1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 14 * <dgoeddel@trustedcs.com> 15 * Copyright (C) 2006 Hewlett-Packard Development Company, L.P. 16 * Paul Moore, <paul.moore@hp.com> 17 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 18 * Yuichi Nakamura <ynakam@hitachisoft.jp> 19 * 20 * This program is free software; you can redistribute it and/or modify 21 * it under the terms of the GNU General Public License version 2, 22 * as published by the Free Software Foundation. 23 */ 24 25 #include <linux/init.h> 26 #include <linux/kernel.h> 27 #include <linux/ptrace.h> 28 #include <linux/errno.h> 29 #include <linux/sched.h> 30 #include <linux/security.h> 31 #include <linux/xattr.h> 32 #include <linux/capability.h> 33 #include <linux/unistd.h> 34 #include <linux/mm.h> 35 #include <linux/mman.h> 36 #include <linux/slab.h> 37 #include <linux/pagemap.h> 38 #include <linux/swap.h> 39 #include <linux/spinlock.h> 40 #include <linux/syscalls.h> 41 #include <linux/file.h> 42 #include <linux/namei.h> 43 #include <linux/mount.h> 44 #include <linux/ext2_fs.h> 45 #include <linux/proc_fs.h> 46 #include <linux/kd.h> 47 #include <linux/netfilter_ipv4.h> 48 #include <linux/netfilter_ipv6.h> 49 #include <linux/tty.h> 50 #include <net/icmp.h> 51 #include <net/ip.h> /* for local_port_range[] */ 52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 53 #include <asm/uaccess.h> 54 #include <asm/ioctls.h> 55 #include <linux/bitops.h> 56 #include <linux/interrupt.h> 57 #include <linux/netdevice.h> /* for network interface checks */ 58 #include <linux/netlink.h> 59 #include <linux/tcp.h> 60 #include <linux/udp.h> 61 #include <linux/dccp.h> 62 #include <linux/quota.h> 63 #include <linux/un.h> /* for Unix socket types */ 64 #include <net/af_unix.h> /* for Unix socket types */ 65 #include <linux/parser.h> 66 #include <linux/nfs_mount.h> 67 #include <net/ipv6.h> 68 #include <linux/hugetlb.h> 69 #include <linux/personality.h> 70 #include <linux/sysctl.h> 71 #include <linux/audit.h> 72 #include <linux/string.h> 73 #include <linux/selinux.h> 74 #include <linux/mutex.h> 75 76 #include "avc.h" 77 #include "objsec.h" 78 #include "netif.h" 79 #include "xfrm.h" 80 #include "netlabel.h" 81 82 #define XATTR_SELINUX_SUFFIX "selinux" 83 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX 84 85 #define NUM_SEL_MNT_OPTS 4 86 87 extern unsigned int policydb_loaded_version; 88 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm); 89 extern int selinux_compat_net; 90 extern struct security_operations *security_ops; 91 92 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 93 int selinux_enforcing = 0; 94 95 static int __init enforcing_setup(char *str) 96 { 97 selinux_enforcing = simple_strtol(str,NULL,0); 98 return 1; 99 } 100 __setup("enforcing=", enforcing_setup); 101 #endif 102 103 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 104 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 105 106 static int __init selinux_enabled_setup(char *str) 107 { 108 selinux_enabled = simple_strtol(str, NULL, 0); 109 return 1; 110 } 111 __setup("selinux=", selinux_enabled_setup); 112 #else 113 int selinux_enabled = 1; 114 #endif 115 116 /* Original (dummy) security module. */ 117 static struct security_operations *original_ops = NULL; 118 119 /* Minimal support for a secondary security module, 120 just to allow the use of the dummy or capability modules. 121 The owlsm module can alternatively be used as a secondary 122 module as long as CONFIG_OWLSM_FD is not enabled. */ 123 static struct security_operations *secondary_ops = NULL; 124 125 /* Lists of inode and superblock security structures initialized 126 before the policy was loaded. */ 127 static LIST_HEAD(superblock_security_head); 128 static DEFINE_SPINLOCK(sb_security_lock); 129 130 static struct kmem_cache *sel_inode_cache; 131 132 /* Return security context for a given sid or just the context 133 length if the buffer is null or length is 0 */ 134 static int selinux_getsecurity(u32 sid, void *buffer, size_t size) 135 { 136 char *context; 137 unsigned len; 138 int rc; 139 140 rc = security_sid_to_context(sid, &context, &len); 141 if (rc) 142 return rc; 143 144 if (!buffer || !size) 145 goto getsecurity_exit; 146 147 if (size < len) { 148 len = -ERANGE; 149 goto getsecurity_exit; 150 } 151 memcpy(buffer, context, len); 152 153 getsecurity_exit: 154 kfree(context); 155 return len; 156 } 157 158 /* Allocate and free functions for each kind of security blob. */ 159 160 static int task_alloc_security(struct task_struct *task) 161 { 162 struct task_security_struct *tsec; 163 164 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 165 if (!tsec) 166 return -ENOMEM; 167 168 tsec->task = task; 169 tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED; 170 task->security = tsec; 171 172 return 0; 173 } 174 175 static void task_free_security(struct task_struct *task) 176 { 177 struct task_security_struct *tsec = task->security; 178 task->security = NULL; 179 kfree(tsec); 180 } 181 182 static int inode_alloc_security(struct inode *inode) 183 { 184 struct task_security_struct *tsec = current->security; 185 struct inode_security_struct *isec; 186 187 isec = kmem_cache_zalloc(sel_inode_cache, GFP_KERNEL); 188 if (!isec) 189 return -ENOMEM; 190 191 mutex_init(&isec->lock); 192 INIT_LIST_HEAD(&isec->list); 193 isec->inode = inode; 194 isec->sid = SECINITSID_UNLABELED; 195 isec->sclass = SECCLASS_FILE; 196 isec->task_sid = tsec->sid; 197 inode->i_security = isec; 198 199 return 0; 200 } 201 202 static void inode_free_security(struct inode *inode) 203 { 204 struct inode_security_struct *isec = inode->i_security; 205 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 206 207 spin_lock(&sbsec->isec_lock); 208 if (!list_empty(&isec->list)) 209 list_del_init(&isec->list); 210 spin_unlock(&sbsec->isec_lock); 211 212 inode->i_security = NULL; 213 kmem_cache_free(sel_inode_cache, isec); 214 } 215 216 static int file_alloc_security(struct file *file) 217 { 218 struct task_security_struct *tsec = current->security; 219 struct file_security_struct *fsec; 220 221 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 222 if (!fsec) 223 return -ENOMEM; 224 225 fsec->file = file; 226 fsec->sid = tsec->sid; 227 fsec->fown_sid = tsec->sid; 228 file->f_security = fsec; 229 230 return 0; 231 } 232 233 static void file_free_security(struct file *file) 234 { 235 struct file_security_struct *fsec = file->f_security; 236 file->f_security = NULL; 237 kfree(fsec); 238 } 239 240 static int superblock_alloc_security(struct super_block *sb) 241 { 242 struct superblock_security_struct *sbsec; 243 244 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 245 if (!sbsec) 246 return -ENOMEM; 247 248 mutex_init(&sbsec->lock); 249 INIT_LIST_HEAD(&sbsec->list); 250 INIT_LIST_HEAD(&sbsec->isec_head); 251 spin_lock_init(&sbsec->isec_lock); 252 sbsec->sb = sb; 253 sbsec->sid = SECINITSID_UNLABELED; 254 sbsec->def_sid = SECINITSID_FILE; 255 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 256 sb->s_security = sbsec; 257 258 return 0; 259 } 260 261 static void superblock_free_security(struct super_block *sb) 262 { 263 struct superblock_security_struct *sbsec = sb->s_security; 264 265 spin_lock(&sb_security_lock); 266 if (!list_empty(&sbsec->list)) 267 list_del_init(&sbsec->list); 268 spin_unlock(&sb_security_lock); 269 270 sb->s_security = NULL; 271 kfree(sbsec); 272 } 273 274 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority) 275 { 276 struct sk_security_struct *ssec; 277 278 ssec = kzalloc(sizeof(*ssec), priority); 279 if (!ssec) 280 return -ENOMEM; 281 282 ssec->sk = sk; 283 ssec->peer_sid = SECINITSID_UNLABELED; 284 ssec->sid = SECINITSID_UNLABELED; 285 sk->sk_security = ssec; 286 287 selinux_netlbl_sk_security_init(ssec, family); 288 289 return 0; 290 } 291 292 static void sk_free_security(struct sock *sk) 293 { 294 struct sk_security_struct *ssec = sk->sk_security; 295 296 sk->sk_security = NULL; 297 kfree(ssec); 298 } 299 300 /* The security server must be initialized before 301 any labeling or access decisions can be provided. */ 302 extern int ss_initialized; 303 304 /* The file system's label must be initialized prior to use. */ 305 306 static char *labeling_behaviors[6] = { 307 "uses xattr", 308 "uses transition SIDs", 309 "uses task SIDs", 310 "uses genfs_contexts", 311 "not configured for labeling", 312 "uses mountpoint labeling", 313 }; 314 315 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 316 317 static inline int inode_doinit(struct inode *inode) 318 { 319 return inode_doinit_with_dentry(inode, NULL); 320 } 321 322 enum { 323 Opt_error = -1, 324 Opt_context = 1, 325 Opt_fscontext = 2, 326 Opt_defcontext = 3, 327 Opt_rootcontext = 4, 328 }; 329 330 static match_table_t tokens = { 331 {Opt_context, "context=%s"}, 332 {Opt_fscontext, "fscontext=%s"}, 333 {Opt_defcontext, "defcontext=%s"}, 334 {Opt_rootcontext, "rootcontext=%s"}, 335 {Opt_error, NULL}, 336 }; 337 338 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 339 340 static int may_context_mount_sb_relabel(u32 sid, 341 struct superblock_security_struct *sbsec, 342 struct task_security_struct *tsec) 343 { 344 int rc; 345 346 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 347 FILESYSTEM__RELABELFROM, NULL); 348 if (rc) 349 return rc; 350 351 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 352 FILESYSTEM__RELABELTO, NULL); 353 return rc; 354 } 355 356 static int may_context_mount_inode_relabel(u32 sid, 357 struct superblock_security_struct *sbsec, 358 struct task_security_struct *tsec) 359 { 360 int rc; 361 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 362 FILESYSTEM__RELABELFROM, NULL); 363 if (rc) 364 return rc; 365 366 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 367 FILESYSTEM__ASSOCIATE, NULL); 368 return rc; 369 } 370 371 static int sb_finish_set_opts(struct super_block *sb) 372 { 373 struct superblock_security_struct *sbsec = sb->s_security; 374 struct dentry *root = sb->s_root; 375 struct inode *root_inode = root->d_inode; 376 int rc = 0; 377 378 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 379 /* Make sure that the xattr handler exists and that no 380 error other than -ENODATA is returned by getxattr on 381 the root directory. -ENODATA is ok, as this may be 382 the first boot of the SELinux kernel before we have 383 assigned xattr values to the filesystem. */ 384 if (!root_inode->i_op->getxattr) { 385 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 386 "xattr support\n", sb->s_id, sb->s_type->name); 387 rc = -EOPNOTSUPP; 388 goto out; 389 } 390 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 391 if (rc < 0 && rc != -ENODATA) { 392 if (rc == -EOPNOTSUPP) 393 printk(KERN_WARNING "SELinux: (dev %s, type " 394 "%s) has no security xattr handler\n", 395 sb->s_id, sb->s_type->name); 396 else 397 printk(KERN_WARNING "SELinux: (dev %s, type " 398 "%s) getxattr errno %d\n", sb->s_id, 399 sb->s_type->name, -rc); 400 goto out; 401 } 402 } 403 404 sbsec->initialized = 1; 405 406 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 407 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 408 sb->s_id, sb->s_type->name); 409 else 410 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n", 411 sb->s_id, sb->s_type->name, 412 labeling_behaviors[sbsec->behavior-1]); 413 414 /* Initialize the root inode. */ 415 rc = inode_doinit_with_dentry(root_inode, root); 416 417 /* Initialize any other inodes associated with the superblock, e.g. 418 inodes created prior to initial policy load or inodes created 419 during get_sb by a pseudo filesystem that directly 420 populates itself. */ 421 spin_lock(&sbsec->isec_lock); 422 next_inode: 423 if (!list_empty(&sbsec->isec_head)) { 424 struct inode_security_struct *isec = 425 list_entry(sbsec->isec_head.next, 426 struct inode_security_struct, list); 427 struct inode *inode = isec->inode; 428 spin_unlock(&sbsec->isec_lock); 429 inode = igrab(inode); 430 if (inode) { 431 if (!IS_PRIVATE(inode)) 432 inode_doinit(inode); 433 iput(inode); 434 } 435 spin_lock(&sbsec->isec_lock); 436 list_del_init(&isec->list); 437 goto next_inode; 438 } 439 spin_unlock(&sbsec->isec_lock); 440 out: 441 return rc; 442 } 443 444 /* 445 * This function should allow an FS to ask what it's mount security 446 * options were so it can use those later for submounts, displaying 447 * mount options, or whatever. 448 */ 449 static int selinux_get_mnt_opts(const struct super_block *sb, 450 char ***mount_options, int **mnt_opts_flags, 451 int *num_opts) 452 { 453 int rc = 0, i; 454 struct superblock_security_struct *sbsec = sb->s_security; 455 char *context = NULL; 456 u32 len; 457 char tmp; 458 459 *num_opts = 0; 460 *mount_options = NULL; 461 *mnt_opts_flags = NULL; 462 463 if (!sbsec->initialized) 464 return -EINVAL; 465 466 if (!ss_initialized) 467 return -EINVAL; 468 469 /* 470 * if we ever use sbsec flags for anything other than tracking mount 471 * settings this is going to need a mask 472 */ 473 tmp = sbsec->flags; 474 /* count the number of mount options for this sb */ 475 for (i = 0; i < 8; i++) { 476 if (tmp & 0x01) 477 (*num_opts)++; 478 tmp >>= 1; 479 } 480 481 *mount_options = kcalloc(*num_opts, sizeof(char *), GFP_ATOMIC); 482 if (!*mount_options) { 483 rc = -ENOMEM; 484 goto out_free; 485 } 486 487 *mnt_opts_flags = kcalloc(*num_opts, sizeof(int), GFP_ATOMIC); 488 if (!*mnt_opts_flags) { 489 rc = -ENOMEM; 490 goto out_free; 491 } 492 493 i = 0; 494 if (sbsec->flags & FSCONTEXT_MNT) { 495 rc = security_sid_to_context(sbsec->sid, &context, &len); 496 if (rc) 497 goto out_free; 498 (*mount_options)[i] = context; 499 (*mnt_opts_flags)[i++] = FSCONTEXT_MNT; 500 } 501 if (sbsec->flags & CONTEXT_MNT) { 502 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 503 if (rc) 504 goto out_free; 505 (*mount_options)[i] = context; 506 (*mnt_opts_flags)[i++] = CONTEXT_MNT; 507 } 508 if (sbsec->flags & DEFCONTEXT_MNT) { 509 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 510 if (rc) 511 goto out_free; 512 (*mount_options)[i] = context; 513 (*mnt_opts_flags)[i++] = DEFCONTEXT_MNT; 514 } 515 if (sbsec->flags & ROOTCONTEXT_MNT) { 516 struct inode *root = sbsec->sb->s_root->d_inode; 517 struct inode_security_struct *isec = root->i_security; 518 519 rc = security_sid_to_context(isec->sid, &context, &len); 520 if (rc) 521 goto out_free; 522 (*mount_options)[i] = context; 523 (*mnt_opts_flags)[i++] = ROOTCONTEXT_MNT; 524 } 525 526 BUG_ON(i != *num_opts); 527 528 return 0; 529 530 out_free: 531 /* don't leak context string if security_sid_to_context had an error */ 532 if (*mount_options && i) 533 for (; i > 0; i--) 534 kfree((*mount_options)[i-1]); 535 kfree(*mount_options); 536 *mount_options = NULL; 537 kfree(*mnt_opts_flags); 538 *mnt_opts_flags = NULL; 539 *num_opts = 0; 540 return rc; 541 } 542 543 static int bad_option(struct superblock_security_struct *sbsec, char flag, 544 u32 old_sid, u32 new_sid) 545 { 546 /* check if the old mount command had the same options */ 547 if (sbsec->initialized) 548 if (!(sbsec->flags & flag) || 549 (old_sid != new_sid)) 550 return 1; 551 552 /* check if we were passed the same options twice, 553 * aka someone passed context=a,context=b 554 */ 555 if (!sbsec->initialized) 556 if (sbsec->flags & flag) 557 return 1; 558 return 0; 559 } 560 /* 561 * Allow filesystems with binary mount data to explicitly set mount point 562 * labeling information. 563 */ 564 int selinux_set_mnt_opts(struct super_block *sb, char **mount_options, 565 int *flags, int num_opts) 566 { 567 int rc = 0, i; 568 struct task_security_struct *tsec = current->security; 569 struct superblock_security_struct *sbsec = sb->s_security; 570 const char *name = sb->s_type->name; 571 struct inode *inode = sbsec->sb->s_root->d_inode; 572 struct inode_security_struct *root_isec = inode->i_security; 573 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 574 u32 defcontext_sid = 0; 575 576 mutex_lock(&sbsec->lock); 577 578 if (!ss_initialized) { 579 if (!num_opts) { 580 /* Defer initialization until selinux_complete_init, 581 after the initial policy is loaded and the security 582 server is ready to handle calls. */ 583 spin_lock(&sb_security_lock); 584 if (list_empty(&sbsec->list)) 585 list_add(&sbsec->list, &superblock_security_head); 586 spin_unlock(&sb_security_lock); 587 goto out; 588 } 589 rc = -EINVAL; 590 printk(KERN_WARNING "Unable to set superblock options before " 591 "the security server is initialized\n"); 592 goto out; 593 } 594 595 /* 596 * parse the mount options, check if they are valid sids. 597 * also check if someone is trying to mount the same sb more 598 * than once with different security options. 599 */ 600 for (i = 0; i < num_opts; i++) { 601 u32 sid; 602 rc = security_context_to_sid(mount_options[i], 603 strlen(mount_options[i]), &sid); 604 if (rc) { 605 printk(KERN_WARNING "SELinux: security_context_to_sid" 606 "(%s) failed for (dev %s, type %s) errno=%d\n", 607 mount_options[i], sb->s_id, name, rc); 608 goto out; 609 } 610 switch (flags[i]) { 611 case FSCONTEXT_MNT: 612 fscontext_sid = sid; 613 614 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 615 fscontext_sid)) 616 goto out_double_mount; 617 618 sbsec->flags |= FSCONTEXT_MNT; 619 break; 620 case CONTEXT_MNT: 621 context_sid = sid; 622 623 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 624 context_sid)) 625 goto out_double_mount; 626 627 sbsec->flags |= CONTEXT_MNT; 628 break; 629 case ROOTCONTEXT_MNT: 630 rootcontext_sid = sid; 631 632 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 633 rootcontext_sid)) 634 goto out_double_mount; 635 636 sbsec->flags |= ROOTCONTEXT_MNT; 637 638 break; 639 case DEFCONTEXT_MNT: 640 defcontext_sid = sid; 641 642 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 643 defcontext_sid)) 644 goto out_double_mount; 645 646 sbsec->flags |= DEFCONTEXT_MNT; 647 648 break; 649 default: 650 rc = -EINVAL; 651 goto out; 652 } 653 } 654 655 if (sbsec->initialized) { 656 /* previously mounted with options, but not on this attempt? */ 657 if (sbsec->flags && !num_opts) 658 goto out_double_mount; 659 rc = 0; 660 goto out; 661 } 662 663 if (strcmp(sb->s_type->name, "proc") == 0) 664 sbsec->proc = 1; 665 666 /* Determine the labeling behavior to use for this filesystem type. */ 667 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid); 668 if (rc) { 669 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n", 670 __FUNCTION__, sb->s_type->name, rc); 671 goto out; 672 } 673 674 /* sets the context of the superblock for the fs being mounted. */ 675 if (fscontext_sid) { 676 677 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec); 678 if (rc) 679 goto out; 680 681 sbsec->sid = fscontext_sid; 682 } 683 684 /* 685 * Switch to using mount point labeling behavior. 