1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * NSA Security-Enhanced Linux (SELinux) security module 4 * 5 * This file contains the SELinux hook function implementations. 6 * 7 * Authors: Stephen Smalley, <sds@tycho.nsa.gov> 8 * Chris Vance, <cvance@nai.com> 9 * Wayne Salamon, <wsalamon@nai.com> 10 * James Morris <jmorris@redhat.com> 11 * 12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 14 * Eric Paris <eparis@redhat.com> 15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 16 * <dgoeddel@trustedcs.com> 17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 18 * Paul Moore <paul@paul-moore.com> 19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 20 * Yuichi Nakamura <ynakam@hitachisoft.jp> 21 * Copyright (C) 2016 Mellanox Technologies 22 */ 23 24 #include <linux/init.h> 25 #include <linux/kd.h> 26 #include <linux/kernel.h> 27 #include <linux/kernel_read_file.h> 28 #include <linux/errno.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/task.h> 31 #include <linux/lsm_hooks.h> 32 #include <linux/xattr.h> 33 #include <linux/capability.h> 34 #include <linux/unistd.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/slab.h> 38 #include <linux/pagemap.h> 39 #include <linux/proc_fs.h> 40 #include <linux/swap.h> 41 #include <linux/spinlock.h> 42 #include <linux/syscalls.h> 43 #include <linux/dcache.h> 44 #include <linux/file.h> 45 #include <linux/fdtable.h> 46 #include <linux/namei.h> 47 #include <linux/mount.h> 48 #include <linux/fs_context.h> 49 #include <linux/fs_parser.h> 50 #include <linux/netfilter_ipv4.h> 51 #include <linux/netfilter_ipv6.h> 52 #include <linux/tty.h> 53 #include <net/icmp.h> 54 #include <net/ip.h> /* for local_port_range[] */ 55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 56 #include <net/inet_connection_sock.h> 57 #include <net/net_namespace.h> 58 #include <net/netlabel.h> 59 #include <linux/uaccess.h> 60 #include <asm/ioctls.h> 61 #include <linux/atomic.h> 62 #include <linux/bitops.h> 63 #include <linux/interrupt.h> 64 #include <linux/netdevice.h> /* for network interface checks */ 65 #include <net/netlink.h> 66 #include <linux/tcp.h> 67 #include <linux/udp.h> 68 #include <linux/dccp.h> 69 #include <linux/sctp.h> 70 #include <net/sctp/structs.h> 71 #include <linux/quota.h> 72 #include <linux/un.h> /* for Unix socket types */ 73 #include <net/af_unix.h> /* for Unix socket types */ 74 #include <linux/parser.h> 75 #include <linux/nfs_mount.h> 76 #include <net/ipv6.h> 77 #include <linux/hugetlb.h> 78 #include <linux/personality.h> 79 #include <linux/audit.h> 80 #include <linux/string.h> 81 #include <linux/mutex.h> 82 #include <linux/posix-timers.h> 83 #include <linux/syslog.h> 84 #include <linux/user_namespace.h> 85 #include <linux/export.h> 86 #include <linux/msg.h> 87 #include <linux/shm.h> 88 #include <linux/bpf.h> 89 #include <linux/kernfs.h> 90 #include <linux/stringhash.h> /* for hashlen_string() */ 91 #include <uapi/linux/mount.h> 92 #include <linux/fsnotify.h> 93 #include <linux/fanotify.h> 94 #include <linux/io_uring.h> 95 96 #include "avc.h" 97 #include "objsec.h" 98 #include "netif.h" 99 #include "netnode.h" 100 #include "netport.h" 101 #include "ibpkey.h" 102 #include "xfrm.h" 103 #include "netlabel.h" 104 #include "audit.h" 105 #include "avc_ss.h" 106 107 struct selinux_state selinux_state; 108 109 /* SECMARK reference count */ 110 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 111 112 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 113 static int selinux_enforcing_boot __initdata; 114 115 static int __init enforcing_setup(char *str) 116 { 117 unsigned long enforcing; 118 if (!kstrtoul(str, 0, &enforcing)) 119 selinux_enforcing_boot = enforcing ? 1 : 0; 120 return 1; 121 } 122 __setup("enforcing=", enforcing_setup); 123 #else 124 #define selinux_enforcing_boot 1 125 #endif 126 127 int selinux_enabled_boot __initdata = 1; 128 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 129 static int __init selinux_enabled_setup(char *str) 130 { 131 unsigned long enabled; 132 if (!kstrtoul(str, 0, &enabled)) 133 selinux_enabled_boot = enabled ? 1 : 0; 134 return 1; 135 } 136 __setup("selinux=", selinux_enabled_setup); 137 #endif 138 139 static int __init checkreqprot_setup(char *str) 140 { 141 unsigned long checkreqprot; 142 143 if (!kstrtoul(str, 0, &checkreqprot)) { 144 if (checkreqprot) 145 pr_err("SELinux: checkreqprot set to 1 via kernel parameter. This is no longer supported.\n"); 146 } 147 return 1; 148 } 149 __setup("checkreqprot=", checkreqprot_setup); 150 151 /** 152 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 153 * 154 * Description: 155 * This function checks the SECMARK reference counter to see if any SECMARK 156 * targets are currently configured, if the reference counter is greater than 157 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 158 * enabled, false (0) if SECMARK is disabled. If the always_check_network 159 * policy capability is enabled, SECMARK is always considered enabled. 160 * 161 */ 162 static int selinux_secmark_enabled(void) 163 { 164 return (selinux_policycap_alwaysnetwork() || 165 atomic_read(&selinux_secmark_refcount)); 166 } 167 168 /** 169 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled 170 * 171 * Description: 172 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true 173 * (1) if any are enabled or false (0) if neither are enabled. If the 174 * always_check_network policy capability is enabled, peer labeling 175 * is always considered enabled. 176 * 177 */ 178 static int selinux_peerlbl_enabled(void) 179 { 180 return (selinux_policycap_alwaysnetwork() || 181 netlbl_enabled() || selinux_xfrm_enabled()); 182 } 183 184 static int selinux_netcache_avc_callback(u32 event) 185 { 186 if (event == AVC_CALLBACK_RESET) { 187 sel_netif_flush(); 188 sel_netnode_flush(); 189 sel_netport_flush(); 190 synchronize_net(); 191 } 192 return 0; 193 } 194 195 static int selinux_lsm_notifier_avc_callback(u32 event) 196 { 197 if (event == AVC_CALLBACK_RESET) { 198 sel_ib_pkey_flush(); 199 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL); 200 } 201 202 return 0; 203 } 204 205 /* 206 * initialise the security for the init task 207 */ 208 static void cred_init_security(void) 209 { 210 struct task_security_struct *tsec; 211 212 tsec = selinux_cred(unrcu_pointer(current->real_cred)); 213 tsec->osid = tsec->sid = SECINITSID_KERNEL; 214 } 215 216 /* 217 * get the security ID of a set of credentials 218 */ 219 static inline u32 cred_sid(const struct cred *cred) 220 { 221 const struct task_security_struct *tsec; 222 223 tsec = selinux_cred(cred); 224 return tsec->sid; 225 } 226 227 /* 228 * get the objective security ID of a task 229 */ 230 static inline u32 task_sid_obj(const struct task_struct *task) 231 { 232 u32 sid; 233 234 rcu_read_lock(); 235 sid = cred_sid(__task_cred(task)); 236 rcu_read_unlock(); 237 return sid; 238 } 239 240 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 241 242 /* 243 * Try reloading inode security labels that have been marked as invalid. The 244 * @may_sleep parameter indicates when sleeping and thus reloading labels is 245 * allowed; when set to false, returns -ECHILD when the label is 246 * invalid. The @dentry parameter should be set to a dentry of the inode. 247 */ 248 static int __inode_security_revalidate(struct inode *inode, 249 struct dentry *dentry, 250 bool may_sleep) 251 { 252 struct inode_security_struct *isec = selinux_inode(inode); 253 254 might_sleep_if(may_sleep); 255 256 if (selinux_initialized() && 257 isec->initialized != LABEL_INITIALIZED) { 258 if (!may_sleep) 259 return -ECHILD; 260 261 /* 262 * Try reloading the inode security label. This will fail if 263 * @opt_dentry is NULL and no dentry for this inode can be 264 * found; in that case, continue using the old label. 265 */ 266 inode_doinit_with_dentry(inode, dentry); 267 } 268 return 0; 269 } 270 271 static struct inode_security_struct *inode_security_novalidate(struct inode *inode) 272 { 273 return selinux_inode(inode); 274 } 275 276 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu) 277 { 278 int error; 279 280 error = __inode_security_revalidate(inode, NULL, !rcu); 281 if (error) 282 return ERR_PTR(error); 283 return selinux_inode(inode); 284 } 285 286 /* 287 * Get the security label of an inode. 288 */ 289 static struct inode_security_struct *inode_security(struct inode *inode) 290 { 291 __inode_security_revalidate(inode, NULL, true); 292 return selinux_inode(inode); 293 } 294 295 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry) 296 { 297 struct inode *inode = d_backing_inode(dentry); 298 299 return selinux_inode(inode); 300 } 301 302 /* 303 * Get the security label of a dentry's backing inode. 304 */ 305 static struct inode_security_struct *backing_inode_security(struct dentry *dentry) 306 { 307 struct inode *inode = d_backing_inode(dentry); 308 309 __inode_security_revalidate(inode, dentry, true); 310 return selinux_inode(inode); 311 } 312 313 static void inode_free_security(struct inode *inode) 314 { 315 struct inode_security_struct *isec = selinux_inode(inode); 316 struct superblock_security_struct *sbsec; 317 318 if (!isec) 319 return; 320 sbsec = selinux_superblock(inode->i_sb); 321 /* 322 * As not all inode security structures are in a list, we check for 323 * empty list outside of the lock to make sure that we won't waste 324 * time taking a lock doing nothing. 325 * 326 * The list_del_init() function can be safely called more than once. 327 * It should not be possible for this function to be called with 328 * concurrent list_add(), but for better safety against future changes 329 * in the code, we use list_empty_careful() here. 330 */ 331 if (!list_empty_careful(&isec->list)) { 332 spin_lock(&sbsec->isec_lock); 333 list_del_init(&isec->list); 334 spin_unlock(&sbsec->isec_lock); 335 } 336 } 337 338 struct selinux_mnt_opts { 339 u32 fscontext_sid; 340 u32 context_sid; 341 u32 rootcontext_sid; 342 u32 defcontext_sid; 343 }; 344 345 static void selinux_free_mnt_opts(void *mnt_opts) 346 { 347 kfree(mnt_opts); 348 } 349 350 enum { 351 Opt_error = -1, 352 Opt_context = 0, 353 Opt_defcontext = 1, 354 Opt_fscontext = 2, 355 Opt_rootcontext = 3, 356 Opt_seclabel = 4, 357 }; 358 359 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg} 360 static const struct { 361 const char *name; 362 int len; 363 int opt; 364 bool has_arg; 365 } tokens[] = { 366 A(context, true), 367 A(fscontext, true), 368 A(defcontext, true), 369 A(rootcontext, true), 370 A(seclabel, false), 371 }; 372 #undef A 373 374 static int match_opt_prefix(char *s, int l, char **arg) 375 { 376 int i; 377 378 for (i = 0; i < ARRAY_SIZE(tokens); i++) { 379 size_t len = tokens[i].len; 380 if (len > l || memcmp(s, tokens[i].name, len)) 381 continue; 382 if (tokens[i].has_arg) { 383 if (len == l || s[len] != '=') 384 continue; 385 *arg = s + len + 1; 386 } else if (len != l) 387 continue; 388 return tokens[i].opt; 389 } 390 return Opt_error; 391 } 392 393 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 394 395 static int may_context_mount_sb_relabel(u32 sid, 396 struct superblock_security_struct *sbsec, 397 const struct cred *cred) 398 { 399 const struct task_security_struct *tsec = selinux_cred(cred); 400 int rc; 401 402 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 403 FILESYSTEM__RELABELFROM, NULL); 404 if (rc) 405 return rc; 406 407 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 408 FILESYSTEM__RELABELTO, NULL); 409 return rc; 410 } 411 412 static int may_context_mount_inode_relabel(u32 sid, 413 struct superblock_security_struct *sbsec, 414 const struct cred *cred) 415 { 416 const struct task_security_struct *tsec = selinux_cred(cred); 417 int rc; 418 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 419 FILESYSTEM__RELABELFROM, NULL); 420 if (rc) 421 return rc; 422 423 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 424 FILESYSTEM__ASSOCIATE, NULL); 425 return rc; 426 } 427 428 static int selinux_is_genfs_special_handling(struct super_block *sb) 429 { 430 /* Special handling. Genfs but also in-core setxattr handler */ 431 return !strcmp(sb->s_type->name, "sysfs") || 432 !strcmp(sb->s_type->name, "pstore") || 433 !strcmp(sb->s_type->name, "debugfs") || 434 !strcmp(sb->s_type->name, "tracefs") || 435 !strcmp(sb->s_type->name, "rootfs") || 436 (selinux_policycap_cgroupseclabel() && 437 (!strcmp(sb->s_type->name, "cgroup") || 438 !strcmp(sb->s_type->name, "cgroup2"))); 439 } 440 441 static int selinux_is_sblabel_mnt(struct super_block *sb) 442 { 443 struct superblock_security_struct *sbsec = selinux_superblock(sb); 444 445 /* 446 * IMPORTANT: Double-check logic in this function when adding a new 447 * SECURITY_FS_USE_* definition! 448 */ 449 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7); 450 451 switch (sbsec->behavior) { 452 case SECURITY_FS_USE_XATTR: 453 case SECURITY_FS_USE_TRANS: 454 case SECURITY_FS_USE_TASK: 455 case SECURITY_FS_USE_NATIVE: 456 return 1; 457 458 case SECURITY_FS_USE_GENFS: 459 return selinux_is_genfs_special_handling(sb); 460 461 /* Never allow relabeling on context mounts */ 462 case SECURITY_FS_USE_MNTPOINT: 463 case SECURITY_FS_USE_NONE: 464 default: 465 return 0; 466 } 467 } 468 469 static int sb_check_xattr_support(struct super_block *sb) 470 { 471 struct superblock_security_struct *sbsec = selinux_superblock(sb); 472 struct dentry *root = sb->s_root; 473 struct inode *root_inode = d_backing_inode(root); 474 u32 sid; 475 int rc; 476 477 /* 478 * Make sure that the xattr handler exists and that no 479 * error other than -ENODATA is returned by getxattr on 480 * the root directory. -ENODATA is ok, as this may be 481 * the first boot of the SELinux kernel before we have 482 * assigned xattr values to the filesystem. 483 */ 484 if (!(root_inode->i_opflags & IOP_XATTR)) { 485 pr_warn("SELinux: (dev %s, type %s) has no xattr support\n", 486 sb->s_id, sb->s_type->name); 487 goto fallback; 488 } 489 490 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0); 491 if (rc < 0 && rc != -ENODATA) { 492 if (rc == -EOPNOTSUPP) { 493 pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n", 494 sb->s_id, sb->s_type->name); 495 goto fallback; 496 } else { 497 pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n", 498 sb->s_id, sb->s_type->name, -rc); 499 return rc; 500 } 501 } 502 return 0; 503 504 fallback: 505 /* No xattr support - try to fallback to genfs if possible. */ 506 rc = security_genfs_sid(sb->s_type->name, "/", 507 SECCLASS_DIR, &sid); 508 if (rc) 509 return -EOPNOTSUPP; 510 511 pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n", 512 sb->s_id, sb->s_type->name); 513 sbsec->behavior = SECURITY_FS_USE_GENFS; 514 sbsec->sid = sid; 515 return 0; 516 } 517 518 static int sb_finish_set_opts(struct super_block *sb) 519 { 520 struct superblock_security_struct *sbsec = selinux_superblock(sb); 521 struct dentry *root = sb->s_root; 522 struct inode *root_inode = d_backing_inode(root); 523 int rc = 0; 524 525 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 526 rc = sb_check_xattr_support(sb); 527 if (rc) 528 return rc; 529 } 530 531 sbsec->flags |= SE_SBINITIALIZED; 532 533 /* 534 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply 535 * leave the flag untouched because sb_clone_mnt_opts might be handing 536 * us a superblock that needs the flag to be cleared. 537 */ 538 if (selinux_is_sblabel_mnt(sb)) 539 sbsec->flags |= SBLABEL_MNT; 540 else 541 sbsec->flags &= ~SBLABEL_MNT; 542 543 /* Initialize the root inode. */ 544 rc = inode_doinit_with_dentry(root_inode, root); 545 546 /* Initialize any other inodes associated with the superblock, e.g. 547 inodes created prior to initial policy load or inodes created 548 during get_sb by a pseudo filesystem that directly 549 populates itself. */ 550 spin_lock(&sbsec->isec_lock); 551 while (!list_empty(&sbsec->isec_head)) { 552 struct inode_security_struct *isec = 553 list_first_entry(&sbsec->isec_head, 554 struct inode_security_struct, list); 555 struct inode *inode = isec->inode; 556 list_del_init(&isec->list); 557 spin_unlock(&sbsec->isec_lock); 558 inode = igrab(inode); 559 if (inode) { 560 if (!IS_PRIVATE(inode)) 561 inode_doinit_with_dentry(inode, NULL); 562 iput(inode); 563 } 564 spin_lock(&sbsec->isec_lock); 565 } 566 spin_unlock(&sbsec->isec_lock); 567 return rc; 568 } 569 570 static int bad_option(struct superblock_security_struct *sbsec, char flag, 571 u32 old_sid, u32 new_sid) 572 { 573 char mnt_flags = sbsec->flags & SE_MNTMASK; 574 575 /* check if the old mount command had the same options */ 576 if (sbsec->flags & SE_SBINITIALIZED) 577 if (!(sbsec->flags & flag) || 578 (old_sid != new_sid)) 579 return 1; 580 581 /* check if we were passed the same options twice, 582 * aka someone passed context=a,context=b 583 */ 584 if (!(sbsec->flags & SE_SBINITIALIZED)) 585 if (mnt_flags & flag) 586 return 1; 587 return 0; 588 } 589 590 /* 591 * Allow filesystems with binary mount data to explicitly set mount point 592 * labeling information. 593 */ 594 static int selinux_set_mnt_opts(struct super_block *sb, 595 void *mnt_opts, 596 unsigned long kern_flags, 597 unsigned long *set_kern_flags) 598 { 599 const struct cred *cred = current_cred(); 600 struct superblock_security_struct *sbsec = selinux_superblock(sb); 601 struct dentry *root = sb->s_root; 602 struct selinux_mnt_opts *opts = mnt_opts; 603 struct inode_security_struct *root_isec; 604 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 605 u32 defcontext_sid = 0; 606 int rc = 0; 607 608 /* 609 * Specifying internal flags without providing a place to 610 * place the results is not allowed 611 */ 612 if (kern_flags && !set_kern_flags) 613 return -EINVAL; 614 615 mutex_lock(&sbsec->lock); 616 617 if (!selinux_initialized()) { 618 if (!opts) { 619 /* Defer initialization until selinux_complete_init, 620 after the initial policy is loaded and the security 621 server is ready to handle calls. */ 622 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) { 623 sbsec->flags |= SE_SBNATIVE; 624 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 625 } 626 goto out; 627 } 628 rc = -EINVAL; 629 pr_warn("SELinux: Unable to set superblock options " 630 "before the security server is initialized\n"); 631 goto out; 632 } 633 634 /* 635 * Binary mount data FS will come through this function twice. Once 636 * from an explicit call and once from the generic calls from the vfs. 637 * Since the generic VFS calls will not contain any security mount data 638 * we need to skip the double mount verification. 639 * 640 * This does open a hole in which we will not notice if the first 641 * mount using this sb set explicit options and a second mount using 642 * this sb does not set any security options. (The first options 643 * will be used for both mounts) 644 */ 645 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 646 && !opts) 647 goto out; 648 649 root_isec = backing_inode_security_novalidate(root); 650 651 /* 652 * parse the mount options, check if they are valid sids. 653 * also check if someone is trying to mount the same sb more 654 * than once with different security options. 655 */ 656 if (opts) { 657 if (opts->fscontext_sid) { 658 fscontext_sid = opts->fscontext_sid; 659 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 660 fscontext_sid)) 661 goto out_double_mount; 662 sbsec->flags |= FSCONTEXT_MNT; 663 } 664 if (opts->context_sid) { 665 context_sid = opts->context_sid; 666 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 667 context_sid)) 668 goto out_double_mount; 669 sbsec->flags |= CONTEXT_MNT; 670 } 671 if (opts->rootcontext_sid) { 672 rootcontext_sid = opts->rootcontext_sid; 673 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 674 rootcontext_sid)) 675 goto out_double_mount; 676 sbsec->flags |= ROOTCONTEXT_MNT; 677 } 678 if (opts->defcontext_sid) { 679 defcontext_sid = opts->defcontext_sid; 680 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 681 defcontext_sid)) 682 goto out_double_mount; 683 sbsec->flags |= DEFCONTEXT_MNT; 684 } 685 } 686 687 if (sbsec->flags & SE_SBINITIALIZED) { 688 /* previously mounted with options, but not on this attempt? */ 689 if ((sbsec->flags & SE_MNTMASK) && !opts) 690 goto out_double_mount; 691 rc = 0; 692 goto out; 693 } 694 695 if (strcmp(sb->s_type->name, "proc") == 0) 696 sbsec->flags |= SE_SBPROC | SE_SBGENFS; 697 698 if (!strcmp(sb->s_type->name, "debugfs") || 699 !strcmp(sb->s_type->name, "tracefs") || 700 !strcmp(sb->s_type->name, "binder") || 701 !strcmp(sb->s_type->name, "bpf") || 702 !strcmp(sb->s_type->name, "pstore") || 703 !strcmp(sb->s_type->name, "securityfs")) 704 sbsec->flags |= SE_SBGENFS; 705 706 if (!strcmp(sb->s_type->name, "sysfs") || 707 !strcmp(sb->s_type->name, "cgroup") || 708 !strcmp(sb->s_type->name, "cgroup2")) 709 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR; 710 711 if (!sbsec->behavior) { 712 /* 713 * Determine the labeling behavior to use for this 714 * filesystem type. 715 */ 716 rc = security_fs_use(sb); 717 if (rc) { 718 pr_warn("%s: security_fs_use(%s) returned %d\n", 719 __func__, sb->s_type->name, rc); 720 goto out; 721 } 722 } 723 724 /* 725 * If this is a user namespace mount and the filesystem type is not 726 * explicitly whitelisted, then no contexts are allowed on the command 727 * line and security labels must be ignored. 728 */ 729 if (sb->s_user_ns != &init_user_ns && 730 strcmp(sb->s_type->name, "tmpfs") && 731 strcmp(sb->s_type->name, "ramfs") && 732 strcmp(sb->s_type->name, "devpts") && 733 strcmp(sb->s_type->name, "overlay")) { 734 if (context_sid || fscontext_sid || rootcontext_sid || 735 defcontext_sid) { 736 rc = -EACCES; 737 goto out; 738 } 739 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 740 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 741 rc = security_transition_sid(current_sid(), 742 current_sid(), 743 SECCLASS_FILE, NULL, 744 &sbsec->mntpoint_sid); 745 if (rc) 746 goto out; 747 } 748 goto out_set_opts; 749 } 750 751 /* sets the context of the superblock for the fs being mounted. */ 752 if (fscontext_sid) { 753 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 754 if (rc) 755 goto out; 756 757 sbsec->sid = fscontext_sid; 758 } 759 760 /* 761 * Switch to using mount point labeling behavior. 762 * sets the label used on all file below the mountpoint, and will set 763 * the superblock context if not already set. 764 */ 765 if (sbsec->flags & SE_SBNATIVE) { 766 /* 767 * This means we are initializing a superblock that has been 768 * mounted before the SELinux was initialized and the 769 * filesystem requested native labeling. We had already 770 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags 771 * in the original mount attempt, so now we just need to set 772 * the SECURITY_FS_USE_NATIVE behavior. 773 */ 774 sbsec->behavior = SECURITY_FS_USE_NATIVE; 775 } else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { 776 sbsec->behavior = SECURITY_FS_USE_NATIVE; 777 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 778 } 779 780 if (context_sid) { 781 if (!fscontext_sid) { 782 rc = may_context_mount_sb_relabel(context_sid, sbsec, 783 cred); 784 if (rc) 785 goto out; 786 sbsec->sid = context_sid; 787 } else { 788 rc = may_context_mount_inode_relabel(context_sid, sbsec, 789 cred); 790 if (rc) 791 goto out; 792 } 793 if (!rootcontext_sid) 794 rootcontext_sid = context_sid; 795 796 sbsec->mntpoint_sid = context_sid; 797 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 798 } 799 800 if (rootcontext_sid) { 801 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 802 cred); 803 if (rc) 804 goto out; 805 806 root_isec->sid = rootcontext_sid; 807 root_isec->initialized = LABEL_INITIALIZED; 808 } 809 810 if (defcontext_sid) { 811 if (sbsec->behavior != SECURITY_FS_USE_XATTR && 812 sbsec->behavior != SECURITY_FS_USE_NATIVE) { 813 rc = -EINVAL; 814 pr_warn("SELinux: defcontext option is " 815 "invalid for this filesystem type\n"); 816 goto out; 817 } 818 819 if (defcontext_sid != sbsec->def_sid) { 820 rc = may_context_mount_inode_relabel(defcontext_sid, 821 sbsec, cred); 822 if (rc) 823 goto out; 824 } 825 826 sbsec->def_sid = defcontext_sid; 827 } 828 829 out_set_opts: 830 rc = sb_finish_set_opts(sb); 831 out: 832 mutex_unlock(&sbsec->lock); 833 return rc; 834 out_double_mount: 835 rc = -EINVAL; 836 pr_warn("SELinux: mount invalid. Same superblock, different " 837 "security settings for (dev %s, type %s)\n", sb->s_id, 838 sb->s_type->name); 839 goto out; 840 } 841 842 static int selinux_cmp_sb_context(const struct super_block *oldsb, 843 const struct super_block *newsb) 844 { 845 struct superblock_security_struct *old = selinux_superblock(oldsb); 846 struct superblock_security_struct *new = selinux_superblock(newsb); 847 char oldflags = old->flags & SE_MNTMASK; 848 char newflags = new->flags & SE_MNTMASK; 849 850 if (oldflags != newflags) 851 goto mismatch; 852 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) 853 goto mismatch; 854 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) 855 goto mismatch; 856 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) 857 goto mismatch; 858 if (oldflags & ROOTCONTEXT_MNT) { 859 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root); 860 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root); 861 if (oldroot->sid != newroot->sid) 862 goto mismatch; 863 } 864 return 0; 865 mismatch: 866 pr_warn("SELinux: mount invalid. Same superblock, " 867 "different security settings for (dev %s, " 868 "type %s)\n", newsb->s_id, newsb->s_type->name); 869 return -EBUSY; 870 } 871 872 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 873 struct super_block *newsb, 874 unsigned long kern_flags, 875 unsigned long *set_kern_flags) 876 { 877 int rc = 0; 878 const struct superblock_security_struct *oldsbsec = 879 selinux_superblock(oldsb); 880 struct superblock_security_struct *newsbsec = selinux_superblock(newsb); 881 882 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 883 int set_context = (oldsbsec->flags & CONTEXT_MNT); 884 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 885 886 /* 887 * Specifying internal flags without providing a place to 888 * place the results is not allowed. 