226 	u32 perms;
6227 
6228 	if (alter)
6229 		perms = SEM__READ | SEM__WRITE;
6230 	else
6231 		perms = SEM__READ;
6232 
6233 	return ipc_has_perm(sma, perms);
6234 }
6235 
6236 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6237 {
6238 	u32 av = 0;
6239 
6240 	av = 0;
6241 	if (flag & S_IRUGO)
6242 		av |= IPC__UNIX_READ;
6243 	if (flag & S_IWUGO)
6244 		av |= IPC__UNIX_WRITE;
6245 
6246 	if (av == 0)
6247 		return 0;
6248 
6249 	return ipc_has_perm(ipcp, av);
6250 }
6251 
6252 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6253 {
6254 	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6255 	*secid = isec->sid;
6256 }
6257 
6258 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6259 {
6260 	if (inode)
6261 		inode_doinit_with_dentry(inode, dentry);
6262 }
6263 
6264 static int selinux_getprocattr(struct task_struct *p,
6265 			       const char *name, char **value)
6266 {
6267 	const struct task_security_struct *__tsec;
6268 	u32 sid;
6269 	int error;
6270 	unsigned len;
6271 
6272 	rcu_read_lock();
6273 	__tsec = selinux_cred(__task_cred(p));
6274 
6275 	if (current != p) {
6276 		error = avc_has_perm(current_sid(), __tsec->sid,
6277 				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6278 		if (error)
6279 			goto bad;
6280 	}
6281 
6282 	if (!strcmp(name, "current"))
6283 		sid = __tsec->sid;
6284 	else if (!strcmp(name, "prev"))
6285 		sid = __tsec->osid;
6286 	else if (!strcmp(name, "exec"))
6287 		sid = __tsec->exec_sid;
6288 	else if (!strcmp(name, "fscreate"))
6289 		sid = __tsec->create_sid;
6290 	else if (!strcmp(name, "keycreate"))
6291 		sid = __tsec->keycreate_sid;
6292 	else if (!strcmp(name, "sockcreate"))
6293 		sid = __tsec->sockcreate_sid;
6294 	else {
6295 		error = -EINVAL;
6296 		goto bad;
6297 	}
6298 	rcu_read_unlock();
6299 
6300 	if (!sid)
6301 		return 0;
6302 
6303 	error = security_sid_to_context(sid, value, &len);
6304 	if (error)
6305 		return error;
6306 	return len;
6307 
6308 bad:
6309 	rcu_read_unlock();
6310 	return error;
6311 }
6312 
6313 static int selinux_setprocattr(const char *name, void *value, size_t size)
6314 {
6315 	struct task_security_struct *tsec;
6316 	struct cred *new;
6317 	u32 mysid = current_sid(), sid = 0, ptsid;
6318 	int error;
6319 	char *str = value;
6320 
6321 	/*
6322 	 * Basic control over ability to set these attributes at all.
6323 	 */
6324 	if (!strcmp(name, "exec"))
6325 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6326 				     PROCESS__SETEXEC, NULL);
6327 	else if (!strcmp(name, "fscreate"))
6328 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6329 				     PROCESS__SETFSCREATE, NULL);
6330 	else if (!strcmp(name, "keycreate"))
6331 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6332 				     PROCESS__SETKEYCREATE, NULL);
6333 	else if (!strcmp(name, "sockcreate"))
6334 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6335 				     PROCESS__SETSOCKCREATE, NULL);
6336 	else if (!strcmp(name, "current"))
6337 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6338 				     PROCESS__SETCURRENT, NULL);
6339 	else
6340 		error = -EINVAL;
6341 	if (error)
6342 		return error;
6343 
6344 	/* Obtain a SID for the context, if one was specified. */
6345 	if (size && str[0] && str[0] != '\n') {
6346 		if (str[size-1] == '\n') {
6347 			str[size-1] = 0;
6348 			size--;
6349 		}
6350 		error = security_context_to_sid(value, size,