686 * sets the label used on all file below the mountpoint, and will set 687 * the superblock context if not already set. 688 */ 689 if (context_sid) { 690 if (!fscontext_sid) { 691 rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec); 692 if (rc) 693 goto out; 694 sbsec->sid = context_sid; 695 } else { 696 rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec); 697 if (rc) 698 goto out; 699 } 700 if (!rootcontext_sid) 701 rootcontext_sid = context_sid; 702 703 sbsec->mntpoint_sid = context_sid; 704 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 705 } 706 707 if (rootcontext_sid) { 708 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec); 709 if (rc) 710 goto out; 711 712 root_isec->sid = rootcontext_sid; 713 root_isec->initialized = 1; 714 } 715 716 if (defcontext_sid) { 717 if (sbsec->behavior != SECURITY_FS_USE_XATTR) { 718 rc = -EINVAL; 719 printk(KERN_WARNING "SELinux: defcontext option is " 720 "invalid for this filesystem type\n"); 721 goto out; 722 } 723 724 if (defcontext_sid != sbsec->def_sid) { 725 rc = may_context_mount_inode_relabel(defcontext_sid, 726 sbsec, tsec); 727 if (rc) 728 goto out; 729 } 730 731 sbsec->def_sid = defcontext_sid; 732 } 733 734 rc = sb_finish_set_opts(sb); 735 out: 736 mutex_unlock(&sbsec->lock); 737 return rc; 738 out_double_mount: 739 rc = -EINVAL; 740 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 741 "security settings for (dev %s, type %s)\n", sb->s_id, name); 742 goto out; 743 } 744 745 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 746 struct super_block *newsb) 747 { 748 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 749 struct superblock_security_struct *newsbsec = newsb->s_security; 750 751 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 752 int set_context = (oldsbsec->flags & CONTEXT_MNT); 753 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 754 755 /* we can't error, we can't save the info, this shouldn't get called 756 * this early in the boot process. */ 757 BUG_ON(!ss_initialized); 758 759 /* this might go away sometime down the line if there is a new user 760 * of clone, but for now, nfs better not get here... */ 761 BUG_ON(newsbsec->initialized); 762 763 /* how can we clone if the old one wasn't set up?? */ 764 BUG_ON(!oldsbsec->initialized); 765 766 mutex_lock(&newsbsec->lock); 767 768 newsbsec->flags = oldsbsec->flags; 769 770 newsbsec->sid = oldsbsec->sid; 771 newsbsec->def_sid = oldsbsec->def_sid; 772 newsbsec->behavior = oldsbsec->behavior; 773 774 if (set_context) { 775 u32 sid = oldsbsec->mntpoint_sid; 776 777 if (!set_fscontext) 778 newsbsec->sid = sid; 779 if (!set_rootcontext) { 780 struct inode *newinode = newsb->s_root->d_inode; 781 struct inode_security_struct *newisec = newinode->i_security; 782 newisec->sid = sid; 783 } 784 newsbsec->mntpoint_sid = sid; 785 } 786 if (set_rootcontext) { 787 const struct inode *oldinode = oldsb->s_root->d_inode; 788 const struct inode_security_struct *oldisec = oldinode->i_security; 789 struct inode *newinode = newsb->s_root->d_inode; 790 struct inode_security_struct *newisec = newinode->i_security; 791 792 newisec->sid = oldisec->sid; 793 } 794 795 sb_finish_set_opts(newsb); 796 mutex_unlock(&newsbsec->lock); 797 } 798 799 /* 800 * string mount options parsing and call set the sbsec 801 */ 802 static int superblock_doinit(struct super_block *sb, void *data) 803 { 804 char *context = NULL, *defcontext = NULL; 805 char *fscontext = NULL, *rootcontext = NULL; 806 int rc = 0; 807 char *p, *options = data; 808 /* selinux only know about a fixed number of mount options */ 809 char *mnt_opts[NUM_SEL_MNT_OPTS]; 810 int mnt_opts_flags[NUM_SEL_MNT_OPTS], num_mnt_opts = 0; 811 812 if (!data) 813 goto out; 814 815 /* with the nfs patch this will become a goto out; */ 816 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) { 817 const char *name = sb->s_type->name; 818 /* NFS we understand. */ 819 if (!strcmp(name, "nfs")) { 820 struct nfs_mount_data *d = data; 821 822 if (d->version != NFS_MOUNT_VERSION) 823 goto out; 824 825 if (d->context[0]) { 826 context = kstrdup(d->context, GFP_KERNEL); 827 if (!context) { 828 rc = -ENOMEM; 829 goto out; 830 } 831 } 832 goto build_flags; 833 } else 834 goto out; 835 } 836 837 /* Standard string-based options. */ 838 while ((p = strsep(&options, "|")) != NULL) { 839 int token; 840 substring_t args[MAX_OPT_ARGS]; 841 842 if (!*p) 843 continue; 844 845 token = match_token(p, tokens, args); 846 847 switch (token) { 848 case Opt_context: 849 if (context || defcontext) { 850 rc = -EINVAL; 851 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 852 goto out_err; 853 } 854 context = match_strdup(&args[0]); 855 if (!context) { 856 rc = -ENOMEM; 857 goto out_err; 858 } 859 break; 860 861 case Opt_fscontext: 862 if (fscontext) { 863 rc = -EINVAL; 864 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 865 goto out_err; 866 } 867 fscontext = match_strdup(&args[0]); 868 if (!fscontext) { 869 rc = -ENOMEM; 870 goto out_err; 871 } 872 break; 873 874 case Opt_rootcontext: 875 if (rootcontext) { 876 rc = -EINVAL; 877 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 878 goto out_err; 879 } 880 rootcontext = match_strdup(&args[0]); 881 if (!rootcontext) { 882 rc = -ENOMEM; 883 goto out_err; 884 } 885 break; 886 887 case Opt_defcontext: 888 if (context || defcontext) { 889 rc = -EINVAL; 890 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 891 goto out_err; 892 } 893 defcontext = match_strdup(&args[0]); 894 if (!defcontext) { 895 rc = -ENOMEM; 896 goto out_err; 897 } 898 break; 899 900 default: 901 rc = -EINVAL; 902 printk(KERN_WARNING "SELinux: unknown mount option\n"); 903 goto out_err; 904 905 } 906 } 907 908 build_flags: 909 if (fscontext) { 910 mnt_opts[num_mnt_opts] = fscontext; 911 mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 912 } 913 if (context) { 914 mnt_opts[num_mnt_opts] = context; 915 mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 916 } 917 if (rootcontext) { 918 mnt_opts[num_mnt_opts] = rootcontext; 919 mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 920 } 921 if (defcontext) { 922 mnt_opts[num_mnt_opts] = defcontext; 923 mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 924 } 925 926 out: 927 rc = selinux_set_mnt_opts(sb, mnt_opts, mnt_opts_flags, num_mnt_opts); 928 out_err: 929 kfree(context); 930 kfree(defcontext); 931 kfree(fscontext); 932 kfree(rootcontext); 933 return rc; 934 } 935 936 static inline u16 inode_mode_to_security_class(umode_t mode) 937 { 938 switch (mode & S_IFMT) { 939 case S_IFSOCK: 940 return SECCLASS_SOCK_FILE; 941 case S_IFLNK: 942 return SECCLASS_LNK_FILE; 943 case S_IFREG: 944 return SECCLASS_FILE; 945 case S_IFBLK: 946 return SECCLASS_BLK_FILE; 947 case S_IFDIR: 948 return SECCLASS_DIR; 949 case S_IFCHR: 950 return SECCLASS_CHR_FILE; 951 case S_IFIFO: 952 return SECCLASS_FIFO_FILE; 953 954 } 955 956 return SECCLASS_FILE; 957 } 958 959 static inline int default_protocol_stream(int protocol) 960 { 961 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 962 } 963 964 static inline int default_protocol_dgram(int protocol) 965 { 966 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 967 } 968 969 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 970 { 971 switch (family) { 972 case PF_UNIX: 973 switch (type) { 974 case SOCK_STREAM: 975 case SOCK_SEQPACKET: 976 return SECCLASS_UNIX_STREAM_SOCKET; 977 case SOCK_DGRAM: 978 return SECCLASS_UNIX_DGRAM_SOCKET; 979 } 980 break; 981 case PF_INET: 982 case PF_INET6: 983 switch (type) { 984 case SOCK_STREAM: 985 if (default_protocol_stream(protocol)) 986 return SECCLASS_TCP_SOCKET; 987 else 988 return SECCLASS_RAWIP_SOCKET; 989 case SOCK_DGRAM: 990 if (default_protocol_dgram(protocol)) 991 return SECCLASS_UDP_SOCKET; 992 else 993 return SECCLASS_RAWIP_SOCKET; 994 case SOCK_DCCP: 995 return SECCLASS_DCCP_SOCKET; 996 default: 997 return SECCLASS_RAWIP_SOCKET; 998 } 999 break; 1000 case PF_NETLINK: 1001 switch (protocol) { 1002 case NETLINK_ROUTE: 1003 return SECCLASS_NETLINK_ROUTE_SOCKET; 1004 case NETLINK_FIREWALL: 1005 return SECCLASS_NETLINK_FIREWALL_SOCKET; 1006 case NETLINK_INET_DIAG: 1007 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1008 case NETLINK_NFLOG: 1009 return SECCLASS_NETLINK_NFLOG_SOCKET; 1010 case NETLINK_XFRM: 1011 return SECCLASS_NETLINK_XFRM_SOCKET; 1012 case NETLINK_SELINUX: 1013 return SECCLASS_NETLINK_SELINUX_SOCKET; 1014 case NETLINK_AUDIT: 1015 return SECCLASS_NETLINK_AUDIT_SOCKET; 1016 case NETLINK_IP6_FW: 1017 return SECCLASS_NETLINK_IP6FW_SOCKET; 1018 case NETLINK_DNRTMSG: 1019 return SECCLASS_NETLINK_DNRT_SOCKET; 1020 case NETLINK_KOBJECT_UEVENT: 1021 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1022 default: 1023 return SECCLASS_NETLINK_SOCKET; 1024 } 1025 case PF_PACKET: 1026 return SECCLASS_PACKET_SOCKET; 1027 case PF_KEY: 1028 return SECCLASS_KEY_SOCKET; 1029 case PF_APPLETALK: 1030 return SECCLASS_APPLETALK_SOCKET; 1031 } 1032 1033 return SECCLASS_SOCKET; 1034 } 1035 1036 #ifdef CONFIG_PROC_FS 1037 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1038 u16 tclass, 1039 u32 *sid) 1040 { 1041 int buflen, rc; 1042 char *buffer, *path, *end; 1043 1044 buffer = (char*)__get_free_page(GFP_KERNEL); 1045 if (!buffer) 1046 return -ENOMEM; 1047 1048 buflen = PAGE_SIZE; 1049 end = buffer+buflen; 1050 *--end = '\0'; 1051 buflen--; 1052 path = end-1; 1053 *path = '/'; 1054 while (de && de != de->parent) { 1055 buflen -= de->namelen + 1; 1056 if (buflen < 0) 1057 break; 1058 end -= de->namelen; 1059 memcpy(end, de->name, de->namelen); 1060 *--end = '/'; 1061 path = end; 1062 de = de->parent; 1063 } 1064 rc = security_genfs_sid("proc", path, tclass, sid); 1065 free_page((unsigned long)buffer); 1066 return rc; 1067 } 1068 #else 1069 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1070 u16 tclass, 1071 u32 *sid) 1072 { 1073 return -EINVAL; 1074 } 1075 #endif 1076 1077 /* The inode's security attributes must be initialized before first use. */ 1078 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1079 { 1080 struct superblock_security_struct *sbsec = NULL; 1081 struct inode_security_struct *isec = inode->i_security; 1082 u32 sid; 1083 struct dentry *dentry; 1084 #define INITCONTEXTLEN 255 1085 char *context = NULL; 1086 unsigned len = 0; 1087 int rc = 0; 1088 1089 if (isec->initialized) 1090 goto out; 1091 1092 mutex_lock(&isec->lock); 1093 if (isec->initialized) 1094 goto out_unlock; 1095 1096 sbsec = inode->i_sb->s_security; 1097 if (!sbsec->initialized) { 1098 /* Defer initialization until selinux_complete_init, 1099 after the initial policy is loaded and the security 1100 server is ready to handle calls. */ 1101 spin_lock(&sbsec->isec_lock); 1102 if (list_empty(&isec->list)) 1103 list_add(&isec->list, &sbsec->isec_head); 1104 spin_unlock(&sbsec->isec_lock); 1105 goto out_unlock; 1106 } 1107 1108 switch (sbsec->behavior) { 1109 case SECURITY_FS_USE_XATTR: 1110 if (!inode->i_op->getxattr) { 1111 isec->sid = sbsec->def_sid; 1112 break; 1113 } 1114 1115 /* Need a dentry, since the xattr API requires one. 1116 Life would be simpler if we could just pass the inode. */ 1117 if (opt_dentry) { 1118 /* Called from d_instantiate or d_splice_alias. */ 1119 dentry = dget(opt_dentry); 1120 } else { 1121 /* Called from selinux_complete_init, try to find a dentry. */ 1122 dentry = d_find_alias(inode); 1123 } 1124 if (!dentry) { 1125 printk(KERN_WARNING "%s: no dentry for dev=%s " 1126 "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id, 1127 inode->i_ino); 1128 goto out_unlock; 1129 } 1130 1131 len = INITCONTEXTLEN; 1132 context = kmalloc(len, GFP_KERNEL); 1133 if (!context) { 1134 rc = -ENOMEM; 1135 dput(dentry); 1136 goto out_unlock; 1137 } 1138 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1139 context, len); 1140 if (rc == -ERANGE) { 1141 /* Need a larger buffer. Query for the right size. */ 1142 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1143 NULL, 0); 1144 if (rc < 0) { 1145 dput(dentry); 1146 goto out_unlock; 1147 } 1148 kfree(context); 1149 len = rc; 1150 context = kmalloc(len, GFP_KERNEL); 1151 if (!context) { 1152 rc = -ENOMEM; 1153 dput(dentry); 1154 goto out_unlock; 1155 } 1156 rc = inode->i_op->getxattr(dentry, 1157 XATTR_NAME_SELINUX, 1158 context, len); 1159 } 1160 dput(dentry); 1161 if (rc < 0) { 1162 if (rc != -ENODATA) { 1163 printk(KERN_WARNING "%s: getxattr returned " 1164 "%d for dev=%s ino=%ld\n", __FUNCTION__, 1165 -rc, inode->i_sb->s_id, inode->i_ino); 1166 kfree(context); 1167 goto out_unlock; 1168 } 1169 /* Map ENODATA to the default file SID */ 1170 sid = sbsec->def_sid; 1171 rc = 0; 1172 } else { 1173 rc = security_context_to_sid_default(context, rc, &sid, 1174 sbsec->def_sid); 1175 if (rc) { 1176 printk(KERN_WARNING "%s: context_to_sid(%s) " 1177 "returned %d for dev=%s ino=%ld\n", 1178 __FUNCTION__, context, -rc, 1179 inode->i_sb->s_id, inode->i_ino); 1180 kfree(context); 1181 /* Leave with the unlabeled SID */ 1182 rc = 0; 1183 break; 1184 } 1185 } 1186 kfree(context); 1187 isec->sid = sid; 1188 break; 1189 case SECURITY_FS_USE_TASK: 1190 isec->sid = isec->task_sid; 1191 break; 1192 case SECURITY_FS_USE_TRANS: 1193 /* Default to the fs SID. */ 1194 isec->sid = sbsec->sid; 1195 1196 /* Try to obtain a transition SID. */ 1197 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1198 rc = security_transition_sid(isec->task_sid, 1199 sbsec->sid, 1200 isec->sclass, 1201 &sid); 1202 if (rc) 1203 goto out_unlock; 1204 isec->sid = sid; 1205 break; 1206 case SECURITY_FS_USE_MNTPOINT: 1207 isec->sid = sbsec->mntpoint_sid; 1208 break; 1209 default: 1210 /* Default to the fs superblock SID. */ 1211 isec->sid = sbsec->sid; 1212 1213 if (sbsec->proc) { 1214 struct proc_inode *proci = PROC_I(inode); 1215 if (proci->pde) { 1216 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1217 rc = selinux_proc_get_sid(proci->pde, 1218 isec->sclass, 1219 &sid); 1220 if (rc) 1221 goto out_unlock; 1222 isec->sid = sid; 1223 } 1224 } 1225 break; 1226 } 1227 1228 isec->initialized = 1; 1229 1230 out_unlock: 1231 mutex_unlock(&isec->lock); 1232 out: 1233 if (isec->sclass == SECCLASS_FILE) 1234 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1235 return rc; 1236 } 1237 1238 /* Convert a Linux signal to an access vector. */ 1239 static inline u32 signal_to_av(int sig) 1240 { 1241 u32 perm = 0; 1242 1243 switch (sig) { 1244 case SIGCHLD: 1245 /* Commonly granted from child to parent. */ 1246 perm = PROCESS__SIGCHLD; 1247 break; 1248 case SIGKILL: 1249 /* Cannot be caught or ignored */ 1250 perm = PROCESS__SIGKILL; 1251 break; 1252 case SIGSTOP: 1253 /* Cannot be caught or ignored */ 1254 perm = PROCESS__SIGSTOP; 1255 break; 1256 default: 1257 /* All other signals. */ 1258 perm = PROCESS__SIGNAL; 1259 break; 1260 } 1261 1262 return perm; 1263 } 1264 1265 /* Check permission betweeen a pair of tasks, e.g. signal checks, 1266 fork check, ptrace check, etc. */ 1267 static int task_has_perm(struct task_struct *tsk1, 1268 struct task_struct *tsk2, 1269 u32 perms) 1270 { 1271 struct task_security_struct *tsec1, *tsec2; 1272 1273 tsec1 = tsk1->security; 1274 tsec2 = tsk2->security; 1275 return avc_has_perm(tsec1->sid, tsec2->sid, 1276 SECCLASS_PROCESS, perms, NULL); 1277 } 1278 1279 /* Check whether a task is allowed to use a capability. */ 1280 static int task_has_capability(struct task_struct *tsk, 1281 int cap) 1282 { 1283 struct task_security_struct *tsec; 1284 struct avc_audit_data ad; 1285 1286 tsec = tsk->security; 1287 1288 AVC_AUDIT_DATA_INIT(&ad,CAP); 1289 ad.tsk = tsk; 1290 ad.u.cap = cap; 1291 1292 return avc_has_perm(tsec->sid, tsec->sid, 1293 SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad); 1294 } 1295 1296 /* Check whether a task is allowed to use a system operation. */ 1297 static int task_has_system(struct task_struct *tsk, 1298 u32 perms) 1299 { 1300 struct task_security_struct *tsec; 1301 1302 tsec = tsk->security; 1303 1304 return avc_has_perm(tsec->sid, SECINITSID_KERNEL, 1305 SECCLASS_SYSTEM, perms, NULL); 1306 } 1307 1308 /* Check whether a task has a particular permission to an inode. 