889 */ 890 if (kern_flags && !set_kern_flags) 891 return -EINVAL; 892 893 mutex_lock(&newsbsec->lock); 894 895 /* 896 * if the parent was able to be mounted it clearly had no special lsm 897 * mount options. thus we can safely deal with this superblock later 898 */ 899 if (!selinux_initialized()) { 900 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) { 901 newsbsec->flags |= SE_SBNATIVE; 902 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 903 } 904 goto out; 905 } 906 907 /* how can we clone if the old one wasn't set up?? */ 908 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 909 910 /* if fs is reusing a sb, make sure that the contexts match */ 911 if (newsbsec->flags & SE_SBINITIALIZED) { 912 mutex_unlock(&newsbsec->lock); 913 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) 914 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 915 return selinux_cmp_sb_context(oldsb, newsb); 916 } 917 918 newsbsec->flags = oldsbsec->flags; 919 920 newsbsec->sid = oldsbsec->sid; 921 newsbsec->def_sid = oldsbsec->def_sid; 922 newsbsec->behavior = oldsbsec->behavior; 923 924 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE && 925 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) { 926 rc = security_fs_use(newsb); 927 if (rc) 928 goto out; 929 } 930 931 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) { 932 newsbsec->behavior = SECURITY_FS_USE_NATIVE; 933 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 934 } 935 936 if (set_context) { 937 u32 sid = oldsbsec->mntpoint_sid; 938 939 if (!set_fscontext) 940 newsbsec->sid = sid; 941 if (!set_rootcontext) { 942 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 943 newisec->sid = sid; 944 } 945 newsbsec->mntpoint_sid = sid; 946 } 947 if (set_rootcontext) { 948 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root); 949 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 950 951 newisec->sid = oldisec->sid; 952 } 953 954 sb_finish_set_opts(newsb); 955 out: 956 mutex_unlock(&newsbsec->lock); 957 return rc; 958 } 959 960 /* 961 * NOTE: the caller is responsible for freeing the memory even if on error. 962 */ 963 static int selinux_add_opt(int token, const char *s, void **mnt_opts) 964 { 965 struct selinux_mnt_opts *opts = *mnt_opts; 966 u32 *dst_sid; 967 int rc; 968 969 if (token == Opt_seclabel) 970 /* eaten and completely ignored */ 971 return 0; 972 if (!s) 973 return -EINVAL; 974 975 if (!selinux_initialized()) { 976 pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n"); 977 return -EINVAL; 978 } 979 980 if (!opts) { 981 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 982 if (!opts) 983 return -ENOMEM; 984 *mnt_opts = opts; 985 } 986 987 switch (token) { 988 case Opt_context: 989 if (opts->context_sid || opts->defcontext_sid) 990 goto err; 991 dst_sid = &opts->context_sid; 992 break; 993 case Opt_fscontext: 994 if (opts->fscontext_sid) 995 goto err; 996 dst_sid = &opts->fscontext_sid; 997 break; 998 case Opt_rootcontext: 999 if (opts->rootcontext_sid) 1000 goto err; 1001 dst_sid = &opts->rootcontext_sid; 1002 break; 1003 case Opt_defcontext: 1004 if (opts->context_sid || opts->defcontext_sid) 1005 goto err; 1006 dst_sid = &opts->defcontext_sid; 1007 break; 1008 default: 1009 WARN_ON(1); 1010 return -EINVAL; 1011 } 1012 rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL); 1013 if (rc) 1014 pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n", 1015 s, rc); 1016 return rc; 1017 1018 err: 1019 pr_warn(SEL_MOUNT_FAIL_MSG); 1020 return -EINVAL; 1021 } 1022 1023 static int show_sid(struct seq_file *m, u32 sid) 1024 { 1025 char *context = NULL; 1026 u32 len; 1027 int rc; 1028 1029 rc = security_sid_to_context(sid, &context, &len); 1030 if (!rc) { 1031 bool has_comma = strchr(context, ','); 1032 1033 seq_putc(m, '='); 1034 if (has_comma) 1035 seq_putc(m, '\"'); 1036 seq_escape(m, context, "\"\n\\"); 1037 if (has_comma) 1038 seq_putc(m, '\"'); 1039 } 1040 kfree(context); 1041 return rc; 1042 } 1043 1044 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1045 { 1046 struct superblock_security_struct *sbsec = selinux_superblock(sb); 1047 int rc; 1048 1049 if (!(sbsec->flags & SE_SBINITIALIZED)) 1050 return 0; 1051 1052 if (!selinux_initialized()) 1053 return 0; 1054 1055 if (sbsec->flags & FSCONTEXT_MNT) { 1056 seq_putc(m, ','); 1057 seq_puts(m, FSCONTEXT_STR); 1058 rc = show_sid(m, sbsec->sid); 1059 if (rc) 1060 return rc; 1061 } 1062 if (sbsec->flags & CONTEXT_MNT) { 1063 seq_putc(m, ','); 1064 seq_puts(m, CONTEXT_STR); 1065 rc = show_sid(m, sbsec->mntpoint_sid); 1066 if (rc) 1067 return rc; 1068 } 1069 if (sbsec->flags & DEFCONTEXT_MNT) { 1070 seq_putc(m, ','); 1071 seq_puts(m, DEFCONTEXT_STR); 1072 rc = show_sid(m, sbsec->def_sid); 1073 if (rc) 1074 return rc; 1075 } 1076 if (sbsec->flags & ROOTCONTEXT_MNT) { 1077 struct dentry *root = sb->s_root; 1078 struct inode_security_struct *isec = backing_inode_security(root); 1079 seq_putc(m, ','); 1080 seq_puts(m, ROOTCONTEXT_STR); 1081 rc = show_sid(m, isec->sid); 1082 if (rc) 1083 return rc; 1084 } 1085 if (sbsec->flags & SBLABEL_MNT) { 1086 seq_putc(m, ','); 1087 seq_puts(m, SECLABEL_STR); 1088 } 1089 return 0; 1090 } 1091 1092 static inline u16 inode_mode_to_security_class(umode_t mode) 1093 { 1094 switch (mode & S_IFMT) { 1095 case S_IFSOCK: 1096 return SECCLASS_SOCK_FILE; 1097 case S_IFLNK: 1098 return SECCLASS_LNK_FILE; 1099 case S_IFREG: 1100 return SECCLASS_FILE; 1101 case S_IFBLK: 1102 return SECCLASS_BLK_FILE; 1103 case S_IFDIR: 1104 return SECCLASS_DIR; 1105 case S_IFCHR: 1106 return SECCLASS_CHR_FILE; 1107 case S_IFIFO: 1108 return SECCLASS_FIFO_FILE; 1109 1110 } 1111 1112 return SECCLASS_FILE; 1113 } 1114 1115 static inline int default_protocol_stream(int protocol) 1116 { 1117 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP || 1118 protocol == IPPROTO_MPTCP); 1119 } 1120 1121 static inline int default_protocol_dgram(int protocol) 1122 { 1123 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1124 } 1125 1126 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1127 { 1128 int extsockclass = selinux_policycap_extsockclass(); 1129 1130 switch (family) { 1131 case PF_UNIX: 1132 switch (type) { 1133 case SOCK_STREAM: 1134 case SOCK_SEQPACKET: 1135 return SECCLASS_UNIX_STREAM_SOCKET; 1136 case SOCK_DGRAM: 1137 case SOCK_RAW: 1138 return SECCLASS_UNIX_DGRAM_SOCKET; 1139 } 1140 break; 1141 case PF_INET: 1142 case PF_INET6: 1143 switch (type) { 1144 case SOCK_STREAM: 1145 case SOCK_SEQPACKET: 1146 if (default_protocol_stream(protocol)) 1147 return SECCLASS_TCP_SOCKET; 1148 else if (extsockclass && protocol == IPPROTO_SCTP) 1149 return SECCLASS_SCTP_SOCKET; 1150 else 1151 return SECCLASS_RAWIP_SOCKET; 1152 case SOCK_DGRAM: 1153 if (default_protocol_dgram(protocol)) 1154 return SECCLASS_UDP_SOCKET; 1155 else if (extsockclass && (protocol == IPPROTO_ICMP || 1156 protocol == IPPROTO_ICMPV6)) 1157 return SECCLASS_ICMP_SOCKET; 1158 else 1159 return SECCLASS_RAWIP_SOCKET; 1160 case SOCK_DCCP: 1161 return SECCLASS_DCCP_SOCKET; 1162 default: 1163 return SECCLASS_RAWIP_SOCKET; 1164 } 1165 break; 1166 case PF_NETLINK: 1167 switch (protocol) { 1168 case NETLINK_ROUTE: 1169 return SECCLASS_NETLINK_ROUTE_SOCKET; 1170 case NETLINK_SOCK_DIAG: 1171 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1172 case NETLINK_NFLOG: 1173 return SECCLASS_NETLINK_NFLOG_SOCKET; 1174 case NETLINK_XFRM: 1175 return SECCLASS_NETLINK_XFRM_SOCKET; 1176 case NETLINK_SELINUX: 1177 return SECCLASS_NETLINK_SELINUX_SOCKET; 1178 case NETLINK_ISCSI: 1179 return SECCLASS_NETLINK_ISCSI_SOCKET; 1180 case NETLINK_AUDIT: 1181 return SECCLASS_NETLINK_AUDIT_SOCKET; 1182 case NETLINK_FIB_LOOKUP: 1183 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET; 1184 case NETLINK_CONNECTOR: 1185 return SECCLASS_NETLINK_CONNECTOR_SOCKET; 1186 case NETLINK_NETFILTER: 1187 return SECCLASS_NETLINK_NETFILTER_SOCKET; 1188 case NETLINK_DNRTMSG: 1189 return SECCLASS_NETLINK_DNRT_SOCKET; 1190 case NETLINK_KOBJECT_UEVENT: 1191 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1192 case NETLINK_GENERIC: 1193 return SECCLASS_NETLINK_GENERIC_SOCKET; 1194 case NETLINK_SCSITRANSPORT: 1195 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET; 1196 case NETLINK_RDMA: 1197 return SECCLASS_NETLINK_RDMA_SOCKET; 1198 case NETLINK_CRYPTO: 1199 return SECCLASS_NETLINK_CRYPTO_SOCKET; 1200 default: 1201 return SECCLASS_NETLINK_SOCKET; 1202 } 1203 case PF_PACKET: 1204 return SECCLASS_PACKET_SOCKET; 1205 case PF_KEY: 1206 return SECCLASS_KEY_SOCKET; 1207 case PF_APPLETALK: 1208 return SECCLASS_APPLETALK_SOCKET; 1209 } 1210 1211 if (extsockclass) { 1212 switch (family) { 1213 case PF_AX25: 1214 return SECCLASS_AX25_SOCKET; 1215 case PF_IPX: 1216 return SECCLASS_IPX_SOCKET; 1217 case PF_NETROM: 1218 return SECCLASS_NETROM_SOCKET; 1219 case PF_ATMPVC: 1220 return SECCLASS_ATMPVC_SOCKET; 1221 case PF_X25: 1222 return SECCLASS_X25_SOCKET; 1223 case PF_ROSE: 1224 return SECCLASS_ROSE_SOCKET; 1225 case PF_DECnet: 1226 return SECCLASS_DECNET_SOCKET; 1227 case PF_ATMSVC: 1228 return SECCLASS_ATMSVC_SOCKET; 1229 case PF_RDS: 1230 return SECCLASS_RDS_SOCKET; 1231 case PF_IRDA: 1232 return SECCLASS_IRDA_SOCKET; 1233 case PF_PPPOX: 1234 return SECCLASS_PPPOX_SOCKET; 1235 case PF_LLC: 1236 return SECCLASS_LLC_SOCKET; 1237 case PF_CAN: 1238 return SECCLASS_CAN_SOCKET; 1239 case PF_TIPC: 1240 return SECCLASS_TIPC_SOCKET; 1241 case PF_BLUETOOTH: 1242 return SECCLASS_BLUETOOTH_SOCKET; 1243 case PF_IUCV: 1244 return SECCLASS_IUCV_SOCKET; 1245 case PF_RXRPC: 1246 return SECCLASS_RXRPC_SOCKET; 1247 case PF_ISDN: 1248 return SECCLASS_ISDN_SOCKET; 1249 case PF_PHONET: 1250 return SECCLASS_PHONET_SOCKET; 1251 case PF_IEEE802154: 1252 return SECCLASS_IEEE802154_SOCKET; 1253 case PF_CAIF: 1254 return SECCLASS_CAIF_SOCKET; 1255 case PF_ALG: 1256 return SECCLASS_ALG_SOCKET; 1257 case PF_NFC: 1258 return SECCLASS_NFC_SOCKET; 1259 case PF_VSOCK: 1260 return SECCLASS_VSOCK_SOCKET; 1261 case PF_KCM: 1262 return SECCLASS_KCM_SOCKET; 1263 case PF_QIPCRTR: 1264 return SECCLASS_QIPCRTR_SOCKET; 1265 case PF_SMC: 1266 return SECCLASS_SMC_SOCKET; 1267 case PF_XDP: 1268 return SECCLASS_XDP_SOCKET; 1269 case PF_MCTP: 1270 return SECCLASS_MCTP_SOCKET; 1271 #if PF_MAX > 46 1272 #error New address family defined, please update this function. 1273 #endif 1274 } 1275 } 1276 1277 return SECCLASS_SOCKET; 1278 } 1279 1280 static int selinux_genfs_get_sid(struct dentry *dentry, 1281 u16 tclass, 1282 u16 flags, 1283 u32 *sid) 1284 { 1285 int rc; 1286 struct super_block *sb = dentry->d_sb; 1287 char *buffer, *path; 1288 1289 buffer = (char *)__get_free_page(GFP_KERNEL); 1290 if (!buffer) 1291 return -ENOMEM; 1292 1293 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1294 if (IS_ERR(path)) 1295 rc = PTR_ERR(path); 1296 else { 1297 if (flags & SE_SBPROC) { 1298 /* each process gets a /proc/PID/ entry. Strip off the 1299 * PID part to get a valid selinux labeling. 1300 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1301 while (path[1] >= '0' && path[1] <= '9') { 1302 path[1] = '/'; 1303 path++; 1304 } 1305 } 1306 rc = security_genfs_sid(sb->s_type->name, 1307 path, tclass, sid); 1308 if (rc == -ENOENT) { 1309 /* No match in policy, mark as unlabeled. */ 1310 *sid = SECINITSID_UNLABELED; 1311 rc = 0; 1312 } 1313 } 1314 free_page((unsigned long)buffer); 1315 return rc; 1316 } 1317 1318 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry, 1319 u32 def_sid, u32 *sid) 1320 { 1321 #define INITCONTEXTLEN 255 1322 char *context; 1323 unsigned int len; 1324 int rc; 1325 1326 len = INITCONTEXTLEN; 1327 context = kmalloc(len + 1, GFP_NOFS); 1328 if (!context) 1329 return -ENOMEM; 1330 1331 context[len] = '\0'; 1332 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); 1333 if (rc == -ERANGE) { 1334 kfree(context); 1335 1336 /* Need a larger buffer. Query for the right size. */ 1337 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0); 1338 if (rc < 0) 1339 return rc; 1340 1341 len = rc; 1342 context = kmalloc(len + 1, GFP_NOFS); 1343 if (!context) 1344 return -ENOMEM; 1345 1346 context[len] = '\0'; 1347 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, 1348 context, len); 1349 } 1350 if (rc < 0) { 1351 kfree(context); 1352 if (rc != -ENODATA) { 1353 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n", 1354 __func__, -rc, inode->i_sb->s_id, inode->i_ino); 1355 return rc; 1356 } 1357 *sid = def_sid; 1358 return 0; 1359 } 1360 1361 rc = security_context_to_sid_default(context, rc, sid, 1362 def_sid, GFP_NOFS); 1363 if (rc) { 1364 char *dev = inode->i_sb->s_id; 1365 unsigned long ino = inode->i_ino; 1366 1367 if (rc == -EINVAL) { 1368 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n", 1369 ino, dev, context); 1370 } else { 1371 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n", 1372 __func__, context, -rc, dev, ino); 1373 } 1374 } 1375 kfree(context); 1376 return 0; 1377 } 1378 1379 /* The inode's security attributes must be initialized before first use. */ 1380 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1381 { 1382 struct superblock_security_struct *sbsec = NULL; 1383 struct inode_security_struct *isec = selinux_inode(inode); 1384 u32 task_sid, sid = 0; 1385 u16 sclass; 1386 struct dentry *dentry; 1387 int rc = 0; 1388 1389 if (isec->initialized == LABEL_INITIALIZED) 1390 return 0; 1391 1392 spin_lock(&isec->lock); 1393 if (isec->initialized == LABEL_INITIALIZED) 1394 goto out_unlock; 1395 1396 if (isec->sclass == SECCLASS_FILE) 1397 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1398 1399 sbsec = selinux_superblock(inode->i_sb); 1400 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1401 /* Defer initialization until selinux_complete_init, 1402 after the initial policy is loaded and the security 1403 server is ready to handle calls. */ 1404 spin_lock(&sbsec->isec_lock); 1405 if (list_empty(&isec->list)) 1406 list_add(&isec->list, &sbsec->isec_head); 1407 spin_unlock(&sbsec->isec_lock); 1408 goto out_unlock; 1409 } 1410 1411 sclass = isec->sclass; 1412 task_sid = isec->task_sid; 1413 sid = isec->sid; 1414 isec->initialized = LABEL_PENDING; 1415 spin_unlock(&isec->lock); 1416 1417 switch (sbsec->behavior) { 1418 /* 1419 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels 1420 * via xattr when called from delayed_superblock_init(). 1421 */ 1422 case SECURITY_FS_USE_NATIVE: 1423 case SECURITY_FS_USE_XATTR: 1424 if (!(inode->i_opflags & IOP_XATTR)) { 1425 sid = sbsec->def_sid; 1426 break; 1427 } 1428 /* Need a dentry, since the xattr API requires one. 1429 Life would be simpler if we could just pass the inode. */ 1430 if (opt_dentry) { 1431 /* Called from d_instantiate or d_splice_alias. */ 1432 dentry = dget(opt_dentry); 1433 } else { 1434 /* 1435 * Called from selinux_complete_init, try to find a dentry. 1436 * Some filesystems really want a connected one, so try 1437 * that first. We could split SECURITY_FS_USE_XATTR in 1438 * two, depending upon that... 1439 */ 1440 dentry = d_find_alias(inode); 1441 if (!dentry) 1442 dentry = d_find_any_alias(inode); 1443 } 1444 if (!dentry) { 1445 /* 1446 * this is can be hit on boot when a file is accessed 1447 * before the policy is loaded. When we load policy we 1448 * may find inodes that have no dentry on the 1449 * sbsec->isec_head list. No reason to complain as these 1450 * will get fixed up the next time we go through 1451 * inode_doinit with a dentry, before these inodes could 1452 * be used again by userspace. 1453 */ 1454 goto out_invalid; 1455 } 1456 1457 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid, 1458 &sid); 1459 dput(dentry); 1460 if (rc) 1461 goto out; 1462 break; 1463 case SECURITY_FS_USE_TASK: 1464 sid = task_sid; 1465 break; 1466 case SECURITY_FS_USE_TRANS: 1467 /* Default to the fs SID. */ 1468 sid = sbsec->sid; 1469 1470 /* Try to obtain a transition SID. */ 1471 rc = security_transition_sid(task_sid, sid, 1472 sclass, NULL, &sid); 1473 if (rc) 1474 goto out; 1475 break; 1476 case SECURITY_FS_USE_MNTPOINT: 1477 sid = sbsec->mntpoint_sid; 1478 break; 1479 default: 1480 /* Default to the fs superblock SID. */ 1481 sid = sbsec->sid; 1482 1483 if ((sbsec->flags & SE_SBGENFS) && 1484 (!S_ISLNK(inode->i_mode) || 1485 selinux_policycap_genfs_seclabel_symlinks())) { 1486 /* We must have a dentry to determine the label on 1487 * procfs inodes */ 1488 if (opt_dentry) { 1489 /* Called from d_instantiate or 1490 * d_splice_alias. */ 1491 dentry = dget(opt_dentry); 1492 } else { 1493 /* Called from selinux_complete_init, try to 1494 * find a dentry. Some filesystems really want 1495 * a connected one, so try that first. 1496 */ 1497 dentry = d_find_alias(inode); 1498 if (!dentry) 1499 dentry = d_find_any_alias(inode); 1500 } 1501 /* 1502 * This can be hit on boot when a file is accessed 1503 * before the policy is loaded. When we load policy we 1504 * may find inodes that have no dentry on the 1505 * sbsec->isec_head list. No reason to complain as 1506 * these will get fixed up the next time we go through 1507 * inode_doinit() with a dentry, before these inodes 1508 * could be used again by userspace. 1509 */ 1510 if (!dentry) 1511 goto out_invalid; 1512 rc = selinux_genfs_get_sid(dentry, sclass, 1513 sbsec->flags, &sid); 1514 if (rc) { 1515 dput(dentry); 1516 goto out; 1517 } 1518 1519 if ((sbsec->flags & SE_SBGENFS_XATTR) && 1520 (inode->i_opflags & IOP_XATTR)) { 1521 rc = inode_doinit_use_xattr(inode, dentry, 1522 sid, &sid); 1523 if (rc) { 1524 dput(dentry); 1525 goto out; 1526 } 1527 } 1528 dput(dentry); 1529 } 1530 break; 1531 } 1532 1533 out: 1534 spin_lock(&isec->lock); 1535 if (isec->initialized == LABEL_PENDING) { 1536 if (rc) { 1537 isec->initialized = LABEL_INVALID; 1538 goto out_unlock; 1539 } 1540 isec->initialized = LABEL_INITIALIZED; 1541 isec->sid = sid; 1542 } 1543 1544 out_unlock: 1545 spin_unlock(&isec->lock); 1546 return rc; 1547 1548 out_invalid: 1549 spin_lock(&isec->lock); 1550 if (isec->initialized == LABEL_PENDING) { 1551 isec->initialized = LABEL_INVALID; 1552 isec->sid = sid; 1553 } 1554 spin_unlock(&isec->lock); 1555 return 0; 1556 } 1557 1558 /* Convert a Linux signal to an access vector. */ 1559 static inline u32 signal_to_av(int sig) 1560 { 1561 u32 perm = 0; 1562 1563 switch (sig) { 1564 case SIGCHLD: 1565 /* Commonly granted from child to parent. */ 1566 perm = PROCESS__SIGCHLD; 1567 break; 1568 case SIGKILL: 1569 /* Cannot be caught or ignored */ 1570 perm = PROCESS__SIGKILL; 1571 break; 1572 case SIGSTOP: 1573 /* Cannot be caught or ignored */ 1574 perm = PROCESS__SIGSTOP; 1575 break; 1576 default: 1577 /* All other signals. */ 1578 perm = PROCESS__SIGNAL; 1579 break; 1580 } 1581 1582 return perm; 1583 } 1584 1585 #if CAP_LAST_CAP > 63 1586 #error Fix SELinux to handle capabilities > 63. 1587 #endif 1588 1589 /* Check whether a task is allowed to use a capability. */ 1590 static int cred_has_capability(const struct cred *cred, 1591 int cap, unsigned int opts, bool initns) 1592 { 1593 struct common_audit_data ad; 1594 struct av_decision avd; 1595 u16 sclass; 1596 u32 sid = cred_sid(cred); 1597 u32 av = CAP_TO_MASK(cap); 1598 int rc; 1599 1600 ad.type = LSM_AUDIT_DATA_CAP; 1601 ad.u.cap = cap; 1602 1603 switch (CAP_TO_INDEX(cap)) { 1604 case 0: 1605 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS; 1606 break; 1607 case 1: 1608 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS; 1609 break; 1610 default: 1611 pr_err("SELinux: out of range capability %d\n", cap); 1612 BUG(); 1613 return -EINVAL; 1614 } 1615 1616 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1617 if (!(opts & CAP_OPT_NOAUDIT)) { 1618 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad); 1619 if (rc2) 1620 return rc2; 1621 } 1622 return rc; 1623 } 1624 1625 /* Check whether a task has a particular permission to an inode. 1626 The 'adp' parameter is optional and allows other audit 1627 data to be passed (e.g. the dentry). */ 1628 static int inode_has_perm(const struct cred *cred, 1629 struct inode *inode, 1630 u32 perms, 1631 struct common_audit_data *adp) 1632 { 1633 struct inode_security_struct *isec; 1634 u32 sid; 1635 1636 validate_creds(cred); 1637 1638 if (unlikely(IS_PRIVATE(inode))) 1639 return 0; 1640 1641 sid = cred_sid(cred); 1642 isec = selinux_inode(inode); 1643 1644 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp); 1645 } 1646 1647 /* Same as inode_has_perm, but pass explicit audit data containing 1648 the dentry to help the auditing code to more easily generate the 1649 pathname if needed. */ 1650 static inline int dentry_has_perm(const struct cred *cred, 1651 struct dentry *dentry, 1652 u32 av) 1653 { 1654 struct inode *inode = d_backing_inode(dentry); 1655 struct common_audit_data ad; 1656 1657 ad.type = LSM_AUDIT_DATA_DENTRY; 1658 ad.u.dentry = dentry; 1659 __inode_security_revalidate(inode, dentry, true); 1660 return inode_has_perm(cred, inode, av, &ad); 1661 } 1662 1663 /* Same as inode_has_perm, but pass explicit audit data containing 1664 the path to help the auditing code to more easily generate the 1665 pathname if needed. */ 1666 static inline int path_has_perm(const struct cred *cred, 1667 const struct path *path, 1668 u32 av) 1669 { 1670 struct inode *inode = d_backing_inode(path->dentry); 1671 struct common_audit_data ad; 1672 1673 ad.type = LSM_AUDIT_DATA_PATH; 1674 ad.u.path = *path; 1675 __inode_security_revalidate(inode, path->dentry, true); 1676 return inode_has_perm(cred, inode, av, &ad); 1677 } 1678 1679 /* Same as path_has_perm, but uses the inode from the file struct. */ 1680 static inline int file_path_has_perm(const struct cred *cred, 1681 struct file *file, 1682 u32 av) 1683 { 1684 struct common_audit_data ad; 1685 1686 ad.type = LSM_AUDIT_DATA_FILE; 1687 ad.u.file = file; 1688 return inode_has_perm(cred, file_inode(file), av, &ad); 1689 } 1690 1691 #ifdef CONFIG_BPF_SYSCALL 1692 static int bpf_fd_pass(struct file *file, u32 sid); 1693 #endif 1694 1695 /* Check whether a task can use an open file descriptor to 1696 access an inode in a given way. Check access to the 1697 descriptor itself, and then use dentry_has_perm to 1698 check a particular permission to the file. 1699 Access to the descriptor is implicitly granted if it 1700 has the same SID as the process. If av is zero, then 1701 access to the file is not checked, e.g. for cases 1702 where only the descriptor is affected like seek. */ 1703 static int file_has_perm(const struct cred *cred, 1704 struct file *file, 1705 u32 av) 1706 { 1707 struct file_security_struct *fsec = selinux_file(file); 1708 struct inode *inode = file_inode(file); 1709 struct common_audit_data ad; 1710 u32 sid = cred_sid(cred); 1711 int rc; 1712 1713 ad.type = LSM_AUDIT_DATA_FILE; 1714 ad.u.file = file; 1715 1716 if (sid != fsec->sid) { 1717 rc = avc_has_perm(sid, fsec->sid, 1718 SECCLASS_FD, 1719 FD__USE, 1720 &ad); 1721 if (rc) 1722 goto out; 1723 } 1724 1725 #ifdef CONFIG_BPF_SYSCALL 1726 rc = bpf_fd_pass(file, cred_sid(cred)); 1727 if (rc) 1728 return rc; 1729 #endif 1730 1731 /* av is zero if only checking access to the descriptor. */ 1732 rc = 0; 1733 if (av) 1734 rc = inode_has_perm(cred, inode, av, &ad); 1735 1736 out: 1737 return rc; 1738 } 1739 1740 /* 1741 * Determine the label for an inode that might be unioned. 1742 */ 1743 static int 1744 selinux_determine_inode_label(const struct task_security_struct *tsec, 1745 struct inode *dir, 1746 const struct qstr *name, u16 tclass, 1747 u32 *_new_isid) 1748 { 1749 const struct superblock_security_struct *sbsec = 1750 selinux_superblock(dir->i_sb); 1751 1752 if ((sbsec->flags & SE_SBINITIALIZED) && 1753 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) { 1754 *_new_isid = sbsec->mntpoint_sid; 1755 } else if ((sbsec->flags & SBLABEL_MNT) && 1756 tsec->create_sid) { 1757 *_new_isid = tsec->create_sid; 1758 } else { 1759 const struct inode_security_struct *dsec = inode_security(dir); 1760 return security_transition_sid(tsec->sid, 1761 dsec->sid, tclass, 1762 name, _new_isid); 1763 } 1764 1765 return 0; 1766 } 1767 1768 /* Check whether a task can create a file. */ 1769 static int may_create(struct inode *dir, 1770 struct dentry *dentry, 1771 u16 tclass) 1772 { 1773 const struct task_security_struct *tsec = selinux_cred(current_cred()); 1774 struct inode_security_struct *dsec; 1775 struct superblock_security_struct *sbsec; 1776 u32 sid, newsid; 1777 struct common_audit_data ad; 1778 int rc; 1779 1780 dsec = inode_security(dir); 1781 sbsec = selinux_superblock(dir->i_sb); 1782 1783 sid = tsec->sid; 1784 1785 ad.type = LSM_AUDIT_DATA_DENTRY; 1786 ad.u.dentry = dentry; 1787 1788 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1789 DIR__ADD_NAME | DIR__SEARCH, 1790 &ad); 1791 if (rc) 1792 return rc; 1793 1794 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass, 1795 &newsid); 1796 if (rc) 1797 return rc; 1798 1799 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1800 if (rc) 1801 return rc; 1802 1803 return avc_has_perm(newsid, sbsec->sid, 1804 SECCLASS_FILESYSTEM, 1805 FILESYSTEM__ASSOCIATE, &ad); 1806 } 1807 1808 #define MAY_LINK 0 1809 #define MAY_UNLINK 1 1810 #define MAY_RMDIR 2 1811 1812 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1813 static int may_link(struct inode *dir, 1814 struct dentry *dentry, 1815 int kind) 1816 1817 { 1818 struct inode_security_struct *dsec, *isec; 1819 struct common_audit_data ad; 1820 u32 sid = current_sid(); 1821 u32 av; 1822 int rc; 1823 1824 dsec = inode_security(dir); 1825 isec = backing_inode_security(dentry); 1826 1827 ad.type = LSM_AUDIT_DATA_DENTRY; 1828 ad.u.dentry = dentry; 1829 1830 av = DIR__SEARCH; 1831 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1832 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1833 if (rc) 1834 return rc; 1835 1836 switch (kind) { 1837 case MAY_LINK: 1838 av = FILE__LINK; 1839 break; 1840 case MAY_UNLINK: 1841 av = FILE__UNLINK; 1842 break; 1843 case MAY_RMDIR: 1844 av = DIR__RMDIR; 1845 break; 1846 default: 1847 pr_warn("SELinux: %s: unrecognized kind %d\n", 1848 __func__, kind); 1849 return 0; 1850 } 1851 1852 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1853 return rc; 1854 } 1855 1856 static inline int may_rename(struct inode *old_dir, 1857 struct dentry *old_dentry, 1858 struct inode *new_dir, 1859 struct dentry *new_dentry) 1860 { 1861 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1862 struct common_audit_data ad; 1863 u32 sid = current_sid(); 1864 u32 av; 1865 int old_is_dir, new_is_dir; 1866 int rc; 1867 1868 old_dsec = inode_security(old_dir); 1869 old_isec = backing_inode_security(old_dentry); 1870 old_is_dir = d_is_dir(old_dentry); 1871 new_dsec = inode_security(new_dir); 1872 1873 ad.type = LSM_AUDIT_DATA_DENTRY; 1874 1875 ad.u.dentry = old_dentry; 1876 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1877 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1878 if (rc) 1879 return rc; 1880 rc = avc_has_perm(sid, old_isec->sid, 1881 old_isec->sclass, FILE__RENAME, &ad); 1882 if (rc) 1883 return rc; 1884 if (old_is_dir && new_dir != old_dir) { 1885 rc = avc_has_perm(sid, old_isec->sid, 1886 old_isec->sclass, DIR__REPARENT, &ad); 1887 if (rc) 1888 return rc; 1889 } 1890 1891 ad.u.dentry = new_dentry; 1892 av = DIR__ADD_NAME | DIR__SEARCH; 1893 if (d_is_positive(new_dentry)) 1894 av |= DIR__REMOVE_NAME; 1895 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1896 if (rc) 1897 return rc; 1898 if (d_is_positive(new_dentry)) { 1899 new_isec = backing_inode_security(new_dentry); 1900 new_is_dir = d_is_dir(new_dentry); 1901 rc = avc_has_perm(sid, new_isec->sid, 1902 new_isec->sclass, 1903 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1904 if (rc) 1905 return rc; 1906 } 1907 1908 return 0; 1909 } 1910 1911 /* Check whether a task can perform a filesystem operation. */ 1912 static int superblock_has_perm(const struct cred *cred, 1913 struct super_block *sb, 1914 u32 perms, 1915 struct common_audit_data *ad) 1916 { 1917 struct superblock_security_struct *sbsec; 1918 u32 sid = cred_sid(cred); 1919 1920 sbsec = selinux_superblock(sb); 1921 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1922 } 1923 1924 /* Convert a Linux mode and permission mask to an access vector. */ 1925 static inline u32 file_mask_to_av(int mode, int mask) 1926 { 1927 u32 av = 0; 1928 1929 if (!S_ISDIR(mode)) { 1930 if (mask & MAY_EXEC) 1931 av |= FILE__EXECUTE; 1932 if (mask & MAY_READ) 1933 av |= FILE__READ; 1934 1935 if (mask & MAY_APPEND) 1936 av |= FILE__APPEND; 1937 else if (mask & MAY_WRITE) 1938 av |= FILE__WRITE; 1939 1940 } else { 1941 if (mask & MAY_EXEC) 1942 av |= DIR__SEARCH; 1943 if (mask & MAY_WRITE) 1944 av |= DIR__WRITE; 1945 if (mask & MAY_READ) 1946 av |= DIR__READ; 1947 } 1948 1949 return av; 1950 } 1951 1952 /* Convert a Linux file to an access vector. */ 1953 static inline u32 file_to_av(struct file *file) 1954 { 1955 u32 av = 0; 1956 1957 if (file->f_mode & FMODE_READ) 1958 av |= FILE__READ; 1959 if (file->f_mode & FMODE_WRITE) { 1960 if (file->f_flags & O_APPEND) 1961 av |= FILE__APPEND; 1962 else 1963 av |= FILE__WRITE; 1964 } 1965 if (!av) { 1966 /* 1967 * Special file opened with flags 3 for ioctl-only use. 1968 */ 1969 av = FILE__IOCTL; 1970 } 1971 1972 return av; 1973 } 1974 1975 /* 1976 * Convert a file to an access vector and include the correct 1977 * open permission. 