6351 						&sid, GFP_KERNEL);
6352 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6353 			if (!has_cap_mac_admin(true)) {
6354 				struct audit_buffer *ab;
6355 				size_t audit_size;
6356 
6357 				/* We strip a nul only if it is at the end, otherwise the
6358 				 * context contains a nul and we should audit that */
6359 				if (str[size - 1] == '\0')
6360 					audit_size = size - 1;
6361 				else
6362 					audit_size = size;
6363 				ab = audit_log_start(audit_context(),
6364 						     GFP_ATOMIC,
6365 						     AUDIT_SELINUX_ERR);
6366 				if (!ab)
6367 					return error;
6368 				audit_log_format(ab, "op=fscreate invalid_context=");
6369 				audit_log_n_untrustedstring(ab, value, audit_size);
6370 				audit_log_end(ab);
6371 
6372 				return error;
6373 			}
6374 			error = security_context_to_sid_force(value, size,
6375 							&sid);
6376 		}
6377 		if (error)
6378 			return error;
6379 	}
6380 
6381 	new = prepare_creds();
6382 	if (!new)
6383 		return -ENOMEM;
6384 
6385 	/* Permission checking based on the specified context is
6386 	   performed during the actual operation (execve,
6387 	   open/mkdir/...), when we know the full context of the
6388 	   operation.  See selinux_bprm_creds_for_exec for the execve
6389 	   checks and may_create for the file creation checks. The
6390 	   operation will then fail if the context is not permitted. */
6391 	tsec = selinux_cred(new);
6392 	if (!strcmp(name, "exec")) {
6393 		tsec->exec_sid = sid;
6394 	} else if (!strcmp(name, "fscreate")) {
6395 		tsec->create_sid = sid;
6396 	} else if (!strcmp(name, "keycreate")) {
6397 		if (sid) {
6398 			error = avc_has_perm(mysid, sid,
6399 					     SECCLASS_KEY, KEY__CREATE, NULL);
6400 			if (error)
6401 				goto abort_change;
6402 		}
6403 		tsec->keycreate_sid = sid;
6404 	} else if (!strcmp(name, "sockcreate")) {
6405 		tsec->sockcreate_sid = sid;
6406 	} else if (!strcmp(name, "current")) {
6407 		error = -EINVAL;
6408 		if (sid == 0)
6409 			goto abort_change;
6410 
6411 		/* Only allow single threaded processes to change context */
6412 		if (!current_is_single_threaded()) {
6413 			error = security_bounded_transition(tsec->sid, sid);
6414 			if (error)
6415 				goto abort_change;
6416 		}
6417 
6418 		/* Check permissions for the transition. */
6419 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
6420 				     PROCESS__DYNTRANSITION, NULL);
6421 		if (error)
6422 			goto abort_change;
6423 
6424 		/* Check for ptracing, and update the task SID if ok.
6425 		   Otherwise, leave SID unchanged and fail. */
6426 		ptsid = ptrace_parent_sid();
6427 		if (ptsid != 0) {
6428 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
6429 					     PROCESS__PTRACE, NULL);
6430 			if (error)
6431 				goto abort_change;
6432 		}
6433 
6434 		tsec->sid = sid;
6435 	} else {
6436 		error = -EINVAL;
6437 		goto abort_change;
6438 	}
6439 
6440 	commit_creds(new);
6441 	return size;
6442 
6443 abort_change:
6444 	abort_creds(new);
6445 	return error;
6446 }
6447 
6448 static int selinux_ismaclabel(const char *name)
6449 {
6450 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6451 }
6452 
6453 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6454 {
6455 	return security_sid_to_context(secid,
6456 				       secdata, seclen);
6457 }
6458 
6459 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6460 {
