1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul.moore@hp.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the GNU General Public License version 2, 23 * as published by the Free Software Foundation. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/kernel.h> 28 #include <linux/tracehook.h> 29 #include <linux/errno.h> 30 #include <linux/sched.h> 31 #include <linux/security.h> 32 #include <linux/xattr.h> 33 #include <linux/capability.h> 34 #include <linux/unistd.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/slab.h> 38 #include <linux/pagemap.h> 39 #include <linux/swap.h> 40 #include <linux/spinlock.h> 41 #include <linux/syscalls.h> 42 #include <linux/file.h> 43 #include <linux/fdtable.h> 44 #include <linux/namei.h> 45 #include <linux/mount.h> 46 #include <linux/proc_fs.h> 47 #include <linux/netfilter_ipv4.h> 48 #include <linux/netfilter_ipv6.h> 49 #include <linux/tty.h> 50 #include <net/icmp.h> 51 #include <net/ip.h> /* for local_port_range[] */ 52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 53 #include <net/net_namespace.h> 54 #include <net/netlabel.h> 55 #include <linux/uaccess.h> 56 #include <asm/ioctls.h> 57 #include <asm/atomic.h> 58 #include <linux/bitops.h> 59 #include <linux/interrupt.h> 60 #include <linux/netdevice.h> /* for network interface checks */ 61 #include <linux/netlink.h> 62 #include <linux/tcp.h> 63 #include <linux/udp.h> 64 #include <linux/dccp.h> 65 #include <linux/quota.h> 66 #include <linux/un.h> /* for Unix socket types */ 67 #include <net/af_unix.h> /* for Unix socket types */ 68 #include <linux/parser.h> 69 #include <linux/nfs_mount.h> 70 #include <net/ipv6.h> 71 #include <linux/hugetlb.h> 72 #include <linux/personality.h> 73 #include <linux/sysctl.h> 74 #include <linux/audit.h> 75 #include <linux/string.h> 76 #include <linux/selinux.h> 77 #include <linux/mutex.h> 78 #include <linux/posix-timers.h> 79 #include <linux/syslog.h> 80 81 #include "avc.h" 82 #include "objsec.h" 83 #include "netif.h" 84 #include "netnode.h" 85 #include "netport.h" 86 #include "xfrm.h" 87 #include "netlabel.h" 88 #include "audit.h" 89 90 #define NUM_SEL_MNT_OPTS 5 91 92 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm); 93 extern struct security_operations *security_ops; 94 95 /* SECMARK reference count */ 96 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 97 98 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 99 int selinux_enforcing; 100 101 static int __init enforcing_setup(char *str) 102 { 103 unsigned long enforcing; 104 if (!strict_strtoul(str, 0, &enforcing)) 105 selinux_enforcing = enforcing ? 1 : 0; 106 return 1; 107 } 108 __setup("enforcing=", enforcing_setup); 109 #endif 110 111 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 112 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 113 114 static int __init selinux_enabled_setup(char *str) 115 { 116 unsigned long enabled; 117 if (!strict_strtoul(str, 0, &enabled)) 118 selinux_enabled = enabled ? 1 : 0; 119 return 1; 120 } 121 __setup("selinux=", selinux_enabled_setup); 122 #else 123 int selinux_enabled = 1; 124 #endif 125 126 static struct kmem_cache *sel_inode_cache; 127 128 /** 129 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 130 * 131 * Description: 132 * This function checks the SECMARK reference counter to see if any SECMARK 133 * targets are currently configured, if the reference counter is greater than 134 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 135 * enabled, false (0) if SECMARK is disabled. 136 * 137 */ 138 static int selinux_secmark_enabled(void) 139 { 140 return (atomic_read(&selinux_secmark_refcount) > 0); 141 } 142 143 /* 144 * initialise the security for the init task 145 */ 146 static void cred_init_security(void) 147 { 148 struct cred *cred = (struct cred *) current->real_cred; 149 struct task_security_struct *tsec; 150 151 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 152 if (!tsec) 153 panic("SELinux: Failed to initialize initial task.