1309 The 'adp' parameter is optional and allows other audit 1310 data to be passed (e.g. the dentry). */ 1311 static int inode_has_perm(struct task_struct *tsk, 1312 struct inode *inode, 1313 u32 perms, 1314 struct avc_audit_data *adp) 1315 { 1316 struct task_security_struct *tsec; 1317 struct inode_security_struct *isec; 1318 struct avc_audit_data ad; 1319 1320 if (unlikely (IS_PRIVATE (inode))) 1321 return 0; 1322 1323 tsec = tsk->security; 1324 isec = inode->i_security; 1325 1326 if (!adp) { 1327 adp = &ad; 1328 AVC_AUDIT_DATA_INIT(&ad, FS); 1329 ad.u.fs.inode = inode; 1330 } 1331 1332 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp); 1333 } 1334 1335 /* Same as inode_has_perm, but pass explicit audit data containing 1336 the dentry to help the auditing code to more easily generate the 1337 pathname if needed. */ 1338 static inline int dentry_has_perm(struct task_struct *tsk, 1339 struct vfsmount *mnt, 1340 struct dentry *dentry, 1341 u32 av) 1342 { 1343 struct inode *inode = dentry->d_inode; 1344 struct avc_audit_data ad; 1345 AVC_AUDIT_DATA_INIT(&ad,FS); 1346 ad.u.fs.mnt = mnt; 1347 ad.u.fs.dentry = dentry; 1348 return inode_has_perm(tsk, inode, av, &ad); 1349 } 1350 1351 /* Check whether a task can use an open file descriptor to 1352 access an inode in a given way. Check access to the 1353 descriptor itself, and then use dentry_has_perm to 1354 check a particular permission to the file. 1355 Access to the descriptor is implicitly granted if it 1356 has the same SID as the process. If av is zero, then 1357 access to the file is not checked, e.g. for cases 1358 where only the descriptor is affected like seek. */ 1359 static int file_has_perm(struct task_struct *tsk, 1360 struct file *file, 1361 u32 av) 1362 { 1363 struct task_security_struct *tsec = tsk->security; 1364 struct file_security_struct *fsec = file->f_security; 1365 struct vfsmount *mnt = file->f_path.mnt; 1366 struct dentry *dentry = file->f_path.dentry; 1367 struct inode *inode = dentry->d_inode; 1368 struct avc_audit_data ad; 1369 int rc; 1370 1371 AVC_AUDIT_DATA_INIT(&ad, FS); 1372 ad.u.fs.mnt = mnt; 1373 ad.u.fs.dentry = dentry; 1374 1375 if (tsec->sid != fsec->sid) { 1376 rc = avc_has_perm(tsec->sid, fsec->sid, 1377 SECCLASS_FD, 1378 FD__USE, 1379 &ad); 1380 if (rc) 1381 return rc; 1382 } 1383 1384 /* av is zero if only checking access to the descriptor. */ 1385 if (av) 1386 return inode_has_perm(tsk, inode, av, &ad); 1387 1388 return 0; 1389 } 1390 1391 /* Check whether a task can create a file. */ 1392 static int may_create(struct inode *dir, 1393 struct dentry *dentry, 1394 u16 tclass) 1395 { 1396 struct task_security_struct *tsec; 1397 struct inode_security_struct *dsec; 1398 struct superblock_security_struct *sbsec; 1399 u32 newsid; 1400 struct avc_audit_data ad; 1401 int rc; 1402 1403 tsec = current->security; 1404 dsec = dir->i_security; 1405 sbsec = dir->i_sb->s_security; 1406 1407 AVC_AUDIT_DATA_INIT(&ad, FS); 1408 ad.u.fs.dentry = dentry; 1409 1410 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, 1411 DIR__ADD_NAME | DIR__SEARCH, 1412 &ad); 1413 if (rc) 1414 return rc; 1415 1416 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 1417 newsid = tsec->create_sid; 1418 } else { 1419 rc = security_transition_sid(tsec->sid, dsec->sid, tclass, 1420 &newsid); 1421 if (rc) 1422 return rc; 1423 } 1424 1425 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad); 1426 if (rc) 1427 return rc; 1428 1429 return avc_has_perm(newsid, sbsec->sid, 1430 SECCLASS_FILESYSTEM, 1431 FILESYSTEM__ASSOCIATE, &ad); 1432 } 1433 1434 /* Check whether a task can create a key. */ 1435 static int may_create_key(u32 ksid, 1436 struct task_struct *ctx) 1437 { 1438 struct task_security_struct *tsec; 1439 1440 tsec = ctx->security; 1441 1442 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1443 } 1444 1445 #define MAY_LINK 0 1446 #define MAY_UNLINK 1 1447 #define MAY_RMDIR 2 1448 1449 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1450 static int may_link(struct inode *dir, 1451 struct dentry *dentry, 1452 int kind) 1453 1454 { 1455 struct task_security_struct *tsec; 1456 struct inode_security_struct *dsec, *isec; 1457 struct avc_audit_data ad; 1458 u32 av; 1459 int rc; 1460 1461 tsec = current->security; 1462 dsec = dir->i_security; 1463 isec = dentry->d_inode->i_security; 1464 1465 AVC_AUDIT_DATA_INIT(&ad, FS); 1466 ad.u.fs.dentry = dentry; 1467 1468 av = DIR__SEARCH; 1469 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1470 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad); 1471 if (rc) 1472 return rc; 1473 1474 switch (kind) { 1475 case MAY_LINK: 1476 av = FILE__LINK; 1477 break; 1478 case MAY_UNLINK: 1479 av = FILE__UNLINK; 1480 break; 1481 case MAY_RMDIR: 1482 av = DIR__RMDIR; 1483 break; 1484 default: 1485 printk(KERN_WARNING "may_link: unrecognized kind %d\n", kind); 1486 return 0; 1487 } 1488 1489 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad); 1490 return rc; 1491 } 1492 1493 static inline int may_rename(struct inode *old_dir, 1494 struct dentry *old_dentry, 1495 struct inode *new_dir, 1496 struct dentry *new_dentry) 1497 { 1498 struct task_security_struct *tsec; 1499 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1500 struct avc_audit_data ad; 1501 u32 av; 1502 int old_is_dir, new_is_dir; 1503 int rc; 1504 1505 tsec = current->security; 1506 old_dsec = old_dir->i_security; 1507 old_isec = old_dentry->d_inode->i_security; 1508 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 1509 new_dsec = new_dir->i_security; 1510 1511 AVC_AUDIT_DATA_INIT(&ad, FS); 1512 1513 ad.u.fs.dentry = old_dentry; 1514 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR, 1515 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1516 if (rc) 1517 return rc; 1518 rc = avc_has_perm(tsec->sid, old_isec->sid, 1519 old_isec->sclass, FILE__RENAME, &ad); 1520 if (rc) 1521 return rc; 1522 if (old_is_dir && new_dir != old_dir) { 1523 rc = avc_has_perm(tsec->sid, old_isec->sid, 1524 old_isec->sclass, DIR__REPARENT, &ad); 1525 if (rc) 1526 return rc; 1527 } 1528 1529 ad.u.fs.dentry = new_dentry; 1530 av = DIR__ADD_NAME | DIR__SEARCH; 1531 if (new_dentry->d_inode) 1532 av |= DIR__REMOVE_NAME; 1533 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1534 if (rc) 1535 return rc; 1536 if (new_dentry->d_inode) { 1537 new_isec = new_dentry->d_inode->i_security; 1538 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode); 1539 rc = avc_has_perm(tsec->sid, new_isec->sid, 1540 new_isec->sclass, 1541 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1542 if (rc) 1543 return rc; 1544 } 1545 1546 return 0; 1547 } 1548 1549 /* Check whether a task can perform a filesystem operation. */ 1550 static int superblock_has_perm(struct task_struct *tsk, 1551 struct super_block *sb, 1552 u32 perms, 1553 struct avc_audit_data *ad) 1554 { 1555 struct task_security_struct *tsec; 1556 struct superblock_security_struct *sbsec; 1557 1558 tsec = tsk->security; 1559 sbsec = sb->s_security; 1560 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 1561 perms, ad); 1562 } 1563 1564 /* Convert a Linux mode and permission mask to an access vector. */ 1565 static inline u32 file_mask_to_av(int mode, int mask) 1566 { 1567 u32 av = 0; 1568 1569 if ((mode & S_IFMT) != S_IFDIR) { 1570 if (mask & MAY_EXEC) 1571 av |= FILE__EXECUTE; 1572 if (mask & MAY_READ) 1573 av |= FILE__READ; 1574 1575 if (mask & MAY_APPEND) 1576 av |= FILE__APPEND; 1577 else if (mask & MAY_WRITE) 1578 av |= FILE__WRITE; 1579 1580 } else { 1581 if (mask & MAY_EXEC) 1582 av |= DIR__SEARCH; 1583 if (mask & MAY_WRITE) 1584 av |= DIR__WRITE; 1585 if (mask & MAY_READ) 1586 av |= DIR__READ; 1587 } 1588 1589 return av; 1590 } 1591 1592 /* Convert a Linux file to an access vector. */ 1593 static inline u32 file_to_av(struct file *file) 1594 { 1595 u32 av = 0; 1596 1597 if (file->f_mode & FMODE_READ) 1598 av |= FILE__READ; 1599 if (file->f_mode & FMODE_WRITE) { 1600 if (file->f_flags & O_APPEND) 1601 av |= FILE__APPEND; 1602 else 1603 av |= FILE__WRITE; 1604 } 1605 1606 return av; 1607 } 1608 1609 /* Hook functions begin here. */ 1610 1611 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child) 1612 { 1613 struct task_security_struct *psec = parent->security; 1614 struct task_security_struct *csec = child->security; 1615 int rc; 1616 1617 rc = secondary_ops->ptrace(parent,child); 1618 if (rc) 1619 return rc; 1620 1621 rc = task_has_perm(parent, child, PROCESS__PTRACE); 1622 /* Save the SID of the tracing process for later use in apply_creds. */ 1623 if (!(child->ptrace & PT_PTRACED) && !rc) 1624 csec->ptrace_sid = psec->sid; 1625 return rc; 1626 } 1627 1628 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 1629 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1630 { 1631 int error; 1632 1633 error = task_has_perm(current, target, PROCESS__GETCAP); 1634 if (error) 1635 return error; 1636 1637 return secondary_ops->capget(target, effective, inheritable, permitted); 1638 } 1639 1640 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective, 1641 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1642 { 1643 int error; 1644 1645 error = secondary_ops->capset_check(target, effective, inheritable, permitted); 1646 if (error) 1647 return error; 1648 1649 return task_has_perm(current, target, PROCESS__SETCAP); 1650 } 1651 1652 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective, 1653 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1654 { 1655 secondary_ops->capset_set(target, effective, inheritable, permitted); 1656 } 1657 1658 static int selinux_capable(struct task_struct *tsk, int cap) 1659 { 1660 int rc; 1661 1662 rc = secondary_ops->capable(tsk, cap); 1663 if (rc) 1664 return rc; 1665 1666 return task_has_capability(tsk,cap); 1667 } 1668 1669 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid) 1670 { 1671 int buflen, rc; 1672 char *buffer, *path, *end; 1673 1674 rc = -ENOMEM; 1675 buffer = (char*)__get_free_page(GFP_KERNEL); 1676 if (!buffer) 1677 goto out; 1678 1679 buflen = PAGE_SIZE; 1680 end = buffer+buflen; 1681 *--end = '\0'; 1682 buflen--; 1683 path = end-1; 1684 *path = '/'; 1685 while (table) { 1686 const char *name = table->procname; 1687 size_t namelen = strlen(name); 1688 buflen -= namelen + 1; 1689 if (buflen < 0) 1690 goto out_free; 1691 end -= namelen; 1692 memcpy(end, name, namelen); 1693 *--end = '/'; 1694 path = end; 1695 table = table->parent; 1696 } 1697 buflen -= 4; 1698 if (buflen < 0) 1699 goto out_free; 1700 end -= 4; 1701 memcpy(end, "/sys", 4); 1702 path = end; 1703 rc = security_genfs_sid("proc", path, tclass, sid); 1704 out_free: 1705 free_page((unsigned long)buffer); 1706 out: 1707 return rc; 1708 } 1709 1710 static int selinux_sysctl(ctl_table *table, int op) 1711 { 1712 int error = 0; 1713 u32 av; 1714 struct task_security_struct *tsec; 1715 u32 tsid; 1716 int rc; 1717 1718 rc = secondary_ops->sysctl(table, op); 1719 if (rc) 1720 return rc; 1721 1722 tsec = current->security; 1723 1724 rc = selinux_sysctl_get_sid(table, (op == 0001) ? 1725 SECCLASS_DIR : SECCLASS_FILE, &tsid); 1726 if (rc) { 1727 /* Default to the well-defined sysctl SID. */ 1728 tsid = SECINITSID_SYSCTL; 1729 } 1730 1731 /* The op values are "defined" in sysctl.c, thereby creating 1732 * a bad coupling between this module and sysctl.c */ 1733 if(op == 001) { 1734 error = avc_has_perm(tsec->sid, tsid, 1735 SECCLASS_DIR, DIR__SEARCH, NULL); 1736 } else { 1737 av = 0; 1738 if (op & 004) 1739 av |= FILE__READ; 1740 if (op & 002) 1741 av |= FILE__WRITE; 1742 if (av) 1743 error = avc_has_perm(tsec->sid, tsid, 1744 SECCLASS_FILE, av, NULL); 1745 } 1746 1747 return error; 1748 } 1749 1750 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 1751 { 1752 int rc = 0; 1753 1754 if (!sb) 1755 return 0; 1756 1757 switch (cmds) { 1758 case Q_SYNC: 1759 case Q_QUOTAON: 1760 case Q_QUOTAOFF: 1761 case Q_SETINFO: 1762 case Q_SETQUOTA: 1763 rc = superblock_has_perm(current, 1764 sb, 1765 FILESYSTEM__QUOTAMOD, NULL); 1766 break; 1767 case Q_GETFMT: 1768 case Q_GETINFO: 1769 case Q_GETQUOTA: 1770 rc = superblock_has_perm(current, 1771 sb, 1772 FILESYSTEM__QUOTAGET, NULL); 1773 break; 1774 default: 1775 rc = 0; /* let the kernel handle invalid cmds */ 1776 break; 1777 } 1778 return rc; 1779 } 1780 1781 static int selinux_quota_on(struct dentry *dentry) 1782 { 1783 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON); 1784 } 1785 1786 static int selinux_syslog(int type) 1787 { 1788 int rc; 1789 1790 rc = secondary_ops->syslog(type); 1791 if (rc) 1792 return rc; 1793 1794 switch (type) { 1795 case 3: /* Read last kernel messages */ 1796 case 10: /* Return size of the log buffer */ 1797 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 1798 break; 1799 case 6: /* Disable logging to console */ 1800 case 7: /* Enable logging to console */ 1801 case 8: /* Set level of messages printed to console */ 1802 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 1803 break; 1804 case 0: /* Close log */ 1805 case 1: /* Open log */ 1806 case 2: /* Read from log */ 1807 case 4: /* Read/clear last kernel messages */ 1808 case 5: /* Clear ring buffer */ 1809 default: 1810 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 1811 break; 1812 } 1813 return rc; 1814 } 1815 1816 /* 1817 * Check that a process has enough memory to allocate a new virtual 1818 * mapping. 0 means there is enough memory for the allocation to 1819 * succeed and -ENOMEM implies there is not. 1820 * 1821 * Note that secondary_ops->capable and task_has_perm_noaudit return 0 1822 * if the capability is granted, but __vm_enough_memory requires 1 if 1823 * the capability is granted. 1824 * 1825 * Do not audit the selinux permission check, as this is applied to all 1826 * processes that allocate mappings. 1827 */ 1828 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 1829 { 1830 int rc, cap_sys_admin = 0; 1831 struct task_security_struct *tsec = current->security; 1832 1833 rc = secondary_ops->capable(current, CAP_SYS_ADMIN); 1834 if (rc == 0) 1835 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid, 1836 SECCLASS_CAPABILITY, 1837 CAP_TO_MASK(CAP_SYS_ADMIN), 1838 0, 1839 NULL); 1840 1841 if (rc == 0) 1842 cap_sys_admin = 1; 1843 1844 return __vm_enough_memory(mm, pages, cap_sys_admin); 1845 } 1846 1847 /* binprm security operations */ 1848 1849 static int selinux_bprm_alloc_security(struct linux_binprm *bprm) 1850 { 1851 struct bprm_security_struct *bsec; 1852 1853 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL); 1854 if (!bsec) 1855 return -ENOMEM; 1856 1857 bsec->bprm = bprm; 1858 bsec->sid = SECINITSID_UNLABELED; 1859 bsec->set = 0; 1860 1861 bprm->security = bsec; 1862 return 0; 1863 } 1864 1865 static int selinux_bprm_set_security(struct linux_binprm *bprm) 1866 { 1867 struct task_security_struct *tsec; 1868 struct inode *inode = bprm->file->f_path.dentry->d_inode; 1869 struct inode_security_struct *isec; 1870 struct bprm_security_struct *bsec; 1871 u32 newsid; 1872 struct avc_audit_data ad; 1873 int rc; 1874 1875 rc = secondary_ops->bprm_set_security(bprm); 1876 if (rc) 1877 return rc; 1878 1879 bsec = bprm->security; 1880 1881 if (bsec->set) 1882 return 0; 1883 1884 tsec = current->security; 1885 isec = inode->i_security; 1886 1887 /* Default to the current task SID. */ 1888 bsec->sid = tsec->sid; 1889 1890 /* Reset fs, key, and sock SIDs on execve. */ 1891 tsec->create_sid = 0; 1892 tsec->keycreate_sid = 0; 1893 tsec->sockcreate_sid = 0; 1894 1895 if (tsec->exec_sid) { 1896 newsid = tsec->exec_sid; 1897 /* Reset exec SID on execve. */ 1898 tsec->exec_sid = 0; 1899 } else { 1900 /* Check for a default transition on this program. */ 1901 rc = security_transition_sid(tsec->sid, isec->sid, 1902 SECCLASS_PROCESS, &newsid); 1903 if (rc) 1904 return rc; 1905 } 1906 1907 AVC_AUDIT_DATA_INIT(&ad, FS); 1908 ad.u.fs.mnt = bprm->file->f_path.mnt; 1909 ad.u.fs.dentry = bprm->file->f_path.dentry; 1910 1911 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) 1912 newsid = tsec->sid; 1913 1914 if (tsec->sid == newsid) { 1915 rc = avc_has_perm(tsec->sid, isec->sid, 1916 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 1917 if (rc) 1918 return rc; 1919 } else { 1920 /* Check permissions for the transition. */ 1921 rc = avc_has_perm(tsec->sid, newsid, 1922 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 1923 if (rc) 1924 return rc; 1925 1926 rc = avc_has_perm(newsid, isec->sid, 1927 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 1928 if (rc) 1929 return rc; 1930 1931 /* Clear any possibly unsafe personality bits on exec: */ 1932 current->personality &= ~PER_CLEAR_ON_SETID; 1933 1934 /* Set the security field to the new SID. */ 1935 bsec->sid = newsid; 1936 } 1937 1938 bsec->set = 1; 1939 return 0; 1940 } 1941 1942 static int selinux_bprm_check_security (struct linux_binprm *bprm) 1943 { 1944 return secondary_ops->bprm_check_security(bprm); 1945 } 1946 1947 1948 static int selinux_bprm_secureexec (struct linux_binprm *bprm) 1949 { 1950 struct task_security_struct *tsec = current->security; 1951 int atsecure = 0; 1952 1953 if (tsec->osid != tsec->sid) { 1954 /* Enable secure mode for SIDs transitions unless 1955 the noatsecure permission is granted between 1956 the two SIDs, i.e. ahp returns 0. */ 1957 atsecure = avc_has_perm(tsec->osid, tsec->sid, 1958 SECCLASS_PROCESS, 1959 PROCESS__NOATSECURE, NULL); 1960 } 1961 1962 return (atsecure || secondary_ops->bprm_secureexec(bprm)); 1963 } 1964 1965 static void selinux_bprm_free_security(struct linux_binprm *bprm) 1966 { 1967 kfree(bprm->security); 1968 bprm->security = NULL; 1969 } 1970 1971 extern struct vfsmount *selinuxfs_mount; 1972 extern struct dentry *selinux_null; 1973 1974 /* Derived from fs/exec.c:flush_old_files. */ 1975 static inline void flush_unauthorized_files(struct files_struct * files) 1976 { 1977 struct avc_audit_data ad; 1978 struct file *file, *devnull = NULL; 1979 struct tty_struct *tty; 1980 struct fdtable *fdt; 1981 long j = -1; 1982 int drop_tty = 0; 1983 1984 mutex_lock(&tty_mutex); 1985 tty = get_current_tty(); 1986 if (tty) { 1987 file_list_lock(); 1988 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list); 1989 if (file) { 1990 /* Revalidate access to controlling tty. 1991 Use inode_has_perm on the tty inode directly rather 1992 than using file_has_perm, as this particular open 1993 file may belong to another process and we are only 1994 interested in the inode-based check here. */ 1995 struct inode *inode = file->f_path.dentry->d_inode; 1996 if (inode_has_perm(current, inode, 1997 FILE__READ | FILE__WRITE, NULL)) { 1998 drop_tty = 1; 1999 } 2000 } 2001 file_list_unlock(); 2002 } 2003 mutex_unlock(&tty_mutex); 2004 /* Reset controlling tty. */ 2005 if (drop_tty) 2006 no_tty(); 2007 2008 /* Revalidate access to inherited open files. */ 2009 2010 AVC_AUDIT_DATA_INIT(&ad,FS); 2011 2012 spin_lock(&files->file_lock); 2013 for (;;) { 2014 unsigned long set, i; 2015 int fd; 2016 2017 j++; 2018 i = j * __NFDBITS; 2019 fdt = files_fdtable(files); 2020 if (i >= fdt->max_fds) 2021 break; 2022 set = fdt->open_fds->fds_bits[j]; 2023 if (!set) 2024 continue; 2025 spin_unlock(&files->file_lock); 2026 for ( ; set ; i++,set >>= 1) { 2027 if (set & 1) { 2028 file = fget(i); 2029 if (!file) 2030 continue; 2031 if (file_has_perm(current, 2032 file, 2033 file_to_av(file))) { 2034 sys_close(i); 2035 fd = get_unused_fd(); 2036 if (fd != i) { 2037 if (fd >= 0) 2038 put_unused_fd(fd); 2039 fput(file); 2040 continue; 2041 } 