xref: /linux/security/selinux/hooks.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14  *                          <dgoeddel@trustedcs.com>
15  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
16  *                Paul Moore <paul.moore@hp.com>
17  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
18  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
19  *
20  *	This program is free software; you can redistribute it and/or modify
21  *	it under the terms of the GNU General Public License version 2,
22  *      as published by the Free Software Foundation.
23  */
24 
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/sched.h>
30 #include <linux/security.h>
31 #include <linux/xattr.h>
32 #include <linux/capability.h>
33 #include <linux/unistd.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <linux/slab.h>
37 #include <linux/pagemap.h>
38 #include <linux/swap.h>
39 #include <linux/spinlock.h>
40 #include <linux/syscalls.h>
41 #include <linux/file.h>
42 #include <linux/namei.h>
43 #include <linux/mount.h>
44 #include <linux/ext2_fs.h>
45 #include <linux/proc_fs.h>
46 #include <linux/kd.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>		/* for local_port_range[] */
52 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <asm/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>	/* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>		/* for Unix socket types */
67 #include <net/af_unix.h>	/* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 
79 #include "avc.h"
80 #include "objsec.h"
81 #include "netif.h"
82 #include "netnode.h"
83 #include "xfrm.h"
84 #include "netlabel.h"
85 
86 #define XATTR_SELINUX_SUFFIX "selinux"
87 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
88 
89 #define NUM_SEL_MNT_OPTS 4
90 
91 extern unsigned int policydb_loaded_version;
92 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
93 extern int selinux_compat_net;
94 extern struct security_operations *security_ops;
95 
96 /* SECMARK reference count */
97 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
98 
99 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
100 int selinux_enforcing = 0;
101 
102 static int __init enforcing_setup(char *str)
103 {
104 	selinux_enforcing = simple_strtol(str,NULL,0);
105 	return 1;
106 }
107 __setup("enforcing=", enforcing_setup);
108 #endif
109 
110 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
111 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
112 
113 static int __init selinux_enabled_setup(char *str)
114 {
115 	selinux_enabled = simple_strtol(str, NULL, 0);
116 	return 1;
117 }
118 __setup("selinux=", selinux_enabled_setup);
119 #else
120 int selinux_enabled = 1;
121 #endif
122 
123 /* Original (dummy) security module. */
124 static struct security_operations *original_ops = NULL;
125 
126 /* Minimal support for a secondary security module,
127    just to allow the use of the dummy or capability modules.
128    The owlsm module can alternatively be used as a secondary
129    module as long as CONFIG_OWLSM_FD is not enabled. */
130 static struct security_operations *secondary_ops = NULL;
131 
132 /* Lists of inode and superblock security structures initialized
133    before the policy was loaded. */
134 static LIST_HEAD(superblock_security_head);
135 static DEFINE_SPINLOCK(sb_security_lock);
136 
137 static struct kmem_cache *sel_inode_cache;
138 
139 /**
140  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
141  *
142  * Description:
143  * This function checks the SECMARK reference counter to see if any SECMARK
144  * targets are currently configured, if the reference counter is greater than
145  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
146  * enabled, false (0) if SECMARK is disabled.
147  *
148  */
149 static int selinux_secmark_enabled(void)
150 {
151 	return (atomic_read(&selinux_secmark_refcount) > 0);
152 }
153 
154 /* Allocate and free functions for each kind of security blob. */
155 
156 static int task_alloc_security(struct task_struct *task)
157 {
158 	struct task_security_struct *tsec;
159 
160 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
161 	if (!tsec)
162 		return -ENOMEM;
163 
164 	tsec->task = task;
165 	tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
166 	task->security = tsec;
167 
168 	return 0;
169 }
170 
171 static void task_free_security(struct task_struct *task)
172 {
173 	struct task_security_struct *tsec = task->security;
174 	task->security = NULL;
175 	kfree(tsec);
176 }
177 
178 static int inode_alloc_security(struct inode *inode)
179 {
180 	struct task_security_struct *tsec = current->security;
181 	struct inode_security_struct *isec;
182 
183 	isec = kmem_cache_zalloc(sel_inode_cache, GFP_KERNEL);
184 	if (!isec)
185 		return -ENOMEM;
186 
187 	mutex_init(&isec->lock);
188 	INIT_LIST_HEAD(&isec->list);
189 	isec->inode = inode;
190 	isec->sid = SECINITSID_UNLABELED;
191 	isec->sclass = SECCLASS_FILE;
192 	isec->task_sid = tsec->sid;
193 	inode->i_security = isec;
194 
195 	return 0;
196 }
197 
198 static void inode_free_security(struct inode *inode)
199 {
200 	struct inode_security_struct *isec = inode->i_security;
201 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
202 
203 	spin_lock(&sbsec->isec_lock);
204 	if (!list_empty(&isec->list))
205 		list_del_init(&isec->list);
206 	spin_unlock(&sbsec->isec_lock);
207 
208 	inode->i_security = NULL;
209 	kmem_cache_free(sel_inode_cache, isec);
210 }
211 
212 static int file_alloc_security(struct file *file)
213 {
214 	struct task_security_struct *tsec = current->security;
215 	struct file_security_struct *fsec;
216 
217 	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
218 	if (!fsec)
219 		return -ENOMEM;
220 
221 	fsec->file = file;
222 	fsec->sid = tsec->sid;
223 	fsec->fown_sid = tsec->sid;
224 	file->f_security = fsec;
225 
226 	return 0;
227 }
228 
229 static void file_free_security(struct file *file)
230 {
231 	struct file_security_struct *fsec = file->f_security;
232 	file->f_security = NULL;
233 	kfree(fsec);
234 }
235 
236 static int superblock_alloc_security(struct super_block *sb)
237 {
238 	struct superblock_security_struct *sbsec;
239 
240 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
241 	if (!sbsec)
242 		return -ENOMEM;
243 
244 	mutex_init(&sbsec->lock);
245 	INIT_LIST_HEAD(&sbsec->list);
246 	INIT_LIST_HEAD(&sbsec->isec_head);
247 	spin_lock_init(&sbsec->isec_lock);
248 	sbsec->sb = sb;
249 	sbsec->sid = SECINITSID_UNLABELED;
250 	sbsec->def_sid = SECINITSID_FILE;
251 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
252 	sb->s_security = sbsec;
253 
254 	return 0;
255 }
256 
257 static void superblock_free_security(struct super_block *sb)
258 {
259 	struct superblock_security_struct *sbsec = sb->s_security;
260 
261 	spin_lock(&sb_security_lock);
262 	if (!list_empty(&sbsec->list))
263 		list_del_init(&sbsec->list);
264 	spin_unlock(&sb_security_lock);
265 
266 	sb->s_security = NULL;
267 	kfree(sbsec);
268 }
269 
270 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
271 {
272 	struct sk_security_struct *ssec;
273 
274 	ssec = kzalloc(sizeof(*ssec), priority);
275 	if (!ssec)
276 		return -ENOMEM;
277 
278 	ssec->sk = sk;
279 	ssec->peer_sid = SECINITSID_UNLABELED;
280 	ssec->sid = SECINITSID_UNLABELED;
281 	sk->sk_security = ssec;
282 
283 	selinux_netlbl_sk_security_init(ssec, family);
284 
285 	return 0;
286 }
287 
288 static void sk_free_security(struct sock *sk)
289 {
290 	struct sk_security_struct *ssec = sk->sk_security;
291 
292 	sk->sk_security = NULL;
293 	kfree(ssec);
294 }
295 
296 /* The security server must be initialized before
297    any labeling or access decisions can be provided. */
298 extern int ss_initialized;
299 
300 /* The file system's label must be initialized prior to use. */
301 
302 static char *labeling_behaviors[6] = {
303 	"uses xattr",
304 	"uses transition SIDs",
305 	"uses task SIDs",
306 	"uses genfs_contexts",
307 	"not configured for labeling",
308 	"uses mountpoint labeling",
309 };
310 
311 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
312 
313 static inline int inode_doinit(struct inode *inode)
314 {
315 	return inode_doinit_with_dentry(inode, NULL);
316 }
317 
318 enum {
319 	Opt_error = -1,
320 	Opt_context = 1,
321 	Opt_fscontext = 2,
322 	Opt_defcontext = 3,
323 	Opt_rootcontext = 4,
324 };
325 
326 static match_table_t tokens = {
327 	{Opt_context, "context=%s"},
328 	{Opt_fscontext, "fscontext=%s"},
329 	{Opt_defcontext, "defcontext=%s"},
330 	{Opt_rootcontext, "rootcontext=%s"},
331 	{Opt_error, NULL},
332 };
333 
334 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
335 
336 static int may_context_mount_sb_relabel(u32 sid,
337 			struct superblock_security_struct *sbsec,
338 			struct task_security_struct *tsec)
339 {
340 	int rc;
341 
342 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
343 			  FILESYSTEM__RELABELFROM, NULL);
344 	if (rc)
345 		return rc;
346 
347 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
348 			  FILESYSTEM__RELABELTO, NULL);
349 	return rc;
350 }
351 
352 static int may_context_mount_inode_relabel(u32 sid,
353 			struct superblock_security_struct *sbsec,
354 			struct task_security_struct *tsec)
355 {
356 	int rc;
357 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
358 			  FILESYSTEM__RELABELFROM, NULL);
359 	if (rc)
360 		return rc;
361 
362 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
363 			  FILESYSTEM__ASSOCIATE, NULL);
364 	return rc;
365 }
366 
367 static int sb_finish_set_opts(struct super_block *sb)
368 {
369 	struct superblock_security_struct *sbsec = sb->s_security;
370 	struct dentry *root = sb->s_root;
371 	struct inode *root_inode = root->d_inode;
372 	int rc = 0;
373 
374 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
375 		/* Make sure that the xattr handler exists and that no
376 		   error other than -ENODATA is returned by getxattr on
377 		   the root directory.  -ENODATA is ok, as this may be
378 		   the first boot of the SELinux kernel before we have
379 		   assigned xattr values to the filesystem. */
380 		if (!root_inode->i_op->getxattr) {
381 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
382 			       "xattr support\n", sb->s_id, sb->s_type->name);
383 			rc = -EOPNOTSUPP;
384 			goto out;
385 		}
386 		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
387 		if (rc < 0 && rc != -ENODATA) {
388 			if (rc == -EOPNOTSUPP)
389 				printk(KERN_WARNING "SELinux: (dev %s, type "
390 				       "%s) has no security xattr handler\n",
391 				       sb->s_id, sb->s_type->name);
392 			else
393 				printk(KERN_WARNING "SELinux: (dev %s, type "
394 				       "%s) getxattr errno %d\n", sb->s_id,
395 				       sb->s_type->name, -rc);
396 			goto out;
397 		}
398 	}
399 
400 	sbsec->initialized = 1;
401 
402 	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
403 		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
404 		       sb->s_id, sb->s_type->name);
405 	else
406 		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
407 		       sb->s_id, sb->s_type->name,
408 		       labeling_behaviors[sbsec->behavior-1]);
409 
410 	/* Initialize the root inode. */
411 	rc = inode_doinit_with_dentry(root_inode, root);
412 
413 	/* Initialize any other inodes associated with the superblock, e.g.
414 	   inodes created prior to initial policy load or inodes created
415 	   during get_sb by a pseudo filesystem that directly
416 	   populates itself. */
417 	spin_lock(&sbsec->isec_lock);
418 next_inode:
419 	if (!list_empty(&sbsec->isec_head)) {
420 		struct inode_security_struct *isec =
421 				list_entry(sbsec->isec_head.next,
422 					   struct inode_security_struct, list);
423 		struct inode *inode = isec->inode;
424 		spin_unlock(&sbsec->isec_lock);
425 		inode = igrab(inode);
426 		if (inode) {
427 			if (!IS_PRIVATE(inode))
428 				inode_doinit(inode);
429 			iput(inode);
430 		}
431 		spin_lock(&sbsec->isec_lock);
432 		list_del_init(&isec->list);
433 		goto next_inode;
434 	}
435 	spin_unlock(&sbsec->isec_lock);
436 out:
437 	return rc;
438 }
439 
440 /*
441  * This function should allow an FS to ask what it's mount security
442  * options were so it can use those later for submounts, displaying
443  * mount options, or whatever.
444  */
445 static int selinux_get_mnt_opts(const struct super_block *sb,
446 				char ***mount_options, int **mnt_opts_flags,
447 				int *num_opts)
448 {
449 	int rc = 0, i;
450 	struct superblock_security_struct *sbsec = sb->s_security;
451 	char *context = NULL;
452 	u32 len;
453 	char tmp;
454 
455 	*num_opts = 0;
456 	*mount_options = NULL;
457 	*mnt_opts_flags = NULL;
458 
459 	if (!sbsec->initialized)
460 		return -EINVAL;
461 
462 	if (!ss_initialized)
463 		return -EINVAL;
464 
465 	/*
466 	 * if we ever use sbsec flags for anything other than tracking mount
467 	 * settings this is going to need a mask
468 	 */
469 	tmp = sbsec->flags;
470 	/* count the number of mount options for this sb */
471 	for (i = 0; i < 8; i++) {
472 		if (tmp & 0x01)
473 			(*num_opts)++;
474 		tmp >>= 1;
475 	}
476 
477 	*mount_options = kcalloc(*num_opts, sizeof(char *), GFP_ATOMIC);
478 	if (!*mount_options) {
479 		rc = -ENOMEM;
480 		goto out_free;
481 	}
482 
483 	*mnt_opts_flags = kcalloc(*num_opts, sizeof(int), GFP_ATOMIC);
484 	if (!*mnt_opts_flags) {
485 		rc = -ENOMEM;
486 		goto out_free;
487 	}
488 
489 	i = 0;
490 	if (sbsec->flags & FSCONTEXT_MNT) {
491 		rc = security_sid_to_context(sbsec->sid, &context, &len);
492 		if (rc)
493 			goto out_free;
494 		(*mount_options)[i] = context;
495 		(*mnt_opts_flags)[i++] = FSCONTEXT_MNT;
496 	}
497 	if (sbsec->flags & CONTEXT_MNT) {
498 		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
499 		if (rc)
500 			goto out_free;
501 		(*mount_options)[i] = context;
502 		(*mnt_opts_flags)[i++] = CONTEXT_MNT;
503 	}
504 	if (sbsec->flags & DEFCONTEXT_MNT) {
505 		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
506 		if (rc)
507 			goto out_free;
508 		(*mount_options)[i] = context;
509 		(*mnt_opts_flags)[i++] = DEFCONTEXT_MNT;
510 	}
511 	if (sbsec->flags & ROOTCONTEXT_MNT) {
512 		struct inode *root = sbsec->sb->s_root->d_inode;
513 		struct inode_security_struct *isec = root->i_security;
514 
515 		rc = security_sid_to_context(isec->sid, &context, &len);
516 		if (rc)
517 			goto out_free;
518 		(*mount_options)[i] = context;
519 		(*mnt_opts_flags)[i++] = ROOTCONTEXT_MNT;
520 	}
521 
522 	BUG_ON(i != *num_opts);
523 
524 	return 0;
525 
526 out_free:
527 	/* don't leak context string if security_sid_to_context had an error */
528 	if (*mount_options && i)
529 		for (; i > 0; i--)
530 			kfree((*mount_options)[i-1]);
531 	kfree(*mount_options);
532 	*mount_options = NULL;
533 	kfree(*mnt_opts_flags);
534 	*mnt_opts_flags = NULL;
535 	*num_opts = 0;
536 	return rc;
537 }
538 
539 static int bad_option(struct superblock_security_struct *sbsec, char flag,
540 		      u32 old_sid, u32 new_sid)
541 {
542 	/* check if the old mount command had the same options */
543 	if (sbsec->initialized)
544 		if (!(sbsec->flags & flag) ||
545 		    (old_sid != new_sid))
546 			return 1;
547 
548 	/* check if we were passed the same options twice,
549 	 * aka someone passed context=a,context=b
550 	 */
551 	if (!sbsec->initialized)
552 		if (sbsec->flags & flag)
553 			return 1;
554 	return 0;
555 }
556 /*
557  * Allow filesystems with binary mount data to explicitly set mount point
558  * labeling information.
559  */
560 static int selinux_set_mnt_opts(struct super_block *sb, char **mount_options,
561 				int *flags, int num_opts)
562 {
563 	int rc = 0, i;
564 	struct task_security_struct *tsec = current->security;
565 	struct superblock_security_struct *sbsec = sb->s_security;
566 	const char *name = sb->s_type->name;
567 	struct inode *inode = sbsec->sb->s_root->d_inode;
568 	struct inode_security_struct *root_isec = inode->i_security;
569 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
570 	u32 defcontext_sid = 0;
571 
572 	mutex_lock(&sbsec->lock);
573 
574 	if (!ss_initialized) {
575 		if (!num_opts) {
576 			/* Defer initialization until selinux_complete_init,
577 			   after the initial policy is loaded and the security
578 			   server is ready to handle calls. */
579 			spin_lock(&sb_security_lock);
580 			if (list_empty(&sbsec->list))
581 				list_add(&sbsec->list, &superblock_security_head);
582 			spin_unlock(&sb_security_lock);
583 			goto out;
584 		}
585 		rc = -EINVAL;
586 		printk(KERN_WARNING "Unable to set superblock options before "
587 		       "the security server is initialized\n");
588 		goto out;
589 	}
590 
591 	/*
592 	 * parse the mount options, check if they are valid sids.
593 	 * also check if someone is trying to mount the same sb more
594 	 * than once with different security options.
595 	 */
596 	for (i = 0; i < num_opts; i++) {
597 		u32 sid;
598 		rc = security_context_to_sid(mount_options[i],
599 					     strlen(mount_options[i]), &sid);
600 		if (rc) {
601 			printk(KERN_WARNING "SELinux: security_context_to_sid"
602 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
603 			       mount_options[i], sb->s_id, name, rc);
604 			goto out;
605 		}
606 		switch (flags[i]) {
607 		case FSCONTEXT_MNT:
608 			fscontext_sid = sid;
609 
610 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
611 					fscontext_sid))
612 				goto out_double_mount;
613 
614 			sbsec->flags |= FSCONTEXT_MNT;
615 			break;
616 		case CONTEXT_MNT:
617 			context_sid = sid;
618 
619 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
620 					context_sid))
621 				goto out_double_mount;
622 
623 			sbsec->flags |= CONTEXT_MNT;
624 			break;
625 		case ROOTCONTEXT_MNT:
626 			rootcontext_sid = sid;
627 
628 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
629 					rootcontext_sid))
630 				goto out_double_mount;
631 
632 			sbsec->flags |= ROOTCONTEXT_MNT;
633 
634 			break;
635 		case DEFCONTEXT_MNT:
636 			defcontext_sid = sid;
637 
638 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
639 					defcontext_sid))
640 				goto out_double_mount;
641 
642 			sbsec->flags |= DEFCONTEXT_MNT;
643 
644 			break;
645 		default:
646 			rc = -EINVAL;
647 			goto out;
648 		}
649 	}
650 
651 	if (sbsec->initialized) {
652 		/* previously mounted with options, but not on this attempt? */
653 		if (sbsec->flags && !num_opts)
654 			goto out_double_mount;
655 		rc = 0;
656 		goto out;
657 	}
658 
659 	if (strcmp(sb->s_type->name, "proc") == 0)
660 		sbsec->proc = 1;
661 
662 	/* Determine the labeling behavior to use for this filesystem type. */
663 	rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
664 	if (rc) {
665 		printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
666 		       __FUNCTION__, sb->s_type->name, rc);
667 		goto out;
668 	}
669 
670 	/* sets the context of the superblock for the fs being mounted. */
671 	if (fscontext_sid) {
672 
673 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec);
674 		if (rc)
675 			goto out;
676 
677 		sbsec->sid = fscontext_sid;
678 	}
679 
680 	/*
681 	 * Switch to using mount point labeling behavior.
682 	 * sets the label used on all file below the mountpoint, and will set
683 	 * the superblock context if not already set.