6461 	return security_context_to_sid(secdata, seclen,
6462 				       secid, GFP_KERNEL);
6463 }
6464 
6465 static void selinux_release_secctx(char *secdata, u32 seclen)
6466 {
6467 	kfree(secdata);
6468 }
6469 
6470 static void selinux_inode_invalidate_secctx(struct inode *inode)
6471 {
6472 	struct inode_security_struct *isec = selinux_inode(inode);
6473 
6474 	spin_lock(&isec->lock);
6475 	isec->initialized = LABEL_INVALID;
6476 	spin_unlock(&isec->lock);
6477 }
6478 
6479 /*
6480  *	called with inode->i_mutex locked
6481  */
6482 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6483 {
6484 	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6485 					   ctx, ctxlen, 0);
6486 	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6487 	return rc == -EOPNOTSUPP ? 0 : rc;
6488 }
6489 
6490 /*
6491  *	called with inode->i_mutex locked
6492  */
6493 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6494 {
6495 	return __vfs_setxattr_noperm(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX,
6496 				     ctx, ctxlen, 0);
6497 }
6498 
6499 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6500 {
6501 	int len = 0;
6502 	len = selinux_inode_getsecurity(&nop_mnt_idmap, inode,
6503 					XATTR_SELINUX_SUFFIX, ctx, true);
6504 	if (len < 0)
6505 		return len;
6506 	*ctxlen = len;
6507 	return 0;
6508 }
6509 #ifdef CONFIG_KEYS
6510 
6511 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6512 			     unsigned long flags)
6513 {
6514 	const struct task_security_struct *tsec;
6515 	struct key_security_struct *ksec;
6516 
6517 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6518 	if (!ksec)
6519 		return -ENOMEM;
6520 
6521 	tsec = selinux_cred(cred);
6522 	if (tsec->keycreate_sid)
6523 		ksec->sid = tsec->keycreate_sid;
6524 	else
6525 		ksec->sid = tsec->sid;
6526 
6527 	k->security = ksec;
6528 	return 0;
6529 }
6530 
6531 static void selinux_key_free(struct key *k)
6532 {
6533 	struct key_security_struct *ksec = k->security;
6534 
6535 	k->security = NULL;
6536 	kfree(ksec);
6537 }
6538 
6539 static int selinux_key_permission(key_ref_t key_ref,
6540 				  const struct cred *cred,
6541 				  enum key_need_perm need_perm)
6542 {
6543 	struct key *key;
6544 	struct key_security_struct *ksec;
6545 	u32 perm, sid;
6546 
6547 	switch (need_perm) {
6548 	case KEY_NEED_VIEW:
6549 		perm = KEY__VIEW;
6550 		break;
6551 	case KEY_NEED_READ:
6552 		perm = KEY__READ;
6553 		break;
6554 	case KEY_NEED_WRITE:
6555 		perm = KEY__WRITE;
6556 		break;
6557 	case KEY_NEED_SEARCH:
6558 		perm = KEY__SEARCH;
6559 		break;
6560 	case KEY_NEED_LINK:
6561 		perm = KEY__LINK;
6562 		break;
6563 	case KEY_NEED_SETATTR:
6564 		perm = KEY__SETATTR;
6565 		break;
6566 	case KEY_NEED_UNLINK:
6567 	case KEY_SYSADMIN_OVERRIDE:
6568 	case KEY_AUTHTOKEN_OVERRIDE:
6569 	case KEY_DEFER_PERM_CHECK:
6570 		return 0;
6571 	default:
6572 		WARN_ON(1);
6573 		return -EPERM;
6574 
6575 	}
6576 
6577 	sid = cred_sid(cred);
6578 	key = key_ref_to_ptr(key_ref);
6579 	ksec = key->security;
6580 
6581 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6582 }
6583 
6584 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6585 {
6586 	struct key_security_struct *ksec = key->security;
6587 	char *context = NULL;
6588 	unsigned len;
6589 	int rc;
6590 
6591 	rc = security_sid_to_context(ksec->sid,
6592 				     &context, &len);
6593 	if (!rc)
6594 		rc = len;
6595 	*_buffer = context;
