1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul@paul-moore.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the GNU General Public License version 2, 23 * as published by the Free Software Foundation. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/kd.h> 28 #include <linux/kernel.h> 29 #include <linux/tracehook.h> 30 #include <linux/errno.h> 31 #include <linux/sched.h> 32 #include <linux/security.h> 33 #include <linux/xattr.h> 34 #include <linux/capability.h> 35 #include <linux/unistd.h> 36 #include <linux/mm.h> 37 #include <linux/mman.h> 38 #include <linux/slab.h> 39 #include <linux/pagemap.h> 40 #include <linux/proc_fs.h> 41 #include <linux/swap.h> 42 #include <linux/spinlock.h> 43 #include <linux/syscalls.h> 44 #include <linux/dcache.h> 45 #include <linux/file.h> 46 #include <linux/fdtable.h> 47 #include <linux/namei.h> 48 #include <linux/mount.h> 49 #include <linux/netfilter_ipv4.h> 50 #include <linux/netfilter_ipv6.h> 51 #include <linux/tty.h> 52 #include <net/icmp.h> 53 #include <net/ip.h> /* for local_port_range[] */ 54 #include <net/sock.h> 55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 56 #include <net/inet_connection_sock.h> 57 #include <net/net_namespace.h> 58 #include <net/netlabel.h> 59 #include <linux/uaccess.h> 60 #include <asm/ioctls.h> 61 #include <linux/atomic.h> 62 #include <linux/bitops.h> 63 #include <linux/interrupt.h> 64 #include <linux/netdevice.h> /* for network interface checks */ 65 #include <net/netlink.h> 66 #include <linux/tcp.h> 67 #include <linux/udp.h> 68 #include <linux/dccp.h> 69 #include <linux/quota.h> 70 #include <linux/un.h> /* for Unix socket types */ 71 #include <net/af_unix.h> /* for Unix socket types */ 72 #include <linux/parser.h> 73 #include <linux/nfs_mount.h> 74 #include <net/ipv6.h> 75 #include <linux/hugetlb.h> 76 #include <linux/personality.h> 77 #include <linux/audit.h> 78 #include <linux/string.h> 79 #include <linux/selinux.h> 80 #include <linux/mutex.h> 81 #include <linux/posix-timers.h> 82 #include <linux/syslog.h> 83 #include <linux/user_namespace.h> 84 #include <linux/export.h> 85 #include <linux/msg.h> 86 #include <linux/shm.h> 87 88 #include "avc.h" 89 #include "objsec.h" 90 #include "netif.h" 91 #include "netnode.h" 92 #include "netport.h" 93 #include "xfrm.h" 94 #include "netlabel.h" 95 #include "audit.h" 96 #include "avc_ss.h" 97 98 /* SECMARK reference count */ 99 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 100 101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 102 int selinux_enforcing; 103 104 static int __init enforcing_setup(char *str) 105 { 106 unsigned long enforcing; 107 if (!kstrtoul(str, 0, &enforcing)) 108 selinux_enforcing = enforcing ? 1 : 0; 109 return 1; 110 } 111 __setup("enforcing=", enforcing_setup); 112 #endif 113 114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 116 117 static int __init selinux_enabled_setup(char *str) 118 { 119 unsigned long enabled; 120 if (!kstrtoul(str, 0, &enabled)) 121 selinux_enabled = enabled ? 1 : 0; 122 return 1; 123 } 124 __setup("selinux=", selinux_enabled_setup); 125 #else 126 int selinux_enabled = 1; 127 #endif 128 129 static struct kmem_cache *sel_inode_cache; 130 131 /** 132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 133 * 134 * Description: 135 * This function checks the SECMARK reference counter to see if any SECMARK 136 * targets are currently configured, if the reference counter is greater than 137 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 138 * enabled, false (0) if SECMARK is disabled. If the always_check_network 139 * policy capability is enabled, SECMARK is always considered enabled. 140 * 141 */ 142 static int selinux_secmark_enabled(void) 143 { 144 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount)); 145 } 146 147 /** 148 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled 149 * 150 * Description: 151 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true 152 * (1) if any are enabled or false (0) if neither are enabled. If the 153 * always_check_network policy capability is enabled, peer labeling 154 * is always considered enabled. 155 * 156 */ 157 static int selinux_peerlbl_enabled(void) 158 { 159 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled()); 160 } 161 162 static int selinux_netcache_avc_callback(u32 event) 163 { 164 if (event == AVC_CALLBACK_RESET) { 165 sel_netif_flush(); 166 sel_netnode_flush(); 167 sel_netport_flush(); 168 synchronize_net(); 169 } 170 return 0; 171 } 172 173 /* 174 * initialise the security for the init task 175 */ 176 static void cred_init_security(void) 177 { 178 struct cred *cred = (struct cred *) current->real_cred; 179 struct task_security_struct *tsec; 180 181 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 182 if (!tsec) 183 panic("SELinux: Failed to initialize initial task.\n"); 184 185 tsec->osid = tsec->sid = SECINITSID_KERNEL; 186 cred->security = tsec; 187 } 188 189 /* 190 * get the security ID of a set of credentials 191 */ 192 static inline u32 cred_sid(const struct cred *cred) 193 { 194 const struct task_security_struct *tsec; 195 196 tsec = cred->security; 197 return tsec->sid; 198 } 199 200 /* 201 * get the objective security ID of a task 202 */ 203 static inline u32 task_sid(const struct task_struct *task) 204 { 205 u32 sid; 206 207 rcu_read_lock(); 208 sid = cred_sid(__task_cred(task)); 209 rcu_read_unlock(); 210 return sid; 211 } 212 213 /* 214 * get the subjective security ID of the current task 215 */ 216 static inline u32 current_sid(void) 217 { 218 const struct task_security_struct *tsec = current_security(); 219 220 return tsec->sid; 221 } 222 223 /* Allocate and free functions for each kind of security blob. */ 224 225 static int inode_alloc_security(struct inode *inode) 226 { 227 struct inode_security_struct *isec; 228 u32 sid = current_sid(); 229 230 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 231 if (!isec) 232 return -ENOMEM; 233 234 mutex_init(&isec->lock); 235 INIT_LIST_HEAD(&isec->list); 236 isec->inode = inode; 237 isec->sid = SECINITSID_UNLABELED; 238 isec->sclass = SECCLASS_FILE; 239 isec->task_sid = sid; 240 inode->i_security = isec; 241 242 return 0; 243 } 244 245 static void inode_free_rcu(struct rcu_head *head) 246 { 247 struct inode_security_struct *isec; 248 249 isec = container_of(head, struct inode_security_struct, rcu); 250 kmem_cache_free(sel_inode_cache, isec); 251 } 252 253 static void inode_free_security(struct inode *inode) 254 { 255 struct inode_security_struct *isec = inode->i_security; 256 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 257 258 spin_lock(&sbsec->isec_lock); 259 if (!list_empty(&isec->list)) 260 list_del_init(&isec->list); 261 spin_unlock(&sbsec->isec_lock); 262 263 /* 264 * The inode may still be referenced in a path walk and 265 * a call to selinux_inode_permission() can be made 266 * after inode_free_security() is called. Ideally, the VFS 267 * wouldn't do this, but fixing that is a much harder 268 * job. For now, simply free the i_security via RCU, and 269 * leave the current inode->i_security pointer intact. 270 * The inode will be freed after the RCU grace period too. 271 */ 272 call_rcu(&isec->rcu, inode_free_rcu); 273 } 274 275 static int file_alloc_security(struct file *file) 276 { 277 struct file_security_struct *fsec; 278 u32 sid = current_sid(); 279 280 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 281 if (!fsec) 282 return -ENOMEM; 283 284 fsec->sid = sid; 285 fsec->fown_sid = sid; 286 file->f_security = fsec; 287 288 return 0; 289 } 290 291 static void file_free_security(struct file *file) 292 { 293 struct file_security_struct *fsec = file->f_security; 294 file->f_security = NULL; 295 kfree(fsec); 296 } 297 298 static int superblock_alloc_security(struct super_block *sb) 299 { 300 struct superblock_security_struct *sbsec; 301 302 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 303 if (!sbsec) 304 return -ENOMEM; 305 306 mutex_init(&sbsec->lock); 307 INIT_LIST_HEAD(&sbsec->isec_head); 308 spin_lock_init(&sbsec->isec_lock); 309 sbsec->sb = sb; 310 sbsec->sid = SECINITSID_UNLABELED; 311 sbsec->def_sid = SECINITSID_FILE; 312 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 313 sb->s_security = sbsec; 314 315 return 0; 316 } 317 318 static void superblock_free_security(struct super_block *sb) 319 { 320 struct superblock_security_struct *sbsec = sb->s_security; 321 sb->s_security = NULL; 322 kfree(sbsec); 323 } 324 325 /* The file system's label must be initialized prior to use. */ 326 327 static const char *labeling_behaviors[7] = { 328 "uses xattr", 329 "uses transition SIDs", 330 "uses task SIDs", 331 "uses genfs_contexts", 332 "not configured for labeling", 333 "uses mountpoint labeling", 334 "uses native labeling", 335 }; 336 337 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 338 339 static inline int inode_doinit(struct inode *inode) 340 { 341 return inode_doinit_with_dentry(inode, NULL); 342 } 343 344 enum { 345 Opt_error = -1, 346 Opt_context = 1, 347 Opt_fscontext = 2, 348 Opt_defcontext = 3, 349 Opt_rootcontext = 4, 350 Opt_labelsupport = 5, 351 Opt_nextmntopt = 6, 352 }; 353 354 #define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1) 355 356 static const match_table_t tokens = { 357 {Opt_context, CONTEXT_STR "%s"}, 358 {Opt_fscontext, FSCONTEXT_STR "%s"}, 359 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 360 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 361 {Opt_labelsupport, LABELSUPP_STR}, 362 {Opt_error, NULL}, 363 }; 364 365 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 366 367 static int may_context_mount_sb_relabel(u32 sid, 368 struct superblock_security_struct *sbsec, 369 const struct cred *cred) 370 { 371 const struct task_security_struct *tsec = cred->security; 372 int rc; 373 374 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 375 FILESYSTEM__RELABELFROM, NULL); 376 if (rc) 377 return rc; 378 379 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 380 FILESYSTEM__RELABELTO, NULL); 381 return rc; 382 } 383 384 static int may_context_mount_inode_relabel(u32 sid, 385 struct superblock_security_struct *sbsec, 386 const struct cred *cred) 387 { 388 const struct task_security_struct *tsec = cred->security; 389 int rc; 390 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 391 FILESYSTEM__RELABELFROM, NULL); 392 if (rc) 393 return rc; 394 395 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 396 FILESYSTEM__ASSOCIATE, NULL); 397 return rc; 398 } 399 400 static int selinux_is_sblabel_mnt(struct super_block *sb) 401 { 402 struct superblock_security_struct *sbsec = sb->s_security; 403 404 return sbsec->behavior == SECURITY_FS_USE_XATTR || 405 sbsec->behavior == SECURITY_FS_USE_TRANS || 406 sbsec->behavior == SECURITY_FS_USE_TASK || 407 /* Special handling. Genfs but also in-core setxattr handler */ 408 !strcmp(sb->s_type->name, "sysfs") || 409 !strcmp(sb->s_type->name, "pstore") || 410 !strcmp(sb->s_type->name, "debugfs") || 411 !strcmp(sb->s_type->name, "rootfs"); 412 } 413 414 static int sb_finish_set_opts(struct super_block *sb) 415 { 416 struct superblock_security_struct *sbsec = sb->s_security; 417 struct dentry *root = sb->s_root; 418 struct inode *root_inode = root->d_inode; 419 int rc = 0; 420 421 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 422 /* Make sure that the xattr handler exists and that no 423 error other than -ENODATA is returned by getxattr on 424 the root directory. -ENODATA is ok, as this may be 425 the first boot of the SELinux kernel before we have 426 assigned xattr values to the filesystem. */ 427 if (!root_inode->i_op->getxattr) { 428 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 429 "xattr support\n", sb->s_id, sb->s_type->name); 430 rc = -EOPNOTSUPP; 431 goto out; 432 } 433 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 434 if (rc < 0 && rc != -ENODATA) { 435 if (rc == -EOPNOTSUPP) 436 printk(KERN_WARNING "SELinux: (dev %s, type " 437 "%s) has no security xattr handler\n", 438 sb->s_id, sb->s_type->name); 439 else 440 printk(KERN_WARNING "SELinux: (dev %s, type " 441 "%s) getxattr errno %d\n", sb->s_id, 442 sb->s_type->name, -rc); 443 goto out; 444 } 445 } 446 447 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 448 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 449 sb->s_id, sb->s_type->name); 450 451 sbsec->flags |= SE_SBINITIALIZED; 452 if (selinux_is_sblabel_mnt(sb)) 453 sbsec->flags |= SBLABEL_MNT; 454 455 /* Initialize the root inode. */ 456 rc = inode_doinit_with_dentry(root_inode, root); 457 458 /* Initialize any other inodes associated with the superblock, e.g. 459 inodes created prior to initial policy load or inodes created 460 during get_sb by a pseudo filesystem that directly 461 populates itself. */ 462 spin_lock(&sbsec->isec_lock); 463 next_inode: 464 if (!list_empty(&sbsec->isec_head)) { 465 struct inode_security_struct *isec = 466 list_entry(sbsec->isec_head.next, 467 struct inode_security_struct, list); 468 struct inode *inode = isec->inode; 469 list_del_init(&isec->list); 470 spin_unlock(&sbsec->isec_lock); 471 inode = igrab(inode); 472 if (inode) { 473 if (!IS_PRIVATE(inode)) 474 inode_doinit(inode); 475 iput(inode); 476 } 477 spin_lock(&sbsec->isec_lock); 478 goto next_inode; 479 } 480 spin_unlock(&sbsec->isec_lock); 481 out: 482 return rc; 483 } 484 485 /* 486 * This function should allow an FS to ask what it's mount security 487 * options were so it can use those later for submounts, displaying 488 * mount options, or whatever. 489 */ 490 static int selinux_get_mnt_opts(const struct super_block *sb, 491 struct security_mnt_opts *opts) 492 { 493 int rc = 0, i; 494 struct superblock_security_struct *sbsec = sb->s_security; 495 char *context = NULL; 496 u32 len; 497 char tmp; 498 499 security_init_mnt_opts(opts); 500 501 if (!(sbsec->flags & SE_SBINITIALIZED)) 502 return -EINVAL; 503 504 if (!ss_initialized) 505 return -EINVAL; 506 507 /* make sure we always check enough bits to cover the mask */ 508 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS)); 509 510 tmp = sbsec->flags & SE_MNTMASK; 511 /* count the number of mount options for this sb */ 512 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) { 513 if (tmp & 0x01) 514 opts->num_mnt_opts++; 515 tmp >>= 1; 516 } 517 /* Check if the Label support flag is set */ 518 if (sbsec->flags & SBLABEL_MNT) 519 opts->num_mnt_opts++; 520 521 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 522 if (!opts->mnt_opts) { 523 rc = -ENOMEM; 524 goto out_free; 525 } 526 527 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 528 if (!opts->mnt_opts_flags) { 529 rc = -ENOMEM; 530 goto out_free; 531 } 532 533 i = 0; 534 if (sbsec->flags & FSCONTEXT_MNT) { 535 rc = security_sid_to_context(sbsec->sid, &context, &len); 536 if (rc) 537 goto out_free; 538 opts->mnt_opts[i] = context; 539 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 540 } 541 if (sbsec->flags & CONTEXT_MNT) { 542 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 543 if (rc) 544 goto out_free; 545 opts->mnt_opts[i] = context; 546 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 547 } 548 if (sbsec->flags & DEFCONTEXT_MNT) { 549 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 550 if (rc) 551 goto out_free; 552 opts->mnt_opts[i] = context; 553 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 554 } 555 if (sbsec->flags & ROOTCONTEXT_MNT) { 556 struct inode *root = sbsec->sb->s_root->d_inode; 557 struct inode_security_struct *isec = root->i_security; 558 559 rc = security_sid_to_context(isec->sid, &context, &len); 560 if (rc) 561 goto out_free; 562 opts->mnt_opts[i] = context; 563 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 564 } 565 if (sbsec->flags & SBLABEL_MNT) { 566 opts->mnt_opts[i] = NULL; 567 opts->mnt_opts_flags[i++] = SBLABEL_MNT; 568 } 569 570 BUG_ON(i != opts->num_mnt_opts); 571 572 return 0; 573 574 out_free: 575 security_free_mnt_opts(opts); 576 return rc; 577 } 578 579 static int bad_option(struct superblock_security_struct *sbsec, char flag, 580 u32 old_sid, u32 new_sid) 581 { 582 char mnt_flags = sbsec->flags & SE_MNTMASK; 583 584 /* check if the old mount command had the same options */ 585 if (sbsec->flags & SE_SBINITIALIZED) 586 if (!(sbsec->flags & flag) || 587 (old_sid != new_sid)) 588 return 1; 589 590 /* check if we were passed the same options twice, 591 * aka someone passed context=a,context=b 592 */ 593 if (!(sbsec->flags & SE_SBINITIALIZED)) 594 if (mnt_flags & flag) 595 return 1; 596 return 0; 597 } 598 599 /* 600 * Allow filesystems with binary mount data to explicitly set mount point 601 * labeling information. 602 */ 603 static int selinux_set_mnt_opts(struct super_block *sb, 604 struct security_mnt_opts *opts, 605 unsigned long kern_flags, 606 unsigned long *set_kern_flags) 607 { 608 const struct cred *cred = current_cred(); 609 int rc = 0, i; 610 struct superblock_security_struct *sbsec = sb->s_security; 611 const char *name = sb->s_type->name; 612 struct inode *inode = sbsec->sb->s_root->d_inode; 613 struct inode_security_struct *root_isec = inode->i_security; 614 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 615 u32 defcontext_sid = 0; 616 char **mount_options = opts->mnt_opts; 617 int *flags = opts->mnt_opts_flags; 618 int num_opts = opts->num_mnt_opts; 619 620 mutex_lock(&sbsec->lock); 621 622 if (!ss_initialized) { 623 if (!num_opts) { 624 /* Defer initialization until selinux_complete_init, 625 after the initial policy is loaded and the security 626 server is ready to handle calls. */ 627 goto out; 628 } 629 rc = -EINVAL; 630 printk(KERN_WARNING "SELinux: Unable to set superblock options " 631 "before the security server is initialized\n"); 632 goto out; 633 } 634 if (kern_flags && !set_kern_flags) { 635 /* Specifying internal flags without providing a place to 636 * place the results is not allowed */ 637 rc = -EINVAL; 638 goto out; 639 } 640 641 /* 642 * Binary mount data FS will come through this function twice. Once 643 * from an explicit call and once from the generic calls from the vfs. 644 * Since the generic VFS calls will not contain any security mount data 645 * we need to skip the double mount verification. 646 * 647 * This does open a hole in which we will not notice if the first 648 * mount using this sb set explict options and a second mount using 649 * this sb does not set any security options. (The first options 650 * will be used for both mounts) 651 */ 652 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 653 && (num_opts == 0)) 654 goto out; 655 656 /* 657 * parse the mount options, check if they are valid sids. 658 * also check if someone is trying to mount the same sb more 659 * than once with different security options. 660 */ 661 for (i = 0; i < num_opts; i++) { 662 u32 sid; 663 664 if (flags[i] == SBLABEL_MNT) 665 continue; 666 rc = security_context_to_sid(mount_options[i], 667 strlen(mount_options[i]), &sid, GFP_KERNEL); 668 if (rc) { 669 printk(KERN_WARNING "SELinux: security_context_to_sid" 670 "(%s) failed for (dev %s, type %s) errno=%d\n", 671 mount_options[i], sb->s_id, name, rc); 672 goto out; 673 } 674 switch (flags[i]) { 675 case FSCONTEXT_MNT: 676 fscontext_sid = sid; 677 678 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 679 fscontext_sid)) 680 goto out_double_mount; 681 682 sbsec->flags |= FSCONTEXT_MNT; 683 break; 684 case CONTEXT_MNT: 685 context_sid = sid; 686 687 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 688 context_sid)) 689 goto out_double_mount; 690 691 sbsec->flags |= CONTEXT_MNT; 692 break; 693 case ROOTCONTEXT_MNT: 694 rootcontext_sid = sid; 695 696 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 697 rootcontext_sid)) 698 goto out_double_mount; 699 700 sbsec->flags |= ROOTCONTEXT_MNT; 701 702 break; 703 case DEFCONTEXT_MNT: 704 defcontext_sid = sid; 705 706 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 707 defcontext_sid)) 708 goto out_double_mount; 709 710 sbsec->flags |= DEFCONTEXT_MNT; 711 712 break; 713 default: 714 rc = -EINVAL; 715 goto out; 716 } 717 } 718 719 if (sbsec->flags & SE_SBINITIALIZED) { 720 /* previously mounted with options, but not on this attempt? */ 721 if ((sbsec->flags & SE_MNTMASK) && !num_opts) 722 goto out_double_mount; 723 rc = 0; 724 goto out; 725 } 726 727 if (strcmp(sb->s_type->name, "proc") == 0) 728 sbsec->flags |= SE_SBPROC; 729 730 if (!sbsec->behavior) { 731 /* 732 * Determine the labeling behavior to use for this 733 * filesystem type. 734 */ 735 rc = security_fs_use(sb); 736 if (rc) { 737 printk(KERN_WARNING 738 "%s: security_fs_use(%s) returned %d\n", 739 __func__, sb->s_type->name, rc); 740 goto out; 741 } 742 } 743 /* sets the context of the superblock for the fs being mounted. */ 744 if (fscontext_sid) { 745 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 746 if (rc) 747 goto out; 748 749 sbsec->sid = fscontext_sid; 750 } 751 752 /* 753 * Switch to using mount point labeling behavior. 