684 	 */
685 	if (context_sid) {
686 		if (!fscontext_sid) {
687 			rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec);
688 			if (rc)
689 				goto out;
690 			sbsec->sid = context_sid;
691 		} else {
692 			rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec);
693 			if (rc)
694 				goto out;
695 		}
696 		if (!rootcontext_sid)
697 			rootcontext_sid = context_sid;
698 
699 		sbsec->mntpoint_sid = context_sid;
700 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
701 	}
702 
703 	if (rootcontext_sid) {
704 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec);
705 		if (rc)
706 			goto out;
707 
708 		root_isec->sid = rootcontext_sid;
709 		root_isec->initialized = 1;
710 	}
711 
712 	if (defcontext_sid) {
713 		if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
714 			rc = -EINVAL;
715 			printk(KERN_WARNING "SELinux: defcontext option is "
716 			       "invalid for this filesystem type\n");
717 			goto out;
718 		}
719 
720 		if (defcontext_sid != sbsec->def_sid) {
721 			rc = may_context_mount_inode_relabel(defcontext_sid,
722 							     sbsec, tsec);
723 			if (rc)
724 				goto out;
725 		}
726 
727 		sbsec->def_sid = defcontext_sid;
728 	}
729 
730 	rc = sb_finish_set_opts(sb);
731 out:
732 	mutex_unlock(&sbsec->lock);
733 	return rc;
734 out_double_mount:
735 	rc = -EINVAL;
736 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
737 	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
738 	goto out;
739 }
740 
741 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
742 					struct super_block *newsb)
743 {
744 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
745 	struct superblock_security_struct *newsbsec = newsb->s_security;
746 
747 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
748 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
749 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
750 
751 	/* we can't error, we can't save the info, this shouldn't get called
752 	 * this early in the boot process. */
753 	BUG_ON(!ss_initialized);
754 
755 	/* this might go away sometime down the line if there is a new user
756 	 * of clone, but for now, nfs better not get here... */
757 	BUG_ON(newsbsec->initialized);
758 
759 	/* how can we clone if the old one wasn't set up?? */
760 	BUG_ON(!oldsbsec->initialized);
761 
762 	mutex_lock(&newsbsec->lock);
763 
764 	newsbsec->flags = oldsbsec->flags;
765 
766 	newsbsec->sid = oldsbsec->sid;
767 	newsbsec->def_sid = oldsbsec->def_sid;
768 	newsbsec->behavior = oldsbsec->behavior;
769 
770 	if (set_context) {
771 		u32 sid = oldsbsec->mntpoint_sid;
772 
773 		if (!set_fscontext)
774 			newsbsec->sid = sid;
775 		if (!set_rootcontext) {
776 			struct inode *newinode = newsb->s_root->d_inode;
777 			struct inode_security_struct *newisec = newinode->i_security;
778 			newisec->sid = sid;
779 		}
780 		newsbsec->mntpoint_sid = sid;
781 	}
782 	if (set_rootcontext) {
783 		const struct inode *oldinode = oldsb->s_root->d_inode;
784 		const struct inode_security_struct *oldisec = oldinode->i_security;
785 		struct inode *newinode = newsb->s_root->d_inode;
786 		struct inode_security_struct *newisec = newinode->i_security;
787 
788 		newisec->sid = oldisec->sid;
789 	}
790 
791 	sb_finish_set_opts(newsb);
792 	mutex_unlock(&newsbsec->lock);
793 }
794 
795 /*
796  * string mount options parsing and call set the sbsec
797  */
798 static int superblock_doinit(struct super_block *sb, void *data)
799 {
800 	char *context = NULL, *defcontext = NULL;
801 	char *fscontext = NULL, *rootcontext = NULL;
802 	int rc = 0;
803 	char *p, *options = data;
804 	/* selinux only know about a fixed number of mount options */
805 	char *mnt_opts[NUM_SEL_MNT_OPTS];
806 	int mnt_opts_flags[NUM_SEL_MNT_OPTS], num_mnt_opts = 0;
807 
808 	if (!data)
809 		goto out;
810 
811 	/* with the nfs patch this will become a goto out; */
812 	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
813 		const char *name = sb->s_type->name;
814 		/* NFS we understand. */
815 		if (!strcmp(name, "nfs")) {
816 			struct nfs_mount_data *d = data;
817 
818 			if (d->version !=  NFS_MOUNT_VERSION)
819 				goto out;
820 
821 			if (d->context[0]) {
822 				context = kstrdup(d->context, GFP_KERNEL);
823 				if (!context) {
824 					rc = -ENOMEM;
825 					goto out;
826 				}
827 			}
828 			goto build_flags;
829 		} else
830 			goto out;
831 	}
832 
833 	/* Standard string-based options. */
834 	while ((p = strsep(&options, "|")) != NULL) {
835 		int token;
836 		substring_t args[MAX_OPT_ARGS];
837 
838 		if (!*p)
839 			continue;
840 
841 		token = match_token(p, tokens, args);
842 
843 		switch (token) {
844 		case Opt_context:
845 			if (context || defcontext) {
846 				rc = -EINVAL;
847 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
848 				goto out_err;
849 			}
850 			context = match_strdup(&args[0]);
851 			if (!context) {
852 				rc = -ENOMEM;
853 				goto out_err;
854 			}
855 			break;
856 
857 		case Opt_fscontext:
858 			if (fscontext) {
859 				rc = -EINVAL;
860 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
861 				goto out_err;
862 			}
863 			fscontext = match_strdup(&args[0]);
864 			if (!fscontext) {
865 				rc = -ENOMEM;
866 				goto out_err;
867 			}
868 			break;
869 
870 		case Opt_rootcontext:
871 			if (rootcontext) {
872 				rc = -EINVAL;
873 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
874 				goto out_err;
875 			}
876 			rootcontext = match_strdup(&args[0]);
877 			if (!rootcontext) {
878 				rc = -ENOMEM;
879 				goto out_err;
880 			}
881 			break;
882 
883 		case Opt_defcontext:
884 			if (context || defcontext) {
885 				rc = -EINVAL;
886 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
887 				goto out_err;
888 			}
889 			defcontext = match_strdup(&args[0]);
890 			if (!defcontext) {
891 				rc = -ENOMEM;
892 				goto out_err;
893 			}
894 			break;
895 
896 		default:
897 			rc = -EINVAL;
898 			printk(KERN_WARNING "SELinux:  unknown mount option\n");
899 			goto out_err;
900 
901 		}
902 	}
903 
904 build_flags:
905 	if (fscontext) {
906 		mnt_opts[num_mnt_opts] = fscontext;
907 		mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
908 	}
909 	if (context) {
910 		mnt_opts[num_mnt_opts] = context;
911 		mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
912 	}
913 	if (rootcontext) {
914 		mnt_opts[num_mnt_opts] = rootcontext;
915 		mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
916 	}
917 	if (defcontext) {
918 		mnt_opts[num_mnt_opts] = defcontext;
919 		mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
920 	}
921 
922 out:
923 	rc = selinux_set_mnt_opts(sb, mnt_opts, mnt_opts_flags, num_mnt_opts);
924 out_err:
925 	kfree(context);
926 	kfree(defcontext);
927 	kfree(fscontext);
928 	kfree(rootcontext);
929 	return rc;
930 }
931 
932 static inline u16 inode_mode_to_security_class(umode_t mode)
933 {
934 	switch (mode & S_IFMT) {
935 	case S_IFSOCK:
936 		return SECCLASS_SOCK_FILE;
937 	case S_IFLNK:
938 		return SECCLASS_LNK_FILE;
939 	case S_IFREG:
940 		return SECCLASS_FILE;
941 	case S_IFBLK:
942 		return SECCLASS_BLK_FILE;
943 	case S_IFDIR:
944 		return SECCLASS_DIR;
945 	case S_IFCHR:
946 		return SECCLASS_CHR_FILE;
947 	case S_IFIFO:
948 		return SECCLASS_FIFO_FILE;
949 
950 	}
951 
952 	return SECCLASS_FILE;
953 }
954 
955 static inline int default_protocol_stream(int protocol)
956 {
957 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
958 }
959 
960 static inline int default_protocol_dgram(int protocol)
961 {
962 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
963 }
964 
965 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
966 {
967 	switch (family) {
968 	case PF_UNIX:
969 		switch (type) {
970 		case SOCK_STREAM:
971 		case SOCK_SEQPACKET:
972 			return SECCLASS_UNIX_STREAM_SOCKET;
973 		case SOCK_DGRAM:
974 			return SECCLASS_UNIX_DGRAM_SOCKET;
975 		}
976 		break;
977 	case PF_INET:
978 	case PF_INET6:
979 		switch (type) {
980 		case SOCK_STREAM:
981 			if (default_protocol_stream(protocol))
982 				return SECCLASS_TCP_SOCKET;
983 			else
984 				return SECCLASS_RAWIP_SOCKET;
985 		case SOCK_DGRAM:
986 			if (default_protocol_dgram(protocol))
987 				return SECCLASS_UDP_SOCKET;
988 			else
989 				return SECCLASS_RAWIP_SOCKET;
990 		case SOCK_DCCP:
991 			return SECCLASS_DCCP_SOCKET;
992 		default:
993 			return SECCLASS_RAWIP_SOCKET;
994 		}
995 		break;
996 	case PF_NETLINK:
997 		switch (protocol) {
998 		case NETLINK_ROUTE:
999 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1000 		case NETLINK_FIREWALL:
1001 			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1002 		case NETLINK_INET_DIAG:
1003 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1004 		case NETLINK_NFLOG:
1005 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1006 		case NETLINK_XFRM:
1007 			return SECCLASS_NETLINK_XFRM_SOCKET;
1008 		case NETLINK_SELINUX:
1009 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1010 		case NETLINK_AUDIT:
1011 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1012 		case NETLINK_IP6_FW:
1013 			return SECCLASS_NETLINK_IP6FW_SOCKET;
1014 		case NETLINK_DNRTMSG:
1015 			return SECCLASS_NETLINK_DNRT_SOCKET;
1016 		case NETLINK_KOBJECT_UEVENT:
1017 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1018 		default:
1019 			return SECCLASS_NETLINK_SOCKET;
1020 		}
1021 	case PF_PACKET:
1022 		return SECCLASS_PACKET_SOCKET;
1023 	case PF_KEY:
1024 		return SECCLASS_KEY_SOCKET;
1025 	case PF_APPLETALK:
1026 		return SECCLASS_APPLETALK_SOCKET;
1027 	}
1028 
1029 	return SECCLASS_SOCKET;
1030 }
1031 
1032 #ifdef CONFIG_PROC_FS
1033 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1034 				u16 tclass,
1035 				u32 *sid)
1036 {
1037 	int buflen, rc;
1038 	char *buffer, *path, *end;
1039 
1040 	buffer = (char*)__get_free_page(GFP_KERNEL);
1041 	if (!buffer)
1042 		return -ENOMEM;
1043 
1044 	buflen = PAGE_SIZE;
1045 	end = buffer+buflen;
1046 	*--end = '\0';
1047 	buflen--;
1048 	path = end-1;
1049 	*path = '/';
1050 	while (de && de != de->parent) {
1051 		buflen -= de->namelen + 1;
1052 		if (buflen < 0)
1053 			break;
1054 		end -= de->namelen;
1055 		memcpy(end, de->name, de->namelen);
1056 		*--end = '/';
1057 		path = end;
1058 		de = de->parent;
1059 	}
1060 	rc = security_genfs_sid("proc", path, tclass, sid);
1061 	free_page((unsigned long)buffer);
1062 	return rc;
1063 }
1064 #else
1065 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1066 				u16 tclass,
1067 				u32 *sid)
1068 {
1069 	return -EINVAL;
1070 }
1071 #endif
1072 
1073 /* The inode's security attributes must be initialized before first use. */
1074 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1075 {
1076 	struct superblock_security_struct *sbsec = NULL;
1077 	struct inode_security_struct *isec = inode->i_security;
1078 	u32 sid;
1079 	struct dentry *dentry;
1080 #define INITCONTEXTLEN 255
1081 	char *context = NULL;
1082 	unsigned len = 0;
1083 	int rc = 0;
1084 
1085 	if (isec->initialized)
1086 		goto out;
1087 
1088 	mutex_lock(&isec->lock);
1089 	if (isec->initialized)
1090 		goto out_unlock;
1091 
1092 	sbsec = inode->i_sb->s_security;
1093 	if (!sbsec->initialized) {
1094 		/* Defer initialization until selinux_complete_init,
1095 		   after the initial policy is loaded and the security
1096 		   server is ready to handle calls. */
1097 		spin_lock(&sbsec->isec_lock);
1098 		if (list_empty(&isec->list))
1099 			list_add(&isec->list, &sbsec->isec_head);
1100 		spin_unlock(&sbsec->isec_lock);
1101 		goto out_unlock;
1102 	}
1103 
1104 	switch (sbsec->behavior) {
1105 	case SECURITY_FS_USE_XATTR:
1106 		if (!inode->i_op->getxattr) {
1107 			isec->sid = sbsec->def_sid;
1108 			break;
1109 		}
1110 
1111 		/* Need a dentry, since the xattr API requires one.
1112 		   Life would be simpler if we could just pass the inode. */
1113 		if (opt_dentry) {
1114 			/* Called from d_instantiate or d_splice_alias. */
1115 			dentry = dget(opt_dentry);
1116 		} else {
1117 			/* Called from selinux_complete_init, try to find a dentry. */
1118 			dentry = d_find_alias(inode);
1119 		}
1120 		if (!dentry) {
1121 			printk(KERN_WARNING "%s:  no dentry for dev=%s "
1122 			       "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
1123 			       inode->i_ino);
1124 			goto out_unlock;
1125 		}
1126 
1127 		len = INITCONTEXTLEN;
1128 		context = kmalloc(len, GFP_KERNEL);
1129 		if (!context) {
1130 			rc = -ENOMEM;
1131 			dput(dentry);
1132 			goto out_unlock;
1133 		}
1134 		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1135 					   context, len);
1136 		if (rc == -ERANGE) {
1137 			/* Need a larger buffer.  Query for the right size. */
1138 			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1139 						   NULL, 0);
1140 			if (rc < 0) {
1141 				dput(dentry);
1142 				goto out_unlock;
1143 			}
1144 			kfree(context);
1145 			len = rc;
1146 			context = kmalloc(len, GFP_KERNEL);
1147 			if (!context) {
1148 				rc = -ENOMEM;
1149 				dput(dentry);
1150 				goto out_unlock;
1151 			}
1152 			rc = inode->i_op->getxattr(dentry,
1153 						   XATTR_NAME_SELINUX,
1154 						   context, len);
1155 		}
1156 		dput(dentry);
1157 		if (rc < 0) {
1158 			if (rc != -ENODATA) {
1159 				printk(KERN_WARNING "%s:  getxattr returned "
1160 				       "%d for dev=%s ino=%ld\n", __FUNCTION__,
1161 				       -rc, inode->i_sb->s_id, inode->i_ino);
1162 				kfree(context);
1163 				goto out_unlock;
1164 			}
1165 			/* Map ENODATA to the default file SID */
1166 			sid = sbsec->def_sid;
1167 			rc = 0;
1168 		} else {
1169 			rc = security_context_to_sid_default(context, rc, &sid,
1170 			                                     sbsec->def_sid);
1171 			if (rc) {
1172 				printk(KERN_WARNING "%s:  context_to_sid(%s) "
1173 				       "returned %d for dev=%s ino=%ld\n",
1174 				       __FUNCTION__, context, -rc,
1175 				       inode->i_sb->s_id, inode->i_ino);
1176 				kfree(context);
1177 				/* Leave with the unlabeled SID */
1178 				rc = 0;
1179 				break;
1180 			}
1181 		}
1182 		kfree(context);
1183 		isec->sid = sid;
1184 		break;
1185 	case SECURITY_FS_USE_TASK:
1186 		isec->sid = isec->task_sid;
1187 		break;
1188 	case SECURITY_FS_USE_TRANS:
1189 		/* Default to the fs SID. */
1190 		isec->sid = sbsec->sid;
1191 
1192 		/* Try to obtain a transition SID. */
1193 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1194 		rc = security_transition_sid(isec->task_sid,
1195 					     sbsec->sid,
1196 					     isec->sclass,
1197 					     &sid);
1198 		if (rc)
1199 			goto out_unlock;
1200 		isec->sid = sid;
1201 		break;
1202 	case SECURITY_FS_USE_MNTPOINT:
1203 		isec->sid = sbsec->mntpoint_sid;
1204 		break;
1205 	default:
1206 		/* Default to the fs superblock SID. */
1207 		isec->sid = sbsec->sid;
1208 
1209 		if (sbsec->proc) {
1210 			struct proc_inode *proci = PROC_I(inode);
1211 			if (proci->pde) {
1212 				isec->sclass = inode_mode_to_security_class(inode->i_mode);
1213 				rc = selinux_proc_get_sid(proci->pde,
1214 							  isec->sclass,
1215 							  &sid);
1216 				if (rc)
1217 					goto out_unlock;
1218 				isec->sid = sid;
1219 			}
1220 		}
1221 		break;
1222 	}
1223 
1224 	isec->initialized = 1;
1225 
1226 out_unlock:
1227 	mutex_unlock(&isec->lock);
1228 out:
1229 	if (isec->sclass == SECCLASS_FILE)
1230 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1231 	return rc;
1232 }
1233 
1234 /* Convert a Linux signal to an access vector. */
1235 static inline u32 signal_to_av(int sig)
1236 {
1237 	u32 perm = 0;
1238 
1239 	switch (sig) {
1240 	case SIGCHLD:
1241 		/* Commonly granted from child to parent. */
1242 		perm = PROCESS__SIGCHLD;
1243 		break;
1244 	case SIGKILL:
1245 		/* Cannot be caught or ignored */
1246 		perm = PROCESS__SIGKILL;
1247 		break;
1248 	case SIGSTOP:
1249 		/* Cannot be caught or ignored */
1250 		perm = PROCESS__SIGSTOP;
1251 		break;
1252 	default:
1253 		/* All other signals. */
1254 		perm = PROCESS__SIGNAL;
1255 		break;
1256 	}
1257 
1258 	return perm;
1259 }
1260 
1261 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1262    fork check, ptrace check, etc. */
1263 static int task_has_perm(struct task_struct *tsk1,
1264 			 struct task_struct *tsk2,
1265 			 u32 perms)
1266 {
1267 	struct task_security_struct *tsec1, *tsec2;
1268 
1269 	tsec1 = tsk1->security;
1270 	tsec2 = tsk2->security;
1271 	return avc_has_perm(tsec1->sid, tsec2->sid,
1272 			    SECCLASS_PROCESS, perms, NULL);
1273 }
1274 
1275 #if CAP_LAST_CAP > 63
1276 #error Fix SELinux to handle capabilities > 63.
1277 #endif
1278 
1279 /* Check whether a task is allowed to use a capability. */
1280 static int task_has_capability(struct task_struct *tsk,
1281 			       int cap)
1282 {
1283 	struct task_security_struct *tsec;
1284 	struct avc_audit_data ad;
1285 	u16 sclass;
1286 	u32 av = CAP_TO_MASK(cap);
1287 
1288 	tsec = tsk->security;
1289 
1290 	AVC_AUDIT_DATA_INIT(&ad,CAP);
1291 	ad.tsk = tsk;
1292 	ad.u.cap = cap;
1293 
1294 	switch (CAP_TO_INDEX(cap)) {
1295 	case 0:
1296 		sclass = SECCLASS_CAPABILITY;
1297 		break;
1298 	case 1:
1299 		sclass = SECCLASS_CAPABILITY2;
1300 		break;
1301 	default:
1302 		printk(KERN_ERR
1303 		       "SELinux:  out of range capability %d\n", cap);
1304 		BUG();
1305 	}
1306 	return avc_has_perm(tsec->sid, tsec->sid, sclass, av, &ad);
1307 }
1308 
1309 /* Check whether a task is allowed to use a system operation. */
1310 static int task_has_system(struct task_struct *tsk,
1311 			   u32 perms)
1312 {
1313 	struct task_security_struct *tsec;
1314 
1315 	tsec = tsk->security;
1316 
1317 	return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1318 			    SECCLASS_SYSTEM, perms, NULL);
1319 }
1320 
1321 /* Check whether a task has a particular permission to an inode.
1322    The 'adp' parameter is optional and allows other audit
1323    data to be passed (e.g. the dentry). */
1324 static int inode_has_perm(struct task_struct *tsk,
1325 			  struct inode *inode,
1326 			  u32 perms,
1327 			  struct avc_audit_data *adp)
1328 {
1329 	struct task_security_struct *tsec;
1330 	struct inode_security_struct *isec;
1331 	struct avc_audit_data ad;
1332 
1333 	if (unlikely (IS_PRIVATE (inode)))
1334 		return 0;
1335 
1336 	tsec = tsk->security;
1337 	isec = inode->i_security;
1338 
1339 	if (!adp) {
1340 		adp = &ad;
1341 		AVC_AUDIT_DATA_INIT(&ad, FS);
1342 		ad.u.fs.inode = inode;
1343 	}
1344 
1345 	return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1346 }
1347 
1348 /* Same as inode_has_perm, but pass explicit audit data containing
1349    the dentry to help the auditing code to more easily generate the
1350    pathname if needed. */
1351 static inline int dentry_has_perm(struct task_struct *tsk,
1352 				  struct vfsmount *mnt,
1353 				  struct dentry *dentry,
1354 				  u32 av)
1355 {
1356 	struct inode *inode = dentry->d_inode;
1357 	struct avc_audit_data ad;
1358 	AVC_AUDIT_DATA_INIT(&ad,FS);
1359 	ad.u.fs.mnt = mnt;
1360 	ad.u.fs.dentry = dentry;
1361 	return inode_has_perm(tsk, inode, av, &ad);
1362 }
1363 
1364 /* Check whether a task can use an open file descriptor to
1365    access an inode in a given way.  Check access to the
1366    descriptor itself, and then use dentry_has_perm to
1367    check a particular permission to the file.