2042 if (devnull) { 2043 get_file(devnull); 2044 } else { 2045 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR); 2046 if (IS_ERR(devnull)) { 2047 devnull = NULL; 2048 put_unused_fd(fd); 2049 fput(file); 2050 continue; 2051 } 2052 } 2053 fd_install(fd, devnull); 2054 } 2055 fput(file); 2056 } 2057 } 2058 spin_lock(&files->file_lock); 2059 2060 } 2061 spin_unlock(&files->file_lock); 2062 } 2063 2064 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 2065 { 2066 struct task_security_struct *tsec; 2067 struct bprm_security_struct *bsec; 2068 u32 sid; 2069 int rc; 2070 2071 secondary_ops->bprm_apply_creds(bprm, unsafe); 2072 2073 tsec = current->security; 2074 2075 bsec = bprm->security; 2076 sid = bsec->sid; 2077 2078 tsec->osid = tsec->sid; 2079 bsec->unsafe = 0; 2080 if (tsec->sid != sid) { 2081 /* Check for shared state. If not ok, leave SID 2082 unchanged and kill. */ 2083 if (unsafe & LSM_UNSAFE_SHARE) { 2084 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 2085 PROCESS__SHARE, NULL); 2086 if (rc) { 2087 bsec->unsafe = 1; 2088 return; 2089 } 2090 } 2091 2092 /* Check for ptracing, and update the task SID if ok. 2093 Otherwise, leave SID unchanged and kill. */ 2094 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2095 rc = avc_has_perm(tsec->ptrace_sid, sid, 2096 SECCLASS_PROCESS, PROCESS__PTRACE, 2097 NULL); 2098 if (rc) { 2099 bsec->unsafe = 1; 2100 return; 2101 } 2102 } 2103 tsec->sid = sid; 2104 } 2105 } 2106 2107 /* 2108 * called after apply_creds without the task lock held 2109 */ 2110 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm) 2111 { 2112 struct task_security_struct *tsec; 2113 struct rlimit *rlim, *initrlim; 2114 struct itimerval itimer; 2115 struct bprm_security_struct *bsec; 2116 int rc, i; 2117 2118 tsec = current->security; 2119 bsec = bprm->security; 2120 2121 if (bsec->unsafe) { 2122 force_sig_specific(SIGKILL, current); 2123 return; 2124 } 2125 if (tsec->osid == tsec->sid) 2126 return; 2127 2128 /* Close files for which the new task SID is not authorized. */ 2129 flush_unauthorized_files(current->files); 2130 2131 /* Check whether the new SID can inherit signal state 2132 from the old SID. If not, clear itimers to avoid 2133 subsequent signal generation and flush and unblock 2134 signals. This must occur _after_ the task SID has 2135 been updated so that any kill done after the flush 2136 will be checked against the new SID. */ 2137 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS, 2138 PROCESS__SIGINH, NULL); 2139 if (rc) { 2140 memset(&itimer, 0, sizeof itimer); 2141 for (i = 0; i < 3; i++) 2142 do_setitimer(i, &itimer, NULL); 2143 flush_signals(current); 2144 spin_lock_irq(¤t->sighand->siglock); 2145 flush_signal_handlers(current, 1); 2146 sigemptyset(¤t->blocked); 2147 recalc_sigpending(); 2148 spin_unlock_irq(¤t->sighand->siglock); 2149 } 2150 2151 /* Always clear parent death signal on SID transitions. */ 2152 current->pdeath_signal = 0; 2153 2154 /* Check whether the new SID can inherit resource limits 2155 from the old SID. If not, reset all soft limits to 2156 the lower of the current task's hard limit and the init 2157 task's soft limit. Note that the setting of hard limits 2158 (even to lower them) can be controlled by the setrlimit 2159 check. The inclusion of the init task's soft limit into 2160 the computation is to avoid resetting soft limits higher 2161 than the default soft limit for cases where the default 2162 is lower than the hard limit, e.g. RLIMIT_CORE or 2163 RLIMIT_STACK.*/ 2164 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS, 2165 PROCESS__RLIMITINH, NULL); 2166 if (rc) { 2167 for (i = 0; i < RLIM_NLIMITS; i++) { 2168 rlim = current->signal->rlim + i; 2169 initrlim = init_task.signal->rlim+i; 2170 rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur); 2171 } 2172 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { 2173 /* 2174 * This will cause RLIMIT_CPU calculations 2175 * to be refigured. 2176 */ 2177 current->it_prof_expires = jiffies_to_cputime(1); 2178 } 2179 } 2180 2181 /* Wake up the parent if it is waiting so that it can 2182 recheck wait permission to the new task SID. */ 2183 wake_up_interruptible(¤t->parent->signal->wait_chldexit); 2184 } 2185 2186 /* superblock security operations */ 2187 2188 static int selinux_sb_alloc_security(struct super_block *sb) 2189 { 2190 return superblock_alloc_security(sb); 2191 } 2192 2193 static void selinux_sb_free_security(struct super_block *sb) 2194 { 2195 superblock_free_security(sb); 2196 } 2197 2198 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2199 { 2200 if (plen > olen) 2201 return 0; 2202 2203 return !memcmp(prefix, option, plen); 2204 } 2205 2206 static inline int selinux_option(char *option, int len) 2207 { 2208 return (match_prefix("context=", sizeof("context=")-1, option, len) || 2209 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) || 2210 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) || 2211 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len)); 2212 } 2213 2214 static inline void take_option(char **to, char *from, int *first, int len) 2215 { 2216 if (!*first) { 2217 **to = ','; 2218 *to += 1; 2219 } else 2220 *first = 0; 2221 memcpy(*to, from, len); 2222 *to += len; 2223 } 2224 2225 static inline void take_selinux_option(char **to, char *from, int *first, 2226 int len) 2227 { 2228 int current_size = 0; 2229 2230 if (!*first) { 2231 **to = '|'; 2232 *to += 1; 2233 } 2234 else 2235 *first = 0; 2236 2237 while (current_size < len) { 2238 if (*from != '"') { 2239 **to = *from; 2240 *to += 1; 2241 } 2242 from += 1; 2243 current_size += 1; 2244 } 2245 } 2246 2247 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy) 2248 { 2249 int fnosec, fsec, rc = 0; 2250 char *in_save, *in_curr, *in_end; 2251 char *sec_curr, *nosec_save, *nosec; 2252 int open_quote = 0; 2253 2254 in_curr = orig; 2255 sec_curr = copy; 2256 2257 /* Binary mount data: just copy */ 2258 if (type->fs_flags & FS_BINARY_MOUNTDATA) { 2259 copy_page(sec_curr, in_curr); 2260 goto out; 2261 } 2262 2263 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2264 if (!nosec) { 2265 rc = -ENOMEM; 2266 goto out; 2267 } 2268 2269 nosec_save = nosec; 2270 fnosec = fsec = 1; 2271 in_save = in_end = orig; 2272 2273 do { 2274 if (*in_end == '"') 2275 open_quote = !open_quote; 2276 if ((*in_end == ',' && open_quote == 0) || 2277 *in_end == '\0') { 2278 int len = in_end - in_curr; 2279 2280 if (selinux_option(in_curr, len)) 2281 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2282 else 2283 take_option(&nosec, in_curr, &fnosec, len); 2284 2285 in_curr = in_end + 1; 2286 } 2287 } while (*in_end++); 2288 2289 strcpy(in_save, nosec_save); 2290 free_page((unsigned long)nosec_save); 2291 out: 2292 return rc; 2293 } 2294 2295 static int selinux_sb_kern_mount(struct super_block *sb, void *data) 2296 { 2297 struct avc_audit_data ad; 2298 int rc; 2299 2300 rc = superblock_doinit(sb, data); 2301 if (rc) 2302 return rc; 2303 2304 AVC_AUDIT_DATA_INIT(&ad,FS); 2305 ad.u.fs.dentry = sb->s_root; 2306 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad); 2307 } 2308 2309 static int selinux_sb_statfs(struct dentry *dentry) 2310 { 2311 struct avc_audit_data ad; 2312 2313 AVC_AUDIT_DATA_INIT(&ad,FS); 2314 ad.u.fs.dentry = dentry->d_sb->s_root; 2315 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2316 } 2317 2318 static int selinux_mount(char * dev_name, 2319 struct nameidata *nd, 2320 char * type, 2321 unsigned long flags, 2322 void * data) 2323 { 2324 int rc; 2325 2326 rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data); 2327 if (rc) 2328 return rc; 2329 2330 if (flags & MS_REMOUNT) 2331 return superblock_has_perm(current, nd->mnt->mnt_sb, 2332 FILESYSTEM__REMOUNT, NULL); 2333 else 2334 return dentry_has_perm(current, nd->mnt, nd->dentry, 2335 FILE__MOUNTON); 2336 } 2337 2338 static int selinux_umount(struct vfsmount *mnt, int flags) 2339 { 2340 int rc; 2341 2342 rc = secondary_ops->sb_umount(mnt, flags); 2343 if (rc) 2344 return rc; 2345 2346 return superblock_has_perm(current,mnt->mnt_sb, 2347 FILESYSTEM__UNMOUNT,NULL); 2348 } 2349 2350 /* inode security operations */ 2351 2352 static int selinux_inode_alloc_security(struct inode *inode) 2353 { 2354 return inode_alloc_security(inode); 2355 } 2356 2357 static void selinux_inode_free_security(struct inode *inode) 2358 { 2359 inode_free_security(inode); 2360 } 2361 2362 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2363 char **name, void **value, 2364 size_t *len) 2365 { 2366 struct task_security_struct *tsec; 2367 struct inode_security_struct *dsec; 2368 struct superblock_security_struct *sbsec; 2369 u32 newsid, clen; 2370 int rc; 2371 char *namep = NULL, *context; 2372 2373 tsec = current->security; 2374 dsec = dir->i_security; 2375 sbsec = dir->i_sb->s_security; 2376 2377 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 2378 newsid = tsec->create_sid; 2379 } else { 2380 rc = security_transition_sid(tsec->sid, dsec->sid, 2381 inode_mode_to_security_class(inode->i_mode), 2382 &newsid); 2383 if (rc) { 2384 printk(KERN_WARNING "%s: " 2385 "security_transition_sid failed, rc=%d (dev=%s " 2386 "ino=%ld)\n", 2387 __FUNCTION__, 2388 -rc, inode->i_sb->s_id, inode->i_ino); 2389 return rc; 2390 } 2391 } 2392 2393 /* Possibly defer initialization to selinux_complete_init. */ 2394 if (sbsec->initialized) { 2395 struct inode_security_struct *isec = inode->i_security; 2396 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2397 isec->sid = newsid; 2398 isec->initialized = 1; 2399 } 2400 2401 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT) 2402 return -EOPNOTSUPP; 2403 2404 if (name) { 2405 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL); 2406 if (!namep) 2407 return -ENOMEM; 2408 *name = namep; 2409 } 2410 2411 if (value && len) { 2412 rc = security_sid_to_context(newsid, &context, &clen); 2413 if (rc) { 2414 kfree(namep); 2415 return rc; 2416 } 2417 *value = context; 2418 *len = clen; 2419 } 2420 2421 return 0; 2422 } 2423 2424 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask) 2425 { 2426 return may_create(dir, dentry, SECCLASS_FILE); 2427 } 2428 2429 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2430 { 2431 int rc; 2432 2433 rc = secondary_ops->inode_link(old_dentry,dir,new_dentry); 2434 if (rc) 2435 return rc; 2436 return may_link(dir, old_dentry, MAY_LINK); 2437 } 2438 2439 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2440 { 2441 int rc; 2442 2443 rc = secondary_ops->inode_unlink(dir, dentry); 2444 if (rc) 2445 return rc; 2446 return may_link(dir, dentry, MAY_UNLINK); 2447 } 2448 2449 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2450 { 2451 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2452 } 2453 2454 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask) 2455 { 2456 return may_create(dir, dentry, SECCLASS_DIR); 2457 } 2458 2459 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2460 { 2461 return may_link(dir, dentry, MAY_RMDIR); 2462 } 2463 2464 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2465 { 2466 int rc; 2467 2468 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev); 2469 if (rc) 2470 return rc; 2471 2472 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2473 } 2474 2475 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2476 struct inode *new_inode, struct dentry *new_dentry) 2477 { 2478 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2479 } 2480 2481 static int selinux_inode_readlink(struct dentry *dentry) 2482 { 2483 return dentry_has_perm(current, NULL, dentry, FILE__READ); 2484 } 2485 2486 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2487 { 2488 int rc; 2489 2490 rc = secondary_ops->inode_follow_link(dentry,nameidata); 2491 if (rc) 2492 return rc; 2493 return dentry_has_perm(current, NULL, dentry, FILE__READ); 2494 } 2495 2496 static int selinux_inode_permission(struct inode *inode, int mask, 2497 struct nameidata *nd) 2498 { 2499 int rc; 2500 2501 rc = secondary_ops->inode_permission(inode, mask, nd); 2502 if (rc) 2503 return rc; 2504 2505 if (!mask) { 2506 /* No permission to check. Existence test. */ 2507 return 0; 2508 } 2509 2510 return inode_has_perm(current, inode, 2511 file_mask_to_av(inode->i_mode, mask), NULL); 2512 } 2513 2514 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2515 { 2516 int rc; 2517 2518 rc = secondary_ops->inode_setattr(dentry, iattr); 2519 if (rc) 2520 return rc; 2521 2522 if (iattr->ia_valid & ATTR_FORCE) 2523 return 0; 2524 2525 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2526 ATTR_ATIME_SET | ATTR_MTIME_SET)) 2527 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2528 2529 return dentry_has_perm(current, NULL, dentry, FILE__WRITE); 2530 } 2531 2532 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 2533 { 2534 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR); 2535 } 2536 2537 static int selinux_inode_setotherxattr(struct dentry *dentry, char *name) 2538 { 2539 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2540 sizeof XATTR_SECURITY_PREFIX - 1)) { 2541 if (!strcmp(name, XATTR_NAME_CAPS)) { 2542 if (!capable(CAP_SETFCAP)) 2543 return -EPERM; 2544 } else if (!capable(CAP_SYS_ADMIN)) { 2545 /* A different attribute in the security namespace. 2546 Restrict to administrator. */ 2547 return -EPERM; 2548 } 2549 } 2550 2551 /* Not an attribute we recognize, so just check the 2552 ordinary setattr permission. */ 2553 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2554 } 2555 2556 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags) 2557 { 2558 struct task_security_struct *tsec = current->security; 2559 struct inode *inode = dentry->d_inode; 2560 struct inode_security_struct *isec = inode->i_security; 2561 struct superblock_security_struct *sbsec; 2562 struct avc_audit_data ad; 2563 u32 newsid; 2564 int rc = 0; 2565 2566 if (strcmp(name, XATTR_NAME_SELINUX)) 2567 return selinux_inode_setotherxattr(dentry, name); 2568 2569 sbsec = inode->i_sb->s_security; 2570 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT) 2571 return -EOPNOTSUPP; 2572 2573 if (!is_owner_or_cap(inode)) 2574 return -EPERM; 2575 2576 AVC_AUDIT_DATA_INIT(&ad,FS); 2577 ad.u.fs.dentry = dentry; 2578 2579 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, 2580 FILE__RELABELFROM, &ad); 2581 if (rc) 2582 return rc; 2583 2584 rc = security_context_to_sid(value, size, &newsid); 2585 if (rc) 2586 return rc; 2587 2588 rc = avc_has_perm(tsec->sid, newsid, isec->sclass, 2589 FILE__RELABELTO, &ad); 2590 if (rc) 2591 return rc; 2592 2593 rc = security_validate_transition(isec->sid, newsid, tsec->sid, 2594 isec->sclass); 2595 if (rc) 2596 return rc; 2597 2598 return avc_has_perm(newsid, 2599 sbsec->sid, 2600 SECCLASS_FILESYSTEM, 2601 FILESYSTEM__ASSOCIATE, 2602 &ad); 2603 } 2604 2605 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name, 2606 void *value, size_t size, int flags) 2607 { 2608 struct inode *inode = dentry->d_inode; 2609 struct inode_security_struct *isec = inode->i_security; 2610 u32 newsid; 2611 int rc; 2612 2613 if (strcmp(name, XATTR_NAME_SELINUX)) { 2614 /* Not an attribute we recognize, so nothing to do. */ 2615 return; 2616 } 2617 2618 rc = security_context_to_sid(value, size, &newsid); 2619 if (rc) { 2620 printk(KERN_WARNING "%s: unable to obtain SID for context " 2621 "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc); 2622 return; 2623 } 2624 2625 isec->sid = newsid; 2626 return; 2627 } 2628 2629 static int selinux_inode_getxattr (struct dentry *dentry, char *name) 2630 { 2631 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR); 2632 } 2633 2634 static int selinux_inode_listxattr (struct dentry *dentry) 2635 { 2636 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR); 2637 } 2638 2639 static int selinux_inode_removexattr (struct dentry *dentry, char *name) 2640 { 2641 if (strcmp(name, XATTR_NAME_SELINUX)) 2642 return selinux_inode_setotherxattr(dentry, name); 2643 2644 /* No one is allowed to remove a SELinux security label. 2645 You can change the label, but all data must be labeled. */ 2646 return -EACCES; 2647 } 2648 2649 /* 2650 * Copy the in-core inode security context value to the user. If the 2651 * getxattr() prior to this succeeded, check to see if we need to 2652 * canonicalize the value to be finally returned to the user. 2653 * 2654 * Permission check is handled by selinux_inode_getxattr hook. 2655 */ 2656 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) 2657 { 2658 struct inode_security_struct *isec = inode->i_security; 2659 2660 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2661 return -EOPNOTSUPP; 2662 2663 return selinux_getsecurity(isec->sid, buffer, size); 2664 } 2665 2666 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 2667 const void *value, size_t size, int flags) 2668 { 2669 struct inode_security_struct *isec = inode->i_security; 2670 u32 newsid; 2671 int rc; 2672 2673 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2674 return -EOPNOTSUPP; 2675 2676 if (!value || !size) 2677 return -EACCES; 2678 2679 rc = security_context_to_sid((void*)value, size, &newsid); 2680 if (rc) 2681 return rc; 2682 2683 isec->sid = newsid; 2684 return 0; 2685 } 2686 2687 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2688 { 2689 const int len = sizeof(XATTR_NAME_SELINUX); 2690 if (buffer && len <= buffer_size) 2691 memcpy(buffer, XATTR_NAME_SELINUX, len); 2692 return len; 2693 } 2694 2695 static int selinux_inode_need_killpriv(struct dentry *dentry) 2696 { 2697 return secondary_ops->inode_need_killpriv(dentry); 2698 } 2699 2700 static int selinux_inode_killpriv(struct dentry *dentry) 2701 { 2702 return secondary_ops->inode_killpriv(dentry); 2703 } 2704 2705 /* file security operations */ 2706 2707 static int selinux_revalidate_file_permission(struct file *file, int mask) 2708 { 2709 int rc; 2710 struct inode *inode = file->f_path.dentry->d_inode; 2711 2712 if (!mask) { 2713 /* No permission to check. Existence test. */ 2714 return 0; 2715 } 2716 2717 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 2718 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 2719 mask |= MAY_APPEND; 2720 2721 rc = file_has_perm(current, file, 2722 file_mask_to_av(inode->i_mode, mask)); 2723 if (rc) 2724 return rc; 2725 2726 return selinux_netlbl_inode_permission(inode, mask); 2727 } 2728 2729 static int selinux_file_permission(struct file *file, int mask) 2730 { 2731 struct inode *inode = file->f_path.dentry->d_inode; 2732 struct task_security_struct *tsec = current->security; 2733 struct file_security_struct *fsec = file->f_security; 2734 struct inode_security_struct *isec = inode->i_security; 2735 2736 if (!mask) { 2737 /* No permission to check. Existence test. */ 2738 return 0; 2739 } 2740 2741 if (tsec->sid == fsec->sid && fsec->isid == isec->sid 2742 && fsec->pseqno == avc_policy_seqno()) 2743 return selinux_netlbl_inode_permission(inode, mask); 2744 2745 return selinux_revalidate_file_permission(file, mask); 2746 } 2747 2748 static int selinux_file_alloc_security(struct file *file) 2749 { 2750 return file_alloc_security(file); 2751 } 2752 2753 static void selinux_file_free_security(struct file *file) 2754 { 2755 file_free_security(file); 2756 } 2757 2758 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 2759 unsigned long arg) 2760 { 2761 int error = 0; 2762 2763 switch (cmd) { 2764 case FIONREAD: 2765 /* fall through */ 2766 case FIBMAP: 2767 /* fall through */ 2768 case FIGETBSZ: 2769 /* fall through */ 2770 case EXT2_IOC_GETFLAGS: 2771 /* fall through */ 2772 case EXT2_IOC_GETVERSION: 2773 error = file_has_perm(current, file, FILE__GETATTR); 2774 break; 2775 2776 case EXT2_IOC_SETFLAGS: 2777 /* fall through */ 2778 case EXT2_IOC_SETVERSION: 2779 error = file_has_perm(current, file, FILE__SETATTR); 2780 break; 2781 2782 /* sys_ioctl() checks */ 2783 case FIONBIO: 2784 /* fall through */ 2785 case FIOASYNC: 2786 error = file_has_perm(current, file, 0); 2787 break; 2788 2789 case KDSKBENT: 2790 case KDSKBSENT: 2791 error = task_has_capability(current,CAP_SYS_TTY_CONFIG); 2792 break; 2793 2794 /* default case assumes that the command will go 2795 * to the file's ioctl() function. 