754 * sets the label used on all file below the mountpoint, and will set 755 * the superblock context if not already set. 756 */ 757 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { 758 sbsec->behavior = SECURITY_FS_USE_NATIVE; 759 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 760 } 761 762 if (context_sid) { 763 if (!fscontext_sid) { 764 rc = may_context_mount_sb_relabel(context_sid, sbsec, 765 cred); 766 if (rc) 767 goto out; 768 sbsec->sid = context_sid; 769 } else { 770 rc = may_context_mount_inode_relabel(context_sid, sbsec, 771 cred); 772 if (rc) 773 goto out; 774 } 775 if (!rootcontext_sid) 776 rootcontext_sid = context_sid; 777 778 sbsec->mntpoint_sid = context_sid; 779 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 780 } 781 782 if (rootcontext_sid) { 783 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 784 cred); 785 if (rc) 786 goto out; 787 788 root_isec->sid = rootcontext_sid; 789 root_isec->initialized = 1; 790 } 791 792 if (defcontext_sid) { 793 if (sbsec->behavior != SECURITY_FS_USE_XATTR && 794 sbsec->behavior != SECURITY_FS_USE_NATIVE) { 795 rc = -EINVAL; 796 printk(KERN_WARNING "SELinux: defcontext option is " 797 "invalid for this filesystem type\n"); 798 goto out; 799 } 800 801 if (defcontext_sid != sbsec->def_sid) { 802 rc = may_context_mount_inode_relabel(defcontext_sid, 803 sbsec, cred); 804 if (rc) 805 goto out; 806 } 807 808 sbsec->def_sid = defcontext_sid; 809 } 810 811 rc = sb_finish_set_opts(sb); 812 out: 813 mutex_unlock(&sbsec->lock); 814 return rc; 815 out_double_mount: 816 rc = -EINVAL; 817 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 818 "security settings for (dev %s, type %s)\n", sb->s_id, name); 819 goto out; 820 } 821 822 static int selinux_cmp_sb_context(const struct super_block *oldsb, 823 const struct super_block *newsb) 824 { 825 struct superblock_security_struct *old = oldsb->s_security; 826 struct superblock_security_struct *new = newsb->s_security; 827 char oldflags = old->flags & SE_MNTMASK; 828 char newflags = new->flags & SE_MNTMASK; 829 830 if (oldflags != newflags) 831 goto mismatch; 832 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) 833 goto mismatch; 834 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) 835 goto mismatch; 836 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) 837 goto mismatch; 838 if (oldflags & ROOTCONTEXT_MNT) { 839 struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security; 840 struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security; 841 if (oldroot->sid != newroot->sid) 842 goto mismatch; 843 } 844 return 0; 845 mismatch: 846 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, " 847 "different security settings for (dev %s, " 848 "type %s)\n", newsb->s_id, newsb->s_type->name); 849 return -EBUSY; 850 } 851 852 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 853 struct super_block *newsb) 854 { 855 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 856 struct superblock_security_struct *newsbsec = newsb->s_security; 857 858 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 859 int set_context = (oldsbsec->flags & CONTEXT_MNT); 860 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 861 862 /* 863 * if the parent was able to be mounted it clearly had no special lsm 864 * mount options. thus we can safely deal with this superblock later 865 */ 866 if (!ss_initialized) 867 return 0; 868 869 /* how can we clone if the old one wasn't set up?? */ 870 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 871 872 /* if fs is reusing a sb, make sure that the contexts match */ 873 if (newsbsec->flags & SE_SBINITIALIZED) 874 return selinux_cmp_sb_context(oldsb, newsb); 875 876 mutex_lock(&newsbsec->lock); 877 878 newsbsec->flags = oldsbsec->flags; 879 880 newsbsec->sid = oldsbsec->sid; 881 newsbsec->def_sid = oldsbsec->def_sid; 882 newsbsec->behavior = oldsbsec->behavior; 883 884 if (set_context) { 885 u32 sid = oldsbsec->mntpoint_sid; 886 887 if (!set_fscontext) 888 newsbsec->sid = sid; 889 if (!set_rootcontext) { 890 struct inode *newinode = newsb->s_root->d_inode; 891 struct inode_security_struct *newisec = newinode->i_security; 892 newisec->sid = sid; 893 } 894 newsbsec->mntpoint_sid = sid; 895 } 896 if (set_rootcontext) { 897 const struct inode *oldinode = oldsb->s_root->d_inode; 898 const struct inode_security_struct *oldisec = oldinode->i_security; 899 struct inode *newinode = newsb->s_root->d_inode; 900 struct inode_security_struct *newisec = newinode->i_security; 901 902 newisec->sid = oldisec->sid; 903 } 904 905 sb_finish_set_opts(newsb); 906 mutex_unlock(&newsbsec->lock); 907 return 0; 908 } 909 910 static int selinux_parse_opts_str(char *options, 911 struct security_mnt_opts *opts) 912 { 913 char *p; 914 char *context = NULL, *defcontext = NULL; 915 char *fscontext = NULL, *rootcontext = NULL; 916 int rc, num_mnt_opts = 0; 917 918 opts->num_mnt_opts = 0; 919 920 /* Standard string-based options. */ 921 while ((p = strsep(&options, "|")) != NULL) { 922 int token; 923 substring_t args[MAX_OPT_ARGS]; 924 925 if (!*p) 926 continue; 927 928 token = match_token(p, tokens, args); 929 930 switch (token) { 931 case Opt_context: 932 if (context || defcontext) { 933 rc = -EINVAL; 934 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 935 goto out_err; 936 } 937 context = match_strdup(&args[0]); 938 if (!context) { 939 rc = -ENOMEM; 940 goto out_err; 941 } 942 break; 943 944 case Opt_fscontext: 945 if (fscontext) { 946 rc = -EINVAL; 947 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 948 goto out_err; 949 } 950 fscontext = match_strdup(&args[0]); 951 if (!fscontext) { 952 rc = -ENOMEM; 953 goto out_err; 954 } 955 break; 956 957 case Opt_rootcontext: 958 if (rootcontext) { 959 rc = -EINVAL; 960 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 961 goto out_err; 962 } 963 rootcontext = match_strdup(&args[0]); 964 if (!rootcontext) { 965 rc = -ENOMEM; 966 goto out_err; 967 } 968 break; 969 970 case Opt_defcontext: 971 if (context || defcontext) { 972 rc = -EINVAL; 973 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 974 goto out_err; 975 } 976 defcontext = match_strdup(&args[0]); 977 if (!defcontext) { 978 rc = -ENOMEM; 979 goto out_err; 980 } 981 break; 982 case Opt_labelsupport: 983 break; 984 default: 985 rc = -EINVAL; 986 printk(KERN_WARNING "SELinux: unknown mount option\n"); 987 goto out_err; 988 989 } 990 } 991 992 rc = -ENOMEM; 993 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC); 994 if (!opts->mnt_opts) 995 goto out_err; 996 997 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC); 998 if (!opts->mnt_opts_flags) { 999 kfree(opts->mnt_opts); 1000 goto out_err; 1001 } 1002 1003 if (fscontext) { 1004 opts->mnt_opts[num_mnt_opts] = fscontext; 1005 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 1006 } 1007 if (context) { 1008 opts->mnt_opts[num_mnt_opts] = context; 1009 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 1010 } 1011 if (rootcontext) { 1012 opts->mnt_opts[num_mnt_opts] = rootcontext; 1013 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 1014 } 1015 if (defcontext) { 1016 opts->mnt_opts[num_mnt_opts] = defcontext; 1017 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 1018 } 1019 1020 opts->num_mnt_opts = num_mnt_opts; 1021 return 0; 1022 1023 out_err: 1024 kfree(context); 1025 kfree(defcontext); 1026 kfree(fscontext); 1027 kfree(rootcontext); 1028 return rc; 1029 } 1030 /* 1031 * string mount options parsing and call set the sbsec 1032 */ 1033 static int superblock_doinit(struct super_block *sb, void *data) 1034 { 1035 int rc = 0; 1036 char *options = data; 1037 struct security_mnt_opts opts; 1038 1039 security_init_mnt_opts(&opts); 1040 1041 if (!data) 1042 goto out; 1043 1044 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 1045 1046 rc = selinux_parse_opts_str(options, &opts); 1047 if (rc) 1048 goto out_err; 1049 1050 out: 1051 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL); 1052 1053 out_err: 1054 security_free_mnt_opts(&opts); 1055 return rc; 1056 } 1057 1058 static void selinux_write_opts(struct seq_file *m, 1059 struct security_mnt_opts *opts) 1060 { 1061 int i; 1062 char *prefix; 1063 1064 for (i = 0; i < opts->num_mnt_opts; i++) { 1065 char *has_comma; 1066 1067 if (opts->mnt_opts[i]) 1068 has_comma = strchr(opts->mnt_opts[i], ','); 1069 else 1070 has_comma = NULL; 1071 1072 switch (opts->mnt_opts_flags[i]) { 1073 case CONTEXT_MNT: 1074 prefix = CONTEXT_STR; 1075 break; 1076 case FSCONTEXT_MNT: 1077 prefix = FSCONTEXT_STR; 1078 break; 1079 case ROOTCONTEXT_MNT: 1080 prefix = ROOTCONTEXT_STR; 1081 break; 1082 case DEFCONTEXT_MNT: 1083 prefix = DEFCONTEXT_STR; 1084 break; 1085 case SBLABEL_MNT: 1086 seq_putc(m, ','); 1087 seq_puts(m, LABELSUPP_STR); 1088 continue; 1089 default: 1090 BUG(); 1091 return; 1092 }; 1093 /* we need a comma before each option */ 1094 seq_putc(m, ','); 1095 seq_puts(m, prefix); 1096 if (has_comma) 1097 seq_putc(m, '\"'); 1098 seq_puts(m, opts->mnt_opts[i]); 1099 if (has_comma) 1100 seq_putc(m, '\"'); 1101 } 1102 } 1103 1104 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1105 { 1106 struct security_mnt_opts opts; 1107 int rc; 1108 1109 rc = selinux_get_mnt_opts(sb, &opts); 1110 if (rc) { 1111 /* before policy load we may get EINVAL, don't show anything */ 1112 if (rc == -EINVAL) 1113 rc = 0; 1114 return rc; 1115 } 1116 1117 selinux_write_opts(m, &opts); 1118 1119 security_free_mnt_opts(&opts); 1120 1121 return rc; 1122 } 1123 1124 static inline u16 inode_mode_to_security_class(umode_t mode) 1125 { 1126 switch (mode & S_IFMT) { 1127 case S_IFSOCK: 1128 return SECCLASS_SOCK_FILE; 1129 case S_IFLNK: 1130 return SECCLASS_LNK_FILE; 1131 case S_IFREG: 1132 return SECCLASS_FILE; 1133 case S_IFBLK: 1134 return SECCLASS_BLK_FILE; 1135 case S_IFDIR: 1136 return SECCLASS_DIR; 1137 case S_IFCHR: 1138 return SECCLASS_CHR_FILE; 1139 case S_IFIFO: 1140 return SECCLASS_FIFO_FILE; 1141 1142 } 1143 1144 return SECCLASS_FILE; 1145 } 1146 1147 static inline int default_protocol_stream(int protocol) 1148 { 1149 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1150 } 1151 1152 static inline int default_protocol_dgram(int protocol) 1153 { 1154 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1155 } 1156 1157 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1158 { 1159 switch (family) { 1160 case PF_UNIX: 1161 switch (type) { 1162 case SOCK_STREAM: 1163 case SOCK_SEQPACKET: 1164 return SECCLASS_UNIX_STREAM_SOCKET; 1165 case SOCK_DGRAM: 1166 return SECCLASS_UNIX_DGRAM_SOCKET; 1167 } 1168 break; 1169 case PF_INET: 1170 case PF_INET6: 1171 switch (type) { 1172 case SOCK_STREAM: 1173 if (default_protocol_stream(protocol)) 1174 return SECCLASS_TCP_SOCKET; 1175 else 1176 return SECCLASS_RAWIP_SOCKET; 1177 case SOCK_DGRAM: 1178 if (default_protocol_dgram(protocol)) 1179 return SECCLASS_UDP_SOCKET; 1180 else 1181 return SECCLASS_RAWIP_SOCKET; 1182 case SOCK_DCCP: 1183 return SECCLASS_DCCP_SOCKET; 1184 default: 1185 return SECCLASS_RAWIP_SOCKET; 1186 } 1187 break; 1188 case PF_NETLINK: 1189 switch (protocol) { 1190 case NETLINK_ROUTE: 1191 return SECCLASS_NETLINK_ROUTE_SOCKET; 1192 case NETLINK_FIREWALL: 1193 return SECCLASS_NETLINK_FIREWALL_SOCKET; 1194 case NETLINK_SOCK_DIAG: 1195 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1196 case NETLINK_NFLOG: 1197 return SECCLASS_NETLINK_NFLOG_SOCKET; 1198 case NETLINK_XFRM: 1199 return SECCLASS_NETLINK_XFRM_SOCKET; 1200 case NETLINK_SELINUX: 1201 return SECCLASS_NETLINK_SELINUX_SOCKET; 1202 case NETLINK_AUDIT: 1203 return SECCLASS_NETLINK_AUDIT_SOCKET; 1204 case NETLINK_IP6_FW: 1205 return SECCLASS_NETLINK_IP6FW_SOCKET; 1206 case NETLINK_DNRTMSG: 1207 return SECCLASS_NETLINK_DNRT_SOCKET; 1208 case NETLINK_KOBJECT_UEVENT: 1209 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1210 default: 1211 return SECCLASS_NETLINK_SOCKET; 1212 } 1213 case PF_PACKET: 1214 return SECCLASS_PACKET_SOCKET; 1215 case PF_KEY: 1216 return SECCLASS_KEY_SOCKET; 1217 case PF_APPLETALK: 1218 return SECCLASS_APPLETALK_SOCKET; 1219 } 1220 1221 return SECCLASS_SOCKET; 1222 } 1223 1224 #ifdef CONFIG_PROC_FS 1225 static int selinux_proc_get_sid(struct dentry *dentry, 1226 u16 tclass, 1227 u32 *sid) 1228 { 1229 int rc; 1230 char *buffer, *path; 1231 1232 buffer = (char *)__get_free_page(GFP_KERNEL); 1233 if (!buffer) 1234 return -ENOMEM; 1235 1236 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1237 if (IS_ERR(path)) 1238 rc = PTR_ERR(path); 1239 else { 1240 /* each process gets a /proc/PID/ entry. Strip off the 1241 * PID part to get a valid selinux labeling. 1242 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1243 while (path[1] >= '0' && path[1] <= '9') { 1244 path[1] = '/'; 1245 path++; 1246 } 1247 rc = security_genfs_sid("proc", path, tclass, sid); 1248 } 1249 free_page((unsigned long)buffer); 1250 return rc; 1251 } 1252 #else 1253 static int selinux_proc_get_sid(struct dentry *dentry, 1254 u16 tclass, 1255 u32 *sid) 1256 { 1257 return -EINVAL; 1258 } 1259 #endif 1260 1261 /* The inode's security attributes must be initialized before first use. */ 1262 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1263 { 1264 struct superblock_security_struct *sbsec = NULL; 1265 struct inode_security_struct *isec = inode->i_security; 1266 u32 sid; 1267 struct dentry *dentry; 1268 #define INITCONTEXTLEN 255 1269 char *context = NULL; 1270 unsigned len = 0; 1271 int rc = 0; 1272 1273 if (isec->initialized) 1274 goto out; 1275 1276 mutex_lock(&isec->lock); 1277 if (isec->initialized) 1278 goto out_unlock; 1279 1280 sbsec = inode->i_sb->s_security; 1281 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1282 /* Defer initialization until selinux_complete_init, 1283 after the initial policy is loaded and the security 1284 server is ready to handle calls. */ 1285 spin_lock(&sbsec->isec_lock); 1286 if (list_empty(&isec->list)) 1287 list_add(&isec->list, &sbsec->isec_head); 1288 spin_unlock(&sbsec->isec_lock); 1289 goto out_unlock; 1290 } 1291 1292 switch (sbsec->behavior) { 1293 case SECURITY_FS_USE_NATIVE: 1294 break; 1295 case SECURITY_FS_USE_XATTR: 1296 if (!inode->i_op->getxattr) { 1297 isec->sid = sbsec->def_sid; 1298 break; 1299 } 1300 1301 /* Need a dentry, since the xattr API requires one. 1302 Life would be simpler if we could just pass the inode. */ 1303 if (opt_dentry) { 1304 /* Called from d_instantiate or d_splice_alias. */ 1305 dentry = dget(opt_dentry); 1306 } else { 1307 /* Called from selinux_complete_init, try to find a dentry. */ 1308 dentry = d_find_alias(inode); 1309 } 1310 if (!dentry) { 1311 /* 1312 * this is can be hit on boot when a file is accessed 1313 * before the policy is loaded. When we load policy we 1314 * may find inodes that have no dentry on the 1315 * sbsec->isec_head list. No reason to complain as these 1316 * will get fixed up the next time we go through 1317 * inode_doinit with a dentry, before these inodes could 1318 * be used again by userspace. 1319 */ 1320 goto out_unlock; 1321 } 1322 1323 len = INITCONTEXTLEN; 1324 context = kmalloc(len+1, GFP_NOFS); 1325 if (!context) { 1326 rc = -ENOMEM; 1327 dput(dentry); 1328 goto out_unlock; 1329 } 1330 context[len] = '\0'; 1331 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1332 context, len); 1333 if (rc == -ERANGE) { 1334 kfree(context); 1335 1336 /* Need a larger buffer. Query for the right size. */ 1337 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1338 NULL, 0); 1339 if (rc < 0) { 1340 dput(dentry); 1341 goto out_unlock; 1342 } 1343 len = rc; 1344 context = kmalloc(len+1, GFP_NOFS); 1345 if (!context) { 1346 rc = -ENOMEM; 1347 dput(dentry); 1348 goto out_unlock; 1349 } 1350 context[len] = '\0'; 1351 rc = inode->i_op->getxattr(dentry, 1352 XATTR_NAME_SELINUX, 1353 context, len); 1354 } 1355 dput(dentry); 1356 if (rc < 0) { 1357 if (rc != -ENODATA) { 1358 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1359 "%d for dev=%s ino=%ld\n", __func__, 1360 -rc, inode->i_sb->s_id, inode->i_ino); 1361 kfree(context); 1362 goto out_unlock; 1363 } 1364 /* Map ENODATA to the default file SID */ 1365 sid = sbsec->def_sid; 1366 rc = 0; 1367 } else { 1368 rc = security_context_to_sid_default(context, rc, &sid, 1369 sbsec->def_sid, 1370 GFP_NOFS); 1371 if (rc) { 1372 char *dev = inode->i_sb->s_id; 1373 unsigned long ino = inode->i_ino; 1374 1375 if (rc == -EINVAL) { 1376 if (printk_ratelimit()) 1377 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid " 1378 "context=%s. This indicates you may need to relabel the inode or the " 1379 "filesystem in question.\n", ino, dev, context); 1380 } else { 1381 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1382 "returned %d for dev=%s ino=%ld\n", 1383 __func__, context, -rc, dev, ino); 1384 } 1385 kfree(context); 1386 /* Leave with the unlabeled SID */ 1387 rc = 0; 1388 break; 1389 } 1390 } 1391 kfree(context); 1392 isec->sid = sid; 1393 break; 1394 case SECURITY_FS_USE_TASK: 1395 isec->sid = isec->task_sid; 1396 break; 1397 case SECURITY_FS_USE_TRANS: 1398 /* Default to the fs SID. */ 1399 isec->sid = sbsec->sid; 1400 1401 /* Try to obtain a transition SID. */ 1402 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1403 rc = security_transition_sid(isec->task_sid, sbsec->sid, 1404 isec->sclass, NULL, &sid); 1405 if (rc) 1406 goto out_unlock; 1407 isec->sid = sid; 1408 break; 1409 case SECURITY_FS_USE_MNTPOINT: 1410 isec->sid = sbsec->mntpoint_sid; 1411 break; 1412 default: 1413 /* Default to the fs superblock SID. */ 1414 isec->sid = sbsec->sid; 1415 1416 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) { 1417 /* We must have a dentry to determine the label on 1418 * procfs inodes */ 1419 if (opt_dentry) 1420 /* Called from d_instantiate or 1421 * d_splice_alias. */ 1422 dentry = dget(opt_dentry); 1423 else 1424 /* Called from selinux_complete_init, try to 1425 * find a dentry. */ 1426 dentry = d_find_alias(inode); 1427 /* 1428 * This can be hit on boot when a file is accessed 1429 * before the policy is loaded. When we load policy we 1430 * may find inodes that have no dentry on the 1431 * sbsec->isec_head list. No reason to complain as 1432 * these will get fixed up the next time we go through 1433 * inode_doinit() with a dentry, before these inodes 1434 * could be used again by userspace. 1435 */ 1436 if (!dentry) 1437 goto out_unlock; 1438 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1439 rc = selinux_proc_get_sid(dentry, isec->sclass, &sid); 1440 dput(dentry); 1441 if (rc) 1442 goto out_unlock; 1443 isec->sid = sid; 1444 } 1445 break; 1446 } 1447 1448 isec->initialized = 1; 1449 1450 out_unlock: 1451 mutex_unlock(&isec->lock); 1452 out: 1453 if (isec->sclass == SECCLASS_FILE) 1454 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1455 return rc; 1456 } 1457 1458 /* Convert a Linux signal to an access vector. */ 1459 static inline u32 signal_to_av(int sig) 1460 { 1461 u32 perm = 0; 1462 1463 switch (sig) { 1464 case SIGCHLD: 1465 /* Commonly granted from child to parent. */ 1466 perm = PROCESS__SIGCHLD; 1467 break; 1468 case SIGKILL: 1469 /* Cannot be caught or ignored */ 1470 perm = PROCESS__SIGKILL; 1471 break; 1472 case SIGSTOP: 1473 /* Cannot be caught or ignored */ 1474 perm = PROCESS__SIGSTOP; 1475 break; 1476 default: 1477 /* All other signals. */ 1478 perm = PROCESS__SIGNAL; 1479 break; 1480 } 1481 1482 return perm; 1483 } 1484 1485 /* 1486 * Check permission between a pair of credentials 1487 * fork check, ptrace check, etc. 1488 */ 1489 static int cred_has_perm(const struct cred *actor, 1490 const struct cred *target, 1491 u32 perms) 1492 { 1493 u32 asid = cred_sid(actor), tsid = cred_sid(target); 1494 1495 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL); 1496 } 1497 1498 /* 1499 * Check permission between a pair of tasks, e.g. signal checks, 1500 * fork check, ptrace check, etc. 1501 * tsk1 is the actor and tsk2 is the target 1502 * - this uses the default subjective creds of tsk1 1503 */ 1504 static int task_has_perm(const struct task_struct *tsk1, 1505 const struct task_struct *tsk2, 1506 u32 perms) 1507 { 1508 const struct task_security_struct *__tsec1, *__tsec2; 1509 u32 sid1, sid2; 1510 1511 rcu_read_lock(); 1512 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid; 1513 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid; 1514 rcu_read_unlock(); 1515 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL); 1516 } 1517 1518 /* 1519 * Check permission between current and another task, e.g. signal checks, 1520 * fork check, ptrace check, etc. 1521 * current is the actor and tsk2 is the target 1522 * - this uses current's subjective creds 1523 */ 1524 static int current_has_perm(const struct task_struct *tsk, 1525 u32 perms) 1526 { 1527 u32 sid, tsid; 1528 1529 sid = current_sid(); 1530 tsid = task_sid(tsk); 1531 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL); 1532 } 1533 1534 #if CAP_LAST_CAP > 63 1535 #error Fix SELinux to handle capabilities > 63. 1536 #endif 1537 1538 /* Check whether a task is allowed to use a capability. */ 1539 static int cred_has_capability(const struct cred *cred, 1540 int cap, int audit) 1541 { 1542 struct common_audit_data ad; 1543 struct av_decision avd; 1544 u16 sclass; 1545 u32 sid = cred_sid(cred); 1546 u32 av = CAP_TO_MASK(cap); 1547 int rc; 1548 1549 ad.type = LSM_AUDIT_DATA_CAP; 1550 ad.u.cap = cap; 1551 1552 switch (CAP_TO_INDEX(cap)) { 1553 case 0: 1554 sclass = SECCLASS_CAPABILITY; 1555 break; 1556 case 1: 1557 sclass = SECCLASS_CAPABILITY2; 1558 break; 1559 default: 1560 printk(KERN_ERR 1561 "SELinux: out of range capability %d\n", cap); 1562 BUG(); 1563 return -EINVAL; 1564 } 1565 1566 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1567 if (audit == SECURITY_CAP_AUDIT) { 1568 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad); 1569 if (rc2) 1570 return rc2; 1571 } 1572 return rc; 1573 } 1574 1575 /* Check whether a task is allowed to use a system operation. */ 1576 static int task_has_system(struct task_struct *tsk, 1577 u32 perms) 1578 { 1579 u32 sid = task_sid(tsk); 1580 1581 return avc_has_perm(sid, SECINITSID_KERNEL, 1582 SECCLASS_SYSTEM, perms, NULL); 1583 } 1584 1585 /* Check whether a task has a particular permission to an inode. 