1368    Access to the descriptor is implicitly granted if it
1369    has the same SID as the process.  If av is zero, then
1370    access to the file is not checked, e.g. for cases
1371    where only the descriptor is affected like seek. */
1372 static int file_has_perm(struct task_struct *tsk,
1373 				struct file *file,
1374 				u32 av)
1375 {
1376 	struct task_security_struct *tsec = tsk->security;
1377 	struct file_security_struct *fsec = file->f_security;
1378 	struct vfsmount *mnt = file->f_path.mnt;
1379 	struct dentry *dentry = file->f_path.dentry;
1380 	struct inode *inode = dentry->d_inode;
1381 	struct avc_audit_data ad;
1382 	int rc;
1383 
1384 	AVC_AUDIT_DATA_INIT(&ad, FS);
1385 	ad.u.fs.mnt = mnt;
1386 	ad.u.fs.dentry = dentry;
1387 
1388 	if (tsec->sid != fsec->sid) {
1389 		rc = avc_has_perm(tsec->sid, fsec->sid,
1390 				  SECCLASS_FD,
1391 				  FD__USE,
1392 				  &ad);
1393 		if (rc)
1394 			return rc;
1395 	}
1396 
1397 	/* av is zero if only checking access to the descriptor. */
1398 	if (av)
1399 		return inode_has_perm(tsk, inode, av, &ad);
1400 
1401 	return 0;
1402 }
1403 
1404 /* Check whether a task can create a file. */
1405 static int may_create(struct inode *dir,
1406 		      struct dentry *dentry,
1407 		      u16 tclass)
1408 {
1409 	struct task_security_struct *tsec;
1410 	struct inode_security_struct *dsec;
1411 	struct superblock_security_struct *sbsec;
1412 	u32 newsid;
1413 	struct avc_audit_data ad;
1414 	int rc;
1415 
1416 	tsec = current->security;
1417 	dsec = dir->i_security;
1418 	sbsec = dir->i_sb->s_security;
1419 
1420 	AVC_AUDIT_DATA_INIT(&ad, FS);
1421 	ad.u.fs.dentry = dentry;
1422 
1423 	rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1424 			  DIR__ADD_NAME | DIR__SEARCH,
1425 			  &ad);
1426 	if (rc)
1427 		return rc;
1428 
1429 	if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1430 		newsid = tsec->create_sid;
1431 	} else {
1432 		rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1433 					     &newsid);
1434 		if (rc)
1435 			return rc;
1436 	}
1437 
1438 	rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1439 	if (rc)
1440 		return rc;
1441 
1442 	return avc_has_perm(newsid, sbsec->sid,
1443 			    SECCLASS_FILESYSTEM,
1444 			    FILESYSTEM__ASSOCIATE, &ad);
1445 }
1446 
1447 /* Check whether a task can create a key. */
1448 static int may_create_key(u32 ksid,
1449 			  struct task_struct *ctx)
1450 {
1451 	struct task_security_struct *tsec;
1452 
1453 	tsec = ctx->security;
1454 
1455 	return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1456 }
1457 
1458 #define MAY_LINK   0
1459 #define MAY_UNLINK 1
1460 #define MAY_RMDIR  2
1461 
1462 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1463 static int may_link(struct inode *dir,
1464 		    struct dentry *dentry,
1465 		    int kind)
1466 
1467 {
1468 	struct task_security_struct *tsec;
1469 	struct inode_security_struct *dsec, *isec;
1470 	struct avc_audit_data ad;
1471 	u32 av;
1472 	int rc;
1473 
1474 	tsec = current->security;
1475 	dsec = dir->i_security;
1476 	isec = dentry->d_inode->i_security;
1477 
1478 	AVC_AUDIT_DATA_INIT(&ad, FS);
1479 	ad.u.fs.dentry = dentry;
1480 
1481 	av = DIR__SEARCH;
1482 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1483 	rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1484 	if (rc)
1485 		return rc;
1486 
1487 	switch (kind) {
1488 	case MAY_LINK:
1489 		av = FILE__LINK;
1490 		break;
1491 	case MAY_UNLINK:
1492 		av = FILE__UNLINK;
1493 		break;
1494 	case MAY_RMDIR:
1495 		av = DIR__RMDIR;
1496 		break;
1497 	default:
1498 		printk(KERN_WARNING "may_link:  unrecognized kind %d\n", kind);
1499 		return 0;
1500 	}
1501 
1502 	rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1503 	return rc;
1504 }
1505 
1506 static inline int may_rename(struct inode *old_dir,
1507 			     struct dentry *old_dentry,
1508 			     struct inode *new_dir,
1509 			     struct dentry *new_dentry)
1510 {
1511 	struct task_security_struct *tsec;
1512 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1513 	struct avc_audit_data ad;
1514 	u32 av;
1515 	int old_is_dir, new_is_dir;
1516 	int rc;
1517 
1518 	tsec = current->security;
1519 	old_dsec = old_dir->i_security;
1520 	old_isec = old_dentry->d_inode->i_security;
1521 	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1522 	new_dsec = new_dir->i_security;
1523 
1524 	AVC_AUDIT_DATA_INIT(&ad, FS);
1525 
1526 	ad.u.fs.dentry = old_dentry;
1527 	rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1528 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1529 	if (rc)
1530 		return rc;
1531 	rc = avc_has_perm(tsec->sid, old_isec->sid,
1532 			  old_isec->sclass, FILE__RENAME, &ad);
1533 	if (rc)
1534 		return rc;
1535 	if (old_is_dir && new_dir != old_dir) {
1536 		rc = avc_has_perm(tsec->sid, old_isec->sid,
1537 				  old_isec->sclass, DIR__REPARENT, &ad);
1538 		if (rc)
1539 			return rc;
1540 	}
1541 
1542 	ad.u.fs.dentry = new_dentry;
1543 	av = DIR__ADD_NAME | DIR__SEARCH;
1544 	if (new_dentry->d_inode)
1545 		av |= DIR__REMOVE_NAME;
1546 	rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1547 	if (rc)
1548 		return rc;
1549 	if (new_dentry->d_inode) {
1550 		new_isec = new_dentry->d_inode->i_security;
1551 		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1552 		rc = avc_has_perm(tsec->sid, new_isec->sid,
1553 				  new_isec->sclass,
1554 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1555 		if (rc)
1556 			return rc;
1557 	}
1558 
1559 	return 0;
1560 }
1561 
1562 /* Check whether a task can perform a filesystem operation. */
1563 static int superblock_has_perm(struct task_struct *tsk,
1564 			       struct super_block *sb,
1565 			       u32 perms,
1566 			       struct avc_audit_data *ad)
1567 {
1568 	struct task_security_struct *tsec;
1569 	struct superblock_security_struct *sbsec;
1570 
1571 	tsec = tsk->security;
1572 	sbsec = sb->s_security;
1573 	return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1574 			    perms, ad);
1575 }
1576 
1577 /* Convert a Linux mode and permission mask to an access vector. */
1578 static inline u32 file_mask_to_av(int mode, int mask)
1579 {
1580 	u32 av = 0;
1581 
1582 	if ((mode & S_IFMT) != S_IFDIR) {
1583 		if (mask & MAY_EXEC)
1584 			av |= FILE__EXECUTE;
1585 		if (mask & MAY_READ)
1586 			av |= FILE__READ;
1587 
1588 		if (mask & MAY_APPEND)
1589 			av |= FILE__APPEND;
1590 		else if (mask & MAY_WRITE)
1591 			av |= FILE__WRITE;
1592 
1593 	} else {
1594 		if (mask & MAY_EXEC)
1595 			av |= DIR__SEARCH;
1596 		if (mask & MAY_WRITE)
1597 			av |= DIR__WRITE;
1598 		if (mask & MAY_READ)
1599 			av |= DIR__READ;
1600 	}
1601 
1602 	return av;
1603 }
1604 
1605 /* Convert a Linux file to an access vector. */
1606 static inline u32 file_to_av(struct file *file)
1607 {
1608 	u32 av = 0;
1609 
1610 	if (file->f_mode & FMODE_READ)
1611 		av |= FILE__READ;
1612 	if (file->f_mode & FMODE_WRITE) {
1613 		if (file->f_flags & O_APPEND)
1614 			av |= FILE__APPEND;
1615 		else
1616 			av |= FILE__WRITE;
1617 	}
1618 
1619 	return av;
1620 }
1621 
1622 /* Hook functions begin here. */
1623 
1624 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1625 {
1626 	struct task_security_struct *psec = parent->security;
1627 	struct task_security_struct *csec = child->security;
1628 	int rc;
1629 
1630 	rc = secondary_ops->ptrace(parent,child);
1631 	if (rc)
1632 		return rc;
1633 
1634 	rc = task_has_perm(parent, child, PROCESS__PTRACE);
1635 	/* Save the SID of the tracing process for later use in apply_creds. */
1636 	if (!(child->ptrace & PT_PTRACED) && !rc)
1637 		csec->ptrace_sid = psec->sid;
1638 	return rc;
1639 }
1640 
1641 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1642                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1643 {
1644 	int error;
1645 
1646 	error = task_has_perm(current, target, PROCESS__GETCAP);
1647 	if (error)
1648 		return error;
1649 
1650 	return secondary_ops->capget(target, effective, inheritable, permitted);
1651 }
1652 
1653 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1654                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1655 {
1656 	int error;
1657 
1658 	error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1659 	if (error)
1660 		return error;
1661 
1662 	return task_has_perm(current, target, PROCESS__SETCAP);
1663 }
1664 
1665 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1666                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1667 {
1668 	secondary_ops->capset_set(target, effective, inheritable, permitted);
1669 }
1670 
1671 static int selinux_capable(struct task_struct *tsk, int cap)
1672 {
1673 	int rc;
1674 
1675 	rc = secondary_ops->capable(tsk, cap);
1676 	if (rc)
1677 		return rc;
1678 
1679 	return task_has_capability(tsk,cap);
1680 }
1681 
1682 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1683 {
1684 	int buflen, rc;
1685 	char *buffer, *path, *end;
1686 
1687 	rc = -ENOMEM;
1688 	buffer = (char*)__get_free_page(GFP_KERNEL);
1689 	if (!buffer)
1690 		goto out;
1691 
1692 	buflen = PAGE_SIZE;
1693 	end = buffer+buflen;
1694 	*--end = '\0';
1695 	buflen--;
1696 	path = end-1;
1697 	*path = '/';
1698 	while (table) {
1699 		const char *name = table->procname;
1700 		size_t namelen = strlen(name);
1701 		buflen -= namelen + 1;
1702 		if (buflen < 0)
1703 			goto out_free;
1704 		end -= namelen;
1705 		memcpy(end, name, namelen);
1706 		*--end = '/';
1707 		path = end;
1708 		table = table->parent;
1709 	}
1710 	buflen -= 4;
1711 	if (buflen < 0)
1712 		goto out_free;
1713 	end -= 4;
1714 	memcpy(end, "/sys", 4);
1715 	path = end;
1716 	rc = security_genfs_sid("proc", path, tclass, sid);
1717 out_free:
1718 	free_page((unsigned long)buffer);
1719 out:
1720 	return rc;
1721 }
1722 
1723 static int selinux_sysctl(ctl_table *table, int op)
1724 {
1725 	int error = 0;
1726 	u32 av;
1727 	struct task_security_struct *tsec;
1728 	u32 tsid;
1729 	int rc;
1730 
1731 	rc = secondary_ops->sysctl(table, op);
1732 	if (rc)
1733 		return rc;
1734 
1735 	tsec = current->security;
1736 
1737 	rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1738 				    SECCLASS_DIR : SECCLASS_FILE, &tsid);
1739 	if (rc) {
1740 		/* Default to the well-defined sysctl SID. */
1741 		tsid = SECINITSID_SYSCTL;
1742 	}
1743 
1744 	/* The op values are "defined" in sysctl.c, thereby creating
1745 	 * a bad coupling between this module and sysctl.c */
1746 	if(op == 001) {
1747 		error = avc_has_perm(tsec->sid, tsid,
1748 				     SECCLASS_DIR, DIR__SEARCH, NULL);
1749 	} else {
1750 		av = 0;
1751 		if (op & 004)
1752 			av |= FILE__READ;
1753 		if (op & 002)
1754 			av |= FILE__WRITE;
1755 		if (av)
1756 			error = avc_has_perm(tsec->sid, tsid,
1757 					     SECCLASS_FILE, av, NULL);
1758         }
1759 
1760 	return error;
1761 }
1762 
1763 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1764 {
1765 	int rc = 0;
1766 
1767 	if (!sb)
1768 		return 0;
1769 
1770 	switch (cmds) {
1771 		case Q_SYNC:
1772 		case Q_QUOTAON:
1773 		case Q_QUOTAOFF:
1774 	        case Q_SETINFO:
1775 		case Q_SETQUOTA:
1776 			rc = superblock_has_perm(current,
1777 						 sb,
1778 						 FILESYSTEM__QUOTAMOD, NULL);
1779 			break;
1780 	        case Q_GETFMT:
1781 	        case Q_GETINFO:
1782 		case Q_GETQUOTA:
1783 			rc = superblock_has_perm(current,
1784 						 sb,
1785 						 FILESYSTEM__QUOTAGET, NULL);
1786 			break;
1787 		default:
1788 			rc = 0;  /* let the kernel handle invalid cmds */
1789 			break;
1790 	}
1791 	return rc;
1792 }
1793 
1794 static int selinux_quota_on(struct dentry *dentry)
1795 {
1796 	return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1797 }
1798 
1799 static int selinux_syslog(int type)
1800 {
1801 	int rc;
1802 
1803 	rc = secondary_ops->syslog(type);
1804 	if (rc)
1805 		return rc;
1806 
1807 	switch (type) {
1808 		case 3:         /* Read last kernel messages */
1809 		case 10:        /* Return size of the log buffer */
1810 			rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1811 			break;
1812 		case 6:         /* Disable logging to console */
1813 		case 7:         /* Enable logging to console */
1814 		case 8:		/* Set level of messages printed to console */
1815 			rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1816 			break;
1817 		case 0:         /* Close log */
1818 		case 1:         /* Open log */
1819 		case 2:         /* Read from log */
1820 		case 4:         /* Read/clear last kernel messages */
1821 		case 5:         /* Clear ring buffer */
1822 		default:
1823 			rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1824 			break;
1825 	}
1826 	return rc;
1827 }
1828 
1829 /*
1830  * Check that a process has enough memory to allocate a new virtual
1831  * mapping. 0 means there is enough memory for the allocation to
1832  * succeed and -ENOMEM implies there is not.
1833  *
1834  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1835  * if the capability is granted, but __vm_enough_memory requires 1 if
1836  * the capability is granted.
1837  *
1838  * Do not audit the selinux permission check, as this is applied to all
1839  * processes that allocate mappings.
1840  */
1841 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1842 {
1843 	int rc, cap_sys_admin = 0;
1844 	struct task_security_struct *tsec = current->security;
1845 
1846 	rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1847 	if (rc == 0)
1848 		rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1849 					  SECCLASS_CAPABILITY,
1850 					  CAP_TO_MASK(CAP_SYS_ADMIN),
1851 					  0,
1852 					  NULL);
1853 
1854 	if (rc == 0)
1855 		cap_sys_admin = 1;
1856 
1857 	return __vm_enough_memory(mm, pages, cap_sys_admin);
1858 }
1859 
1860 /* binprm security operations */
1861 
1862 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1863 {
1864 	struct bprm_security_struct *bsec;
1865 
1866 	bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1867 	if (!bsec)
1868 		return -ENOMEM;
1869 
1870 	bsec->bprm = bprm;
1871 	bsec->sid = SECINITSID_UNLABELED;
1872 	bsec->set = 0;
1873 
1874 	bprm->security = bsec;
1875 	return 0;
1876 }
1877 
1878 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1879 {
1880 	struct task_security_struct *tsec;
1881 	struct inode *inode = bprm->file->f_path.dentry->d_inode;
1882 	struct inode_security_struct *isec;
1883 	struct bprm_security_struct *bsec;
1884 	u32 newsid;
1885 	struct avc_audit_data ad;
1886 	int rc;
1887 
1888 	rc = secondary_ops->bprm_set_security(bprm);
1889 	if (rc)
1890 		return rc;
1891 
1892 	bsec = bprm->security;
1893 
1894 	if (bsec->set)
1895 		return 0;
1896 
1897 	tsec = current->security;
1898 	isec = inode->i_security;
1899 
1900 	/* Default to the current task SID. */
1901 	bsec->sid = tsec->sid;
1902 
1903 	/* Reset fs, key, and sock SIDs on execve. */
1904 	tsec->create_sid = 0;
1905 	tsec->keycreate_sid = 0;
1906 	tsec->sockcreate_sid = 0;
1907 
1908 	if (tsec->exec_sid) {
1909 		newsid = tsec->exec_sid;
1910 		/* Reset exec SID on execve. */
1911 		tsec->exec_sid = 0;
1912 	} else {
1913 		/* Check for a default transition on this program. */
1914 		rc = security_transition_sid(tsec->sid, isec->sid,
1915 		                             SECCLASS_PROCESS, &newsid);
1916 		if (rc)
1917 			return rc;
1918 	}
1919 
1920 	AVC_AUDIT_DATA_INIT(&ad, FS);
1921 	ad.u.fs.mnt = bprm->file->f_path.mnt;
1922 	ad.u.fs.dentry = bprm->file->f_path.dentry;
1923 
1924 	if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1925 		newsid = tsec->sid;
1926 
1927         if (tsec->sid == newsid) {
1928 		rc = avc_has_perm(tsec->sid, isec->sid,
1929 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1930 		if (rc)
1931 			return rc;
1932 	} else {
1933 		/* Check permissions for the transition. */
1934 		rc = avc_has_perm(tsec->sid, newsid,
1935 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1936 		if (rc)
1937 			return rc;
1938 
1939 		rc = avc_has_perm(newsid, isec->sid,
1940 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1941 		if (rc)
1942 			return rc;
1943 
1944 		/* Clear any possibly unsafe personality bits on exec: */
1945 		current->personality &= ~PER_CLEAR_ON_SETID;
1946 
1947 		/* Set the security field to the new SID. */
1948 		bsec->sid = newsid;
1949 	}
1950 
1951 	bsec->set = 1;
1952 	return 0;
1953 }
1954 
1955 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1956 {
1957 	return secondary_ops->bprm_check_security(bprm);
1958 }
1959 
1960 
1961 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1962 {
1963 	struct task_security_struct *tsec = current->security;
1964 	int atsecure = 0;
1965 
1966 	if (tsec->osid != tsec->sid) {
1967 		/* Enable secure mode for SIDs transitions unless
1968 		   the noatsecure permission is granted between
1969 		   the two SIDs, i.e. ahp returns 0. */
1970 		atsecure = avc_has_perm(tsec->osid, tsec->sid,
1971 					 SECCLASS_PROCESS,
1972 					 PROCESS__NOATSECURE, NULL);
1973 	}
1974 
1975 	return (atsecure || secondary_ops->bprm_secureexec(bprm));
1976 }
1977 
1978 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1979 {
1980 	kfree(bprm->security);
1981 	bprm->security = NULL;
1982 }
1983 
1984 extern struct vfsmount *selinuxfs_mount;
1985 extern struct dentry *selinux_null;
1986 
1987 /* Derived from fs/exec.c:flush_old_files. */
1988 static inline void flush_unauthorized_files(struct files_struct * files)
1989 {
1990 	struct avc_audit_data ad;
1991 	struct file *file, *devnull = NULL;
1992 	struct tty_struct *tty;
1993 	struct fdtable *fdt;
1994 	long j = -1;
1995 	int drop_tty = 0;
1996 
1997 	mutex_lock(&tty_mutex);
1998 	tty = get_current_tty();
1999 	if (tty) {
2000 		file_list_lock();
2001 		file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
2002 		if (file) {
2003 			/* Revalidate access to controlling tty.
2004 			   Use inode_has_perm on the tty inode directly rather
2005 			   than using file_has_perm, as this particular open
2006 			   file may belong to another process and we are only
2007 			   interested in the inode-based check here. */
2008 			struct inode *inode = file->f_path.dentry->d_inode;
2009 			if (inode_has_perm(current, inode,
2010 					   FILE__READ | FILE__WRITE, NULL)) {
2011 				drop_tty = 1;
2012 			}
2013 		}
2014 		file_list_unlock();
2015 	}
2016 	mutex_unlock(&tty_mutex);
2017 	/* Reset controlling tty. */
2018 	if (drop_tty)
2019 		no_tty();
2020 
2021 	/* Revalidate access to inherited open files. */
2022 
2023 	AVC_AUDIT_DATA_INIT(&ad,FS);
2024 
2025 	spin_lock(&files->file_lock);
2026 	for (;;) {
2027 		unsigned long set, i;
2028 		int fd;
2029 
2030 		j++;
2031 		i = j * __NFDBITS;
2032 		fdt = files_fdtable(files);
2033 		if (i >= fdt->max_fds)
2034 			break;
2035 		set = fdt->open_fds->fds_bits[j];
2036 		if (!set)
2037 			continue;
2038 		spin_unlock(&files->file_lock);
2039 		for ( ; set ; i++,set >>= 1) {
2040 			if (set & 1) {
2041 				file = fget(i);
2042 				if (!file)
2043 					continue;
2044 				if (file_has_perm(current,
2045 						  file,
2046 						  file_to_av(file))) {
2047 					sys_close(i);
2048 					fd = get_unused_fd();
2049 					if (fd != i) {
2050 						if (fd >= 0)
2051 							put_unused_fd(fd);
2052 						fput(file);
2053 						continue;
2054 					}
2055 					if (devnull) {
2056 						get_file(devnull);
2057 					} else {
2058 						devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
2059 						if (IS_ERR(devnull)) {
2060 							devnull = NULL;
2061 							put_unused_fd(fd);
2062 							fput(file);
2063 							continue;
2064 						}
2065 					}
2066 					fd_install(fd, devnull);
2067 				}
2068 				fput(file);
2069 			}
2070 		}
2071 		spin_lock(&files->file_lock);
2072 
2073 	}
2074 	spin_unlock(&files->file_lock);
2075 }
2076 
2077 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
2078 {
2079 	struct task_security_struct *tsec;
2080 	struct bprm_security_struct *bsec;
2081 	u32 sid;
2082 	int rc;
2083 
2084 	secondary_ops->bprm_apply_creds(bprm, unsafe);
2085 
2086 	tsec = current->security;
2087 
2088 	bsec = bprm->security;
2089 	sid = bsec->sid;
2090 
2091 	tsec->osid = tsec->sid;
2092 	bsec->unsafe = 0;
2093 	if (tsec->sid != sid) {
2094 		/* Check for shared state.  If not ok, leave SID
2095 		   unchanged and kill. */
2096 		if (unsafe & LSM_UNSAFE_SHARE) {
2097 			rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
2098 					PROCESS__SHARE, NULL);
2099 			if (rc) {
2100 				bsec->unsafe = 1;
2101 				return;
2102 			}
2103 		}
2104 
2105 		/* Check for ptracing, and update the task SID if ok.