6596 	return rc;
6597 }
6598 
6599 #ifdef CONFIG_KEY_NOTIFICATIONS
6600 static int selinux_watch_key(struct key *key)
6601 {
6602 	struct key_security_struct *ksec = key->security;
6603 	u32 sid = current_sid();
6604 
6605 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6606 }
6607 #endif
6608 #endif
6609 
6610 #ifdef CONFIG_SECURITY_INFINIBAND
6611 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6612 {
6613 	struct common_audit_data ad;
6614 	int err;
6615 	u32 sid = 0;
6616 	struct ib_security_struct *sec = ib_sec;
6617 	struct lsm_ibpkey_audit ibpkey;
6618 
6619 	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6620 	if (err)
6621 		return err;
6622 
6623 	ad.type = LSM_AUDIT_DATA_IBPKEY;
6624 	ibpkey.subnet_prefix = subnet_prefix;
6625 	ibpkey.pkey = pkey_val;
6626 	ad.u.ibpkey = &ibpkey;
6627 	return avc_has_perm(sec->sid, sid,
6628 			    SECCLASS_INFINIBAND_PKEY,
6629 			    INFINIBAND_PKEY__ACCESS, &ad);
6630 }
6631 
6632 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6633 					    u8 port_num)
6634 {
6635 	struct common_audit_data ad;
6636 	int err;
6637 	u32 sid = 0;
6638 	struct ib_security_struct *sec = ib_sec;
6639 	struct lsm_ibendport_audit ibendport;
6640 
6641 	err = security_ib_endport_sid(dev_name, port_num,
6642 				      &sid);
6643 
6644 	if (err)
6645 		return err;
6646 
6647 	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6648 	ibendport.dev_name = dev_name;
6649 	ibendport.port = port_num;
6650 	ad.u.ibendport = &ibendport;
6651 	return avc_has_perm(sec->sid, sid,
6652 			    SECCLASS_INFINIBAND_ENDPORT,
6653 			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6654 }
6655 
6656 static int selinux_ib_alloc_security(void **ib_sec)
6657 {
6658 	struct ib_security_struct *sec;
6659 
6660 	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6661 	if (!sec)
6662 		return -ENOMEM;
6663 	sec->sid = current_sid();
6664 
6665 	*ib_sec = sec;
6666 	return 0;
6667 }
6668 
6669 static void selinux_ib_free_security(void *ib_sec)
6670 {
6671 	kfree(ib_sec);
6672 }
6673 #endif
6674 
6675 #ifdef CONFIG_BPF_SYSCALL
6676 static int selinux_bpf(int cmd, union bpf_attr *attr,
6677 				     unsigned int size)
6678 {
6679 	u32 sid = current_sid();
6680 	int ret;
6681 
6682 	switch (cmd) {
6683 	case BPF_MAP_CREATE:
6684 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6685 				   NULL);
6686 		break;
6687 	case BPF_PROG_LOAD:
6688 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6689 				   NULL);
6690 		break;
6691 	default:
6692 		ret = 0;
6693 		break;
6694 	}
6695 
6696 	return ret;
6697 }
6698 
6699 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6700 {
6701 	u32 av = 0;
6702 
6703 	if (fmode & FMODE_READ)
6704 		av |= BPF__MAP_READ;
6705 	if (fmode & FMODE_WRITE)
6706 		av |= BPF__MAP_WRITE;
6707 	return av;
6708 }
6709 
6710 /* This function will check the file pass through unix socket or binder to see
6711  * if it is a bpf related object. And apply corresponding checks on the bpf
6712  * object based on the type. The bpf maps and programs, not like other files and
6713  * socket, are using a shared anonymous inode inside the kernel as their inode.
6714  * So checking that inode cannot identify if the process have privilege to
6715  * access the bpf object and that's why we have to add this additional check in
6716  * selinux_file_receive and selinux_binder_transfer_files.