\n"); 154 155 tsec->osid = tsec->sid = SECINITSID_KERNEL; 156 cred->security = tsec; 157 } 158 159 /* 160 * get the security ID of a set of credentials 161 */ 162 static inline u32 cred_sid(const struct cred *cred) 163 { 164 const struct task_security_struct *tsec; 165 166 tsec = cred->security; 167 return tsec->sid; 168 } 169 170 /* 171 * get the objective security ID of a task 172 */ 173 static inline u32 task_sid(const struct task_struct *task) 174 { 175 u32 sid; 176 177 rcu_read_lock(); 178 sid = cred_sid(__task_cred(task)); 179 rcu_read_unlock(); 180 return sid; 181 } 182 183 /* 184 * get the subjective security ID of the current task 185 */ 186 static inline u32 current_sid(void) 187 { 188 const struct task_security_struct *tsec = current_security(); 189 190 return tsec->sid; 191 } 192 193 /* Allocate and free functions for each kind of security blob. */ 194 195 static int inode_alloc_security(struct inode *inode) 196 { 197 struct inode_security_struct *isec; 198 u32 sid = current_sid(); 199 200 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 201 if (!isec) 202 return -ENOMEM; 203 204 mutex_init(&isec->lock); 205 INIT_LIST_HEAD(&isec->list); 206 isec->inode = inode; 207 isec->sid = SECINITSID_UNLABELED; 208 isec->sclass = SECCLASS_FILE; 209 isec->task_sid = sid; 210 inode->i_security = isec; 211 212 return 0; 213 } 214 215 static void inode_free_security(struct inode *inode) 216 { 217 struct inode_security_struct *isec = inode->i_security; 218 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 219 220 spin_lock(&sbsec->isec_lock); 221 if (!list_empty(&isec->list)) 222 list_del_init(&isec->list); 223 spin_unlock(&sbsec->isec_lock); 224 225 inode->i_security = NULL; 226 kmem_cache_free(sel_inode_cache, isec); 227 } 228 229 static int file_alloc_security(struct file *file) 230 { 231 struct file_security_struct *fsec; 232 u32 sid = current_sid(); 233 234 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 235 if (!fsec) 236 return -ENOMEM; 237 238 fsec->sid = sid; 239 fsec->fown_sid = sid; 240 file->f_security = fsec; 241 242 return 0; 243 } 244 245 static void file_free_security(struct file *file) 246 { 247 struct file_security_struct *fsec = file->f_security; 248 file->f_security = NULL; 249 kfree(fsec); 250 } 251 252 static int superblock_alloc_security(struct super_block *sb) 253 { 254 struct superblock_security_struct *sbsec; 255 256 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 257 if (!sbsec) 258 return -ENOMEM; 259 260 mutex_init(&sbsec->lock); 261 INIT_LIST_HEAD(&sbsec->isec_head); 262 spin_lock_init(&sbsec->isec_lock); 263 sbsec->sb = sb; 264 sbsec->sid = SECINITSID_UNLABELED; 265 sbsec->def_sid = SECINITSID_FILE; 266 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 267 sb->s_security = sbsec; 268 269 return 0; 270 } 271 272 static void superblock_free_security(struct super_block *sb) 273 { 274 struct superblock_security_struct *sbsec = sb->s_security; 275 sb->s_security = NULL; 276 kfree(sbsec); 277 } 278 279 /* The security server must be initialized before 280 any labeling or access decisions can be provided. */ 281 extern int ss_initialized; 282 283 /* The file system's label must be initialized prior to use. */ 284 285 static const char *labeling_behaviors[6] = { 286 "uses xattr", 287 "uses transition SIDs", 288 "uses task SIDs", 289 "uses genfs_contexts", 290 "not configured for labeling", 291 "uses mountpoint labeling", 292 }; 293 294 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 295 296 static inline int inode_doinit(struct inode *inode) 297 { 298 return inode_doinit_with_dentry(inode, NULL); 299 } 300 301 enum { 302 Opt_error = -1, 303 Opt_context = 1, 304 Opt_fscontext = 2, 305 Opt_defcontext = 3, 306 Opt_rootcontext = 4, 307 Opt_labelsupport = 5, 308 }; 309 310 static const match_table_t tokens = { 311 {Opt_context, CONTEXT_STR "%s"}, 312 {Opt_fscontext, FSCONTEXT_STR "%s"}, 313 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 314 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 315 {Opt_labelsupport, LABELSUPP_STR}, 316 {Opt_error, NULL}, 317 }; 318 319 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 320 321 static int may_context_mount_sb_relabel(u32 sid, 322 struct superblock_security_struct *sbsec, 323 const struct cred *cred) 324 { 325 const struct task_security_struct *tsec = cred->security; 326 int rc; 327 328 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 329 FILESYSTEM__RELABELFROM, NULL); 330 if (rc) 331 return rc; 332 333 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 334 FILESYSTEM__RELABELTO, NULL); 335 return rc; 336 } 337 338 static int may_context_mount_inode_relabel(u32 sid, 339 struct superblock_security_struct *sbsec, 340 const struct cred *cred) 341 { 342 const struct task_security_struct *tsec = cred->security; 343 int rc; 344 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 345 FILESYSTEM__RELABELFROM, NULL); 346 if (rc) 347 return rc; 348 349 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 350 FILESYSTEM__ASSOCIATE, NULL); 351 return rc; 352 } 353 354 static int sb_finish_set_opts(struct super_block *sb) 355 { 356 struct superblock_security_struct *sbsec = sb->s_security; 357 struct dentry *root = sb->s_root; 358 struct inode *root_inode = root->d_inode; 359 int rc = 0; 360 361 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 362 /* Make sure that the xattr handler exists and that no 363 error other than -ENODATA is returned by getxattr on 364 the root directory. -ENODATA is ok, as this may be 365 the first boot of the SELinux kernel before we have 366 assigned xattr values to the filesystem. */ 367 if (!root_inode->i_op->getxattr) { 368 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 369 "xattr support\n", sb->s_id, sb->s_type->name); 370 rc = -EOPNOTSUPP; 371 goto out; 372 } 373 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 374 if (rc < 0 && rc != -ENODATA) { 375 if (rc == -EOPNOTSUPP) 376 printk(KERN_WARNING "SELinux: (dev %s, type " 377 "%s) has no security xattr handler\n", 378 sb->s_id, sb->s_type->name); 379 else 380 printk(KERN_WARNING "SELinux: (dev %s, type " 381 "%s) getxattr errno %d\n", sb->s_id, 382 sb->s_type->name, -rc); 383 goto out; 384 } 385 } 386 387 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP); 388 389 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 390 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 391 sb->s_id, sb->s_type->name); 392 else 393 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n", 394 sb->s_id, sb->s_type->name, 395 labeling_behaviors[sbsec->behavior-1]); 396 397 if (sbsec->behavior == SECURITY_FS_USE_GENFS || 398 sbsec->behavior == SECURITY_FS_USE_MNTPOINT || 399 sbsec->behavior == SECURITY_FS_USE_NONE || 400 sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 401 sbsec->flags &= ~SE_SBLABELSUPP; 402 403 /* Special handling for sysfs. Is genfs but also has setxattr handler*/ 404 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0) 405 sbsec->flags |= SE_SBLABELSUPP; 406 407 /* Initialize the root inode. */ 408 rc = inode_doinit_with_dentry(root_inode, root); 409 410 /* Initialize any other inodes associated with the superblock, e.g. 411 inodes created prior to initial policy load or inodes created 412 during get_sb by a pseudo filesystem that directly 413 populates itself. */ 414 spin_lock(&sbsec->isec_lock); 415 next_inode: 416 if (!list_empty(&sbsec->isec_head)) { 417 struct inode_security_struct *isec = 418 list_entry(sbsec->isec_head.next, 419 struct inode_security_struct, list); 420 struct inode *inode = isec->inode; 421 spin_unlock(&sbsec->isec_lock); 422 inode = igrab(inode); 423 if (inode) { 424 if (!IS_PRIVATE(inode)) 425 inode_doinit(inode); 426 iput(inode); 427 } 428 spin_lock(&sbsec->isec_lock); 429 list_del_init(&isec->list); 430 goto next_inode; 431 } 432 spin_unlock(&sbsec->isec_lock); 433 out: 434 return rc; 435 } 436 437 /* 438 * This function should allow an FS to ask what it's mount security 439 * options were so it can use those later for submounts, displaying 440 * mount options, or whatever. 