1586 The 'adp' parameter is optional and allows other audit 1587 data to be passed (e.g. the dentry). */ 1588 static int inode_has_perm(const struct cred *cred, 1589 struct inode *inode, 1590 u32 perms, 1591 struct common_audit_data *adp) 1592 { 1593 struct inode_security_struct *isec; 1594 u32 sid; 1595 1596 validate_creds(cred); 1597 1598 if (unlikely(IS_PRIVATE(inode))) 1599 return 0; 1600 1601 sid = cred_sid(cred); 1602 isec = inode->i_security; 1603 1604 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp); 1605 } 1606 1607 /* Same as inode_has_perm, but pass explicit audit data containing 1608 the dentry to help the auditing code to more easily generate the 1609 pathname if needed. */ 1610 static inline int dentry_has_perm(const struct cred *cred, 1611 struct dentry *dentry, 1612 u32 av) 1613 { 1614 struct inode *inode = dentry->d_inode; 1615 struct common_audit_data ad; 1616 1617 ad.type = LSM_AUDIT_DATA_DENTRY; 1618 ad.u.dentry = dentry; 1619 return inode_has_perm(cred, inode, av, &ad); 1620 } 1621 1622 /* Same as inode_has_perm, but pass explicit audit data containing 1623 the path to help the auditing code to more easily generate the 1624 pathname if needed. */ 1625 static inline int path_has_perm(const struct cred *cred, 1626 struct path *path, 1627 u32 av) 1628 { 1629 struct inode *inode = path->dentry->d_inode; 1630 struct common_audit_data ad; 1631 1632 ad.type = LSM_AUDIT_DATA_PATH; 1633 ad.u.path = *path; 1634 return inode_has_perm(cred, inode, av, &ad); 1635 } 1636 1637 /* Same as path_has_perm, but uses the inode from the file struct. */ 1638 static inline int file_path_has_perm(const struct cred *cred, 1639 struct file *file, 1640 u32 av) 1641 { 1642 struct common_audit_data ad; 1643 1644 ad.type = LSM_AUDIT_DATA_PATH; 1645 ad.u.path = file->f_path; 1646 return inode_has_perm(cred, file_inode(file), av, &ad); 1647 } 1648 1649 /* Check whether a task can use an open file descriptor to 1650 access an inode in a given way. Check access to the 1651 descriptor itself, and then use dentry_has_perm to 1652 check a particular permission to the file. 1653 Access to the descriptor is implicitly granted if it 1654 has the same SID as the process. If av is zero, then 1655 access to the file is not checked, e.g. for cases 1656 where only the descriptor is affected like seek. */ 1657 static int file_has_perm(const struct cred *cred, 1658 struct file *file, 1659 u32 av) 1660 { 1661 struct file_security_struct *fsec = file->f_security; 1662 struct inode *inode = file_inode(file); 1663 struct common_audit_data ad; 1664 u32 sid = cred_sid(cred); 1665 int rc; 1666 1667 ad.type = LSM_AUDIT_DATA_PATH; 1668 ad.u.path = file->f_path; 1669 1670 if (sid != fsec->sid) { 1671 rc = avc_has_perm(sid, fsec->sid, 1672 SECCLASS_FD, 1673 FD__USE, 1674 &ad); 1675 if (rc) 1676 goto out; 1677 } 1678 1679 /* av is zero if only checking access to the descriptor. */ 1680 rc = 0; 1681 if (av) 1682 rc = inode_has_perm(cred, inode, av, &ad); 1683 1684 out: 1685 return rc; 1686 } 1687 1688 /* Check whether a task can create a file. */ 1689 static int may_create(struct inode *dir, 1690 struct dentry *dentry, 1691 u16 tclass) 1692 { 1693 const struct task_security_struct *tsec = current_security(); 1694 struct inode_security_struct *dsec; 1695 struct superblock_security_struct *sbsec; 1696 u32 sid, newsid; 1697 struct common_audit_data ad; 1698 int rc; 1699 1700 dsec = dir->i_security; 1701 sbsec = dir->i_sb->s_security; 1702 1703 sid = tsec->sid; 1704 newsid = tsec->create_sid; 1705 1706 ad.type = LSM_AUDIT_DATA_DENTRY; 1707 ad.u.dentry = dentry; 1708 1709 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1710 DIR__ADD_NAME | DIR__SEARCH, 1711 &ad); 1712 if (rc) 1713 return rc; 1714 1715 if (!newsid || !(sbsec->flags & SBLABEL_MNT)) { 1716 rc = security_transition_sid(sid, dsec->sid, tclass, 1717 &dentry->d_name, &newsid); 1718 if (rc) 1719 return rc; 1720 } 1721 1722 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1723 if (rc) 1724 return rc; 1725 1726 return avc_has_perm(newsid, sbsec->sid, 1727 SECCLASS_FILESYSTEM, 1728 FILESYSTEM__ASSOCIATE, &ad); 1729 } 1730 1731 /* Check whether a task can create a key. */ 1732 static int may_create_key(u32 ksid, 1733 struct task_struct *ctx) 1734 { 1735 u32 sid = task_sid(ctx); 1736 1737 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1738 } 1739 1740 #define MAY_LINK 0 1741 #define MAY_UNLINK 1 1742 #define MAY_RMDIR 2 1743 1744 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1745 static int may_link(struct inode *dir, 1746 struct dentry *dentry, 1747 int kind) 1748 1749 { 1750 struct inode_security_struct *dsec, *isec; 1751 struct common_audit_data ad; 1752 u32 sid = current_sid(); 1753 u32 av; 1754 int rc; 1755 1756 dsec = dir->i_security; 1757 isec = dentry->d_inode->i_security; 1758 1759 ad.type = LSM_AUDIT_DATA_DENTRY; 1760 ad.u.dentry = dentry; 1761 1762 av = DIR__SEARCH; 1763 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1764 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1765 if (rc) 1766 return rc; 1767 1768 switch (kind) { 1769 case MAY_LINK: 1770 av = FILE__LINK; 1771 break; 1772 case MAY_UNLINK: 1773 av = FILE__UNLINK; 1774 break; 1775 case MAY_RMDIR: 1776 av = DIR__RMDIR; 1777 break; 1778 default: 1779 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1780 __func__, kind); 1781 return 0; 1782 } 1783 1784 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1785 return rc; 1786 } 1787 1788 static inline int may_rename(struct inode *old_dir, 1789 struct dentry *old_dentry, 1790 struct inode *new_dir, 1791 struct dentry *new_dentry) 1792 { 1793 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1794 struct common_audit_data ad; 1795 u32 sid = current_sid(); 1796 u32 av; 1797 int old_is_dir, new_is_dir; 1798 int rc; 1799 1800 old_dsec = old_dir->i_security; 1801 old_isec = old_dentry->d_inode->i_security; 1802 old_is_dir = d_is_dir(old_dentry); 1803 new_dsec = new_dir->i_security; 1804 1805 ad.type = LSM_AUDIT_DATA_DENTRY; 1806 1807 ad.u.dentry = old_dentry; 1808 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1809 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1810 if (rc) 1811 return rc; 1812 rc = avc_has_perm(sid, old_isec->sid, 1813 old_isec->sclass, FILE__RENAME, &ad); 1814 if (rc) 1815 return rc; 1816 if (old_is_dir && new_dir != old_dir) { 1817 rc = avc_has_perm(sid, old_isec->sid, 1818 old_isec->sclass, DIR__REPARENT, &ad); 1819 if (rc) 1820 return rc; 1821 } 1822 1823 ad.u.dentry = new_dentry; 1824 av = DIR__ADD_NAME | DIR__SEARCH; 1825 if (d_is_positive(new_dentry)) 1826 av |= DIR__REMOVE_NAME; 1827 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1828 if (rc) 1829 return rc; 1830 if (d_is_positive(new_dentry)) { 1831 new_isec = new_dentry->d_inode->i_security; 1832 new_is_dir = d_is_dir(new_dentry); 1833 rc = avc_has_perm(sid, new_isec->sid, 1834 new_isec->sclass, 1835 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1836 if (rc) 1837 return rc; 1838 } 1839 1840 return 0; 1841 } 1842 1843 /* Check whether a task can perform a filesystem operation. */ 1844 static int superblock_has_perm(const struct cred *cred, 1845 struct super_block *sb, 1846 u32 perms, 1847 struct common_audit_data *ad) 1848 { 1849 struct superblock_security_struct *sbsec; 1850 u32 sid = cred_sid(cred); 1851 1852 sbsec = sb->s_security; 1853 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1854 } 1855 1856 /* Convert a Linux mode and permission mask to an access vector. */ 1857 static inline u32 file_mask_to_av(int mode, int mask) 1858 { 1859 u32 av = 0; 1860 1861 if (!S_ISDIR(mode)) { 1862 if (mask & MAY_EXEC) 1863 av |= FILE__EXECUTE; 1864 if (mask & MAY_READ) 1865 av |= FILE__READ; 1866 1867 if (mask & MAY_APPEND) 1868 av |= FILE__APPEND; 1869 else if (mask & MAY_WRITE) 1870 av |= FILE__WRITE; 1871 1872 } else { 1873 if (mask & MAY_EXEC) 1874 av |= DIR__SEARCH; 1875 if (mask & MAY_WRITE) 1876 av |= DIR__WRITE; 1877 if (mask & MAY_READ) 1878 av |= DIR__READ; 1879 } 1880 1881 return av; 1882 } 1883 1884 /* Convert a Linux file to an access vector. */ 1885 static inline u32 file_to_av(struct file *file) 1886 { 1887 u32 av = 0; 1888 1889 if (file->f_mode & FMODE_READ) 1890 av |= FILE__READ; 1891 if (file->f_mode & FMODE_WRITE) { 1892 if (file->f_flags & O_APPEND) 1893 av |= FILE__APPEND; 1894 else 1895 av |= FILE__WRITE; 1896 } 1897 if (!av) { 1898 /* 1899 * Special file opened with flags 3 for ioctl-only use. 1900 */ 1901 av = FILE__IOCTL; 1902 } 1903 1904 return av; 1905 } 1906 1907 /* 1908 * Convert a file to an access vector and include the correct open 1909 * open permission. 1910 */ 1911 static inline u32 open_file_to_av(struct file *file) 1912 { 1913 u32 av = file_to_av(file); 1914 1915 if (selinux_policycap_openperm) 1916 av |= FILE__OPEN; 1917 1918 return av; 1919 } 1920 1921 /* Hook functions begin here. */ 1922 1923 static int selinux_binder_set_context_mgr(struct task_struct *mgr) 1924 { 1925 u32 mysid = current_sid(); 1926 u32 mgrsid = task_sid(mgr); 1927 1928 return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER, 1929 BINDER__SET_CONTEXT_MGR, NULL); 1930 } 1931 1932 static int selinux_binder_transaction(struct task_struct *from, 1933 struct task_struct *to) 1934 { 1935 u32 mysid = current_sid(); 1936 u32 fromsid = task_sid(from); 1937 u32 tosid = task_sid(to); 1938 int rc; 1939 1940 if (mysid != fromsid) { 1941 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER, 1942 BINDER__IMPERSONATE, NULL); 1943 if (rc) 1944 return rc; 1945 } 1946 1947 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL, 1948 NULL); 1949 } 1950 1951 static int selinux_binder_transfer_binder(struct task_struct *from, 1952 struct task_struct *to) 1953 { 1954 u32 fromsid = task_sid(from); 1955 u32 tosid = task_sid(to); 1956 1957 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER, 1958 NULL); 1959 } 1960 1961 static int selinux_binder_transfer_file(struct task_struct *from, 1962 struct task_struct *to, 1963 struct file *file) 1964 { 1965 u32 sid = task_sid(to); 1966 struct file_security_struct *fsec = file->f_security; 1967 struct inode *inode = file->f_path.dentry->d_inode; 1968 struct inode_security_struct *isec = inode->i_security; 1969 struct common_audit_data ad; 1970 int rc; 1971 1972 ad.type = LSM_AUDIT_DATA_PATH; 1973 ad.u.path = file->f_path; 1974 1975 if (sid != fsec->sid) { 1976 rc = avc_has_perm(sid, fsec->sid, 1977 SECCLASS_FD, 1978 FD__USE, 1979 &ad); 1980 if (rc) 1981 return rc; 1982 } 1983 1984 if (unlikely(IS_PRIVATE(inode))) 1985 return 0; 1986 1987 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file), 1988 &ad); 1989 } 1990 1991 static int selinux_ptrace_access_check(struct task_struct *child, 1992 unsigned int mode) 1993 { 1994 int rc; 1995 1996 rc = cap_ptrace_access_check(child, mode); 1997 if (rc) 1998 return rc; 1999 2000 if (mode & PTRACE_MODE_READ) { 2001 u32 sid = current_sid(); 2002 u32 csid = task_sid(child); 2003 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL); 2004 } 2005 2006 return current_has_perm(child, PROCESS__PTRACE); 2007 } 2008 2009 static int selinux_ptrace_traceme(struct task_struct *parent) 2010 { 2011 int rc; 2012 2013 rc = cap_ptrace_traceme(parent); 2014 if (rc) 2015 return rc; 2016 2017 return task_has_perm(parent, current, PROCESS__PTRACE); 2018 } 2019 2020 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 2021 kernel_cap_t *inheritable, kernel_cap_t *permitted) 2022 { 2023 int error; 2024 2025 error = current_has_perm(target, PROCESS__GETCAP); 2026 if (error) 2027 return error; 2028 2029 return cap_capget(target, effective, inheritable, permitted); 2030 } 2031 2032 static int selinux_capset(struct cred *new, const struct cred *old, 2033 const kernel_cap_t *effective, 2034 const kernel_cap_t *inheritable, 2035 const kernel_cap_t *permitted) 2036 { 2037 int error; 2038 2039 error = cap_capset(new, old, 2040 effective, inheritable, permitted); 2041 if (error) 2042 return error; 2043 2044 return cred_has_perm(old, new, PROCESS__SETCAP); 2045 } 2046 2047 /* 2048 * (This comment used to live with the selinux_task_setuid hook, 2049 * which was removed). 2050 * 2051 * Since setuid only affects the current process, and since the SELinux 2052 * controls are not based on the Linux identity attributes, SELinux does not 2053 * need to control this operation. However, SELinux does control the use of 2054 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 2055 */ 2056 2057 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 2058 int cap, int audit) 2059 { 2060 int rc; 2061 2062 rc = cap_capable(cred, ns, cap, audit); 2063 if (rc) 2064 return rc; 2065 2066 return cred_has_capability(cred, cap, audit); 2067 } 2068 2069 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 2070 { 2071 const struct cred *cred = current_cred(); 2072 int rc = 0; 2073 2074 if (!sb) 2075 return 0; 2076 2077 switch (cmds) { 2078 case Q_SYNC: 2079 case Q_QUOTAON: 2080 case Q_QUOTAOFF: 2081 case Q_SETINFO: 2082 case Q_SETQUOTA: 2083 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2084 break; 2085 case Q_GETFMT: 2086 case Q_GETINFO: 2087 case Q_GETQUOTA: 2088 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2089 break; 2090 default: 2091 rc = 0; /* let the kernel handle invalid cmds */ 2092 break; 2093 } 2094 return rc; 2095 } 2096 2097 static int selinux_quota_on(struct dentry *dentry) 2098 { 2099 const struct cred *cred = current_cred(); 2100 2101 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 2102 } 2103 2104 static int selinux_syslog(int type) 2105 { 2106 int rc; 2107 2108 switch (type) { 2109 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2110 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2111 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 2112 break; 2113 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2114 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2115 /* Set level of messages printed to console */ 2116 case SYSLOG_ACTION_CONSOLE_LEVEL: 2117 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 2118 break; 2119 case SYSLOG_ACTION_CLOSE: /* Close log */ 2120 case SYSLOG_ACTION_OPEN: /* Open log */ 2121 case SYSLOG_ACTION_READ: /* Read from log */ 2122 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */ 2123 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 2124 default: 2125 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 2126 break; 2127 } 2128 return rc; 2129 } 2130 2131 /* 2132 * Check that a process has enough memory to allocate a new virtual 2133 * mapping. 0 means there is enough memory for the allocation to 2134 * succeed and -ENOMEM implies there is not. 2135 * 2136 * Do not audit the selinux permission check, as this is applied to all 2137 * processes that allocate mappings. 2138 */ 2139 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2140 { 2141 int rc, cap_sys_admin = 0; 2142 2143 rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN, 2144 SECURITY_CAP_NOAUDIT); 2145 if (rc == 0) 2146 cap_sys_admin = 1; 2147 2148 return __vm_enough_memory(mm, pages, cap_sys_admin); 2149 } 2150 2151 /* binprm security operations */ 2152 2153 static int check_nnp_nosuid(const struct linux_binprm *bprm, 2154 const struct task_security_struct *old_tsec, 2155 const struct task_security_struct *new_tsec) 2156 { 2157 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); 2158 int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID); 2159 int rc; 2160 2161 if (!nnp && !nosuid) 2162 return 0; /* neither NNP nor nosuid */ 2163 2164 if (new_tsec->sid == old_tsec->sid) 2165 return 0; /* No change in credentials */ 2166 2167 /* 2168 * The only transitions we permit under NNP or nosuid 2169 * are transitions to bounded SIDs, i.e. SIDs that are 2170 * guaranteed to only be allowed a subset of the permissions 2171 * of the current SID. 2172 */ 2173 rc = security_bounded_transition(old_tsec->sid, new_tsec->sid); 2174 if (rc) { 2175 /* 2176 * On failure, preserve the errno values for NNP vs nosuid. 2177 * NNP: Operation not permitted for caller. 2178 * nosuid: Permission denied to file. 2179 */ 2180 if (nnp) 2181 return -EPERM; 2182 else 2183 return -EACCES; 2184 } 2185 return 0; 2186 } 2187 2188 static int selinux_bprm_set_creds(struct linux_binprm *bprm) 2189 { 2190 const struct task_security_struct *old_tsec; 2191 struct task_security_struct *new_tsec; 2192 struct inode_security_struct *isec; 2193 struct common_audit_data ad; 2194 struct inode *inode = file_inode(bprm->file); 2195 int rc; 2196 2197 rc = cap_bprm_set_creds(bprm); 2198 if (rc) 2199 return rc; 2200 2201 /* SELinux context only depends on initial program or script and not 2202 * the script interpreter */ 2203 if (bprm->cred_prepared) 2204 return 0; 2205 2206 old_tsec = current_security(); 2207 new_tsec = bprm->cred->security; 2208 isec = inode->i_security; 2209 2210 /* Default to the current task SID. */ 2211 new_tsec->sid = old_tsec->sid; 2212 new_tsec->osid = old_tsec->sid; 2213 2214 /* Reset fs, key, and sock SIDs on execve. */ 2215 new_tsec->create_sid = 0; 2216 new_tsec->keycreate_sid = 0; 2217 new_tsec->sockcreate_sid = 0; 2218 2219 if (old_tsec->exec_sid) { 2220 new_tsec->sid = old_tsec->exec_sid; 2221 /* Reset exec SID on execve. */ 2222 new_tsec->exec_sid = 0; 2223 2224 /* Fail on NNP or nosuid if not an allowed transition. */ 2225 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2226 if (rc) 2227 return rc; 2228 } else { 2229 /* Check for a default transition on this program. */ 2230 rc = security_transition_sid(old_tsec->sid, isec->sid, 2231 SECCLASS_PROCESS, NULL, 2232 &new_tsec->sid); 2233 if (rc) 2234 return rc; 2235 2236 /* 2237 * Fallback to old SID on NNP or nosuid if not an allowed 2238 * transition. 2239 */ 2240 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2241 if (rc) 2242 new_tsec->sid = old_tsec->sid; 2243 } 2244 2245 ad.type = LSM_AUDIT_DATA_PATH; 2246 ad.u.path = bprm->file->f_path; 2247 2248 if (new_tsec->sid == old_tsec->sid) { 2249 rc = avc_has_perm(old_tsec->sid, isec->sid, 2250 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2251 if (rc) 2252 return rc; 2253 } else { 2254 /* Check permissions for the transition. */ 2255 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2256 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2257 if (rc) 2258 return rc; 2259 2260 rc = avc_has_perm(new_tsec->sid, isec->sid, 2261 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2262 if (rc) 2263 return rc; 2264 2265 /* Check for shared state */ 2266 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2267 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2268 SECCLASS_PROCESS, PROCESS__SHARE, 2269 NULL); 2270 if (rc) 2271 return -EPERM; 2272 } 2273 2274 /* Make sure that anyone attempting to ptrace over a task that 2275 * changes its SID has the appropriate permit */ 2276 if (bprm->unsafe & 2277 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2278 struct task_struct *tracer; 2279 struct task_security_struct *sec; 2280 u32 ptsid = 0; 2281 2282 rcu_read_lock(); 2283 tracer = ptrace_parent(current); 2284 if (likely(tracer != NULL)) { 2285 sec = __task_cred(tracer)->security; 2286 ptsid = sec->sid; 2287 } 2288 rcu_read_unlock(); 2289 2290 if (ptsid != 0) { 2291 rc = avc_has_perm(ptsid, new_tsec->sid, 2292 SECCLASS_PROCESS, 2293 PROCESS__PTRACE, NULL); 2294 if (rc) 2295 return -EPERM; 2296 } 2297 } 2298 2299 /* Clear any possibly unsafe personality bits on exec: */ 2300 bprm->per_clear |= PER_CLEAR_ON_SETID; 2301 } 2302 2303 return 0; 2304 } 2305 2306 static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2307 { 2308 const struct task_security_struct *tsec = current_security(); 2309 u32 sid, osid; 2310 int atsecure = 0; 2311 2312 sid = tsec->sid; 2313 osid = tsec->osid; 2314 2315 if (osid != sid) { 2316 /* Enable secure mode for SIDs transitions unless 2317 the noatsecure permission is granted between 2318 the two SIDs, i.e. ahp returns 0. */ 2319 atsecure = avc_has_perm(osid, sid, 2320 SECCLASS_PROCESS, 2321 PROCESS__NOATSECURE, NULL); 2322 } 2323 2324 return (atsecure || cap_bprm_secureexec(bprm)); 2325 } 2326 2327 static int match_file(const void *p, struct file *file, unsigned fd) 2328 { 2329 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; 2330 } 2331 2332 /* Derived from fs/exec.c:flush_old_files. */ 2333 static inline void flush_unauthorized_files(const struct cred *cred, 2334 struct files_struct *files) 2335 { 2336 struct file *file, *devnull = NULL; 2337 struct tty_struct *tty; 2338 int drop_tty = 0; 2339 unsigned n; 2340 2341 tty = get_current_tty(); 2342 if (tty) { 2343 spin_lock(&tty_files_lock); 2344 if (!list_empty(&tty->tty_files)) { 2345 struct tty_file_private *file_priv; 2346 2347 /* Revalidate access to controlling tty. 2348 Use file_path_has_perm on the tty path directly 2349 rather than using file_has_perm, as this particular 2350 open file may belong to another process and we are 2351 only interested in the inode-based check here. */ 2352 file_priv = list_first_entry(&tty->tty_files, 2353 struct tty_file_private, list); 2354 file = file_priv->file; 2355 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) 2356 drop_tty = 1; 2357 } 2358 spin_unlock(&tty_files_lock); 2359 tty_kref_put(tty); 2360 } 2361 /* Reset controlling tty. */ 2362 if (drop_tty) 2363 no_tty(); 2364 2365 /* Revalidate access to inherited open files. */ 2366 n = iterate_fd(files, 0, match_file, cred); 2367 if (!n) /* none found? */ 2368 return; 2369 2370 devnull = dentry_open(&selinux_null, O_RDWR, cred); 2371 if (IS_ERR(devnull)) 2372 devnull = NULL; 2373 /* replace all the matching ones with this */ 2374 do { 2375 replace_fd(n - 1, devnull, 0); 2376 } while ((n = iterate_fd(files, n, match_file, cred)) != 0); 2377 if (devnull) 2378 fput(devnull); 2379 } 2380 2381 /* 2382 * Prepare a process for imminent new credential changes due to exec 2383 */ 2384 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2385 { 2386 struct task_security_struct *new_tsec; 2387 struct rlimit *rlim, *initrlim; 2388 int rc, i; 2389 2390 new_tsec = bprm->cred->security; 2391 if (new_tsec->sid == new_tsec->osid) 2392 return; 2393 2394 /* Close files for which the new task SID is not authorized. */ 2395 flush_unauthorized_files(bprm->cred, current->files); 2396 2397 /* Always clear parent death signal on SID transitions. */ 2398 current->pdeath_signal = 0; 2399 2400 /* Check whether the new SID can inherit resource limits from the old 2401 * SID. If not, reset all soft limits to the lower of the current 2402 * task's hard limit and the init task's soft limit. 