6717  */
6718 static int bpf_fd_pass(struct file *file, u32 sid)
6719 {
6720 	struct bpf_security_struct *bpfsec;
6721 	struct bpf_prog *prog;
6722 	struct bpf_map *map;
6723 	int ret;
6724 
6725 	if (file->f_op == &bpf_map_fops) {
6726 		map = file->private_data;
6727 		bpfsec = map->security;
6728 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6729 				   bpf_map_fmode_to_av(file->f_mode), NULL);
6730 		if (ret)
6731 			return ret;
6732 	} else if (file->f_op == &bpf_prog_fops) {
6733 		prog = file->private_data;
6734 		bpfsec = prog->aux->security;
6735 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6736 				   BPF__PROG_RUN, NULL);
6737 		if (ret)
6738 			return ret;
6739 	}
6740 	return 0;
6741 }
6742 
6743 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6744 {
6745 	u32 sid = current_sid();
6746 	struct bpf_security_struct *bpfsec;
6747 
6748 	bpfsec = map->security;
6749 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6750 			    bpf_map_fmode_to_av(fmode), NULL);
6751 }
6752 
6753 static int selinux_bpf_prog(struct bpf_prog *prog)
6754 {
6755 	u32 sid = current_sid();
6756 	struct bpf_security_struct *bpfsec;
6757 
6758 	bpfsec = prog->aux->security;
6759 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6760 			    BPF__PROG_RUN, NULL);
6761 }
6762 
6763 static int selinux_bpf_map_alloc(struct bpf_map *map)
6764 {
6765 	struct bpf_security_struct *bpfsec;
6766 
6767 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6768 	if (!bpfsec)
6769 		return -ENOMEM;
6770 
6771 	bpfsec->sid = current_sid();
6772 	map->security = bpfsec;
6773 
6774 	return 0;
6775 }
6776 
6777 static void selinux_bpf_map_free(struct bpf_map *map)
6778 {
6779 	struct bpf_security_struct *bpfsec = map->security;
6780 
6781 	map->security = NULL;
6782 	kfree(bpfsec);
6783 }
6784 
6785 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6786 {
6787 	struct bpf_security_struct *bpfsec;
6788 
6789 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6790 	if (!bpfsec)
6791 		return -ENOMEM;
6792 
6793 	bpfsec->sid = current_sid();
6794 	aux->security = bpfsec;
6795 
6796 	return 0;
6797 }
6798 
6799 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6800 {
6801 	struct bpf_security_struct *bpfsec = aux->security;
6802 
6803 	aux->security = NULL;
6804 	kfree(bpfsec);
6805 }
6806 #endif
6807 
6808 struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = {
6809 	.lbs_cred = sizeof(struct task_security_struct),
6810 	.lbs_file = sizeof(struct file_security_struct),
6811 	.lbs_inode = sizeof(struct inode_security_struct),
6812 	.lbs_ipc = sizeof(struct ipc_security_struct),
6813 	.lbs_msg_msg = sizeof(struct msg_security_struct),
6814 	.lbs_superblock = sizeof(struct superblock_security_struct),
6815 };
6816 
6817 #ifdef CONFIG_PERF_EVENTS
6818 static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6819 {
6820 	u32 requested, sid = current_sid();
6821 
6822 	if (type == PERF_SECURITY_OPEN)
6823 		requested = PERF_EVENT__OPEN;
6824 	else if (type == PERF_SECURITY_CPU)
6825 		requested = PERF_EVENT__CPU;
6826 	else if (type == PERF_SECURITY_KERNEL)
6827 		requested = PERF_EVENT__KERNEL;
6828 	else if (type == PERF_SECURITY_TRACEPOINT)
6829 		requested = PERF_EVENT__TRACEPOINT;
6830 	else
6831 		return -EINVAL;
6832 
6833 	return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT,
6834 			    requested, NULL);
6835 }
6836 
6837 static int selinux_perf_event_alloc(struct perf_event *event)
6838 {
6839 	struct perf_event_security_struct *perfsec;
6840 
6841 	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6842 	if (!perfsec)
6843 		return -ENOMEM;
6844 
6845 	perfsec->sid = current_sid();
6846 	event->security = perfsec;
6847 
6848 	return 0;
6849 }
6850 
6851 static void selinux_perf_event_free(struct perf_event *event)
6852 {
6853 	struct perf_event_security_struct *perfsec = event->security;
6854 
6855 	event->security = NULL;
6856 	kfree(perfsec);
6857 }
6858 
6859 static int selinux_perf_event_read(struct perf_event *event)
6860 {
6861 	struct perf_event_security_struct *perfsec = event->security;
6862 	u32 sid = current_sid();
6863 
6864 	return avc_has_perm(sid, perfsec->sid,
6865 			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6866 }
6867 
6868 static int selinux_perf_event_write(struct perf_event *event)
6869 {
6870 	struct perf_event_security_struct *perfsec = event->security;
6871 	u32 sid = current_sid();
6872 
6873 	return avc_has_perm(sid, perfsec->sid,
6874 			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6875 }
6876 #endif
6877 
6878 #ifdef CONFIG_IO_URING
6879 /**
6880  * selinux_uring_override_creds - check the requested cred override
6881  * @new: the target creds
6882  *
6883  * Check to see if the current task is allowed to override it's credentials
6884  * to service an io_uring operation.