2796 */ 2797 default: 2798 error = file_has_perm(current, file, FILE__IOCTL); 2799 2800 } 2801 return error; 2802 } 2803 2804 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 2805 { 2806 #ifndef CONFIG_PPC32 2807 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 2808 /* 2809 * We are making executable an anonymous mapping or a 2810 * private file mapping that will also be writable. 2811 * This has an additional check. 2812 */ 2813 int rc = task_has_perm(current, current, PROCESS__EXECMEM); 2814 if (rc) 2815 return rc; 2816 } 2817 #endif 2818 2819 if (file) { 2820 /* read access is always possible with a mapping */ 2821 u32 av = FILE__READ; 2822 2823 /* write access only matters if the mapping is shared */ 2824 if (shared && (prot & PROT_WRITE)) 2825 av |= FILE__WRITE; 2826 2827 if (prot & PROT_EXEC) 2828 av |= FILE__EXECUTE; 2829 2830 return file_has_perm(current, file, av); 2831 } 2832 return 0; 2833 } 2834 2835 static int selinux_file_mmap(struct file *file, unsigned long reqprot, 2836 unsigned long prot, unsigned long flags, 2837 unsigned long addr, unsigned long addr_only) 2838 { 2839 int rc = 0; 2840 u32 sid = ((struct task_security_struct*)(current->security))->sid; 2841 2842 if (addr < mmap_min_addr) 2843 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 2844 MEMPROTECT__MMAP_ZERO, NULL); 2845 if (rc || addr_only) 2846 return rc; 2847 2848 if (selinux_checkreqprot) 2849 prot = reqprot; 2850 2851 return file_map_prot_check(file, prot, 2852 (flags & MAP_TYPE) == MAP_SHARED); 2853 } 2854 2855 static int selinux_file_mprotect(struct vm_area_struct *vma, 2856 unsigned long reqprot, 2857 unsigned long prot) 2858 { 2859 int rc; 2860 2861 rc = secondary_ops->file_mprotect(vma, reqprot, prot); 2862 if (rc) 2863 return rc; 2864 2865 if (selinux_checkreqprot) 2866 prot = reqprot; 2867 2868 #ifndef CONFIG_PPC32 2869 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 2870 rc = 0; 2871 if (vma->vm_start >= vma->vm_mm->start_brk && 2872 vma->vm_end <= vma->vm_mm->brk) { 2873 rc = task_has_perm(current, current, 2874 PROCESS__EXECHEAP); 2875 } else if (!vma->vm_file && 2876 vma->vm_start <= vma->vm_mm->start_stack && 2877 vma->vm_end >= vma->vm_mm->start_stack) { 2878 rc = task_has_perm(current, current, PROCESS__EXECSTACK); 2879 } else if (vma->vm_file && vma->anon_vma) { 2880 /* 2881 * We are making executable a file mapping that has 2882 * had some COW done. Since pages might have been 2883 * written, check ability to execute the possibly 2884 * modified content. This typically should only 2885 * occur for text relocations. 2886 */ 2887 rc = file_has_perm(current, vma->vm_file, 2888 FILE__EXECMOD); 2889 } 2890 if (rc) 2891 return rc; 2892 } 2893 #endif 2894 2895 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 2896 } 2897 2898 static int selinux_file_lock(struct file *file, unsigned int cmd) 2899 { 2900 return file_has_perm(current, file, FILE__LOCK); 2901 } 2902 2903 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 2904 unsigned long arg) 2905 { 2906 int err = 0; 2907 2908 switch (cmd) { 2909 case F_SETFL: 2910 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 2911 err = -EINVAL; 2912 break; 2913 } 2914 2915 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 2916 err = file_has_perm(current, file,FILE__WRITE); 2917 break; 2918 } 2919 /* fall through */ 2920 case F_SETOWN: 2921 case F_SETSIG: 2922 case F_GETFL: 2923 case F_GETOWN: 2924 case F_GETSIG: 2925 /* Just check FD__USE permission */ 2926 err = file_has_perm(current, file, 0); 2927 break; 2928 case F_GETLK: 2929 case F_SETLK: 2930 case F_SETLKW: 2931 #if BITS_PER_LONG == 32 2932 case F_GETLK64: 2933 case F_SETLK64: 2934 case F_SETLKW64: 2935 #endif 2936 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 2937 err = -EINVAL; 2938 break; 2939 } 2940 err = file_has_perm(current, file, FILE__LOCK); 2941 break; 2942 } 2943 2944 return err; 2945 } 2946 2947 static int selinux_file_set_fowner(struct file *file) 2948 { 2949 struct task_security_struct *tsec; 2950 struct file_security_struct *fsec; 2951 2952 tsec = current->security; 2953 fsec = file->f_security; 2954 fsec->fown_sid = tsec->sid; 2955 2956 return 0; 2957 } 2958 2959 static int selinux_file_send_sigiotask(struct task_struct *tsk, 2960 struct fown_struct *fown, int signum) 2961 { 2962 struct file *file; 2963 u32 perm; 2964 struct task_security_struct *tsec; 2965 struct file_security_struct *fsec; 2966 2967 /* struct fown_struct is never outside the context of a struct file */ 2968 file = container_of(fown, struct file, f_owner); 2969 2970 tsec = tsk->security; 2971 fsec = file->f_security; 2972 2973 if (!signum) 2974 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 2975 else 2976 perm = signal_to_av(signum); 2977 2978 return avc_has_perm(fsec->fown_sid, tsec->sid, 2979 SECCLASS_PROCESS, perm, NULL); 2980 } 2981 2982 static int selinux_file_receive(struct file *file) 2983 { 2984 return file_has_perm(current, file, file_to_av(file)); 2985 } 2986 2987 static int selinux_dentry_open(struct file *file) 2988 { 2989 struct file_security_struct *fsec; 2990 struct inode *inode; 2991 struct inode_security_struct *isec; 2992 inode = file->f_path.dentry->d_inode; 2993 fsec = file->f_security; 2994 isec = inode->i_security; 2995 /* 2996 * Save inode label and policy sequence number 2997 * at open-time so that selinux_file_permission 2998 * can determine whether revalidation is necessary. 2999 * Task label is already saved in the file security 3000 * struct as its SID. 3001 */ 3002 fsec->isid = isec->sid; 3003 fsec->pseqno = avc_policy_seqno(); 3004 /* 3005 * Since the inode label or policy seqno may have changed 3006 * between the selinux_inode_permission check and the saving 3007 * of state above, recheck that access is still permitted. 3008 * Otherwise, access might never be revalidated against the 3009 * new inode label or new policy. 3010 * This check is not redundant - do not remove. 3011 */ 3012 return inode_has_perm(current, inode, file_to_av(file), NULL); 3013 } 3014 3015 /* task security operations */ 3016 3017 static int selinux_task_create(unsigned long clone_flags) 3018 { 3019 int rc; 3020 3021 rc = secondary_ops->task_create(clone_flags); 3022 if (rc) 3023 return rc; 3024 3025 return task_has_perm(current, current, PROCESS__FORK); 3026 } 3027 3028 static int selinux_task_alloc_security(struct task_struct *tsk) 3029 { 3030 struct task_security_struct *tsec1, *tsec2; 3031 int rc; 3032 3033 tsec1 = current->security; 3034 3035 rc = task_alloc_security(tsk); 3036 if (rc) 3037 return rc; 3038 tsec2 = tsk->security; 3039 3040 tsec2->osid = tsec1->osid; 3041 tsec2->sid = tsec1->sid; 3042 3043 /* Retain the exec, fs, key, and sock SIDs across fork */ 3044 tsec2->exec_sid = tsec1->exec_sid; 3045 tsec2->create_sid = tsec1->create_sid; 3046 tsec2->keycreate_sid = tsec1->keycreate_sid; 3047 tsec2->sockcreate_sid = tsec1->sockcreate_sid; 3048 3049 /* Retain ptracer SID across fork, if any. 3050 This will be reset by the ptrace hook upon any 3051 subsequent ptrace_attach operations. */ 3052 tsec2->ptrace_sid = tsec1->ptrace_sid; 3053 3054 return 0; 3055 } 3056 3057 static void selinux_task_free_security(struct task_struct *tsk) 3058 { 3059 task_free_security(tsk); 3060 } 3061 3062 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 3063 { 3064 /* Since setuid only affects the current process, and 3065 since the SELinux controls are not based on the Linux 3066 identity attributes, SELinux does not need to control 3067 this operation. However, SELinux does control the use 3068 of the CAP_SETUID and CAP_SETGID capabilities using the 3069 capable hook. */ 3070 return 0; 3071 } 3072 3073 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 3074 { 3075 return secondary_ops->task_post_setuid(id0,id1,id2,flags); 3076 } 3077 3078 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 3079 { 3080 /* See the comment for setuid above. */ 3081 return 0; 3082 } 3083 3084 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3085 { 3086 return task_has_perm(current, p, PROCESS__SETPGID); 3087 } 3088 3089 static int selinux_task_getpgid(struct task_struct *p) 3090 { 3091 return task_has_perm(current, p, PROCESS__GETPGID); 3092 } 3093 3094 static int selinux_task_getsid(struct task_struct *p) 3095 { 3096 return task_has_perm(current, p, PROCESS__GETSESSION); 3097 } 3098 3099 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3100 { 3101 selinux_get_task_sid(p, secid); 3102 } 3103 3104 static int selinux_task_setgroups(struct group_info *group_info) 3105 { 3106 /* See the comment for setuid above. */ 3107 return 0; 3108 } 3109 3110 static int selinux_task_setnice(struct task_struct *p, int nice) 3111 { 3112 int rc; 3113 3114 rc = secondary_ops->task_setnice(p, nice); 3115 if (rc) 3116 return rc; 3117 3118 return task_has_perm(current,p, PROCESS__SETSCHED); 3119 } 3120 3121 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3122 { 3123 int rc; 3124 3125 rc = secondary_ops->task_setioprio(p, ioprio); 3126 if (rc) 3127 return rc; 3128 3129 return task_has_perm(current, p, PROCESS__SETSCHED); 3130 } 3131 3132 static int selinux_task_getioprio(struct task_struct *p) 3133 { 3134 return task_has_perm(current, p, PROCESS__GETSCHED); 3135 } 3136 3137 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 3138 { 3139 struct rlimit *old_rlim = current->signal->rlim + resource; 3140 int rc; 3141 3142 rc = secondary_ops->task_setrlimit(resource, new_rlim); 3143 if (rc) 3144 return rc; 3145 3146 /* Control the ability to change the hard limit (whether 3147 lowering or raising it), so that the hard limit can 3148 later be used as a safe reset point for the soft limit 3149 upon context transitions. See selinux_bprm_apply_creds. */ 3150 if (old_rlim->rlim_max != new_rlim->rlim_max) 3151 return task_has_perm(current, current, PROCESS__SETRLIMIT); 3152 3153 return 0; 3154 } 3155 3156 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp) 3157 { 3158 int rc; 3159 3160 rc = secondary_ops->task_setscheduler(p, policy, lp); 3161 if (rc) 3162 return rc; 3163 3164 return task_has_perm(current, p, PROCESS__SETSCHED); 3165 } 3166 3167 static int selinux_task_getscheduler(struct task_struct *p) 3168 { 3169 return task_has_perm(current, p, PROCESS__GETSCHED); 3170 } 3171 3172 static int selinux_task_movememory(struct task_struct *p) 3173 { 3174 return task_has_perm(current, p, PROCESS__SETSCHED); 3175 } 3176 3177 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3178 int sig, u32 secid) 3179 { 3180 u32 perm; 3181 int rc; 3182 struct task_security_struct *tsec; 3183 3184 rc = secondary_ops->task_kill(p, info, sig, secid); 3185 if (rc) 3186 return rc; 3187 3188 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info))) 3189 return 0; 3190 3191 if (!sig) 3192 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3193 else 3194 perm = signal_to_av(sig); 3195 tsec = p->security; 3196 if (secid) 3197 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL); 3198 else 3199 rc = task_has_perm(current, p, perm); 3200 return rc; 3201 } 3202 3203 static int selinux_task_prctl(int option, 3204 unsigned long arg2, 3205 unsigned long arg3, 3206 unsigned long arg4, 3207 unsigned long arg5) 3208 { 3209 /* The current prctl operations do not appear to require 3210 any SELinux controls since they merely observe or modify 3211 the state of the current process. */ 3212 return 0; 3213 } 3214 3215 static int selinux_task_wait(struct task_struct *p) 3216 { 3217 return task_has_perm(p, current, PROCESS__SIGCHLD); 3218 } 3219 3220 static void selinux_task_reparent_to_init(struct task_struct *p) 3221 { 3222 struct task_security_struct *tsec; 3223 3224 secondary_ops->task_reparent_to_init(p); 3225 3226 tsec = p->security; 3227 tsec->osid = tsec->sid; 3228 tsec->sid = SECINITSID_KERNEL; 3229 return; 3230 } 3231 3232 static void selinux_task_to_inode(struct task_struct *p, 3233 struct inode *inode) 3234 { 3235 struct task_security_struct *tsec = p->security; 3236 struct inode_security_struct *isec = inode->i_security; 3237 3238 isec->sid = tsec->sid; 3239 isec->initialized = 1; 3240 return; 3241 } 3242 3243 /* Returns error only if unable to parse addresses */ 3244 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3245 struct avc_audit_data *ad, u8 *proto) 3246 { 3247 int offset, ihlen, ret = -EINVAL; 3248 struct iphdr _iph, *ih; 3249 3250 offset = skb_network_offset(skb); 3251 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3252 if (ih == NULL) 3253 goto out; 3254 3255 ihlen = ih->ihl * 4; 3256 if (ihlen < sizeof(_iph)) 3257 goto out; 3258 3259 ad->u.net.v4info.saddr = ih->saddr; 3260 ad->u.net.v4info.daddr = ih->daddr; 3261 ret = 0; 3262 3263 if (proto) 3264 *proto = ih->protocol; 3265 3266 switch (ih->protocol) { 3267 case IPPROTO_TCP: { 3268 struct tcphdr _tcph, *th; 3269 3270 if (ntohs(ih->frag_off) & IP_OFFSET) 3271 break; 3272 3273 offset += ihlen; 3274 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3275 if (th == NULL) 3276 break; 3277 3278 ad->u.net.sport = th->source; 3279 ad->u.net.dport = th->dest; 3280 break; 3281 } 3282 3283 case IPPROTO_UDP: { 3284 struct udphdr _udph, *uh; 3285 3286 if (ntohs(ih->frag_off) & IP_OFFSET) 3287 break; 3288 3289 offset += ihlen; 3290 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3291 if (uh == NULL) 3292 break; 3293 3294 ad->u.net.sport = uh->source; 3295 ad->u.net.dport = uh->dest; 3296 break; 3297 } 3298 3299 case IPPROTO_DCCP: { 3300 struct dccp_hdr _dccph, *dh; 3301 3302 if (ntohs(ih->frag_off) & IP_OFFSET) 3303 break; 3304 3305 offset += ihlen; 3306 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3307 if (dh == NULL) 3308 break; 3309 3310 ad->u.net.sport = dh->dccph_sport; 3311 ad->u.net.dport = dh->dccph_dport; 3312 break; 3313 } 3314 3315 default: 3316 break; 3317 } 3318 out: 3319 return ret; 3320 } 3321 3322 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3323 3324 /* Returns error only if unable to parse addresses */ 3325 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3326 struct avc_audit_data *ad, u8 *proto) 3327 { 3328 u8 nexthdr; 3329 int ret = -EINVAL, offset; 3330 struct ipv6hdr _ipv6h, *ip6; 3331 3332 offset = skb_network_offset(skb); 3333 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3334 if (ip6 == NULL) 3335 goto out; 3336 3337 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr); 3338 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr); 3339 ret = 0; 3340 3341 nexthdr = ip6->nexthdr; 3342 offset += sizeof(_ipv6h); 3343 offset = ipv6_skip_exthdr(skb, offset, &nexthdr); 3344 if (offset < 0) 3345 goto out; 3346 3347 if (proto) 3348 *proto = nexthdr; 3349 3350 switch (nexthdr) { 3351 case IPPROTO_TCP: { 3352 struct tcphdr _tcph, *th; 3353 3354 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3355 if (th == NULL) 3356 break; 3357 3358 ad->u.net.sport = th->source; 3359 ad->u.net.dport = th->dest; 3360 break; 3361 } 3362 3363 case IPPROTO_UDP: { 3364 struct udphdr _udph, *uh; 3365 3366 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3367 if (uh == NULL) 3368 break; 3369 3370 ad->u.net.sport = uh->source; 3371 ad->u.net.dport = uh->dest; 3372 break; 3373 } 3374 3375 case IPPROTO_DCCP: { 3376 struct dccp_hdr _dccph, *dh; 3377 3378 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3379 if (dh == NULL) 3380 break; 3381 3382 ad->u.net.sport = dh->dccph_sport; 3383 ad->u.net.dport = dh->dccph_dport; 3384 break; 3385 } 3386 3387 /* includes fragments */ 3388 default: 3389 break; 3390 } 3391 out: 3392 return ret; 3393 } 3394 3395 #endif /* IPV6 */ 3396 3397 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad, 3398 char **addrp, int *len, int src, u8 *proto) 3399 { 3400 int ret = 0; 3401 3402 switch (ad->u.net.family) { 3403 case PF_INET: 3404 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3405 if (ret || !addrp) 3406 break; 3407 *len = 4; 3408 *addrp = (char *)(src ? &ad->u.net.v4info.saddr : 3409 &ad->u.net.v4info.daddr); 3410 break; 3411 3412 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3413 case PF_INET6: 3414 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3415 if (ret || !addrp) 3416 break; 3417 *len = 16; 3418 *addrp = (char *)(src ? &ad->u.net.v6info.saddr : 3419 &ad->u.net.v6info.daddr); 3420 break; 3421 #endif /* IPV6 */ 3422 default: 3423 break; 3424 } 3425 3426 return ret; 3427 } 3428 3429 /** 3430 * selinux_skb_extlbl_sid - Determine the external label of a packet 3431 * @skb: the packet 3432 * @family: protocol family 3433 * @sid: the packet's SID 3434 * 3435 * Description: 3436 * Check the various different forms of external packet labeling and determine 3437 * the external SID for the packet. If only one form of external labeling is 3438 * present then it is used, if both labeled IPsec and NetLabel labels are 3439 * present then the SELinux type information is taken from the labeled IPsec 3440 * SA and the MLS sensitivity label information is taken from the NetLabel 3441 * security attributes. This bit of "magic" is done in the call to 3442 * selinux_netlbl_skbuff_getsid(). 