1978 */ 1979 static inline u32 open_file_to_av(struct file *file) 1980 { 1981 u32 av = file_to_av(file); 1982 struct inode *inode = file_inode(file); 1983 1984 if (selinux_policycap_openperm() && 1985 inode->i_sb->s_magic != SOCKFS_MAGIC) 1986 av |= FILE__OPEN; 1987 1988 return av; 1989 } 1990 1991 /* Hook functions begin here. */ 1992 1993 static int selinux_binder_set_context_mgr(const struct cred *mgr) 1994 { 1995 return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER, 1996 BINDER__SET_CONTEXT_MGR, NULL); 1997 } 1998 1999 static int selinux_binder_transaction(const struct cred *from, 2000 const struct cred *to) 2001 { 2002 u32 mysid = current_sid(); 2003 u32 fromsid = cred_sid(from); 2004 u32 tosid = cred_sid(to); 2005 int rc; 2006 2007 if (mysid != fromsid) { 2008 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER, 2009 BINDER__IMPERSONATE, NULL); 2010 if (rc) 2011 return rc; 2012 } 2013 2014 return avc_has_perm(fromsid, tosid, 2015 SECCLASS_BINDER, BINDER__CALL, NULL); 2016 } 2017 2018 static int selinux_binder_transfer_binder(const struct cred *from, 2019 const struct cred *to) 2020 { 2021 return avc_has_perm(cred_sid(from), cred_sid(to), 2022 SECCLASS_BINDER, BINDER__TRANSFER, 2023 NULL); 2024 } 2025 2026 static int selinux_binder_transfer_file(const struct cred *from, 2027 const struct cred *to, 2028 struct file *file) 2029 { 2030 u32 sid = cred_sid(to); 2031 struct file_security_struct *fsec = selinux_file(file); 2032 struct dentry *dentry = file->f_path.dentry; 2033 struct inode_security_struct *isec; 2034 struct common_audit_data ad; 2035 int rc; 2036 2037 ad.type = LSM_AUDIT_DATA_PATH; 2038 ad.u.path = file->f_path; 2039 2040 if (sid != fsec->sid) { 2041 rc = avc_has_perm(sid, fsec->sid, 2042 SECCLASS_FD, 2043 FD__USE, 2044 &ad); 2045 if (rc) 2046 return rc; 2047 } 2048 2049 #ifdef CONFIG_BPF_SYSCALL 2050 rc = bpf_fd_pass(file, sid); 2051 if (rc) 2052 return rc; 2053 #endif 2054 2055 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2056 return 0; 2057 2058 isec = backing_inode_security(dentry); 2059 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file), 2060 &ad); 2061 } 2062 2063 static int selinux_ptrace_access_check(struct task_struct *child, 2064 unsigned int mode) 2065 { 2066 u32 sid = current_sid(); 2067 u32 csid = task_sid_obj(child); 2068 2069 if (mode & PTRACE_MODE_READ) 2070 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, 2071 NULL); 2072 2073 return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, 2074 NULL); 2075 } 2076 2077 static int selinux_ptrace_traceme(struct task_struct *parent) 2078 { 2079 return avc_has_perm(task_sid_obj(parent), task_sid_obj(current), 2080 SECCLASS_PROCESS, PROCESS__PTRACE, NULL); 2081 } 2082 2083 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 2084 kernel_cap_t *inheritable, kernel_cap_t *permitted) 2085 { 2086 return avc_has_perm(current_sid(), task_sid_obj(target), 2087 SECCLASS_PROCESS, PROCESS__GETCAP, NULL); 2088 } 2089 2090 static int selinux_capset(struct cred *new, const struct cred *old, 2091 const kernel_cap_t *effective, 2092 const kernel_cap_t *inheritable, 2093 const kernel_cap_t *permitted) 2094 { 2095 return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS, 2096 PROCESS__SETCAP, NULL); 2097 } 2098 2099 /* 2100 * (This comment used to live with the selinux_task_setuid hook, 2101 * which was removed). 2102 * 2103 * Since setuid only affects the current process, and since the SELinux 2104 * controls are not based on the Linux identity attributes, SELinux does not 2105 * need to control this operation. However, SELinux does control the use of 2106 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 2107 */ 2108 2109 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 2110 int cap, unsigned int opts) 2111 { 2112 return cred_has_capability(cred, cap, opts, ns == &init_user_ns); 2113 } 2114 2115 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 2116 { 2117 const struct cred *cred = current_cred(); 2118 int rc = 0; 2119 2120 if (!sb) 2121 return 0; 2122 2123 switch (cmds) { 2124 case Q_SYNC: 2125 case Q_QUOTAON: 2126 case Q_QUOTAOFF: 2127 case Q_SETINFO: 2128 case Q_SETQUOTA: 2129 case Q_XQUOTAOFF: 2130 case Q_XQUOTAON: 2131 case Q_XSETQLIM: 2132 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2133 break; 2134 case Q_GETFMT: 2135 case Q_GETINFO: 2136 case Q_GETQUOTA: 2137 case Q_XGETQUOTA: 2138 case Q_XGETQSTAT: 2139 case Q_XGETQSTATV: 2140 case Q_XGETNEXTQUOTA: 2141 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2142 break; 2143 default: 2144 rc = 0; /* let the kernel handle invalid cmds */ 2145 break; 2146 } 2147 return rc; 2148 } 2149 2150 static int selinux_quota_on(struct dentry *dentry) 2151 { 2152 const struct cred *cred = current_cred(); 2153 2154 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 2155 } 2156 2157 static int selinux_syslog(int type) 2158 { 2159 switch (type) { 2160 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2161 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2162 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 2163 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL); 2164 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2165 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2166 /* Set level of messages printed to console */ 2167 case SYSLOG_ACTION_CONSOLE_LEVEL: 2168 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 2169 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE, 2170 NULL); 2171 } 2172 /* All other syslog types */ 2173 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 2174 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL); 2175 } 2176 2177 /* 2178 * Check that a process has enough memory to allocate a new virtual 2179 * mapping. 0 means there is enough memory for the allocation to 2180 * succeed and -ENOMEM implies there is not. 2181 * 2182 * Do not audit the selinux permission check, as this is applied to all 2183 * processes that allocate mappings. 2184 */ 2185 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2186 { 2187 int rc, cap_sys_admin = 0; 2188 2189 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN, 2190 CAP_OPT_NOAUDIT, true); 2191 if (rc == 0) 2192 cap_sys_admin = 1; 2193 2194 return cap_sys_admin; 2195 } 2196 2197 /* binprm security operations */ 2198 2199 static u32 ptrace_parent_sid(void) 2200 { 2201 u32 sid = 0; 2202 struct task_struct *tracer; 2203 2204 rcu_read_lock(); 2205 tracer = ptrace_parent(current); 2206 if (tracer) 2207 sid = task_sid_obj(tracer); 2208 rcu_read_unlock(); 2209 2210 return sid; 2211 } 2212 2213 static int check_nnp_nosuid(const struct linux_binprm *bprm, 2214 const struct task_security_struct *old_tsec, 2215 const struct task_security_struct *new_tsec) 2216 { 2217 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); 2218 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt); 2219 int rc; 2220 u32 av; 2221 2222 if (!nnp && !nosuid) 2223 return 0; /* neither NNP nor nosuid */ 2224 2225 if (new_tsec->sid == old_tsec->sid) 2226 return 0; /* No change in credentials */ 2227 2228 /* 2229 * If the policy enables the nnp_nosuid_transition policy capability, 2230 * then we permit transitions under NNP or nosuid if the 2231 * policy allows the corresponding permission between 2232 * the old and new contexts. 2233 */ 2234 if (selinux_policycap_nnp_nosuid_transition()) { 2235 av = 0; 2236 if (nnp) 2237 av |= PROCESS2__NNP_TRANSITION; 2238 if (nosuid) 2239 av |= PROCESS2__NOSUID_TRANSITION; 2240 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2241 SECCLASS_PROCESS2, av, NULL); 2242 if (!rc) 2243 return 0; 2244 } 2245 2246 /* 2247 * We also permit NNP or nosuid transitions to bounded SIDs, 2248 * i.e. SIDs that are guaranteed to only be allowed a subset 2249 * of the permissions of the current SID. 2250 */ 2251 rc = security_bounded_transition(old_tsec->sid, 2252 new_tsec->sid); 2253 if (!rc) 2254 return 0; 2255 2256 /* 2257 * On failure, preserve the errno values for NNP vs nosuid. 2258 * NNP: Operation not permitted for caller. 2259 * nosuid: Permission denied to file. 2260 */ 2261 if (nnp) 2262 return -EPERM; 2263 return -EACCES; 2264 } 2265 2266 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm) 2267 { 2268 const struct task_security_struct *old_tsec; 2269 struct task_security_struct *new_tsec; 2270 struct inode_security_struct *isec; 2271 struct common_audit_data ad; 2272 struct inode *inode = file_inode(bprm->file); 2273 int rc; 2274 2275 /* SELinux context only depends on initial program or script and not 2276 * the script interpreter */ 2277 2278 old_tsec = selinux_cred(current_cred()); 2279 new_tsec = selinux_cred(bprm->cred); 2280 isec = inode_security(inode); 2281 2282 /* Default to the current task SID. */ 2283 new_tsec->sid = old_tsec->sid; 2284 new_tsec->osid = old_tsec->sid; 2285 2286 /* Reset fs, key, and sock SIDs on execve. */ 2287 new_tsec->create_sid = 0; 2288 new_tsec->keycreate_sid = 0; 2289 new_tsec->sockcreate_sid = 0; 2290 2291 if (old_tsec->exec_sid) { 2292 new_tsec->sid = old_tsec->exec_sid; 2293 /* Reset exec SID on execve. */ 2294 new_tsec->exec_sid = 0; 2295 2296 /* Fail on NNP or nosuid if not an allowed transition. */ 2297 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2298 if (rc) 2299 return rc; 2300 } else { 2301 /* Check for a default transition on this program. */ 2302 rc = security_transition_sid(old_tsec->sid, 2303 isec->sid, SECCLASS_PROCESS, NULL, 2304 &new_tsec->sid); 2305 if (rc) 2306 return rc; 2307 2308 /* 2309 * Fallback to old SID on NNP or nosuid if not an allowed 2310 * transition. 2311 */ 2312 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2313 if (rc) 2314 new_tsec->sid = old_tsec->sid; 2315 } 2316 2317 ad.type = LSM_AUDIT_DATA_FILE; 2318 ad.u.file = bprm->file; 2319 2320 if (new_tsec->sid == old_tsec->sid) { 2321 rc = avc_has_perm(old_tsec->sid, isec->sid, 2322 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2323 if (rc) 2324 return rc; 2325 } else { 2326 /* Check permissions for the transition. */ 2327 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2328 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2329 if (rc) 2330 return rc; 2331 2332 rc = avc_has_perm(new_tsec->sid, isec->sid, 2333 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2334 if (rc) 2335 return rc; 2336 2337 /* Check for shared state */ 2338 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2339 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2340 SECCLASS_PROCESS, PROCESS__SHARE, 2341 NULL); 2342 if (rc) 2343 return -EPERM; 2344 } 2345 2346 /* Make sure that anyone attempting to ptrace over a task that 2347 * changes its SID has the appropriate permit */ 2348 if (bprm->unsafe & LSM_UNSAFE_PTRACE) { 2349 u32 ptsid = ptrace_parent_sid(); 2350 if (ptsid != 0) { 2351 rc = avc_has_perm(ptsid, new_tsec->sid, 2352 SECCLASS_PROCESS, 2353 PROCESS__PTRACE, NULL); 2354 if (rc) 2355 return -EPERM; 2356 } 2357 } 2358 2359 /* Clear any possibly unsafe personality bits on exec: */ 2360 bprm->per_clear |= PER_CLEAR_ON_SETID; 2361 2362 /* Enable secure mode for SIDs transitions unless 2363 the noatsecure permission is granted between 2364 the two SIDs, i.e. ahp returns 0. */ 2365 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2366 SECCLASS_PROCESS, PROCESS__NOATSECURE, 2367 NULL); 2368 bprm->secureexec |= !!rc; 2369 } 2370 2371 return 0; 2372 } 2373 2374 static int match_file(const void *p, struct file *file, unsigned fd) 2375 { 2376 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; 2377 } 2378 2379 /* Derived from fs/exec.c:flush_old_files. */ 2380 static inline void flush_unauthorized_files(const struct cred *cred, 2381 struct files_struct *files) 2382 { 2383 struct file *file, *devnull = NULL; 2384 struct tty_struct *tty; 2385 int drop_tty = 0; 2386 unsigned n; 2387 2388 tty = get_current_tty(); 2389 if (tty) { 2390 spin_lock(&tty->files_lock); 2391 if (!list_empty(&tty->tty_files)) { 2392 struct tty_file_private *file_priv; 2393 2394 /* Revalidate access to controlling tty. 2395 Use file_path_has_perm on the tty path directly 2396 rather than using file_has_perm, as this particular 2397 open file may belong to another process and we are 2398 only interested in the inode-based check here. */ 2399 file_priv = list_first_entry(&tty->tty_files, 2400 struct tty_file_private, list); 2401 file = file_priv->file; 2402 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) 2403 drop_tty = 1; 2404 } 2405 spin_unlock(&tty->files_lock); 2406 tty_kref_put(tty); 2407 } 2408 /* Reset controlling tty. */ 2409 if (drop_tty) 2410 no_tty(); 2411 2412 /* Revalidate access to inherited open files. */ 2413 n = iterate_fd(files, 0, match_file, cred); 2414 if (!n) /* none found? */ 2415 return; 2416 2417 devnull = dentry_open(&selinux_null, O_RDWR, cred); 2418 if (IS_ERR(devnull)) 2419 devnull = NULL; 2420 /* replace all the matching ones with this */ 2421 do { 2422 replace_fd(n - 1, devnull, 0); 2423 } while ((n = iterate_fd(files, n, match_file, cred)) != 0); 2424 if (devnull) 2425 fput(devnull); 2426 } 2427 2428 /* 2429 * Prepare a process for imminent new credential changes due to exec 2430 */ 2431 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2432 { 2433 struct task_security_struct *new_tsec; 2434 struct rlimit *rlim, *initrlim; 2435 int rc, i; 2436 2437 new_tsec = selinux_cred(bprm->cred); 2438 if (new_tsec->sid == new_tsec->osid) 2439 return; 2440 2441 /* Close files for which the new task SID is not authorized. */ 2442 flush_unauthorized_files(bprm->cred, current->files); 2443 2444 /* Always clear parent death signal on SID transitions. */ 2445 current->pdeath_signal = 0; 2446 2447 /* Check whether the new SID can inherit resource limits from the old 2448 * SID. If not, reset all soft limits to the lower of the current 2449 * task's hard limit and the init task's soft limit. 2450 * 2451 * Note that the setting of hard limits (even to lower them) can be 2452 * controlled by the setrlimit check. The inclusion of the init task's 2453 * soft limit into the computation is to avoid resetting soft limits 2454 * higher than the default soft limit for cases where the default is 2455 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2456 */ 2457 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2458 PROCESS__RLIMITINH, NULL); 2459 if (rc) { 2460 /* protect against do_prlimit() */ 2461 task_lock(current); 2462 for (i = 0; i < RLIM_NLIMITS; i++) { 2463 rlim = current->signal->rlim + i; 2464 initrlim = init_task.signal->rlim + i; 2465 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2466 } 2467 task_unlock(current); 2468 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 2469 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2470 } 2471 } 2472 2473 /* 2474 * Clean up the process immediately after the installation of new credentials 2475 * due to exec 2476 */ 2477 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2478 { 2479 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2480 u32 osid, sid; 2481 int rc; 2482 2483 osid = tsec->osid; 2484 sid = tsec->sid; 2485 2486 if (sid == osid) 2487 return; 2488 2489 /* Check whether the new SID can inherit signal state from the old SID. 2490 * If not, clear itimers to avoid subsequent signal generation and 2491 * flush and unblock signals. 2492 * 2493 * This must occur _after_ the task SID has been updated so that any 2494 * kill done after the flush will be checked against the new SID. 2495 */ 2496 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2497 if (rc) { 2498 clear_itimer(); 2499 2500 spin_lock_irq(&unrcu_pointer(current->sighand)->siglock); 2501 if (!fatal_signal_pending(current)) { 2502 flush_sigqueue(¤t->pending); 2503 flush_sigqueue(¤t->signal->shared_pending); 2504 flush_signal_handlers(current, 1); 2505 sigemptyset(¤t->blocked); 2506 recalc_sigpending(); 2507 } 2508 spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock); 2509 } 2510 2511 /* Wake up the parent if it is waiting so that it can recheck 2512 * wait permission to the new task SID. */ 2513 read_lock(&tasklist_lock); 2514 __wake_up_parent(current, unrcu_pointer(current->real_parent)); 2515 read_unlock(&tasklist_lock); 2516 } 2517 2518 /* superblock security operations */ 2519 2520 static int selinux_sb_alloc_security(struct super_block *sb) 2521 { 2522 struct superblock_security_struct *sbsec = selinux_superblock(sb); 2523 2524 mutex_init(&sbsec->lock); 2525 INIT_LIST_HEAD(&sbsec->isec_head); 2526 spin_lock_init(&sbsec->isec_lock); 2527 sbsec->sid = SECINITSID_UNLABELED; 2528 sbsec->def_sid = SECINITSID_FILE; 2529 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 2530 2531 return 0; 2532 } 2533 2534 static inline int opt_len(const char *s) 2535 { 2536 bool open_quote = false; 2537 int len; 2538 char c; 2539 2540 for (len = 0; (c = s[len]) != '\0'; len++) { 2541 if (c == '"') 2542 open_quote = !open_quote; 2543 if (c == ',' && !open_quote) 2544 break; 2545 } 2546 return len; 2547 } 2548 2549 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts) 2550 { 2551 char *from = options; 2552 char *to = options; 2553 bool first = true; 2554 int rc; 2555 2556 while (1) { 2557 int len = opt_len(from); 2558 int token; 2559 char *arg = NULL; 2560 2561 token = match_opt_prefix(from, len, &arg); 2562 2563 if (token != Opt_error) { 2564 char *p, *q; 2565 2566 /* strip quotes */ 2567 if (arg) { 2568 for (p = q = arg; p < from + len; p++) { 2569 char c = *p; 2570 if (c != '"') 2571 *q++ = c; 2572 } 2573 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL); 2574 if (!arg) { 2575 rc = -ENOMEM; 2576 goto free_opt; 2577 } 2578 } 2579 rc = selinux_add_opt(token, arg, mnt_opts); 2580 kfree(arg); 2581 arg = NULL; 2582 if (unlikely(rc)) { 2583 goto free_opt; 2584 } 2585 } else { 2586 if (!first) { // copy with preceding comma 2587 from--; 2588 len++; 2589 } 2590 if (to != from) 2591 memmove(to, from, len); 2592 to += len; 2593 first = false; 2594 } 2595 if (!from[len]) 2596 break; 2597 from += len + 1; 2598 } 2599 *to = '\0'; 2600 return 0; 2601 2602 free_opt: 2603 if (*mnt_opts) { 2604 selinux_free_mnt_opts(*mnt_opts); 2605 *mnt_opts = NULL; 2606 } 2607 return rc; 2608 } 2609 2610 static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts) 2611 { 2612 struct selinux_mnt_opts *opts = mnt_opts; 2613 struct superblock_security_struct *sbsec = selinux_superblock(sb); 2614 2615 /* 2616 * Superblock not initialized (i.e. no options) - reject if any 2617 * options specified, otherwise accept. 2618 */ 2619 if (!(sbsec->flags & SE_SBINITIALIZED)) 2620 return opts ? 1 : 0; 2621 2622 /* 2623 * Superblock initialized and no options specified - reject if 2624 * superblock has any options set, otherwise accept. 2625 */ 2626 if (!opts) 2627 return (sbsec->flags & SE_MNTMASK) ? 1 : 0; 2628 2629 if (opts->fscontext_sid) { 2630 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 2631 opts->fscontext_sid)) 2632 return 1; 2633 } 2634 if (opts->context_sid) { 2635 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 2636 opts->context_sid)) 2637 return 1; 2638 } 2639 if (opts->rootcontext_sid) { 2640 struct inode_security_struct *root_isec; 2641 2642 root_isec = backing_inode_security(sb->s_root); 2643 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 2644 opts->rootcontext_sid)) 2645 return 1; 2646 } 2647 if (opts->defcontext_sid) { 2648 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 2649 opts->defcontext_sid)) 2650 return 1; 2651 } 2652 return 0; 2653 } 2654 2655 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts) 2656 { 2657 struct selinux_mnt_opts *opts = mnt_opts; 2658 struct superblock_security_struct *sbsec = selinux_superblock(sb); 2659 2660 if (!(sbsec->flags & SE_SBINITIALIZED)) 2661 return 0; 2662 2663 if (!opts) 2664 return 0; 2665 2666 if (opts->fscontext_sid) { 2667 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 2668 opts->fscontext_sid)) 2669 goto out_bad_option; 2670 } 2671 if (opts->context_sid) { 2672 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 2673 opts->context_sid)) 2674 goto out_bad_option; 2675 } 2676 if (opts->rootcontext_sid) { 2677 struct inode_security_struct *root_isec; 2678 root_isec = backing_inode_security(sb->s_root); 2679 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 2680 opts->rootcontext_sid)) 2681 goto out_bad_option; 2682 } 2683 if (opts->defcontext_sid) { 2684 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 2685 opts->defcontext_sid)) 2686 goto out_bad_option; 2687 } 2688 return 0; 2689 2690 out_bad_option: 2691 pr_warn("SELinux: unable to change security options " 2692 "during remount (dev %s, type=%s)\n", sb->s_id, 2693 sb->s_type->name); 2694 return -EINVAL; 2695 } 2696 2697 static int selinux_sb_kern_mount(struct super_block *sb) 2698 { 2699 const struct cred *cred = current_cred(); 2700 struct common_audit_data ad; 2701 2702 ad.type = LSM_AUDIT_DATA_DENTRY; 2703 ad.u.dentry = sb->s_root; 2704 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2705 } 2706 2707 static int selinux_sb_statfs(struct dentry *dentry) 2708 { 2709 const struct cred *cred = current_cred(); 2710 struct common_audit_data ad; 2711 2712 ad.type = LSM_AUDIT_DATA_DENTRY; 2713 ad.u.dentry = dentry->d_sb->s_root; 2714 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2715 } 2716 2717 static int selinux_mount(const char *dev_name, 2718 const struct path *path, 2719 const char *type, 2720 unsigned long flags, 2721 void *data) 2722 { 2723 const struct cred *cred = current_cred(); 2724 2725 if (flags & MS_REMOUNT) 2726 return superblock_has_perm(cred, path->dentry->d_sb, 2727 FILESYSTEM__REMOUNT, NULL); 2728 else 2729 return path_has_perm(cred, path, FILE__MOUNTON); 2730 } 2731 2732 static int selinux_move_mount(const struct path *from_path, 2733 const struct path *to_path) 2734 { 2735 const struct cred *cred = current_cred(); 2736 2737 return path_has_perm(cred, to_path, FILE__MOUNTON); 2738 } 2739 2740 static int selinux_umount(struct vfsmount *mnt, int flags) 2741 { 2742 const struct cred *cred = current_cred(); 2743 2744 return superblock_has_perm(cred, mnt->mnt_sb, 2745 FILESYSTEM__UNMOUNT, NULL); 2746 } 2747 2748 static int selinux_fs_context_dup(struct fs_context *fc, 2749 struct fs_context *src_fc) 2750 { 2751 const struct selinux_mnt_opts *src = src_fc->security; 2752 2753 if (!src) 2754 return 0; 2755 2756 fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL); 2757 return fc->security ? 0 : -ENOMEM; 2758 } 2759 2760 static const struct fs_parameter_spec selinux_fs_parameters[] = { 2761 fsparam_string(CONTEXT_STR, Opt_context), 2762 fsparam_string(DEFCONTEXT_STR, Opt_defcontext), 2763 fsparam_string(FSCONTEXT_STR, Opt_fscontext), 2764 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext), 2765 fsparam_flag (SECLABEL_STR, Opt_seclabel), 2766 {} 2767 }; 2768 2769 static int selinux_fs_context_parse_param(struct fs_context *fc, 2770 struct fs_parameter *param) 2771 { 2772 struct fs_parse_result result; 2773 int opt; 2774 2775 opt = fs_parse(fc, selinux_fs_parameters, param, &result); 2776 if (opt < 0) 2777 return opt; 2778 2779 return selinux_add_opt(opt, param->string, &fc->security); 2780 } 2781 2782 /* inode security operations */ 2783 2784 static int selinux_inode_alloc_security(struct inode *inode) 2785 { 2786 struct inode_security_struct *isec = selinux_inode(inode); 2787 u32 sid = current_sid(); 2788 2789 spin_lock_init(&isec->lock); 2790 INIT_LIST_HEAD(&isec->list); 2791 isec->inode = inode; 2792 isec->sid = SECINITSID_UNLABELED; 2793 isec->sclass = SECCLASS_FILE; 2794 isec->task_sid = sid; 2795 isec->initialized = LABEL_INVALID; 2796 2797 return 0; 2798 } 2799 2800 static void selinux_inode_free_security(struct inode *inode) 2801 { 2802 inode_free_security(inode); 2803 } 2804 2805 static int selinux_dentry_init_security(struct dentry *dentry, int mode, 2806 const struct qstr *name, 2807 const char **xattr_name, void **ctx, 2808 u32 *ctxlen) 2809 { 2810 u32 newsid; 2811 int rc; 2812 2813 rc = selinux_determine_inode_label(selinux_cred(current_cred()), 2814 d_inode(dentry->d_parent), name, 2815 inode_mode_to_security_class(mode), 2816 &newsid); 2817 if (rc) 2818 return rc; 2819 2820 if (xattr_name) 2821 *xattr_name = XATTR_NAME_SELINUX; 2822 2823 return security_sid_to_context(newsid, (char **)ctx, 2824 ctxlen); 2825 } 2826 2827 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode, 2828 struct qstr *name, 2829 const struct cred *old, 2830 struct cred *new) 2831 { 2832 u32 newsid; 2833 int rc; 2834 struct task_security_struct *tsec; 2835 2836 rc = selinux_determine_inode_label(selinux_cred(old), 2837 d_inode(dentry->d_parent), name, 2838 inode_mode_to_security_class(mode), 2839 &newsid); 2840 if (rc) 2841 return rc; 2842 2843 tsec = selinux_cred(new); 2844 tsec->create_sid = newsid; 2845 return 0; 2846 } 2847 2848 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2849 const struct qstr *qstr, 2850 const char **name, 2851 void **value, size_t *len) 2852 { 2853 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2854 struct superblock_security_struct *sbsec; 2855 u32 newsid, clen; 2856 int rc; 2857 char *context; 2858 2859 sbsec = selinux_superblock(dir->i_sb); 2860 2861 newsid = tsec->create_sid; 2862 2863 rc = selinux_determine_inode_label(tsec, dir, qstr, 2864 inode_mode_to_security_class(inode->i_mode), 2865 &newsid); 2866 if (rc) 2867 return rc; 2868 2869 /* Possibly defer initialization to selinux_complete_init. */ 2870 if (sbsec->flags & SE_SBINITIALIZED) { 2871 struct inode_security_struct *isec = selinux_inode(inode); 2872 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2873 isec->sid = newsid; 2874 isec->initialized = LABEL_INITIALIZED; 2875 } 2876 2877 if (!selinux_initialized() || 2878 !