6885  */
6886 static int selinux_uring_override_creds(const struct cred *new)
6887 {
6888 	return avc_has_perm(current_sid(), cred_sid(new),
6889 			    SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
6890 }
6891 
6892 /**
6893  * selinux_uring_sqpoll - check if a io_uring polling thread can be created
6894  *
6895  * Check to see if the current task is allowed to create a new io_uring
6896  * kernel polling thread.
6897  */
6898 static int selinux_uring_sqpoll(void)
6899 {
6900 	int sid = current_sid();
6901 
6902 	return avc_has_perm(sid, sid,
6903 			    SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
6904 }
6905 
6906 /**
6907  * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
6908  * @ioucmd: the io_uring command structure
6909  *
6910  * Check to see if the current domain is allowed to execute an
6911  * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
6912  *
6913  */
6914 static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
6915 {
6916 	struct file *file = ioucmd->file;
6917 	struct inode *inode = file_inode(file);
6918 	struct inode_security_struct *isec = selinux_inode(inode);
6919 	struct common_audit_data ad;
6920 
6921 	ad.type = LSM_AUDIT_DATA_FILE;
6922 	ad.u.file = file;
6923 
6924 	return avc_has_perm(current_sid(), isec->sid,
6925 			    SECCLASS_IO_URING, IO_URING__CMD, &ad);
6926 }
6927 #endif /* CONFIG_IO_URING */
6928 
6929 /*
6930  * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
6931  * 1. any hooks that don't belong to (2.) or (3.) below,
6932  * 2. hooks that both access structures allocated by other hooks, and allocate
6933  *    structures that can be later accessed by other hooks (mostly "cloning"
6934  *    hooks),
6935  * 3. hooks that only allocate structures that can be later accessed by other
6936  *    hooks ("allocating" hooks).
6937  *
6938  * Please follow block comment delimiters in the list to keep this order.
6939  *
6940  * This ordering is needed for SELinux runtime disable to work at least somewhat
6941  * safely. Breaking the ordering rules above might lead to NULL pointer derefs
6942  * when disabling SELinux at runtime.
6943  */
6944 static struct security_hook_list selinux_hooks[] __ro_after_init = {
6945 	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6946 	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6947 	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6948 	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6949 
6950 	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6951 	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6952 	LSM_HOOK_INIT(capget, selinux_capget),
6953 	LSM_HOOK_INIT(capset, selinux_capset),
6954 	LSM_HOOK_INIT(capable, selinux_capable),
6955 	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6956 	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6957 	LSM_HOOK_INIT(syslog, selinux_syslog),
6958 	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6959 
6960 	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6961 
6962 	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
6963 	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6964 	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6965 
6966 	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
6967 	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
6968 	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6969 	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6970 	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6971 	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6972 	LSM_HOOK_INIT(sb_mount, selinux_mount),
6973 	LSM_HOOK_INIT(sb_umount, selinux_umount),
6974 	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6975 	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6976 
6977 	LSM_HOOK_INIT(move_mount, selinux_move_mount),
6978 
6979 	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6980 	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6981 
6982 	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6983 	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6984 	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
6985 	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6986 	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6987 	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6988 	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6989 	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6990 	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6991 	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6992 	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6993 	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6994 	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6995 	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6996 	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6997 	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6998 	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6999 	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7000 	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7001 	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7002 	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7003 	LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7004 	LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7005 	LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7006 	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7007 	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7008 	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7009 	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7010 	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7011 	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7012 	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7013 
7014 	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7015 
7016 	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7017 	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7018 	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7019 	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7020 	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7021 	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7022 	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7023 	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7024 	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7025 	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7026 	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7027 
7028 	LSM_HOOK_INIT(file_open, selinux_file_open),
7029 