2403 * 2404 * Note that the setting of hard limits (even to lower them) can be 2405 * controlled by the setrlimit check. The inclusion of the init task's 2406 * soft limit into the computation is to avoid resetting soft limits 2407 * higher than the default soft limit for cases where the default is 2408 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2409 */ 2410 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2411 PROCESS__RLIMITINH, NULL); 2412 if (rc) { 2413 /* protect against do_prlimit() */ 2414 task_lock(current); 2415 for (i = 0; i < RLIM_NLIMITS; i++) { 2416 rlim = current->signal->rlim + i; 2417 initrlim = init_task.signal->rlim + i; 2418 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2419 } 2420 task_unlock(current); 2421 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2422 } 2423 } 2424 2425 /* 2426 * Clean up the process immediately after the installation of new credentials 2427 * due to exec 2428 */ 2429 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2430 { 2431 const struct task_security_struct *tsec = current_security(); 2432 struct itimerval itimer; 2433 u32 osid, sid; 2434 int rc, i; 2435 2436 osid = tsec->osid; 2437 sid = tsec->sid; 2438 2439 if (sid == osid) 2440 return; 2441 2442 /* Check whether the new SID can inherit signal state from the old SID. 2443 * If not, clear itimers to avoid subsequent signal generation and 2444 * flush and unblock signals. 2445 * 2446 * This must occur _after_ the task SID has been updated so that any 2447 * kill done after the flush will be checked against the new SID. 2448 */ 2449 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2450 if (rc) { 2451 memset(&itimer, 0, sizeof itimer); 2452 for (i = 0; i < 3; i++) 2453 do_setitimer(i, &itimer, NULL); 2454 spin_lock_irq(¤t->sighand->siglock); 2455 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) { 2456 __flush_signals(current); 2457 flush_signal_handlers(current, 1); 2458 sigemptyset(¤t->blocked); 2459 } 2460 spin_unlock_irq(¤t->sighand->siglock); 2461 } 2462 2463 /* Wake up the parent if it is waiting so that it can recheck 2464 * wait permission to the new task SID. */ 2465 read_lock(&tasklist_lock); 2466 __wake_up_parent(current, current->real_parent); 2467 read_unlock(&tasklist_lock); 2468 } 2469 2470 /* superblock security operations */ 2471 2472 static int selinux_sb_alloc_security(struct super_block *sb) 2473 { 2474 return superblock_alloc_security(sb); 2475 } 2476 2477 static void selinux_sb_free_security(struct super_block *sb) 2478 { 2479 superblock_free_security(sb); 2480 } 2481 2482 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2483 { 2484 if (plen > olen) 2485 return 0; 2486 2487 return !memcmp(prefix, option, plen); 2488 } 2489 2490 static inline int selinux_option(char *option, int len) 2491 { 2492 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2493 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2494 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2495 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) || 2496 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len)); 2497 } 2498 2499 static inline void take_option(char **to, char *from, int *first, int len) 2500 { 2501 if (!*first) { 2502 **to = ','; 2503 *to += 1; 2504 } else 2505 *first = 0; 2506 memcpy(*to, from, len); 2507 *to += len; 2508 } 2509 2510 static inline void take_selinux_option(char **to, char *from, int *first, 2511 int len) 2512 { 2513 int current_size = 0; 2514 2515 if (!*first) { 2516 **to = '|'; 2517 *to += 1; 2518 } else 2519 *first = 0; 2520 2521 while (current_size < len) { 2522 if (*from != '"') { 2523 **to = *from; 2524 *to += 1; 2525 } 2526 from += 1; 2527 current_size += 1; 2528 } 2529 } 2530 2531 static int selinux_sb_copy_data(char *orig, char *copy) 2532 { 2533 int fnosec, fsec, rc = 0; 2534 char *in_save, *in_curr, *in_end; 2535 char *sec_curr, *nosec_save, *nosec; 2536 int open_quote = 0; 2537 2538 in_curr = orig; 2539 sec_curr = copy; 2540 2541 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2542 if (!nosec) { 2543 rc = -ENOMEM; 2544 goto out; 2545 } 2546 2547 nosec_save = nosec; 2548 fnosec = fsec = 1; 2549 in_save = in_end = orig; 2550 2551 do { 2552 if (*in_end == '"') 2553 open_quote = !open_quote; 2554 if ((*in_end == ',' && open_quote == 0) || 2555 *in_end == '\0') { 2556 int len = in_end - in_curr; 2557 2558 if (selinux_option(in_curr, len)) 2559 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2560 else 2561 take_option(&nosec, in_curr, &fnosec, len); 2562 2563 in_curr = in_end + 1; 2564 } 2565 } while (*in_end++); 2566 2567 strcpy(in_save, nosec_save); 2568 free_page((unsigned long)nosec_save); 2569 out: 2570 return rc; 2571 } 2572 2573 static int selinux_sb_remount(struct super_block *sb, void *data) 2574 { 2575 int rc, i, *flags; 2576 struct security_mnt_opts opts; 2577 char *secdata, **mount_options; 2578 struct superblock_security_struct *sbsec = sb->s_security; 2579 2580 if (!(sbsec->flags & SE_SBINITIALIZED)) 2581 return 0; 2582 2583 if (!data) 2584 return 0; 2585 2586 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 2587 return 0; 2588 2589 security_init_mnt_opts(&opts); 2590 secdata = alloc_secdata(); 2591 if (!secdata) 2592 return -ENOMEM; 2593 rc = selinux_sb_copy_data(data, secdata); 2594 if (rc) 2595 goto out_free_secdata; 2596 2597 rc = selinux_parse_opts_str(secdata, &opts); 2598 if (rc) 2599 goto out_free_secdata; 2600 2601 mount_options = opts.mnt_opts; 2602 flags = opts.mnt_opts_flags; 2603 2604 for (i = 0; i < opts.num_mnt_opts; i++) { 2605 u32 sid; 2606 size_t len; 2607 2608 if (flags[i] == SBLABEL_MNT) 2609 continue; 2610 len = strlen(mount_options[i]); 2611 rc = security_context_to_sid(mount_options[i], len, &sid, 2612 GFP_KERNEL); 2613 if (rc) { 2614 printk(KERN_WARNING "SELinux: security_context_to_sid" 2615 "(%s) failed for (dev %s, type %s) errno=%d\n", 2616 mount_options[i], sb->s_id, sb->s_type->name, rc); 2617 goto out_free_opts; 2618 } 2619 rc = -EINVAL; 2620 switch (flags[i]) { 2621 case FSCONTEXT_MNT: 2622 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid)) 2623 goto out_bad_option; 2624 break; 2625 case CONTEXT_MNT: 2626 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid)) 2627 goto out_bad_option; 2628 break; 2629 case ROOTCONTEXT_MNT: { 2630 struct inode_security_struct *root_isec; 2631 root_isec = sb->s_root->d_inode->i_security; 2632 2633 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid)) 2634 goto out_bad_option; 2635 break; 2636 } 2637 case DEFCONTEXT_MNT: 2638 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid)) 2639 goto out_bad_option; 2640 break; 2641 default: 2642 goto out_free_opts; 2643 } 2644 } 2645 2646 rc = 0; 2647 out_free_opts: 2648 security_free_mnt_opts(&opts); 2649 out_free_secdata: 2650 free_secdata(secdata); 2651 return rc; 2652 out_bad_option: 2653 printk(KERN_WARNING "SELinux: unable to change security options " 2654 "during remount (dev %s, type=%s)\n", sb->s_id, 2655 sb->s_type->name); 2656 goto out_free_opts; 2657 } 2658 2659 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data) 2660 { 2661 const struct cred *cred = current_cred(); 2662 struct common_audit_data ad; 2663 int rc; 2664 2665 rc = superblock_doinit(sb, data); 2666 if (rc) 2667 return rc; 2668 2669 /* Allow all mounts performed by the kernel */ 2670 if (flags & MS_KERNMOUNT) 2671 return 0; 2672 2673 ad.type = LSM_AUDIT_DATA_DENTRY; 2674 ad.u.dentry = sb->s_root; 2675 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2676 } 2677 2678 static int selinux_sb_statfs(struct dentry *dentry) 2679 { 2680 const struct cred *cred = current_cred(); 2681 struct common_audit_data ad; 2682 2683 ad.type = LSM_AUDIT_DATA_DENTRY; 2684 ad.u.dentry = dentry->d_sb->s_root; 2685 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2686 } 2687 2688 static int selinux_mount(const char *dev_name, 2689 struct path *path, 2690 const char *type, 2691 unsigned long flags, 2692 void *data) 2693 { 2694 const struct cred *cred = current_cred(); 2695 2696 if (flags & MS_REMOUNT) 2697 return superblock_has_perm(cred, path->dentry->d_sb, 2698 FILESYSTEM__REMOUNT, NULL); 2699 else 2700 return path_has_perm(cred, path, FILE__MOUNTON); 2701 } 2702 2703 static int selinux_umount(struct vfsmount *mnt, int flags) 2704 { 2705 const struct cred *cred = current_cred(); 2706 2707 return superblock_has_perm(cred, mnt->mnt_sb, 2708 FILESYSTEM__UNMOUNT, NULL); 2709 } 2710 2711 /* inode security operations */ 2712 2713 static int selinux_inode_alloc_security(struct inode *inode) 2714 { 2715 return inode_alloc_security(inode); 2716 } 2717 2718 static void selinux_inode_free_security(struct inode *inode) 2719 { 2720 inode_free_security(inode); 2721 } 2722 2723 static int selinux_dentry_init_security(struct dentry *dentry, int mode, 2724 struct qstr *name, void **ctx, 2725 u32 *ctxlen) 2726 { 2727 const struct cred *cred = current_cred(); 2728 struct task_security_struct *tsec; 2729 struct inode_security_struct *dsec; 2730 struct superblock_security_struct *sbsec; 2731 struct inode *dir = dentry->d_parent->d_inode; 2732 u32 newsid; 2733 int rc; 2734 2735 tsec = cred->security; 2736 dsec = dir->i_security; 2737 sbsec = dir->i_sb->s_security; 2738 2739 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 2740 newsid = tsec->create_sid; 2741 } else { 2742 rc = security_transition_sid(tsec->sid, dsec->sid, 2743 inode_mode_to_security_class(mode), 2744 name, 2745 &newsid); 2746 if (rc) { 2747 printk(KERN_WARNING 2748 "%s: security_transition_sid failed, rc=%d\n", 2749 __func__, -rc); 2750 return rc; 2751 } 2752 } 2753 2754 return security_sid_to_context(newsid, (char **)ctx, ctxlen); 2755 } 2756 2757 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2758 const struct qstr *qstr, 2759 const char **name, 2760 void **value, size_t *len) 2761 { 2762 const struct task_security_struct *tsec = current_security(); 2763 struct inode_security_struct *dsec; 2764 struct superblock_security_struct *sbsec; 2765 u32 sid, newsid, clen; 2766 int rc; 2767 char *context; 2768 2769 dsec = dir->i_security; 2770 sbsec = dir->i_sb->s_security; 2771 2772 sid = tsec->sid; 2773 newsid = tsec->create_sid; 2774 2775 if ((sbsec->flags & SE_SBINITIALIZED) && 2776 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) 2777 newsid = sbsec->mntpoint_sid; 2778 else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) { 2779 rc = security_transition_sid(sid, dsec->sid, 2780 inode_mode_to_security_class(inode->i_mode), 2781 qstr, &newsid); 2782 if (rc) { 2783 printk(KERN_WARNING "%s: " 2784 "security_transition_sid failed, rc=%d (dev=%s " 2785 "ino=%ld)\n", 2786 __func__, 2787 -rc, inode->i_sb->s_id, inode->i_ino); 2788 return rc; 2789 } 2790 } 2791 2792 /* Possibly defer initialization to selinux_complete_init. */ 2793 if (sbsec->flags & SE_SBINITIALIZED) { 2794 struct inode_security_struct *isec = inode->i_security; 2795 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2796 isec->sid = newsid; 2797 isec->initialized = 1; 2798 } 2799 2800 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT)) 2801 return -EOPNOTSUPP; 2802 2803 if (name) 2804 *name = XATTR_SELINUX_SUFFIX; 2805 2806 if (value && len) { 2807 rc = security_sid_to_context_force(newsid, &context, &clen); 2808 if (rc) 2809 return rc; 2810 *value = context; 2811 *len = clen; 2812 } 2813 2814 return 0; 2815 } 2816 2817 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 2818 { 2819 return may_create(dir, dentry, SECCLASS_FILE); 2820 } 2821 2822 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2823 { 2824 return may_link(dir, old_dentry, MAY_LINK); 2825 } 2826 2827 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2828 { 2829 return may_link(dir, dentry, MAY_UNLINK); 2830 } 2831 2832 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2833 { 2834 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2835 } 2836 2837 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 2838 { 2839 return may_create(dir, dentry, SECCLASS_DIR); 2840 } 2841 2842 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2843 { 2844 return may_link(dir, dentry, MAY_RMDIR); 2845 } 2846 2847 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2848 { 2849 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2850 } 2851 2852 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2853 struct inode *new_inode, struct dentry *new_dentry) 2854 { 2855 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2856 } 2857 2858 static int selinux_inode_readlink(struct dentry *dentry) 2859 { 2860 const struct cred *cred = current_cred(); 2861 2862 return dentry_has_perm(cred, dentry, FILE__READ); 2863 } 2864 2865 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2866 { 2867 const struct cred *cred = current_cred(); 2868 2869 return dentry_has_perm(cred, dentry, FILE__READ); 2870 } 2871 2872 static noinline int audit_inode_permission(struct inode *inode, 2873 u32 perms, u32 audited, u32 denied, 2874 int result, 2875 unsigned flags) 2876 { 2877 struct common_audit_data ad; 2878 struct inode_security_struct *isec = inode->i_security; 2879 int rc; 2880 2881 ad.type = LSM_AUDIT_DATA_INODE; 2882 ad.u.inode = inode; 2883 2884 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms, 2885 audited, denied, result, &ad, flags); 2886 if (rc) 2887 return rc; 2888 return 0; 2889 } 2890 2891 static int selinux_inode_permission(struct inode *inode, int mask) 2892 { 2893 const struct cred *cred = current_cred(); 2894 u32 perms; 2895 bool from_access; 2896 unsigned flags = mask & MAY_NOT_BLOCK; 2897 struct inode_security_struct *isec; 2898 u32 sid; 2899 struct av_decision avd; 2900 int rc, rc2; 2901 u32 audited, denied; 2902 2903 from_access = mask & MAY_ACCESS; 2904 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 2905 2906 /* No permission to check. Existence test. */ 2907 if (!mask) 2908 return 0; 2909 2910 validate_creds(cred); 2911 2912 if (unlikely(IS_PRIVATE(inode))) 2913 return 0; 2914 2915 perms = file_mask_to_av(inode->i_mode, mask); 2916 2917 sid = cred_sid(cred); 2918 isec = inode->i_security; 2919 2920 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd); 2921 audited = avc_audit_required(perms, &avd, rc, 2922 from_access ? FILE__AUDIT_ACCESS : 0, 2923 &denied); 2924 if (likely(!audited)) 2925 return rc; 2926 2927 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags); 2928 if (rc2) 2929 return rc2; 2930 return rc; 2931 } 2932 2933 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2934 { 2935 const struct cred *cred = current_cred(); 2936 unsigned int ia_valid = iattr->ia_valid; 2937 __u32 av = FILE__WRITE; 2938 2939 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 2940 if (ia_valid & ATTR_FORCE) { 2941 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 2942 ATTR_FORCE); 2943 if (!ia_valid) 2944 return 0; 2945 } 2946 2947 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2948 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 2949 return dentry_has_perm(cred, dentry, FILE__SETATTR); 2950 2951 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)) 2952 av |= FILE__OPEN; 2953 2954 return dentry_has_perm(cred, dentry, av); 2955 } 2956 2957 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 2958 { 2959 const struct cred *cred = current_cred(); 2960 struct path path; 2961 2962 path.dentry = dentry; 2963 path.mnt = mnt; 2964 2965 return path_has_perm(cred, &path, FILE__GETATTR); 2966 } 2967 2968 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 2969 { 2970 const struct cred *cred = current_cred(); 2971 2972 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2973 sizeof XATTR_SECURITY_PREFIX - 1)) { 2974 if (!strcmp(name, XATTR_NAME_CAPS)) { 2975 if (!capable(CAP_SETFCAP)) 2976 return -EPERM; 2977 } else if (!capable(CAP_SYS_ADMIN)) { 2978 /* A different attribute in the security namespace. 2979 Restrict to administrator. */ 2980 return -EPERM; 2981 } 2982 } 2983 2984 /* Not an attribute we recognize, so just check the 2985 ordinary setattr permission. */ 2986 return dentry_has_perm(cred, dentry, FILE__SETATTR); 2987 } 2988 2989 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 2990 const void *value, size_t size, int flags) 2991 { 2992 struct inode *inode = dentry->d_inode; 2993 struct inode_security_struct *isec = inode->i_security; 2994 struct superblock_security_struct *sbsec; 2995 struct common_audit_data ad; 2996 u32 newsid, sid = current_sid(); 2997 int rc = 0; 2998 2999 if (strcmp(name, XATTR_NAME_SELINUX)) 3000 return selinux_inode_setotherxattr(dentry, name); 3001 3002 sbsec = inode->i_sb->s_security; 3003 if (!(sbsec->flags & SBLABEL_MNT)) 3004 return -EOPNOTSUPP; 3005 3006 if (!inode_owner_or_capable(inode)) 3007 return -EPERM; 3008 3009 ad.type = LSM_AUDIT_DATA_DENTRY; 3010 ad.u.dentry = dentry; 3011 3012 rc = avc_has_perm(sid, isec->sid, isec->sclass, 3013 FILE__RELABELFROM, &ad); 3014 if (rc) 3015 return rc; 3016 3017 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL); 3018 if (rc == -EINVAL) { 3019 if (!capable(CAP_MAC_ADMIN)) { 3020 struct audit_buffer *ab; 3021 size_t audit_size; 3022 const char *str; 3023 3024 /* We strip a nul only if it is at the end, otherwise the 3025 * context contains a nul and we should audit that */ 3026 if (value) { 3027 str = value; 3028 if (str[size - 1] == '\0') 3029 audit_size = size - 1; 3030 else 3031 audit_size = size; 3032 } else { 3033 str = ""; 3034 audit_size = 0; 3035 } 3036 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR); 3037 audit_log_format(ab, "op=setxattr invalid_context="); 3038 audit_log_n_untrustedstring(ab, value, audit_size); 3039 audit_log_end(ab); 3040 3041 return rc; 3042 } 3043 rc = security_context_to_sid_force(value, size, &newsid); 3044 } 3045 if (rc) 3046 return rc; 3047 3048 rc = avc_has_perm(sid, newsid, isec->sclass, 3049 FILE__RELABELTO, &ad); 3050 if (rc) 3051 return rc; 3052 3053 rc = security_validate_transition(isec->sid, newsid, sid, 3054 isec->sclass); 3055 if (rc) 3056 return rc; 3057 3058 return avc_has_perm(newsid, 3059 sbsec->sid, 3060 SECCLASS_FILESYSTEM, 3061 FILESYSTEM__ASSOCIATE, 3062 &ad); 3063 } 3064 3065 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 3066 const void *value, size_t size, 3067 int flags) 3068 { 3069 struct inode *inode = dentry->d_inode; 3070 struct inode_security_struct *isec = inode->i_security; 3071 u32 newsid; 3072 int rc; 3073 3074 if (strcmp(name, XATTR_NAME_SELINUX)) { 3075 /* Not an attribute we recognize, so nothing to do. */ 3076 return; 3077 } 3078 3079 rc = security_context_to_sid_force(value, size, &newsid); 3080 if (rc) { 3081 printk(KERN_ERR "SELinux: unable to map context to SID" 3082 "for (%s, %lu), rc=%d\n", 3083 inode->i_sb->s_id, inode->i_ino, -rc); 3084 return; 3085 } 3086 3087 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3088 isec->sid = newsid; 3089 isec->initialized = 1; 3090 3091 return; 3092 } 3093 3094 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 3095 { 3096 const struct cred *cred = current_cred(); 3097 3098 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3099 } 3100 3101 static int selinux_inode_listxattr(struct dentry *dentry) 3102 { 3103 const struct cred *cred = current_cred(); 3104 3105 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3106 } 3107 3108 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 3109 { 3110 if (strcmp(name, XATTR_NAME_SELINUX)) 3111 return selinux_inode_setotherxattr(dentry, name); 3112 3113 /* No one is allowed to remove a SELinux security label. 3114 You can change the label, but all data must be labeled. */ 3115 return -EACCES; 3116 } 3117 3118 /* 3119 * Copy the inode security context value to the user. 3120 * 3121 * Permission check is handled by selinux_inode_getxattr hook. 3122 */ 3123 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 3124 { 3125 u32 size; 3126 int error; 3127 char *context = NULL; 3128 struct inode_security_struct *isec = inode->i_security; 3129 3130 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3131 return -EOPNOTSUPP; 3132 3133 /* 3134 * If the caller has CAP_MAC_ADMIN, then get the raw context 3135 * value even if it is not defined by current policy; otherwise, 3136 * use the in-core value under current policy. 3137 * Use the non-auditing forms of the permission checks since 3138 * getxattr may be called by unprivileged processes commonly 3139 * and lack of permission just means that we fall back to the 3140 * in-core context value, not a denial. 