(sbsec->flags & SBLABEL_MNT)) 2879 return -EOPNOTSUPP; 2880 2881 if (name) 2882 *name = XATTR_SELINUX_SUFFIX; 2883 2884 if (value && len) { 2885 rc = security_sid_to_context_force(newsid, 2886 &context, &clen); 2887 if (rc) 2888 return rc; 2889 *value = context; 2890 *len = clen; 2891 } 2892 2893 return 0; 2894 } 2895 2896 static int selinux_inode_init_security_anon(struct inode *inode, 2897 const struct qstr *name, 2898 const struct inode *context_inode) 2899 { 2900 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2901 struct common_audit_data ad; 2902 struct inode_security_struct *isec; 2903 int rc; 2904 2905 if (unlikely(!selinux_initialized())) 2906 return 0; 2907 2908 isec = selinux_inode(inode); 2909 2910 /* 2911 * We only get here once per ephemeral inode. The inode has 2912 * been initialized via inode_alloc_security but is otherwise 2913 * untouched. 2914 */ 2915 2916 if (context_inode) { 2917 struct inode_security_struct *context_isec = 2918 selinux_inode(context_inode); 2919 if (context_isec->initialized != LABEL_INITIALIZED) { 2920 pr_err("SELinux: context_inode is not initialized"); 2921 return -EACCES; 2922 } 2923 2924 isec->sclass = context_isec->sclass; 2925 isec->sid = context_isec->sid; 2926 } else { 2927 isec->sclass = SECCLASS_ANON_INODE; 2928 rc = security_transition_sid( 2929 tsec->sid, tsec->sid, 2930 isec->sclass, name, &isec->sid); 2931 if (rc) 2932 return rc; 2933 } 2934 2935 isec->initialized = LABEL_INITIALIZED; 2936 /* 2937 * Now that we've initialized security, check whether we're 2938 * allowed to actually create this type of anonymous inode. 2939 */ 2940 2941 ad.type = LSM_AUDIT_DATA_ANONINODE; 2942 ad.u.anonclass = name ? (const char *)name->name : "?"; 2943 2944 return avc_has_perm(tsec->sid, 2945 isec->sid, 2946 isec->sclass, 2947 FILE__CREATE, 2948 &ad); 2949 } 2950 2951 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 2952 { 2953 return may_create(dir, dentry, SECCLASS_FILE); 2954 } 2955 2956 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2957 { 2958 return may_link(dir, old_dentry, MAY_LINK); 2959 } 2960 2961 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2962 { 2963 return may_link(dir, dentry, MAY_UNLINK); 2964 } 2965 2966 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2967 { 2968 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2969 } 2970 2971 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 2972 { 2973 return may_create(dir, dentry, SECCLASS_DIR); 2974 } 2975 2976 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2977 { 2978 return may_link(dir, dentry, MAY_RMDIR); 2979 } 2980 2981 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2982 { 2983 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2984 } 2985 2986 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2987 struct inode *new_inode, struct dentry *new_dentry) 2988 { 2989 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2990 } 2991 2992 static int selinux_inode_readlink(struct dentry *dentry) 2993 { 2994 const struct cred *cred = current_cred(); 2995 2996 return dentry_has_perm(cred, dentry, FILE__READ); 2997 } 2998 2999 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode, 3000 bool rcu) 3001 { 3002 const struct cred *cred = current_cred(); 3003 struct common_audit_data ad; 3004 struct inode_security_struct *isec; 3005 u32 sid; 3006 3007 validate_creds(cred); 3008 3009 ad.type = LSM_AUDIT_DATA_DENTRY; 3010 ad.u.dentry = dentry; 3011 sid = cred_sid(cred); 3012 isec = inode_security_rcu(inode, rcu); 3013 if (IS_ERR(isec)) 3014 return PTR_ERR(isec); 3015 3016 return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad); 3017 } 3018 3019 static noinline int audit_inode_permission(struct inode *inode, 3020 u32 perms, u32 audited, u32 denied, 3021 int result) 3022 { 3023 struct common_audit_data ad; 3024 struct inode_security_struct *isec = selinux_inode(inode); 3025 3026 ad.type = LSM_AUDIT_DATA_INODE; 3027 ad.u.inode = inode; 3028 3029 return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms, 3030 audited, denied, result, &ad); 3031 } 3032 3033 static int selinux_inode_permission(struct inode *inode, int mask) 3034 { 3035 const struct cred *cred = current_cred(); 3036 u32 perms; 3037 bool from_access; 3038 bool no_block = mask & MAY_NOT_BLOCK; 3039 struct inode_security_struct *isec; 3040 u32 sid; 3041 struct av_decision avd; 3042 int rc, rc2; 3043 u32 audited, denied; 3044 3045 from_access = mask & MAY_ACCESS; 3046 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 3047 3048 /* No permission to check. Existence test. */ 3049 if (!mask) 3050 return 0; 3051 3052 validate_creds(cred); 3053 3054 if (unlikely(IS_PRIVATE(inode))) 3055 return 0; 3056 3057 perms = file_mask_to_av(inode->i_mode, mask); 3058 3059 sid = cred_sid(cred); 3060 isec = inode_security_rcu(inode, no_block); 3061 if (IS_ERR(isec)) 3062 return PTR_ERR(isec); 3063 3064 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, 3065 &avd); 3066 audited = avc_audit_required(perms, &avd, rc, 3067 from_access ? FILE__AUDIT_ACCESS : 0, 3068 &denied); 3069 if (likely(!audited)) 3070 return rc; 3071 3072 rc2 = audit_inode_permission(inode, perms, audited, denied, rc); 3073 if (rc2) 3074 return rc2; 3075 return rc; 3076 } 3077 3078 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 3079 { 3080 const struct cred *cred = current_cred(); 3081 struct inode *inode = d_backing_inode(dentry); 3082 unsigned int ia_valid = iattr->ia_valid; 3083 __u32 av = FILE__WRITE; 3084 3085 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 3086 if (ia_valid & ATTR_FORCE) { 3087 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 3088 ATTR_FORCE); 3089 if (!ia_valid) 3090 return 0; 3091 } 3092 3093 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 3094 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 3095 return dentry_has_perm(cred, dentry, FILE__SETATTR); 3096 3097 if (selinux_policycap_openperm() && 3098 inode->i_sb->s_magic != SOCKFS_MAGIC && 3099 (ia_valid & ATTR_SIZE) && 3100 !(ia_valid & ATTR_FILE)) 3101 av |= FILE__OPEN; 3102 3103 return dentry_has_perm(cred, dentry, av); 3104 } 3105 3106 static int selinux_inode_getattr(const struct path *path) 3107 { 3108 return path_has_perm(current_cred(), path, FILE__GETATTR); 3109 } 3110 3111 static bool has_cap_mac_admin(bool audit) 3112 { 3113 const struct cred *cred = current_cred(); 3114 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT; 3115 3116 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts)) 3117 return false; 3118 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true)) 3119 return false; 3120 return true; 3121 } 3122 3123 static int selinux_inode_setxattr(struct mnt_idmap *idmap, 3124 struct dentry *dentry, const char *name, 3125 const void *value, size_t size, int flags) 3126 { 3127 struct inode *inode = d_backing_inode(dentry); 3128 struct inode_security_struct *isec; 3129 struct superblock_security_struct *sbsec; 3130 struct common_audit_data ad; 3131 u32 newsid, sid = current_sid(); 3132 int rc = 0; 3133 3134 if (strcmp(name, XATTR_NAME_SELINUX)) { 3135 rc = cap_inode_setxattr(dentry, name, value, size, flags); 3136 if (rc) 3137 return rc; 3138 3139 /* Not an attribute we recognize, so just check the 3140 ordinary setattr permission. */ 3141 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3142 } 3143 3144 if (!selinux_initialized()) 3145 return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM); 3146 3147 sbsec = selinux_superblock(inode->i_sb); 3148 if (!(sbsec->flags & SBLABEL_MNT)) 3149 return -EOPNOTSUPP; 3150 3151 if (!inode_owner_or_capable(idmap, inode)) 3152 return -EPERM; 3153 3154 ad.type = LSM_AUDIT_DATA_DENTRY; 3155 ad.u.dentry = dentry; 3156 3157 isec = backing_inode_security(dentry); 3158 rc = avc_has_perm(sid, isec->sid, isec->sclass, 3159 FILE__RELABELFROM, &ad); 3160 if (rc) 3161 return rc; 3162 3163 rc = security_context_to_sid(value, size, &newsid, 3164 GFP_KERNEL); 3165 if (rc == -EINVAL) { 3166 if (!has_cap_mac_admin(true)) { 3167 struct audit_buffer *ab; 3168 size_t audit_size; 3169 3170 /* We strip a nul only if it is at the end, otherwise the 3171 * context contains a nul and we should audit that */ 3172 if (value) { 3173 const char *str = value; 3174 3175 if (str[size - 1] == '\0') 3176 audit_size = size - 1; 3177 else 3178 audit_size = size; 3179 } else { 3180 audit_size = 0; 3181 } 3182 ab = audit_log_start(audit_context(), 3183 GFP_ATOMIC, AUDIT_SELINUX_ERR); 3184 if (!ab) 3185 return rc; 3186 audit_log_format(ab, "op=setxattr invalid_context="); 3187 audit_log_n_untrustedstring(ab, value, audit_size); 3188 audit_log_end(ab); 3189 3190 return rc; 3191 } 3192 rc = security_context_to_sid_force(value, 3193 size, &newsid); 3194 } 3195 if (rc) 3196 return rc; 3197 3198 rc = avc_has_perm(sid, newsid, isec->sclass, 3199 FILE__RELABELTO, &ad); 3200 if (rc) 3201 return rc; 3202 3203 rc = security_validate_transition(isec->sid, newsid, 3204 sid, isec->sclass); 3205 if (rc) 3206 return rc; 3207 3208 return avc_has_perm(newsid, 3209 sbsec->sid, 3210 SECCLASS_FILESYSTEM, 3211 FILESYSTEM__ASSOCIATE, 3212 &ad); 3213 } 3214 3215 static int selinux_inode_set_acl(struct mnt_idmap *idmap, 3216 struct dentry *dentry, const char *acl_name, 3217 struct posix_acl *kacl) 3218 { 3219 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3220 } 3221 3222 static int selinux_inode_get_acl(struct mnt_idmap *idmap, 3223 struct dentry *dentry, const char *acl_name) 3224 { 3225 return dentry_has_perm(current_cred(), dentry, FILE__GETATTR); 3226 } 3227 3228 static int selinux_inode_remove_acl(struct mnt_idmap *idmap, 3229 struct dentry *dentry, const char *acl_name) 3230 { 3231 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3232 } 3233 3234 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 3235 const void *value, size_t size, 3236 int flags) 3237 { 3238 struct inode *inode = d_backing_inode(dentry); 3239 struct inode_security_struct *isec; 3240 u32 newsid; 3241 int rc; 3242 3243 if (strcmp(name, XATTR_NAME_SELINUX)) { 3244 /* Not an attribute we recognize, so nothing to do. */ 3245 return; 3246 } 3247 3248 if (!selinux_initialized()) { 3249 /* If we haven't even been initialized, then we can't validate 3250 * against a policy, so leave the label as invalid. It may 3251 * resolve to a valid label on the next revalidation try if 3252 * we've since initialized. 3253 */ 3254 return; 3255 } 3256 3257 rc = security_context_to_sid_force(value, size, 3258 &newsid); 3259 if (rc) { 3260 pr_err("SELinux: unable to map context to SID" 3261 "for (%s, %lu), rc=%d\n", 3262 inode->i_sb->s_id, inode->i_ino, -rc); 3263 return; 3264 } 3265 3266 isec = backing_inode_security(dentry); 3267 spin_lock(&isec->lock); 3268 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3269 isec->sid = newsid; 3270 isec->initialized = LABEL_INITIALIZED; 3271 spin_unlock(&isec->lock); 3272 } 3273 3274 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 3275 { 3276 const struct cred *cred = current_cred(); 3277 3278 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3279 } 3280 3281 static int selinux_inode_listxattr(struct dentry *dentry) 3282 { 3283 const struct cred *cred = current_cred(); 3284 3285 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3286 } 3287 3288 static int selinux_inode_removexattr(struct mnt_idmap *idmap, 3289 struct dentry *dentry, const char *name) 3290 { 3291 if (strcmp(name, XATTR_NAME_SELINUX)) { 3292 int rc = cap_inode_removexattr(idmap, dentry, name); 3293 if (rc) 3294 return rc; 3295 3296 /* Not an attribute we recognize, so just check the 3297 ordinary setattr permission. */ 3298 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3299 } 3300 3301 if (!selinux_initialized()) 3302 return 0; 3303 3304 /* No one is allowed to remove a SELinux security label. 3305 You can change the label, but all data must be labeled. */ 3306 return -EACCES; 3307 } 3308 3309 static int selinux_path_notify(const struct path *path, u64 mask, 3310 unsigned int obj_type) 3311 { 3312 int ret; 3313 u32 perm; 3314 3315 struct common_audit_data ad; 3316 3317 ad.type = LSM_AUDIT_DATA_PATH; 3318 ad.u.path = *path; 3319 3320 /* 3321 * Set permission needed based on the type of mark being set. 3322 * Performs an additional check for sb watches. 3323 */ 3324 switch (obj_type) { 3325 case FSNOTIFY_OBJ_TYPE_VFSMOUNT: 3326 perm = FILE__WATCH_MOUNT; 3327 break; 3328 case FSNOTIFY_OBJ_TYPE_SB: 3329 perm = FILE__WATCH_SB; 3330 ret = superblock_has_perm(current_cred(), path->dentry->d_sb, 3331 FILESYSTEM__WATCH, &ad); 3332 if (ret) 3333 return ret; 3334 break; 3335 case FSNOTIFY_OBJ_TYPE_INODE: 3336 perm = FILE__WATCH; 3337 break; 3338 default: 3339 return -EINVAL; 3340 } 3341 3342 /* blocking watches require the file:watch_with_perm permission */ 3343 if (mask & (ALL_FSNOTIFY_PERM_EVENTS)) 3344 perm |= FILE__WATCH_WITH_PERM; 3345 3346 /* watches on read-like events need the file:watch_reads permission */ 3347 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE)) 3348 perm |= FILE__WATCH_READS; 3349 3350 return path_has_perm(current_cred(), path, perm); 3351 } 3352 3353 /* 3354 * Copy the inode security context value to the user. 3355 * 3356 * Permission check is handled by selinux_inode_getxattr hook. 3357 */ 3358 static int selinux_inode_getsecurity(struct mnt_idmap *idmap, 3359 struct inode *inode, const char *name, 3360 void **buffer, bool alloc) 3361 { 3362 u32 size; 3363 int error; 3364 char *context = NULL; 3365 struct inode_security_struct *isec; 3366 3367 /* 3368 * If we're not initialized yet, then we can't validate contexts, so 3369 * just let vfs_getxattr fall back to using the on-disk xattr. 3370 */ 3371 if (!selinux_initialized() || 3372 strcmp(name, XATTR_SELINUX_SUFFIX)) 3373 return -EOPNOTSUPP; 3374 3375 /* 3376 * If the caller has CAP_MAC_ADMIN, then get the raw context 3377 * value even if it is not defined by current policy; otherwise, 3378 * use the in-core value under current policy. 3379 * Use the non-auditing forms of the permission checks since 3380 * getxattr may be called by unprivileged processes commonly 3381 * and lack of permission just means that we fall back to the 3382 * in-core context value, not a denial. 3383 */ 3384 isec = inode_security(inode); 3385 if (has_cap_mac_admin(false)) 3386 error = security_sid_to_context_force(isec->sid, &context, 3387 &size); 3388 else 3389 error = security_sid_to_context(isec->sid, 3390 &context, &size); 3391 if (error) 3392 return error; 3393 error = size; 3394 if (alloc) { 3395 *buffer = context; 3396 goto out_nofree; 3397 } 3398 kfree(context); 3399 out_nofree: 3400 return error; 3401 } 3402 3403 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 3404 const void *value, size_t size, int flags) 3405 { 3406 struct inode_security_struct *isec = inode_security_novalidate(inode); 3407 struct superblock_security_struct *sbsec; 3408 u32 newsid; 3409 int rc; 3410 3411 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3412 return -EOPNOTSUPP; 3413 3414 sbsec = selinux_superblock(inode->i_sb); 3415 if (!(sbsec->flags & SBLABEL_MNT)) 3416 return -EOPNOTSUPP; 3417 3418 if (!value || !size) 3419 return -EACCES; 3420 3421 rc = security_context_to_sid(value, size, &newsid, 3422 GFP_KERNEL); 3423 if (rc) 3424 return rc; 3425 3426 spin_lock(&isec->lock); 3427 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3428 isec->sid = newsid; 3429 isec->initialized = LABEL_INITIALIZED; 3430 spin_unlock(&isec->lock); 3431 return 0; 3432 } 3433 3434 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 3435 { 3436 const int len = sizeof(XATTR_NAME_SELINUX); 3437 3438 if (!selinux_initialized()) 3439 return 0; 3440 3441 if (buffer && len <= buffer_size) 3442 memcpy(buffer, XATTR_NAME_SELINUX, len); 3443 return len; 3444 } 3445 3446 static void selinux_inode_getsecid(struct inode *inode, u32 *secid) 3447 { 3448 struct inode_security_struct *isec = inode_security_novalidate(inode); 3449 *secid = isec->sid; 3450 } 3451 3452 static int selinux_inode_copy_up(struct dentry *src, struct cred **new) 3453 { 3454 u32 sid; 3455 struct task_security_struct *tsec; 3456 struct cred *new_creds = *new; 3457 3458 if (new_creds == NULL) { 3459 new_creds = prepare_creds(); 3460 if (!new_creds) 3461 return -ENOMEM; 3462 } 3463 3464 tsec = selinux_cred(new_creds); 3465 /* Get label from overlay inode and set it in create_sid */ 3466 selinux_inode_getsecid(d_inode(src), &sid); 3467 tsec->create_sid = sid; 3468 *new = new_creds; 3469 return 0; 3470 } 3471 3472 static int selinux_inode_copy_up_xattr(const char *name) 3473 { 3474 /* The copy_up hook above sets the initial context on an inode, but we 3475 * don't then want to overwrite it by blindly copying all the lower 3476 * xattrs up. Instead, we have to filter out SELinux-related xattrs. 3477 */ 3478 if (strcmp(name, XATTR_NAME_SELINUX) == 0) 3479 return 1; /* Discard */ 3480 /* 3481 * Any other attribute apart from SELINUX is not claimed, supported 3482 * by selinux. 3483 */ 3484 return -EOPNOTSUPP; 3485 } 3486 3487 /* kernfs node operations */ 3488 3489 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir, 3490 struct kernfs_node *kn) 3491 { 3492 const struct task_security_struct *tsec = selinux_cred(current_cred()); 3493 u32 parent_sid, newsid, clen; 3494 int rc; 3495 char *context; 3496 3497 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0); 3498 if (rc == -ENODATA) 3499 return 0; 3500 else if (rc < 0) 3501 return rc; 3502 3503 clen = (u32)rc; 3504 context = kmalloc(clen, GFP_KERNEL); 3505 if (!context) 3506 return -ENOMEM; 3507 3508 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen); 3509 if (rc < 0) { 3510 kfree(context); 3511 return rc; 3512 } 3513 3514 rc = security_context_to_sid(context, clen, &parent_sid, 3515 GFP_KERNEL); 3516 kfree(context); 3517 if (rc) 3518 return rc; 3519 3520 if (tsec->create_sid) { 3521 newsid = tsec->create_sid; 3522 } else { 3523 u16 secclass = inode_mode_to_security_class(kn->mode); 3524 struct qstr q; 3525 3526 q.name = kn->name; 3527 q.hash_len = hashlen_string(kn_dir, kn->name); 3528 3529 rc = security_transition_sid(tsec->sid, 3530 parent_sid, secclass, &q, 3531 &newsid); 3532 if (rc) 3533 return rc; 3534 } 3535 3536 rc = security_sid_to_context_force(newsid, 3537 &context, &clen); 3538 if (rc) 3539 return rc; 3540 3541 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen, 3542 XATTR_CREATE); 3543 kfree(context); 3544 return rc; 3545 } 3546 3547 3548 /* file security operations */ 3549 3550 static int selinux_revalidate_file_permission(struct file *file, int mask) 3551 { 3552 const struct cred *cred = current_cred(); 3553 struct inode *inode = file_inode(file); 3554 3555 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 3556 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 3557 mask |= MAY_APPEND; 3558 3559 return file_has_perm(cred, file, 3560 file_mask_to_av(inode->i_mode, mask)); 3561 } 3562 3563 static int selinux_file_permission(struct file *file, int mask) 3564 { 3565 struct inode *inode = file_inode(file); 3566 struct file_security_struct *fsec = selinux_file(file); 3567 struct inode_security_struct *isec; 3568 u32 sid = current_sid(); 3569 3570 if (!mask) 3571 /* No permission to check. Existence test. */ 3572 return 0; 3573 3574 isec = inode_security(inode); 3575 if (sid == fsec->sid && fsec->isid == isec->sid && 3576 fsec->pseqno == avc_policy_seqno()) 3577 /* No change since file_open check. */ 3578 return 0; 3579 3580 return selinux_revalidate_file_permission(file, mask); 3581 } 3582 3583 static int selinux_file_alloc_security(struct file *file) 3584 { 3585 struct file_security_struct *fsec = selinux_file(file); 3586 u32 sid = current_sid(); 3587 3588 fsec->sid = sid; 3589 fsec->fown_sid = sid; 3590 3591 return 0; 3592 } 3593 3594 /* 3595 * Check whether a task has the ioctl permission and cmd 3596 * operation to an inode. 3597 */ 3598 static int ioctl_has_perm(const struct cred *cred, struct file *file, 3599 u32 requested, u16 cmd) 3600 { 3601 struct common_audit_data ad; 3602 struct file_security_struct *fsec = selinux_file(file); 3603 struct inode *inode = file_inode(file); 3604 struct inode_security_struct *isec; 3605 struct lsm_ioctlop_audit ioctl; 3606 u32 ssid = cred_sid(cred); 3607 int rc; 3608 u8 driver = cmd >> 8; 3609 u8 xperm = cmd & 0xff; 3610 3611 ad.type = LSM_AUDIT_DATA_IOCTL_OP; 3612 ad.u.op = &ioctl; 3613 ad.u.op->cmd = cmd; 3614 ad.u.op->path = file->f_path; 3615 3616 if (ssid != fsec->sid) { 3617 rc = avc_has_perm(ssid, fsec->sid, 3618 SECCLASS_FD, 3619 FD__USE, 3620 &ad); 3621 if (rc) 3622 goto out; 3623 } 3624 3625 if (unlikely(IS_PRIVATE(inode))) 3626 return 0; 3627 3628 isec = inode_security(inode); 3629 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass, 3630 requested, driver, xperm, &ad); 3631 out: 3632 return rc; 3633 } 3634 3635 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3636 unsigned long arg) 3637 { 3638 const struct cred *cred = current_cred(); 3639 int error = 0; 3640 3641 switch (cmd) { 3642 case FIONREAD: 3643 case FIBMAP: 3644 case FIGETBSZ: 3645 case FS_IOC_GETFLAGS: 3646 case FS_IOC_GETVERSION: 3647 error = file_has_perm(cred, file, FILE__GETATTR); 3648 break; 3649 3650 case FS_IOC_SETFLAGS: 3651 case FS_IOC_SETVERSION: 3652 error = file_has_perm(cred, file, FILE__SETATTR); 3653 break; 3654 3655 /* sys_ioctl() checks */ 3656 case FIONBIO: 3657 case FIOASYNC: 3658 error = file_has_perm(cred, file, 0); 3659 break; 3660 3661 case KDSKBENT: 3662 case KDSKBSENT: 3663 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3664 CAP_OPT_NONE, true); 3665 break; 3666 3667 case FIOCLEX: 3668 case FIONCLEX: 3669 if (!selinux_policycap_ioctl_skip_cloexec()) 3670 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); 3671 break; 3672 3673 /* default case assumes that the command will go 3674 * to the file's ioctl() function. 3675 */ 3676 default: 3677 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); 3678 } 3679 return error; 3680 } 3681 3682 static int default_noexec __ro_after_init; 3683 3684 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3685 { 3686 const struct cred *cred = current_cred(); 3687 u32 sid = cred_sid(cred); 3688 int rc = 0; 3689 3690 if (default_noexec && 3691 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) || 3692 (!shared && (prot & PROT_WRITE)))) { 3693 /* 3694 * We are making executable an anonymous mapping or a 3695 * private file mapping that will also be writable. 3696 * This has an additional check. 3697 */ 3698 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS, 3699 PROCESS__EXECMEM, NULL); 3700 if (rc) 3701 goto error; 3702 } 3703 3704 if (file) { 3705 /* read access is always possible with a mapping */ 3706 u32 av = FILE__READ; 3707 3708 /* write access only matters if the mapping is shared */ 3709 if (shared && (prot & PROT_WRITE)) 3710 av |= FILE__WRITE; 3711 3712 if (prot & PROT_EXEC) 3713 av |= FILE__EXECUTE; 3714 3715 return file_has_perm(cred, file, av); 3716 } 3717 3718 error: 3719 return rc; 3720 } 3721 3722 static int selinux_mmap_addr(unsigned long addr) 3723 { 3724 int rc = 0; 3725 3726 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3727 u32 sid = current_sid(); 3728 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3729 MEMPROTECT__MMAP_ZERO, NULL); 3730 } 3731 3732 return rc; 3733 } 3734 3735 static int selinux_mmap_file(struct file *file, 3736 unsigned long reqprot __always_unused, 3737 unsigned long prot, unsigned long flags) 3738 { 3739 struct common_audit_data ad; 3740 int rc; 3741 3742 if (file) { 3743 ad.type = LSM_AUDIT_DATA_FILE; 3744 ad.u.file = file; 3745 rc = inode_has_perm(current_cred(), file_inode(file), 3746 FILE__MAP, &ad); 3747 if (rc) 3748 return rc; 3749 } 3750 3751 return file_map_prot_check(file, prot, 3752 (flags & MAP_TYPE) == MAP_SHARED); 3753 } 3754 3755 static int selinux_file_mprotect(struct vm_area_struct *vma, 3756 unsigned long reqprot __always_unused, 3757 unsigned long prot) 3758 { 3759 const struct cred *cred = current_cred(); 3760 u32 sid = cred_sid(cred); 3761 3762 if (default_noexec && 3763 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3764 int rc = 0; 3765 if (vma_is_initial_heap(vma)) { 3766 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS, 3767 PROCESS__EXECHEAP, NULL); 3768 } else if (!vma->vm_file && (vma_is_initial_stack(vma) || 3769 vma_is_stack_for_current(vma))) { 3770 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS, 3771 PROCESS__EXECSTACK, NULL); 3772 } else if (vma->vm_file && vma->anon_vma) { 3773 /* 3774 * We are making executable a file mapping that has 3775 * had some COW done. Since pages might have been 3776 * written, check ability to execute the possibly 3777 * modified content. This typically should only 3778 * occur for text relocations. 