3443 * 3444 */ 3445 static void selinux_skb_extlbl_sid(struct sk_buff *skb, 3446 u16 family, 3447 u32 *sid) 3448 { 3449 u32 xfrm_sid; 3450 u32 nlbl_sid; 3451 3452 selinux_skb_xfrm_sid(skb, &xfrm_sid); 3453 if (selinux_netlbl_skbuff_getsid(skb, 3454 family, 3455 (xfrm_sid == SECSID_NULL ? 3456 SECINITSID_NETMSG : xfrm_sid), 3457 &nlbl_sid) != 0) 3458 nlbl_sid = SECSID_NULL; 3459 *sid = (nlbl_sid == SECSID_NULL ? xfrm_sid : nlbl_sid); 3460 } 3461 3462 /* socket security operations */ 3463 static int socket_has_perm(struct task_struct *task, struct socket *sock, 3464 u32 perms) 3465 { 3466 struct inode_security_struct *isec; 3467 struct task_security_struct *tsec; 3468 struct avc_audit_data ad; 3469 int err = 0; 3470 3471 tsec = task->security; 3472 isec = SOCK_INODE(sock)->i_security; 3473 3474 if (isec->sid == SECINITSID_KERNEL) 3475 goto out; 3476 3477 AVC_AUDIT_DATA_INIT(&ad,NET); 3478 ad.u.net.sk = sock->sk; 3479 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad); 3480 3481 out: 3482 return err; 3483 } 3484 3485 static int selinux_socket_create(int family, int type, 3486 int protocol, int kern) 3487 { 3488 int err = 0; 3489 struct task_security_struct *tsec; 3490 u32 newsid; 3491 3492 if (kern) 3493 goto out; 3494 3495 tsec = current->security; 3496 newsid = tsec->sockcreate_sid ? : tsec->sid; 3497 err = avc_has_perm(tsec->sid, newsid, 3498 socket_type_to_security_class(family, type, 3499 protocol), SOCKET__CREATE, NULL); 3500 3501 out: 3502 return err; 3503 } 3504 3505 static int selinux_socket_post_create(struct socket *sock, int family, 3506 int type, int protocol, int kern) 3507 { 3508 int err = 0; 3509 struct inode_security_struct *isec; 3510 struct task_security_struct *tsec; 3511 struct sk_security_struct *sksec; 3512 u32 newsid; 3513 3514 isec = SOCK_INODE(sock)->i_security; 3515 3516 tsec = current->security; 3517 newsid = tsec->sockcreate_sid ? : tsec->sid; 3518 isec->sclass = socket_type_to_security_class(family, type, protocol); 3519 isec->sid = kern ? SECINITSID_KERNEL : newsid; 3520 isec->initialized = 1; 3521 3522 if (sock->sk) { 3523 sksec = sock->sk->sk_security; 3524 sksec->sid = isec->sid; 3525 err = selinux_netlbl_socket_post_create(sock); 3526 } 3527 3528 return err; 3529 } 3530 3531 /* Range of port numbers used to automatically bind. 3532 Need to determine whether we should perform a name_bind 3533 permission check between the socket and the port number. */ 3534 3535 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 3536 { 3537 u16 family; 3538 int err; 3539 3540 err = socket_has_perm(current, sock, SOCKET__BIND); 3541 if (err) 3542 goto out; 3543 3544 /* 3545 * If PF_INET or PF_INET6, check name_bind permission for the port. 3546 * Multiple address binding for SCTP is not supported yet: we just 3547 * check the first address now. 3548 */ 3549 family = sock->sk->sk_family; 3550 if (family == PF_INET || family == PF_INET6) { 3551 char *addrp; 3552 struct inode_security_struct *isec; 3553 struct task_security_struct *tsec; 3554 struct avc_audit_data ad; 3555 struct sockaddr_in *addr4 = NULL; 3556 struct sockaddr_in6 *addr6 = NULL; 3557 unsigned short snum; 3558 struct sock *sk = sock->sk; 3559 u32 sid, node_perm, addrlen; 3560 3561 tsec = current->security; 3562 isec = SOCK_INODE(sock)->i_security; 3563 3564 if (family == PF_INET) { 3565 addr4 = (struct sockaddr_in *)address; 3566 snum = ntohs(addr4->sin_port); 3567 addrlen = sizeof(addr4->sin_addr.s_addr); 3568 addrp = (char *)&addr4->sin_addr.s_addr; 3569 } else { 3570 addr6 = (struct sockaddr_in6 *)address; 3571 snum = ntohs(addr6->sin6_port); 3572 addrlen = sizeof(addr6->sin6_addr.s6_addr); 3573 addrp = (char *)&addr6->sin6_addr.s6_addr; 3574 } 3575 3576 if (snum) { 3577 int low, high; 3578 3579 inet_get_local_port_range(&low, &high); 3580 3581 if (snum < max(PROT_SOCK, low) || snum > high) { 3582 err = security_port_sid(sk->sk_family, 3583 sk->sk_type, 3584 sk->sk_protocol, snum, 3585 &sid); 3586 if (err) 3587 goto out; 3588 AVC_AUDIT_DATA_INIT(&ad,NET); 3589 ad.u.net.sport = htons(snum); 3590 ad.u.net.family = family; 3591 err = avc_has_perm(isec->sid, sid, 3592 isec->sclass, 3593 SOCKET__NAME_BIND, &ad); 3594 if (err) 3595 goto out; 3596 } 3597 } 3598 3599 switch(isec->sclass) { 3600 case SECCLASS_TCP_SOCKET: 3601 node_perm = TCP_SOCKET__NODE_BIND; 3602 break; 3603 3604 case SECCLASS_UDP_SOCKET: 3605 node_perm = UDP_SOCKET__NODE_BIND; 3606 break; 3607 3608 case SECCLASS_DCCP_SOCKET: 3609 node_perm = DCCP_SOCKET__NODE_BIND; 3610 break; 3611 3612 default: 3613 node_perm = RAWIP_SOCKET__NODE_BIND; 3614 break; 3615 } 3616 3617 err = security_node_sid(family, addrp, addrlen, &sid); 3618 if (err) 3619 goto out; 3620 3621 AVC_AUDIT_DATA_INIT(&ad,NET); 3622 ad.u.net.sport = htons(snum); 3623 ad.u.net.family = family; 3624 3625 if (family == PF_INET) 3626 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr; 3627 else 3628 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr); 3629 3630 err = avc_has_perm(isec->sid, sid, 3631 isec->sclass, node_perm, &ad); 3632 if (err) 3633 goto out; 3634 } 3635 out: 3636 return err; 3637 } 3638 3639 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 3640 { 3641 struct inode_security_struct *isec; 3642 int err; 3643 3644 err = socket_has_perm(current, sock, SOCKET__CONNECT); 3645 if (err) 3646 return err; 3647 3648 /* 3649 * If a TCP or DCCP socket, check name_connect permission for the port. 3650 */ 3651 isec = SOCK_INODE(sock)->i_security; 3652 if (isec->sclass == SECCLASS_TCP_SOCKET || 3653 isec->sclass == SECCLASS_DCCP_SOCKET) { 3654 struct sock *sk = sock->sk; 3655 struct avc_audit_data ad; 3656 struct sockaddr_in *addr4 = NULL; 3657 struct sockaddr_in6 *addr6 = NULL; 3658 unsigned short snum; 3659 u32 sid, perm; 3660 3661 if (sk->sk_family == PF_INET) { 3662 addr4 = (struct sockaddr_in *)address; 3663 if (addrlen < sizeof(struct sockaddr_in)) 3664 return -EINVAL; 3665 snum = ntohs(addr4->sin_port); 3666 } else { 3667 addr6 = (struct sockaddr_in6 *)address; 3668 if (addrlen < SIN6_LEN_RFC2133) 3669 return -EINVAL; 3670 snum = ntohs(addr6->sin6_port); 3671 } 3672 3673 err = security_port_sid(sk->sk_family, sk->sk_type, 3674 sk->sk_protocol, snum, &sid); 3675 if (err) 3676 goto out; 3677 3678 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ? 3679 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 3680 3681 AVC_AUDIT_DATA_INIT(&ad,NET); 3682 ad.u.net.dport = htons(snum); 3683 ad.u.net.family = sk->sk_family; 3684 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad); 3685 if (err) 3686 goto out; 3687 } 3688 3689 out: 3690 return err; 3691 } 3692 3693 static int selinux_socket_listen(struct socket *sock, int backlog) 3694 { 3695 return socket_has_perm(current, sock, SOCKET__LISTEN); 3696 } 3697 3698 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 3699 { 3700 int err; 3701 struct inode_security_struct *isec; 3702 struct inode_security_struct *newisec; 3703 3704 err = socket_has_perm(current, sock, SOCKET__ACCEPT); 3705 if (err) 3706 return err; 3707 3708 newisec = SOCK_INODE(newsock)->i_security; 3709 3710 isec = SOCK_INODE(sock)->i_security; 3711 newisec->sclass = isec->sclass; 3712 newisec->sid = isec->sid; 3713 newisec->initialized = 1; 3714 3715 return 0; 3716 } 3717 3718 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 3719 int size) 3720 { 3721 int rc; 3722 3723 rc = socket_has_perm(current, sock, SOCKET__WRITE); 3724 if (rc) 3725 return rc; 3726 3727 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE); 3728 } 3729 3730 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 3731 int size, int flags) 3732 { 3733 return socket_has_perm(current, sock, SOCKET__READ); 3734 } 3735 3736 static int selinux_socket_getsockname(struct socket *sock) 3737 { 3738 return socket_has_perm(current, sock, SOCKET__GETATTR); 3739 } 3740 3741 static int selinux_socket_getpeername(struct socket *sock) 3742 { 3743 return socket_has_perm(current, sock, SOCKET__GETATTR); 3744 } 3745 3746 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname) 3747 { 3748 int err; 3749 3750 err = socket_has_perm(current, sock, SOCKET__SETOPT); 3751 if (err) 3752 return err; 3753 3754 return selinux_netlbl_socket_setsockopt(sock, level, optname); 3755 } 3756 3757 static int selinux_socket_getsockopt(struct socket *sock, int level, 3758 int optname) 3759 { 3760 return socket_has_perm(current, sock, SOCKET__GETOPT); 3761 } 3762 3763 static int selinux_socket_shutdown(struct socket *sock, int how) 3764 { 3765 return socket_has_perm(current, sock, SOCKET__SHUTDOWN); 3766 } 3767 3768 static int selinux_socket_unix_stream_connect(struct socket *sock, 3769 struct socket *other, 3770 struct sock *newsk) 3771 { 3772 struct sk_security_struct *ssec; 3773 struct inode_security_struct *isec; 3774 struct inode_security_struct *other_isec; 3775 struct avc_audit_data ad; 3776 int err; 3777 3778 err = secondary_ops->unix_stream_connect(sock, other, newsk); 3779 if (err) 3780 return err; 3781 3782 isec = SOCK_INODE(sock)->i_security; 3783 other_isec = SOCK_INODE(other)->i_security; 3784 3785 AVC_AUDIT_DATA_INIT(&ad,NET); 3786 ad.u.net.sk = other->sk; 3787 3788 err = avc_has_perm(isec->sid, other_isec->sid, 3789 isec->sclass, 3790 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 3791 if (err) 3792 return err; 3793 3794 /* connecting socket */ 3795 ssec = sock->sk->sk_security; 3796 ssec->peer_sid = other_isec->sid; 3797 3798 /* server child socket */ 3799 ssec = newsk->sk_security; 3800 ssec->peer_sid = isec->sid; 3801 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid); 3802 3803 return err; 3804 } 3805 3806 static int selinux_socket_unix_may_send(struct socket *sock, 3807 struct socket *other) 3808 { 3809 struct inode_security_struct *isec; 3810 struct inode_security_struct *other_isec; 3811 struct avc_audit_data ad; 3812 int err; 3813 3814 isec = SOCK_INODE(sock)->i_security; 3815 other_isec = SOCK_INODE(other)->i_security; 3816 3817 AVC_AUDIT_DATA_INIT(&ad,NET); 3818 ad.u.net.sk = other->sk; 3819 3820 err = avc_has_perm(isec->sid, other_isec->sid, 3821 isec->sclass, SOCKET__SENDTO, &ad); 3822 if (err) 3823 return err; 3824 3825 return 0; 3826 } 3827 3828 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 3829 struct avc_audit_data *ad, u16 family, char *addrp, int len) 3830 { 3831 int err = 0; 3832 u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0; 3833 struct socket *sock; 3834 u16 sock_class = 0; 3835 u32 sock_sid = 0; 3836 3837 read_lock_bh(&sk->sk_callback_lock); 3838 sock = sk->sk_socket; 3839 if (sock) { 3840 struct inode *inode; 3841 inode = SOCK_INODE(sock); 3842 if (inode) { 3843 struct inode_security_struct *isec; 3844 isec = inode->i_security; 3845 sock_sid = isec->sid; 3846 sock_class = isec->sclass; 3847 } 3848 } 3849 read_unlock_bh(&sk->sk_callback_lock); 3850 if (!sock_sid) 3851 goto out; 3852 3853 if (!skb->dev) 3854 goto out; 3855 3856 err = sel_netif_sid(skb->iif, &if_sid); 3857 if (err) 3858 goto out; 3859 3860 switch (sock_class) { 3861 case SECCLASS_UDP_SOCKET: 3862 netif_perm = NETIF__UDP_RECV; 3863 node_perm = NODE__UDP_RECV; 3864 recv_perm = UDP_SOCKET__RECV_MSG; 3865 break; 3866 3867 case SECCLASS_TCP_SOCKET: 3868 netif_perm = NETIF__TCP_RECV; 3869 node_perm = NODE__TCP_RECV; 3870 recv_perm = TCP_SOCKET__RECV_MSG; 3871 break; 3872 3873 case SECCLASS_DCCP_SOCKET: 3874 netif_perm = NETIF__DCCP_RECV; 3875 node_perm = NODE__DCCP_RECV; 3876 recv_perm = DCCP_SOCKET__RECV_MSG; 3877 break; 3878 3879 default: 3880 netif_perm = NETIF__RAWIP_RECV; 3881 node_perm = NODE__RAWIP_RECV; 3882 break; 3883 } 3884 3885 err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad); 3886 if (err) 3887 goto out; 3888 3889 err = security_node_sid(family, addrp, len, &node_sid); 3890 if (err) 3891 goto out; 3892 3893 err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad); 3894 if (err) 3895 goto out; 3896 3897 if (recv_perm) { 3898 u32 port_sid; 3899 3900 err = security_port_sid(sk->sk_family, sk->sk_type, 3901 sk->sk_protocol, ntohs(ad->u.net.sport), 3902 &port_sid); 3903 if (err) 3904 goto out; 3905 3906 err = avc_has_perm(sock_sid, port_sid, 3907 sock_class, recv_perm, ad); 3908 } 3909 3910 out: 3911 return err; 3912 } 3913 3914 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 3915 { 3916 u16 family; 3917 char *addrp; 3918 int len, err = 0; 3919 struct avc_audit_data ad; 3920 struct sk_security_struct *sksec = sk->sk_security; 3921 3922 family = sk->sk_family; 3923 if (family != PF_INET && family != PF_INET6) 3924 goto out; 3925 3926 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 3927 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 3928 family = PF_INET; 3929 3930 AVC_AUDIT_DATA_INIT(&ad, NET); 3931 ad.u.net.netif = skb->iif; 3932 ad.u.net.family = family; 3933 3934 err = selinux_parse_skb(skb, &ad, &addrp, &len, 1, NULL); 3935 if (err) 3936 goto out; 3937 3938 if (selinux_compat_net) 3939 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family, 3940 addrp, len); 3941 else 3942 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET, 3943 PACKET__RECV, &ad); 3944 if (err) 3945 goto out; 3946 3947 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 3948 if (err) 3949 goto out; 3950 3951 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 3952 out: 3953 return err; 3954 } 3955 3956 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 3957 int __user *optlen, unsigned len) 3958 { 3959 int err = 0; 3960 char *scontext; 3961 u32 scontext_len; 3962 struct sk_security_struct *ssec; 3963 struct inode_security_struct *isec; 3964 u32 peer_sid = SECSID_NULL; 3965 3966 isec = SOCK_INODE(sock)->i_security; 3967 3968 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 3969 isec->sclass == SECCLASS_TCP_SOCKET) { 3970 ssec = sock->sk->sk_security; 3971 peer_sid = ssec->peer_sid; 3972 } 3973 if (peer_sid == SECSID_NULL) { 3974 err = -ENOPROTOOPT; 3975 goto out; 3976 } 3977 3978 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 3979 3980 if (err) 3981 goto out; 3982 3983 if (scontext_len > len) { 3984 err = -ERANGE; 3985 goto out_len; 3986 } 3987 3988 if (copy_to_user(optval, scontext, scontext_len)) 3989 err = -EFAULT; 3990 3991 out_len: 3992 if (put_user(scontext_len, optlen)) 3993 err = -EFAULT; 3994 3995 kfree(scontext); 3996 out: 3997 return err; 3998 } 3999 4000 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4001 { 4002 u32 peer_secid = SECSID_NULL; 4003 u16 family; 4004 4005 if (sock) 4006 family = sock->sk->sk_family; 4007 else if (skb && skb->sk) 4008 family = skb->sk->sk_family; 4009 else 4010 goto out; 4011 4012 if (sock && family == PF_UNIX) 4013 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid); 4014 else if (skb) 4015 selinux_skb_extlbl_sid(skb, family, &peer_secid); 4016 4017 out: 4018 *secid = peer_secid; 4019 if (peer_secid == SECSID_NULL) 4020 return -EINVAL; 4021 return 0; 4022 } 4023 4024 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4025 { 4026 return sk_alloc_security(sk, family, priority); 4027 } 4028 4029 static void selinux_sk_free_security(struct sock *sk) 4030 { 4031 sk_free_security(sk); 4032 } 4033 4034 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4035 { 4036 struct sk_security_struct *ssec = sk->sk_security; 4037 struct sk_security_struct *newssec = newsk->sk_security; 4038 4039 newssec->sid = ssec->sid; 4040 newssec->peer_sid = ssec->peer_sid; 4041 4042 selinux_netlbl_sk_security_clone(ssec, newssec); 4043 } 4044 4045 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4046 { 4047 if (!sk) 4048 *secid = SECINITSID_ANY_SOCKET; 4049 else { 4050 struct sk_security_struct *sksec = sk->sk_security; 4051 4052 *secid = sksec->sid; 4053 } 4054 } 4055 4056 static void selinux_sock_graft(struct sock* sk, struct socket *parent) 4057 { 4058 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 4059 struct sk_security_struct *sksec = sk->sk_security; 4060 4061 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4062 sk->sk_family == PF_UNIX) 4063 isec->sid = sksec->sid; 4064 4065 selinux_netlbl_sock_graft(sk, parent); 4066 } 4067 4068 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4069 struct request_sock *req) 4070 { 4071 struct sk_security_struct *sksec = sk->sk_security; 4072 int err; 4073 u32 newsid; 4074 u32 peersid; 4075 4076 selinux_skb_extlbl_sid(skb, sk->sk_family, &peersid); 4077 if (peersid == SECSID_NULL) { 4078 req->secid = sksec->sid; 4079 req->peer_secid = SECSID_NULL; 4080 return 0; 4081 } 4082 4083 err = security_sid_mls_copy(sksec->sid, peersid, &newsid); 4084 if (err) 4085 return err; 4086 4087 req->secid = newsid; 4088 req->peer_secid = peersid; 4089 return 0; 4090 } 4091 4092 static void selinux_inet_csk_clone(struct sock *newsk, 4093 const struct request_sock *req) 4094 { 4095 struct sk_security_struct *newsksec = newsk->sk_security; 4096 4097 newsksec->sid = req->secid; 4098 newsksec->peer_sid = req->peer_secid; 4099 /* NOTE: Ideally, we should also get the isec->sid for the 4100 new socket in sync, but we don't have the isec available yet. 4101 So we will wait until sock_graft to do it, by which 4102 time it will have been created and available. */ 4103 4104 /* We