7030 	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7031 	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7032 	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7033 	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7034 	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7035 	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7036 	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7037 	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7038 	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7039 	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7040 	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7041 	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7042 	LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7043 	LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7044 	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7045 	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7046 	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7047 	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7048 	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7049 	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7050 	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7051 	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7052 	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7053 	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7054 	LSM_HOOK_INIT(userns_create, selinux_userns_create),
7055 
7056 	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7057 	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7058 
7059 	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7060 	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7061 	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7062 	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7063 
7064 	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7065 	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7066 	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7067 
7068 	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7069 	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7070 	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7071 
7072 	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7073 
7074 	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7075 	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7076 
7077 	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7078 	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7079 	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7080 	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7081 	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7082 	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7083 
7084 	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7085 	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7086 
7087 	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7088 	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7089 	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7090 	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7091 	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7092 	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7093 	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7094 	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7095 	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7096 	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7097 	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7098 	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7099 	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7100 	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7101 	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7102 	LSM_HOOK_INIT(socket_getpeersec_stream,
7103 			selinux_socket_getpeersec_stream),
7104 	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7105 	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7106 	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7107 	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7108 	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7109 	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7110 	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7111 	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7112 	LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7113 	LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow),
7114 	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7115 	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7116 	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7117 	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7118 	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7119 	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7120 	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7121 	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7122 	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7123 	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7124 	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7125 	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7126 #ifdef CONFIG_SECURITY_INFINIBAND
7127 	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7128 	LSM_HOOK_INIT(ib_endport_manage_subnet,
7129 		      selinux_ib_endport_manage_subnet),
7130 	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7131 #endif
7132 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7133 	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7134 	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7135 	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7136 	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7137 	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7138 	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7139 			selinux_xfrm_state_pol_flow_match),
7140 	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7141 #endif
7142 
7143 #ifdef CONFIG_KEYS
7144 	LSM_HOOK_INIT(key_free, selinux_key_free),
7145 	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7146 	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7147 #ifdef CONFIG_KEY_NOTIFICATIONS
7148 	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7149 #endif
7150 #endif
7151 
7152 #ifdef CONFIG_AUDIT
7153 	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7154 	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7155 	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7156 #endif
7157 
7158 #ifdef CONFIG_BPF_SYSCALL
7159 	LSM_HOOK_INIT(bpf, selinux_bpf),
7160 	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7161 	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7162 	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7163 	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7164 #endif