3779 */ 3780 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3781 } 3782 if (rc) 3783 return rc; 3784 } 3785 3786 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3787 } 3788 3789 static int selinux_file_lock(struct file *file, unsigned int cmd) 3790 { 3791 const struct cred *cred = current_cred(); 3792 3793 return file_has_perm(cred, file, FILE__LOCK); 3794 } 3795 3796 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3797 unsigned long arg) 3798 { 3799 const struct cred *cred = current_cred(); 3800 int err = 0; 3801 3802 switch (cmd) { 3803 case F_SETFL: 3804 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3805 err = file_has_perm(cred, file, FILE__WRITE); 3806 break; 3807 } 3808 fallthrough; 3809 case F_SETOWN: 3810 case F_SETSIG: 3811 case F_GETFL: 3812 case F_GETOWN: 3813 case F_GETSIG: 3814 case F_GETOWNER_UIDS: 3815 /* Just check FD__USE permission */ 3816 err = file_has_perm(cred, file, 0); 3817 break; 3818 case F_GETLK: 3819 case F_SETLK: 3820 case F_SETLKW: 3821 case F_OFD_GETLK: 3822 case F_OFD_SETLK: 3823 case F_OFD_SETLKW: 3824 #if BITS_PER_LONG == 32 3825 case F_GETLK64: 3826 case F_SETLK64: 3827 case F_SETLKW64: 3828 #endif 3829 err = file_has_perm(cred, file, FILE__LOCK); 3830 break; 3831 } 3832 3833 return err; 3834 } 3835 3836 static void selinux_file_set_fowner(struct file *file) 3837 { 3838 struct file_security_struct *fsec; 3839 3840 fsec = selinux_file(file); 3841 fsec->fown_sid = current_sid(); 3842 } 3843 3844 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3845 struct fown_struct *fown, int signum) 3846 { 3847 struct file *file; 3848 u32 sid = task_sid_obj(tsk); 3849 u32 perm; 3850 struct file_security_struct *fsec; 3851 3852 /* struct fown_struct is never outside the context of a struct file */ 3853 file = container_of(fown, struct file, f_owner); 3854 3855 fsec = selinux_file(file); 3856 3857 if (!signum) 3858 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3859 else 3860 perm = signal_to_av(signum); 3861 3862 return avc_has_perm(fsec->fown_sid, sid, 3863 SECCLASS_PROCESS, perm, NULL); 3864 } 3865 3866 static int selinux_file_receive(struct file *file) 3867 { 3868 const struct cred *cred = current_cred(); 3869 3870 return file_has_perm(cred, file, file_to_av(file)); 3871 } 3872 3873 static int selinux_file_open(struct file *file) 3874 { 3875 struct file_security_struct *fsec; 3876 struct inode_security_struct *isec; 3877 3878 fsec = selinux_file(file); 3879 isec = inode_security(file_inode(file)); 3880 /* 3881 * Save inode label and policy sequence number 3882 * at open-time so that selinux_file_permission 3883 * can determine whether revalidation is necessary. 3884 * Task label is already saved in the file security 3885 * struct as its SID. 3886 */ 3887 fsec->isid = isec->sid; 3888 fsec->pseqno = avc_policy_seqno(); 3889 /* 3890 * Since the inode label or policy seqno may have changed 3891 * between the selinux_inode_permission check and the saving 3892 * of state above, recheck that access is still permitted. 3893 * Otherwise, access might never be revalidated against the 3894 * new inode label or new policy. 3895 * This check is not redundant - do not remove. 3896 */ 3897 return file_path_has_perm(file->f_cred, file, open_file_to_av(file)); 3898 } 3899 3900 /* task security operations */ 3901 3902 static int selinux_task_alloc(struct task_struct *task, 3903 unsigned long clone_flags) 3904 { 3905 u32 sid = current_sid(); 3906 3907 return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL); 3908 } 3909 3910 /* 3911 * prepare a new set of credentials for modification 3912 */ 3913 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3914 gfp_t gfp) 3915 { 3916 const struct task_security_struct *old_tsec = selinux_cred(old); 3917 struct task_security_struct *tsec = selinux_cred(new); 3918 3919 *tsec = *old_tsec; 3920 return 0; 3921 } 3922 3923 /* 3924 * transfer the SELinux data to a blank set of creds 3925 */ 3926 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3927 { 3928 const struct task_security_struct *old_tsec = selinux_cred(old); 3929 struct task_security_struct *tsec = selinux_cred(new); 3930 3931 *tsec = *old_tsec; 3932 } 3933 3934 static void selinux_cred_getsecid(const struct cred *c, u32 *secid) 3935 { 3936 *secid = cred_sid(c); 3937 } 3938 3939 /* 3940 * set the security data for a kernel service 3941 * - all the creation contexts are set to unlabelled 3942 */ 3943 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3944 { 3945 struct task_security_struct *tsec = selinux_cred(new); 3946 u32 sid = current_sid(); 3947 int ret; 3948 3949 ret = avc_has_perm(sid, secid, 3950 SECCLASS_KERNEL_SERVICE, 3951 KERNEL_SERVICE__USE_AS_OVERRIDE, 3952 NULL); 3953 if (ret == 0) { 3954 tsec->sid = secid; 3955 tsec->create_sid = 0; 3956 tsec->keycreate_sid = 0; 3957 tsec->sockcreate_sid = 0; 3958 } 3959 return ret; 3960 } 3961 3962 /* 3963 * set the file creation context in a security record to the same as the 3964 * objective context of the specified inode 3965 */ 3966 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3967 { 3968 struct inode_security_struct *isec = inode_security(inode); 3969 struct task_security_struct *tsec = selinux_cred(new); 3970 u32 sid = current_sid(); 3971 int ret; 3972 3973 ret = avc_has_perm(sid, isec->sid, 3974 SECCLASS_KERNEL_SERVICE, 3975 KERNEL_SERVICE__CREATE_FILES_AS, 3976 NULL); 3977 3978 if (ret == 0) 3979 tsec->create_sid = isec->sid; 3980 return ret; 3981 } 3982 3983 static int selinux_kernel_module_request(char *kmod_name) 3984 { 3985 struct common_audit_data ad; 3986 3987 ad.type = LSM_AUDIT_DATA_KMOD; 3988 ad.u.kmod_name = kmod_name; 3989 3990 return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, 3991 SYSTEM__MODULE_REQUEST, &ad); 3992 } 3993 3994 static int selinux_kernel_module_from_file(struct file *file) 3995 { 3996 struct common_audit_data ad; 3997 struct inode_security_struct *isec; 3998 struct file_security_struct *fsec; 3999 u32 sid = current_sid(); 4000 int rc; 4001 4002 /* init_module */ 4003 if (file == NULL) 4004 return avc_has_perm(sid, sid, SECCLASS_SYSTEM, 4005 SYSTEM__MODULE_LOAD, NULL); 4006 4007 /* finit_module */ 4008 4009 ad.type = LSM_AUDIT_DATA_FILE; 4010 ad.u.file = file; 4011 4012 fsec = selinux_file(file); 4013 if (sid != fsec->sid) { 4014 rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); 4015 if (rc) 4016 return rc; 4017 } 4018 4019 isec = inode_security(file_inode(file)); 4020 return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM, 4021 SYSTEM__MODULE_LOAD, &ad); 4022 } 4023 4024 static int selinux_kernel_read_file(struct file *file, 4025 enum kernel_read_file_id id, 4026 bool contents) 4027 { 4028 int rc = 0; 4029 4030 switch (id) { 4031 case READING_MODULE: 4032 rc = selinux_kernel_module_from_file(contents ? file : NULL); 4033 break; 4034 default: 4035 break; 4036 } 4037 4038 return rc; 4039 } 4040 4041 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents) 4042 { 4043 int rc = 0; 4044 4045 switch (id) { 4046 case LOADING_MODULE: 4047 rc = selinux_kernel_module_from_file(NULL); 4048 break; 4049 default: 4050 break; 4051 } 4052 4053 return rc; 4054 } 4055 4056 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 4057 { 4058 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4059 PROCESS__SETPGID, NULL); 4060 } 4061 4062 static int selinux_task_getpgid(struct task_struct *p) 4063 { 4064 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4065 PROCESS__GETPGID, NULL); 4066 } 4067 4068 static int selinux_task_getsid(struct task_struct *p) 4069 { 4070 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4071 PROCESS__GETSESSION, NULL); 4072 } 4073 4074 static void selinux_current_getsecid_subj(u32 *secid) 4075 { 4076 *secid = current_sid(); 4077 } 4078 4079 static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid) 4080 { 4081 *secid = task_sid_obj(p); 4082 } 4083 4084 static int selinux_task_setnice(struct task_struct *p, int nice) 4085 { 4086 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4087 PROCESS__SETSCHED, NULL); 4088 } 4089 4090 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 4091 { 4092 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4093 PROCESS__SETSCHED, NULL); 4094 } 4095 4096 static int selinux_task_getioprio(struct task_struct *p) 4097 { 4098 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4099 PROCESS__GETSCHED, NULL); 4100 } 4101 4102 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred, 4103 unsigned int flags) 4104 { 4105 u32 av = 0; 4106 4107 if (!flags) 4108 return 0; 4109 if (flags & LSM_PRLIMIT_WRITE) 4110 av |= PROCESS__SETRLIMIT; 4111 if (flags & LSM_PRLIMIT_READ) 4112 av |= PROCESS__GETRLIMIT; 4113 return avc_has_perm(cred_sid(cred), cred_sid(tcred), 4114 SECCLASS_PROCESS, av, NULL); 4115 } 4116 4117 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 4118 struct rlimit *new_rlim) 4119 { 4120 struct rlimit *old_rlim = p->signal->rlim + resource; 4121 4122 /* Control the ability to change the hard limit (whether 4123 lowering or raising it), so that the hard limit can 4124 later be used as a safe reset point for the soft limit 4125 upon context transitions. See selinux_bprm_committing_creds. */ 4126 if (old_rlim->rlim_max != new_rlim->rlim_max) 4127 return avc_has_perm(current_sid(), task_sid_obj(p), 4128 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL); 4129 4130 return 0; 4131 } 4132 4133 static int selinux_task_setscheduler(struct task_struct *p) 4134 { 4135 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4136 PROCESS__SETSCHED, NULL); 4137 } 4138 4139 static int selinux_task_getscheduler(struct task_struct *p) 4140 { 4141 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4142 PROCESS__GETSCHED, NULL); 4143 } 4144 4145 static int selinux_task_movememory(struct task_struct *p) 4146 { 4147 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4148 PROCESS__SETSCHED, NULL); 4149 } 4150 4151 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info, 4152 int sig, const struct cred *cred) 4153 { 4154 u32 secid; 4155 u32 perm; 4156 4157 if (!sig) 4158 perm = PROCESS__SIGNULL; /* null signal; existence test */ 4159 else 4160 perm = signal_to_av(sig); 4161 if (!cred) 4162 secid = current_sid(); 4163 else 4164 secid = cred_sid(cred); 4165 return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL); 4166 } 4167 4168 static void selinux_task_to_inode(struct task_struct *p, 4169 struct inode *inode) 4170 { 4171 struct inode_security_struct *isec = selinux_inode(inode); 4172 u32 sid = task_sid_obj(p); 4173 4174 spin_lock(&isec->lock); 4175 isec->sclass = inode_mode_to_security_class(inode->i_mode); 4176 isec->sid = sid; 4177 isec->initialized = LABEL_INITIALIZED; 4178 spin_unlock(&isec->lock); 4179 } 4180 4181 static int selinux_userns_create(const struct cred *cred) 4182 { 4183 u32 sid = current_sid(); 4184 4185 return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE, 4186 USER_NAMESPACE__CREATE, NULL); 4187 } 4188 4189 /* Returns error only if unable to parse addresses */ 4190 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 4191 struct common_audit_data *ad, u8 *proto) 4192 { 4193 int offset, ihlen, ret = -EINVAL; 4194 struct iphdr _iph, *ih; 4195 4196 offset = skb_network_offset(skb); 4197 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 4198 if (ih == NULL) 4199 goto out; 4200 4201 ihlen = ih->ihl * 4; 4202 if (ihlen < sizeof(_iph)) 4203 goto out; 4204 4205 ad->u.net->v4info.saddr = ih->saddr; 4206 ad->u.net->v4info.daddr = ih->daddr; 4207 ret = 0; 4208 4209 if (proto) 4210 *proto = ih->protocol; 4211 4212 switch (ih->protocol) { 4213 case IPPROTO_TCP: { 4214 struct tcphdr _tcph, *th; 4215 4216 if (ntohs(ih->frag_off) & IP_OFFSET) 4217 break; 4218 4219 offset += ihlen; 4220 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4221 if (th == NULL) 4222 break; 4223 4224 ad->u.net->sport = th->source; 4225 ad->u.net->dport = th->dest; 4226 break; 4227 } 4228 4229 case IPPROTO_UDP: { 4230 struct udphdr _udph, *uh; 4231 4232 if (ntohs(ih->frag_off) & IP_OFFSET) 4233 break; 4234 4235 offset += ihlen; 4236 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4237 if (uh == NULL) 4238 break; 4239 4240 ad->u.net->sport = uh->source; 4241 ad->u.net->dport = uh->dest; 4242 break; 4243 } 4244 4245 case IPPROTO_DCCP: { 4246 struct dccp_hdr _dccph, *dh; 4247 4248 if (ntohs(ih->frag_off) & IP_OFFSET) 4249 break; 4250 4251 offset += ihlen; 4252 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4253 if (dh == NULL) 4254 break; 4255 4256 ad->u.net->sport = dh->dccph_sport; 4257 ad->u.net->dport = dh->dccph_dport; 4258 break; 4259 } 4260 4261 #if IS_ENABLED(CONFIG_IP_SCTP) 4262 case IPPROTO_SCTP: { 4263 struct sctphdr _sctph, *sh; 4264 4265 if (ntohs(ih->frag_off) & IP_OFFSET) 4266 break; 4267 4268 offset += ihlen; 4269 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4270 if (sh == NULL) 4271 break; 4272 4273 ad->u.net->sport = sh->source; 4274 ad->u.net->dport = sh->dest; 4275 break; 4276 } 4277 #endif 4278 default: 4279 break; 4280 } 4281 out: 4282 return ret; 4283 } 4284 4285 #if IS_ENABLED(CONFIG_IPV6) 4286 4287 /* Returns error only if unable to parse addresses */ 4288 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 4289 struct common_audit_data *ad, u8 *proto) 4290 { 4291 u8 nexthdr; 4292 int ret = -EINVAL, offset; 4293 struct ipv6hdr _ipv6h, *ip6; 4294 __be16 frag_off; 4295 4296 offset = skb_network_offset(skb); 4297 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 4298 if (ip6 == NULL) 4299 goto out; 4300 4301 ad->u.net->v6info.saddr = ip6->saddr; 4302 ad->u.net->v6info.daddr = ip6->daddr; 4303 ret = 0; 4304 4305 nexthdr = ip6->nexthdr; 4306 offset += sizeof(_ipv6h); 4307 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 4308 if (offset < 0) 4309 goto out; 4310 4311 if (proto) 4312 *proto = nexthdr; 4313 4314 switch (nexthdr) { 4315 case IPPROTO_TCP: { 4316 struct tcphdr _tcph, *th; 4317 4318 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4319 if (th == NULL) 4320 break; 4321 4322 ad->u.net->sport = th->source; 4323 ad->u.net->dport = th->dest; 4324 break; 4325 } 4326 4327 case IPPROTO_UDP: { 4328 struct udphdr _udph, *uh; 4329 4330 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4331 if (uh == NULL) 4332 break; 4333 4334 ad->u.net->sport = uh->source; 4335 ad->u.net->dport = uh->dest; 4336 break; 4337 } 4338 4339 case IPPROTO_DCCP: { 4340 struct dccp_hdr _dccph, *dh; 4341 4342 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4343 if (dh == NULL) 4344 break; 4345 4346 ad->u.net->sport = dh->dccph_sport; 4347 ad->u.net->dport = dh->dccph_dport; 4348 break; 4349 } 4350 4351 #if IS_ENABLED(CONFIG_IP_SCTP) 4352 case IPPROTO_SCTP: { 4353 struct sctphdr _sctph, *sh; 4354 4355 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4356 if (sh == NULL) 4357 break; 4358 4359 ad->u.net->sport = sh->source; 4360 ad->u.net->dport = sh->dest; 4361 break; 4362 } 4363 #endif 4364 /* includes fragments */ 4365 default: 4366 break; 4367 } 4368 out: 4369 return ret; 4370 } 4371 4372 #endif /* IPV6 */ 4373 4374 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 4375 char **_addrp, int src, u8 *proto) 4376 { 4377 char *addrp; 4378 int ret; 4379 4380 switch (ad->u.net->family) { 4381 case PF_INET: 4382 ret = selinux_parse_skb_ipv4(skb, ad, proto); 4383 if (ret) 4384 goto parse_error; 4385 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 4386 &ad->u.net->v4info.daddr); 4387 goto okay; 4388 4389 #if IS_ENABLED(CONFIG_IPV6) 4390 case PF_INET6: 4391 ret = selinux_parse_skb_ipv6(skb, ad, proto); 4392 if (ret) 4393 goto parse_error; 4394 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 4395 &ad->u.net->v6info.daddr); 4396 goto okay; 4397 #endif /* IPV6 */ 4398 default: 4399 addrp = NULL; 4400 goto okay; 4401 } 4402 4403 parse_error: 4404 pr_warn( 4405 "SELinux: failure in selinux_parse_skb()," 4406 " unable to parse packet\n"); 4407 return ret; 4408 4409 okay: 4410 if (_addrp) 4411 *_addrp = addrp; 4412 return 0; 4413 } 4414 4415 /** 4416 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 4417 * @skb: the packet 4418 * @family: protocol family 4419 * @sid: the packet's peer label SID 4420 * 4421 * Description: 4422 * Check the various different forms of network peer labeling and determine 4423 * the peer label/SID for the packet; most of the magic actually occurs in 4424 * the security server function security_net_peersid_cmp(). The function 4425 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 4426 * or -EACCES if @sid is invalid due to inconsistencies with the different 4427 * peer labels. 4428 * 4429 */ 4430 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 4431 { 4432 int err; 4433 u32 xfrm_sid; 4434 u32 nlbl_sid; 4435 u32 nlbl_type; 4436 4437 err = selinux_xfrm_skb_sid(skb, &xfrm_sid); 4438 if (unlikely(err)) 4439 return -EACCES; 4440 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 4441 if (unlikely(err)) 4442 return -EACCES; 4443 4444 err = security_net_peersid_resolve(nlbl_sid, 4445 nlbl_type, xfrm_sid, sid); 4446 if (unlikely(err)) { 4447 pr_warn( 4448 "SELinux: failure in selinux_skb_peerlbl_sid()," 4449 " unable to determine packet's peer label\n"); 4450 return -EACCES; 4451 } 4452 4453 return 0; 4454 } 4455 4456 /** 4457 * selinux_conn_sid - Determine the child socket label for a connection 4458 * @sk_sid: the parent socket's SID 4459 * @skb_sid: the packet's SID 4460 * @conn_sid: the resulting connection SID 4461 * 4462 * If @skb_sid is valid then the user:role:type information from @sk_sid is 4463 * combined with the MLS information from @skb_sid in order to create 4464 * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy 4465 * of @sk_sid. Returns zero on success, negative values on failure. 4466 * 4467 */ 4468 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) 4469 { 4470 int err = 0; 4471 4472 if (skb_sid != SECSID_NULL) 4473 err = security_sid_mls_copy(sk_sid, skb_sid, 4474 conn_sid); 4475 else 4476 *conn_sid = sk_sid; 4477 4478 return err; 4479 } 4480 4481 /* socket security operations */ 4482 4483 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 4484 u16 secclass, u32 *socksid) 4485 { 4486 if (tsec->sockcreate_sid > SECSID_NULL) { 4487 *socksid = tsec->sockcreate_sid; 4488 return 0; 4489 } 4490 4491 return security_transition_sid(tsec->sid, tsec->sid, 4492 secclass, NULL, socksid); 4493 } 4494 4495 static int sock_has_perm(struct sock *sk, u32 perms) 4496 { 4497 struct sk_security_struct *sksec = sk->sk_security; 4498 struct common_audit_data ad; 4499 struct lsm_network_audit net = {0,}; 4500 4501 if (sksec->sid == SECINITSID_KERNEL) 4502 return 0; 4503 4504 ad.type = LSM_AUDIT_DATA_NET; 4505 ad.u.net = &net; 4506 ad.u.net->sk = sk; 4507 4508 return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms, 4509 &ad); 4510 } 4511 4512 static int selinux_socket_create(int family, int type, 4513 int protocol, int kern) 4514 { 4515 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4516 u32 newsid; 4517 u16 secclass; 4518 int rc; 4519 4520 if (kern) 4521 return 0; 4522 4523 secclass = socket_type_to_security_class(family, type, protocol); 4524 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 4525 if (rc) 4526 return rc; 4527 4528 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 4529 } 4530 4531 static int selinux_socket_post_create(struct socket *sock, int family, 4532 int type, int protocol, int kern) 4533 { 4534 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4535 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock)); 4536 struct sk_security_struct *sksec; 4537 u16 sclass = socket_type_to_security_class(family, type, protocol); 4538 u32 sid = SECINITSID_KERNEL; 4539 int err = 0; 4540 4541 if (!kern) { 4542 err = socket_sockcreate_sid(tsec, sclass, &sid); 4543 if (err) 4544 return err; 4545 } 4546 4547 isec->sclass = sclass; 4548 isec->sid = sid; 4549 isec->initialized = LABEL_INITIALIZED; 4550 4551 if (sock->sk) { 4552 sksec = sock->sk->sk_security; 4553 sksec->sclass = sclass; 4554 sksec->sid = sid; 4555 /* Allows detection of the first association on this socket */ 4556 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4557 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET; 4558 4559 err = selinux_netlbl_socket_post_create(sock->sk, family); 4560 } 4561 4562 return err; 4563 } 4564 4565 static int selinux_socket_socketpair(struct socket *socka, 4566 struct socket *sockb) 4567 { 4568 struct sk_security_struct *sksec_a = socka->sk->sk_security; 4569 struct sk_security_struct *sksec_b = sockb->sk->sk_security; 4570 4571 sksec_a->peer_sid = sksec_b->sid; 4572 sksec_b->peer_sid = sksec_a->sid; 4573 4574 return 0; 4575 } 4576 4577 /* Range of port numbers used to automatically bind. 4578 Need to determine whether we should perform a name_bind 4579 permission check between the socket and the port number. */ 4580 4581 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 4582 { 4583 struct sock *sk = sock->sk; 4584 struct sk_security_struct *sksec = sk->sk_security; 4585 u16 family; 4586 int err; 4587 4588 err = sock_has_perm(sk, SOCKET__BIND); 4589 if (err) 4590 goto out; 4591 4592 /* If PF_INET or PF_INET6, check name_bind permission for the port. */ 4593 family = sk->sk_family; 4594 if (family == PF_INET || family == PF_INET6) { 4595 char *addrp; 4596 struct common_audit_data ad; 4597 struct lsm_network_audit net = {0,}; 4598 struct sockaddr_in *addr4 = NULL; 4599 struct sockaddr_in6 *addr6 = NULL; 4600 u16 family_sa; 4601 unsigned short snum; 4602 u32 sid, node_perm; 4603 4604 /* 4605 * sctp_bindx(3) calls via selinux_sctp_bind_connect() 4606 * that validates multiple binding addresses. Because of this 4607 * need to check address->sa_family as it is possible to have 4608 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4609 */ 4610 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4611 return -EINVAL; 4612 family_sa = address->sa_family; 4613 switch (family_sa) { 4614 case AF_UNSPEC: 4615 case AF_INET: 4616 if (addrlen < sizeof(struct sockaddr_in)) 4617 return -EINVAL; 4618 addr4 = (struct sockaddr_in *)address; 4619 if (family_sa == AF_UNSPEC) { 4620 /* see __inet_bind(), we only want to allow 4621 * AF_UNSPEC if the address is INADDR_ANY 4622 */ 4623 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY)) 4624 goto err_af; 4625 family_sa = AF_INET; 4626 } 4627 snum = ntohs(addr4->sin_port); 4628 addrp = (char *)&addr4->sin_addr.s_addr; 4629 break; 4630 case AF_INET6: 4631 if (addrlen < SIN6_LEN_RFC2133) 4632 return -EINVAL; 4633 addr6 = (struct sockaddr_in6 *)address; 4634 snum = ntohs(addr6->sin6_port); 4635 addrp = (char *)&addr6->sin6_addr.s6_addr; 4636 break; 4637 default: 4638 goto err_af; 4639 } 4640 4641 ad.type = LSM_AUDIT_DATA_NET; 4642 ad.u.net = &net; 4643 ad.u.net->sport = htons(snum); 4644 ad.u.net->family = family_sa; 4645 4646 if (snum) { 4647 int low, high; 4648 4649 inet_get_local_port_range(sock_net(sk), &low, &high); 4650 4651 if (inet_port_requires_bind_service(sock_net(sk), snum) || 4652 snum < low || snum > high) { 4653 err = sel_netport_sid(sk->sk_protocol, 4654 snum, &sid); 4655 if (err) 4656 goto out; 4657 err = avc_has_perm(sksec->sid, sid, 4658 sksec->sclass, 4659 SOCKET__NAME_BIND, &ad); 4660 if (err) 4661 goto out; 4662 } 4663 } 4664 4665 switch (sksec->sclass) { 4666 case SECCLASS_TCP_SOCKET: 4667 node_perm = TCP_SOCKET__NODE_BIND; 4668 break; 4669 4670 case SECCLASS_UDP_SOCKET: 4671 node_perm = UDP_SOCKET__NODE_BIND; 4672 break; 4673 4674 case SECCLASS_DCCP_SOCKET: 4675 node_perm = DCCP_SOCKET__NODE_BIND; 4676 break; 4677 4678 case SECCLASS_SCTP_SOCKET: 4679 node_perm = SCTP_SOCKET__NODE_BIND; 4680 break; 4681 4682 default: 4683 node_perm = RAWIP_SOCKET__NODE_BIND; 4684 break; 4685 } 4686 4687 err = sel_netnode_sid(addrp, family_sa, &sid); 4688 if (err) 4689 goto out; 4690 4691 if (family_sa == AF_INET) 4692 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 4693 else 4694 ad.u.net->v6info.saddr = addr6->sin6_addr; 4695 4696 err = avc_has_perm(sksec->sid, sid, 4697 sksec->sclass, node_perm, &ad); 4698 if (err) 4699 goto out; 4700 } 4701 out: 4702 return err; 4703 err_af: 4704 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */ 4705 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4706 return -EINVAL; 4707 return -EAFNOSUPPORT; 4708 } 4709 4710 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3) 4711 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst 4712 */ 4713 static int selinux_socket_connect_helper(struct socket *sock, 4714 struct sockaddr *address, int addrlen) 4715 { 4716 struct sock *sk = sock->sk; 4717 struct sk_security_struct *sksec = sk->sk_security; 4718 int err; 4719 4720 err = sock_has_perm(sk, SOCKET__CONNECT); 4721 if (err) 4722 return err; 4723 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4724 return -EINVAL; 4725 4726 /* connect(AF_UNSPEC) has special handling, as it is a documented 4727 * way to disconnect the socket 4728 */ 4729 if (address->sa_family == AF_UNSPEC) 4730 return 0; 4731 4732 /* 4733 * If a TCP, DCCP or SCTP socket, check name_connect permission 4734 * for the port. 4735 */ 4736 if (sksec->sclass == SECCLASS_TCP_SOCKET || 4737 sksec->sclass == SECCLASS_DCCP_SOCKET || 4738 sksec->sclass == SECCLASS_SCTP_SOCKET) { 4739 struct common_audit_data ad; 4740 struct lsm_network_audit net = {0,}; 4741 struct sockaddr_in *addr4 = NULL; 4742 struct sockaddr_in6 *addr6 = NULL; 4743 unsigned short snum; 4744 u32 sid, perm; 4745 4746 /* sctp_connectx(3) calls via selinux_sctp_bind_connect() 4747 * that validates multiple connect addresses. Because of this 4748 * need to check address->sa_family as it is possible to have 4749 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4750 */ 4751 switch (address->sa_family) { 4752 case AF_INET: 4753 addr4 = (struct sockaddr_in *)address; 4754 if (addrlen < sizeof(struct sockaddr_in)) 4755 return -EINVAL; 4756 snum = ntohs(addr4->sin_port); 4757 break; 4758 case AF_INET6: 4759 addr6 = (struct sockaddr_in6 *)address; 4760 if (addrlen < SIN6_LEN_RFC2133) 4761 return -EINVAL; 4762 snum = ntohs(addr6->sin6_port); 4763 break; 4764 default: 4765 /* Note that SCTP services expect -EINVAL, whereas 4766 * others expect -EAFNOSUPPORT. 