3141 */ 3142 error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN, 3143 SECURITY_CAP_NOAUDIT); 3144 if (!error) 3145 error = security_sid_to_context_force(isec->sid, &context, 3146 &size); 3147 else 3148 error = security_sid_to_context(isec->sid, &context, &size); 3149 if (error) 3150 return error; 3151 error = size; 3152 if (alloc) { 3153 *buffer = context; 3154 goto out_nofree; 3155 } 3156 kfree(context); 3157 out_nofree: 3158 return error; 3159 } 3160 3161 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 3162 const void *value, size_t size, int flags) 3163 { 3164 struct inode_security_struct *isec = inode->i_security; 3165 u32 newsid; 3166 int rc; 3167 3168 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3169 return -EOPNOTSUPP; 3170 3171 if (!value || !size) 3172 return -EACCES; 3173 3174 rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL); 3175 if (rc) 3176 return rc; 3177 3178 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3179 isec->sid = newsid; 3180 isec->initialized = 1; 3181 return 0; 3182 } 3183 3184 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 3185 { 3186 const int len = sizeof(XATTR_NAME_SELINUX); 3187 if (buffer && len <= buffer_size) 3188 memcpy(buffer, XATTR_NAME_SELINUX, len); 3189 return len; 3190 } 3191 3192 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid) 3193 { 3194 struct inode_security_struct *isec = inode->i_security; 3195 *secid = isec->sid; 3196 } 3197 3198 /* file security operations */ 3199 3200 static int selinux_revalidate_file_permission(struct file *file, int mask) 3201 { 3202 const struct cred *cred = current_cred(); 3203 struct inode *inode = file_inode(file); 3204 3205 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 3206 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 3207 mask |= MAY_APPEND; 3208 3209 return file_has_perm(cred, file, 3210 file_mask_to_av(inode->i_mode, mask)); 3211 } 3212 3213 static int selinux_file_permission(struct file *file, int mask) 3214 { 3215 struct inode *inode = file_inode(file); 3216 struct file_security_struct *fsec = file->f_security; 3217 struct inode_security_struct *isec = inode->i_security; 3218 u32 sid = current_sid(); 3219 3220 if (!mask) 3221 /* No permission to check. Existence test. */ 3222 return 0; 3223 3224 if (sid == fsec->sid && fsec->isid == isec->sid && 3225 fsec->pseqno == avc_policy_seqno()) 3226 /* No change since file_open check. */ 3227 return 0; 3228 3229 return selinux_revalidate_file_permission(file, mask); 3230 } 3231 3232 static int selinux_file_alloc_security(struct file *file) 3233 { 3234 return file_alloc_security(file); 3235 } 3236 3237 static void selinux_file_free_security(struct file *file) 3238 { 3239 file_free_security(file); 3240 } 3241 3242 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3243 unsigned long arg) 3244 { 3245 const struct cred *cred = current_cred(); 3246 int error = 0; 3247 3248 switch (cmd) { 3249 case FIONREAD: 3250 /* fall through */ 3251 case FIBMAP: 3252 /* fall through */ 3253 case FIGETBSZ: 3254 /* fall through */ 3255 case FS_IOC_GETFLAGS: 3256 /* fall through */ 3257 case FS_IOC_GETVERSION: 3258 error = file_has_perm(cred, file, FILE__GETATTR); 3259 break; 3260 3261 case FS_IOC_SETFLAGS: 3262 /* fall through */ 3263 case FS_IOC_SETVERSION: 3264 error = file_has_perm(cred, file, FILE__SETATTR); 3265 break; 3266 3267 /* sys_ioctl() checks */ 3268 case FIONBIO: 3269 /* fall through */ 3270 case FIOASYNC: 3271 error = file_has_perm(cred, file, 0); 3272 break; 3273 3274 case KDSKBENT: 3275 case KDSKBSENT: 3276 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3277 SECURITY_CAP_AUDIT); 3278 break; 3279 3280 /* default case assumes that the command will go 3281 * to the file's ioctl() function. 3282 */ 3283 default: 3284 error = file_has_perm(cred, file, FILE__IOCTL); 3285 } 3286 return error; 3287 } 3288 3289 static int default_noexec; 3290 3291 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3292 { 3293 const struct cred *cred = current_cred(); 3294 int rc = 0; 3295 3296 if (default_noexec && 3297 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 3298 /* 3299 * We are making executable an anonymous mapping or a 3300 * private file mapping that will also be writable. 3301 * This has an additional check. 3302 */ 3303 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM); 3304 if (rc) 3305 goto error; 3306 } 3307 3308 if (file) { 3309 /* read access is always possible with a mapping */ 3310 u32 av = FILE__READ; 3311 3312 /* write access only matters if the mapping is shared */ 3313 if (shared && (prot & PROT_WRITE)) 3314 av |= FILE__WRITE; 3315 3316 if (prot & PROT_EXEC) 3317 av |= FILE__EXECUTE; 3318 3319 return file_has_perm(cred, file, av); 3320 } 3321 3322 error: 3323 return rc; 3324 } 3325 3326 static int selinux_mmap_addr(unsigned long addr) 3327 { 3328 int rc; 3329 3330 /* do DAC check on address space usage */ 3331 rc = cap_mmap_addr(addr); 3332 if (rc) 3333 return rc; 3334 3335 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3336 u32 sid = current_sid(); 3337 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3338 MEMPROTECT__MMAP_ZERO, NULL); 3339 } 3340 3341 return rc; 3342 } 3343 3344 static int selinux_mmap_file(struct file *file, unsigned long reqprot, 3345 unsigned long prot, unsigned long flags) 3346 { 3347 if (selinux_checkreqprot) 3348 prot = reqprot; 3349 3350 return file_map_prot_check(file, prot, 3351 (flags & MAP_TYPE) == MAP_SHARED); 3352 } 3353 3354 static int selinux_file_mprotect(struct vm_area_struct *vma, 3355 unsigned long reqprot, 3356 unsigned long prot) 3357 { 3358 const struct cred *cred = current_cred(); 3359 3360 if (selinux_checkreqprot) 3361 prot = reqprot; 3362 3363 if (default_noexec && 3364 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3365 int rc = 0; 3366 if (vma->vm_start >= vma->vm_mm->start_brk && 3367 vma->vm_end <= vma->vm_mm->brk) { 3368 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP); 3369 } else if (!vma->vm_file && 3370 vma->vm_start <= vma->vm_mm->start_stack && 3371 vma->vm_end >= vma->vm_mm->start_stack) { 3372 rc = current_has_perm(current, PROCESS__EXECSTACK); 3373 } else if (vma->vm_file && vma->anon_vma) { 3374 /* 3375 * We are making executable a file mapping that has 3376 * had some COW done. Since pages might have been 3377 * written, check ability to execute the possibly 3378 * modified content. This typically should only 3379 * occur for text relocations. 3380 */ 3381 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3382 } 3383 if (rc) 3384 return rc; 3385 } 3386 3387 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3388 } 3389 3390 static int selinux_file_lock(struct file *file, unsigned int cmd) 3391 { 3392 const struct cred *cred = current_cred(); 3393 3394 return file_has_perm(cred, file, FILE__LOCK); 3395 } 3396 3397 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3398 unsigned long arg) 3399 { 3400 const struct cred *cred = current_cred(); 3401 int err = 0; 3402 3403 switch (cmd) { 3404 case F_SETFL: 3405 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3406 err = file_has_perm(cred, file, FILE__WRITE); 3407 break; 3408 } 3409 /* fall through */ 3410 case F_SETOWN: 3411 case F_SETSIG: 3412 case F_GETFL: 3413 case F_GETOWN: 3414 case F_GETSIG: 3415 case F_GETOWNER_UIDS: 3416 /* Just check FD__USE permission */ 3417 err = file_has_perm(cred, file, 0); 3418 break; 3419 case F_GETLK: 3420 case F_SETLK: 3421 case F_SETLKW: 3422 case F_OFD_GETLK: 3423 case F_OFD_SETLK: 3424 case F_OFD_SETLKW: 3425 #if BITS_PER_LONG == 32 3426 case F_GETLK64: 3427 case F_SETLK64: 3428 case F_SETLKW64: 3429 #endif 3430 err = file_has_perm(cred, file, FILE__LOCK); 3431 break; 3432 } 3433 3434 return err; 3435 } 3436 3437 static void selinux_file_set_fowner(struct file *file) 3438 { 3439 struct file_security_struct *fsec; 3440 3441 fsec = file->f_security; 3442 fsec->fown_sid = current_sid(); 3443 } 3444 3445 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3446 struct fown_struct *fown, int signum) 3447 { 3448 struct file *file; 3449 u32 sid = task_sid(tsk); 3450 u32 perm; 3451 struct file_security_struct *fsec; 3452 3453 /* struct fown_struct is never outside the context of a struct file */ 3454 file = container_of(fown, struct file, f_owner); 3455 3456 fsec = file->f_security; 3457 3458 if (!signum) 3459 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3460 else 3461 perm = signal_to_av(signum); 3462 3463 return avc_has_perm(fsec->fown_sid, sid, 3464 SECCLASS_PROCESS, perm, NULL); 3465 } 3466 3467 static int selinux_file_receive(struct file *file) 3468 { 3469 const struct cred *cred = current_cred(); 3470 3471 return file_has_perm(cred, file, file_to_av(file)); 3472 } 3473 3474 static int selinux_file_open(struct file *file, const struct cred *cred) 3475 { 3476 struct file_security_struct *fsec; 3477 struct inode_security_struct *isec; 3478 3479 fsec = file->f_security; 3480 isec = file_inode(file)->i_security; 3481 /* 3482 * Save inode label and policy sequence number 3483 * at open-time so that selinux_file_permission 3484 * can determine whether revalidation is necessary. 3485 * Task label is already saved in the file security 3486 * struct as its SID. 3487 */ 3488 fsec->isid = isec->sid; 3489 fsec->pseqno = avc_policy_seqno(); 3490 /* 3491 * Since the inode label or policy seqno may have changed 3492 * between the selinux_inode_permission check and the saving 3493 * of state above, recheck that access is still permitted. 3494 * Otherwise, access might never be revalidated against the 3495 * new inode label or new policy. 3496 * This check is not redundant - do not remove. 3497 */ 3498 return file_path_has_perm(cred, file, open_file_to_av(file)); 3499 } 3500 3501 /* task security operations */ 3502 3503 static int selinux_task_create(unsigned long clone_flags) 3504 { 3505 return current_has_perm(current, PROCESS__FORK); 3506 } 3507 3508 /* 3509 * allocate the SELinux part of blank credentials 3510 */ 3511 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3512 { 3513 struct task_security_struct *tsec; 3514 3515 tsec = kzalloc(sizeof(struct task_security_struct), gfp); 3516 if (!tsec) 3517 return -ENOMEM; 3518 3519 cred->security = tsec; 3520 return 0; 3521 } 3522 3523 /* 3524 * detach and free the LSM part of a set of credentials 3525 */ 3526 static void selinux_cred_free(struct cred *cred) 3527 { 3528 struct task_security_struct *tsec = cred->security; 3529 3530 /* 3531 * cred->security == NULL if security_cred_alloc_blank() or 3532 * security_prepare_creds() returned an error. 3533 */ 3534 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE); 3535 cred->security = (void *) 0x7UL; 3536 kfree(tsec); 3537 } 3538 3539 /* 3540 * prepare a new set of credentials for modification 3541 */ 3542 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3543 gfp_t gfp) 3544 { 3545 const struct task_security_struct *old_tsec; 3546 struct task_security_struct *tsec; 3547 3548 old_tsec = old->security; 3549 3550 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp); 3551 if (!tsec) 3552 return -ENOMEM; 3553 3554 new->security = tsec; 3555 return 0; 3556 } 3557 3558 /* 3559 * transfer the SELinux data to a blank set of creds 3560 */ 3561 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3562 { 3563 const struct task_security_struct *old_tsec = old->security; 3564 struct task_security_struct *tsec = new->security; 3565 3566 *tsec = *old_tsec; 3567 } 3568 3569 /* 3570 * set the security data for a kernel service 3571 * - all the creation contexts are set to unlabelled 3572 */ 3573 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3574 { 3575 struct task_security_struct *tsec = new->security; 3576 u32 sid = current_sid(); 3577 int ret; 3578 3579 ret = avc_has_perm(sid, secid, 3580 SECCLASS_KERNEL_SERVICE, 3581 KERNEL_SERVICE__USE_AS_OVERRIDE, 3582 NULL); 3583 if (ret == 0) { 3584 tsec->sid = secid; 3585 tsec->create_sid = 0; 3586 tsec->keycreate_sid = 0; 3587 tsec->sockcreate_sid = 0; 3588 } 3589 return ret; 3590 } 3591 3592 /* 3593 * set the file creation context in a security record to the same as the 3594 * objective context of the specified inode 3595 */ 3596 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3597 { 3598 struct inode_security_struct *isec = inode->i_security; 3599 struct task_security_struct *tsec = new->security; 3600 u32 sid = current_sid(); 3601 int ret; 3602 3603 ret = avc_has_perm(sid, isec->sid, 3604 SECCLASS_KERNEL_SERVICE, 3605 KERNEL_SERVICE__CREATE_FILES_AS, 3606 NULL); 3607 3608 if (ret == 0) 3609 tsec->create_sid = isec->sid; 3610 return ret; 3611 } 3612 3613 static int selinux_kernel_module_request(char *kmod_name) 3614 { 3615 u32 sid; 3616 struct common_audit_data ad; 3617 3618 sid = task_sid(current); 3619 3620 ad.type = LSM_AUDIT_DATA_KMOD; 3621 ad.u.kmod_name = kmod_name; 3622 3623 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM, 3624 SYSTEM__MODULE_REQUEST, &ad); 3625 } 3626 3627 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3628 { 3629 return current_has_perm(p, PROCESS__SETPGID); 3630 } 3631 3632 static int selinux_task_getpgid(struct task_struct *p) 3633 { 3634 return current_has_perm(p, PROCESS__GETPGID); 3635 } 3636 3637 static int selinux_task_getsid(struct task_struct *p) 3638 { 3639 return current_has_perm(p, PROCESS__GETSESSION); 3640 } 3641 3642 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3643 { 3644 *secid = task_sid(p); 3645 } 3646 3647 static int selinux_task_setnice(struct task_struct *p, int nice) 3648 { 3649 int rc; 3650 3651 rc = cap_task_setnice(p, nice); 3652 if (rc) 3653 return rc; 3654 3655 return current_has_perm(p, PROCESS__SETSCHED); 3656 } 3657 3658 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3659 { 3660 int rc; 3661 3662 rc = cap_task_setioprio(p, ioprio); 3663 if (rc) 3664 return rc; 3665 3666 return current_has_perm(p, PROCESS__SETSCHED); 3667 } 3668 3669 static int selinux_task_getioprio(struct task_struct *p) 3670 { 3671 return current_has_perm(p, PROCESS__GETSCHED); 3672 } 3673 3674 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 3675 struct rlimit *new_rlim) 3676 { 3677 struct rlimit *old_rlim = p->signal->rlim + resource; 3678 3679 /* Control the ability to change the hard limit (whether 3680 lowering or raising it), so that the hard limit can 3681 later be used as a safe reset point for the soft limit 3682 upon context transitions. See selinux_bprm_committing_creds. */ 3683 if (old_rlim->rlim_max != new_rlim->rlim_max) 3684 return current_has_perm(p, PROCESS__SETRLIMIT); 3685 3686 return 0; 3687 } 3688 3689 static int selinux_task_setscheduler(struct task_struct *p) 3690 { 3691 int rc; 3692 3693 rc = cap_task_setscheduler(p); 3694 if (rc) 3695 return rc; 3696 3697 return current_has_perm(p, PROCESS__SETSCHED); 3698 } 3699 3700 static int selinux_task_getscheduler(struct task_struct *p) 3701 { 3702 return current_has_perm(p, PROCESS__GETSCHED); 3703 } 3704 3705 static int selinux_task_movememory(struct task_struct *p) 3706 { 3707 return current_has_perm(p, PROCESS__SETSCHED); 3708 } 3709 3710 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3711 int sig, u32 secid) 3712 { 3713 u32 perm; 3714 int rc; 3715 3716 if (!sig) 3717 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3718 else 3719 perm = signal_to_av(sig); 3720 if (secid) 3721 rc = avc_has_perm(secid, task_sid(p), 3722 SECCLASS_PROCESS, perm, NULL); 3723 else 3724 rc = current_has_perm(p, perm); 3725 return rc; 3726 } 3727 3728 static int selinux_task_wait(struct task_struct *p) 3729 { 3730 return task_has_perm(p, current, PROCESS__SIGCHLD); 3731 } 3732 3733 static void selinux_task_to_inode(struct task_struct *p, 3734 struct inode *inode) 3735 { 3736 struct inode_security_struct *isec = inode->i_security; 3737 u32 sid = task_sid(p); 3738 3739 isec->sid = sid; 3740 isec->initialized = 1; 3741 } 3742 3743 /* Returns error only if unable to parse addresses */ 3744 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3745 struct common_audit_data *ad, u8 *proto) 3746 { 3747 int offset, ihlen, ret = -EINVAL; 3748 struct iphdr _iph, *ih; 3749 3750 offset = skb_network_offset(skb); 3751 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3752 if (ih == NULL) 3753 goto out; 3754 3755 ihlen = ih->ihl * 4; 3756 if (ihlen < sizeof(_iph)) 3757 goto out; 3758 3759 ad->u.net->v4info.saddr = ih->saddr; 3760 ad->u.net->v4info.daddr = ih->daddr; 3761 ret = 0; 3762 3763 if (proto) 3764 *proto = ih->protocol; 3765 3766 switch (ih->protocol) { 3767 case IPPROTO_TCP: { 3768 struct tcphdr _tcph, *th; 3769 3770 if (ntohs(ih->frag_off) & IP_OFFSET) 3771 break; 3772 3773 offset += ihlen; 3774 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3775 if (th == NULL) 3776 break; 3777 3778 ad->u.net->sport = th->source; 3779 ad->u.net->dport = th->dest; 3780 break; 3781 } 3782 3783 case IPPROTO_UDP: { 3784 struct udphdr _udph, *uh; 3785 3786 if (ntohs(ih->frag_off) & IP_OFFSET) 3787 break; 3788 3789 offset += ihlen; 3790 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3791 if (uh == NULL) 3792 break; 3793 3794 ad->u.net->sport = uh->source; 3795 ad->u.net->dport = uh->dest; 3796 break; 3797 } 3798 3799 case IPPROTO_DCCP: { 3800 struct dccp_hdr _dccph, *dh; 3801 3802 if (ntohs(ih->frag_off) & IP_OFFSET) 3803 break; 3804 3805 offset += ihlen; 3806 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3807 if (dh == NULL) 3808 break; 3809 3810 ad->u.net->sport = dh->dccph_sport; 3811 ad->u.net->dport = dh->dccph_dport; 3812 break; 3813 } 3814 3815 default: 3816 break; 3817 } 3818 out: 3819 return ret; 3820 } 3821 3822 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3823 3824 /* Returns error only if unable to parse addresses */ 3825 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3826 struct common_audit_data *ad, u8 *proto) 3827 { 3828 u8 nexthdr; 3829 int ret = -EINVAL, offset; 3830 struct ipv6hdr _ipv6h, *ip6; 3831 __be16 frag_off; 3832 3833 offset = skb_network_offset(skb); 3834 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3835 if (ip6 == NULL) 3836 goto out; 3837 3838 ad->u.net->v6info.saddr = ip6->saddr; 3839 ad->u.net->v6info.daddr = ip6->daddr; 3840 ret = 0; 3841 3842 nexthdr = ip6->nexthdr; 3843 offset += sizeof(_ipv6h); 3844 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 3845 if (offset < 0) 3846 goto out; 3847 3848 if (proto) 3849 *proto = nexthdr; 3850 3851 switch (nexthdr) { 3852 case IPPROTO_TCP: { 3853 struct tcphdr _tcph, *th; 3854 3855 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3856 if (th == NULL) 3857 break; 3858 3859 ad->u.net->sport = th->source; 3860 ad->u.net->dport = th->dest; 3861 break; 3862 } 3863 3864 case IPPROTO_UDP: { 3865 struct udphdr _udph, *uh; 3866 3867 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3868 if (uh == NULL) 3869 break; 3870 3871 ad->u.net->sport = uh->source; 3872 ad->u.net->dport = uh->dest; 3873 break; 3874 } 3875 3876 case IPPROTO_DCCP: { 3877 struct dccp_hdr _dccph, *dh; 3878 3879 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3880 if (dh == NULL) 3881 break; 3882 3883 ad->u.net->sport = dh->dccph_sport; 3884 ad->u.net->dport = dh->dccph_dport; 3885 break; 3886 } 3887 3888 /* includes fragments */ 3889 default: 3890 break; 3891 } 3892 out: 3893 return ret; 3894 } 3895 3896 #endif /* IPV6 */ 3897 3898 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 3899 char **_addrp, int src, u8 *proto) 3900 { 3901 char *addrp; 3902 int ret; 3903 3904 switch (ad->u.net->family) { 3905 case PF_INET: 3906 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3907 if (ret) 3908 goto parse_error; 3909 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 3910 &ad->u.net->v4info.daddr); 3911 goto okay; 3912 3913 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3914 case PF_INET6: 3915 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3916 if (ret) 3917 goto parse_error; 3918 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 3919 &ad->u.net->v6info.daddr); 3920 goto okay; 3921 #endif /* IPV6 */ 3922 default: 3923 addrp = NULL; 3924 goto okay; 3925 } 3926 3927 parse_error: 3928 printk(KERN_WARNING 3929 "SELinux: failure in selinux_parse_skb()," 3930 " unable to parse packet\n"); 3931 return ret; 3932 3933 okay: 3934 if (_addrp) 3935 *_addrp = addrp; 3936 return 0; 3937 } 3938 3939 /** 3940 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 3941 * @skb: the packet 3942 * @family: protocol family 3943 * @sid: the packet's peer label SID 3944 * 3945 * Description: 3946 * Check the various different forms of network peer labeling and determine 3947 * the peer label/SID for the packet; most of the magic actually occurs in 3948 * the security server function security_net_peersid_cmp(). The function 3949 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 3950 * or -EACCES if @sid is invalid due to inconsistencies with the different 3951 * peer labels. 3952 * 3953 */ 3954 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 3955 { 3956 int err; 3957 u32 xfrm_sid; 3958 u32 nlbl_sid; 3959 u32 nlbl_type; 3960 3961 err = selinux_xfrm_skb_sid(skb, &xfrm_sid); 3962 if (unlikely(err)) 3963 return -EACCES; 3964 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 3965 if (unlikely(err)) 3966 return -EACCES; 3967 3968 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 3969 if (unlikely(err)) { 3970 printk(KERN_WARNING 3971 "SELinux: failure in selinux_skb_peerlbl_sid()," 3972 " unable to determine packet's peer label\n"); 3973 return -EACCES; 3974 } 3975 3976 return 0; 3977 } 3978 3979 /** 3980 * selinux_conn_sid - Determine the child socket label for a connection 3981 * @sk_sid: the parent socket's SID 3982 * @skb_sid: the packet's SID 3983 * @conn_sid: the resulting connection SID 3984 * 3985 * If @skb_sid is valid then the user:role:type information from @sk_sid is 3986 * combined with the MLS information from @skb_sid in order to create 3987 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy 3988 * of @sk_sid. Returns zero on success, negative values on failure. 