7165 
7166 #ifdef CONFIG_PERF_EVENTS
7167 	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7168 	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7169 	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7170 	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7171 #endif
7172 
7173 #ifdef CONFIG_IO_URING
7174 	LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7175 	LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7176 	LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7177 #endif
7178 
7179 	/*
7180 	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7181 	 */
7182 	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7183 	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7184 	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7185 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7186 	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7187 #endif
7188 
7189 	/*
7190 	 * PUT "ALLOCATING" HOOKS HERE
7191 	 */
7192 	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7193 	LSM_HOOK_INIT(msg_queue_alloc_security,
7194 		      selinux_msg_queue_alloc_security),
7195 	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7196 	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7197 	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7198 	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7199 	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7200 	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7201 	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7202 	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7203 #ifdef CONFIG_SECURITY_INFINIBAND
7204 	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7205 #endif
7206 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7207 	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7208 	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7209 	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7210 		      selinux_xfrm_state_alloc_acquire),
7211 #endif
7212 #ifdef CONFIG_KEYS
7213 	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7214 #endif
7215 #ifdef CONFIG_AUDIT
7216 	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7217 #endif
7218 #ifdef CONFIG_BPF_SYSCALL
7219 	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7220 	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7221 #endif
7222 #ifdef CONFIG_PERF_EVENTS
7223 	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7224 #endif
7225 };
7226 
7227 static __init int selinux_init(void)
7228 {
7229 	pr_info("SELinux:  Initializing.\n");
7230 
7231 	memset(&selinux_state, 0, sizeof(selinux_state));
7232 	enforcing_set(selinux_enforcing_boot);
7233 	selinux_avc_init();
7234 	mutex_init(&selinux_state.status_lock);
7235 	mutex_init(&selinux_state.policy_mutex);
7236 
7237 	/* Set the security state for the initial task. */
7238 	cred_init_security();
7239 
7240 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7241 
7242 	avc_init();
7243 
7244 	avtab_cache_init();
7245 
7246 	ebitmap_cache_init();
7247 
7248 	hashtab_cache_init();
7249 
7250 	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7251 
7252 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7253 		panic("SELinux: Unable to register AVC netcache callback\n");
7254 
7255 	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7256 		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7257 
7258 	if (selinux_enforcing_boot)
7259 		pr_debug("SELinux:  Starting in enforcing mode\n");
7260 	else
7261 		pr_debug("SELinux:  Starting in permissive mode\n");
7262 
7263 	fs_validate_description("selinux", selinux_fs_parameters);
7264 
7265 	return 0;
7266 }
7267 
7268 static void delayed_superblock_init(struct super_block *sb, void *unused)
7269 {
7270 	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7271 }
7272 
7273 void selinux_complete_init(void)
7274 {
7275 	pr_debug("SELinux:  Completing initialization.\n");
7276 
7277 	/* Set up any superblocks initialized prior to the policy load. */
7278 	pr_debug("SELinux:  Setting up existing superblocks.\n");
7279 	iterate_supers(delayed_superblock_init, NULL);
7280 }
7281 
7282 /* SELinux requires early initialization in order to label
7283    all processes and objects when they are created. */
7284 DEFINE_LSM(selinux) = {
7285 	.name = "selinux",
7286 	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7287 	.enabled = &selinux_enabled_boot,
7288 	.blobs = &selinux_blob_sizes,
7289 	.init = selinux_init,
7290 };
7291 
7292 #if defined(CONFIG_NETFILTER)
7293 static const struct nf_hook_ops selinux_nf_ops[] = {
7294 	{
7295 		.hook =		selinux_ip_postroute,
7296 		.pf =		NFPROTO_IPV4,
7297 		.hooknum =	NF_INET_POST_ROUTING,
7298 		.priority =	NF_IP_PRI_SELINUX_LAST,
7299 	},
7300 	{
7301 		.hook =		selinux_ip_forward,
7302 		.pf =		NFPROTO_IPV4,
7303 		.hooknum =	NF_INET_FORWARD,
7304 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7305 	},
7306 	{
7307 		.hook =		selinux_ip_output,
7308 		.pf =		NFPROTO_IPV4,
7309 		.hooknum =	NF_INET_LOCAL_OUT,
7310 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7311 	},
7312 #if IS_ENABLED(CONFIG_IPV6)
7313 	{
7314 		.hook =		selinux_ip_postroute,
7315 		.pf =		NFPROTO_IPV6,
7316 		.hooknum =	NF_INET_POST_ROUTING,
7317 		.priority =	NF_IP6_PRI_SELINUX_LAST,
7318 	},
7319 	{
7320 		.hook =		selinux_ip_forward,
7321 		.pf =		NFPROTO_IPV6,
7322 		.hooknum =	NF_INET_FORWARD,
7323 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7324 	},
7325 	{
7326 		.hook =		selinux_ip_output,
7327 		.pf =		NFPROTO_IPV6,
7328 		.hooknum =	NF_INET_LOCAL_OUT,
7329 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7330 	},
7331 #endif	/* IPV6 */
7332 };
7333 
7334 static int __net_init selinux_nf_register(struct net *net)
7335 {
7336 	return nf_register_net_hooks(net, selinux_nf_ops,
7337 				     ARRAY_SIZE(selinux_nf_ops));
7338 }
7339 
7340 static void __net_exit selinux_nf_unregister(struct net *net)
7341 {
7342 	nf_unregister_net_hooks(net, selinux_nf_ops,
7343 				ARRAY_SIZE(selinux_nf_ops));
7344 }
7345 
7346 static struct pernet_operations selinux_net_ops = {
7347 	.init = selinux_nf_register,
7348 	.exit = selinux_nf_unregister,
7349 };
7350 
7351 static int __init selinux_nf_ip_init(void)
7352 {
7353 	int err;
7354 
7355 	if (!selinux_enabled_boot)
7356 		return 0;
7357 
7358 	pr_debug("SELinux:  Registering netfilter hooks\n");
7359 
7360 	err = register_pernet_subsys(&selinux_net_ops);
7361 	if (err)
7362 		panic("SELinux: register_pernet_subsys: error %d\n", err);
7363 
7364 	return 0;
7365 }
7366 __initcall(selinux_nf_ip_init);
7367 #endif /* CONFIG_NETFILTER */
7368