2106 		   Otherwise, leave SID unchanged and kill. */
2107 		if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2108 			rc = avc_has_perm(tsec->ptrace_sid, sid,
2109 					  SECCLASS_PROCESS, PROCESS__PTRACE,
2110 					  NULL);
2111 			if (rc) {
2112 				bsec->unsafe = 1;
2113 				return;
2114 			}
2115 		}
2116 		tsec->sid = sid;
2117 	}
2118 }
2119 
2120 /*
2121  * called after apply_creds without the task lock held
2122  */
2123 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
2124 {
2125 	struct task_security_struct *tsec;
2126 	struct rlimit *rlim, *initrlim;
2127 	struct itimerval itimer;
2128 	struct bprm_security_struct *bsec;
2129 	int rc, i;
2130 
2131 	tsec = current->security;
2132 	bsec = bprm->security;
2133 
2134 	if (bsec->unsafe) {
2135 		force_sig_specific(SIGKILL, current);
2136 		return;
2137 	}
2138 	if (tsec->osid == tsec->sid)
2139 		return;
2140 
2141 	/* Close files for which the new task SID is not authorized. */
2142 	flush_unauthorized_files(current->files);
2143 
2144 	/* Check whether the new SID can inherit signal state
2145 	   from the old SID.  If not, clear itimers to avoid
2146 	   subsequent signal generation and flush and unblock
2147 	   signals. This must occur _after_ the task SID has
2148 	  been updated so that any kill done after the flush
2149 	  will be checked against the new SID. */
2150 	rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2151 			  PROCESS__SIGINH, NULL);
2152 	if (rc) {
2153 		memset(&itimer, 0, sizeof itimer);
2154 		for (i = 0; i < 3; i++)
2155 			do_setitimer(i, &itimer, NULL);
2156 		flush_signals(current);
2157 		spin_lock_irq(&current->sighand->siglock);
2158 		flush_signal_handlers(current, 1);
2159 		sigemptyset(&current->blocked);
2160 		recalc_sigpending();
2161 		spin_unlock_irq(&current->sighand->siglock);
2162 	}
2163 
2164 	/* Always clear parent death signal on SID transitions. */
2165 	current->pdeath_signal = 0;
2166 
2167 	/* Check whether the new SID can inherit resource limits
2168 	   from the old SID.  If not, reset all soft limits to
2169 	   the lower of the current task's hard limit and the init
2170 	   task's soft limit.  Note that the setting of hard limits
2171 	   (even to lower them) can be controlled by the setrlimit
2172 	   check. The inclusion of the init task's soft limit into
2173 	   the computation is to avoid resetting soft limits higher
2174 	   than the default soft limit for cases where the default
2175 	   is lower than the hard limit, e.g. RLIMIT_CORE or
2176 	   RLIMIT_STACK.*/
2177 	rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2178 			  PROCESS__RLIMITINH, NULL);
2179 	if (rc) {
2180 		for (i = 0; i < RLIM_NLIMITS; i++) {
2181 			rlim = current->signal->rlim + i;
2182 			initrlim = init_task.signal->rlim+i;
2183 			rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
2184 		}
2185 		if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
2186 			/*
2187 			 * This will cause RLIMIT_CPU calculations
2188 			 * to be refigured.
2189 			 */
2190 			current->it_prof_expires = jiffies_to_cputime(1);
2191 		}
2192 	}
2193 
2194 	/* Wake up the parent if it is waiting so that it can
2195 	   recheck wait permission to the new task SID. */
2196 	wake_up_interruptible(&current->parent->signal->wait_chldexit);
2197 }
2198 
2199 /* superblock security operations */
2200 
2201 static int selinux_sb_alloc_security(struct super_block *sb)
2202 {
2203 	return superblock_alloc_security(sb);
2204 }
2205 
2206 static void selinux_sb_free_security(struct super_block *sb)
2207 {
2208 	superblock_free_security(sb);
2209 }
2210 
2211 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2212 {
2213 	if (plen > olen)
2214 		return 0;
2215 
2216 	return !memcmp(prefix, option, plen);
2217 }
2218 
2219 static inline int selinux_option(char *option, int len)
2220 {
2221 	return (match_prefix("context=", sizeof("context=")-1, option, len) ||
2222 	        match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
2223 	        match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
2224 		match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
2225 }
2226 
2227 static inline void take_option(char **to, char *from, int *first, int len)
2228 {
2229 	if (!*first) {
2230 		**to = ',';
2231 		*to += 1;
2232 	} else
2233 		*first = 0;
2234 	memcpy(*to, from, len);
2235 	*to += len;
2236 }
2237 
2238 static inline void take_selinux_option(char **to, char *from, int *first,
2239 		                       int len)
2240 {
2241 	int current_size = 0;
2242 
2243 	if (!*first) {
2244 		**to = '|';
2245 		*to += 1;
2246 	}
2247 	else
2248 		*first = 0;
2249 
2250 	while (current_size < len) {
2251 		if (*from != '"') {
2252 			**to = *from;
2253 			*to += 1;
2254 		}
2255 		from += 1;
2256 		current_size += 1;
2257 	}
2258 }
2259 
2260 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
2261 {
2262 	int fnosec, fsec, rc = 0;
2263 	char *in_save, *in_curr, *in_end;
2264 	char *sec_curr, *nosec_save, *nosec;
2265 	int open_quote = 0;
2266 
2267 	in_curr = orig;
2268 	sec_curr = copy;
2269 
2270 	/* Binary mount data: just copy */
2271 	if (type->fs_flags & FS_BINARY_MOUNTDATA) {
2272 		copy_page(sec_curr, in_curr);
2273 		goto out;
2274 	}
2275 
2276 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2277 	if (!nosec) {
2278 		rc = -ENOMEM;
2279 		goto out;
2280 	}
2281 
2282 	nosec_save = nosec;
2283 	fnosec = fsec = 1;
2284 	in_save = in_end = orig;
2285 
2286 	do {
2287 		if (*in_end == '"')
2288 			open_quote = !open_quote;
2289 		if ((*in_end == ',' && open_quote == 0) ||
2290 				*in_end == '\0') {
2291 			int len = in_end - in_curr;
2292 
2293 			if (selinux_option(in_curr, len))
2294 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2295 			else
2296 				take_option(&nosec, in_curr, &fnosec, len);
2297 
2298 			in_curr = in_end + 1;
2299 		}
2300 	} while (*in_end++);
2301 
2302 	strcpy(in_save, nosec_save);
2303 	free_page((unsigned long)nosec_save);
2304 out:
2305 	return rc;
2306 }
2307 
2308 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2309 {
2310 	struct avc_audit_data ad;
2311 	int rc;
2312 
2313 	rc = superblock_doinit(sb, data);
2314 	if (rc)
2315 		return rc;
2316 
2317 	AVC_AUDIT_DATA_INIT(&ad,FS);
2318 	ad.u.fs.dentry = sb->s_root;
2319 	return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2320 }
2321 
2322 static int selinux_sb_statfs(struct dentry *dentry)
2323 {
2324 	struct avc_audit_data ad;
2325 
2326 	AVC_AUDIT_DATA_INIT(&ad,FS);
2327 	ad.u.fs.dentry = dentry->d_sb->s_root;
2328 	return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2329 }
2330 
2331 static int selinux_mount(char * dev_name,
2332                          struct nameidata *nd,
2333                          char * type,
2334                          unsigned long flags,
2335                          void * data)
2336 {
2337 	int rc;
2338 
2339 	rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2340 	if (rc)
2341 		return rc;
2342 
2343 	if (flags & MS_REMOUNT)
2344 		return superblock_has_perm(current, nd->mnt->mnt_sb,
2345 		                           FILESYSTEM__REMOUNT, NULL);
2346 	else
2347 		return dentry_has_perm(current, nd->mnt, nd->dentry,
2348 		                       FILE__MOUNTON);
2349 }
2350 
2351 static int selinux_umount(struct vfsmount *mnt, int flags)
2352 {
2353 	int rc;
2354 
2355 	rc = secondary_ops->sb_umount(mnt, flags);
2356 	if (rc)
2357 		return rc;
2358 
2359 	return superblock_has_perm(current,mnt->mnt_sb,
2360 	                           FILESYSTEM__UNMOUNT,NULL);
2361 }
2362 
2363 /* inode security operations */
2364 
2365 static int selinux_inode_alloc_security(struct inode *inode)
2366 {
2367 	return inode_alloc_security(inode);
2368 }
2369 
2370 static void selinux_inode_free_security(struct inode *inode)
2371 {
2372 	inode_free_security(inode);
2373 }
2374 
2375 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2376 				       char **name, void **value,
2377 				       size_t *len)
2378 {
2379 	struct task_security_struct *tsec;
2380 	struct inode_security_struct *dsec;
2381 	struct superblock_security_struct *sbsec;
2382 	u32 newsid, clen;
2383 	int rc;
2384 	char *namep = NULL, *context;
2385 
2386 	tsec = current->security;
2387 	dsec = dir->i_security;
2388 	sbsec = dir->i_sb->s_security;
2389 
2390 	if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2391 		newsid = tsec->create_sid;
2392 	} else {
2393 		rc = security_transition_sid(tsec->sid, dsec->sid,
2394 					     inode_mode_to_security_class(inode->i_mode),
2395 					     &newsid);
2396 		if (rc) {
2397 			printk(KERN_WARNING "%s:  "
2398 			       "security_transition_sid failed, rc=%d (dev=%s "
2399 			       "ino=%ld)\n",
2400 			       __FUNCTION__,
2401 			       -rc, inode->i_sb->s_id, inode->i_ino);
2402 			return rc;
2403 		}
2404 	}
2405 
2406 	/* Possibly defer initialization to selinux_complete_init. */
2407 	if (sbsec->initialized) {
2408 		struct inode_security_struct *isec = inode->i_security;
2409 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2410 		isec->sid = newsid;
2411 		isec->initialized = 1;
2412 	}
2413 
2414 	if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2415 		return -EOPNOTSUPP;
2416 
2417 	if (name) {
2418 		namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2419 		if (!namep)
2420 			return -ENOMEM;
2421 		*name = namep;
2422 	}
2423 
2424 	if (value && len) {
2425 		rc = security_sid_to_context(newsid, &context, &clen);
2426 		if (rc) {
2427 			kfree(namep);
2428 			return rc;
2429 		}
2430 		*value = context;
2431 		*len = clen;
2432 	}
2433 
2434 	return 0;
2435 }
2436 
2437 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2438 {
2439 	return may_create(dir, dentry, SECCLASS_FILE);
2440 }
2441 
2442 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2443 {
2444 	int rc;
2445 
2446 	rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2447 	if (rc)
2448 		return rc;
2449 	return may_link(dir, old_dentry, MAY_LINK);
2450 }
2451 
2452 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2453 {
2454 	int rc;
2455 
2456 	rc = secondary_ops->inode_unlink(dir, dentry);
2457 	if (rc)
2458 		return rc;
2459 	return may_link(dir, dentry, MAY_UNLINK);
2460 }
2461 
2462 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2463 {
2464 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2465 }
2466 
2467 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2468 {
2469 	return may_create(dir, dentry, SECCLASS_DIR);
2470 }
2471 
2472 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2473 {
2474 	return may_link(dir, dentry, MAY_RMDIR);
2475 }
2476 
2477 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2478 {
2479 	int rc;
2480 
2481 	rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2482 	if (rc)
2483 		return rc;
2484 
2485 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2486 }
2487 
2488 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2489                                 struct inode *new_inode, struct dentry *new_dentry)
2490 {
2491 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2492 }
2493 
2494 static int selinux_inode_readlink(struct dentry *dentry)
2495 {
2496 	return dentry_has_perm(current, NULL, dentry, FILE__READ);
2497 }
2498 
2499 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2500 {
2501 	int rc;
2502 
2503 	rc = secondary_ops->inode_follow_link(dentry,nameidata);
2504 	if (rc)
2505 		return rc;
2506 	return dentry_has_perm(current, NULL, dentry, FILE__READ);
2507 }
2508 
2509 static int selinux_inode_permission(struct inode *inode, int mask,
2510 				    struct nameidata *nd)
2511 {
2512 	int rc;
2513 
2514 	rc = secondary_ops->inode_permission(inode, mask, nd);
2515 	if (rc)
2516 		return rc;
2517 
2518 	if (!mask) {
2519 		/* No permission to check.  Existence test. */
2520 		return 0;
2521 	}
2522 
2523 	return inode_has_perm(current, inode,
2524 			       file_mask_to_av(inode->i_mode, mask), NULL);
2525 }
2526 
2527 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2528 {
2529 	int rc;
2530 
2531 	rc = secondary_ops->inode_setattr(dentry, iattr);
2532 	if (rc)
2533 		return rc;
2534 
2535 	if (iattr->ia_valid & ATTR_FORCE)
2536 		return 0;
2537 
2538 	if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2539 			       ATTR_ATIME_SET | ATTR_MTIME_SET))
2540 		return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2541 
2542 	return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2543 }
2544 
2545 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2546 {
2547 	return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2548 }
2549 
2550 static int selinux_inode_setotherxattr(struct dentry *dentry, char *name)
2551 {
2552 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2553 		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2554 		if (!strcmp(name, XATTR_NAME_CAPS)) {
2555 			if (!capable(CAP_SETFCAP))
2556 				return -EPERM;
2557 		} else if (!capable(CAP_SYS_ADMIN)) {
2558 			/* A different attribute in the security namespace.
2559 			   Restrict to administrator. */
2560 			return -EPERM;
2561 		}
2562 	}
2563 
2564 	/* Not an attribute we recognize, so just check the
2565 	   ordinary setattr permission. */
2566 	return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2567 }
2568 
2569 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2570 {
2571 	struct task_security_struct *tsec = current->security;
2572 	struct inode *inode = dentry->d_inode;
2573 	struct inode_security_struct *isec = inode->i_security;
2574 	struct superblock_security_struct *sbsec;
2575 	struct avc_audit_data ad;
2576 	u32 newsid;
2577 	int rc = 0;
2578 
2579 	if (strcmp(name, XATTR_NAME_SELINUX))
2580 		return selinux_inode_setotherxattr(dentry, name);
2581 
2582 	sbsec = inode->i_sb->s_security;
2583 	if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2584 		return -EOPNOTSUPP;
2585 
2586 	if (!is_owner_or_cap(inode))
2587 		return -EPERM;
2588 
2589 	AVC_AUDIT_DATA_INIT(&ad,FS);
2590 	ad.u.fs.dentry = dentry;
2591 
2592 	rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2593 			  FILE__RELABELFROM, &ad);
2594 	if (rc)
2595 		return rc;
2596 
2597 	rc = security_context_to_sid(value, size, &newsid);
2598 	if (rc)
2599 		return rc;
2600 
2601 	rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2602 			  FILE__RELABELTO, &ad);
2603 	if (rc)
2604 		return rc;
2605 
2606 	rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2607 	                                  isec->sclass);
2608 	if (rc)
2609 		return rc;
2610 
2611 	return avc_has_perm(newsid,
2612 			    sbsec->sid,
2613 			    SECCLASS_FILESYSTEM,
2614 			    FILESYSTEM__ASSOCIATE,
2615 			    &ad);
2616 }
2617 
2618 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2619                                         void *value, size_t size, int flags)
2620 {
2621 	struct inode *inode = dentry->d_inode;
2622 	struct inode_security_struct *isec = inode->i_security;
2623 	u32 newsid;
2624 	int rc;
2625 
2626 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2627 		/* Not an attribute we recognize, so nothing to do. */
2628 		return;
2629 	}
2630 
2631 	rc = security_context_to_sid(value, size, &newsid);
2632 	if (rc) {
2633 		printk(KERN_WARNING "%s:  unable to obtain SID for context "
2634 		       "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2635 		return;
2636 	}
2637 
2638 	isec->sid = newsid;
2639 	return;
2640 }
2641 
2642 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2643 {
2644 	return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2645 }
2646 
2647 static int selinux_inode_listxattr (struct dentry *dentry)
2648 {
2649 	return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2650 }
2651 
2652 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2653 {
2654 	if (strcmp(name, XATTR_NAME_SELINUX))
2655 		return selinux_inode_setotherxattr(dentry, name);
2656 
2657 	/* No one is allowed to remove a SELinux security label.
2658 	   You can change the label, but all data must be labeled. */
2659 	return -EACCES;
2660 }
2661 
2662 /*
2663  * Copy the in-core inode security context value to the user.  If the
2664  * getxattr() prior to this succeeded, check to see if we need to
2665  * canonicalize the value to be finally returned to the user.
2666  *
2667  * Permission check is handled by selinux_inode_getxattr hook.
2668  */
2669 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2670 {
2671 	u32 size;
2672 	int error;
2673 	char *context = NULL;
2674 	struct inode_security_struct *isec = inode->i_security;
2675 
2676 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2677 		return -EOPNOTSUPP;
2678 
2679 	error = security_sid_to_context(isec->sid, &context, &size);
2680 	if (error)
2681 		return error;
2682 	error = size;
2683 	if (alloc) {
2684 		*buffer = context;
2685 		goto out_nofree;
2686 	}
2687 	kfree(context);
2688 out_nofree:
2689 	return error;
2690 }
2691 
2692 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2693                                      const void *value, size_t size, int flags)
2694 {
2695 	struct inode_security_struct *isec = inode->i_security;
2696 	u32 newsid;
2697 	int rc;
2698 
2699 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2700 		return -EOPNOTSUPP;
2701 
2702 	if (!value || !size)
2703 		return -EACCES;
2704 
2705 	rc = security_context_to_sid((void*)value, size, &newsid);
2706 	if (rc)
2707 		return rc;
2708 
2709 	isec->sid = newsid;
2710 	return 0;
2711 }
2712 
2713 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2714 {
2715 	const int len = sizeof(XATTR_NAME_SELINUX);
2716 	if (buffer && len <= buffer_size)
2717 		memcpy(buffer, XATTR_NAME_SELINUX, len);
2718 	return len;
2719 }
2720 
2721 static int selinux_inode_need_killpriv(struct dentry *dentry)
2722 {
2723 	return secondary_ops->inode_need_killpriv(dentry);
2724 }
2725 
2726 static int selinux_inode_killpriv(struct dentry *dentry)
2727 {
2728 	return secondary_ops->inode_killpriv(dentry);
2729 }
2730 
2731 /* file security operations */
2732 
2733 static int selinux_revalidate_file_permission(struct file *file, int mask)
2734 {
2735 	int rc;
2736 	struct inode *inode = file->f_path.dentry->d_inode;
2737 
2738 	if (!mask) {
2739 		/* No permission to check.  Existence test. */
2740 		return 0;
2741 	}
2742 
2743 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2744 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2745 		mask |= MAY_APPEND;
2746 
2747 	rc = file_has_perm(current, file,
2748 			   file_mask_to_av(inode->i_mode, mask));
2749 	if (rc)
2750 		return rc;
2751 
2752 	return selinux_netlbl_inode_permission(inode, mask);
2753 }
2754 
2755 static int selinux_file_permission(struct file *file, int mask)
2756 {
2757 	struct inode *inode = file->f_path.dentry->d_inode;
2758 	struct task_security_struct *tsec = current->security;
2759 	struct file_security_struct *fsec = file->f_security;
2760 	struct inode_security_struct *isec = inode->i_security;
2761 
2762 	if (!mask) {
2763 		/* No permission to check.  Existence test. */
2764 		return 0;
2765 	}
2766 
2767 	if (tsec->sid == fsec->sid && fsec->isid == isec->sid
2768 	    && fsec->pseqno == avc_policy_seqno())
2769 		return selinux_netlbl_inode_permission(inode, mask);
2770 
2771 	return selinux_revalidate_file_permission(file, mask);
2772 }
2773 
2774 static int selinux_file_alloc_security(struct file *file)
2775 {
2776 	return file_alloc_security(file);
2777 }
2778 
2779 static void selinux_file_free_security(struct file *file)
2780 {
2781 	file_free_security(file);
2782 }
2783 
2784 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2785 			      unsigned long arg)
2786 {
2787 	int error = 0;
2788 
2789 	switch (cmd) {
2790 		case FIONREAD:
2791 		/* fall through */
2792 		case FIBMAP:
2793 		/* fall through */
2794 		case FIGETBSZ:
2795 		/* fall through */
2796 		case EXT2_IOC_GETFLAGS:
2797 		/* fall through */
2798 		case EXT2_IOC_GETVERSION:
2799 			error = file_has_perm(current, file, FILE__GETATTR);
2800 			break;
2801 
2802 		case EXT2_IOC_SETFLAGS:
2803 		/* fall through */
2804 		case EXT2_IOC_SETVERSION:
2805 			error = file_has_perm(current, file, FILE__SETATTR);
2806 			break;
2807 
2808 		/* sys_ioctl() checks */
2809 		case FIONBIO:
2810 		/* fall through */
2811 		case FIOASYNC:
2812 			error = file_has_perm(current, file, 0);
2813 			break;
2814 
2815 	        case KDSKBENT:
2816 	        case KDSKBSENT:
2817 			error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2818 			break;
2819 
2820 		/* default case assumes that the command will go
2821 		 * to the file's ioctl() function.
2822 		 */
2823 		default:
2824 			error = file_has_perm(current, file, FILE__IOCTL);
2825 
2826 	}
2827 	return error;
2828 }
2829 
2830 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2831 {
2832 #ifndef CONFIG_PPC32
2833 	if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2834 		/*
2835 		 * We are making executable an anonymous mapping or a
2836 		 * private file mapping that will also be writable.
2837 		 * This has an additional check.
2838 		 */
2839 		int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2840 		if (rc)
2841 			return rc;
2842 	}
2843 #endif
2844 
2845 	if (file) {
2846 		/* read access is always possible with a mapping */
2847 		u32 av = FILE__READ;
2848 
2849 		/* write access only matters if the mapping is shared */
2850 		if (shared && (prot & PROT_WRITE))
2851 			av |= FILE__WRITE;
2852 
2853 		if (prot & PROT_EXEC)
2854 			av |= FILE__EXECUTE;
2855 
2856 		return file_has_perm(current, file, av);
2857 	}
2858 	return 0;
2859 }
2860 
2861 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2862 			     unsigned long prot, unsigned long flags,
2863 			     unsigned long addr, unsigned long addr_only)
2864 {
2865 	int rc = 0;
2866 	u32 sid = ((struct task_security_struct*)(current->security))->sid;
2867 
2868 	if (addr < mmap_min_addr)
2869 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
2870 				  MEMPROTECT__MMAP_ZERO, NULL);
2871 	if (rc || addr_only)
2872 		return rc;
2873 
2874 	if (selinux_checkreqprot)
2875 		prot = reqprot;
2876 
2877 	return file_map_prot_check(file, prot,
2878 				   (flags & MAP_TYPE) == MAP_SHARED);
2879 }
2880 
2881 static int selinux_file_mprotect(struct vm_area_struct *vma,
2882 				 unsigned long reqprot,
2883 				 unsigned long prot)
2884 {
2885 	int rc;
2886 
2887 	rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2888 	if (rc)
2889 		return rc;
2890 
2891 	if (selinux_checkreqprot)
2892 		prot = reqprot;
2893 
2894 #ifndef CONFIG_PPC32
2895 	if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2896 		rc = 0;
2897 		if (vma->vm_start >= vma->vm_mm->start_brk &&
2898 		    vma->vm_end <= vma->vm_mm->brk) {
2899 			rc = task_has_perm(current, current,
2900 					   PROCESS__EXECHEAP);
2901 		} else if (!vma->vm_file &&
2902 			   vma->vm_start <= vma->vm_mm->start_stack &&
2903 			   vma->vm_end >= vma->vm_mm->start_stack) {
2904 			rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2905 		} else if (vma->vm_file && vma->anon_vma) {
2906 			/*
2907 			 * We are making executable a file mapping that has
2908 			 * had some COW done. Since pages might have been
2909 			 * written, check ability to execute the possibly
2910 			 * modified content.  This typically should only
2911 			 * occur for text relocations.