441 */ 442 static int selinux_get_mnt_opts(const struct super_block *sb, 443 struct security_mnt_opts *opts) 444 { 445 int rc = 0, i; 446 struct superblock_security_struct *sbsec = sb->s_security; 447 char *context = NULL; 448 u32 len; 449 char tmp; 450 451 security_init_mnt_opts(opts); 452 453 if (!(sbsec->flags & SE_SBINITIALIZED)) 454 return -EINVAL; 455 456 if (!ss_initialized) 457 return -EINVAL; 458 459 tmp = sbsec->flags & SE_MNTMASK; 460 /* count the number of mount options for this sb */ 461 for (i = 0; i < 8; i++) { 462 if (tmp & 0x01) 463 opts->num_mnt_opts++; 464 tmp >>= 1; 465 } 466 /* Check if the Label support flag is set */ 467 if (sbsec->flags & SE_SBLABELSUPP) 468 opts->num_mnt_opts++; 469 470 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 471 if (!opts->mnt_opts) { 472 rc = -ENOMEM; 473 goto out_free; 474 } 475 476 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 477 if (!opts->mnt_opts_flags) { 478 rc = -ENOMEM; 479 goto out_free; 480 } 481 482 i = 0; 483 if (sbsec->flags & FSCONTEXT_MNT) { 484 rc = security_sid_to_context(sbsec->sid, &context, &len); 485 if (rc) 486 goto out_free; 487 opts->mnt_opts[i] = context; 488 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 489 } 490 if (sbsec->flags & CONTEXT_MNT) { 491 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 492 if (rc) 493 goto out_free; 494 opts->mnt_opts[i] = context; 495 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 496 } 497 if (sbsec->flags & DEFCONTEXT_MNT) { 498 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 499 if (rc) 500 goto out_free; 501 opts->mnt_opts[i] = context; 502 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 503 } 504 if (sbsec->flags & ROOTCONTEXT_MNT) { 505 struct inode *root = sbsec->sb->s_root->d_inode; 506 struct inode_security_struct *isec = root->i_security; 507 508 rc = security_sid_to_context(isec->sid, &context, &len); 509 if (rc) 510 goto out_free; 511 opts->mnt_opts[i] = context; 512 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 513 } 514 if (sbsec->flags & SE_SBLABELSUPP) { 515 opts->mnt_opts[i] = NULL; 516 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP; 517 } 518 519 BUG_ON(i != opts->num_mnt_opts); 520 521 return 0; 522 523 out_free: 524 security_free_mnt_opts(opts); 525 return rc; 526 } 527 528 static int bad_option(struct superblock_security_struct *sbsec, char flag, 529 u32 old_sid, u32 new_sid) 530 { 531 char mnt_flags = sbsec->flags & SE_MNTMASK; 532 533 /* check if the old mount command had the same options */ 534 if (sbsec->flags & SE_SBINITIALIZED) 535 if (!(sbsec->flags & flag) || 536 (old_sid != new_sid)) 537 return 1; 538 539 /* check if we were passed the same options twice, 540 * aka someone passed context=a,context=b 541 */ 542 if (!(sbsec->flags & SE_SBINITIALIZED)) 543 if (mnt_flags & flag) 544 return 1; 545 return 0; 546 } 547 548 /* 549 * Allow filesystems with binary mount data to explicitly set mount point 550 * labeling information. 551 */ 552 static int selinux_set_mnt_opts(struct super_block *sb, 553 struct security_mnt_opts *opts) 554 { 555 const struct cred *cred = current_cred(); 556 int rc = 0, i; 557 struct superblock_security_struct *sbsec = sb->s_security; 558 const char *name = sb->s_type->name; 559 struct inode *inode = sbsec->sb->s_root->d_inode; 560 struct inode_security_struct *root_isec = inode->i_security; 561 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 562 u32 defcontext_sid = 0; 563 char **mount_options = opts->mnt_opts; 564 int *flags = opts->mnt_opts_flags; 565 int num_opts = opts->num_mnt_opts; 566 567 mutex_lock(&sbsec->lock); 568 569 if (!ss_initialized) { 570 if (!num_opts) { 571 /* Defer initialization until selinux_complete_init, 572 after the initial policy is loaded and the security 573 server is ready to handle calls. */ 574 goto out; 575 } 576 rc = -EINVAL; 577 printk(KERN_WARNING "SELinux: Unable to set superblock options " 578 "before the security server is initialized\n"); 579 goto out; 580 } 581 582 /* 583 * Binary mount data FS will come through this function twice. Once 584 * from an explicit call and once from the generic calls from the vfs. 585 * Since the generic VFS calls will not contain any security mount data 586 * we need to skip the double mount verification. 