don't need to take any sort of lock here as we are the only 4105 * thread with access to newsksec */ 4106 selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family); 4107 } 4108 4109 static void selinux_inet_conn_established(struct sock *sk, 4110 struct sk_buff *skb) 4111 { 4112 struct sk_security_struct *sksec = sk->sk_security; 4113 4114 selinux_skb_extlbl_sid(skb, sk->sk_family, &sksec->peer_sid); 4115 } 4116 4117 static void selinux_req_classify_flow(const struct request_sock *req, 4118 struct flowi *fl) 4119 { 4120 fl->secid = req->secid; 4121 } 4122 4123 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 4124 { 4125 int err = 0; 4126 u32 perm; 4127 struct nlmsghdr *nlh; 4128 struct socket *sock = sk->sk_socket; 4129 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 4130 4131 if (skb->len < NLMSG_SPACE(0)) { 4132 err = -EINVAL; 4133 goto out; 4134 } 4135 nlh = nlmsg_hdr(skb); 4136 4137 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm); 4138 if (err) { 4139 if (err == -EINVAL) { 4140 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR, 4141 "SELinux: unrecognized netlink message" 4142 " type=%hu for sclass=%hu\n", 4143 nlh->nlmsg_type, isec->sclass); 4144 if (!selinux_enforcing) 4145 err = 0; 4146 } 4147 4148 /* Ignore */ 4149 if (err == -ENOENT) 4150 err = 0; 4151 goto out; 4152 } 4153 4154 err = socket_has_perm(current, sock, perm); 4155 out: 4156 return err; 4157 } 4158 4159 #ifdef CONFIG_NETFILTER 4160 4161 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev, 4162 struct avc_audit_data *ad, 4163 u16 family, char *addrp, int len) 4164 { 4165 int err = 0; 4166 u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0; 4167 struct socket *sock; 4168 struct inode *inode; 4169 struct inode_security_struct *isec; 4170 4171 sock = sk->sk_socket; 4172 if (!sock) 4173 goto out; 4174 4175 inode = SOCK_INODE(sock); 4176 if (!inode) 4177 goto out; 4178 4179 isec = inode->i_security; 4180 4181 err = sel_netif_sid(dev->ifindex, &if_sid); 4182 if (err) 4183 goto out; 4184 4185 switch (isec->sclass) { 4186 case SECCLASS_UDP_SOCKET: 4187 netif_perm = NETIF__UDP_SEND; 4188 node_perm = NODE__UDP_SEND; 4189 send_perm = UDP_SOCKET__SEND_MSG; 4190 break; 4191 4192 case SECCLASS_TCP_SOCKET: 4193 netif_perm = NETIF__TCP_SEND; 4194 node_perm = NODE__TCP_SEND; 4195 send_perm = TCP_SOCKET__SEND_MSG; 4196 break; 4197 4198 case SECCLASS_DCCP_SOCKET: 4199 netif_perm = NETIF__DCCP_SEND; 4200 node_perm = NODE__DCCP_SEND; 4201 send_perm = DCCP_SOCKET__SEND_MSG; 4202 break; 4203 4204 default: 4205 netif_perm = NETIF__RAWIP_SEND; 4206 node_perm = NODE__RAWIP_SEND; 4207 break; 4208 } 4209 4210 err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad); 4211 if (err) 4212 goto out; 4213 4214 err = security_node_sid(family, addrp, len, &node_sid); 4215 if (err) 4216 goto out; 4217 4218 err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad); 4219 if (err) 4220 goto out; 4221 4222 if (send_perm) { 4223 u32 port_sid; 4224 4225 err = security_port_sid(sk->sk_family, 4226 sk->sk_type, 4227 sk->sk_protocol, 4228 ntohs(ad->u.net.dport), 4229 &port_sid); 4230 if (err) 4231 goto out; 4232 4233 err = avc_has_perm(isec->sid, port_sid, isec->sclass, 4234 send_perm, ad); 4235 } 4236 out: 4237 return err; 4238 } 4239 4240 static unsigned int selinux_ip_postroute_last(unsigned int hooknum, 4241 struct sk_buff *skb, 4242 const struct net_device *in, 4243 const struct net_device *out, 4244 int (*okfn)(struct sk_buff *), 4245 u16 family) 4246 { 4247 char *addrp; 4248 int len, err = 0; 4249 struct sock *sk; 4250 struct avc_audit_data ad; 4251 struct net_device *dev = (struct net_device *)out; 4252 struct sk_security_struct *sksec; 4253 u8 proto; 4254 4255 sk = skb->sk; 4256 if (!sk) 4257 goto out; 4258 4259 sksec = sk->sk_security; 4260 4261 AVC_AUDIT_DATA_INIT(&ad, NET); 4262 ad.u.net.netif = dev->ifindex; 4263 ad.u.net.family = family; 4264 4265 err = selinux_parse_skb(skb, &ad, &addrp, &len, 0, &proto); 4266 if (err) 4267 goto out; 4268 4269 if (selinux_compat_net) 4270 err = selinux_ip_postroute_last_compat(sk, dev, &ad, 4271 family, addrp, len); 4272 else 4273 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET, 4274 PACKET__SEND, &ad); 4275 4276 if (err) 4277 goto out; 4278 4279 err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto); 4280 out: 4281 return err ? NF_DROP : NF_ACCEPT; 4282 } 4283 4284 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum, 4285 struct sk_buff *skb, 4286 const struct net_device *in, 4287 const struct net_device *out, 4288 int (*okfn)(struct sk_buff *)) 4289 { 4290 return selinux_ip_postroute_last(hooknum, skb, in, out, okfn, PF_INET); 4291 } 4292 4293 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4294 4295 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum, 4296 struct sk_buff *skb, 4297 const struct net_device *in, 4298 const struct net_device *out, 4299 int (*okfn)(struct sk_buff *)) 4300 { 4301 return selinux_ip_postroute_last(hooknum, skb, in, out, okfn, PF_INET6); 4302 } 4303 4304 #endif /* IPV6 */ 4305 4306 #endif /* CONFIG_NETFILTER */ 4307 4308 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 4309 { 4310 int err; 4311 4312 err = secondary_ops->netlink_send(sk, skb); 4313 if (err) 4314 return err; 4315 4316 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS) 4317 err = selinux_nlmsg_perm(sk, skb); 4318 4319 return err; 4320 } 4321 4322 static int selinux_netlink_recv(struct sk_buff *skb, int capability) 4323 { 4324 int err; 4325 struct avc_audit_data ad; 4326 4327 err = secondary_ops->netlink_recv(skb, capability); 4328 if (err) 4329 return err; 4330 4331 AVC_AUDIT_DATA_INIT(&ad, CAP); 4332 ad.u.cap = capability; 4333 4334 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid, 4335 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad); 4336 } 4337 4338 static int ipc_alloc_security(struct task_struct *task, 4339 struct kern_ipc_perm *perm, 4340 u16 sclass) 4341 { 4342 struct task_security_struct *tsec = task->security; 4343 struct ipc_security_struct *isec; 4344 4345 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 4346 if (!isec) 4347 return -ENOMEM; 4348 4349 isec->sclass = sclass; 4350 isec->ipc_perm = perm; 4351 isec->sid = tsec->sid; 4352 perm->security = isec; 4353 4354 return 0; 4355 } 4356 4357 static void ipc_free_security(struct kern_ipc_perm *perm) 4358 { 4359 struct ipc_security_struct *isec = perm->security; 4360 perm->security = NULL; 4361 kfree(isec); 4362 } 4363 4364 static int msg_msg_alloc_security(struct msg_msg *msg) 4365 { 4366 struct msg_security_struct *msec; 4367 4368 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 4369 if (!msec) 4370 return -ENOMEM; 4371 4372 msec->msg = msg; 4373 msec->sid = SECINITSID_UNLABELED; 4374 msg->security = msec; 4375 4376 return 0; 4377 } 4378 4379 static void msg_msg_free_security(struct msg_msg *msg) 4380 { 4381 struct msg_security_struct *msec = msg->security; 4382 4383 msg->security = NULL; 4384 kfree(msec); 4385 } 4386 4387 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 4388 u32 perms) 4389 { 4390 struct task_security_struct *tsec; 4391 struct ipc_security_struct *isec; 4392 struct avc_audit_data ad; 4393 4394 tsec = current->security; 4395 isec = ipc_perms->security; 4396 4397 AVC_AUDIT_DATA_INIT(&ad, IPC); 4398 ad.u.ipc_id = ipc_perms->key; 4399 4400 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad); 4401 } 4402 4403 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 4404 { 4405 return msg_msg_alloc_security(msg); 4406 } 4407 4408 static void selinux_msg_msg_free_security(struct msg_msg *msg) 4409 { 4410 msg_msg_free_security(msg); 4411 } 4412 4413 /* message queue security operations */ 4414 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 4415 { 4416 struct task_security_struct *tsec; 4417 struct ipc_security_struct *isec; 4418 struct avc_audit_data ad; 4419 int rc; 4420 4421 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 4422 if (rc) 4423 return rc; 4424 4425 tsec = current->security; 4426 isec = msq->q_perm.security; 4427 4428 AVC_AUDIT_DATA_INIT(&ad, IPC); 4429 ad.u.ipc_id = msq->q_perm.key; 4430 4431 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4432 MSGQ__CREATE, &ad); 4433 if (rc) { 4434 ipc_free_security(&msq->q_perm); 4435 return rc; 4436 } 4437 return 0; 4438 } 4439 4440 static void selinux_msg_queue_free_security(struct msg_queue *msq) 4441 { 4442 ipc_free_security(&msq->q_perm); 4443 } 4444 4445 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 4446 { 4447 struct task_security_struct *tsec; 4448 struct ipc_security_struct *isec; 4449 struct avc_audit_data ad; 4450 4451 tsec = current->security; 4452 isec = msq->q_perm.security; 4453 4454 AVC_AUDIT_DATA_INIT(&ad, IPC); 4455 ad.u.ipc_id = msq->q_perm.key; 4456 4457 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4458 MSGQ__ASSOCIATE, &ad); 4459 } 4460 4461 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 4462 { 4463 int err; 4464 int perms; 4465 4466 switch(cmd) { 4467 case IPC_INFO: 4468 case MSG_INFO: 4469 /* No specific object, just general system-wide information. */ 4470 return task_has_system(current, SYSTEM__IPC_INFO); 4471 case IPC_STAT: 4472 case MSG_STAT: 4473 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 4474 break; 4475 case IPC_SET: 4476 perms = MSGQ__SETATTR; 4477 break; 4478 case IPC_RMID: 4479 perms = MSGQ__DESTROY; 4480 break; 4481 default: 4482 return 0; 4483 } 4484 4485 err = ipc_has_perm(&msq->q_perm, perms); 4486 return err; 4487 } 4488 4489 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 4490 { 4491 struct task_security_struct *tsec; 4492 struct ipc_security_struct *isec; 4493 struct msg_security_struct *msec; 4494 struct avc_audit_data ad; 4495 int rc; 4496 4497 tsec = current->security; 4498 isec = msq->q_perm.security; 4499 msec = msg->security; 4500 4501 /* 4502 * First time through, need to assign label to the message 4503 */ 4504 if (msec->sid == SECINITSID_UNLABELED) { 4505 /* 4506 * Compute new sid based on current process and 4507 * message queue this message will be stored in 4508 */ 4509 rc = security_transition_sid(tsec->sid, 4510 isec->sid, 4511 SECCLASS_MSG, 4512 &msec->sid); 4513 if (rc) 4514 return rc; 4515 } 4516 4517 AVC_AUDIT_DATA_INIT(&ad, IPC); 4518 ad.u.ipc_id = msq->q_perm.key; 4519 4520 /* Can this process write to the queue? */ 4521 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4522 MSGQ__WRITE, &ad); 4523 if (!rc) 4524 /* Can this process send the message */ 4525 rc = avc_has_perm(tsec->sid, msec->sid, 4526 SECCLASS_MSG, MSG__SEND, &ad); 4527 if (!rc) 4528 /* Can the message be put in the queue? */ 4529 rc = avc_has_perm(msec->sid, isec->sid, 4530 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad); 4531 4532 return rc; 4533 } 4534 4535 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 4536 struct task_struct *target, 4537 long type, int mode) 4538 { 4539 struct task_security_struct *tsec; 4540 struct ipc_security_struct *isec; 4541 struct msg_security_struct *msec; 4542 struct avc_audit_data ad; 4543 int rc; 4544 4545 tsec = target->security; 4546 isec = msq->q_perm.security; 4547 msec = msg->security; 4548 4549 AVC_AUDIT_DATA_INIT(&ad, IPC); 4550 ad.u.ipc_id = msq->q_perm.key; 4551 4552 rc = avc_has_perm(tsec->sid, isec->sid, 4553 SECCLASS_MSGQ, MSGQ__READ, &ad); 4554 if (!rc) 4555 rc = avc_has_perm(tsec->sid, msec->sid, 4556 SECCLASS_MSG, MSG__RECEIVE, &ad); 4557 return rc; 4558 } 4559 4560 /* Shared Memory security operations */ 4561 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 4562 { 4563 struct task_security_struct *tsec; 4564 struct ipc_security_struct *isec; 4565 struct avc_audit_data ad; 4566 int rc; 4567 4568 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 4569 if (rc) 4570 return rc; 4571 4572 tsec = current->security; 4573 isec = shp->shm_perm.security; 4574 4575 AVC_AUDIT_DATA_INIT(&ad, IPC); 4576 ad.u.ipc_id = shp->shm_perm.key; 4577 4578 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM, 4579 SHM__CREATE, &ad); 4580 if (rc) { 4581 ipc_free_security(&shp->shm_perm); 4582 return rc; 4583 } 4584 return 0; 4585 } 4586 4587 static void selinux_shm_free_security(struct shmid_kernel *shp) 4588 { 4589 ipc_free_security(&shp->shm_perm); 4590 } 4591 4592 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 4593 { 4594 struct task_security_struct *tsec; 4595 struct ipc_security_struct *isec; 4596 struct avc_audit_data ad; 4597 4598 tsec = current->security; 4599 isec = shp->shm_perm.security; 4600 4601 AVC_AUDIT_DATA_INIT(&ad, IPC); 4602 ad.u.ipc_id = shp->shm_perm.key; 4603 4604 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM, 4605 SHM__ASSOCIATE, &ad); 4606 } 4607 4608 /* Note, at this point, shp is locked down */ 4609 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 4610 { 4611 int perms; 4612 int err; 4613 4614 switch(cmd) { 4615 case IPC_INFO: 4616 case SHM_INFO: 4617 /* No specific object, just general system-wide information. */ 4618 return task_has_system(current, SYSTEM__IPC_INFO); 4619 case IPC_STAT: 4620 case SHM_STAT: 4621 perms = SHM__GETATTR | SHM__ASSOCIATE; 4622 break; 4623 case IPC_SET: 4624 perms = SHM__SETATTR; 4625 break; 4626 case SHM_LOCK: 4627 case SHM_UNLOCK: 4628 perms = SHM__LOCK; 4629 break; 4630 case IPC_RMID: 4631 perms = SHM__DESTROY; 4632 break; 4633 default: 4634 return 0; 4635 } 4636 4637 err = ipc_has_perm(&shp->shm_perm, perms); 4638 return err; 4639 } 4640 4641 static int selinux_shm_shmat(struct shmid_kernel *shp, 4642 char __user *shmaddr, int shmflg) 4643 { 4644 u32 perms; 4645 int rc; 4646 4647 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg); 4648 if (rc) 4649 return rc; 4650 4651 if (shmflg & SHM_RDONLY) 4652 perms = SHM__READ; 4653 else 4654 perms = SHM__READ | SHM__WRITE; 4655 4656 return ipc_has_perm(&shp->shm_perm, perms); 4657 } 4658 4659 /* Semaphore security operations */ 4660 static int selinux_sem_alloc_security(struct sem_array *sma) 4661 { 4662 struct task_security_struct *tsec; 4663 struct ipc_security_struct *isec; 4664 struct avc_audit_data ad; 4665 int rc; 4666 4667 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 4668 if (rc) 4669 return rc; 4670 4671 tsec = current->security; 4672 isec = sma->sem_perm.security; 4673 4674 AVC_AUDIT_DATA_INIT(&ad, IPC); 4675 ad.u.ipc_id = sma->sem_perm.key; 4676 4677 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM, 4678 SEM__CREATE, &ad); 4679 if (rc) { 4680 ipc_free_security(&sma->sem_perm); 4681 return rc; 4682 } 4683 return 0; 4684 } 4685 4686 static void selinux_sem_free_security(struct sem_array *sma) 4687 { 4688 ipc_free_security(&sma->sem_perm); 4689 } 4690 4691 static int selinux_sem_associate(struct sem_array *sma, int semflg) 4692 { 4693 struct task_security_struct *tsec; 4694 struct ipc_security_struct *isec; 4695 struct avc_audit_data ad; 4696 4697 tsec = current->security; 4698 isec = sma->sem_perm.security; 4699 4700 AVC_AUDIT_DATA_INIT(&ad, IPC); 4701 ad.u.ipc_id = sma->sem_perm.key; 4702 4703 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM, 4704 SEM__ASSOCIATE, &ad); 4705 } 4706 4707 /* Note, at this point, sma is locked down */ 4708 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 4709 { 4710 int err; 4711 u32 perms; 4712 4713 switch(cmd) { 4714 case IPC_INFO: 4715 case SEM_INFO: 4716 /* No specific object, just general system-wide information. */ 4717 return task_has_system(current, SYSTEM__IPC_INFO); 4718 case GETPID: 4719 case GETNCNT: 4720 case GETZCNT: 4721 perms = SEM__GETATTR; 4722 break; 4723 case GETVAL: 4724 case GETALL: 4725 perms = SEM__READ; 4726 break; 4727 case SETVAL: 4728 case SETALL: 4729 perms = SEM__WRITE; 4730 break; 4731 case IPC_RMID: 4732 perms = SEM__DESTROY; 4733 break; 4734 case IPC_SET: 4735 perms = SEM__SETATTR; 4736 break; 4737 case IPC_STAT: 4738 case SEM_STAT: 4739 perms = SEM__GETATTR | SEM__ASSOCIATE; 4740 break; 4741 default: 4742 return 0; 4743 } 4744 4745 err = ipc_has_perm(&sma->sem_perm, perms); 4746 return err; 4747 } 4748 4749 static int selinux_sem_semop(struct sem_array *sma, 4750 struct sembuf *sops, unsigned nsops, int alter) 4751 { 4752 u32 perms; 4753 4754 if (alter) 4755 perms = SEM__READ | SEM__WRITE; 4756 else 4757 perms = SEM__READ; 4758 4759 return ipc_has_perm(&sma->sem_perm, perms); 4760 } 4761 4762 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 4763 { 4764 u32 av = 0; 4765 4766 av = 0; 4767 if (flag & S_IRUGO) 4768 av |= IPC__UNIX_READ; 4769 if (flag & S_IWUGO) 4770 av |= IPC__UNIX_WRITE; 4771 4772 if (av == 0) 4773 return 0; 4774 4775 return ipc_has_perm(ipcp, av); 4776 } 4777 4778 /* module stacking operations */ 4779 static int selinux_register_security (const char *name, struct security_operations *ops) 4780 { 4781 if (secondary_ops != original_ops) { 4782 printk(KERN_ERR "%s: There is already a secondary security " 4783 "module registered.\n", __FUNCTION__); 4784 return -EINVAL; 4785 } 4786 4787 secondary_ops = ops; 4788 4789 printk(KERN_INFO "%s: Registering secondary module %s\n", 4790 __FUNCTION__, 4791 name); 4792 4793 return 0; 4794 } 4795 4796 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode) 4797 { 4798 if (inode) 4799 inode_doinit_with_dentry(inode, dentry); 4800 } 4801 4802 static int selinux_getprocattr(struct task_struct *p, 4803 char *name, char **value) 4804 { 4805 struct task_security_struct *tsec; 4806 u32 sid; 4807 int error; 4808 unsigned len; 4809 4810 if (current != p) { 4811 error = task_has_perm(current, p, PROCESS__GETATTR); 4812 if (error) 4813 return error; 4814 } 4815 4816 tsec = p->security; 4817 4818 if (!strcmp(name, "current")) 4819 sid = tsec->sid; 4820 else if (!strcmp(name, "prev")) 4821 sid = tsec->osid; 4822 else if (!strcmp(name, "exec")) 4823 sid = tsec->exec_sid; 4824 else if (!strcmp(name, "fscreate")) 4825 sid = tsec->create_sid; 4826 else if (!strcmp(name, "keycreate")) 4827 sid = tsec->keycreate_sid; 4828 else if (!strcmp(name, "sockcreate")) 4829 sid = tsec->sockcreate_sid; 4830 else 4831 return -EINVAL; 4832 4833 if (!sid) 4834 return 0; 4835 4836 error = security_sid_to_context(sid, value, &len); 4837 if (error) 4838 return error; 4839 return len; 4840 } 4841 4842 static int selinux_setprocattr(struct task_struct *p, 4843 char *name, void *value, size_t size) 4844 { 4845 struct task_security_struct *tsec; 4846 u32 sid = 0; 4847 int error; 4848 char *str = value; 4849 4850 if (current != p) { 4851 /* SELinux only allows a process to change its own 4852 security attributes. */ 4853 return -EACCES; 4854 } 4855 4856 /* 4857 * Basic control over ability to set these attributes at all. 4858 * current == p, but we'll pass them separately in case the 4859 * above restriction is ever removed. 