3989 * 3990 */ 3991 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) 3992 { 3993 int err = 0; 3994 3995 if (skb_sid != SECSID_NULL) 3996 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid); 3997 else 3998 *conn_sid = sk_sid; 3999 4000 return err; 4001 } 4002 4003 /* socket security operations */ 4004 4005 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 4006 u16 secclass, u32 *socksid) 4007 { 4008 if (tsec->sockcreate_sid > SECSID_NULL) { 4009 *socksid = tsec->sockcreate_sid; 4010 return 0; 4011 } 4012 4013 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL, 4014 socksid); 4015 } 4016 4017 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms) 4018 { 4019 struct sk_security_struct *sksec = sk->sk_security; 4020 struct common_audit_data ad; 4021 struct lsm_network_audit net = {0,}; 4022 u32 tsid = task_sid(task); 4023 4024 if (sksec->sid == SECINITSID_KERNEL) 4025 return 0; 4026 4027 ad.type = LSM_AUDIT_DATA_NET; 4028 ad.u.net = &net; 4029 ad.u.net->sk = sk; 4030 4031 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad); 4032 } 4033 4034 static int selinux_socket_create(int family, int type, 4035 int protocol, int kern) 4036 { 4037 const struct task_security_struct *tsec = current_security(); 4038 u32 newsid; 4039 u16 secclass; 4040 int rc; 4041 4042 if (kern) 4043 return 0; 4044 4045 secclass = socket_type_to_security_class(family, type, protocol); 4046 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 4047 if (rc) 4048 return rc; 4049 4050 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 4051 } 4052 4053 static int selinux_socket_post_create(struct socket *sock, int family, 4054 int type, int protocol, int kern) 4055 { 4056 const struct task_security_struct *tsec = current_security(); 4057 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 4058 struct sk_security_struct *sksec; 4059 int err = 0; 4060 4061 isec->sclass = socket_type_to_security_class(family, type, protocol); 4062 4063 if (kern) 4064 isec->sid = SECINITSID_KERNEL; 4065 else { 4066 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid)); 4067 if (err) 4068 return err; 4069 } 4070 4071 isec->initialized = 1; 4072 4073 if (sock->sk) { 4074 sksec = sock->sk->sk_security; 4075 sksec->sid = isec->sid; 4076 sksec->sclass = isec->sclass; 4077 err = selinux_netlbl_socket_post_create(sock->sk, family); 4078 } 4079 4080 return err; 4081 } 4082 4083 /* Range of port numbers used to automatically bind. 4084 Need to determine whether we should perform a name_bind 4085 permission check between the socket and the port number. */ 4086 4087 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 4088 { 4089 struct sock *sk = sock->sk; 4090 u16 family; 4091 int err; 4092 4093 err = sock_has_perm(current, sk, SOCKET__BIND); 4094 if (err) 4095 goto out; 4096 4097 /* 4098 * If PF_INET or PF_INET6, check name_bind permission for the port. 4099 * Multiple address binding for SCTP is not supported yet: we just 4100 * check the first address now. 4101 */ 4102 family = sk->sk_family; 4103 if (family == PF_INET || family == PF_INET6) { 4104 char *addrp; 4105 struct sk_security_struct *sksec = sk->sk_security; 4106 struct common_audit_data ad; 4107 struct lsm_network_audit net = {0,}; 4108 struct sockaddr_in *addr4 = NULL; 4109 struct sockaddr_in6 *addr6 = NULL; 4110 unsigned short snum; 4111 u32 sid, node_perm; 4112 4113 if (family == PF_INET) { 4114 addr4 = (struct sockaddr_in *)address; 4115 snum = ntohs(addr4->sin_port); 4116 addrp = (char *)&addr4->sin_addr.s_addr; 4117 } else { 4118 addr6 = (struct sockaddr_in6 *)address; 4119 snum = ntohs(addr6->sin6_port); 4120 addrp = (char *)&addr6->sin6_addr.s6_addr; 4121 } 4122 4123 if (snum) { 4124 int low, high; 4125 4126 inet_get_local_port_range(sock_net(sk), &low, &high); 4127 4128 if (snum < max(PROT_SOCK, low) || snum > high) { 4129 err = sel_netport_sid(sk->sk_protocol, 4130 snum, &sid); 4131 if (err) 4132 goto out; 4133 ad.type = LSM_AUDIT_DATA_NET; 4134 ad.u.net = &net; 4135 ad.u.net->sport = htons(snum); 4136 ad.u.net->family = family; 4137 err = avc_has_perm(sksec->sid, sid, 4138 sksec->sclass, 4139 SOCKET__NAME_BIND, &ad); 4140 if (err) 4141 goto out; 4142 } 4143 } 4144 4145 switch (sksec->sclass) { 4146 case SECCLASS_TCP_SOCKET: 4147 node_perm = TCP_SOCKET__NODE_BIND; 4148 break; 4149 4150 case SECCLASS_UDP_SOCKET: 4151 node_perm = UDP_SOCKET__NODE_BIND; 4152 break; 4153 4154 case SECCLASS_DCCP_SOCKET: 4155 node_perm = DCCP_SOCKET__NODE_BIND; 4156 break; 4157 4158 default: 4159 node_perm = RAWIP_SOCKET__NODE_BIND; 4160 break; 4161 } 4162 4163 err = sel_netnode_sid(addrp, family, &sid); 4164 if (err) 4165 goto out; 4166 4167 ad.type = LSM_AUDIT_DATA_NET; 4168 ad.u.net = &net; 4169 ad.u.net->sport = htons(snum); 4170 ad.u.net->family = family; 4171 4172 if (family == PF_INET) 4173 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 4174 else 4175 ad.u.net->v6info.saddr = addr6->sin6_addr; 4176 4177 err = avc_has_perm(sksec->sid, sid, 4178 sksec->sclass, node_perm, &ad); 4179 if (err) 4180 goto out; 4181 } 4182 out: 4183 return err; 4184 } 4185 4186 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 4187 { 4188 struct sock *sk = sock->sk; 4189 struct sk_security_struct *sksec = sk->sk_security; 4190 int err; 4191 4192 err = sock_has_perm(current, sk, SOCKET__CONNECT); 4193 if (err) 4194 return err; 4195 4196 /* 4197 * If a TCP or DCCP socket, check name_connect permission for the port. 4198 */ 4199 if (sksec->sclass == SECCLASS_TCP_SOCKET || 4200 sksec->sclass == SECCLASS_DCCP_SOCKET) { 4201 struct common_audit_data ad; 4202 struct lsm_network_audit net = {0,}; 4203 struct sockaddr_in *addr4 = NULL; 4204 struct sockaddr_in6 *addr6 = NULL; 4205 unsigned short snum; 4206 u32 sid, perm; 4207 4208 if (sk->sk_family == PF_INET) { 4209 addr4 = (struct sockaddr_in *)address; 4210 if (addrlen < sizeof(struct sockaddr_in)) 4211 return -EINVAL; 4212 snum = ntohs(addr4->sin_port); 4213 } else { 4214 addr6 = (struct sockaddr_in6 *)address; 4215 if (addrlen < SIN6_LEN_RFC2133) 4216 return -EINVAL; 4217 snum = ntohs(addr6->sin6_port); 4218 } 4219 4220 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 4221 if (err) 4222 goto out; 4223 4224 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ? 4225 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 4226 4227 ad.type = LSM_AUDIT_DATA_NET; 4228 ad.u.net = &net; 4229 ad.u.net->dport = htons(snum); 4230 ad.u.net->family = sk->sk_family; 4231 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad); 4232 if (err) 4233 goto out; 4234 } 4235 4236 err = selinux_netlbl_socket_connect(sk, address); 4237 4238 out: 4239 return err; 4240 } 4241 4242 static int selinux_socket_listen(struct socket *sock, int backlog) 4243 { 4244 return sock_has_perm(current, sock->sk, SOCKET__LISTEN); 4245 } 4246 4247 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 4248 { 4249 int err; 4250 struct inode_security_struct *isec; 4251 struct inode_security_struct *newisec; 4252 4253 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT); 4254 if (err) 4255 return err; 4256 4257 newisec = SOCK_INODE(newsock)->i_security; 4258 4259 isec = SOCK_INODE(sock)->i_security; 4260 newisec->sclass = isec->sclass; 4261 newisec->sid = isec->sid; 4262 newisec->initialized = 1; 4263 4264 return 0; 4265 } 4266 4267 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4268 int size) 4269 { 4270 return sock_has_perm(current, sock->sk, SOCKET__WRITE); 4271 } 4272 4273 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4274 int size, int flags) 4275 { 4276 return sock_has_perm(current, sock->sk, SOCKET__READ); 4277 } 4278 4279 static int selinux_socket_getsockname(struct socket *sock) 4280 { 4281 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 4282 } 4283 4284 static int selinux_socket_getpeername(struct socket *sock) 4285 { 4286 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 4287 } 4288 4289 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 4290 { 4291 int err; 4292 4293 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT); 4294 if (err) 4295 return err; 4296 4297 return selinux_netlbl_socket_setsockopt(sock, level, optname); 4298 } 4299 4300 static int selinux_socket_getsockopt(struct socket *sock, int level, 4301 int optname) 4302 { 4303 return sock_has_perm(current, sock->sk, SOCKET__GETOPT); 4304 } 4305 4306 static int selinux_socket_shutdown(struct socket *sock, int how) 4307 { 4308 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN); 4309 } 4310 4311 static int selinux_socket_unix_stream_connect(struct sock *sock, 4312 struct sock *other, 4313 struct sock *newsk) 4314 { 4315 struct sk_security_struct *sksec_sock = sock->sk_security; 4316 struct sk_security_struct *sksec_other = other->sk_security; 4317 struct sk_security_struct *sksec_new = newsk->sk_security; 4318 struct common_audit_data ad; 4319 struct lsm_network_audit net = {0,}; 4320 int err; 4321 4322 ad.type = LSM_AUDIT_DATA_NET; 4323 ad.u.net = &net; 4324 ad.u.net->sk = other; 4325 4326 err = avc_has_perm(sksec_sock->sid, sksec_other->sid, 4327 sksec_other->sclass, 4328 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 4329 if (err) 4330 return err; 4331 4332 /* server child socket */ 4333 sksec_new->peer_sid = sksec_sock->sid; 4334 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid, 4335 &sksec_new->sid); 4336 if (err) 4337 return err; 4338 4339 /* connecting socket */ 4340 sksec_sock->peer_sid = sksec_new->sid; 4341 4342 return 0; 4343 } 4344 4345 static int selinux_socket_unix_may_send(struct socket *sock, 4346 struct socket *other) 4347 { 4348 struct sk_security_struct *ssec = sock->sk->sk_security; 4349 struct sk_security_struct *osec = other->sk->sk_security; 4350 struct common_audit_data ad; 4351 struct lsm_network_audit net = {0,}; 4352 4353 ad.type = LSM_AUDIT_DATA_NET; 4354 ad.u.net = &net; 4355 ad.u.net->sk = other->sk; 4356 4357 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 4358 &ad); 4359 } 4360 4361 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, 4362 char *addrp, u16 family, u32 peer_sid, 4363 struct common_audit_data *ad) 4364 { 4365 int err; 4366 u32 if_sid; 4367 u32 node_sid; 4368 4369 err = sel_netif_sid(ns, ifindex, &if_sid); 4370 if (err) 4371 return err; 4372 err = avc_has_perm(peer_sid, if_sid, 4373 SECCLASS_NETIF, NETIF__INGRESS, ad); 4374 if (err) 4375 return err; 4376 4377 err = sel_netnode_sid(addrp, family, &node_sid); 4378 if (err) 4379 return err; 4380 return avc_has_perm(peer_sid, node_sid, 4381 SECCLASS_NODE, NODE__RECVFROM, ad); 4382 } 4383 4384 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4385 u16 family) 4386 { 4387 int err = 0; 4388 struct sk_security_struct *sksec = sk->sk_security; 4389 u32 sk_sid = sksec->sid; 4390 struct common_audit_data ad; 4391 struct lsm_network_audit net = {0,}; 4392 char *addrp; 4393 4394 ad.type = LSM_AUDIT_DATA_NET; 4395 ad.u.net = &net; 4396 ad.u.net->netif = skb->skb_iif; 4397 ad.u.net->family = family; 4398 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4399 if (err) 4400 return err; 4401 4402 if (selinux_secmark_enabled()) { 4403 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4404 PACKET__RECV, &ad); 4405 if (err) 4406 return err; 4407 } 4408 4409 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4410 if (err) 4411 return err; 4412 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4413 4414 return err; 4415 } 4416 4417 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4418 { 4419 int err; 4420 struct sk_security_struct *sksec = sk->sk_security; 4421 u16 family = sk->sk_family; 4422 u32 sk_sid = sksec->sid; 4423 struct common_audit_data ad; 4424 struct lsm_network_audit net = {0,}; 4425 char *addrp; 4426 u8 secmark_active; 4427 u8 peerlbl_active; 4428 4429 if (family != PF_INET && family != PF_INET6) 4430 return 0; 4431 4432 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4433 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4434 family = PF_INET; 4435 4436 /* If any sort of compatibility mode is enabled then handoff processing 4437 * to the selinux_sock_rcv_skb_compat() function to deal with the 4438 * special handling. We do this in an attempt to keep this function 4439 * as fast and as clean as possible. */ 4440 if (!selinux_policycap_netpeer) 4441 return selinux_sock_rcv_skb_compat(sk, skb, family); 4442 4443 secmark_active = selinux_secmark_enabled(); 4444 peerlbl_active = selinux_peerlbl_enabled(); 4445 if (!secmark_active && !peerlbl_active) 4446 return 0; 4447 4448 ad.type = LSM_AUDIT_DATA_NET; 4449 ad.u.net = &net; 4450 ad.u.net->netif = skb->skb_iif; 4451 ad.u.net->family = family; 4452 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4453 if (err) 4454 return err; 4455 4456 if (peerlbl_active) { 4457 u32 peer_sid; 4458 4459 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4460 if (err) 4461 return err; 4462 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, 4463 addrp, family, peer_sid, &ad); 4464 if (err) { 4465 selinux_netlbl_err(skb, err, 0); 4466 return err; 4467 } 4468 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4469 PEER__RECV, &ad); 4470 if (err) { 4471 selinux_netlbl_err(skb, err, 0); 4472 return err; 4473 } 4474 } 4475 4476 if (secmark_active) { 4477 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4478 PACKET__RECV, &ad); 4479 if (err) 4480 return err; 4481 } 4482 4483 return err; 4484 } 4485 4486 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4487 int __user *optlen, unsigned len) 4488 { 4489 int err = 0; 4490 char *scontext; 4491 u32 scontext_len; 4492 struct sk_security_struct *sksec = sock->sk->sk_security; 4493 u32 peer_sid = SECSID_NULL; 4494 4495 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4496 sksec->sclass == SECCLASS_TCP_SOCKET) 4497 peer_sid = sksec->peer_sid; 4498 if (peer_sid == SECSID_NULL) 4499 return -ENOPROTOOPT; 4500 4501 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4502 if (err) 4503 return err; 4504 4505 if (scontext_len > len) { 4506 err = -ERANGE; 4507 goto out_len; 4508 } 4509 4510 if (copy_to_user(optval, scontext, scontext_len)) 4511 err = -EFAULT; 4512 4513 out_len: 4514 if (put_user(scontext_len, optlen)) 4515 err = -EFAULT; 4516 kfree(scontext); 4517 return err; 4518 } 4519 4520 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4521 { 4522 u32 peer_secid = SECSID_NULL; 4523 u16 family; 4524 4525 if (skb && skb->protocol == htons(ETH_P_IP)) 4526 family = PF_INET; 4527 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 4528 family = PF_INET6; 4529 else if (sock) 4530 family = sock->sk->sk_family; 4531 else 4532 goto out; 4533 4534 if (sock && family == PF_UNIX) 4535 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid); 4536 else if (skb) 4537 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4538 4539 out: 4540 *secid = peer_secid; 4541 if (peer_secid == SECSID_NULL) 4542 return -EINVAL; 4543 return 0; 4544 } 4545 4546 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4547 { 4548 struct sk_security_struct *sksec; 4549 4550 sksec = kzalloc(sizeof(*sksec), priority); 4551 if (!sksec) 4552 return -ENOMEM; 4553 4554 sksec->peer_sid = SECINITSID_UNLABELED; 4555 sksec->sid = SECINITSID_UNLABELED; 4556 selinux_netlbl_sk_security_reset(sksec); 4557 sk->sk_security = sksec; 4558 4559 return 0; 4560 } 4561 4562 static void selinux_sk_free_security(struct sock *sk) 4563 { 4564 struct sk_security_struct *sksec = sk->sk_security; 4565 4566 sk->sk_security = NULL; 4567 selinux_netlbl_sk_security_free(sksec); 4568 kfree(sksec); 4569 } 4570 4571 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4572 { 4573 struct sk_security_struct *sksec = sk->sk_security; 4574 struct sk_security_struct *newsksec = newsk->sk_security; 4575 4576 newsksec->sid = sksec->sid; 4577 newsksec->peer_sid = sksec->peer_sid; 4578 newsksec->sclass = sksec->sclass; 4579 4580 selinux_netlbl_sk_security_reset(newsksec); 4581 } 4582 4583 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4584 { 4585 if (!sk) 4586 *secid = SECINITSID_ANY_SOCKET; 4587 else { 4588 struct sk_security_struct *sksec = sk->sk_security; 4589 4590 *secid = sksec->sid; 4591 } 4592 } 4593 4594 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4595 { 4596 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 4597 struct sk_security_struct *sksec = sk->sk_security; 4598 4599 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4600 sk->sk_family == PF_UNIX) 4601 isec->sid = sksec->sid; 4602 sksec->sclass = isec->sclass; 4603 } 4604 4605 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4606 struct request_sock *req) 4607 { 4608 struct sk_security_struct *sksec = sk->sk_security; 4609 int err; 4610 u16 family = req->rsk_ops->family; 4611 u32 connsid; 4612 u32 peersid; 4613 4614 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 4615 if (err) 4616 return err; 4617 err = selinux_conn_sid(sksec->sid, peersid, &connsid); 4618 if (err) 4619 return err; 4620 req->secid = connsid; 4621 req->peer_secid = peersid; 4622 4623 return selinux_netlbl_inet_conn_request(req, family); 4624 } 4625 4626 static void selinux_inet_csk_clone(struct sock *newsk, 4627 const struct request_sock *req) 4628 { 4629 struct sk_security_struct *newsksec = newsk->sk_security; 4630 4631 newsksec->sid = req->secid; 4632 newsksec->peer_sid = req->peer_secid; 4633 /* NOTE: Ideally, we should also get the isec->sid for the 4634 new socket in sync, but we don't have the isec available yet. 4635 So we will wait until sock_graft to do it, by which 4636 time it will have been created and available. */ 4637 4638 /* We don't need to take any sort of lock here as we are the only 4639 * thread with access to newsksec */ 4640 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 4641 } 4642 4643 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 4644 { 4645 u16 family = sk->sk_family; 4646 struct sk_security_struct *sksec = sk->sk_security; 4647 4648 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4649 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4650 family = PF_INET; 4651 4652 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 4653 } 4654 4655 static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk) 4656 { 4657 skb_set_owner_w(skb, sk); 4658 } 4659 4660 static int selinux_secmark_relabel_packet(u32 sid) 4661 { 4662 const struct task_security_struct *__tsec; 4663 u32 tsid; 4664 4665 __tsec = current_security(); 4666 tsid = __tsec->sid; 4667 4668 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL); 4669 } 4670 4671 static void selinux_secmark_refcount_inc(void) 4672 { 4673 atomic_inc(&selinux_secmark_refcount); 4674 } 4675 4676 static void selinux_secmark_refcount_dec(void) 4677 { 4678 atomic_dec(&selinux_secmark_refcount); 4679 } 4680 4681 static void selinux_req_classify_flow(const struct request_sock *req, 4682 struct flowi *fl) 4683 { 4684 fl->flowi_secid = req->secid; 4685 } 4686 4687 static int selinux_tun_dev_alloc_security(void **security) 4688 { 4689 struct tun_security_struct *tunsec; 4690 4691 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); 4692 if (!tunsec) 4693 return -ENOMEM; 4694 tunsec->sid = current_sid(); 4695 4696 *security = tunsec; 4697 return 0; 4698 } 4699 4700 static void selinux_tun_dev_free_security(void *security) 4701 { 4702 kfree(security); 4703 } 4704 4705 static int selinux_tun_dev_create(void) 4706 { 4707 u32 sid = current_sid(); 4708 4709 /* we aren't taking into account the "sockcreate" SID since the socket 4710 * that is being created here is not a socket in the traditional sense, 4711 * instead it is a private sock, accessible only to the kernel, and 4712 * representing a wide range of network traffic spanning multiple 4713 * connections unlike traditional sockets - check the TUN driver to 4714 * get a better understanding of why this socket is special */ 4715 4716 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 4717 NULL); 4718 } 4719 4720 static int selinux_tun_dev_attach_queue(void *security) 4721 { 4722 struct tun_security_struct *tunsec = security; 4723 4724 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, 4725 TUN_SOCKET__ATTACH_QUEUE, NULL); 4726 } 4727 4728 static int selinux_tun_dev_attach(struct sock *sk, void *security) 4729 { 4730 struct tun_security_struct *tunsec = security; 4731 struct sk_security_struct *sksec = sk->sk_security; 4732 4733 /* we don't currently perform any NetLabel based labeling here and it 4734 * isn't clear that we would want to do so anyway; while we could apply 4735 * labeling without the support of the TUN user the resulting labeled 4736 * traffic from the other end of the connection would almost certainly 4737 * cause confusion to the TUN user that had no idea network labeling 4738 * protocols were being used */ 4739 4740 sksec->sid = tunsec->sid; 4741 sksec->sclass = SECCLASS_TUN_SOCKET; 4742 4743 return 0; 4744 } 4745 4746 static int selinux_tun_dev_open(void *security) 4747 { 4748 struct tun_security_struct *tunsec = security; 4749 u32 sid = current_sid(); 4750 int err; 4751 4752 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET, 4753 TUN_SOCKET__RELABELFROM, NULL); 4754 if (err) 4755 return err; 4756 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, 4757 TUN_SOCKET__RELABELTO, NULL); 4758 if (err) 4759 return err; 4760 tunsec->sid = sid; 4761 4762 return 0; 4763 } 4764 4765 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 4766 { 4767 int err = 0; 4768 u32 perm; 4769 struct nlmsghdr *nlh; 4770 struct sk_security_struct *sksec = sk->sk_security; 4771 4772 if (skb->len < NLMSG_HDRLEN) { 4773 err = -EINVAL; 4774 goto out; 4775 } 4776 nlh = nlmsg_hdr(skb); 4777 4778 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm); 4779 if (err) { 4780 if (err == -EINVAL) { 4781 printk(KERN_WARNING 4782 "SELinux: unrecognized netlink message:" 4783 " protocol=%hu nlmsg_type=%hu sclass=%hu\n", 4784 sk->sk_protocol, nlh->nlmsg_type, sksec->sclass); 4785 if (!selinux_enforcing || security_get_allow_unknown()) 4786 err = 0; 4787 } 4788 4789 /* Ignore */ 4790 if (err == -ENOENT) 4791 err = 0; 4792 goto out; 4793 } 4794 4795 err = sock_has_perm(current, sk, perm); 4796 out: 4797 return err; 4798 } 4799 4800 #ifdef CONFIG_NETFILTER 4801 4802 static unsigned int selinux_ip_forward(struct sk_buff *skb, 4803 const struct net_device *indev, 4804 u16 family) 4805 { 4806 int err; 4807 char *addrp; 4808 u32 peer_sid; 4809 struct common_audit_data ad; 4810 struct lsm_network_audit net = {0,}; 4811 u8 secmark_active; 4812 u8 netlbl_active; 4813 u8 peerlbl_active; 4814 4815 if (!selinux_policycap_netpeer) 4816 return NF_ACCEPT; 4817 4818 secmark_active = selinux_secmark_enabled(); 4819 netlbl_active = netlbl_enabled(); 4820 peerlbl_active = selinux_peerlbl_enabled(); 4821 if (!secmark_active && !peerlbl_active) 4822 return NF_ACCEPT; 4823 4824 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 4825 return NF_DROP; 4826 4827 ad.type = LSM_AUDIT_DATA_NET; 4828 ad.u.net = &net; 4829 ad.u.net->netif = indev->ifindex; 4830 ad.u.net->family = family; 4831 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 4832 return NF_DROP; 4833 4834 if (peerlbl_active) { 4835 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex, 4836 addrp, family, peer_sid, &ad); 4837 if (err) { 4838 selinux_netlbl_err(skb, err, 1); 4839 return NF_DROP; 4840 } 4841 } 4842 4843 if (secmark_active) 4844 if (avc_has_perm(peer_sid, skb->secmark, 4845 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 4846 return NF_DROP; 4847 4848 if (netlbl_active) 4849 /* we do this in the FORWARD path and not the POST_ROUTING 4850 * path because we want to make sure we apply the necessary 4851 * labeling before IPsec is applied so we can leverage AH 4852 * protection */ 4853 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 4854 return NF_DROP; 4855 4856 return NF_ACCEPT; 4857 } 4858 4859 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops, 4860 struct sk_buff *skb, 4861 const struct net_device *in, 4862 const struct net_device *out, 4863 int (*okfn)(struct sk_buff *)) 4864 { 4865 return selinux_ip_forward(skb, in, PF_INET); 4866 } 4867 4868 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4869 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops, 4870 struct sk_buff *skb, 4871 const struct net_device *in, 4872 const struct net_device *out, 4873 int (*okfn)(struct sk_buff *)) 4874 { 4875 return selinux_ip_forward(skb, in, PF_INET6); 4876 } 4877 #endif /* IPV6 */ 4878 4879 static unsigned int selinux_ip_output(struct sk_buff *skb, 4880 u16 family) 4881 { 4882 struct sock *sk; 4883 u32 sid; 4884 4885 if (!netlbl_enabled()) 4886 return NF_ACCEPT; 4887 4888 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 4889 * because we want to make sure we apply the necessary labeling 4890 * before IPsec is applied so we can leverage AH protection */ 4891 sk = skb->sk; 4892 if (sk) { 4893 struct sk_security_struct *sksec; 4894 4895 if (sk->sk_state == TCP_LISTEN) 4896 /* if the socket is the listening state then this 4897 * packet is a SYN-ACK packet which means it needs to 4898 * be labeled based on the connection/request_sock and 4899 * not the parent socket. unfortunately, we can't 4900 * lookup the request_sock yet as it isn't queued on 4901 * the parent socket until after the SYN-ACK is sent. 4902 * the "solution" is to simply pass the packet as-is 4903 * as any IP option based labeling should be copied 4904 * from the initial connection request (in the IP 4905 * layer). it is far from ideal, but until we get a 4906 * security label in the packet itself this is the 4907 * best we can do. */ 4908 return NF_ACCEPT; 4909 4910 /* standard practice, label using the parent socket */ 4911 sksec = sk->sk_security; 4912 sid = sksec->sid; 4913 } else 4914 sid = SECINITSID_KERNEL; 4915 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 4916 return NF_DROP; 4917 4918 return NF_ACCEPT; 4919 } 4920 4921 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops, 4922 struct sk_buff *skb, 4923 const struct net_device *in, 4924 const struct net_device *out, 4925 int (*okfn)(struct sk_buff *)) 4926 { 4927 return selinux_ip_output(skb, PF_INET); 4928 } 4929 4930 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 4931 int ifindex, 4932 u16 family) 4933 { 4934 struct sock *sk = skb->sk; 4935 struct sk_security_struct *sksec; 4936 struct common_audit_data ad; 4937 struct lsm_network_audit net = {0,}; 4938 char *addrp; 4939 u8 proto; 4940 4941 if (sk == NULL) 4942 return NF_ACCEPT; 4943 sksec = sk->sk_security; 4944 4945 ad.type = LSM_AUDIT_DATA_NET; 4946 ad.u.net = &net; 4947 ad.u.net->netif = ifindex; 4948 ad.u.net->family = family; 4949 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 4950 return NF_DROP; 4951 4952 if (selinux_secmark_enabled()) 4953 if (avc_has_perm(sksec->sid, skb->secmark, 4954 SECCLASS_PACKET, PACKET__SEND, &ad)) 4955 return NF_DROP_ERR(-ECONNREFUSED); 4956 4957 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 4958 return NF_DROP_ERR(-ECONNREFUSED); 4959 4960 return NF_ACCEPT; 4961 } 4962 4963 static unsigned int selinux_ip_postroute(struct sk_buff *skb, 4964 const struct net_device *outdev, 4965 u16 family) 4966 { 4967 u32 secmark_perm; 4968 u32 peer_sid; 4969 int ifindex = outdev->ifindex; 4970 struct sock *sk; 4971 struct common_audit_data ad; 4972 struct lsm_network_audit net = {0,}; 4973 char *addrp; 4974 u8 secmark_active; 4975 u8 peerlbl_active; 4976 4977 /* If any sort of compatibility mode is enabled then handoff processing 4978 * to the selinux_ip_postroute_compat() function to deal with the 4979 * special handling. We do this in an attempt to keep this function 4980 * as fast and as clean as possible. */ 4981 if (!selinux_policycap_netpeer) 4982 return selinux_ip_postroute_compat(skb, ifindex, family); 4983 4984 secmark_active = selinux_secmark_enabled(); 4985 peerlbl_active = selinux_peerlbl_enabled(); 4986 if (!secmark_active && !peerlbl_active) 4987 return NF_ACCEPT; 4988 4989 sk = skb->sk; 4990 4991 #ifdef CONFIG_XFRM 4992 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 4993 * packet transformation so allow the packet to pass without any checks 4994 * since we'll have another chance to perform access control checks 4995 * when the packet is on it's final way out. 4996 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 4997 * is NULL, in this case go ahead and apply access control. 4998 * NOTE: if this is a local socket (skb->sk != NULL) that is in the 4999 * TCP listening state we cannot wait until the XFRM processing 5000 * is done as we will miss out on the SA label if we do; 5001 * unfortunately, this means more work, but it is only once per 5002 * connection. */ 5003 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && 5004 !(sk != NULL && sk->sk_state == TCP_LISTEN)) 5005 return NF_ACCEPT; 5006 #endif 5007 5008 if (sk == NULL) { 5009 /* Without an associated socket the packet is either coming 5010 * from the kernel or it is being forwarded; check the packet 5011 * to determine which and if the packet is being forwarded 5012 * query the packet directly to determine the security label. */ 5013 if (skb->skb_iif) { 5014 secmark_perm = PACKET__FORWARD_OUT; 5015 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 5016 return NF_DROP; 5017 } else { 5018 secmark_perm = PACKET__SEND; 5019 peer_sid = SECINITSID_KERNEL; 5020 } 5021 } else if (sk->sk_state == TCP_LISTEN) { 5022 /* Locally generated packet but the associated socket is in the 5023 * listening state which means this is a SYN-ACK packet. In 5024 * this particular case the correct security label is assigned 5025 * to the connection/request_sock but unfortunately we can't 5026 * query the request_sock as it isn't queued on the parent 5027 * socket until after the SYN-ACK packet is sent; the only 5028 * viable choice is to regenerate the label like we do in 5029 * selinux_inet_conn_request(). See also selinux_ip_output() 5030 * for similar problems. */ 5031 u32 skb_sid; 5032 struct sk_security_struct *sksec = sk->sk_security; 5033 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) 5034 return NF_DROP; 5035 /* At this point, if the returned skb peerlbl is SECSID_NULL 5036 * and the packet has been through at least one XFRM 5037 * transformation then we must be dealing with the "final" 5038 * form of labeled IPsec packet; since we've already applied 5039 * all of our access controls on this packet we can safely 5040 * pass the packet. */ 5041 if (skb_sid == SECSID_NULL) { 5042 switch (family) { 5043 case PF_INET: 5044 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 5045 return NF_ACCEPT; 5046 break; 5047 case PF_INET6: 5048 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 5049 return NF_ACCEPT; 5050 break; 5051 default: 5052 return NF_DROP_ERR(-ECONNREFUSED); 5053 } 5054 } 5055 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) 5056 return NF_DROP; 5057 secmark_perm = PACKET__SEND; 5058 } else { 5059 /* Locally generated packet, fetch the security label from the 5060 * associated socket. */ 5061 struct sk_security_struct *sksec = sk->sk_security; 5062 peer_sid = sksec->sid; 5063 secmark_perm = PACKET__SEND; 5064 } 5065 5066 ad.type = LSM_AUDIT_DATA_NET; 5067 ad.u.net = &net; 5068 ad.u.net->netif = ifindex; 5069 ad.u.net->family = family; 5070 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 5071 return NF_DROP; 5072 5073 if (secmark_active) 5074 if (avc_has_perm(peer_sid, skb->secmark, 5075 SECCLASS_PACKET, secmark_perm, &ad)) 5076 return NF_DROP_ERR(-ECONNREFUSED); 5077 5078 if (peerlbl_active) { 5079 u32 if_sid; 5080 u32 node_sid; 5081 5082 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid)) 5083 return NF_DROP; 5084 if (avc_has_perm(peer_sid, if_sid, 5085 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 5086 return NF_DROP_ERR(-ECONNREFUSED); 5087 5088 if (sel_netnode_sid(addrp, family, &node_sid)) 5089 return NF_DROP; 5090 if (avc_has_perm(peer_sid, node_sid, 5091 SECCLASS_NODE, NODE__SENDTO, &ad)) 5092 return NF_DROP_ERR(-ECONNREFUSED); 5093 } 5094 5095 return NF_ACCEPT; 5096 } 5097 5098 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops, 5099 struct sk_buff *skb, 5100 const struct net_device *in, 5101 const struct net_device *out, 5102 int (*okfn)(struct sk_buff *)) 5103 { 5104 return selinux_ip_postroute(skb, out, PF_INET); 5105 } 5106 5107 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5108 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops, 5109 struct sk_buff *skb, 5110 const struct net_device *in, 5111 const struct net_device *out, 5112 int (*okfn)(struct sk_buff *)) 5113 { 5114 return selinux_ip_postroute(skb, out, PF_INET6); 5115 } 5116 #endif /* IPV6 */ 5117 5118 #endif /* CONFIG_NETFILTER */ 5119 5120 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 5121 { 5122 int err; 5123 5124 err = cap_netlink_send(sk, skb); 5125 if (err) 5126 return err; 5127 5128 return selinux_nlmsg_perm(sk, skb); 5129 } 5130 5131 static int ipc_alloc_security(struct task_struct *task, 5132 struct kern_ipc_perm *perm, 5133 u16 sclass) 5134 { 5135 struct ipc_security_struct *isec; 5136 u32 sid; 5137 5138 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 5139 if (!isec) 5140 return -ENOMEM; 5141 5142 sid = task_sid(task); 5143 isec->sclass = sclass; 5144 isec->sid = sid; 5145 perm->security = isec; 5146 5147 return 0; 5148 } 5149 5150 static void ipc_free_security(struct kern_ipc_perm *perm) 5151 { 5152 struct ipc_security_struct *isec = perm->security; 5153 perm->security = NULL; 5154 kfree(isec); 5155 } 5156 5157 static int msg_msg_alloc_security(struct msg_msg *msg) 5158 { 5159 struct msg_security_struct *msec; 5160 5161 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 5162 if (!msec) 5163 return -ENOMEM; 5164 5165 msec->sid = SECINITSID_UNLABELED; 5166 msg->security = msec; 5167 5168 return 0; 5169 } 5170 5171 static void msg_msg_free_security(struct msg_msg *msg) 5172 { 5173 struct msg_security_struct *msec = msg->security; 5174 5175 msg->security = NULL; 5176 kfree(msec); 5177 } 5178 5179 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 5180 u32 perms) 5181 { 5182 struct ipc_security_struct *isec; 5183 struct common_audit_data ad; 5184 u32 sid = current_sid(); 5185 5186 isec = ipc_perms->security; 5187 5188 ad.type = LSM_AUDIT_DATA_IPC; 5189 ad.u.ipc_id = ipc_perms->key; 5190 5191 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 5192 } 5193 5194 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 5195 { 5196 return msg_msg_alloc_security(msg); 5197 } 5198 5199 static void selinux_msg_msg_free_security(struct msg_msg *msg) 5200 { 5201 msg_msg_free_security(msg); 5202 } 5203 5204 /* message queue security operations */ 5205 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 5206 { 5207 struct ipc_security_struct *isec; 5208 struct common_audit_data ad; 5209 u32 sid = current_sid(); 5210 int rc; 5211 5212 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 5213 if (rc) 5214 return rc; 5215 5216 isec = msq->q_perm.security; 5217 5218 ad.type = LSM_AUDIT_DATA_IPC; 5219 ad.u.ipc_id = msq->q_perm.key; 5220 5221 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5222 MSGQ__CREATE, &ad); 5223 if (rc) { 5224 ipc_free_security(&msq->q_perm); 5225 return rc; 5226 } 5227 return 0; 5228 } 5229 5230 static void selinux_msg_queue_free_security(struct msg_queue *msq) 5231 { 5232 ipc_free_security(&msq->q_perm); 5233 } 5234 5235 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 5236 { 5237 struct ipc_security_struct *isec; 5238 struct common_audit_data ad; 5239 u32 sid = current_sid(); 5240 5241 isec = msq->q_perm.security; 5242 5243 ad.type = LSM_AUDIT_DATA_IPC; 5244 ad.u.ipc_id = msq->q_perm.key; 5245 5246 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5247 MSGQ__ASSOCIATE, &ad); 5248 } 5249 5250 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 5251 { 5252 int err; 5253 int perms; 5254 5255 switch (cmd) { 5256 case IPC_INFO: 5257 case MSG_INFO: 5258 /* No specific object, just general system-wide information. */ 5259 return task_has_system(current, SYSTEM__IPC_INFO); 5260 case IPC_STAT: 5261 case MSG_STAT: 5262 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 5263 break; 5264 case IPC_SET: 5265 perms = MSGQ__SETATTR; 5266 break; 5267 case IPC_RMID: 5268 perms = MSGQ__DESTROY; 5269 break; 5270 default: 5271 return 0; 5272 } 5273 5274 err = ipc_has_perm(&msq->q_perm, perms); 5275 return err; 5276 } 5277 5278 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 5279 { 5280 struct ipc_security_struct *isec; 5281 struct msg_security_struct *msec; 5282 struct common_audit_data ad; 5283 u32 sid = current_sid(); 5284 int rc; 5285 5286 isec = msq->q_perm.security; 5287 msec = msg->security; 5288 5289 /* 5290 * First time through, need to assign label to the message 5291 */ 5292 if (msec->sid == SECINITSID_UNLABELED) { 5293 /* 5294 * Compute new sid based on current process and 5295 * message queue this message will be stored in 5296 */ 5297 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG, 5298 NULL, &msec->sid); 5299 if (rc) 5300 return rc; 5301 } 5302 5303 ad.type = LSM_AUDIT_DATA_IPC; 5304 ad.u.ipc_id = msq->q_perm.key; 5305 5306 /* Can this process write to the queue? */ 5307 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5308 MSGQ__WRITE, &ad); 5309 if (!rc) 5310 /* Can this process send the message */ 5311 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 5312 MSG__SEND, &ad); 5313 if (!rc) 5314 /* Can the message be put in the queue? */ 5315 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 5316 MSGQ__ENQUEUE, &ad); 5317 5318 return rc; 5319 } 5320 5321 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 5322 struct task_struct *target, 5323 long type, int mode) 5324 { 5325 struct ipc_security_struct *isec; 5326 struct msg_security_struct *msec; 5327 struct common_audit_data ad; 5328 u32 sid = task_sid(target); 5329 int rc; 5330 5331 isec = msq->q_perm.security; 5332 msec = msg->security; 5333 5334 ad.type = LSM_AUDIT_DATA_IPC; 5335 ad.u.ipc_id = msq->q_perm.key; 5336 5337 rc = avc_has_perm(sid, isec->sid, 5338 SECCLASS_MSGQ, MSGQ__READ, &ad); 5339 if (!rc) 5340 rc = avc_has_perm(sid, msec->sid, 5341 SECCLASS_MSG, MSG__RECEIVE, &ad); 5342 return rc; 5343 } 5344 5345 /* Shared Memory security operations */ 5346 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 5347 { 5348 struct ipc_security_struct *isec; 5349 struct common_audit_data ad; 5350 u32 sid = current_sid(); 5351 int rc; 5352 5353 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 5354 if (rc) 5355 return rc; 5356 5357 isec = shp->shm_perm.security; 5358 5359 ad.type = LSM_AUDIT_DATA_IPC; 5360 ad.u.ipc_id = shp->shm_perm.key; 5361 5362 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5363 SHM__CREATE, &ad); 5364 if (rc) { 5365 ipc_free_security(&shp->shm_perm); 5366 return rc; 5367 } 5368 return 0; 5369 } 5370 5371 static void selinux_shm_free_security(struct shmid_kernel *shp) 5372 { 5373 ipc_free_security(&shp->shm_perm); 5374 } 5375 5376 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 5377 { 5378 struct ipc_security_struct *isec; 5379 struct common_audit_data ad; 5380 u32 sid = current_sid(); 5381 5382 isec = shp->shm_perm.security; 5383 5384 ad.type = LSM_AUDIT_DATA_IPC; 5385 ad.u.ipc_id = shp->shm_perm.key; 5386 5387 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5388 SHM__ASSOCIATE, &ad); 5389 } 5390 5391 /* Note, at this point, shp is locked down */ 5392 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 5393 { 5394 int perms; 5395 int err; 5396 5397 switch (cmd) { 5398 case IPC_INFO: 5399 case SHM_INFO: 5400 /* No specific object, just general system-wide information. */ 5401 return task_has_system(current, SYSTEM__IPC_INFO); 5402 case IPC_STAT: 5403 case SHM_STAT: 5404 perms = SHM__GETATTR | SHM__ASSOCIATE; 5405 break; 5406 case IPC_SET: 5407 perms = SHM__SETATTR; 5408 break; 5409 case SHM_LOCK: 5410 case SHM_UNLOCK: 5411 perms = SHM__LOCK; 5412 break; 5413 case IPC_RMID: 5414 perms = SHM__DESTROY; 5415 break; 5416 default: 5417 return 0; 5418 } 5419 5420 err = ipc_has_perm(&shp->shm_perm, perms); 5421 return err; 5422 } 5423 5424 static int selinux_shm_shmat(struct shmid_kernel *shp, 5425 char __user *shmaddr, int shmflg) 5426 { 5427 u32 perms; 5428 5429 if (shmflg & SHM_RDONLY) 5430 perms = SHM__READ; 5431 else 5432 perms = SHM__READ | SHM__WRITE; 5433 5434 return ipc_has_perm(&shp->shm_perm, perms); 5435 } 5436 5437 /* Semaphore security operations */ 5438 static int selinux_sem_alloc_security(struct sem_array *sma) 5439 { 5440 struct ipc_security_struct *isec; 5441 struct common_audit_data ad; 5442 u32 sid = current_sid(); 5443 int rc; 5444 5445 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 5446 if (rc) 5447 return rc; 5448 5449 isec = sma->sem_perm.security; 5450 5451 ad.type = LSM_AUDIT_DATA_IPC; 5452 ad.u.ipc_id = sma->sem_perm.key; 5453 5454 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5455 SEM__CREATE, &ad); 5456 if (rc) { 5457 ipc_free_security(&sma->sem_perm); 5458 return rc; 5459 } 5460 return 0; 5461 } 5462 5463 static void selinux_sem_free_security(struct sem_array *sma) 5464 { 5465 ipc_free_security(&sma->sem_perm); 5466 } 5467 5468 static int selinux_sem_associate(struct sem_array *sma, int semflg) 5469 { 5470 struct ipc_security_struct *isec; 5471 struct common_audit_data ad; 5472 u32 sid = current_sid(); 5473 5474 isec = sma->sem_perm.security; 5475 5476 ad.type = LSM_AUDIT_DATA_IPC; 5477 ad.u.ipc_id = sma->sem_perm.key; 5478 5479 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5480 SEM__ASSOCIATE, &ad); 5481 } 5482 5483 /* Note, at this point, sma is locked down */ 5484 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 5485 { 5486 int err; 5487 u32 perms; 5488 5489 switch (cmd) { 5490 case IPC_INFO: 5491 case SEM_INFO: 5492 /* No specific object, just general system-wide information. */ 5493 return task_has_system(current, SYSTEM__IPC_INFO); 5494 case GETPID: 5495 case GETNCNT: 5496 case GETZCNT: 5497 perms = SEM__GETATTR; 5498 break; 5499 case GETVAL: 5500 case GETALL: 5501 perms = SEM__READ; 5502 break; 5503 case SETVAL: 5504 case SETALL: 5505 perms = SEM__WRITE; 5506 break; 5507 case IPC_RMID: 5508 perms = SEM__DESTROY; 5509 break; 5510 case IPC_SET: 5511 perms = SEM__SETATTR; 5512 break; 5513 case IPC_STAT: 5514 case SEM_STAT: 5515 perms = SEM__GETATTR | SEM__ASSOCIATE; 5516 break; 5517 default: 5518 return 0; 5519 } 5520 5521 err = ipc_has_perm(&sma->sem_perm, perms); 5522 return err; 5523 } 5524 5525 static int selinux_sem_semop(struct sem_array *sma, 5526 struct sembuf *sops, unsigned nsops, int alter) 5527 { 5528 u32 perms; 5529 5530 if (alter) 5531 perms = SEM__READ | SEM__WRITE; 5532 else 5533 perms = SEM__READ; 5534 5535 return ipc_has_perm(&sma->sem_perm, perms); 5536 } 5537 5538 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5539 { 5540 u32 av = 0; 5541 5542 av = 0; 5543 if (flag & S_IRUGO) 5544 av |= IPC__UNIX_READ; 5545 if (flag & S_IWUGO) 5546 av |= IPC__UNIX_WRITE; 5547 5548 if (av == 0) 5549 return 0; 5550 5551 return ipc_has_perm(ipcp, av); 5552 } 5553 5554 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5555 { 5556 struct ipc_security_struct *isec = ipcp->security; 5557 *secid = isec->sid; 5558 } 5559 5560 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5561 { 5562 if (inode) 5563 inode_doinit_with_dentry(inode, dentry); 5564 } 5565 5566 static int selinux_getprocattr(struct task_struct *p, 5567 char *name, char **value) 5568 { 5569 const struct task_security_struct *__tsec; 5570 u32 sid; 5571 int error; 5572 unsigned len; 5573 5574 if (current != p) { 5575 error = current_has_perm(p, PROCESS__GETATTR); 5576 if (error) 5577 return error; 5578 } 5579 5580 rcu_read_lock(); 5581 __tsec = __task_cred(p)->security; 5582 5583 if (!strcmp(name, "current")) 5584 sid = __tsec->sid; 5585 else if (!strcmp(name, "prev")) 5586 sid = __tsec->osid; 5587 else if (!strcmp(name, "exec")) 5588 sid = __tsec->exec_sid; 5589 else if (!strcmp(name, "fscreate")) 5590 sid = __tsec->create_sid; 5591 else if (!strcmp(name, "keycreate")) 5592 sid = __tsec->keycreate_sid; 5593 else if (!strcmp(name, "sockcreate")) 5594 sid = __tsec->sockcreate_sid; 5595 else 5596 goto invalid; 5597 rcu_read_unlock(); 5598 5599 if (!sid) 5600 return 0; 5601 5602 error = security_sid_to_context(sid, value, &len); 5603 if (error) 5604 return error; 5605 return len; 5606 5607 invalid: 5608 rcu_read_unlock(); 5609 return -EINVAL; 5610 } 5611 5612 static int selinux_setprocattr(struct task_struct *p, 5613 char *name, void *value, size_t size) 5614 { 5615 struct task_security_struct *tsec; 5616 struct task_struct *tracer; 5617 struct cred *new; 5618 u32 sid = 0, ptsid; 5619 int error; 5620 char *str = value; 5621 5622 if (current != p) { 5623 /* SELinux only allows a process to change its own 5624 security attributes. */ 5625 return -EACCES; 5626 } 5627 5628 /* 5629 * Basic control over ability to set these attributes at all. 5630 * current == p, but we'll pass them separately in case the 5631 * above restriction is ever removed. 