587 * 588 * This does open a hole in which we will not notice if the first 589 * mount using this sb set explict options and a second mount using 590 * this sb does not set any security options. (The first options 591 * will be used for both mounts) 592 */ 593 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 594 && (num_opts == 0)) 595 goto out; 596 597 /* 598 * parse the mount options, check if they are valid sids. 599 * also check if someone is trying to mount the same sb more 600 * than once with different security options. 601 */ 602 for (i = 0; i < num_opts; i++) { 603 u32 sid; 604 605 if (flags[i] == SE_SBLABELSUPP) 606 continue; 607 rc = security_context_to_sid(mount_options[i], 608 strlen(mount_options[i]), &sid); 609 if (rc) { 610 printk(KERN_WARNING "SELinux: security_context_to_sid" 611 "(%s) failed for (dev %s, type %s) errno=%d\n", 612 mount_options[i], sb->s_id, name, rc); 613 goto out; 614 } 615 switch (flags[i]) { 616 case FSCONTEXT_MNT: 617 fscontext_sid = sid; 618 619 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 620 fscontext_sid)) 621 goto out_double_mount; 622 623 sbsec->flags |= FSCONTEXT_MNT; 624 break; 625 case CONTEXT_MNT: 626 context_sid = sid; 627 628 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 629 context_sid)) 630 goto out_double_mount; 631 632 sbsec->flags |= CONTEXT_MNT; 633 break; 634 case ROOTCONTEXT_MNT: 635 rootcontext_sid = sid; 636 637 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 638 rootcontext_sid)) 639 goto out_double_mount; 640 641 sbsec->flags |= ROOTCONTEXT_MNT; 642 643 break; 644 case DEFCONTEXT_MNT: 645 defcontext_sid = sid; 646 647 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 648 defcontext_sid)) 649 goto out_double_mount; 650 651 sbsec->flags |= DEFCONTEXT_MNT; 652 653 break; 654 default: 655 rc = -EINVAL; 656 goto out; 657 } 658 } 659 660 if (sbsec->flags & SE_SBINITIALIZED) { 661 /* previously mounted with options, but not on this attempt? */ 662 if ((sbsec->flags & SE_MNTMASK) && !num_opts) 663 goto out_double_mount; 664 rc = 0; 665 goto out; 666 } 667 668 if (strcmp(sb->s_type->name, "proc") == 0) 669 sbsec->flags |= SE_SBPROC; 670 671 /* Determine the labeling behavior to use for this filesystem type. */ 672 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid); 673 if (rc) { 674 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n", 675 __func__, sb->s_type->name, rc); 676 goto out; 677 } 678 679 /* sets the context of the superblock for the fs being mounted. */ 680 if (fscontext_sid) { 681 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 682 if (rc) 683 goto out; 684 685 sbsec->sid = fscontext_sid; 686 } 687 688 /* 689 * Switch to using mount point labeling behavior. 690 * sets the label used on all file below the mountpoint, and will set 691 * the superblock context if not already set. 692 */ 693 if (context_sid) { 694 if (!fscontext_sid) { 695 rc = may_context_mount_sb_relabel(context_sid, sbsec, 696 cred); 697 if (rc) 698 goto out; 699 sbsec->sid = context_sid; 700 } else { 701 rc = may_context_mount_inode_relabel(context_sid, sbsec, 702 cred); 703 if (rc) 704 goto out; 705 } 706 if (!rootcontext_sid) 707 rootcontext_sid = context_sid; 708 709 sbsec->mntpoint_sid = context_sid; 710 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 711 } 712 713 if (rootcontext_sid) { 714 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 715 cred); 716 if (rc) 717 goto out; 718 719 root_isec->sid = rootcontext_sid; 720 root_isec->initialized = 1; 721 } 722 723 if (defcontext_sid) { 724 if (sbsec->behavior != SECURITY_FS_USE_XATTR) { 725 rc = -EINVAL; 726 printk(KERN_WARNING "SELinux: defcontext option is " 727 "invalid