2912 			 */
2913 			rc = file_has_perm(current, vma->vm_file,
2914 					   FILE__EXECMOD);
2915 		}
2916 		if (rc)
2917 			return rc;
2918 	}
2919 #endif
2920 
2921 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2922 }
2923 
2924 static int selinux_file_lock(struct file *file, unsigned int cmd)
2925 {
2926 	return file_has_perm(current, file, FILE__LOCK);
2927 }
2928 
2929 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2930 			      unsigned long arg)
2931 {
2932 	int err = 0;
2933 
2934 	switch (cmd) {
2935 	        case F_SETFL:
2936 			if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2937 				err = -EINVAL;
2938 				break;
2939 			}
2940 
2941 			if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2942 				err = file_has_perm(current, file,FILE__WRITE);
2943 				break;
2944 			}
2945 			/* fall through */
2946 	        case F_SETOWN:
2947 	        case F_SETSIG:
2948 	        case F_GETFL:
2949 	        case F_GETOWN:
2950 	        case F_GETSIG:
2951 			/* Just check FD__USE permission */
2952 			err = file_has_perm(current, file, 0);
2953 			break;
2954 		case F_GETLK:
2955 		case F_SETLK:
2956 	        case F_SETLKW:
2957 #if BITS_PER_LONG == 32
2958 	        case F_GETLK64:
2959 		case F_SETLK64:
2960 	        case F_SETLKW64:
2961 #endif
2962 			if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2963 				err = -EINVAL;
2964 				break;
2965 			}
2966 			err = file_has_perm(current, file, FILE__LOCK);
2967 			break;
2968 	}
2969 
2970 	return err;
2971 }
2972 
2973 static int selinux_file_set_fowner(struct file *file)
2974 {
2975 	struct task_security_struct *tsec;
2976 	struct file_security_struct *fsec;
2977 
2978 	tsec = current->security;
2979 	fsec = file->f_security;
2980 	fsec->fown_sid = tsec->sid;
2981 
2982 	return 0;
2983 }
2984 
2985 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2986 				       struct fown_struct *fown, int signum)
2987 {
2988         struct file *file;
2989 	u32 perm;
2990 	struct task_security_struct *tsec;
2991 	struct file_security_struct *fsec;
2992 
2993 	/* struct fown_struct is never outside the context of a struct file */
2994         file = container_of(fown, struct file, f_owner);
2995 
2996 	tsec = tsk->security;
2997 	fsec = file->f_security;
2998 
2999 	if (!signum)
3000 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3001 	else
3002 		perm = signal_to_av(signum);
3003 
3004 	return avc_has_perm(fsec->fown_sid, tsec->sid,
3005 			    SECCLASS_PROCESS, perm, NULL);
3006 }
3007 
3008 static int selinux_file_receive(struct file *file)
3009 {
3010 	return file_has_perm(current, file, file_to_av(file));
3011 }
3012 
3013 static int selinux_dentry_open(struct file *file)
3014 {
3015 	struct file_security_struct *fsec;
3016 	struct inode *inode;
3017 	struct inode_security_struct *isec;
3018 	inode = file->f_path.dentry->d_inode;
3019 	fsec = file->f_security;
3020 	isec = inode->i_security;
3021 	/*
3022 	 * Save inode label and policy sequence number
3023 	 * at open-time so that selinux_file_permission
3024 	 * can determine whether revalidation is necessary.
3025 	 * Task label is already saved in the file security
3026 	 * struct as its SID.
3027 	 */
3028 	fsec->isid = isec->sid;
3029 	fsec->pseqno = avc_policy_seqno();
3030 	/*
3031 	 * Since the inode label or policy seqno may have changed
3032 	 * between the selinux_inode_permission check and the saving
3033 	 * of state above, recheck that access is still permitted.
3034 	 * Otherwise, access might never be revalidated against the
3035 	 * new inode label or new policy.
3036 	 * This check is not redundant - do not remove.
3037 	 */
3038 	return inode_has_perm(current, inode, file_to_av(file), NULL);
3039 }
3040 
3041 /* task security operations */
3042 
3043 static int selinux_task_create(unsigned long clone_flags)
3044 {
3045 	int rc;
3046 
3047 	rc = secondary_ops->task_create(clone_flags);
3048 	if (rc)
3049 		return rc;
3050 
3051 	return task_has_perm(current, current, PROCESS__FORK);
3052 }
3053 
3054 static int selinux_task_alloc_security(struct task_struct *tsk)
3055 {
3056 	struct task_security_struct *tsec1, *tsec2;
3057 	int rc;
3058 
3059 	tsec1 = current->security;
3060 
3061 	rc = task_alloc_security(tsk);
3062 	if (rc)
3063 		return rc;
3064 	tsec2 = tsk->security;
3065 
3066 	tsec2->osid = tsec1->osid;
3067 	tsec2->sid = tsec1->sid;
3068 
3069 	/* Retain the exec, fs, key, and sock SIDs across fork */
3070 	tsec2->exec_sid = tsec1->exec_sid;
3071 	tsec2->create_sid = tsec1->create_sid;
3072 	tsec2->keycreate_sid = tsec1->keycreate_sid;
3073 	tsec2->sockcreate_sid = tsec1->sockcreate_sid;
3074 
3075 	/* Retain ptracer SID across fork, if any.
3076 	   This will be reset by the ptrace hook upon any
3077 	   subsequent ptrace_attach operations. */
3078 	tsec2->ptrace_sid = tsec1->ptrace_sid;
3079 
3080 	return 0;
3081 }
3082 
3083 static void selinux_task_free_security(struct task_struct *tsk)
3084 {
3085 	task_free_security(tsk);
3086 }
3087 
3088 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3089 {
3090 	/* Since setuid only affects the current process, and
3091 	   since the SELinux controls are not based on the Linux
3092 	   identity attributes, SELinux does not need to control
3093 	   this operation.  However, SELinux does control the use
3094 	   of the CAP_SETUID and CAP_SETGID capabilities using the
3095 	   capable hook. */
3096 	return 0;
3097 }
3098 
3099 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3100 {
3101 	return secondary_ops->task_post_setuid(id0,id1,id2,flags);
3102 }
3103 
3104 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3105 {
3106 	/* See the comment for setuid above. */
3107 	return 0;
3108 }
3109 
3110 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3111 {
3112 	return task_has_perm(current, p, PROCESS__SETPGID);
3113 }
3114 
3115 static int selinux_task_getpgid(struct task_struct *p)
3116 {
3117 	return task_has_perm(current, p, PROCESS__GETPGID);
3118 }
3119 
3120 static int selinux_task_getsid(struct task_struct *p)
3121 {
3122 	return task_has_perm(current, p, PROCESS__GETSESSION);
3123 }
3124 
3125 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3126 {
3127 	selinux_get_task_sid(p, secid);
3128 }
3129 
3130 static int selinux_task_setgroups(struct group_info *group_info)
3131 {
3132 	/* See the comment for setuid above. */
3133 	return 0;
3134 }
3135 
3136 static int selinux_task_setnice(struct task_struct *p, int nice)
3137 {
3138 	int rc;
3139 
3140 	rc = secondary_ops->task_setnice(p, nice);
3141 	if (rc)
3142 		return rc;
3143 
3144 	return task_has_perm(current,p, PROCESS__SETSCHED);
3145 }
3146 
3147 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3148 {
3149 	int rc;
3150 
3151 	rc = secondary_ops->task_setioprio(p, ioprio);
3152 	if (rc)
3153 		return rc;
3154 
3155 	return task_has_perm(current, p, PROCESS__SETSCHED);
3156 }
3157 
3158 static int selinux_task_getioprio(struct task_struct *p)
3159 {
3160 	return task_has_perm(current, p, PROCESS__GETSCHED);
3161 }
3162 
3163 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3164 {
3165 	struct rlimit *old_rlim = current->signal->rlim + resource;
3166 	int rc;
3167 
3168 	rc = secondary_ops->task_setrlimit(resource, new_rlim);
3169 	if (rc)
3170 		return rc;
3171 
3172 	/* Control the ability to change the hard limit (whether
3173 	   lowering or raising it), so that the hard limit can
3174 	   later be used as a safe reset point for the soft limit
3175 	   upon context transitions. See selinux_bprm_apply_creds. */
3176 	if (old_rlim->rlim_max != new_rlim->rlim_max)
3177 		return task_has_perm(current, current, PROCESS__SETRLIMIT);
3178 
3179 	return 0;
3180 }
3181 
3182 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3183 {
3184 	int rc;
3185 
3186 	rc = secondary_ops->task_setscheduler(p, policy, lp);
3187 	if (rc)
3188 		return rc;
3189 
3190 	return task_has_perm(current, p, PROCESS__SETSCHED);
3191 }
3192 
3193 static int selinux_task_getscheduler(struct task_struct *p)
3194 {
3195 	return task_has_perm(current, p, PROCESS__GETSCHED);
3196 }
3197 
3198 static int selinux_task_movememory(struct task_struct *p)
3199 {
3200 	return task_has_perm(current, p, PROCESS__SETSCHED);
3201 }
3202 
3203 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3204 				int sig, u32 secid)
3205 {
3206 	u32 perm;
3207 	int rc;
3208 	struct task_security_struct *tsec;
3209 
3210 	rc = secondary_ops->task_kill(p, info, sig, secid);
3211 	if (rc)
3212 		return rc;
3213 
3214 	if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
3215 		return 0;
3216 
3217 	if (!sig)
3218 		perm = PROCESS__SIGNULL; /* null signal; existence test */
3219 	else
3220 		perm = signal_to_av(sig);
3221 	tsec = p->security;
3222 	if (secid)
3223 		rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
3224 	else
3225 		rc = task_has_perm(current, p, perm);
3226 	return rc;
3227 }
3228 
3229 static int selinux_task_prctl(int option,
3230 			      unsigned long arg2,
3231 			      unsigned long arg3,
3232 			      unsigned long arg4,
3233 			      unsigned long arg5)
3234 {
3235 	/* The current prctl operations do not appear to require
3236 	   any SELinux controls since they merely observe or modify
3237 	   the state of the current process. */
3238 	return 0;
3239 }
3240 
3241 static int selinux_task_wait(struct task_struct *p)
3242 {
3243 	return task_has_perm(p, current, PROCESS__SIGCHLD);
3244 }
3245 
3246 static void selinux_task_reparent_to_init(struct task_struct *p)
3247 {
3248   	struct task_security_struct *tsec;
3249 
3250 	secondary_ops->task_reparent_to_init(p);
3251 
3252 	tsec = p->security;
3253 	tsec->osid = tsec->sid;
3254 	tsec->sid = SECINITSID_KERNEL;
3255 	return;
3256 }
3257 
3258 static void selinux_task_to_inode(struct task_struct *p,
3259 				  struct inode *inode)
3260 {
3261 	struct task_security_struct *tsec = p->security;
3262 	struct inode_security_struct *isec = inode->i_security;
3263 
3264 	isec->sid = tsec->sid;
3265 	isec->initialized = 1;
3266 	return;
3267 }
3268 
3269 /* Returns error only if unable to parse addresses */
3270 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3271 			struct avc_audit_data *ad, u8 *proto)
3272 {
3273 	int offset, ihlen, ret = -EINVAL;
3274 	struct iphdr _iph, *ih;
3275 
3276 	offset = skb_network_offset(skb);
3277 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3278 	if (ih == NULL)
3279 		goto out;
3280 
3281 	ihlen = ih->ihl * 4;
3282 	if (ihlen < sizeof(_iph))
3283 		goto out;
3284 
3285 	ad->u.net.v4info.saddr = ih->saddr;
3286 	ad->u.net.v4info.daddr = ih->daddr;
3287 	ret = 0;
3288 
3289 	if (proto)
3290 		*proto = ih->protocol;
3291 
3292 	switch (ih->protocol) {
3293         case IPPROTO_TCP: {
3294         	struct tcphdr _tcph, *th;
3295 
3296         	if (ntohs(ih->frag_off) & IP_OFFSET)
3297         		break;
3298 
3299 		offset += ihlen;
3300 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3301 		if (th == NULL)
3302 			break;
3303 
3304 		ad->u.net.sport = th->source;
3305 		ad->u.net.dport = th->dest;
3306 		break;
3307         }
3308 
3309         case IPPROTO_UDP: {
3310         	struct udphdr _udph, *uh;
3311 
3312         	if (ntohs(ih->frag_off) & IP_OFFSET)
3313         		break;
3314 
3315 		offset += ihlen;
3316         	uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3317 		if (uh == NULL)
3318 			break;
3319 
3320         	ad->u.net.sport = uh->source;
3321         	ad->u.net.dport = uh->dest;
3322         	break;
3323         }
3324 
3325 	case IPPROTO_DCCP: {
3326 		struct dccp_hdr _dccph, *dh;
3327 
3328 		if (ntohs(ih->frag_off) & IP_OFFSET)
3329 			break;
3330 
3331 		offset += ihlen;
3332 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3333 		if (dh == NULL)
3334 			break;
3335 
3336 		ad->u.net.sport = dh->dccph_sport;
3337 		ad->u.net.dport = dh->dccph_dport;
3338 		break;
3339         }
3340 
3341         default:
3342         	break;
3343         }
3344 out:
3345 	return ret;
3346 }
3347 
3348 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3349 
3350 /* Returns error only if unable to parse addresses */
3351 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3352 			struct avc_audit_data *ad, u8 *proto)
3353 {
3354 	u8 nexthdr;
3355 	int ret = -EINVAL, offset;
3356 	struct ipv6hdr _ipv6h, *ip6;
3357 
3358 	offset = skb_network_offset(skb);
3359 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3360 	if (ip6 == NULL)
3361 		goto out;
3362 
3363 	ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3364 	ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3365 	ret = 0;
3366 
3367 	nexthdr = ip6->nexthdr;
3368 	offset += sizeof(_ipv6h);
3369 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3370 	if (offset < 0)
3371 		goto out;
3372 
3373 	if (proto)
3374 		*proto = nexthdr;
3375 
3376 	switch (nexthdr) {
3377 	case IPPROTO_TCP: {
3378         	struct tcphdr _tcph, *th;
3379 
3380 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3381 		if (th == NULL)
3382 			break;
3383 
3384 		ad->u.net.sport = th->source;
3385 		ad->u.net.dport = th->dest;
3386 		break;
3387 	}
3388 
3389 	case IPPROTO_UDP: {
3390 		struct udphdr _udph, *uh;
3391 
3392 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3393 		if (uh == NULL)
3394 			break;
3395 
3396 		ad->u.net.sport = uh->source;
3397 		ad->u.net.dport = uh->dest;
3398 		break;
3399 	}
3400 
3401 	case IPPROTO_DCCP: {
3402 		struct dccp_hdr _dccph, *dh;
3403 
3404 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3405 		if (dh == NULL)
3406 			break;
3407 
3408 		ad->u.net.sport = dh->dccph_sport;
3409 		ad->u.net.dport = dh->dccph_dport;
3410 		break;
3411         }
3412 
3413 	/* includes fragments */
3414 	default:
3415 		break;
3416 	}
3417 out:
3418 	return ret;
3419 }
3420 
3421 #endif /* IPV6 */
3422 
3423 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3424 			     char **addrp, int src, u8 *proto)
3425 {
3426 	int ret = 0;
3427 
3428 	switch (ad->u.net.family) {
3429 	case PF_INET:
3430 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3431 		if (ret || !addrp)
3432 			break;
3433 		*addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3434 					&ad->u.net.v4info.daddr);
3435 		break;
3436 
3437 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3438 	case PF_INET6:
3439 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3440 		if (ret || !addrp)
3441 			break;
3442 		*addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3443 					&ad->u.net.v6info.daddr);
3444 		break;
3445 #endif	/* IPV6 */
3446 	default:
3447 		break;
3448 	}
3449 
3450 	if (unlikely(ret))
3451 		printk(KERN_WARNING
3452 		       "SELinux: failure in selinux_parse_skb(),"
3453 		       " unable to parse packet\n");
3454 
3455 	return ret;
3456 }
3457 
3458 /**
3459  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3460  * @skb: the packet
3461  * @family: protocol family
3462  * @sid: the packet's peer label SID
3463  *
3464  * Description:
3465  * Check the various different forms of network peer labeling and determine
3466  * the peer label/SID for the packet; most of the magic actually occurs in
3467  * the security server function security_net_peersid_cmp().  The function
3468  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3469  * or -EACCES if @sid is invalid due to inconsistencies with the different
3470  * peer labels.
3471  *
3472  */
3473 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3474 {
3475 	int err;
3476 	u32 xfrm_sid;
3477 	u32 nlbl_sid;
3478 	u32 nlbl_type;
3479 
3480 	selinux_skb_xfrm_sid(skb, &xfrm_sid);
3481 	selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3482 
3483 	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3484 	if (unlikely(err)) {
3485 		printk(KERN_WARNING
3486 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3487 		       " unable to determine packet's peer label\n");
3488 		return -EACCES;
3489 	}
3490 
3491 	return 0;
3492 }
3493 
3494 /* socket security operations */
3495 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3496 			   u32 perms)
3497 {
3498 	struct inode_security_struct *isec;
3499 	struct task_security_struct *tsec;
3500 	struct avc_audit_data ad;
3501 	int err = 0;
3502 
3503 	tsec = task->security;
3504 	isec = SOCK_INODE(sock)->i_security;
3505 
3506 	if (isec->sid == SECINITSID_KERNEL)
3507 		goto out;
3508 
3509 	AVC_AUDIT_DATA_INIT(&ad,NET);
3510 	ad.u.net.sk = sock->sk;
3511 	err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3512 
3513 out:
3514 	return err;
3515 }
3516 
3517 static int selinux_socket_create(int family, int type,
3518 				 int protocol, int kern)
3519 {
3520 	int err = 0;
3521 	struct task_security_struct *tsec;
3522 	u32 newsid;
3523 
3524 	if (kern)
3525 		goto out;
3526 
3527 	tsec = current->security;
3528 	newsid = tsec->sockcreate_sid ? : tsec->sid;
3529 	err = avc_has_perm(tsec->sid, newsid,
3530 			   socket_type_to_security_class(family, type,
3531 			   protocol), SOCKET__CREATE, NULL);
3532 
3533 out:
3534 	return err;
3535 }
3536 
3537 static int selinux_socket_post_create(struct socket *sock, int family,
3538 				      int type, int protocol, int kern)
3539 {
3540 	int err = 0;
3541 	struct inode_security_struct *isec;
3542 	struct task_security_struct *tsec;
3543 	struct sk_security_struct *sksec;
3544 	u32 newsid;
3545 
3546 	isec = SOCK_INODE(sock)->i_security;
3547 
3548 	tsec = current->security;
3549 	newsid = tsec->sockcreate_sid ? : tsec->sid;
3550 	isec->sclass = socket_type_to_security_class(family, type, protocol);
3551 	isec->sid = kern ? SECINITSID_KERNEL : newsid;
3552 	isec->initialized = 1;
3553 
3554 	if (sock->sk) {
3555 		sksec = sock->sk->sk_security;
3556 		sksec->sid = isec->sid;
3557 		sksec->sclass = isec->sclass;
3558 		err = selinux_netlbl_socket_post_create(sock);
3559 	}
3560 
3561 	return err;
3562 }
3563 
3564 /* Range of port numbers used to automatically bind.
3565    Need to determine whether we should perform a name_bind
3566    permission check between the socket and the port number. */
3567 
3568 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3569 {
3570 	u16 family;
3571 	int err;
3572 
3573 	err = socket_has_perm(current, sock, SOCKET__BIND);
3574 	if (err)
3575 		goto out;
3576 
3577 	/*
3578 	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3579 	 * Multiple address binding for SCTP is not supported yet: we just
3580 	 * check the first address now.