5632 */ 5633 if (!strcmp(name, "exec")) 5634 error = current_has_perm(p, PROCESS__SETEXEC); 5635 else if (!strcmp(name, "fscreate")) 5636 error = current_has_perm(p, PROCESS__SETFSCREATE); 5637 else if (!strcmp(name, "keycreate")) 5638 error = current_has_perm(p, PROCESS__SETKEYCREATE); 5639 else if (!strcmp(name, "sockcreate")) 5640 error = current_has_perm(p, PROCESS__SETSOCKCREATE); 5641 else if (!strcmp(name, "current")) 5642 error = current_has_perm(p, PROCESS__SETCURRENT); 5643 else 5644 error = -EINVAL; 5645 if (error) 5646 return error; 5647 5648 /* Obtain a SID for the context, if one was specified. */ 5649 if (size && str[1] && str[1] != '\n') { 5650 if (str[size-1] == '\n') { 5651 str[size-1] = 0; 5652 size--; 5653 } 5654 error = security_context_to_sid(value, size, &sid, GFP_KERNEL); 5655 if (error == -EINVAL && !strcmp(name, "fscreate")) { 5656 if (!capable(CAP_MAC_ADMIN)) { 5657 struct audit_buffer *ab; 5658 size_t audit_size; 5659 5660 /* We strip a nul only if it is at the end, otherwise the 5661 * context contains a nul and we should audit that */ 5662 if (str[size - 1] == '\0') 5663 audit_size = size - 1; 5664 else 5665 audit_size = size; 5666 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR); 5667 audit_log_format(ab, "op=fscreate invalid_context="); 5668 audit_log_n_untrustedstring(ab, value, audit_size); 5669 audit_log_end(ab); 5670 5671 return error; 5672 } 5673 error = security_context_to_sid_force(value, size, 5674 &sid); 5675 } 5676 if (error) 5677 return error; 5678 } 5679 5680 new = prepare_creds(); 5681 if (!new) 5682 return -ENOMEM; 5683 5684 /* Permission checking based on the specified context is 5685 performed during the actual operation (execve, 5686 open/mkdir/...), when we know the full context of the 5687 operation. See selinux_bprm_set_creds for the execve 5688 checks and may_create for the file creation checks. The 5689 operation will then fail if the context is not permitted. */ 5690 tsec = new->security; 5691 if (!strcmp(name, "exec")) { 5692 tsec->exec_sid = sid; 5693 } else if (!strcmp(name, "fscreate")) { 5694 tsec->create_sid = sid; 5695 } else if (!strcmp(name, "keycreate")) { 5696 error = may_create_key(sid, p); 5697 if (error) 5698 goto abort_change; 5699 tsec->keycreate_sid = sid; 5700 } else if (!strcmp(name, "sockcreate")) { 5701 tsec->sockcreate_sid = sid; 5702 } else if (!strcmp(name, "current")) { 5703 error = -EINVAL; 5704 if (sid == 0) 5705 goto abort_change; 5706 5707 /* Only allow single threaded processes to change context */ 5708 error = -EPERM; 5709 if (!current_is_single_threaded()) { 5710 error = security_bounded_transition(tsec->sid, sid); 5711 if (error) 5712 goto abort_change; 5713 } 5714 5715 /* Check permissions for the transition. */ 5716 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5717 PROCESS__DYNTRANSITION, NULL); 5718 if (error) 5719 goto abort_change; 5720 5721 /* Check for ptracing, and update the task SID if ok. 5722 Otherwise, leave SID unchanged and fail. */ 5723 ptsid = 0; 5724 rcu_read_lock(); 5725 tracer = ptrace_parent(p); 5726 if (tracer) 5727 ptsid = task_sid(tracer); 5728 rcu_read_unlock(); 5729 5730 if (tracer) { 5731 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 5732 PROCESS__PTRACE, NULL); 5733 if (error) 5734 goto abort_change; 5735 } 5736 5737 tsec->sid = sid; 5738 } else { 5739 error = -EINVAL; 5740 goto abort_change; 5741 } 5742 5743 commit_creds(new); 5744 return size; 5745 5746 abort_change: 5747 abort_creds(new); 5748 return error; 5749 } 5750 5751 static int selinux_ismaclabel(const char *name) 5752 { 5753 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); 5754 } 5755 5756 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5757 { 5758 return security_sid_to_context(secid, secdata, seclen); 5759 } 5760 5761 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 5762 { 5763 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL); 5764 } 5765 5766 static void selinux_release_secctx(char *secdata, u32 seclen) 5767 { 5768 kfree(secdata); 5769 } 5770 5771 /* 5772 * called with inode->i_mutex locked 5773 */ 5774 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 5775 { 5776 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0); 5777 } 5778 5779 /* 5780 * called with inode->i_mutex locked 5781 */ 5782 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 5783 { 5784 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); 5785 } 5786 5787 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 5788 { 5789 int len = 0; 5790 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, 5791 ctx, true); 5792 if (len < 0) 5793 return len; 5794 *ctxlen = len; 5795 return 0; 5796 } 5797 #ifdef CONFIG_KEYS 5798 5799 static int selinux_key_alloc(struct key *k, const struct cred *cred, 5800 unsigned long flags) 5801 { 5802 const struct task_security_struct *tsec; 5803 struct key_security_struct *ksec; 5804 5805 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 5806 if (!ksec) 5807 return -ENOMEM; 5808 5809 tsec = cred->security; 5810 if (tsec->keycreate_sid) 5811 ksec->sid = tsec->keycreate_sid; 5812 else 5813 ksec->sid = tsec->sid; 5814 5815 k->security = ksec; 5816 return 0; 5817 } 5818 5819 static void selinux_key_free(struct key *k) 5820 { 5821 struct key_security_struct *ksec = k->security; 5822 5823 k->security = NULL; 5824 kfree(ksec); 5825 } 5826 5827 static int selinux_key_permission(key_ref_t key_ref, 5828 const struct cred *cred, 5829 unsigned perm) 5830 { 5831 struct key *key; 5832 struct key_security_struct *ksec; 5833 u32 sid; 5834 5835 /* if no specific permissions are requested, we skip the 5836 permission check. No serious, additional covert channels 5837 appear to be created. */ 5838 if (perm == 0) 5839 return 0; 5840 5841 sid = cred_sid(cred); 5842 5843 key = key_ref_to_ptr(key_ref); 5844 ksec = key->security; 5845 5846 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 5847 } 5848 5849 static int selinux_key_getsecurity(struct key *key, char **_buffer) 5850 { 5851 struct key_security_struct *ksec = key->security; 5852 char *context = NULL; 5853 unsigned len; 5854 int rc; 5855 5856 rc = security_sid_to_context(ksec->sid, &context, &len); 5857 if (!rc) 5858 rc = len; 5859 *_buffer = context; 5860 return rc; 5861 } 5862 5863 #endif 5864 5865 static struct security_operations selinux_ops = { 5866 .name = "selinux", 5867 5868 .binder_set_context_mgr = selinux_binder_set_context_mgr, 5869 .binder_transaction = selinux_binder_transaction, 5870 .binder_transfer_binder = selinux_binder_transfer_binder, 5871 .binder_transfer_file = selinux_binder_transfer_file, 5872 5873 .ptrace_access_check = selinux_ptrace_access_check, 5874 .ptrace_traceme = selinux_ptrace_traceme, 5875 .capget = selinux_capget, 5876 .capset = selinux_capset, 5877 .capable = selinux_capable, 5878 .quotactl = selinux_quotactl, 5879 .quota_on = selinux_quota_on, 5880 .syslog = selinux_syslog, 5881 .vm_enough_memory = selinux_vm_enough_memory, 5882 5883 .netlink_send = selinux_netlink_send, 5884 5885 .bprm_set_creds = selinux_bprm_set_creds, 5886 .bprm_committing_creds = selinux_bprm_committing_creds, 5887 .bprm_committed_creds = selinux_bprm_committed_creds, 5888 .bprm_secureexec = selinux_bprm_secureexec, 5889 5890 .sb_alloc_security = selinux_sb_alloc_security, 5891 .sb_free_security = selinux_sb_free_security, 5892 .sb_copy_data = selinux_sb_copy_data, 5893 .sb_remount = selinux_sb_remount, 5894 .sb_kern_mount = selinux_sb_kern_mount, 5895 .sb_show_options = selinux_sb_show_options, 5896 .sb_statfs = selinux_sb_statfs, 5897 .sb_mount = selinux_mount, 5898 .sb_umount = selinux_umount, 5899 .sb_set_mnt_opts = selinux_set_mnt_opts, 5900 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts, 5901 .sb_parse_opts_str = selinux_parse_opts_str, 5902 5903 .dentry_init_security = selinux_dentry_init_security, 5904 5905 .inode_alloc_security = selinux_inode_alloc_security, 5906 .inode_free_security = selinux_inode_free_security, 5907 .inode_init_security = selinux_inode_init_security, 5908 .inode_create = selinux_inode_create, 5909 .inode_link = selinux_inode_link, 5910 .inode_unlink = selinux_inode_unlink, 5911 .inode_symlink = selinux_inode_symlink, 5912 .inode_mkdir = selinux_inode_mkdir, 5913 .inode_rmdir = selinux_inode_rmdir, 5914 .inode_mknod = selinux_inode_mknod, 5915 .inode_rename = selinux_inode_rename, 5916 .inode_readlink = selinux_inode_readlink, 5917 .inode_follow_link = selinux_inode_follow_link, 5918 .inode_permission = selinux_inode_permission, 5919 .inode_setattr = selinux_inode_setattr, 5920 .inode_getattr = selinux_inode_getattr, 5921 .inode_setxattr = selinux_inode_setxattr, 5922 .inode_post_setxattr = selinux_inode_post_setxattr, 5923 .inode_getxattr = selinux_inode_getxattr, 5924 .inode_listxattr = selinux_inode_listxattr, 5925 .inode_removexattr = selinux_inode_removexattr, 5926 .inode_getsecurity = selinux_inode_getsecurity, 5927 .inode_setsecurity = selinux_inode_setsecurity, 5928 .inode_listsecurity = selinux_inode_listsecurity, 5929 .inode_getsecid = selinux_inode_getsecid, 5930 5931 .file_permission = selinux_file_permission, 5932 .file_alloc_security = selinux_file_alloc_security, 5933 .file_free_security = selinux_file_free_security, 5934 .file_ioctl = selinux_file_ioctl, 5935 .mmap_file = selinux_mmap_file, 5936 .mmap_addr = selinux_mmap_addr, 5937 .file_mprotect = selinux_file_mprotect, 5938 .file_lock = selinux_file_lock, 5939 .file_fcntl = selinux_file_fcntl, 5940 .file_set_fowner = selinux_file_set_fowner, 5941 .file_send_sigiotask = selinux_file_send_sigiotask, 5942 .file_receive = selinux_file_receive, 5943 5944 .file_open = selinux_file_open, 5945 5946 .task_create = selinux_task_create, 5947 .cred_alloc_blank = selinux_cred_alloc_blank, 5948 .cred_free = selinux_cred_free, 5949 .cred_prepare = selinux_cred_prepare, 5950 .cred_transfer = selinux_cred_transfer, 5951 .kernel_act_as = selinux_kernel_act_as, 5952 .kernel_create_files_as = selinux_kernel_create_files_as, 5953 .kernel_module_request = selinux_kernel_module_request, 5954 .task_setpgid = selinux_task_setpgid, 5955 .task_getpgid = selinux_task_getpgid, 5956 .task_getsid = selinux_task_getsid, 5957 .task_getsecid = selinux_task_getsecid, 5958 .task_setnice = selinux_task_setnice, 5959 .task_setioprio = selinux_task_setioprio, 5960 .task_getioprio = selinux_task_getioprio, 5961 .task_setrlimit = selinux_task_setrlimit, 5962 .task_setscheduler = selinux_task_setscheduler, 5963 .task_getscheduler = selinux_task_getscheduler, 5964 .task_movememory = selinux_task_movememory, 5965 .task_kill = selinux_task_kill, 5966 .task_wait = selinux_task_wait, 5967 .task_to_inode = selinux_task_to_inode, 5968 5969 .ipc_permission = selinux_ipc_permission, 5970 .ipc_getsecid = selinux_ipc_getsecid, 5971 5972 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 5973 .msg_msg_free_security = selinux_msg_msg_free_security, 5974 5975 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 5976 .msg_queue_free_security = selinux_msg_queue_free_security, 5977 .msg_queue_associate = selinux_msg_queue_associate, 5978 .msg_queue_msgctl = selinux_msg_queue_msgctl, 5979 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 5980 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 5981 5982 .shm_alloc_security = selinux_shm_alloc_security, 5983 .shm_free_security = selinux_shm_free_security, 5984 .shm_associate = selinux_shm_associate, 5985 .shm_shmctl = selinux_shm_shmctl, 5986 .shm_shmat = selinux_shm_shmat, 5987 5988 .sem_alloc_security = selinux_sem_alloc_security, 5989 .sem_free_security = selinux_sem_free_security, 5990 .sem_associate = selinux_sem_associate, 5991 .sem_semctl = selinux_sem_semctl, 5992 .sem_semop = selinux_sem_semop, 5993 5994 .d_instantiate = selinux_d_instantiate, 5995 5996 .getprocattr = selinux_getprocattr, 5997 .setprocattr = selinux_setprocattr, 5998 5999 .ismaclabel = selinux_ismaclabel, 6000 .secid_to_secctx = selinux_secid_to_secctx, 6001 .secctx_to_secid = selinux_secctx_to_secid, 6002 .release_secctx = selinux_release_secctx, 6003 .inode_notifysecctx = selinux_inode_notifysecctx, 6004 .inode_setsecctx = selinux_inode_setsecctx, 6005 .inode_getsecctx = selinux_inode_getsecctx, 6006 6007 .unix_stream_connect = selinux_socket_unix_stream_connect, 6008 .unix_may_send = selinux_socket_unix_may_send, 6009 6010 .socket_create = selinux_socket_create, 6011 .socket_post_create = selinux_socket_post_create, 6012 .socket_bind = selinux_socket_bind, 6013 .socket_connect = selinux_socket_connect, 6014 .socket_listen = selinux_socket_listen, 6015 .socket_accept = selinux_socket_accept, 6016 .socket_sendmsg = selinux_socket_sendmsg, 6017 .socket_recvmsg = selinux_socket_recvmsg, 6018 .socket_getsockname = selinux_socket_getsockname, 6019 .socket_getpeername = selinux_socket_getpeername, 6020 .socket_getsockopt = selinux_socket_getsockopt, 6021 .socket_setsockopt = selinux_socket_setsockopt, 6022 .socket_shutdown = selinux_socket_shutdown, 6023 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 6024 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 6025 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 6026 .sk_alloc_security = selinux_sk_alloc_security, 6027 .sk_free_security = selinux_sk_free_security, 6028 .sk_clone_security = selinux_sk_clone_security, 6029 .sk_getsecid = selinux_sk_getsecid, 6030 .sock_graft = selinux_sock_graft, 6031 .inet_conn_request = selinux_inet_conn_request, 6032 .inet_csk_clone = selinux_inet_csk_clone, 6033 .inet_conn_established = selinux_inet_conn_established, 6034 .secmark_relabel_packet = selinux_secmark_relabel_packet, 6035 .secmark_refcount_inc = selinux_secmark_refcount_inc, 6036 .secmark_refcount_dec = selinux_secmark_refcount_dec, 6037 .req_classify_flow = selinux_req_classify_flow, 6038 .tun_dev_alloc_security = selinux_tun_dev_alloc_security, 6039 .tun_dev_free_security = selinux_tun_dev_free_security, 6040 .tun_dev_create = selinux_tun_dev_create, 6041 .tun_dev_attach_queue = selinux_tun_dev_attach_queue, 6042 .tun_dev_attach = selinux_tun_dev_attach, 6043 .tun_dev_open = selinux_tun_dev_open, 6044 .skb_owned_by = selinux_skb_owned_by, 6045 6046 #ifdef CONFIG_SECURITY_NETWORK_XFRM 6047 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 6048 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 6049 .xfrm_policy_free_security = selinux_xfrm_policy_free, 6050 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 6051 .xfrm_state_alloc = selinux_xfrm_state_alloc, 6052 .xfrm_state_alloc_acquire = selinux_xfrm_state_alloc_acquire, 6053 .xfrm_state_free_security = selinux_xfrm_state_free, 6054 .xfrm_state_delete_security = selinux_xfrm_state_delete, 6055 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 6056 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 6057 .xfrm_decode_session = selinux_xfrm_decode_session, 6058 #endif 6059 6060 #ifdef CONFIG_KEYS 6061 .key_alloc = selinux_key_alloc, 6062 .key_free = selinux_key_free, 6063 .key_permission = selinux_key_permission, 6064 .key_getsecurity = selinux_key_getsecurity, 6065 #endif 6066 6067 #ifdef CONFIG_AUDIT 6068 .audit_rule_init = selinux_audit_rule_init, 6069 .audit_rule_known = selinux_audit_rule_known, 6070 .audit_rule_match = selinux_audit_rule_match, 6071 .audit_rule_free = selinux_audit_rule_free, 6072 #endif 6073 }; 6074 6075 static __init int selinux_init(void) 6076 { 6077 if (!security_module_enable(&selinux_ops)) { 6078 selinux_enabled = 0; 6079 return 0; 6080 } 6081 6082 if (!selinux_enabled) { 6083 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 6084 return 0; 6085 } 6086 6087 printk(KERN_INFO "SELinux: Initializing.\n"); 6088 6089 /* Set the security state for the initial task. */ 6090 cred_init_security(); 6091 6092 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 6093 6094 sel_inode_cache = kmem_cache_create("selinux_inode_security", 6095 sizeof(struct inode_security_struct), 6096 0, SLAB_PANIC, NULL); 6097 avc_init(); 6098 6099 if (register_security(&selinux_ops)) 6100 panic("SELinux: Unable to register with kernel.\n"); 6101 6102 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) 6103 panic("SELinux: Unable to register AVC netcache callback\n"); 6104 6105 if (selinux_enforcing) 6106 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 6107 else 6108 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 6109 6110 return 0; 6111 } 6112 6113 static void delayed_superblock_init(struct super_block *sb, void *unused) 6114 { 6115 superblock_doinit(sb, NULL); 6116 } 6117 6118 void selinux_complete_init(void) 6119 { 6120 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 6121 6122 /* Set up any superblocks initialized prior to the policy load. */ 6123 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 6124 iterate_supers(delayed_superblock_init, NULL); 6125 } 6126 6127 /* SELinux requires early initialization in order to label 6128 all processes and objects when they are created. */ 6129 security_initcall(selinux_init); 6130 6131 #if defined(CONFIG_NETFILTER) 6132 6133 static struct nf_hook_ops selinux_nf_ops[] = { 6134 { 6135 .hook = selinux_ipv4_postroute, 6136 .owner = THIS_MODULE, 6137 .pf = NFPROTO_IPV4, 6138 .hooknum = NF_INET_POST_ROUTING, 6139 .priority = NF_IP_PRI_SELINUX_LAST, 6140 }, 6141 { 6142 .hook = selinux_ipv4_forward, 6143 .owner = THIS_MODULE, 6144 .pf = NFPROTO_IPV4, 6145 .hooknum = NF_INET_FORWARD, 6146 .priority = NF_IP_PRI_SELINUX_FIRST, 6147 }, 6148 { 6149 .hook = selinux_ipv4_output, 6150 .owner = THIS_MODULE, 6151 .pf = NFPROTO_IPV4, 6152 .hooknum = NF_INET_LOCAL_OUT, 6153 .priority = NF_IP_PRI_SELINUX_FIRST, 6154 }, 6155 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6156 { 6157 .hook = selinux_ipv6_postroute, 6158 .owner = THIS_MODULE, 6159 .pf = NFPROTO_IPV6, 6160 .hooknum = NF_INET_POST_ROUTING, 6161 .priority = NF_IP6_PRI_SELINUX_LAST, 6162 }, 6163 { 6164 .hook = selinux_ipv6_forward, 6165 .owner = THIS_MODULE, 6166 .pf = NFPROTO_IPV6, 6167 .hooknum = NF_INET_FORWARD, 6168 .priority = NF_IP6_PRI_SELINUX_FIRST, 6169 }, 6170 #endif /* IPV6 */ 6171 }; 6172 6173 static int __init selinux_nf_ip_init(void) 6174 { 6175 int err; 6176 6177 if (!selinux_enabled) 6178 return 0; 6179 6180 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 6181 6182 err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops)); 6183 if (err) 6184 panic("SELinux: nf_register_hooks: error %d\n", err); 6185 6186 return 0; 6187 } 6188 6189 __initcall(selinux_nf_ip_init); 6190 6191 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6192 static void selinux_nf_ip_exit(void) 6193 { 6194 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 6195 6196 nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops)); 6197 } 6198 #endif 6199 6200 #else /* CONFIG_NETFILTER */ 6201 6202 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6203 #define selinux_nf_ip_exit() 6204 #endif 6205 6206 #endif /* CONFIG_NETFILTER */ 6207 6208 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6209 static int selinux_disabled; 6210 6211 int selinux_disable(void) 6212 { 6213 if (ss_initialized) { 6214 /* Not permitted after initial policy load. */ 6215 return -EINVAL; 6216 } 6217 6218 if (selinux_disabled) { 6219 /* Only do this once. */ 6220 return -EINVAL; 6221 } 6222 6223 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 6224 6225 selinux_disabled = 1; 6226 selinux_enabled = 0; 6227 6228 reset_security_ops(); 6229 6230 /* Try to destroy the avc node cache */ 6231 avc_disable(); 6232 6233 /* Unregister netfilter hooks. */ 6234 selinux_nf_ip_exit(); 6235 6236 /* Unregister selinuxfs. */ 6237 exit_sel_fs(); 6238 6239 return 0; 6240 } 6241 #endif 6242