4767 */ 4768 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4769 return -EINVAL; 4770 else 4771 return -EAFNOSUPPORT; 4772 } 4773 4774 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 4775 if (err) 4776 return err; 4777 4778 switch (sksec->sclass) { 4779 case SECCLASS_TCP_SOCKET: 4780 perm = TCP_SOCKET__NAME_CONNECT; 4781 break; 4782 case SECCLASS_DCCP_SOCKET: 4783 perm = DCCP_SOCKET__NAME_CONNECT; 4784 break; 4785 case SECCLASS_SCTP_SOCKET: 4786 perm = SCTP_SOCKET__NAME_CONNECT; 4787 break; 4788 } 4789 4790 ad.type = LSM_AUDIT_DATA_NET; 4791 ad.u.net = &net; 4792 ad.u.net->dport = htons(snum); 4793 ad.u.net->family = address->sa_family; 4794 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad); 4795 if (err) 4796 return err; 4797 } 4798 4799 return 0; 4800 } 4801 4802 /* Supports connect(2), see comments in selinux_socket_connect_helper() */ 4803 static int selinux_socket_connect(struct socket *sock, 4804 struct sockaddr *address, int addrlen) 4805 { 4806 int err; 4807 struct sock *sk = sock->sk; 4808 4809 err = selinux_socket_connect_helper(sock, address, addrlen); 4810 if (err) 4811 return err; 4812 4813 return selinux_netlbl_socket_connect(sk, address); 4814 } 4815 4816 static int selinux_socket_listen(struct socket *sock, int backlog) 4817 { 4818 return sock_has_perm(sock->sk, SOCKET__LISTEN); 4819 } 4820 4821 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 4822 { 4823 int err; 4824 struct inode_security_struct *isec; 4825 struct inode_security_struct *newisec; 4826 u16 sclass; 4827 u32 sid; 4828 4829 err = sock_has_perm(sock->sk, SOCKET__ACCEPT); 4830 if (err) 4831 return err; 4832 4833 isec = inode_security_novalidate(SOCK_INODE(sock)); 4834 spin_lock(&isec->lock); 4835 sclass = isec->sclass; 4836 sid = isec->sid; 4837 spin_unlock(&isec->lock); 4838 4839 newisec = inode_security_novalidate(SOCK_INODE(newsock)); 4840 newisec->sclass = sclass; 4841 newisec->sid = sid; 4842 newisec->initialized = LABEL_INITIALIZED; 4843 4844 return 0; 4845 } 4846 4847 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4848 int size) 4849 { 4850 return sock_has_perm(sock->sk, SOCKET__WRITE); 4851 } 4852 4853 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4854 int size, int flags) 4855 { 4856 return sock_has_perm(sock->sk, SOCKET__READ); 4857 } 4858 4859 static int selinux_socket_getsockname(struct socket *sock) 4860 { 4861 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4862 } 4863 4864 static int selinux_socket_getpeername(struct socket *sock) 4865 { 4866 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4867 } 4868 4869 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 4870 { 4871 int err; 4872 4873 err = sock_has_perm(sock->sk, SOCKET__SETOPT); 4874 if (err) 4875 return err; 4876 4877 return selinux_netlbl_socket_setsockopt(sock, level, optname); 4878 } 4879 4880 static int selinux_socket_getsockopt(struct socket *sock, int level, 4881 int optname) 4882 { 4883 return sock_has_perm(sock->sk, SOCKET__GETOPT); 4884 } 4885 4886 static int selinux_socket_shutdown(struct socket *sock, int how) 4887 { 4888 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN); 4889 } 4890 4891 static int selinux_socket_unix_stream_connect(struct sock *sock, 4892 struct sock *other, 4893 struct sock *newsk) 4894 { 4895 struct sk_security_struct *sksec_sock = sock->sk_security; 4896 struct sk_security_struct *sksec_other = other->sk_security; 4897 struct sk_security_struct *sksec_new = newsk->sk_security; 4898 struct common_audit_data ad; 4899 struct lsm_network_audit net = {0,}; 4900 int err; 4901 4902 ad.type = LSM_AUDIT_DATA_NET; 4903 ad.u.net = &net; 4904 ad.u.net->sk = other; 4905 4906 err = avc_has_perm(sksec_sock->sid, sksec_other->sid, 4907 sksec_other->sclass, 4908 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 4909 if (err) 4910 return err; 4911 4912 /* server child socket */ 4913 sksec_new->peer_sid = sksec_sock->sid; 4914 err = security_sid_mls_copy(sksec_other->sid, 4915 sksec_sock->sid, &sksec_new->sid); 4916 if (err) 4917 return err; 4918 4919 /* connecting socket */ 4920 sksec_sock->peer_sid = sksec_new->sid; 4921 4922 return 0; 4923 } 4924 4925 static int selinux_socket_unix_may_send(struct socket *sock, 4926 struct socket *other) 4927 { 4928 struct sk_security_struct *ssec = sock->sk->sk_security; 4929 struct sk_security_struct *osec = other->sk->sk_security; 4930 struct common_audit_data ad; 4931 struct lsm_network_audit net = {0,}; 4932 4933 ad.type = LSM_AUDIT_DATA_NET; 4934 ad.u.net = &net; 4935 ad.u.net->sk = other->sk; 4936 4937 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 4938 &ad); 4939 } 4940 4941 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, 4942 char *addrp, u16 family, u32 peer_sid, 4943 struct common_audit_data *ad) 4944 { 4945 int err; 4946 u32 if_sid; 4947 u32 node_sid; 4948 4949 err = sel_netif_sid(ns, ifindex, &if_sid); 4950 if (err) 4951 return err; 4952 err = avc_has_perm(peer_sid, if_sid, 4953 SECCLASS_NETIF, NETIF__INGRESS, ad); 4954 if (err) 4955 return err; 4956 4957 err = sel_netnode_sid(addrp, family, &node_sid); 4958 if (err) 4959 return err; 4960 return avc_has_perm(peer_sid, node_sid, 4961 SECCLASS_NODE, NODE__RECVFROM, ad); 4962 } 4963 4964 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4965 u16 family) 4966 { 4967 int err = 0; 4968 struct sk_security_struct *sksec = sk->sk_security; 4969 u32 sk_sid = sksec->sid; 4970 struct common_audit_data ad; 4971 struct lsm_network_audit net = {0,}; 4972 char *addrp; 4973 4974 ad.type = LSM_AUDIT_DATA_NET; 4975 ad.u.net = &net; 4976 ad.u.net->netif = skb->skb_iif; 4977 ad.u.net->family = family; 4978 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4979 if (err) 4980 return err; 4981 4982 if (selinux_secmark_enabled()) { 4983 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4984 PACKET__RECV, &ad); 4985 if (err) 4986 return err; 4987 } 4988 4989 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4990 if (err) 4991 return err; 4992 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4993 4994 return err; 4995 } 4996 4997 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4998 { 4999 int err; 5000 struct sk_security_struct *sksec = sk->sk_security; 5001 u16 family = sk->sk_family; 5002 u32 sk_sid = sksec->sid; 5003 struct common_audit_data ad; 5004 struct lsm_network_audit net = {0,}; 5005 char *addrp; 5006 u8 secmark_active; 5007 u8 peerlbl_active; 5008 5009 if (family != PF_INET && family != PF_INET6) 5010 return 0; 5011 5012 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 5013 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5014 family = PF_INET; 5015 5016 /* If any sort of compatibility mode is enabled then handoff processing 5017 * to the selinux_sock_rcv_skb_compat() function to deal with the 5018 * special handling. We do this in an attempt to keep this function 5019 * as fast and as clean as possible. */ 5020 if (!selinux_policycap_netpeer()) 5021 return selinux_sock_rcv_skb_compat(sk, skb, family); 5022 5023 secmark_active = selinux_secmark_enabled(); 5024 peerlbl_active = selinux_peerlbl_enabled(); 5025 if (!secmark_active && !peerlbl_active) 5026 return 0; 5027 5028 ad.type = LSM_AUDIT_DATA_NET; 5029 ad.u.net = &net; 5030 ad.u.net->netif = skb->skb_iif; 5031 ad.u.net->family = family; 5032 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 5033 if (err) 5034 return err; 5035 5036 if (peerlbl_active) { 5037 u32 peer_sid; 5038 5039 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 5040 if (err) 5041 return err; 5042 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, 5043 addrp, family, peer_sid, &ad); 5044 if (err) { 5045 selinux_netlbl_err(skb, family, err, 0); 5046 return err; 5047 } 5048 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 5049 PEER__RECV, &ad); 5050 if (err) { 5051 selinux_netlbl_err(skb, family, err, 0); 5052 return err; 5053 } 5054 } 5055 5056 if (secmark_active) { 5057 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 5058 PACKET__RECV, &ad); 5059 if (err) 5060 return err; 5061 } 5062 5063 return err; 5064 } 5065 5066 static int selinux_socket_getpeersec_stream(struct socket *sock, 5067 sockptr_t optval, sockptr_t optlen, 5068 unsigned int len) 5069 { 5070 int err = 0; 5071 char *scontext = NULL; 5072 u32 scontext_len; 5073 struct sk_security_struct *sksec = sock->sk->sk_security; 5074 u32 peer_sid = SECSID_NULL; 5075 5076 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 5077 sksec->sclass == SECCLASS_TCP_SOCKET || 5078 sksec->sclass == SECCLASS_SCTP_SOCKET) 5079 peer_sid = sksec->peer_sid; 5080 if (peer_sid == SECSID_NULL) 5081 return -ENOPROTOOPT; 5082 5083 err = security_sid_to_context(peer_sid, &scontext, 5084 &scontext_len); 5085 if (err) 5086 return err; 5087 if (scontext_len > len) { 5088 err = -ERANGE; 5089 goto out_len; 5090 } 5091 5092 if (copy_to_sockptr(optval, scontext, scontext_len)) 5093 err = -EFAULT; 5094 out_len: 5095 if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len))) 5096 err = -EFAULT; 5097 kfree(scontext); 5098 return err; 5099 } 5100 5101 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 5102 { 5103 u32 peer_secid = SECSID_NULL; 5104 u16 family; 5105 struct inode_security_struct *isec; 5106 5107 if (skb && skb->protocol == htons(ETH_P_IP)) 5108 family = PF_INET; 5109 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 5110 family = PF_INET6; 5111 else if (sock) 5112 family = sock->sk->sk_family; 5113 else 5114 goto out; 5115 5116 if (sock && family == PF_UNIX) { 5117 isec = inode_security_novalidate(SOCK_INODE(sock)); 5118 peer_secid = isec->sid; 5119 } else if (skb) 5120 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 5121 5122 out: 5123 *secid = peer_secid; 5124 if (peer_secid == SECSID_NULL) 5125 return -EINVAL; 5126 return 0; 5127 } 5128 5129 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 5130 { 5131 struct sk_security_struct *sksec; 5132 5133 sksec = kzalloc(sizeof(*sksec), priority); 5134 if (!sksec) 5135 return -ENOMEM; 5136 5137 sksec->peer_sid = SECINITSID_UNLABELED; 5138 sksec->sid = SECINITSID_UNLABELED; 5139 sksec->sclass = SECCLASS_SOCKET; 5140 selinux_netlbl_sk_security_reset(sksec); 5141 sk->sk_security = sksec; 5142 5143 return 0; 5144 } 5145 5146 static void selinux_sk_free_security(struct sock *sk) 5147 { 5148 struct sk_security_struct *sksec = sk->sk_security; 5149 5150 sk->sk_security = NULL; 5151 selinux_netlbl_sk_security_free(sksec); 5152 kfree(sksec); 5153 } 5154 5155 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 5156 { 5157 struct sk_security_struct *sksec = sk->sk_security; 5158 struct sk_security_struct *newsksec = newsk->sk_security; 5159 5160 newsksec->sid = sksec->sid; 5161 newsksec->peer_sid = sksec->peer_sid; 5162 newsksec->sclass = sksec->sclass; 5163 5164 selinux_netlbl_sk_security_reset(newsksec); 5165 } 5166 5167 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 5168 { 5169 if (!sk) 5170 *secid = SECINITSID_ANY_SOCKET; 5171 else { 5172 struct sk_security_struct *sksec = sk->sk_security; 5173 5174 *secid = sksec->sid; 5175 } 5176 } 5177 5178 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 5179 { 5180 struct inode_security_struct *isec = 5181 inode_security_novalidate(SOCK_INODE(parent)); 5182 struct sk_security_struct *sksec = sk->sk_security; 5183 5184 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 5185 sk->sk_family == PF_UNIX) 5186 isec->sid = sksec->sid; 5187 sksec->sclass = isec->sclass; 5188 } 5189 5190 /* 5191 * Determines peer_secid for the asoc and updates socket's peer label 5192 * if it's the first association on the socket. 5193 */ 5194 static int selinux_sctp_process_new_assoc(struct sctp_association *asoc, 5195 struct sk_buff *skb) 5196 { 5197 struct sock *sk = asoc->base.sk; 5198 u16 family = sk->sk_family; 5199 struct sk_security_struct *sksec = sk->sk_security; 5200 struct common_audit_data ad; 5201 struct lsm_network_audit net = {0,}; 5202 int err; 5203 5204 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 5205 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5206 family = PF_INET; 5207 5208 if (selinux_peerlbl_enabled()) { 5209 asoc->peer_secid = SECSID_NULL; 5210 5211 /* This will return peer_sid = SECSID_NULL if there are 5212 * no peer labels, see security_net_peersid_resolve(). 5213 */ 5214 err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid); 5215 if (err) 5216 return err; 5217 5218 if (asoc->peer_secid == SECSID_NULL) 5219 asoc->peer_secid = SECINITSID_UNLABELED; 5220 } else { 5221 asoc->peer_secid = SECINITSID_UNLABELED; 5222 } 5223 5224 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) { 5225 sksec->sctp_assoc_state = SCTP_ASSOC_SET; 5226 5227 /* Here as first association on socket. As the peer SID 5228 * was allowed by peer recv (and the netif/node checks), 5229 * then it is approved by policy and used as the primary 5230 * peer SID for getpeercon(3). 5231 */ 5232 sksec->peer_sid = asoc->peer_secid; 5233 } else if (sksec->peer_sid != asoc->peer_secid) { 5234 /* Other association peer SIDs are checked to enforce 5235 * consistency among the peer SIDs. 5236 */ 5237 ad.type = LSM_AUDIT_DATA_NET; 5238 ad.u.net = &net; 5239 ad.u.net->sk = asoc->base.sk; 5240 err = avc_has_perm(sksec->peer_sid, asoc->peer_secid, 5241 sksec->sclass, SCTP_SOCKET__ASSOCIATION, 5242 &ad); 5243 if (err) 5244 return err; 5245 } 5246 return 0; 5247 } 5248 5249 /* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This 5250 * happens on an incoming connect(2), sctp_connectx(3) or 5251 * sctp_sendmsg(3) (with no association already present). 5252 */ 5253 static int selinux_sctp_assoc_request(struct sctp_association *asoc, 5254 struct sk_buff *skb) 5255 { 5256 struct sk_security_struct *sksec = asoc->base.sk->sk_security; 5257 u32 conn_sid; 5258 int err; 5259 5260 if (!selinux_policycap_extsockclass()) 5261 return 0; 5262 5263 err = selinux_sctp_process_new_assoc(asoc, skb); 5264 if (err) 5265 return err; 5266 5267 /* Compute the MLS component for the connection and store 5268 * the information in asoc. This will be used by SCTP TCP type 5269 * sockets and peeled off connections as they cause a new 5270 * socket to be generated. selinux_sctp_sk_clone() will then 5271 * plug this into the new socket. 5272 */ 5273 err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid); 5274 if (err) 5275 return err; 5276 5277 asoc->secid = conn_sid; 5278 5279 /* Set any NetLabel labels including CIPSO/CALIPSO options. */ 5280 return selinux_netlbl_sctp_assoc_request(asoc, skb); 5281 } 5282 5283 /* Called when SCTP receives a COOKIE ACK chunk as the final 5284 * response to an association request (initited by us). 5285 */ 5286 static int selinux_sctp_assoc_established(struct sctp_association *asoc, 5287 struct sk_buff *skb) 5288 { 5289 struct sk_security_struct *sksec = asoc->base.sk->sk_security; 5290 5291 if (!selinux_policycap_extsockclass()) 5292 return 0; 5293 5294 /* Inherit secid from the parent socket - this will be picked up 5295 * by selinux_sctp_sk_clone() if the association gets peeled off 5296 * into a new socket. 5297 */ 5298 asoc->secid = sksec->sid; 5299 5300 return selinux_sctp_process_new_assoc(asoc, skb); 5301 } 5302 5303 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting 5304 * based on their @optname. 5305 */ 5306 static int selinux_sctp_bind_connect(struct sock *sk, int optname, 5307 struct sockaddr *address, 5308 int addrlen) 5309 { 5310 int len, err = 0, walk_size = 0; 5311 void *addr_buf; 5312 struct sockaddr *addr; 5313 struct socket *sock; 5314 5315 if (!selinux_policycap_extsockclass()) 5316 return 0; 5317 5318 /* Process one or more addresses that may be IPv4 or IPv6 */ 5319 sock = sk->sk_socket; 5320 addr_buf = address; 5321 5322 while (walk_size < addrlen) { 5323 if (walk_size + sizeof(sa_family_t) > addrlen) 5324 return -EINVAL; 5325 5326 addr = addr_buf; 5327 switch (addr->sa_family) { 5328 case AF_UNSPEC: 5329 case AF_INET: 5330 len = sizeof(struct sockaddr_in); 5331 break; 5332 case AF_INET6: 5333 len = sizeof(struct sockaddr_in6); 5334 break; 5335 default: 5336 return -EINVAL; 5337 } 5338 5339 if (walk_size + len > addrlen) 5340 return -EINVAL; 5341 5342 err = -EINVAL; 5343 switch (optname) { 5344 /* Bind checks */ 5345 case SCTP_PRIMARY_ADDR: 5346 case SCTP_SET_PEER_PRIMARY_ADDR: 5347 case SCTP_SOCKOPT_BINDX_ADD: 5348 err = selinux_socket_bind(sock, addr, len); 5349 break; 5350 /* Connect checks */ 5351 case SCTP_SOCKOPT_CONNECTX: 5352 case SCTP_PARAM_SET_PRIMARY: 5353 case SCTP_PARAM_ADD_IP: 5354 case SCTP_SENDMSG_CONNECT: 5355 err = selinux_socket_connect_helper(sock, addr, len); 5356 if (err) 5357 return err; 5358 5359 /* As selinux_sctp_bind_connect() is called by the 5360 * SCTP protocol layer, the socket is already locked, 5361 * therefore selinux_netlbl_socket_connect_locked() 5362 * is called here. The situations handled are: 5363 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2), 5364 * whenever a new IP address is added or when a new 5365 * primary address is selected. 5366 * Note that an SCTP connect(2) call happens before 5367 * the SCTP protocol layer and is handled via 5368 * selinux_socket_connect(). 5369 */ 5370 err = selinux_netlbl_socket_connect_locked(sk, addr); 5371 break; 5372 } 5373 5374 if (err) 5375 return err; 5376 5377 addr_buf += len; 5378 walk_size += len; 5379 } 5380 5381 return 0; 5382 } 5383 5384 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */ 5385 static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 5386 struct sock *newsk) 5387 { 5388 struct sk_security_struct *sksec = sk->sk_security; 5389 struct sk_security_struct *newsksec = newsk->sk_security; 5390 5391 /* If policy does not support SECCLASS_SCTP_SOCKET then call 5392 * the non-sctp clone version. 5393 */ 5394 if (!selinux_policycap_extsockclass()) 5395 return selinux_sk_clone_security(sk, newsk); 5396 5397 newsksec->sid = asoc->secid; 5398 newsksec->peer_sid = asoc->peer_secid; 5399 newsksec->sclass = sksec->sclass; 5400 selinux_netlbl_sctp_sk_clone(sk, newsk); 5401 } 5402 5403 static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk) 5404 { 5405 struct sk_security_struct *ssksec = ssk->sk_security; 5406 struct sk_security_struct *sksec = sk->sk_security; 5407 5408 ssksec->sclass = sksec->sclass; 5409 ssksec->sid = sksec->sid; 5410 5411 /* replace the existing subflow label deleting the existing one 5412 * and re-recreating a new label using the updated context 5413 */ 5414 selinux_netlbl_sk_security_free(ssksec); 5415 return selinux_netlbl_socket_post_create(ssk, ssk->sk_family); 5416 } 5417 5418 static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb, 5419 struct request_sock *req) 5420 { 5421 struct sk_security_struct *sksec = sk->sk_security; 5422 int err; 5423 u16 family = req->rsk_ops->family; 5424 u32 connsid; 5425 u32 peersid; 5426 5427 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 5428 if (err) 5429 return err; 5430 err = selinux_conn_sid(sksec->sid, peersid, &connsid); 5431 if (err) 5432 return err; 5433 req->secid = connsid; 5434 req->peer_secid = peersid; 5435 5436 return selinux_netlbl_inet_conn_request(req, family); 5437 } 5438 5439 static void selinux_inet_csk_clone(struct sock *newsk, 5440 const struct request_sock *req) 5441 { 5442 struct sk_security_struct *newsksec = newsk->sk_security; 5443 5444 newsksec->sid = req->secid; 5445 newsksec->peer_sid = req->peer_secid; 5446 /* NOTE: Ideally, we should also get the isec->sid for the 5447 new socket in sync, but we don't have the isec available yet. 5448 So we will wait until sock_graft to do it, by which 5449 time it will have been created and available. */ 5450 5451 /* We don't need to take any sort of lock here as we are the only 5452 * thread with access to newsksec */ 5453 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 5454 } 5455 5456 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 5457 { 5458 u16 family = sk->sk_family; 5459 struct sk_security_struct *sksec = sk->sk_security; 5460 5461 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 5462 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5463 family = PF_INET; 5464 5465 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 5466 } 5467 5468 static int selinux_secmark_relabel_packet(u32 sid) 5469 { 5470 const struct task_security_struct *__tsec; 5471 u32 tsid; 5472 5473 __tsec = selinux_cred(current_cred()); 5474 tsid = __tsec->sid; 5475 5476 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, 5477 NULL); 5478 } 5479 5480 static void selinux_secmark_refcount_inc(void) 5481 { 5482 atomic_inc(&selinux_secmark_refcount); 5483 } 5484 5485 static void selinux_secmark_refcount_dec(void) 5486 { 5487 atomic_dec(&selinux_secmark_refcount); 5488 } 5489 5490 static void selinux_req_classify_flow(const struct request_sock *req, 5491 struct flowi_common *flic) 5492 { 5493 flic->flowic_secid = req->secid; 5494 } 5495 5496 static int selinux_tun_dev_alloc_security(void **security) 5497 { 5498 struct tun_security_struct *tunsec; 5499 5500 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); 5501 if (!tunsec) 5502 return -ENOMEM; 5503 tunsec->sid = current_sid(); 5504 5505 *security = tunsec; 5506 return 0; 5507 } 5508 5509 static void selinux_tun_dev_free_security(void *security) 5510 { 5511 kfree(security); 5512 } 5513 5514 static int selinux_tun_dev_create(void) 5515 { 5516 u32 sid = current_sid(); 5517 5518 /* we aren't taking into account the "sockcreate" SID since the socket 5519 * that is being created here is not a socket in the traditional sense, 5520 * instead it is a private sock, accessible only to the kernel, and 5521 * representing a wide range of network traffic spanning multiple 5522 * connections unlike traditional sockets - check the TUN driver to 5523 * get a better understanding of why this socket is special */ 5524 5525 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 5526 NULL); 5527 } 5528 5529 static int selinux_tun_dev_attach_queue(void *security) 5530 { 5531 struct tun_security_struct *tunsec = security; 5532 5533 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, 5534 TUN_SOCKET__ATTACH_QUEUE, NULL); 5535 } 5536 5537 static int selinux_tun_dev_attach(struct sock *sk, void *security) 5538 { 5539 struct tun_security_struct *tunsec = security; 5540 struct sk_security_struct *sksec = sk->sk_security; 5541 5542 /* we don't currently perform any NetLabel based labeling here and it 5543 * isn't clear that we would want to do so anyway; while we could apply 5544 * labeling without the support of the TUN user the resulting labeled 5545 * traffic from the other end of the connection would almost certainly 5546 * cause confusion to the TUN user that had no idea network labeling 5547 * protocols were being used */ 5548 5549 sksec->sid = tunsec->sid; 5550 sksec->sclass = SECCLASS_TUN_SOCKET; 5551 5552 return 0; 5553 } 5554 5555 static int selinux_tun_dev_open(void *security) 5556 { 5557 struct tun_security_struct *tunsec = security; 5558 u32 sid = current_sid(); 5559 int err; 5560 5561 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET, 5562 TUN_SOCKET__RELABELFROM, NULL); 5563 if (err) 5564 return err; 5565 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, 5566 TUN_SOCKET__RELABELTO, NULL); 5567 if (err) 5568 return err; 5569 tunsec->sid = sid; 5570 5571 return 0; 5572 } 5573 5574 #ifdef CONFIG_NETFILTER 5575 5576 static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb, 5577 const struct nf_hook_state *state) 5578 { 5579 int ifindex; 5580 u16 family; 5581 char *addrp; 5582 u32 peer_sid; 5583 struct common_audit_data ad; 5584 struct lsm_network_audit net = {0,}; 5585 int secmark_active, peerlbl_active; 5586 5587 if (!selinux_policycap_netpeer()) 5588 return NF_ACCEPT; 5589 5590 secmark_active = selinux_secmark_enabled(); 5591 peerlbl_active = selinux_peerlbl_enabled(); 5592 if (!secmark_active && !peerlbl_active) 5593 return NF_ACCEPT; 5594 5595 family = state->pf; 5596 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 5597 return NF_DROP; 5598 5599 ifindex = state->in->ifindex; 5600 ad.type = LSM_AUDIT_DATA_NET; 5601 ad.u.net = &net; 5602 ad.u.net->netif = ifindex; 5603 ad.u.net->family = family; 5604 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 5605 return NF_DROP; 5606 5607 if (peerlbl_active) { 5608 int err; 5609 5610 err = selinux_inet_sys_rcv_skb(state->net, ifindex, 5611 addrp, family, peer_sid, &ad); 5612 if (err) { 5613 selinux_netlbl_err(skb, family, err, 1); 5614 return NF_DROP; 5615 } 5616 } 5617 5618 if (secmark_active) 5619 if (avc_has_perm(peer_sid, skb->secmark, 5620 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 5621 return NF_DROP; 5622 5623 if (netlbl_enabled()) 5624 /* we do this in the FORWARD path and not the POST_ROUTING 5625 * path because we want to make sure we apply the necessary 5626 * labeling before IPsec is applied so we can leverage AH 5627 * protection */ 5628 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 5629 return NF_DROP; 5630 5631 return NF_ACCEPT; 5632 } 5633 5634 static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb, 5635 const struct nf_hook_state *state) 5636 { 5637 struct sock *sk; 5638 u32 sid; 5639 5640 if (!netlbl_enabled()) 5641 return NF_ACCEPT; 5642 5643 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 5644 * because we want to make sure we apply the necessary labeling 5645 * before IPsec is applied so we can leverage AH protection */ 5646 sk = skb->sk; 5647 if (sk) { 5648 struct sk_security_struct *sksec; 5649 5650 if (sk_listener(sk)) 5651 /* if the socket is the listening state then this 5652 * packet is a SYN-ACK packet which means it needs to 5653 * be labeled based on the connection/request_sock and 5654 * not the parent socket. unfortunately, we can't 5655 * lookup the request_sock yet as it isn't queued on 5656 * the parent socket until after the SYN-ACK is sent. 5657 * the "solution" is to simply pass the packet as-is 5658 * as any IP option based labeling should be copied 5659 * from the initial connection request (in the IP 5660 * layer). it is far from ideal, but until we get a 5661 * security label in the packet itself this is the 5662 * best we can do. */ 5663 return NF_ACCEPT; 5664 5665 /* standard practice, label using the parent socket */ 5666 sksec = sk->sk_security; 5667 sid = sksec->sid; 5668 } else 5669 sid = SECINITSID_KERNEL; 5670 if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0) 5671 return NF_DROP; 5672 5673 return NF_ACCEPT; 5674 } 5675 5676 5677 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 5678 const struct nf_hook_state *state) 5679 { 5680 struct sock *sk; 5681 struct sk_security_struct *sksec; 5682 struct common_audit_data ad; 5683 struct lsm_network_audit net = {0,}; 5684 u8 proto = 0; 5685 5686 sk = skb_to_full_sk(skb); 5687 if (sk == NULL) 5688 return NF_ACCEPT; 5689 sksec = sk->sk_security; 5690 5691 ad.type = LSM_AUDIT_DATA_NET; 5692 ad.u.net = &net; 5693 ad.u.net->netif = state->out->ifindex; 5694 ad.u.net->family = state->pf; 5695 if (selinux_parse_skb(skb, &ad, NULL, 0, &proto)) 5696 return NF_DROP; 5697 5698 if (selinux_secmark_enabled()) 5699 if (avc_has_perm(sksec->sid, skb->secmark, 5700 SECCLASS_PACKET, PACKET__SEND, &ad)) 5701 return NF_DROP_ERR(-ECONNREFUSED); 5702 5703 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 5704 return NF_DROP_ERR(-ECONNREFUSED); 5705 5706 return NF_ACCEPT; 5707 } 5708 5709 static unsigned int selinux_ip_postroute(void *priv, 5710 struct sk_buff *skb, 5711 const struct nf_hook_state *state) 5712 { 5713 u16 family; 5714 u32 secmark_perm; 5715 u32 peer_sid; 5716 int ifindex; 5717 struct sock *sk; 5718 struct common_audit_data ad; 5719 struct lsm_network_audit net = {0,}; 5720 char *addrp; 5721 int secmark_active, peerlbl_active; 5722 5723 /* If any sort of compatibility mode is enabled then handoff processing 5724 * to the selinux_ip_postroute_compat() function to deal with the 5725 * special handling. We do this in an attempt to keep this function 5726 * as fast and as clean as possible. */ 5727 if (!selinux_policycap_netpeer()) 5728 return selinux_ip_postroute_compat(skb, state); 5729 5730 secmark_active = selinux_secmark_enabled(); 5731 peerlbl_active = selinux_peerlbl_enabled(); 5732 if (!secmark_active && !peerlbl_active) 5733 return NF_ACCEPT; 5734 5735 sk = skb_to_full_sk(skb); 5736 5737 #ifdef CONFIG_XFRM 5738 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 5739 * packet transformation so allow the packet to pass without any checks 5740 * since we'll have another chance to perform access control checks 5741 * when the packet is on it's final way out. 5742 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 5743 * is NULL, in this case go ahead and apply access control. 