3581 	 */
3582 	family = sock->sk->sk_family;
3583 	if (family == PF_INET || family == PF_INET6) {
3584 		char *addrp;
3585 		struct inode_security_struct *isec;
3586 		struct task_security_struct *tsec;
3587 		struct avc_audit_data ad;
3588 		struct sockaddr_in *addr4 = NULL;
3589 		struct sockaddr_in6 *addr6 = NULL;
3590 		unsigned short snum;
3591 		struct sock *sk = sock->sk;
3592 		u32 sid, node_perm, addrlen;
3593 
3594 		tsec = current->security;
3595 		isec = SOCK_INODE(sock)->i_security;
3596 
3597 		if (family == PF_INET) {
3598 			addr4 = (struct sockaddr_in *)address;
3599 			snum = ntohs(addr4->sin_port);
3600 			addrlen = sizeof(addr4->sin_addr.s_addr);
3601 			addrp = (char *)&addr4->sin_addr.s_addr;
3602 		} else {
3603 			addr6 = (struct sockaddr_in6 *)address;
3604 			snum = ntohs(addr6->sin6_port);
3605 			addrlen = sizeof(addr6->sin6_addr.s6_addr);
3606 			addrp = (char *)&addr6->sin6_addr.s6_addr;
3607 		}
3608 
3609 		if (snum) {
3610 			int low, high;
3611 
3612 			inet_get_local_port_range(&low, &high);
3613 
3614 			if (snum < max(PROT_SOCK, low) || snum > high) {
3615 				err = security_port_sid(sk->sk_family,
3616 							sk->sk_type,
3617 							sk->sk_protocol, snum,
3618 							&sid);
3619 				if (err)
3620 					goto out;
3621 				AVC_AUDIT_DATA_INIT(&ad,NET);
3622 				ad.u.net.sport = htons(snum);
3623 				ad.u.net.family = family;
3624 				err = avc_has_perm(isec->sid, sid,
3625 						   isec->sclass,
3626 						   SOCKET__NAME_BIND, &ad);
3627 				if (err)
3628 					goto out;
3629 			}
3630 		}
3631 
3632 		switch(isec->sclass) {
3633 		case SECCLASS_TCP_SOCKET:
3634 			node_perm = TCP_SOCKET__NODE_BIND;
3635 			break;
3636 
3637 		case SECCLASS_UDP_SOCKET:
3638 			node_perm = UDP_SOCKET__NODE_BIND;
3639 			break;
3640 
3641 		case SECCLASS_DCCP_SOCKET:
3642 			node_perm = DCCP_SOCKET__NODE_BIND;
3643 			break;
3644 
3645 		default:
3646 			node_perm = RAWIP_SOCKET__NODE_BIND;
3647 			break;
3648 		}
3649 
3650 		err = sel_netnode_sid(addrp, family, &sid);
3651 		if (err)
3652 			goto out;
3653 
3654 		AVC_AUDIT_DATA_INIT(&ad,NET);
3655 		ad.u.net.sport = htons(snum);
3656 		ad.u.net.family = family;
3657 
3658 		if (family == PF_INET)
3659 			ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3660 		else
3661 			ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3662 
3663 		err = avc_has_perm(isec->sid, sid,
3664 		                   isec->sclass, node_perm, &ad);
3665 		if (err)
3666 			goto out;
3667 	}
3668 out:
3669 	return err;
3670 }
3671 
3672 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3673 {
3674 	struct inode_security_struct *isec;
3675 	int err;
3676 
3677 	err = socket_has_perm(current, sock, SOCKET__CONNECT);
3678 	if (err)
3679 		return err;
3680 
3681 	/*
3682 	 * If a TCP or DCCP socket, check name_connect permission for the port.
3683 	 */
3684 	isec = SOCK_INODE(sock)->i_security;
3685 	if (isec->sclass == SECCLASS_TCP_SOCKET ||
3686 	    isec->sclass == SECCLASS_DCCP_SOCKET) {
3687 		struct sock *sk = sock->sk;
3688 		struct avc_audit_data ad;
3689 		struct sockaddr_in *addr4 = NULL;
3690 		struct sockaddr_in6 *addr6 = NULL;
3691 		unsigned short snum;
3692 		u32 sid, perm;
3693 
3694 		if (sk->sk_family == PF_INET) {
3695 			addr4 = (struct sockaddr_in *)address;
3696 			if (addrlen < sizeof(struct sockaddr_in))
3697 				return -EINVAL;
3698 			snum = ntohs(addr4->sin_port);
3699 		} else {
3700 			addr6 = (struct sockaddr_in6 *)address;
3701 			if (addrlen < SIN6_LEN_RFC2133)
3702 				return -EINVAL;
3703 			snum = ntohs(addr6->sin6_port);
3704 		}
3705 
3706 		err = security_port_sid(sk->sk_family, sk->sk_type,
3707 					sk->sk_protocol, snum, &sid);
3708 		if (err)
3709 			goto out;
3710 
3711 		perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3712 		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3713 
3714 		AVC_AUDIT_DATA_INIT(&ad,NET);
3715 		ad.u.net.dport = htons(snum);
3716 		ad.u.net.family = sk->sk_family;
3717 		err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3718 		if (err)
3719 			goto out;
3720 	}
3721 
3722 out:
3723 	return err;
3724 }
3725 
3726 static int selinux_socket_listen(struct socket *sock, int backlog)
3727 {
3728 	return socket_has_perm(current, sock, SOCKET__LISTEN);
3729 }
3730 
3731 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3732 {
3733 	int err;
3734 	struct inode_security_struct *isec;
3735 	struct inode_security_struct *newisec;
3736 
3737 	err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3738 	if (err)
3739 		return err;
3740 
3741 	newisec = SOCK_INODE(newsock)->i_security;
3742 
3743 	isec = SOCK_INODE(sock)->i_security;
3744 	newisec->sclass = isec->sclass;
3745 	newisec->sid = isec->sid;
3746 	newisec->initialized = 1;
3747 
3748 	return 0;
3749 }
3750 
3751 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3752  				  int size)
3753 {
3754 	int rc;
3755 
3756 	rc = socket_has_perm(current, sock, SOCKET__WRITE);
3757 	if (rc)
3758 		return rc;
3759 
3760 	return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3761 }
3762 
3763 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3764 				  int size, int flags)
3765 {
3766 	return socket_has_perm(current, sock, SOCKET__READ);
3767 }
3768 
3769 static int selinux_socket_getsockname(struct socket *sock)
3770 {
3771 	return socket_has_perm(current, sock, SOCKET__GETATTR);
3772 }
3773 
3774 static int selinux_socket_getpeername(struct socket *sock)
3775 {
3776 	return socket_has_perm(current, sock, SOCKET__GETATTR);
3777 }
3778 
3779 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3780 {
3781 	int err;
3782 
3783 	err = socket_has_perm(current, sock, SOCKET__SETOPT);
3784 	if (err)
3785 		return err;
3786 
3787 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
3788 }
3789 
3790 static int selinux_socket_getsockopt(struct socket *sock, int level,
3791 				     int optname)
3792 {
3793 	return socket_has_perm(current, sock, SOCKET__GETOPT);
3794 }
3795 
3796 static int selinux_socket_shutdown(struct socket *sock, int how)
3797 {
3798 	return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3799 }
3800 
3801 static int selinux_socket_unix_stream_connect(struct socket *sock,
3802 					      struct socket *other,
3803 					      struct sock *newsk)
3804 {
3805 	struct sk_security_struct *ssec;
3806 	struct inode_security_struct *isec;
3807 	struct inode_security_struct *other_isec;
3808 	struct avc_audit_data ad;
3809 	int err;
3810 
3811 	err = secondary_ops->unix_stream_connect(sock, other, newsk);
3812 	if (err)
3813 		return err;
3814 
3815 	isec = SOCK_INODE(sock)->i_security;
3816 	other_isec = SOCK_INODE(other)->i_security;
3817 
3818 	AVC_AUDIT_DATA_INIT(&ad,NET);
3819 	ad.u.net.sk = other->sk;
3820 
3821 	err = avc_has_perm(isec->sid, other_isec->sid,
3822 			   isec->sclass,
3823 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3824 	if (err)
3825 		return err;
3826 
3827 	/* connecting socket */
3828 	ssec = sock->sk->sk_security;
3829 	ssec->peer_sid = other_isec->sid;
3830 
3831 	/* server child socket */
3832 	ssec = newsk->sk_security;
3833 	ssec->peer_sid = isec->sid;
3834 	err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3835 
3836 	return err;
3837 }
3838 
3839 static int selinux_socket_unix_may_send(struct socket *sock,
3840 					struct socket *other)
3841 {
3842 	struct inode_security_struct *isec;
3843 	struct inode_security_struct *other_isec;
3844 	struct avc_audit_data ad;
3845 	int err;
3846 
3847 	isec = SOCK_INODE(sock)->i_security;
3848 	other_isec = SOCK_INODE(other)->i_security;
3849 
3850 	AVC_AUDIT_DATA_INIT(&ad,NET);
3851 	ad.u.net.sk = other->sk;
3852 
3853 	err = avc_has_perm(isec->sid, other_isec->sid,
3854 			   isec->sclass, SOCKET__SENDTO, &ad);
3855 	if (err)
3856 		return err;
3857 
3858 	return 0;
3859 }
3860 
3861 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3862 				    u32 peer_sid,
3863 				    struct avc_audit_data *ad)
3864 {
3865 	int err;
3866 	u32 if_sid;
3867 	u32 node_sid;
3868 
3869 	err = sel_netif_sid(ifindex, &if_sid);
3870 	if (err)
3871 		return err;
3872 	err = avc_has_perm(peer_sid, if_sid,
3873 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
3874 	if (err)
3875 		return err;
3876 
3877 	err = sel_netnode_sid(addrp, family, &node_sid);
3878 	if (err)
3879 		return err;
3880 	return avc_has_perm(peer_sid, node_sid,
3881 			    SECCLASS_NODE, NODE__RECVFROM, ad);
3882 }
3883 
3884 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
3885 						struct sk_buff *skb,
3886 						struct avc_audit_data *ad,
3887 						u16 family,
3888 						char *addrp)
3889 {
3890 	int err;
3891 	struct sk_security_struct *sksec = sk->sk_security;
3892 	u16 sk_class;
3893 	u32 netif_perm, node_perm, recv_perm;
3894 	u32 port_sid, node_sid, if_sid, sk_sid;
3895 
3896 	sk_sid = sksec->sid;
3897 	sk_class = sksec->sclass;
3898 
3899 	switch (sk_class) {
3900 	case SECCLASS_UDP_SOCKET:
3901 		netif_perm = NETIF__UDP_RECV;
3902 		node_perm = NODE__UDP_RECV;
3903 		recv_perm = UDP_SOCKET__RECV_MSG;
3904 		break;
3905 	case SECCLASS_TCP_SOCKET:
3906 		netif_perm = NETIF__TCP_RECV;
3907 		node_perm = NODE__TCP_RECV;
3908 		recv_perm = TCP_SOCKET__RECV_MSG;
3909 		break;
3910 	case SECCLASS_DCCP_SOCKET:
3911 		netif_perm = NETIF__DCCP_RECV;
3912 		node_perm = NODE__DCCP_RECV;
3913 		recv_perm = DCCP_SOCKET__RECV_MSG;
3914 		break;
3915 	default:
3916 		netif_perm = NETIF__RAWIP_RECV;
3917 		node_perm = NODE__RAWIP_RECV;
3918 		recv_perm = 0;
3919 		break;
3920 	}
3921 
3922 	err = sel_netif_sid(skb->iif, &if_sid);
3923 	if (err)
3924 		return err;
3925 	err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3926 	if (err)
3927 		return err;
3928 
3929 	err = sel_netnode_sid(addrp, family, &node_sid);
3930 	if (err)
3931 		return err;
3932 	err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3933 	if (err)
3934 		return err;
3935 
3936 	if (!recv_perm)
3937 		return 0;
3938 	err = security_port_sid(sk->sk_family, sk->sk_type,
3939 				sk->sk_protocol, ntohs(ad->u.net.sport),
3940 				&port_sid);
3941 	if (unlikely(err)) {
3942 		printk(KERN_WARNING
3943 		       "SELinux: failure in"
3944 		       " selinux_sock_rcv_skb_iptables_compat(),"
3945 		       " network port label not found\n");
3946 		return err;
3947 	}
3948 	return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
3949 }
3950 
3951 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3952 				       struct avc_audit_data *ad,
3953 				       u16 family, char *addrp)
3954 {
3955 	int err;
3956 	struct sk_security_struct *sksec = sk->sk_security;
3957 	u32 peer_sid;
3958 	u32 sk_sid = sksec->sid;
3959 
3960 	if (selinux_compat_net)
3961 		err = selinux_sock_rcv_skb_iptables_compat(sk, skb, ad,
3962 							   family, addrp);
3963 	else
3964 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
3965 				   PACKET__RECV, ad);
3966 	if (err)
3967 		return err;
3968 
3969 	if (selinux_policycap_netpeer) {
3970 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
3971 		if (err)
3972 			return err;
3973 		err = avc_has_perm(sk_sid, peer_sid,
3974 				   SECCLASS_PEER, PEER__RECV, ad);
3975 	} else {
3976 		err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, ad);
3977 		if (err)
3978 			return err;
3979 		err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, ad);
3980 	}
3981 
3982 	return err;
3983 }
3984 
3985 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3986 {
3987 	int err;
3988 	struct sk_security_struct *sksec = sk->sk_security;
3989 	u16 family = sk->sk_family;
3990 	u32 sk_sid = sksec->sid;
3991 	struct avc_audit_data ad;
3992 	char *addrp;
3993 
3994 	if (family != PF_INET && family != PF_INET6)
3995 		return 0;
3996 
3997 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
3998 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
3999 		family = PF_INET;
4000 
4001 	AVC_AUDIT_DATA_INIT(&ad, NET);
4002 	ad.u.net.netif = skb->iif;
4003 	ad.u.net.family = family;
4004 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4005 	if (err)
4006 		return err;
4007 
4008 	/* If any sort of compatibility mode is enabled then handoff processing
4009 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4010 	 * special handling.  We do this in an attempt to keep this function
4011 	 * as fast and as clean as possible. */
4012 	if (selinux_compat_net || !selinux_policycap_netpeer)
4013 		return selinux_sock_rcv_skb_compat(sk, skb, &ad,
4014 						   family, addrp);
4015 
4016 	if (netlbl_enabled() || selinux_xfrm_enabled()) {
4017 		u32 peer_sid;
4018 
4019 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4020 		if (err)
4021 			return err;
4022 		err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4023 					       peer_sid, &ad);
4024 		if (err)
4025 			return err;
4026 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4027 				   PEER__RECV, &ad);
4028 	}
4029 
4030 	if (selinux_secmark_enabled()) {
4031 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4032 				   PACKET__RECV, &ad);
4033 		if (err)
4034 			return err;
4035 	}
4036 
4037 	return err;
4038 }
4039 
4040 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4041 					    int __user *optlen, unsigned len)
4042 {
4043 	int err = 0;
4044 	char *scontext;
4045 	u32 scontext_len;
4046 	struct sk_security_struct *ssec;
4047 	struct inode_security_struct *isec;
4048 	u32 peer_sid = SECSID_NULL;
4049 
4050 	isec = SOCK_INODE(sock)->i_security;
4051 
4052 	if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4053 	    isec->sclass == SECCLASS_TCP_SOCKET) {
4054 		ssec = sock->sk->sk_security;
4055 		peer_sid = ssec->peer_sid;
4056 	}
4057 	if (peer_sid == SECSID_NULL) {
4058 		err = -ENOPROTOOPT;
4059 		goto out;
4060 	}
4061 
4062 	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4063 
4064 	if (err)
4065 		goto out;
4066 
4067 	if (scontext_len > len) {
4068 		err = -ERANGE;
4069 		goto out_len;
4070 	}
4071 
4072 	if (copy_to_user(optval, scontext, scontext_len))
4073 		err = -EFAULT;
4074 
4075 out_len:
4076 	if (put_user(scontext_len, optlen))
4077 		err = -EFAULT;
4078 
4079 	kfree(scontext);
4080 out:
4081 	return err;
4082 }
4083 
4084 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4085 {
4086 	u32 peer_secid = SECSID_NULL;
4087 	u16 family;
4088 
4089 	if (sock)
4090 		family = sock->sk->sk_family;
4091 	else if (skb && skb->sk)
4092 		family = skb->sk->sk_family;
4093 	else
4094 		goto out;
4095 
4096 	if (sock && family == PF_UNIX)
4097 		selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
4098 	else if (skb)
4099 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4100 
4101 out:
4102 	*secid = peer_secid;
4103 	if (peer_secid == SECSID_NULL)
4104 		return -EINVAL;
4105 	return 0;
4106 }
4107 
4108 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4109 {
4110 	return sk_alloc_security(sk, family, priority);
4111 }
4112 
4113 static void selinux_sk_free_security(struct sock *sk)
4114 {
4115 	sk_free_security(sk);
4116 }
4117 
4118 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4119 {
4120 	struct sk_security_struct *ssec = sk->sk_security;
4121 	struct sk_security_struct *newssec = newsk->sk_security;
4122 
4123 	newssec->sid = ssec->sid;
4124 	newssec->peer_sid = ssec->peer_sid;
4125 	newssec->sclass = ssec->sclass;
4126 
4127 	selinux_netlbl_sk_security_clone(ssec, newssec);
4128 }
4129 
4130 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4131 {
4132 	if (!sk)
4133 		*secid = SECINITSID_ANY_SOCKET;
4134 	else {
4135 		struct sk_security_struct *sksec = sk->sk_security;
4136 
4137 		*secid = sksec->sid;
4138 	}
4139 }
4140 
4141 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
4142 {
4143 	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4144 	struct sk_security_struct *sksec = sk->sk_security;
4145 
4146 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4147 	    sk->sk_family == PF_UNIX)
4148 		isec->sid = sksec->sid;
4149 	sksec->sclass = isec->sclass;
4150 
4151 	selinux_netlbl_sock_graft(sk, parent);
4152 }
4153 
4154 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4155 				     struct request_sock *req)
4156 {
4157 	struct sk_security_struct *sksec = sk->sk_security;
4158 	int err;
4159 	u32 newsid;
4160 	u32 peersid;
4161 
4162 	err = selinux_skb_peerlbl_sid(skb, sk->sk_family, &peersid);
4163 	if (err)
4164 		return err;
4165 	if (peersid == SECSID_NULL) {
4166 		req->secid = sksec->sid;
4167 		req->peer_secid = SECSID_NULL;
4168 		return 0;
4169 	}
4170 
4171 	err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4172 	if (err)
4173 		return err;
4174 
4175 	req->secid = newsid;
4176 	req->peer_secid = peersid;
4177 	return 0;
4178 }
4179 
4180 static void selinux_inet_csk_clone(struct sock *newsk,
4181 				   const struct request_sock *req)
4182 {
4183 	struct sk_security_struct *newsksec = newsk->sk_security;
4184 
4185 	newsksec->sid = req->secid;
4186 	newsksec->peer_sid = req->peer_secid;
4187 	/* NOTE: Ideally, we should also get the isec->sid for the
4188 	   new socket in sync, but we don't have the isec available yet.