4860 */ 4861 if (!strcmp(name, "exec")) 4862 error = task_has_perm(current, p, PROCESS__SETEXEC); 4863 else if (!strcmp(name, "fscreate")) 4864 error = task_has_perm(current, p, PROCESS__SETFSCREATE); 4865 else if (!strcmp(name, "keycreate")) 4866 error = task_has_perm(current, p, PROCESS__SETKEYCREATE); 4867 else if (!strcmp(name, "sockcreate")) 4868 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE); 4869 else if (!strcmp(name, "current")) 4870 error = task_has_perm(current, p, PROCESS__SETCURRENT); 4871 else 4872 error = -EINVAL; 4873 if (error) 4874 return error; 4875 4876 /* Obtain a SID for the context, if one was specified. */ 4877 if (size && str[1] && str[1] != '\n') { 4878 if (str[size-1] == '\n') { 4879 str[size-1] = 0; 4880 size--; 4881 } 4882 error = security_context_to_sid(value, size, &sid); 4883 if (error) 4884 return error; 4885 } 4886 4887 /* Permission checking based on the specified context is 4888 performed during the actual operation (execve, 4889 open/mkdir/...), when we know the full context of the 4890 operation. See selinux_bprm_set_security for the execve 4891 checks and may_create for the file creation checks. The 4892 operation will then fail if the context is not permitted. */ 4893 tsec = p->security; 4894 if (!strcmp(name, "exec")) 4895 tsec->exec_sid = sid; 4896 else if (!strcmp(name, "fscreate")) 4897 tsec->create_sid = sid; 4898 else if (!strcmp(name, "keycreate")) { 4899 error = may_create_key(sid, p); 4900 if (error) 4901 return error; 4902 tsec->keycreate_sid = sid; 4903 } else if (!strcmp(name, "sockcreate")) 4904 tsec->sockcreate_sid = sid; 4905 else if (!strcmp(name, "current")) { 4906 struct av_decision avd; 4907 4908 if (sid == 0) 4909 return -EINVAL; 4910 4911 /* Only allow single threaded processes to change context */ 4912 if (atomic_read(&p->mm->mm_users) != 1) { 4913 struct task_struct *g, *t; 4914 struct mm_struct *mm = p->mm; 4915 read_lock(&tasklist_lock); 4916 do_each_thread(g, t) 4917 if (t->mm == mm && t != p) { 4918 read_unlock(&tasklist_lock); 4919 return -EPERM; 4920 } 4921 while_each_thread(g, t); 4922 read_unlock(&tasklist_lock); 4923 } 4924 4925 /* Check permissions for the transition. */ 4926 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 4927 PROCESS__DYNTRANSITION, NULL); 4928 if (error) 4929 return error; 4930 4931 /* Check for ptracing, and update the task SID if ok. 4932 Otherwise, leave SID unchanged and fail. */ 4933 task_lock(p); 4934 if (p->ptrace & PT_PTRACED) { 4935 error = avc_has_perm_noaudit(tsec->ptrace_sid, sid, 4936 SECCLASS_PROCESS, 4937 PROCESS__PTRACE, 0, &avd); 4938 if (!error) 4939 tsec->sid = sid; 4940 task_unlock(p); 4941 avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS, 4942 PROCESS__PTRACE, &avd, error, NULL); 4943 if (error) 4944 return error; 4945 } else { 4946 tsec->sid = sid; 4947 task_unlock(p); 4948 } 4949 } 4950 else 4951 return -EINVAL; 4952 4953 return size; 4954 } 4955 4956 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 4957 { 4958 return security_sid_to_context(secid, secdata, seclen); 4959 } 4960 4961 static int selinux_secctx_to_secid(char *secdata, u32 seclen, u32 *secid) 4962 { 4963 return security_context_to_sid(secdata, seclen, secid); 4964 } 4965 4966 static void selinux_release_secctx(char *secdata, u32 seclen) 4967 { 4968 kfree(secdata); 4969 } 4970 4971 #ifdef CONFIG_KEYS 4972 4973 static int selinux_key_alloc(struct key *k, struct task_struct *tsk, 4974 unsigned long flags) 4975 { 4976 struct task_security_struct *tsec = tsk->security; 4977 struct key_security_struct *ksec; 4978 4979 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 4980 if (!ksec) 4981 return -ENOMEM; 4982 4983 ksec->obj = k; 4984 if (tsec->keycreate_sid) 4985 ksec->sid = tsec->keycreate_sid; 4986 else 4987 ksec->sid = tsec->sid; 4988 k->security = ksec; 4989 4990 return 0; 4991 } 4992 4993 static void selinux_key_free(struct key *k) 4994 { 4995 struct key_security_struct *ksec = k->security; 4996 4997 k->security = NULL; 4998 kfree(ksec); 4999 } 5000 5001 static int selinux_key_permission(key_ref_t key_ref, 5002 struct task_struct *ctx, 5003 key_perm_t perm) 5004 { 5005 struct key *key; 5006 struct task_security_struct *tsec; 5007 struct key_security_struct *ksec; 5008 5009 key = key_ref_to_ptr(key_ref); 5010 5011 tsec = ctx->security; 5012 ksec = key->security; 5013 5014 /* if no specific permissions are requested, we skip the 5015 permission check. No serious, additional covert channels 5016 appear to be created. */ 5017 if (perm == 0) 5018 return 0; 5019 5020 return avc_has_perm(tsec->sid, ksec->sid, 5021 SECCLASS_KEY, perm, NULL); 5022 } 5023 5024 #endif 5025 5026 static struct security_operations selinux_ops = { 5027 .ptrace = selinux_ptrace, 5028 .capget = selinux_capget, 5029 .capset_check = selinux_capset_check, 5030 .capset_set = selinux_capset_set, 5031 .sysctl = selinux_sysctl, 5032 .capable = selinux_capable, 5033 .quotactl = selinux_quotactl, 5034 .quota_on = selinux_quota_on, 5035 .syslog = selinux_syslog, 5036 .vm_enough_memory = selinux_vm_enough_memory, 5037 5038 .netlink_send = selinux_netlink_send, 5039 .netlink_recv = selinux_netlink_recv, 5040 5041 .bprm_alloc_security = selinux_bprm_alloc_security, 5042 .bprm_free_security = selinux_bprm_free_security, 5043 .bprm_apply_creds = selinux_bprm_apply_creds, 5044 .bprm_post_apply_creds = selinux_bprm_post_apply_creds, 5045 .bprm_set_security = selinux_bprm_set_security, 5046 .bprm_check_security = selinux_bprm_check_security, 5047 .bprm_secureexec = selinux_bprm_secureexec, 5048 5049 .sb_alloc_security = selinux_sb_alloc_security, 5050 .sb_free_security = selinux_sb_free_security, 5051 .sb_copy_data = selinux_sb_copy_data, 5052 .sb_kern_mount = selinux_sb_kern_mount, 5053 .sb_statfs = selinux_sb_statfs, 5054 .sb_mount = selinux_mount, 5055 .sb_umount = selinux_umount, 5056 .sb_get_mnt_opts = selinux_get_mnt_opts, 5057 .sb_set_mnt_opts = selinux_set_mnt_opts, 5058 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts, 5059 5060 .inode_alloc_security = selinux_inode_alloc_security, 5061 .inode_free_security = selinux_inode_free_security, 5062 .inode_init_security = selinux_inode_init_security, 5063 .inode_create = selinux_inode_create, 5064 .inode_link = selinux_inode_link, 5065 .inode_unlink = selinux_inode_unlink, 5066 .inode_symlink = selinux_inode_symlink, 5067 .inode_mkdir = selinux_inode_mkdir, 5068 .inode_rmdir = selinux_inode_rmdir, 5069 .inode_mknod = selinux_inode_mknod, 5070 .inode_rename = selinux_inode_rename, 5071 .inode_readlink = selinux_inode_readlink, 5072 .inode_follow_link = selinux_inode_follow_link, 5073 .inode_permission = selinux_inode_permission, 5074 .inode_setattr = selinux_inode_setattr, 5075 .inode_getattr = selinux_inode_getattr, 5076 .inode_setxattr = selinux_inode_setxattr, 5077 .inode_post_setxattr = selinux_inode_post_setxattr, 5078 .inode_getxattr = selinux_inode_getxattr, 5079 .inode_listxattr = selinux_inode_listxattr, 5080 .inode_removexattr = selinux_inode_removexattr, 5081 .inode_getsecurity = selinux_inode_getsecurity, 5082 .inode_setsecurity = selinux_inode_setsecurity, 5083 .inode_listsecurity = selinux_inode_listsecurity, 5084 .inode_need_killpriv = selinux_inode_need_killpriv, 5085 .inode_killpriv = selinux_inode_killpriv, 5086 5087 .file_permission = selinux_file_permission, 5088 .file_alloc_security = selinux_file_alloc_security, 5089 .file_free_security = selinux_file_free_security, 5090 .file_ioctl = selinux_file_ioctl, 5091 .file_mmap = selinux_file_mmap, 5092 .file_mprotect = selinux_file_mprotect, 5093 .file_lock = selinux_file_lock, 5094 .file_fcntl = selinux_file_fcntl, 5095 .file_set_fowner = selinux_file_set_fowner, 5096 .file_send_sigiotask = selinux_file_send_sigiotask, 5097 .file_receive = selinux_file_receive, 5098 5099 .dentry_open = selinux_dentry_open, 5100 5101 .task_create = selinux_task_create, 5102 .task_alloc_security = selinux_task_alloc_security, 5103 .task_free_security = selinux_task_free_security, 5104 .task_setuid = selinux_task_setuid, 5105 .task_post_setuid = selinux_task_post_setuid, 5106 .task_setgid = selinux_task_setgid, 5107 .task_setpgid = selinux_task_setpgid, 5108 .task_getpgid = selinux_task_getpgid, 5109 .task_getsid = selinux_task_getsid, 5110 .task_getsecid = selinux_task_getsecid, 5111 .task_setgroups = selinux_task_setgroups, 5112 .task_setnice = selinux_task_setnice, 5113 .task_setioprio = selinux_task_setioprio, 5114 .task_getioprio = selinux_task_getioprio, 5115 .task_setrlimit = selinux_task_setrlimit, 5116 .task_setscheduler = selinux_task_setscheduler, 5117 .task_getscheduler = selinux_task_getscheduler, 5118 .task_movememory = selinux_task_movememory, 5119 .task_kill = selinux_task_kill, 5120 .task_wait = selinux_task_wait, 5121 .task_prctl = selinux_task_prctl, 5122 .task_reparent_to_init = selinux_task_reparent_to_init, 5123 .task_to_inode = selinux_task_to_inode, 5124 5125 .ipc_permission = selinux_ipc_permission, 5126 5127 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 5128 .msg_msg_free_security = selinux_msg_msg_free_security, 5129 5130 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 5131 .msg_queue_free_security = selinux_msg_queue_free_security, 5132 .msg_queue_associate = selinux_msg_queue_associate, 5133 .msg_queue_msgctl = selinux_msg_queue_msgctl, 5134 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 5135 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 5136 5137 .shm_alloc_security = selinux_shm_alloc_security, 5138 .shm_free_security = selinux_shm_free_security, 5139 .shm_associate = selinux_shm_associate, 5140 .shm_shmctl = selinux_shm_shmctl, 5141 .shm_shmat = selinux_shm_shmat, 5142 5143 .sem_alloc_security = selinux_sem_alloc_security, 5144 .sem_free_security = selinux_sem_free_security, 5145 .sem_associate = selinux_sem_associate, 5146 .sem_semctl = selinux_sem_semctl, 5147 .sem_semop = selinux_sem_semop, 5148 5149 .register_security = selinux_register_security, 5150 5151 .d_instantiate = selinux_d_instantiate, 5152 5153 .getprocattr = selinux_getprocattr, 5154 .setprocattr = selinux_setprocattr, 5155 5156 .secid_to_secctx = selinux_secid_to_secctx, 5157 .secctx_to_secid = selinux_secctx_to_secid, 5158 .release_secctx = selinux_release_secctx, 5159 5160 .unix_stream_connect = selinux_socket_unix_stream_connect, 5161 .unix_may_send = selinux_socket_unix_may_send, 5162 5163 .socket_create = selinux_socket_create, 5164 .socket_post_create = selinux_socket_post_create, 5165 .socket_bind = selinux_socket_bind, 5166 .socket_connect = selinux_socket_connect, 5167 .socket_listen = selinux_socket_listen, 5168 .socket_accept = selinux_socket_accept, 5169 .socket_sendmsg = selinux_socket_sendmsg, 5170 .socket_recvmsg = selinux_socket_recvmsg, 5171 .socket_getsockname = selinux_socket_getsockname, 5172 .socket_getpeername = selinux_socket_getpeername, 5173 .socket_getsockopt = selinux_socket_getsockopt, 5174 .socket_setsockopt = selinux_socket_setsockopt, 5175 .socket_shutdown = selinux_socket_shutdown, 5176 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 5177 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 5178 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 5179 .sk_alloc_security = selinux_sk_alloc_security, 5180 .sk_free_security = selinux_sk_free_security, 5181 .sk_clone_security = selinux_sk_clone_security, 5182 .sk_getsecid = selinux_sk_getsecid, 5183 .sock_graft = selinux_sock_graft, 5184 .inet_conn_request = selinux_inet_conn_request, 5185 .inet_csk_clone = selinux_inet_csk_clone, 5186 .inet_conn_established = selinux_inet_conn_established, 5187 .req_classify_flow = selinux_req_classify_flow, 5188 5189 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5190 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 5191 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 5192 .xfrm_policy_free_security = selinux_xfrm_policy_free, 5193 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 5194 .xfrm_state_alloc_security = selinux_xfrm_state_alloc, 5195 .xfrm_state_free_security = selinux_xfrm_state_free, 5196 .xfrm_state_delete_security = selinux_xfrm_state_delete, 5197 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 5198 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 5199 .xfrm_decode_session = selinux_xfrm_decode_session, 5200 #endif 5201 5202 #ifdef CONFIG_KEYS 5203 .key_alloc = selinux_key_alloc, 5204 .key_free = selinux_key_free, 5205 .key_permission = selinux_key_permission, 5206 #endif 5207 }; 5208 5209 static __init int selinux_init(void) 5210 { 5211 struct task_security_struct *tsec; 5212 5213 if (!selinux_enabled) { 5214 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 5215 return 0; 5216 } 5217 5218 printk(KERN_INFO "SELinux: Initializing.\n"); 5219 5220 /* Set the security state for the initial task. */ 5221 if (task_alloc_security(current)) 5222 panic("SELinux: Failed to initialize initial task.\n"); 5223 tsec = current->security; 5224 tsec->osid = tsec->sid = SECINITSID_KERNEL; 5225 5226 sel_inode_cache = kmem_cache_create("selinux_inode_security", 5227 sizeof(struct inode_security_struct), 5228 0, SLAB_PANIC, NULL); 5229 avc_init(); 5230 5231 original_ops = secondary_ops = security_ops; 5232 if (!secondary_ops) 5233 panic ("SELinux: No initial security operations\n"); 5234 if (register_security (&selinux_ops)) 5235 panic("SELinux: Unable to register with kernel.\n"); 5236 5237 if (selinux_enforcing) { 5238 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 5239 } else { 5240 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 5241 } 5242 5243 #ifdef CONFIG_KEYS 5244 /* Add security information to initial keyrings */ 5245 selinux_key_alloc(&root_user_keyring, current, 5246 KEY_ALLOC_NOT_IN_QUOTA); 5247 selinux_key_alloc(&root_session_keyring, current, 5248 KEY_ALLOC_NOT_IN_QUOTA); 5249 #endif 5250 5251 return 0; 5252 } 5253 5254 void selinux_complete_init(void) 5255 { 5256 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 5257 5258 /* Set up any superblocks initialized prior to the policy load. */ 5259 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 5260 spin_lock(&sb_lock); 5261 spin_lock(&sb_security_lock); 5262 next_sb: 5263 if (!list_empty(&superblock_security_head)) { 5264 struct superblock_security_struct *sbsec = 5265 list_entry(superblock_security_head.next, 5266 struct superblock_security_struct, 5267 list); 5268 struct super_block *sb = sbsec->sb; 5269 sb->s_count++; 5270 spin_unlock(&sb_security_lock); 5271 spin_unlock(&sb_lock); 5272 down_read(&sb->s_umount); 5273 if (sb->s_root) 5274 superblock_doinit(sb, NULL); 5275 drop_super(sb); 5276 spin_lock(&sb_lock); 5277 spin_lock(&sb_security_lock); 5278 list_del_init(&sbsec->list); 5279 goto next_sb; 5280 } 5281 spin_unlock(&sb_security_lock); 5282 spin_unlock(&sb_lock); 5283 } 5284 5285 /* SELinux requires early initialization in order to label 5286 all processes and objects when they are created. */ 5287 security_initcall(selinux_init); 5288 5289 #if defined(CONFIG_NETFILTER) 5290 5291 static struct nf_hook_ops selinux_ipv4_op = { 5292 .hook = selinux_ipv4_postroute_last, 5293 .owner = THIS_MODULE, 5294 .pf = PF_INET, 5295 .hooknum = NF_INET_POST_ROUTING, 5296 .priority = NF_IP_PRI_SELINUX_LAST, 5297 }; 5298 5299 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5300 5301 static struct nf_hook_ops selinux_ipv6_op = { 5302 .hook = selinux_ipv6_postroute_last, 5303 .owner = THIS_MODULE, 5304 .pf = PF_INET6, 5305 .hooknum = NF_INET_POST_ROUTING, 5306 .priority = NF_IP6_PRI_SELINUX_LAST, 5307 }; 5308 5309 #endif /* IPV6 */ 5310 5311 static int __init selinux_nf_ip_init(void) 5312 { 5313 int err = 0; 5314 5315 if (!selinux_enabled) 5316 goto out; 5317 5318 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 5319 5320 err = nf_register_hook(&selinux_ipv4_op); 5321 if (err) 5322 panic("SELinux: nf_register_hook for IPv4: error %d\n", err); 5323 5324 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5325 5326 err = nf_register_hook(&selinux_ipv6_op); 5327 if (err) 5328 panic("SELinux: nf_register_hook for IPv6: error %d\n", err); 5329 5330 #endif /* IPV6 */ 5331 5332 out: 5333 return err; 5334 } 5335 5336 __initcall(selinux_nf_ip_init); 5337 5338 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5339 static void selinux_nf_ip_exit(void) 5340 { 5341 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 5342 5343 nf_unregister_hook(&selinux_ipv4_op); 5344 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5345 nf_unregister_hook(&selinux_ipv6_op); 5346 #endif /* IPV6 */ 5347 } 5348 #endif 5349 5350 #else /* CONFIG_NETFILTER */ 5351 5352 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5353 #define selinux_nf_ip_exit() 5354 #endif 5355 5356 #endif /* CONFIG_NETFILTER */ 5357 5358 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5359 int selinux_disable(void) 5360 { 5361 extern void exit_sel_fs(void); 5362 static int selinux_disabled = 0; 5363 5364 if (ss_initialized) { 5365 /* Not permitted after initial policy load. */ 5366 return -EINVAL; 5367 } 5368 5369 if (selinux_disabled) { 5370 /* Only do this once. */ 5371 return -EINVAL; 5372 } 5373 5374 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 5375 5376 selinux_disabled = 1; 5377 selinux_enabled = 0; 5378 5379 /* Reset security_ops to the secondary module, dummy or capability. */ 5380 security_ops = secondary_ops; 5381 5382 /* Unregister netfilter hooks. */ 5383 selinux_nf_ip_exit(); 5384 5385 /* Unregister selinuxfs. */ 5386 exit_sel_fs(); 5387 5388 return 0; 5389 } 5390 #endif 5391 5392 5393