5744 * NOTE: if this is a local socket (skb->sk != NULL) that is in the 5745 * TCP listening state we cannot wait until the XFRM processing 5746 * is done as we will miss out on the SA label if we do; 5747 * unfortunately, this means more work, but it is only once per 5748 * connection. */ 5749 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && 5750 !(sk && sk_listener(sk))) 5751 return NF_ACCEPT; 5752 #endif 5753 5754 family = state->pf; 5755 if (sk == NULL) { 5756 /* Without an associated socket the packet is either coming 5757 * from the kernel or it is being forwarded; check the packet 5758 * to determine which and if the packet is being forwarded 5759 * query the packet directly to determine the security label. */ 5760 if (skb->skb_iif) { 5761 secmark_perm = PACKET__FORWARD_OUT; 5762 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 5763 return NF_DROP; 5764 } else { 5765 secmark_perm = PACKET__SEND; 5766 peer_sid = SECINITSID_KERNEL; 5767 } 5768 } else if (sk_listener(sk)) { 5769 /* Locally generated packet but the associated socket is in the 5770 * listening state which means this is a SYN-ACK packet. In 5771 * this particular case the correct security label is assigned 5772 * to the connection/request_sock but unfortunately we can't 5773 * query the request_sock as it isn't queued on the parent 5774 * socket until after the SYN-ACK packet is sent; the only 5775 * viable choice is to regenerate the label like we do in 5776 * selinux_inet_conn_request(). See also selinux_ip_output() 5777 * for similar problems. */ 5778 u32 skb_sid; 5779 struct sk_security_struct *sksec; 5780 5781 sksec = sk->sk_security; 5782 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) 5783 return NF_DROP; 5784 /* At this point, if the returned skb peerlbl is SECSID_NULL 5785 * and the packet has been through at least one XFRM 5786 * transformation then we must be dealing with the "final" 5787 * form of labeled IPsec packet; since we've already applied 5788 * all of our access controls on this packet we can safely 5789 * pass the packet. */ 5790 if (skb_sid == SECSID_NULL) { 5791 switch (family) { 5792 case PF_INET: 5793 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 5794 return NF_ACCEPT; 5795 break; 5796 case PF_INET6: 5797 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 5798 return NF_ACCEPT; 5799 break; 5800 default: 5801 return NF_DROP_ERR(-ECONNREFUSED); 5802 } 5803 } 5804 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) 5805 return NF_DROP; 5806 secmark_perm = PACKET__SEND; 5807 } else { 5808 /* Locally generated packet, fetch the security label from the 5809 * associated socket. */ 5810 struct sk_security_struct *sksec = sk->sk_security; 5811 peer_sid = sksec->sid; 5812 secmark_perm = PACKET__SEND; 5813 } 5814 5815 ifindex = state->out->ifindex; 5816 ad.type = LSM_AUDIT_DATA_NET; 5817 ad.u.net = &net; 5818 ad.u.net->netif = ifindex; 5819 ad.u.net->family = family; 5820 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 5821 return NF_DROP; 5822 5823 if (secmark_active) 5824 if (avc_has_perm(peer_sid, skb->secmark, 5825 SECCLASS_PACKET, secmark_perm, &ad)) 5826 return NF_DROP_ERR(-ECONNREFUSED); 5827 5828 if (peerlbl_active) { 5829 u32 if_sid; 5830 u32 node_sid; 5831 5832 if (sel_netif_sid(state->net, ifindex, &if_sid)) 5833 return NF_DROP; 5834 if (avc_has_perm(peer_sid, if_sid, 5835 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 5836 return NF_DROP_ERR(-ECONNREFUSED); 5837 5838 if (sel_netnode_sid(addrp, family, &node_sid)) 5839 return NF_DROP; 5840 if (avc_has_perm(peer_sid, node_sid, 5841 SECCLASS_NODE, NODE__SENDTO, &ad)) 5842 return NF_DROP_ERR(-ECONNREFUSED); 5843 } 5844 5845 return NF_ACCEPT; 5846 } 5847 #endif /* CONFIG_NETFILTER */ 5848 5849 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 5850 { 5851 int rc = 0; 5852 unsigned int msg_len; 5853 unsigned int data_len = skb->len; 5854 unsigned char *data = skb->data; 5855 struct nlmsghdr *nlh; 5856 struct sk_security_struct *sksec = sk->sk_security; 5857 u16 sclass = sksec->sclass; 5858 u32 perm; 5859 5860 while (data_len >= nlmsg_total_size(0)) { 5861 nlh = (struct nlmsghdr *)data; 5862 5863 /* NOTE: the nlmsg_len field isn't reliably set by some netlink 5864 * users which means we can't reject skb's with bogus 5865 * length fields; our solution is to follow what 5866 * netlink_rcv_skb() does and simply skip processing at 5867 * messages with length fields that are clearly junk 5868 */ 5869 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len) 5870 return 0; 5871 5872 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm); 5873 if (rc == 0) { 5874 rc = sock_has_perm(sk, perm); 5875 if (rc) 5876 return rc; 5877 } else if (rc == -EINVAL) { 5878 /* -EINVAL is a missing msg/perm mapping */ 5879 pr_warn_ratelimited("SELinux: unrecognized netlink" 5880 " message: protocol=%hu nlmsg_type=%hu sclass=%s" 5881 " pid=%d comm=%s\n", 5882 sk->sk_protocol, nlh->nlmsg_type, 5883 secclass_map[sclass - 1].name, 5884 task_pid_nr(current), current->comm); 5885 if (enforcing_enabled() && 5886 !security_get_allow_unknown()) 5887 return rc; 5888 rc = 0; 5889 } else if (rc == -ENOENT) { 5890 /* -ENOENT is a missing socket/class mapping, ignore */ 5891 rc = 0; 5892 } else { 5893 return rc; 5894 } 5895 5896 /* move to the next message after applying netlink padding */ 5897 msg_len = NLMSG_ALIGN(nlh->nlmsg_len); 5898 if (msg_len >= data_len) 5899 return 0; 5900 data_len -= msg_len; 5901 data += msg_len; 5902 } 5903 5904 return rc; 5905 } 5906 5907 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass) 5908 { 5909 isec->sclass = sclass; 5910 isec->sid = current_sid(); 5911 } 5912 5913 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 5914 u32 perms) 5915 { 5916 struct ipc_security_struct *isec; 5917 struct common_audit_data ad; 5918 u32 sid = current_sid(); 5919 5920 isec = selinux_ipc(ipc_perms); 5921 5922 ad.type = LSM_AUDIT_DATA_IPC; 5923 ad.u.ipc_id = ipc_perms->key; 5924 5925 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 5926 } 5927 5928 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 5929 { 5930 struct msg_security_struct *msec; 5931 5932 msec = selinux_msg_msg(msg); 5933 msec->sid = SECINITSID_UNLABELED; 5934 5935 return 0; 5936 } 5937 5938 /* message queue security operations */ 5939 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq) 5940 { 5941 struct ipc_security_struct *isec; 5942 struct common_audit_data ad; 5943 u32 sid = current_sid(); 5944 5945 isec = selinux_ipc(msq); 5946 ipc_init_security(isec, SECCLASS_MSGQ); 5947 5948 ad.type = LSM_AUDIT_DATA_IPC; 5949 ad.u.ipc_id = msq->key; 5950 5951 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5952 MSGQ__CREATE, &ad); 5953 } 5954 5955 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 5956 { 5957 struct ipc_security_struct *isec; 5958 struct common_audit_data ad; 5959 u32 sid = current_sid(); 5960 5961 isec = selinux_ipc(msq); 5962 5963 ad.type = LSM_AUDIT_DATA_IPC; 5964 ad.u.ipc_id = msq->key; 5965 5966 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5967 MSGQ__ASSOCIATE, &ad); 5968 } 5969 5970 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 5971 { 5972 int err; 5973 int perms; 5974 5975 switch (cmd) { 5976 case IPC_INFO: 5977 case MSG_INFO: 5978 /* No specific object, just general system-wide information. */ 5979 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 5980 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 5981 case IPC_STAT: 5982 case MSG_STAT: 5983 case MSG_STAT_ANY: 5984 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 5985 break; 5986 case IPC_SET: 5987 perms = MSGQ__SETATTR; 5988 break; 5989 case IPC_RMID: 5990 perms = MSGQ__DESTROY; 5991 break; 5992 default: 5993 return 0; 5994 } 5995 5996 err = ipc_has_perm(msq, perms); 5997 return err; 5998 } 5999 6000 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg) 6001 { 6002 struct ipc_security_struct *isec; 6003 struct msg_security_struct *msec; 6004 struct common_audit_data ad; 6005 u32 sid = current_sid(); 6006 int rc; 6007 6008 isec = selinux_ipc(msq); 6009 msec = selinux_msg_msg(msg); 6010 6011 /* 6012 * First time through, need to assign label to the message 6013 */ 6014 if (msec->sid == SECINITSID_UNLABELED) { 6015 /* 6016 * Compute new sid based on current process and 6017 * message queue this message will be stored in 6018 */ 6019 rc = security_transition_sid(sid, isec->sid, 6020 SECCLASS_MSG, NULL, &msec->sid); 6021 if (rc) 6022 return rc; 6023 } 6024 6025 ad.type = LSM_AUDIT_DATA_IPC; 6026 ad.u.ipc_id = msq->key; 6027 6028 /* Can this process write to the queue? */ 6029 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 6030 MSGQ__WRITE, &ad); 6031 if (!rc) 6032 /* Can this process send the message */ 6033 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 6034 MSG__SEND, &ad); 6035 if (!rc) 6036 /* Can the message be put in the queue? */ 6037 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 6038 MSGQ__ENQUEUE, &ad); 6039 6040 return rc; 6041 } 6042 6043 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 6044 struct task_struct *target, 6045 long type, int mode) 6046 { 6047 struct ipc_security_struct *isec; 6048 struct msg_security_struct *msec; 6049 struct common_audit_data ad; 6050 u32 sid = task_sid_obj(target); 6051 int rc; 6052 6053 isec = selinux_ipc(msq); 6054 msec = selinux_msg_msg(msg); 6055 6056 ad.type = LSM_AUDIT_DATA_IPC; 6057 ad.u.ipc_id = msq->key; 6058 6059 rc = avc_has_perm(sid, isec->sid, 6060 SECCLASS_MSGQ, MSGQ__READ, &ad); 6061 if (!rc) 6062 rc = avc_has_perm(sid, msec->sid, 6063 SECCLASS_MSG, MSG__RECEIVE, &ad); 6064 return rc; 6065 } 6066 6067 /* Shared Memory security operations */ 6068 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp) 6069 { 6070 struct ipc_security_struct *isec; 6071 struct common_audit_data ad; 6072 u32 sid = current_sid(); 6073 6074 isec = selinux_ipc(shp); 6075 ipc_init_security(isec, SECCLASS_SHM); 6076 6077 ad.type = LSM_AUDIT_DATA_IPC; 6078 ad.u.ipc_id = shp->key; 6079 6080 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 6081 SHM__CREATE, &ad); 6082 } 6083 6084 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg) 6085 { 6086 struct ipc_security_struct *isec; 6087 struct common_audit_data ad; 6088 u32 sid = current_sid(); 6089 6090 isec = selinux_ipc(shp); 6091 6092 ad.type = LSM_AUDIT_DATA_IPC; 6093 ad.u.ipc_id = shp->key; 6094 6095 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 6096 SHM__ASSOCIATE, &ad); 6097 } 6098 6099 /* Note, at this point, shp is locked down */ 6100 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 6101 { 6102 int perms; 6103 int err; 6104 6105 switch (cmd) { 6106 case IPC_INFO: 6107 case SHM_INFO: 6108 /* No specific object, just general system-wide information. */ 6109 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 6110 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6111 case IPC_STAT: 6112 case SHM_STAT: 6113 case SHM_STAT_ANY: 6114 perms = SHM__GETATTR | SHM__ASSOCIATE; 6115 break; 6116 case IPC_SET: 6117 perms = SHM__SETATTR; 6118 break; 6119 case SHM_LOCK: 6120 case SHM_UNLOCK: 6121 perms = SHM__LOCK; 6122 break; 6123 case IPC_RMID: 6124 perms = SHM__DESTROY; 6125 break; 6126 default: 6127 return 0; 6128 } 6129 6130 err = ipc_has_perm(shp, perms); 6131 return err; 6132 } 6133 6134 static int selinux_shm_shmat(struct kern_ipc_perm *shp, 6135 char __user *shmaddr, int shmflg) 6136 { 6137 u32 perms; 6138 6139 if (shmflg & SHM_RDONLY) 6140 perms = SHM__READ; 6141 else 6142 perms = SHM__READ | SHM__WRITE; 6143 6144 return ipc_has_perm(shp, perms); 6145 } 6146 6147 /* Semaphore security operations */ 6148 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma) 6149 { 6150 struct ipc_security_struct *isec; 6151 struct common_audit_data ad; 6152 u32 sid = current_sid(); 6153 6154 isec = selinux_ipc(sma); 6155 ipc_init_security(isec, SECCLASS_SEM); 6156 6157 ad.type = LSM_AUDIT_DATA_IPC; 6158 ad.u.ipc_id = sma->key; 6159 6160 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 6161 SEM__CREATE, &ad); 6162 } 6163 6164 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg) 6165 { 6166 struct ipc_security_struct *isec; 6167 struct common_audit_data ad; 6168 u32 sid = current_sid(); 6169 6170 isec = selinux_ipc(sma); 6171 6172 ad.type = LSM_AUDIT_DATA_IPC; 6173 ad.u.ipc_id = sma->key; 6174 6175 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 6176 SEM__ASSOCIATE, &ad); 6177 } 6178 6179 /* Note, at this point, sma is locked down */ 6180 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd) 6181 { 6182 int err; 6183 u32 perms; 6184 6185 switch (cmd) { 6186 case IPC_INFO: 6187 case SEM_INFO: 6188 /* No specific object, just general system-wide information. */ 6189 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 6190 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6191 case GETPID: 6192 case GETNCNT: 6193 case GETZCNT: 6194 perms = SEM__GETATTR; 6195 break; 6196 case GETVAL: 6197 case GETALL: 6198 perms = SEM__READ; 6199 break; 6200 case SETVAL: 6201 case SETALL: 6202 perms = SEM__WRITE; 6203 break; 6204 case IPC_RMID: 6205 perms = SEM__DESTROY; 6206 break; 6207 case IPC_SET: 6208 perms = SEM__SETATTR; 6209 break; 6210 case IPC_STAT: 6211 case SEM_STAT: 6212 case SEM_STAT_ANY: 6213 perms = SEM__GETATTR | SEM__ASSOCIATE; 6214 break; 6215 default: 6216 return 0; 6217 } 6218 6219 err = ipc_has_perm(sma, perms); 6220 return err; 6221 } 6222 6223 static int selinux_sem_semop(struct kern_ipc_perm *sma, 6224 struct sembuf *sops, unsigned nsops, int alter) 6225 { 6226 u32 perms; 6227 6228 if (alter) 6229 perms = SEM__READ | SEM__WRITE; 6230 else 6231 perms = SEM__READ; 6232 6233 return ipc_has_perm(sma, perms); 6234 } 6235 6236 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 6237 { 6238 u32 av = 0; 6239 6240 av = 0; 6241 if (flag & S_IRUGO) 6242 av |= IPC__UNIX_READ; 6243 if (flag & S_IWUGO) 6244 av |= IPC__UNIX_WRITE; 6245 6246 if (av == 0) 6247 return 0; 6248 6249 return ipc_has_perm(ipcp, av); 6250 } 6251 6252 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 6253 { 6254 struct ipc_security_struct *isec = selinux_ipc(ipcp); 6255 *secid = isec->sid; 6256 } 6257 6258 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 6259 { 6260 if (inode) 6261 inode_doinit_with_dentry(inode, dentry); 6262 } 6263 6264 static int selinux_getprocattr(struct task_struct *p, 6265 const char *name, char **value) 6266 { 6267 const struct task_security_struct *__tsec; 6268 u32 sid; 6269 int error; 6270 unsigned len; 6271 6272 rcu_read_lock(); 6273 __tsec = selinux_cred(__task_cred(p)); 6274 6275 if (current != p) { 6276 error = avc_has_perm(current_sid(), __tsec->sid, 6277 SECCLASS_PROCESS, PROCESS__GETATTR, NULL); 6278 if (error) 6279 goto bad; 6280 } 6281 6282 if (!strcmp(name, "current")) 6283 sid = __tsec->sid; 6284 else if (!strcmp(name, "prev")) 6285 sid = __tsec->osid; 6286 else if (!strcmp(name, "exec")) 6287 sid = __tsec->exec_sid; 6288 else if (!strcmp(name, "fscreate")) 6289 sid = __tsec->create_sid; 6290 else if (!strcmp(name, "keycreate")) 6291 sid = __tsec->keycreate_sid; 6292 else if (!strcmp(name, "sockcreate")) 6293 sid = __tsec->sockcreate_sid; 6294 else { 6295 error = -EINVAL; 6296 goto bad; 6297 } 6298 rcu_read_unlock(); 6299 6300 if (!sid) 6301 return 0; 6302 6303 error = security_sid_to_context(sid, value, &len); 6304 if (error) 6305 return error; 6306 return len; 6307 6308 bad: 6309 rcu_read_unlock(); 6310 return error; 6311 } 6312 6313 static int selinux_setprocattr(const char *name, void *value, size_t size) 6314 { 6315 struct task_security_struct *tsec; 6316 struct cred *new; 6317 u32 mysid = current_sid(), sid = 0, ptsid; 6318 int error; 6319 char *str = value; 6320 6321 /* 6322 * Basic control over ability to set these attributes at all. 6323 */ 6324 if (!strcmp(name, "exec")) 6325 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6326 PROCESS__SETEXEC, NULL); 6327 else if (!strcmp(name, "fscreate")) 6328 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6329 PROCESS__SETFSCREATE, NULL); 6330 else if (!strcmp(name, "keycreate")) 6331 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6332 PROCESS__SETKEYCREATE, NULL); 6333 else if (!strcmp(name, "sockcreate")) 6334 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6335 PROCESS__SETSOCKCREATE, NULL); 6336 else if (!strcmp(name, "current")) 6337 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6338 PROCESS__SETCURRENT, NULL); 6339 else 6340 error = -EINVAL; 6341 if (error) 6342 return error; 6343 6344 /* Obtain a SID for the context, if one was specified. */ 6345 if (size && str[0] && str[0] != '\n') { 6346 if (str[size-1] == '\n') { 6347 str[size-1] = 0; 6348 size--; 6349 } 6350 error = security_context_to_sid(value, size, 6351 &sid, GFP_KERNEL); 6352 if (error == -EINVAL && !strcmp(name, "fscreate")) { 6353 if (!has_cap_mac_admin(true)) { 6354 struct audit_buffer *ab; 6355 size_t audit_size; 6356 6357 /* We strip a nul only if it is at the end, otherwise the 6358 * context contains a nul and we should audit that */ 6359 if (str[size - 1] == '\0') 6360 audit_size = size - 1; 6361 else 6362 audit_size = size; 6363 ab = audit_log_start(audit_context(), 6364 GFP_ATOMIC, 6365 AUDIT_SELINUX_ERR); 6366 if (!ab) 6367 return error; 6368 audit_log_format(ab, "op=fscreate invalid_context="); 6369 audit_log_n_untrustedstring(ab, value, audit_size); 6370 audit_log_end(ab); 6371 6372 return error; 6373 } 6374 error = security_context_to_sid_force(value, size, 6375 &sid); 6376 } 6377 if (error) 6378 return error; 6379 } 6380 6381 new = prepare_creds(); 6382 if (!new) 6383 return -ENOMEM; 6384 6385 /* Permission checking based on the specified context is 6386 performed during the actual operation (execve, 6387 open/mkdir/...), when we know the full context of the 6388 operation. See selinux_bprm_creds_for_exec for the execve 6389 checks and may_create for the file creation checks. The 6390 operation will then fail if the context is not permitted. */ 6391 tsec = selinux_cred(new); 6392 if (!strcmp(name, "exec")) { 6393 tsec->exec_sid = sid; 6394 } else if (!strcmp(name, "fscreate")) { 6395 tsec->create_sid = sid; 6396 } else if (!strcmp(name, "keycreate")) { 6397 if (sid) { 6398 error = avc_has_perm(mysid, sid, 6399 SECCLASS_KEY, KEY__CREATE, NULL); 6400 if (error) 6401 goto abort_change; 6402 } 6403 tsec->keycreate_sid = sid; 6404 } else if (!strcmp(name, "sockcreate")) { 6405 tsec->sockcreate_sid = sid; 6406 } else if (!strcmp(name, "current")) { 6407 error = -EINVAL; 6408 if (sid == 0) 6409 goto abort_change; 6410 6411 /* Only allow single threaded processes to change context */ 6412 if (!current_is_single_threaded()) { 6413 error = security_bounded_transition(tsec->sid, sid); 6414 if (error) 6415 goto abort_change; 6416 } 6417 6418 /* Check permissions for the transition. */ 6419 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 6420 PROCESS__DYNTRANSITION, NULL); 6421 if (error) 6422 goto abort_change; 6423 6424 /* Check for ptracing, and update the task SID if ok. 6425 Otherwise, leave SID unchanged and fail. */ 6426 ptsid = ptrace_parent_sid(); 6427 if (ptsid != 0) { 6428 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 6429 PROCESS__PTRACE, NULL); 6430 if (error) 6431 goto abort_change; 6432 } 6433 6434 tsec->sid = sid; 6435 } else { 6436 error = -EINVAL; 6437 goto abort_change; 6438 } 6439 6440 commit_creds(new); 6441 return size; 6442 6443 abort_change: 6444 abort_creds(new); 6445 return error; 6446 } 6447 6448 static int selinux_ismaclabel(const char *name) 6449 { 6450 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); 6451 } 6452 6453 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 6454 { 6455 return security_sid_to_context(secid, 6456 secdata, seclen); 6457 } 6458 6459 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 6460 { 6461 return security_context_to_sid(secdata, seclen, 6462 secid, GFP_KERNEL); 6463 } 6464 6465 static void selinux_release_secctx(char *secdata, u32 seclen) 6466 { 6467 kfree(secdata); 6468 } 6469 6470 static void selinux_inode_invalidate_secctx(struct inode *inode) 6471 { 6472 struct inode_security_struct *isec = selinux_inode(inode); 6473 6474 spin_lock(&isec->lock); 6475 isec->initialized = LABEL_INVALID; 6476 spin_unlock(&isec->lock); 6477 } 6478 6479 /* 6480 * called with inode->i_mutex locked 6481 */ 6482 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 6483 { 6484 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, 6485 ctx, ctxlen, 0); 6486 /* Do not return error when suppressing label (SBLABEL_MNT not set). */ 6487 return rc == -EOPNOTSUPP ? 0 : rc; 6488 } 6489 6490 /* 6491 * called with inode->i_mutex locked 6492 */ 6493 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 6494 { 6495 return __vfs_setxattr_noperm(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX, 6496 ctx, ctxlen, 0); 6497 } 6498 6499 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 6500 { 6501 int len = 0; 6502 len = selinux_inode_getsecurity(&nop_mnt_idmap, inode, 6503 XATTR_SELINUX_SUFFIX, ctx, true); 6504 if (len < 0) 6505 return len; 6506 *ctxlen = len; 6507 return 0; 6508 } 6509 #ifdef CONFIG_KEYS 6510 6511 static int selinux_key_alloc(struct key *k, const struct cred *cred, 6512 unsigned long flags) 6513 { 6514 const struct task_security_struct *tsec; 6515 struct key_security_struct *ksec; 6516 6517 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 6518 if (!ksec) 6519 return -ENOMEM; 6520 6521 tsec = selinux_cred(cred); 6522 if (tsec->keycreate_sid) 6523 ksec->sid = tsec->keycreate_sid; 6524 else 6525 ksec->sid = tsec->sid; 6526 6527 k->security = ksec; 6528 return 0; 6529 } 6530 6531 static void selinux_key_free(struct key *k) 6532 { 6533 struct key_security_struct *ksec = k->security; 6534 6535 k->security = NULL; 6536 kfree(ksec); 6537 } 6538 6539 static int selinux_key_permission(key_ref_t key_ref, 6540 const struct cred *cred, 6541 enum key_need_perm need_perm) 6542 { 6543 struct key *key; 6544 struct key_security_struct *ksec; 6545 u32 perm, sid; 6546 6547 switch (need_perm) { 6548 case KEY_NEED_VIEW: 6549 perm = KEY__VIEW; 6550 break; 6551 case KEY_NEED_READ: 6552 perm = KEY__READ; 6553 break; 6554 case KEY_NEED_WRITE: 6555 perm = KEY__WRITE; 6556 break; 6557 case KEY_NEED_SEARCH: 6558 perm = KEY__SEARCH; 6559 break; 6560 case KEY_NEED_LINK: 6561 perm = KEY__LINK; 6562 break; 6563 case KEY_NEED_SETATTR: 6564 perm = KEY__SETATTR; 6565 break; 6566 case KEY_NEED_UNLINK: 6567 case KEY_SYSADMIN_OVERRIDE: 6568 case KEY_AUTHTOKEN_OVERRIDE: 6569 case KEY_DEFER_PERM_CHECK: 6570 return 0; 6571 default: 6572 WARN_ON(1); 6573 return -EPERM; 6574 6575 } 6576 6577 sid = cred_sid(cred); 6578 key = key_ref_to_ptr(key_ref); 6579 ksec = key->security; 6580 6581 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 6582 } 6583 6584 static int selinux_key_getsecurity(struct key *key, char **_buffer) 6585 { 6586 struct key_security_struct *ksec = key->security; 6587 char *context = NULL; 6588 unsigned len; 6589 int rc; 6590 6591 rc = security_sid_to_context(ksec->sid, 6592 &context, &len); 6593 if (!rc) 6594 rc = len; 6595 *_buffer = context; 6596 return rc; 6597 } 6598 6599 #ifdef CONFIG_KEY_NOTIFICATIONS 6600 static int selinux_watch_key(struct key *key) 6601 { 6602 struct key_security_struct *ksec = key->security; 6603 u32 sid = current_sid(); 6604 6605 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL); 6606 } 6607 #endif 6608 #endif 6609 6610 #ifdef CONFIG_SECURITY_INFINIBAND 6611 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val) 6612 { 6613 struct common_audit_data ad; 6614 int err; 6615 u32 sid = 0; 6616 struct ib_security_struct *sec = ib_sec; 6617 struct lsm_ibpkey_audit ibpkey; 6618 6619 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid); 6620 if (err) 6621 return err; 6622 6623 ad.type = LSM_AUDIT_DATA_IBPKEY; 6624 ibpkey.subnet_prefix = subnet_prefix; 6625 ibpkey.pkey = pkey_val; 6626 ad.u.ibpkey = &ibpkey; 6627 return avc_has_perm(sec->sid, sid, 6628 SECCLASS_INFINIBAND_PKEY, 6629 INFINIBAND_PKEY__ACCESS, &ad); 6630 } 6631 6632 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name, 6633 u8 port_num) 6634 { 6635 struct common_audit_data ad; 6636 int err; 6637 u32 sid = 0; 6638 struct ib_security_struct *sec = ib_sec; 6639 struct lsm_ibendport_audit ibendport; 6640 6641 err = security_ib_endport_sid(dev_name, port_num, 6642 &sid); 6643 6644 if (err) 6645 return err; 6646 6647 ad.type = LSM_AUDIT_DATA_IBENDPORT; 6648 ibendport.dev_name = dev_name; 6649 ibendport.port = port_num; 6650 ad.u.ibendport = &ibendport; 6651 return avc_has_perm(sec->sid, sid, 6652 SECCLASS_INFINIBAND_ENDPORT, 6653 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad); 6654 } 6655 6656 static int selinux_ib_alloc_security(void **ib_sec) 6657 { 6658 struct ib_security_struct *sec; 6659 6660 sec = kzalloc(sizeof(*sec), GFP_KERNEL); 6661 if (!sec) 6662 return -ENOMEM; 6663 sec->sid = current_sid(); 6664 6665 *ib_sec = sec; 6666 return 0; 6667 } 6668 6669 static void selinux_ib_free_security(void *ib_sec) 6670 { 6671 kfree(ib_sec); 6672 } 6673 #endif 6674 6675 #ifdef CONFIG_BPF_SYSCALL 6676 static int selinux_bpf(int cmd, union bpf_attr *attr, 6677 unsigned int size) 6678 { 6679 u32 sid = current_sid(); 6680 int ret; 6681 6682 switch (cmd) { 6683 case BPF_MAP_CREATE: 6684 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE, 6685 NULL); 6686 break; 6687 case BPF_PROG_LOAD: 6688 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD, 6689 NULL); 6690 break; 6691 default: 6692 ret = 0; 6693 break; 6694 } 6695 6696 return ret; 6697 } 6698 6699 static u32 bpf_map_fmode_to_av(fmode_t fmode) 6700 { 6701 u32 av = 0; 6702 6703 if (fmode & FMODE_READ) 6704 av |= BPF__MAP_READ; 6705 if (fmode & FMODE_WRITE) 6706 av |= BPF__MAP_WRITE; 6707 return av; 6708 } 6709 6710 /* This function will check the file pass through unix socket or binder to see 6711 * if it is a bpf related object. And apply corresponding checks on the bpf 6712 * object based on the type. The bpf maps and programs, not like other files and 6713 * socket, are using a shared anonymous inode inside the kernel as their inode. 