4189 	   So we will wait until sock_graft to do it, by which
4190 	   time it will have been created and available. */
4191 
4192 	/* We don't need to take any sort of lock here as we are the only
4193 	 * thread with access to newsksec */
4194 	selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4195 }
4196 
4197 static void selinux_inet_conn_established(struct sock *sk,
4198 				struct sk_buff *skb)
4199 {
4200 	struct sk_security_struct *sksec = sk->sk_security;
4201 
4202 	selinux_skb_peerlbl_sid(skb, sk->sk_family, &sksec->peer_sid);
4203 }
4204 
4205 static void selinux_req_classify_flow(const struct request_sock *req,
4206 				      struct flowi *fl)
4207 {
4208 	fl->secid = req->secid;
4209 }
4210 
4211 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4212 {
4213 	int err = 0;
4214 	u32 perm;
4215 	struct nlmsghdr *nlh;
4216 	struct socket *sock = sk->sk_socket;
4217 	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4218 
4219 	if (skb->len < NLMSG_SPACE(0)) {
4220 		err = -EINVAL;
4221 		goto out;
4222 	}
4223 	nlh = nlmsg_hdr(skb);
4224 
4225 	err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4226 	if (err) {
4227 		if (err == -EINVAL) {
4228 			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4229 				  "SELinux:  unrecognized netlink message"
4230 				  " type=%hu for sclass=%hu\n",
4231 				  nlh->nlmsg_type, isec->sclass);
4232 			if (!selinux_enforcing)
4233 				err = 0;
4234 		}
4235 
4236 		/* Ignore */
4237 		if (err == -ENOENT)
4238 			err = 0;
4239 		goto out;
4240 	}
4241 
4242 	err = socket_has_perm(current, sock, perm);
4243 out:
4244 	return err;
4245 }
4246 
4247 #ifdef CONFIG_NETFILTER
4248 
4249 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4250 				       u16 family)
4251 {
4252 	char *addrp;
4253 	u32 peer_sid;
4254 	struct avc_audit_data ad;
4255 	u8 secmark_active;
4256 	u8 peerlbl_active;
4257 
4258 	if (!selinux_policycap_netpeer)
4259 		return NF_ACCEPT;
4260 
4261 	secmark_active = selinux_secmark_enabled();
4262 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4263 	if (!secmark_active && !peerlbl_active)
4264 		return NF_ACCEPT;
4265 
4266 	AVC_AUDIT_DATA_INIT(&ad, NET);
4267 	ad.u.net.netif = ifindex;
4268 	ad.u.net.family = family;
4269 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4270 		return NF_DROP;
4271 
4272 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4273 		return NF_DROP;
4274 
4275 	if (peerlbl_active)
4276 		if (selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4277 					     peer_sid, &ad) != 0)
4278 			return NF_DROP;
4279 
4280 	if (secmark_active)
4281 		if (avc_has_perm(peer_sid, skb->secmark,
4282 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4283 			return NF_DROP;
4284 
4285 	return NF_ACCEPT;
4286 }
4287 
4288 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4289 					 struct sk_buff *skb,
4290 					 const struct net_device *in,
4291 					 const struct net_device *out,
4292 					 int (*okfn)(struct sk_buff *))
4293 {
4294 	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4295 }
4296 
4297 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4298 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4299 					 struct sk_buff *skb,
4300 					 const struct net_device *in,
4301 					 const struct net_device *out,
4302 					 int (*okfn)(struct sk_buff *))
4303 {
4304 	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4305 }
4306 #endif	/* IPV6 */
4307 
4308 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4309 						int ifindex,
4310 						struct avc_audit_data *ad,
4311 						u16 family, char *addrp)
4312 {
4313 	int err;
4314 	struct sk_security_struct *sksec = sk->sk_security;
4315 	u16 sk_class;
4316 	u32 netif_perm, node_perm, send_perm;
4317 	u32 port_sid, node_sid, if_sid, sk_sid;
4318 
4319 	sk_sid = sksec->sid;
4320 	sk_class = sksec->sclass;
4321 
4322 	switch (sk_class) {
4323 	case SECCLASS_UDP_SOCKET:
4324 		netif_perm = NETIF__UDP_SEND;
4325 		node_perm = NODE__UDP_SEND;
4326 		send_perm = UDP_SOCKET__SEND_MSG;
4327 		break;
4328 	case SECCLASS_TCP_SOCKET:
4329 		netif_perm = NETIF__TCP_SEND;
4330 		node_perm = NODE__TCP_SEND;
4331 		send_perm = TCP_SOCKET__SEND_MSG;
4332 		break;
4333 	case SECCLASS_DCCP_SOCKET:
4334 		netif_perm = NETIF__DCCP_SEND;
4335 		node_perm = NODE__DCCP_SEND;
4336 		send_perm = DCCP_SOCKET__SEND_MSG;
4337 		break;
4338 	default:
4339 		netif_perm = NETIF__RAWIP_SEND;
4340 		node_perm = NODE__RAWIP_SEND;
4341 		send_perm = 0;
4342 		break;
4343 	}
4344 
4345 	err = sel_netif_sid(ifindex, &if_sid);
4346 	if (err)
4347 		return err;
4348 	err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4349 		return err;
4350 
4351 	err = sel_netnode_sid(addrp, family, &node_sid);
4352 	if (err)
4353 		return err;
4354 	err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4355 	if (err)
4356 		return err;
4357 
4358 	if (send_perm != 0)
4359 		return 0;
4360 
4361 	err = security_port_sid(sk->sk_family, sk->sk_type,
4362 				sk->sk_protocol, ntohs(ad->u.net.dport),
4363 				&port_sid);
4364 	if (unlikely(err)) {
4365 		printk(KERN_WARNING
4366 		       "SELinux: failure in"
4367 		       " selinux_ip_postroute_iptables_compat(),"
4368 		       " network port label not found\n");
4369 		return err;
4370 	}
4371 	return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4372 }
4373 
4374 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4375 						int ifindex,
4376 						struct avc_audit_data *ad,
4377 						u16 family,
4378 						char *addrp,
4379 						u8 proto)
4380 {
4381 	struct sock *sk = skb->sk;
4382 	struct sk_security_struct *sksec;
4383 
4384 	if (sk == NULL)
4385 		return NF_ACCEPT;
4386 	sksec = sk->sk_security;
4387 
4388 	if (selinux_compat_net) {
4389 		if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4390 							 ad, family, addrp))
4391 			return NF_DROP;
4392 	} else {
4393 		if (avc_has_perm(sksec->sid, skb->secmark,
4394 				 SECCLASS_PACKET, PACKET__SEND, ad))
4395 			return NF_DROP;
4396 	}
4397 
4398 	if (selinux_policycap_netpeer)
4399 		if (selinux_xfrm_postroute_last(sksec->sid, skb, ad, proto))
4400 			return NF_DROP;
4401 
4402 	return NF_ACCEPT;
4403 }
4404 
4405 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4406 					 u16 family)
4407 {
4408 	u32 secmark_perm;
4409 	u32 peer_sid;
4410 	struct sock *sk;
4411 	struct avc_audit_data ad;
4412 	char *addrp;
4413 	u8 proto;
4414 	u8 secmark_active;
4415 	u8 peerlbl_active;
4416 
4417 	AVC_AUDIT_DATA_INIT(&ad, NET);
4418 	ad.u.net.netif = ifindex;
4419 	ad.u.net.family = family;
4420 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4421 		return NF_DROP;
4422 
4423 	/* If any sort of compatibility mode is enabled then handoff processing
4424 	 * to the selinux_ip_postroute_compat() function to deal with the
4425 	 * special handling.  We do this in an attempt to keep this function
4426 	 * as fast and as clean as possible. */
4427 	if (selinux_compat_net || !selinux_policycap_netpeer)
4428 		return selinux_ip_postroute_compat(skb, ifindex, &ad,
4429 						   family, addrp, proto);
4430 
4431 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4432 	 * packet transformation so allow the packet to pass without any checks
4433 	 * since we'll have another chance to perform access control checks
4434 	 * when the packet is on it's final way out.
4435 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4436 	 *       is NULL, in this case go ahead and apply access control. */
4437 	if (skb->dst != NULL && skb->dst->xfrm != NULL)
4438 		return NF_ACCEPT;
4439 
4440 	secmark_active = selinux_secmark_enabled();
4441 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4442 	if (!secmark_active && !peerlbl_active)
4443 		return NF_ACCEPT;
4444 
4445 	/* if the packet is locally generated (skb->sk != NULL) then use the
4446 	 * socket's label as the peer label, otherwise the packet is being
4447 	 * forwarded through this system and we need to fetch the peer label
4448 	 * directly from the packet */
4449 	sk = skb->sk;
4450 	if (sk) {
4451 		struct sk_security_struct *sksec = sk->sk_security;
4452 		peer_sid = sksec->sid;
4453 		secmark_perm = PACKET__SEND;
4454 	} else {
4455 		if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4456 				return NF_DROP;
4457 		secmark_perm = PACKET__FORWARD_OUT;
4458 	}
4459 
4460 	if (secmark_active)
4461 		if (avc_has_perm(peer_sid, skb->secmark,
4462 				 SECCLASS_PACKET, secmark_perm, &ad))
4463 			return NF_DROP;
4464 
4465 	if (peerlbl_active) {
4466 		u32 if_sid;
4467 		u32 node_sid;
4468 
4469 		if (sel_netif_sid(ifindex, &if_sid))
4470 			return NF_DROP;
4471 		if (avc_has_perm(peer_sid, if_sid,
4472 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4473 			return NF_DROP;
4474 
4475 		if (sel_netnode_sid(addrp, family, &node_sid))
4476 			return NF_DROP;
4477 		if (avc_has_perm(peer_sid, node_sid,
4478 				 SECCLASS_NODE, NODE__SENDTO, &ad))
4479 			return NF_DROP;
4480 	}
4481 
4482 	return NF_ACCEPT;
4483 }
4484 
4485 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4486 					   struct sk_buff *skb,
4487 					   const struct net_device *in,
4488 					   const struct net_device *out,
4489 					   int (*okfn)(struct sk_buff *))
4490 {
4491 	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4492 }
4493 
4494 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4495 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4496 					   struct sk_buff *skb,
4497 					   const struct net_device *in,
4498 					   const struct net_device *out,
4499 					   int (*okfn)(struct sk_buff *))
4500 {
4501 	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4502 }
4503 #endif	/* IPV6 */
4504 
4505 #endif	/* CONFIG_NETFILTER */
4506 
4507 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4508 {
4509 	int err;
4510 
4511 	err = secondary_ops->netlink_send(sk, skb);
4512 	if (err)
4513 		return err;
4514 
4515 	if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4516 		err = selinux_nlmsg_perm(sk, skb);
4517 
4518 	return err;
4519 }
4520 
4521 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4522 {
4523 	int err;
4524 	struct avc_audit_data ad;
4525 
4526 	err = secondary_ops->netlink_recv(skb, capability);
4527 	if (err)
4528 		return err;
4529 
4530 	AVC_AUDIT_DATA_INIT(&ad, CAP);
4531 	ad.u.cap = capability;
4532 
4533 	return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4534 	                    SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4535 }
4536 
4537 static int ipc_alloc_security(struct task_struct *task,
4538 			      struct kern_ipc_perm *perm,
4539 			      u16 sclass)
4540 {
4541 	struct task_security_struct *tsec = task->security;
4542 	struct ipc_security_struct *isec;
4543 
4544 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4545 	if (!isec)
4546 		return -ENOMEM;
4547 
4548 	isec->sclass = sclass;
4549 	isec->ipc_perm = perm;
4550 	isec->sid = tsec->sid;
4551 	perm->security = isec;
4552 
4553 	return 0;
4554 }
4555 
4556 static void ipc_free_security(struct kern_ipc_perm *perm)
4557 {
4558 	struct ipc_security_struct *isec = perm->security;
4559 	perm->security = NULL;
4560 	kfree(isec);
4561 }
4562 
4563 static int msg_msg_alloc_security(struct msg_msg *msg)
4564 {
4565 	struct msg_security_struct *msec;
4566 
4567 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4568 	if (!msec)
4569 		return -ENOMEM;
4570 
4571 	msec->msg = msg;
4572 	msec->sid = SECINITSID_UNLABELED;
4573 	msg->security = msec;
4574 
4575 	return 0;
4576 }
4577 
4578 static void msg_msg_free_security(struct msg_msg *msg)
4579 {
4580 	struct msg_security_struct *msec = msg->security;
4581 
4582 	msg->security = NULL;
4583 	kfree(msec);
4584 }
4585 
4586 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4587 			u32 perms)
4588 {
4589 	struct task_security_struct *tsec;
4590 	struct ipc_security_struct *isec;
4591 	struct avc_audit_data ad;
4592 
4593 	tsec = current->security;
4594 	isec = ipc_perms->security;
4595 
4596 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4597 	ad.u.ipc_id = ipc_perms->key;
4598 
4599 	return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4600 }
4601 
4602 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4603 {
4604 	return msg_msg_alloc_security(msg);
4605 }
4606 
4607 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4608 {
4609 	msg_msg_free_security(msg);
4610 }
4611 
4612 /* message queue security operations */
4613 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4614 {
4615 	struct task_security_struct *tsec;
4616 	struct ipc_security_struct *isec;
4617 	struct avc_audit_data ad;
4618 	int rc;
4619 
4620 	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4621 	if (rc)
4622 		return rc;
4623 
4624 	tsec = current->security;
4625 	isec = msq->q_perm.security;
4626 
4627 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4628  	ad.u.ipc_id = msq->q_perm.key;
4629 
4630 	rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4631 			  MSGQ__CREATE, &ad);
4632 	if (rc) {
4633 		ipc_free_security(&msq->q_perm);
4634 		return rc;
4635 	}
4636 	return 0;
4637 }
4638 
4639 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4640 {
4641 	ipc_free_security(&msq->q_perm);
4642 }
4643 
4644 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4645 {
4646 	struct task_security_struct *tsec;
4647 	struct ipc_security_struct *isec;
4648 	struct avc_audit_data ad;
4649 
4650 	tsec = current->security;
4651 	isec = msq->q_perm.security;
4652 
4653 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4654 	ad.u.ipc_id = msq->q_perm.key;
4655 
4656 	return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4657 			    MSGQ__ASSOCIATE, &ad);
4658 }
4659 
4660 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4661 {
4662 	int err;
4663 	int perms;
4664 
4665 	switch(cmd) {
4666 	case IPC_INFO:
4667 	case MSG_INFO:
4668 		/* No specific object, just general system-wide information. */
4669 		return task_has_system(current, SYSTEM__IPC_INFO);
4670 	case IPC_STAT:
4671 	case MSG_STAT:
4672 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4673 		break;
4674 	case IPC_SET:
4675 		perms = MSGQ__SETATTR;
4676 		break;
4677 	case IPC_RMID:
4678 		perms = MSGQ__DESTROY;
4679 		break;
4680 	default:
4681 		return 0;
4682 	}
4683 
4684 	err = ipc_has_perm(&msq->q_perm, perms);
4685 	return err;
4686 }
4687 
4688 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4689 {
4690 	struct task_security_struct *tsec;
4691 	struct ipc_security_struct *isec;
4692 	struct msg_security_struct *msec;
4693 	struct avc_audit_data ad;
4694 	int rc;
4695 
4696 	tsec = current->security;
4697 	isec = msq->q_perm.security;
4698 	msec = msg->security;
4699 
4700 	/*
4701 	 * First time through, need to assign label to the message
4702 	 */
4703 	if (msec->sid == SECINITSID_UNLABELED) {
4704 		/*
4705 		 * Compute new sid based on current process and
4706 		 * message queue this message will be stored in
4707 		 */
4708 		rc = security_transition_sid(tsec->sid,
4709 					     isec->sid,
4710 					     SECCLASS_MSG,
4711 					     &msec->sid);
4712 		if (rc)
4713 			return rc;
4714 	}
4715 
4716 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4717 	ad.u.ipc_id = msq->q_perm.key;
4718 
4719 	/* Can this process write to the queue? */
4720 	rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4721 			  MSGQ__WRITE, &ad);
4722 	if (!rc)
4723 		/* Can this process send the message */
4724 		rc = avc_has_perm(tsec->sid, msec->sid,
4725 				  SECCLASS_MSG, MSG__SEND, &ad);
4726 	if (!rc)
4727 		/* Can the message be put in the queue? */
4728 		rc = avc_has_perm(msec->sid, isec->sid,
4729 				  SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4730 
4731 	return rc;
4732 }
4733 
4734 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4735 				    struct task_struct *target,
4736 				    long type, int mode)
4737 {
4738 	struct task_security_struct *tsec;
4739 	struct ipc_security_struct *isec;
4740 	struct msg_security_struct *msec;
4741 	struct avc_audit_data ad;
4742 	int rc;
4743 
4744 	tsec = target->security;
4745 	isec = msq->q_perm.security;
4746 	msec = msg->security;
4747 
4748 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4749  	ad.u.ipc_id = msq->q_perm.key;
4750 
4751 	rc = avc_has_perm(tsec->sid, isec->sid,
4752 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
4753 	if (!rc)
4754 		rc = avc_has_perm(tsec->sid, msec->sid,
4755 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
4756 	return rc;
4757 }
4758 
4759 /* Shared Memory security operations */
4760 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4761 {
4762 	struct task_security_struct *tsec;
4763 	struct ipc_security_struct *isec;
4764 	struct avc_audit_data ad;
4765 	int rc;
4766 
4767 	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4768 	if (rc)
4769 		return rc;
4770 
4771 	tsec = current->security;
4772 	isec = shp->shm_perm.security;
4773 
4774 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4775  	ad.u.ipc_id = shp->shm_perm.key;
4776 
4777 	rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4778 			  SHM__CREATE, &ad);
4779 	if (rc) {
4780 		ipc_free_security(&shp->shm_perm);
4781 		return rc;
4782 	}
4783 	return 0;
4784 }
4785 
4786 static void selinux_shm_free_security(struct shmid_kernel *shp)
4787 {
4788 	ipc_free_security(&shp->shm_perm);
4789 }
4790 
4791 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4792 {
4793 	struct task_security_struct *tsec;
4794 	struct ipc_security_struct *isec;
4795 	struct avc_audit_data ad;
4796 
4797 	tsec = current->security;
4798 	isec = shp->shm_perm.security;
4799 
4800 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4801 	ad.u.ipc_id = shp->shm_perm.key;
4802 
4803 	return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4804 			    SHM__ASSOCIATE, &ad);
4805 }
4806 
4807 /* Note, at this point, shp is locked down */
4808 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4809 {
4810 	int perms;
4811 	int err;
4812 
4813 	switch(cmd) {
4814 	case IPC_INFO:
4815 	case SHM_INFO:
4816 		/* No specific object, just general system-wide information. */
4817 		return task_has_system(current, SYSTEM__IPC_INFO);
4818 	case IPC_STAT:
4819 	case SHM_STAT:
4820 		perms = SHM__GETATTR | SHM__ASSOCIATE;
4821 		break;
4822 	case IPC_SET:
4823 		perms = SHM__SETATTR;
4824 		break;
4825 	case SHM_LOCK:
4826 	case SHM_UNLOCK:
4827 		perms = SHM__LOCK;
4828 		break;
4829 	case IPC_RMID:
4830 		perms = SHM__DESTROY;
4831 		break;
4832 	default:
4833 		return 0;
4834 	}
4835 
4836 	err = ipc_has_perm(&shp->shm_perm, perms);
4837 	return err;
4838 }
4839 
4840 static int selinux_shm_shmat(struct shmid_kernel *shp,
4841 			     char __user *shmaddr, int shmflg)
4842 {
4843 	u32 perms;
4844 	int rc;
4845 
4846 	rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4847 	if (rc)
4848 		return rc;
4849 
4850 	if (shmflg & SHM_RDONLY)
4851 		perms = SHM__READ;
4852 	else
4853 		perms = SHM__READ | SHM__WRITE;
4854 
4855 	return ipc_has_perm(&shp->shm_perm, perms);
4856 }
4857 
4858 /* Semaphore security operations */
4859 static int selinux_sem_alloc_security(struct sem_array *sma)
4860 {
4861 	struct task_security_struct *tsec;
4862 	struct ipc_security_struct *isec;
4863 	struct avc_audit_data ad;
4864 	int rc;
4865 
4866 	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4867 	if (rc)
4868 		return rc;
4869 
4870 	tsec = current->security;
4871 	isec = sma->sem_perm.security;
4872 
4873 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4874  	ad.u.ipc_id = sma->sem_perm.key;
4875 
4876 	rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4877 			  SEM__CREATE, &ad);
4878 	if (rc) {
4879 		ipc_free_security(&sma->sem_perm);
4880 		return rc;
4881 	}
4882 	return 0;
4883 }
4884 
4885 static void selinux_sem_free_security(struct sem_array *sma)
4886 {
4887 	ipc_free_security(&sma->sem_perm);
4888 }
4889 
4890 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4891 {
4892 	struct task_security_struct *tsec;
4893 	struct ipc_security_struct *isec;
4894 	struct avc_audit_data ad;
4895 
4896 	tsec = current->security;
4897 	isec = sma->sem_perm.security;
4898 
4899 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4900 	ad.u.ipc_id = sma->sem_perm.key;
4901 
4902 	return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4903 			    SEM__ASSOCIATE, &ad);
4904 }
4905 
4906 /* Note, at this point, sma is locked down */
4907 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4908 {
4909 	int err;
4910 	u32 perms;
4911 
4912 	switch(cmd) {
4913 	case IPC_INFO:
4914 	case SEM_INFO:
4915 		/* No specific object, just general system-wide information. */
4916 		return task_has_system(current, SYSTEM__IPC_INFO);
4917 	case GETPID:
4918 	case GETNCNT:
4919 	case GETZCNT:
4920 		perms = SEM__GETATTR;
4921 		break;
4922 	case GETVAL:
4923 	case GETALL:
4924 		perms = SEM__READ;
4925 		break;
4926 	case SETVAL:
4927 	case SETALL:
4928 		perms = SEM__WRITE;
4929 		break;
4930 	case IPC_RMID:
4931 		perms = SEM__DESTROY;
4932 		break;
4933 	case IPC_SET:
4934 		perms = SEM__SETATTR;
4935 		break;
4936 	case IPC_STAT:
4937 	case SEM_STAT:
4938 		perms = SEM__GETATTR | SEM__ASSOCIATE;
4939 		break;
4940 	default:
4941 		return 0;
4942 	}
4943 
4944 	err = ipc_has_perm(&sma->sem_perm, perms);
4945 	return err;
4946 }
4947 
4948 static int selinux_sem_semop(struct sem_array *sma,
4949 			     struct sembuf *sops, unsigned nsops, int alter)
4950 {
4951 	u32 perms;
4952 
4953 	if (alter)
4954 		perms = SEM__READ | SEM__WRITE;
4955 	else
4956 		perms = SEM__READ;
4957 
4958 	return ipc_has_perm(&sma->sem_perm, perms);
4959 }
4960 
4961 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4962 {
4963 	u32 av = 0;
4964 
4965 	av = 0;
4966 	if (flag & S_IRUGO)
4967 		av |= IPC__UNIX_READ;
4968 	if (flag & S_IWUGO)
4969 		av |= IPC__UNIX_WRITE;
4970 
4971 	if (av == 0)
4972 		return 0;
4973 
4974 	return ipc_has_perm(ipcp, av);
4975 }
4976 
4977 /* module stacking operations */
4978 static int selinux_register_security (const char *name, struct security_operations *ops)
4979 {
4980 	if (secondary_ops != original_ops) {
4981 		printk(KERN_ERR "%s:  There is already a secondary security "
4982 		       "module registered.\n", __FUNCTION__);
4983 		return -EINVAL;
4984  	}
4985 
4986 	secondary_ops = ops;
4987 
4988 	printk(KERN_INFO "%s:  Registering secondary module %s\n",
4989 	       __FUNCTION__,
4990 	       name);
4991 
4992 	return 0;
4993 }
4994 
4995 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4996 {
4997 	if (inode)
4998 		inode_doinit_with_dentry(inode, dentry);
4999 }
5000 
5001 static int selinux_getprocattr(struct task_struct *p,
5002 			       char *name, char **value)
5003 {
5004 	struct task_security_struct *tsec;
5005 	u32 sid;
5006 	int error;
5007 	unsigned len;
5008 
5009 	if (current != p) {
5010 		error = task_has_perm(current, p, PROCESS__GETATTR);
5011 		if (error)
5012 			return error;
5013 	}
5014 
5015 	tsec = p->security;
5016 
5017 	if (!strcmp(name, "current"))
5018 		sid = tsec->sid;
5019 	else if (!strcmp(name, "prev"))
5020 		sid = tsec->osid;
5021 	else if (!strcmp(name, "exec"))
5022 		sid = tsec->exec_sid;
5023 	else if (!strcmp(name, "fscreate"))
5024 		sid = tsec->create_sid;
5025 	else if (!strcmp(name, "keycreate"))
5026 		sid = tsec->keycreate_sid;
5027 	else if (!strcmp(name, "sockcreate"))
5028 		sid = tsec->sockcreate_sid;
5029 	else
5030 		return -EINVAL;
5031 
5032 	if (!sid)
5033 		return 0;
5034 
5035 	error = security_sid_to_context(sid, value, &len);
5036 	if (error)
5037 		return error;
5038 	return len;
5039 }
5040 
5041 static int selinux_setprocattr(struct task_struct *p,
5042 			       char *name, void *value, size_t size)
5043 {
5044 	struct task_security_struct *tsec;
5045 	u32 sid = 0;
5046 	int error;
5047 	char *str = value;
5048 
5049 	if (current != p) {
5050 		/* SELinux only allows a process to change its own
5051 		   security attributes. */
5052 		return -EACCES;
5053 	}
5054 
5055 	/*
5056 	 * Basic control over ability to set these attributes at all.
5057 	 * current == p, but we'll pass them separately in case the
5058 	 * above restriction is ever removed.
5059 	 */
5060 	if (!strcmp(name, "exec"))
5061 		error = task_has_perm(current, p, PROCESS__SETEXEC);
5062 	else if (!strcmp(name, "fscreate"))
5063 		error = task_has_perm(current, p, PROCESS__SETFSCREATE);
5064 	else if (!strcmp(name, "keycreate"))
5065 		error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
5066 	else if (!strcmp(name, "sockcreate"))
5067 		error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
5068 	else if (!strcmp(name, "current"))
5069 		error = task_has_perm(current, p, PROCESS__SETCURRENT);
5070 	else
5071 		error = -EINVAL;
5072 	if (error)
5073 		return error;
5074 
5075 	/* Obtain a SID for the context, if one was specified. */
5076 	if (size && str[1] && str[1] != '\n') {
5077 		if (str[size-1] == '\n') {
5078 			str[size-1] = 0;
5079 			size--;
5080 		}
5081 		error = security_context_to_sid(value, size, &sid);
5082 		if (error)
5083 			return error;
5084 	}
5085 
5086 	/* Permission checking based on the specified context is
5087 	   performed during the actual operation (execve,
5088 	   open/mkdir/...), when we know the full context of the
5089 	   operation.  See selinux_bprm_set_security for the execve
5090 	   checks and may_create for the file creation checks. The
5091 	   operation will then fail if the context is not permitted. */
5092 	tsec = p->security;
5093 	if (!strcmp(name, "exec"))
5094 		tsec->exec_sid = sid;
5095 	else if (!strcmp(name, "fscreate"))
5096 		tsec->create_sid = sid;
5097 	else if (!strcmp(name, "keycreate")) {
5098 		error = may_create_key(sid, p);
5099 		if (error)
5100 			return error;
5101 		tsec->keycreate_sid = sid;
5102 	} else if (!strcmp(name, "sockcreate"))
5103 		tsec->sockcreate_sid = sid;
5104 	else if (!strcmp(name, "current")) {
5105 		struct av_decision avd;
5106 
5107 		if (sid == 0)
5108 			return -EINVAL;
5109 
5110 		/* Only allow single threaded processes to change context */
5111 		if (atomic_read(&p->mm->mm_users) != 1) {
5112 			struct task_struct *g, *t;
5113 			struct mm_struct *mm = p->mm;
5114 			read_lock(&tasklist_lock);
5115 			do_each_thread(g, t)
5116 				if (t->mm == mm && t != p) {
5117 					read_unlock(&tasklist_lock);
5118 					return -EPERM;
5119 				}
5120 			while_each_thread(g, t);
5121 			read_unlock(&tasklist_lock);
5122                 }
5123 
5124 		/* Check permissions for the transition. */
5125 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5126 		                     PROCESS__DYNTRANSITION, NULL);
5127 		if (error)
5128 			return error;
5129 
5130 		/* Check for ptracing, and update the task SID if ok.
5131 		   Otherwise, leave SID unchanged and fail. */
5132 		task_lock(p);
5133 		if (p->ptrace & PT_PTRACED) {
5134 			error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
5135 						     SECCLASS_PROCESS,
5136 						     PROCESS__PTRACE, 0, &avd);
5137 			if (!error)
5138 				tsec->sid = sid;
5139 			task_unlock(p);
5140 			avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
5141 				  PROCESS__PTRACE, &avd, error, NULL);
5142 			if (error)
5143 				return error;
5144 		} else {
5145 			tsec->sid = sid;
5146 			task_unlock(p);
5147 		}
5148 	}
5149 	else
5150 		return -EINVAL;
5151 
5152 	return size;
5153 }
5154 
5155 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5156 {
5157 	return security_sid_to_context(secid, secdata, seclen);
5158 }
5159 
5160 static int selinux_secctx_to_secid(char *secdata, u32 seclen, u32 *secid)
5161 {
5162 	return security_context_to_sid(secdata, seclen, secid);
5163 }
5164 
5165 static void selinux_release_secctx(char *secdata, u32 seclen)
5166 {
5167 	kfree(secdata);
5168 }
5169 
5170 #ifdef CONFIG_KEYS
5171 
5172 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
5173 			     unsigned long flags)
5174 {
5175 	struct task_security_struct *tsec = tsk->security;
5176 	struct key_security_struct *ksec;
5177 
5178 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5179 	if (!ksec)
5180 		return -ENOMEM;
5181 
5182 	ksec->obj = k;
5183 	if (tsec->keycreate_sid)
5184 		ksec->sid = tsec->keycreate_sid;
5185 	else
5186 		ksec->sid = tsec->sid;
5187 	k->security = ksec;
5188 
5189 	return 0;
5190 }
5191 
5192 static void selinux_key_free(struct key *k)
5193 {
5194 	struct key_security_struct *ksec = k->security;
5195 
5196 	k->security = NULL;
5197 	kfree(ksec);
5198 }
5199 
5200 static int selinux_key_permission(key_ref_t key_ref,
5201 			    struct task_struct *ctx,
5202 			    key_perm_t perm)
5203 {
5204 	struct key *key;
5205 	struct task_security_struct *tsec;
5206 	struct key_security_struct *ksec;
5207 
5208 	key = key_ref_to_ptr(key_ref);
5209 
5210 	tsec = ctx->security;
5211 	ksec = key->security;
5212 
5213 	/* if no specific permissions are requested, we skip the
5214 	   permission check. No serious, additional covert channels
5215 	   appear to be created. */
5216 	if (perm == 0)
5217 		return 0;
5218 
5219 	return avc_has_perm(tsec->sid, ksec->sid,
5220 			    SECCLASS_KEY, perm, NULL);
5221 }
5222 
5223 #endif
5224 
5225 static struct security_operations selinux_ops = {
5226 	.ptrace =			selinux_ptrace,
5227 	.capget =			selinux_capget,
5228 	.capset_check =			selinux_capset_check,
5229 	.capset_set =			selinux_capset_set,
5230 	.sysctl =			selinux_sysctl,
5231 	.capable =			selinux_capable,
5232 	.quotactl =			selinux_quotactl,
5233 	.quota_on =			selinux_quota_on,
5234 	.syslog =			selinux_syslog,
5235 	.vm_enough_memory =		selinux_vm_enough_memory,
5236 
5237 	.netlink_send =			selinux_netlink_send,
5238         .netlink_recv =			selinux_netlink_recv,
5239 
5240 	.bprm_alloc_security =		selinux_bprm_alloc_security,
5241 	.bprm_free_security =		selinux_bprm_free_security,
5242 	.bprm_apply_creds =		selinux_bprm_apply_creds,
5243 	.bprm_post_apply_creds =	selinux_bprm_post_apply_creds,
5244 	.bprm_set_security =		selinux_bprm_set_security,
5245 	.bprm_check_security =		selinux_bprm_check_security,
5246 	.bprm_secureexec =		selinux_bprm_secureexec,
5247 
5248 	.sb_alloc_security =		selinux_sb_alloc_security,
5249 	.sb_free_security =		selinux_sb_free_security,
5250 	.sb_copy_data =			selinux_sb_copy_data,
5251 	.sb_kern_mount =	        selinux_sb_kern_mount,
5252 	.sb_statfs =			selinux_sb_statfs,
5253 	.sb_mount =			selinux_mount,
5254 	.sb_umount =			selinux_umount,
5255 	.sb_get_mnt_opts =		selinux_get_mnt_opts,
5256 	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5257 	.sb_clone_mnt_opts = 		selinux_sb_clone_mnt_opts,
5258 
5259 	.inode_alloc_security =		selinux_inode_alloc_security,
5260 	.inode_free_security =		selinux_inode_free_security,
5261 	.inode_init_security =		selinux_inode_init_security,
5262 	.inode_create =			selinux_inode_create,
5263 	.inode_link =			selinux_inode_link,
5264 	.inode_unlink =			selinux_inode_unlink,
5265 	.inode_symlink =		selinux_inode_symlink,
5266 	.inode_mkdir =			selinux_inode_mkdir,
5267 	.inode_rmdir =			selinux_inode_rmdir,
5268 	.inode_mknod =			selinux_inode_mknod,
5269 	.inode_rename =			selinux_inode_rename,
5270 	.inode_readlink =		selinux_inode_readlink,
5271 	.inode_follow_link =		selinux_inode_follow_link,
5272 	.inode_permission =		selinux_inode_permission,
5273 	.inode_setattr =		selinux_inode_setattr,
5274 	.inode_getattr =		selinux_inode_getattr,
5275 	.inode_setxattr =		selinux_inode_setxattr,
5276 	.inode_post_setxattr =		selinux_inode_post_setxattr,
5277 	.inode_getxattr =		selinux_inode_getxattr,
5278 	.inode_listxattr =		selinux_inode_listxattr,
5279 	.inode_removexattr =		selinux_inode_removexattr,
5280 	.inode_getsecurity =            selinux_inode_getsecurity,
5281 	.inode_setsecurity =            selinux_inode_setsecurity,
5282 	.inode_listsecurity =           selinux_inode_listsecurity,
5283 	.inode_need_killpriv =		selinux_inode_need_killpriv,
5284 	.inode_killpriv =		selinux_inode_killpriv,
5285 
5286 	.file_permission =		selinux_file_permission,
5287 	.file_alloc_security =		selinux_file_alloc_security,
5288 	.file_free_security =		selinux_file_free_security,
5289 	.file_ioctl =			selinux_file_ioctl,
5290 	.file_mmap =			selinux_file_mmap,
5291 	.file_mprotect =		selinux_file_mprotect,
5292 	.file_lock =			selinux_file_lock,
5293 	.file_fcntl =			selinux_file_fcntl,
5294 	.file_set_fowner =		selinux_file_set_fowner,
5295 	.file_send_sigiotask =		selinux_file_send_sigiotask,
5296 	.file_receive =			selinux_file_receive,
5297 
5298 	.dentry_open =                  selinux_dentry_open,
5299 
5300 	.task_create =			selinux_task_create,
5301 	.task_alloc_security =		selinux_task_alloc_security,
5302 	.task_free_security =		selinux_task_free_security,
5303 	.task_setuid =			selinux_task_setuid,
5304 	.task_post_setuid =		selinux_task_post_setuid,
5305 	.task_setgid =			selinux_task_setgid,
5306 	.task_setpgid =			selinux_task_setpgid,
5307 	.task_getpgid =			selinux_task_getpgid,
5308 	.task_getsid =		        selinux_task_getsid,
5309 	.task_getsecid =		selinux_task_getsecid,
5310 	.task_setgroups =		selinux_task_setgroups,
5311 	.task_setnice =			selinux_task_setnice,
5312 	.task_setioprio =		selinux_task_setioprio,
5313 	.task_getioprio =		selinux_task_getioprio,
5314 	.task_setrlimit =		selinux_task_setrlimit,
5315 	.task_setscheduler =		selinux_task_setscheduler,
5316 	.task_getscheduler =		selinux_task_getscheduler,
5317 	.task_movememory =		selinux_task_movememory,
5318 	.task_kill =			selinux_task_kill,
5319 	.task_wait =			selinux_task_wait,
5320 	.task_prctl =			selinux_task_prctl,
5321 	.task_reparent_to_init =	selinux_task_reparent_to_init,
5322 	.task_to_inode =                selinux_task_to_inode,
5323 
5324 	.ipc_permission =		selinux_ipc_permission,
5325 
5326 	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5327 	.msg_msg_free_security =	selinux_msg_msg_free_security,
5328 
5329 	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5330 	.msg_queue_free_security =	selinux_msg_queue_free_security,
5331 	.msg_queue_associate =		selinux_msg_queue_associate,
5332 	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5333 	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5334 	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5335 
5336 	.shm_alloc_security =		selinux_shm_alloc_security,
5337 	.shm_free_security =		selinux_shm_free_security,
5338 	.shm_associate =		selinux_shm_associate,
5339 	.shm_shmctl =			selinux_shm_shmctl,
5340 	.shm_shmat =			selinux_shm_shmat,
5341 
5342 	.sem_alloc_security = 		selinux_sem_alloc_security,
5343 	.sem_free_security =  		selinux_sem_free_security,
5344 	.sem_associate =		selinux_sem_associate,
5345 	.sem_semctl =			selinux_sem_semctl,
5346 	.sem_semop =			selinux_sem_semop,
5347 
5348 	.register_security =		selinux_register_security,
5349 
5350 	.d_instantiate =                selinux_d_instantiate,
5351 
5352 	.getprocattr =                  selinux_getprocattr,
5353 	.setprocattr =                  selinux_setprocattr,
5354 
5355 	.secid_to_secctx =		selinux_secid_to_secctx,
5356 	.secctx_to_secid =		selinux_secctx_to_secid,
5357 	.release_secctx =		selinux_release_secctx,
5358 
5359         .unix_stream_connect =		selinux_socket_unix_stream_connect,
5360 	.unix_may_send =		selinux_socket_unix_may_send,
5361 
5362 	.socket_create =		selinux_socket_create,
5363 	.socket_post_create =		selinux_socket_post_create,
5364 	.socket_bind =			selinux_socket_bind,
5365 	.socket_connect =		selinux_socket_connect,
5366 	.socket_listen =		selinux_socket_listen,
5367 	.socket_accept =		selinux_socket_accept,
5368 	.socket_sendmsg =		selinux_socket_sendmsg,
5369 	.socket_recvmsg =		selinux_socket_recvmsg,
5370 	.socket_getsockname =		selinux_socket_getsockname,
5371 	.socket_getpeername =		selinux_socket_getpeername,
5372 	.socket_getsockopt =		selinux_socket_getsockopt,
5373 	.socket_setsockopt =		selinux_socket_setsockopt,
5374 	.socket_shutdown =		selinux_socket_shutdown,
5375 	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5376 	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5377 	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5378 	.sk_alloc_security =		selinux_sk_alloc_security,
5379 	.sk_free_security =		selinux_sk_free_security,
5380 	.sk_clone_security =		selinux_sk_clone_security,
5381 	.sk_getsecid = 			selinux_sk_getsecid,
5382 	.sock_graft =			selinux_sock_graft,
5383 	.inet_conn_request =		selinux_inet_conn_request,
5384 	.inet_csk_clone =		selinux_inet_csk_clone,
5385 	.inet_conn_established =	selinux_inet_conn_established,
5386 	.req_classify_flow =		selinux_req_classify_flow,
5387 
5388 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5389 	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5390 	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5391 	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5392 	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5393 	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
5394 	.xfrm_state_free_security =	selinux_xfrm_state_free,
5395 	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5396 	.xfrm_policy_lookup = 		selinux_xfrm_policy_lookup,
5397 	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5398 	.xfrm_decode_session =		selinux_xfrm_decode_session,
5399 #endif
5400 
5401 #ifdef CONFIG_KEYS
5402 	.key_alloc =                    selinux_key_alloc,
5403 	.key_free =                     selinux_key_free,
5404 	.key_permission =               selinux_key_permission,
5405 #endif
5406 };
5407 
5408 static __init int selinux_init(void)
5409 {
5410 	struct task_security_struct *tsec;
5411 
5412 	if (!selinux_enabled) {
5413 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5414 		return 0;
5415 	}
5416 
5417 	printk(KERN_INFO "SELinux:  Initializing.\n");
5418 
5419 	/* Set the security state for the initial task. */
5420 	if (task_alloc_security(current))
5421 		panic("SELinux:  Failed to initialize initial task.\n");
5422 	tsec = current->security;
5423 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
5424 
5425 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5426 					    sizeof(struct inode_security_struct),
5427 					    0, SLAB_PANIC, NULL);
5428 	avc_init();
5429 
5430 	original_ops = secondary_ops = security_ops;
5431 	if (!secondary_ops)
5432 		panic ("SELinux: No initial security operations\n");
5433 	if (register_security (&selinux_ops))
5434 		panic("SELinux: Unable to register with kernel.\n");
5435 
5436 	if (selinux_enforcing) {
5437 		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5438 	} else {
5439 		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5440 	}
5441 
5442 #ifdef CONFIG_KEYS
5443 	/* Add security information to initial keyrings */
5444 	selinux_key_alloc(&root_user_keyring, current,
5445 			  KEY_ALLOC_NOT_IN_QUOTA);
5446 	selinux_key_alloc(&root_session_keyring, current,
5447 			  KEY_ALLOC_NOT_IN_QUOTA);
5448 #endif
5449 
5450 	return 0;
5451 }
5452 
5453 void selinux_complete_init(void)
5454 {
5455 	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5456 
5457 	/* Set up any superblocks initialized prior to the policy load. */
5458 	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5459 	spin_lock(&sb_lock);
5460 	spin_lock(&sb_security_lock);
5461 next_sb:
5462 	if (!list_empty(&superblock_security_head)) {
5463 		struct superblock_security_struct *sbsec =
5464 				list_entry(superblock_security_head.next,
5465 				           struct superblock_security_struct,
5466 				           list);
5467 		struct super_block *sb = sbsec->sb;
5468 		sb->s_count++;
5469 		spin_unlock(&sb_security_lock);
5470 		spin_unlock(&sb_lock);
5471 		down_read(&sb->s_umount);
5472 		if (sb->s_root)
5473 			superblock_doinit(sb, NULL);
5474 		drop_super(sb);
5475 		spin_lock(&sb_lock);
5476 		spin_lock(&sb_security_lock);
5477 		list_del_init(&sbsec->list);
5478 		goto next_sb;
5479 	}
5480 	spin_unlock(&sb_security_lock);
5481 	spin_unlock(&sb_lock);
5482 }
5483 
5484 /* SELinux requires early initialization in order to label
5485    all processes and objects when they are created. */
5486 security_initcall(selinux_init);
5487 
5488 #if defined(CONFIG_NETFILTER)
5489 
5490 static struct nf_hook_ops selinux_ipv4_ops[] = {
5491 	{
5492 		.hook =		selinux_ipv4_postroute,
5493 		.owner =	THIS_MODULE,
5494 		.pf =		PF_INET,
5495 		.hooknum =	NF_INET_POST_ROUTING,
5496 		.priority =	NF_IP_PRI_SELINUX_LAST,
5497 	},
5498 	{
5499 		.hook =		selinux_ipv4_forward,
5500 		.owner =	THIS_MODULE,
5501 		.pf =		PF_INET,
5502 		.hooknum =	NF_INET_FORWARD,
5503 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5504 	}
5505 };
5506 
5507 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5508 
5509 static struct nf_hook_ops selinux_ipv6_ops[] = {
5510 	{
5511 		.hook =		selinux_ipv6_postroute,
5512 		.owner =	THIS_MODULE,
5513 		.pf =		PF_INET6,
5514 		.hooknum =	NF_INET_POST_ROUTING,
5515 		.priority =	NF_IP6_PRI_SELINUX_LAST,
5516 	},
5517 	{
5518 		.hook =		selinux_ipv6_forward,
5519 		.owner =	THIS_MODULE,
5520 		.pf =		PF_INET6,
5521 		.hooknum =	NF_INET_FORWARD,
5522 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
5523 	}
5524 };
5525 
5526 #endif	/* IPV6 */
5527 
5528 static int __init selinux_nf_ip_init(void)
5529 {
5530 	int err = 0;
5531 	u32 iter;
5532 
5533 	if (!selinux_enabled)
5534 		goto out;
5535 
5536 	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5537 
5538 	for (iter = 0; iter < ARRAY_SIZE(selinux_ipv4_ops); iter++) {
5539 		err = nf_register_hook(&selinux_ipv4_ops[iter]);
5540 		if (err)
5541 			panic("SELinux: nf_register_hook for IPv4: error %d\n",
5542 			      err);
5543 	}
5544 
5545 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5546 	for (iter = 0; iter < ARRAY_SIZE(selinux_ipv6_ops); iter++) {
5547 		err = nf_register_hook(&selinux_ipv6_ops[iter]);
5548 		if (err)
5549 			panic("SELinux: nf_register_hook for IPv6: error %d\n",
5550 			      err);
5551 	}
5552 #endif	/* IPV6 */
5553 
5554 out:
5555 	return err;
5556 }
5557 
5558 __initcall(selinux_nf_ip_init);
5559 
5560 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5561 static void selinux_nf_ip_exit(void)
5562 {
5563 	u32 iter;
5564 
5565 	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5566 
5567 	for (iter = 0; iter < ARRAY_SIZE(selinux_ipv4_ops); iter++)
5568 		nf_unregister_hook(&selinux_ipv4_ops[iter]);
5569 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5570 	for (iter = 0; iter < ARRAY_SIZE(selinux_ipv6_ops); iter++)
5571 		nf_unregister_hook(&selinux_ipv6_ops[iter]);
5572 #endif	/* IPV6 */
5573 }
5574 #endif
5575 
5576 #else /* CONFIG_NETFILTER */
5577 
5578 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5579 #define selinux_nf_ip_exit()
5580 #endif
5581 
5582 #endif /* CONFIG_NETFILTER */
5583 
5584 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5585 int selinux_disable(void)
5586 {
5587 	extern void exit_sel_fs(void);
5588 	static int selinux_disabled = 0;
5589 
5590 	if (ss_initialized) {
5591 		/* Not permitted after initial policy load. */
5592 		return -EINVAL;
5593 	}
5594 
5595 	if (selinux_disabled) {
5596 		/* Only do this once. */
5597 		return -EINVAL;
5598 	}
5599 
5600 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5601 
5602 	selinux_disabled = 1;
5603 	selinux_enabled = 0;
5604 
5605 	/* Reset security_ops to the secondary module, dummy or capability. */
5606 	security_ops = secondary_ops;
5607 
5608 	/* Unregister netfilter hooks. */
5609 	selinux_nf_ip_exit();
5610 
5611 	/* Unregister selinuxfs. */
5612 	exit_sel_fs();
5613 
5614 	return 0;
5615 }
5616 #endif
5617 
5618 
5619