6714 * So checking that inode cannot identify if the process have privilege to 6715 * access the bpf object and that's why we have to add this additional check in 6716 * selinux_file_receive and selinux_binder_transfer_files. 6717 */ 6718 static int bpf_fd_pass(struct file *file, u32 sid) 6719 { 6720 struct bpf_security_struct *bpfsec; 6721 struct bpf_prog *prog; 6722 struct bpf_map *map; 6723 int ret; 6724 6725 if (file->f_op == &bpf_map_fops) { 6726 map = file->private_data; 6727 bpfsec = map->security; 6728 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6729 bpf_map_fmode_to_av(file->f_mode), NULL); 6730 if (ret) 6731 return ret; 6732 } else if (file->f_op == &bpf_prog_fops) { 6733 prog = file->private_data; 6734 bpfsec = prog->aux->security; 6735 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6736 BPF__PROG_RUN, NULL); 6737 if (ret) 6738 return ret; 6739 } 6740 return 0; 6741 } 6742 6743 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode) 6744 { 6745 u32 sid = current_sid(); 6746 struct bpf_security_struct *bpfsec; 6747 6748 bpfsec = map->security; 6749 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6750 bpf_map_fmode_to_av(fmode), NULL); 6751 } 6752 6753 static int selinux_bpf_prog(struct bpf_prog *prog) 6754 { 6755 u32 sid = current_sid(); 6756 struct bpf_security_struct *bpfsec; 6757 6758 bpfsec = prog->aux->security; 6759 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6760 BPF__PROG_RUN, NULL); 6761 } 6762 6763 static int selinux_bpf_map_alloc(struct bpf_map *map) 6764 { 6765 struct bpf_security_struct *bpfsec; 6766 6767 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6768 if (!bpfsec) 6769 return -ENOMEM; 6770 6771 bpfsec->sid = current_sid(); 6772 map->security = bpfsec; 6773 6774 return 0; 6775 } 6776 6777 static void selinux_bpf_map_free(struct bpf_map *map) 6778 { 6779 struct bpf_security_struct *bpfsec = map->security; 6780 6781 map->security = NULL; 6782 kfree(bpfsec); 6783 } 6784 6785 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux) 6786 { 6787 struct bpf_security_struct *bpfsec; 6788 6789 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6790 if (!bpfsec) 6791 return -ENOMEM; 6792 6793 bpfsec->sid = current_sid(); 6794 aux->security = bpfsec; 6795 6796 return 0; 6797 } 6798 6799 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux) 6800 { 6801 struct bpf_security_struct *bpfsec = aux->security; 6802 6803 aux->security = NULL; 6804 kfree(bpfsec); 6805 } 6806 #endif 6807 6808 struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = { 6809 .lbs_cred = sizeof(struct task_security_struct), 6810 .lbs_file = sizeof(struct file_security_struct), 6811 .lbs_inode = sizeof(struct inode_security_struct), 6812 .lbs_ipc = sizeof(struct ipc_security_struct), 6813 .lbs_msg_msg = sizeof(struct msg_security_struct), 6814 .lbs_superblock = sizeof(struct superblock_security_struct), 6815 }; 6816 6817 #ifdef CONFIG_PERF_EVENTS 6818 static int selinux_perf_event_open(struct perf_event_attr *attr, int type) 6819 { 6820 u32 requested, sid = current_sid(); 6821 6822 if (type == PERF_SECURITY_OPEN) 6823 requested = PERF_EVENT__OPEN; 6824 else if (type == PERF_SECURITY_CPU) 6825 requested = PERF_EVENT__CPU; 6826 else if (type == PERF_SECURITY_KERNEL) 6827 requested = PERF_EVENT__KERNEL; 6828 else if (type == PERF_SECURITY_TRACEPOINT) 6829 requested = PERF_EVENT__TRACEPOINT; 6830 else 6831 return -EINVAL; 6832 6833 return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT, 6834 requested, NULL); 6835 } 6836 6837 static int selinux_perf_event_alloc(struct perf_event *event) 6838 { 6839 struct perf_event_security_struct *perfsec; 6840 6841 perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL); 6842 if (!perfsec) 6843 return -ENOMEM; 6844 6845 perfsec->sid = current_sid(); 6846 event->security = perfsec; 6847 6848 return 0; 6849 } 6850 6851 static void selinux_perf_event_free(struct perf_event *event) 6852 { 6853 struct perf_event_security_struct *perfsec = event->security; 6854 6855 event->security = NULL; 6856 kfree(perfsec); 6857 } 6858 6859 static int selinux_perf_event_read(struct perf_event *event) 6860 { 6861 struct perf_event_security_struct *perfsec = event->security; 6862 u32 sid = current_sid(); 6863 6864 return avc_has_perm(sid, perfsec->sid, 6865 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL); 6866 } 6867 6868 static int selinux_perf_event_write(struct perf_event *event) 6869 { 6870 struct perf_event_security_struct *perfsec = event->security; 6871 u32 sid = current_sid(); 6872 6873 return avc_has_perm(sid, perfsec->sid, 6874 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL); 6875 } 6876 #endif 6877 6878 #ifdef CONFIG_IO_URING 6879 /** 6880 * selinux_uring_override_creds - check the requested cred override 6881 * @new: the target creds 6882 * 6883 * Check to see if the current task is allowed to override it's credentials 6884 * to service an io_uring operation. 6885 */ 6886 static int selinux_uring_override_creds(const struct cred *new) 6887 { 6888 return avc_has_perm(current_sid(), cred_sid(new), 6889 SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL); 6890 } 6891 6892 /** 6893 * selinux_uring_sqpoll - check if a io_uring polling thread can be created 6894 * 6895 * Check to see if the current task is allowed to create a new io_uring 6896 * kernel polling thread. 6897 */ 6898 static int selinux_uring_sqpoll(void) 6899 { 6900 int sid = current_sid(); 6901 6902 return avc_has_perm(sid, sid, 6903 SECCLASS_IO_URING, IO_URING__SQPOLL, NULL); 6904 } 6905 6906 /** 6907 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed 6908 * @ioucmd: the io_uring command structure 6909 * 6910 * Check to see if the current domain is allowed to execute an 6911 * IORING_OP_URING_CMD against the device/file specified in @ioucmd. 6912 * 6913 */ 6914 static int selinux_uring_cmd(struct io_uring_cmd *ioucmd) 6915 { 6916 struct file *file = ioucmd->file; 6917 struct inode *inode = file_inode(file); 6918 struct inode_security_struct *isec = selinux_inode(inode); 6919 struct common_audit_data ad; 6920 6921 ad.type = LSM_AUDIT_DATA_FILE; 6922 ad.u.file = file; 6923 6924 return avc_has_perm(current_sid(), isec->sid, 6925 SECCLASS_IO_URING, IO_URING__CMD, &ad); 6926 } 6927 #endif /* CONFIG_IO_URING */ 6928 6929 /* 6930 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order: 6931 * 1. any hooks that don't belong to (2.) or (3.) below, 6932 * 2. hooks that both access structures allocated by other hooks, and allocate 6933 * structures that can be later accessed by other hooks (mostly "cloning" 6934 * hooks), 6935 * 3. hooks that only allocate structures that can be later accessed by other 6936 * hooks ("allocating" hooks). 6937 * 6938 * Please follow block comment delimiters in the list to keep this order. 6939 * 6940 * This ordering is needed for SELinux runtime disable to work at least somewhat 6941 * safely. Breaking the ordering rules above might lead to NULL pointer derefs 6942 * when disabling SELinux at runtime. 6943 */ 6944 static struct security_hook_list selinux_hooks[] __ro_after_init = { 6945 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr), 6946 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction), 6947 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder), 6948 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file), 6949 6950 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check), 6951 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme), 6952 LSM_HOOK_INIT(capget, selinux_capget), 6953 LSM_HOOK_INIT(capset, selinux_capset), 6954 LSM_HOOK_INIT(capable, selinux_capable), 6955 LSM_HOOK_INIT(quotactl, selinux_quotactl), 6956 LSM_HOOK_INIT(quota_on, selinux_quota_on), 6957 LSM_HOOK_INIT(syslog, selinux_syslog), 6958 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory), 6959 6960 LSM_HOOK_INIT(netlink_send, selinux_netlink_send), 6961 6962 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec), 6963 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds), 6964 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds), 6965 6966 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts), 6967 LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat), 6968 LSM_HOOK_INIT(sb_remount, selinux_sb_remount), 6969 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount), 6970 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options), 6971 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs), 6972 LSM_HOOK_INIT(sb_mount, selinux_mount), 6973 LSM_HOOK_INIT(sb_umount, selinux_umount), 6974 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts), 6975 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts), 6976 6977 LSM_HOOK_INIT(move_mount, selinux_move_mount), 6978 6979 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security), 6980 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as), 6981 6982 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security), 6983 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security), 6984 LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon), 6985 LSM_HOOK_INIT(inode_create, selinux_inode_create), 6986 LSM_HOOK_INIT(inode_link, selinux_inode_link), 6987 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink), 6988 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink), 6989 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir), 6990 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir), 6991 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod), 6992 LSM_HOOK_INIT(inode_rename, selinux_inode_rename), 6993 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink), 6994 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link), 6995 LSM_HOOK_INIT(inode_permission, selinux_inode_permission), 6996 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr), 6997 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr), 6998 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr), 6999 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr), 7000 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr), 7001 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr), 7002 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr), 7003 LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl), 7004 LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl), 7005 LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl), 7006 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity), 7007 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity), 7008 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity), 7009 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid), 7010 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up), 7011 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr), 7012 LSM_HOOK_INIT(path_notify, selinux_path_notify), 7013 7014 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security), 7015 7016 LSM_HOOK_INIT(file_permission, selinux_file_permission), 7017 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security), 7018 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl), 7019 LSM_HOOK_INIT(mmap_file, selinux_mmap_file), 7020 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr), 7021 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect), 7022 LSM_HOOK_INIT(file_lock, selinux_file_lock), 7023 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl), 7024 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner), 7025 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask), 7026 LSM_HOOK_INIT(file_receive, selinux_file_receive), 7027 7028 LSM_HOOK_INIT(file_open, selinux_file_open), 7029 7030 LSM_HOOK_INIT(task_alloc, selinux_task_alloc), 7031 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare), 7032 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer), 7033 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid), 7034 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as), 7035 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as), 7036 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request), 7037 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data), 7038 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file), 7039 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid), 7040 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid), 7041 LSM_HOOK_INIT(task_getsid, selinux_task_getsid), 7042 LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj), 7043 LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj), 7044 LSM_HOOK_INIT(task_setnice, selinux_task_setnice), 7045 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio), 7046 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio), 7047 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit), 7048 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit), 7049 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler), 7050 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler), 7051 LSM_HOOK_INIT(task_movememory, selinux_task_movememory), 7052 LSM_HOOK_INIT(task_kill, selinux_task_kill), 7053 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode), 7054 LSM_HOOK_INIT(userns_create, selinux_userns_create), 7055 7056 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission), 7057 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid), 7058 7059 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate), 7060 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl), 7061 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd), 7062 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv), 7063 7064 LSM_HOOK_INIT(shm_associate, selinux_shm_associate), 7065 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl), 7066 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat), 7067 7068 LSM_HOOK_INIT(sem_associate, selinux_sem_associate), 7069 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl), 7070 LSM_HOOK_INIT(sem_semop, selinux_sem_semop), 7071 7072 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate), 7073 7074 LSM_HOOK_INIT(getprocattr, selinux_getprocattr), 7075 LSM_HOOK_INIT(setprocattr, selinux_setprocattr), 7076 7077 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel), 7078 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid), 7079 LSM_HOOK_INIT(release_secctx, selinux_release_secctx), 7080 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx), 7081 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx), 7082 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx), 7083 7084 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect), 7085 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send), 7086 7087 LSM_HOOK_INIT(socket_create, selinux_socket_create), 7088 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create), 7089 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair), 7090 LSM_HOOK_INIT(socket_bind, selinux_socket_bind), 7091 LSM_HOOK_INIT(socket_connect, selinux_socket_connect), 7092 LSM_HOOK_INIT(socket_listen, selinux_socket_listen), 7093 LSM_HOOK_INIT(socket_accept, selinux_socket_accept), 7094 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg), 7095 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg), 7096 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname), 7097 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername), 7098 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt), 7099 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt), 7100 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown), 7101 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb), 7102 LSM_HOOK_INIT(socket_getpeersec_stream, 7103 selinux_socket_getpeersec_stream), 7104 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram), 7105 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security), 7106 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security), 7107 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid), 7108 LSM_HOOK_INIT(sock_graft, selinux_sock_graft), 7109 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request), 7110 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone), 7111 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect), 7112 LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established), 7113 LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow), 7114 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request), 7115 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone), 7116 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established), 7117 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet), 7118 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc), 7119 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec), 7120 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow), 7121 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security), 7122 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create), 7123 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue), 7124 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach), 7125 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open), 7126 #ifdef CONFIG_SECURITY_INFINIBAND 7127 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access), 7128 LSM_HOOK_INIT(ib_endport_manage_subnet, 7129 selinux_ib_endport_manage_subnet), 7130 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security), 7131 #endif 7132 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7133 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free), 7134 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete), 7135 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free), 7136 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete), 7137 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup), 7138 LSM_HOOK_INIT(xfrm_state_pol_flow_match, 7139 selinux_xfrm_state_pol_flow_match), 7140 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session), 7141 #endif 7142 7143 #ifdef CONFIG_KEYS 7144 LSM_HOOK_INIT(key_free, selinux_key_free), 7145 LSM_HOOK_INIT(key_permission, selinux_key_permission), 7146 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity), 7147 #ifdef CONFIG_KEY_NOTIFICATIONS 7148 LSM_HOOK_INIT(watch_key, selinux_watch_key), 7149 #endif 7150 #endif 7151 7152 #ifdef CONFIG_AUDIT 7153 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known), 7154 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match), 7155 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free), 7156 #endif 7157 7158 #ifdef CONFIG_BPF_SYSCALL 7159 LSM_HOOK_INIT(bpf, selinux_bpf), 7160 LSM_HOOK_INIT(bpf_map, selinux_bpf_map), 7161 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog), 7162 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free), 7163 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free), 7164 #endif 7165 7166 #ifdef CONFIG_PERF_EVENTS 7167 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open), 7168 LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free), 7169 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read), 7170 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write), 7171 #endif 7172 7173 #ifdef CONFIG_IO_URING 7174 LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds), 7175 LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll), 7176 LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd), 7177 #endif 7178 7179 /* 7180 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE 7181 */ 7182 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup), 7183 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param), 7184 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts), 7185 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7186 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone), 7187 #endif 7188 7189 /* 7190 * PUT "ALLOCATING" HOOKS HERE 7191 */ 7192 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security), 7193 LSM_HOOK_INIT(msg_queue_alloc_security, 7194 selinux_msg_queue_alloc_security), 7195 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security), 7196 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security), 7197 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security), 7198 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security), 7199 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx), 7200 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx), 7201 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security), 7202 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security), 7203 #ifdef CONFIG_SECURITY_INFINIBAND 7204 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security), 7205 #endif 7206 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7207 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc), 7208 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc), 7209 LSM_HOOK_INIT(xfrm_state_alloc_acquire, 7210 selinux_xfrm_state_alloc_acquire), 7211 #endif 7212 #ifdef CONFIG_KEYS 7213 LSM_HOOK_INIT(key_alloc, selinux_key_alloc), 7214 #endif 7215 #ifdef CONFIG_AUDIT 7216 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init), 7217 #endif 7218 #ifdef CONFIG_BPF_SYSCALL 7219 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc), 7220 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc), 7221 #endif 7222 #ifdef CONFIG_PERF_EVENTS 7223 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc), 7224 #endif 7225 }; 7226 7227 static __init int selinux_init(void) 7228 { 7229 pr_info("SELinux: Initializing.\n"); 7230 7231 memset(&selinux_state, 0, sizeof(selinux_state)); 7232 enforcing_set(selinux_enforcing_boot); 7233 selinux_avc_init(); 7234 mutex_init(&selinux_state.status_lock); 7235 mutex_init(&selinux_state.policy_mutex); 7236 7237 /* Set the security state for the initial task. */ 7238 cred_init_security(); 7239 7240 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 7241 7242 avc_init(); 7243 7244 avtab_cache_init(); 7245 7246 ebitmap_cache_init(); 7247 7248 hashtab_cache_init(); 7249 7250 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux"); 7251 7252 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) 7253 panic("SELinux: Unable to register AVC netcache callback\n"); 7254 7255 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET)) 7256 panic("SELinux: Unable to register AVC LSM notifier callback\n"); 7257 7258 if (selinux_enforcing_boot) 7259 pr_debug("SELinux: Starting in enforcing mode\n"); 7260 else 7261 pr_debug("SELinux: Starting in permissive mode\n"); 7262 7263 fs_validate_description("selinux", selinux_fs_parameters); 7264 7265 return 0; 7266 } 7267 7268 static void delayed_superblock_init(struct super_block *sb, void *unused) 7269 { 7270 selinux_set_mnt_opts(sb, NULL, 0, NULL); 7271 } 7272 7273 void selinux_complete_init(void) 7274 { 7275 pr_debug("SELinux: Completing initialization.\n"); 7276 7277 /* Set up any superblocks initialized prior to the policy load. */ 7278 pr_debug("SELinux: Setting up existing superblocks.\n"); 7279 iterate_supers(delayed_superblock_init, NULL); 7280 } 7281 7282 /* SELinux requires early initialization in order to label 7283 all processes and objects when they are created. */ 7284 DEFINE_LSM(selinux) = { 7285 .name = "selinux", 7286 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE, 7287 .enabled = &selinux_enabled_boot, 7288 .blobs = &selinux_blob_sizes, 7289 .init = selinux_init, 7290 }; 7291 7292 #if defined(CONFIG_NETFILTER) 7293 static const struct nf_hook_ops selinux_nf_ops[] = { 7294 { 7295 .hook = selinux_ip_postroute, 7296 .pf = NFPROTO_IPV4, 7297 .hooknum = NF_INET_POST_ROUTING, 7298 .priority = NF_IP_PRI_SELINUX_LAST, 7299 }, 7300 { 7301 .hook = selinux_ip_forward, 7302 .pf = NFPROTO_IPV4, 7303 .hooknum = NF_INET_FORWARD, 7304 .priority = NF_IP_PRI_SELINUX_FIRST, 7305 }, 7306 { 7307 .hook = selinux_ip_output, 7308 .pf = NFPROTO_IPV4, 7309 .hooknum = NF_INET_LOCAL_OUT, 7310 .priority = NF_IP_PRI_SELINUX_FIRST, 7311 }, 7312 #if IS_ENABLED(CONFIG_IPV6) 7313 { 7314 .hook = selinux_ip_postroute, 7315 .pf = NFPROTO_IPV6, 7316 .hooknum = NF_INET_POST_ROUTING, 7317 .priority = NF_IP6_PRI_SELINUX_LAST, 7318 }, 7319 { 7320 .hook = selinux_ip_forward, 7321 .pf = NFPROTO_IPV6, 7322 .hooknum = NF_INET_FORWARD, 7323 .priority = NF_IP6_PRI_SELINUX_FIRST, 7324 }, 7325 { 7326 .hook = selinux_ip_output, 7327 .pf = NFPROTO_IPV6, 7328 .hooknum = NF_INET_LOCAL_OUT, 7329 .priority = NF_IP6_PRI_SELINUX_FIRST, 7330 }, 7331 #endif /* IPV6 */ 7332 }; 7333 7334 static int __net_init selinux_nf_register(struct net *net) 7335 { 7336 return nf_register_net_hooks(net, selinux_nf_ops, 7337 ARRAY_SIZE(selinux_nf_ops)); 7338 } 7339 7340 static void __net_exit selinux_nf_unregister(struct net *net) 7341 { 7342 nf_unregister_net_hooks(net, selinux_nf_ops, 7343 ARRAY_SIZE(selinux_nf_ops)); 7344 } 7345 7346 static struct pernet_operations selinux_net_ops = { 7347 .init = selinux_nf_register, 7348 .exit = selinux_nf_unregister, 7349 }; 7350 7351 static int __init selinux_nf_ip_init(void) 7352 { 7353 int err; 7354 7355 if (!selinux_enabled_boot) 7356 return 0; 7357 7358 pr_debug("SELinux: Registering netfilter hooks\n"); 7359 7360 err = register_pernet_subsys(&selinux_net_ops); 7361 if (err) 7362 panic("SELinux: register_pernet_subsys: error %d\n", err); 7363 7364 return 0; 7365 } 7366 __initcall(selinux_nf_ip_init); 7367 #endif /* CONFIG_NETFILTER */ 7368