for this filesystem type\n"); 728 goto out; 729 } 730 731 if (defcontext_sid != sbsec->def_sid) { 732 rc = may_context_mount_inode_relabel(defcontext_sid, 733 sbsec, cred); 734 if (rc) 735 goto out; 736 } 737 738 sbsec->def_sid = defcontext_sid; 739 } 740 741 rc = sb_finish_set_opts(sb); 742 out: 743 mutex_unlock(&sbsec->lock); 744 return rc; 745 out_double_mount: 746 rc = -EINVAL; 747 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 748 "security settings for (dev %s, type %s)\n", sb->s_id, name); 749 goto out; 750 } 751 752 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 753 struct super_block *newsb) 754 { 755 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 756 struct superblock_security_struct *newsbsec = newsb->s_security; 757 758 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 759 int set_context = (oldsbsec->flags & CONTEXT_MNT); 760 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 761 762 /* 763 * if the parent was able to be mounted it clearly had no special lsm 764 * mount options. thus we can safely deal with this superblock later 765 */ 766 if (!ss_initialized) 767 return; 768 769 /* how can we clone if the old one wasn't set up?? */ 770 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 771 772 /* if fs is reusing a sb, just let its options stand... */ 773 if (newsbsec->flags & SE_SBINITIALIZED) 774 return; 775 776 mutex_lock(&newsbsec->lock); 777 778 newsbsec->flags = oldsbsec->flags; 779 780 newsbsec->sid = oldsbsec->sid; 781 newsbsec->def_sid = oldsbsec->def_sid; 782 newsbsec->behavior = oldsbsec->behavior; 783 784 if (set_context) { 785 u32 sid = oldsbsec->mntpoint_sid; 786 787 if (!set_fscontext) 788 newsbsec->sid = sid; 789 if (!set_rootcontext) { 790 struct inode *newinode = newsb->s_root->d_inode; 791 struct inode_security_struct *newisec = newinode->i_security; 792 newisec->sid = sid; 793 } 794 newsbsec->mntpoint_sid = sid; 795 } 796 if (set_rootcontext) { 797 const struct inode *oldinode = oldsb->s_root->d_inode; 798 const struct inode_security_struct *oldisec = oldinode->i_security; 799 struct inode *newinode = newsb->s_root->d_inode; 800 struct inode_security_struct *newisec = newinode->i_security; 801 802 newisec->sid = oldisec->sid; 803 } 804 805 sb_finish_set_opts(newsb); 806 mutex_unlock(&newsbsec->lock); 807 } 808 809 static int selinux_parse_opts_str(char *options, 810 struct security_mnt_opts *opts) 811 { 812 char *p; 813 char *context = NULL, *defcontext = NULL; 814 char *fscontext = NULL, *rootcontext = NULL; 815 int rc, num_mnt_opts = 0; 816 817 opts->num_mnt_opts = 0; 818 819 /* Standard string-based options. */ 820 while ((p = strsep(&options, "|")) != NULL) { 821 int token; 822 substring_t args[MAX_OPT_ARGS]; 823 824 if (!*p) 825 continue; 826 827 token = match_token(p, tokens, args); 828 829 switch (token) { 830 case Opt_context: 831 if (context || defcontext) { 832 rc = -EINVAL; 833 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 834 goto out_err; 835 } 836 context = match_strdup(&args[0]); 837 if (!context) { 838 rc = -ENOMEM; 839 goto out_err; 840 } 841 break; 842 843 case Opt_fscontext: 844 if (fscontext) { 845 rc = -EINVAL; 846 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 847 goto out_err; 848 } 849 fscontext = match_strdup(&args[0]); 850 if (!fscontext) { 851 rc = -ENOMEM; 852 goto out_err; 853 } 854 break; 855 856 case Opt_rootcontext: 857 if (rootcontext) { 858 rc = -EINVAL; 859 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 860 goto out_err; 861 } 862 rootcontext = match_strdup(&args[0]); 863 if (!rootcontext) { 864 rc = -ENOMEM; 865 goto out_err; 866 } 867 break; 868 869 case Opt_defcontext: 870 if (context || defcontext) { 871 rc = -EINVAL; 872 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 873 goto out_err; 874 } 875 defcontext = match_strdup(&args[0]); 876 if (!defcontext) { 877 rc = -ENOMEM; 878 goto out_err; 879 } 880 break; 881 case Opt_labelsupport: 882 break; 883 default: 884 rc = -EINVAL; 885 printk(KERN_WARNING "SELinux: unknown mount option\n"); 886 goto out_err; 887 888 } 889 } 890 891 rc = -ENOMEM; 892 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC); 893 if (!opts->mnt_opts) 894 goto out_err; 895 896 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC); 897 if (!opts->mnt_opts_flags) { 898 kfree(opts->mnt_opts); 899 goto out_err; 900 } 901 902 if (fscontext) { 903 opts->mnt_opts[num_mnt_opts] = fscontext; 904 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 905 } 906 if (context) { 907 opts->mnt_opts[num_mnt_opts] = context; 908 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 909 } 910 if (rootcontext) { 911 opts->mnt_opts[num_mnt_opts] = rootcontext; 912 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 913 } 914 if (defcontext) { 915 opts->mnt_opts[num_mnt_opts] = defcontext; 916 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 917 } 918 919 opts->num_mnt_opts = num_mnt_opts; 920 return 0; 921 922 out_err: 923 kfree(context); 924 kfree(defcontext); 925 kfree(fscontext); 926 kfree(rootcontext); 927 return rc; 928 } 929 /* 930 * string mount options parsing and call set the sbsec 931 */ 932 static int superblock_doinit(struct super_block *sb, void *data) 933 { 934 int rc = 0; 935 char *options = data; 936 struct security_mnt_opts opts; 937 938 security_init_mnt_opts(&opts); 939 940 if (!data) 941 goto out; 942 943 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 944 945 rc = selinux_parse_opts_str(options, &opts); 946 if (rc) 947 goto out_err; 948 949 out: 950 rc = selinux_set_mnt_opts(sb, &opts); 951 952 out_err: 953 security_free_mnt_opts(&opts); 954 return rc; 955 } 956 957 static void selinux_write_opts(struct seq_file *m, 958 struct security_mnt_opts *opts) 959 { 960 int i; 961 char *prefix; 962 963 for (i = 0; i < opts->num_mnt_opts; i++) { 964 char *has_comma; 965 966 if (opts->mnt_opts[i]) 967 has_comma = strchr(opts->mnt_opts[i], ','); 968 else 969 has_comma = NULL; 970 971 switch (opts->mnt_opts_flags[i]) { 972 case CONTEXT_MNT: 973 prefix = CONTEXT_STR; 974 break; 975 case FSCONTEXT_MNT: 976 prefix = FSCONTEXT_STR; 977 break; 978 case ROOTCONTEXT_MNT: 979 prefix = ROOTCONTEXT_STR; 980 break; 981 case DEFCONTEXT_MNT: 982 prefix = DEFCONTEXT_STR; 983 break; 984 case SE_SBLABELSUPP: 985 seq_putc(m, ','); 986 seq_puts(m, LABELSUPP_STR); 987 continue; 988 default: 989 BUG(); 990 }; 991 /* we need a comma before each option */ 992 seq_putc(m, ','); 993 seq_puts(m, prefix); 994 if (has_comma) 995 seq_putc(m, '\"'); 996 seq_puts(m, opts->mnt_opts[i]); 997 if (has_comma) 998 seq_putc(m, '\"'); 999 } 1000 } 1001 1002 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1003 { 1004 struct security_mnt_opts opts; 1005 int rc; 1006 1007 rc = selinux_get_mnt_opts(sb, &opts); 1008 if (rc) { 1009 /* before policy load we may get EINVAL, don't show anything */ 1010 if (rc == -EINVAL) 1011 rc = 0; 1012 return rc; 1013 } 1014 1015 selinux_write_opts(m, &opts); 1016 1017 security_free_mnt_opts(&opts); 1018 1019 return rc; 1020 } 1021 1022 static inline u16 inode_mode_to_security_class(umode_t mode) 1023 { 1024 switch (mode & S_IFMT) { 1025 case S_IFSOCK: 1026 return SECCLASS_SOCK_FILE; 1027 case S_IFLNK: 1028 return SECCLASS_LNK_FILE; 1029 case S_IFREG: 1030 return SECCLASS_FILE; 1031 case S_IFBLK: 1032 return SECCLASS_BLK_FILE; 1033 case S_IFDIR: 1034 return SECCLASS_DIR; 1035 case S_IFCHR: 1036 return SECCLASS_CHR_FILE; 1037 case S_IFIFO: 1038 return SECCLASS_FIFO_FILE; 1039 1040 } 1041 1042 return SECCLASS_FILE; 1043 } 1044 1045 static inline int default_protocol_stream(int protocol) 1046 { 1047 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1048 } 1049 1050 static inline int default_protocol_dgram(int protocol) 1051 { 1052 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1053 } 1054 1055 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1056 { 1057 switch (family) { 1058 case PF_UNIX: 1059 switch (type) { 1060 case SOCK_STREAM: 1061 case SOCK_SEQPACKET: 1062 return SECCLASS_UNIX_STREAM_SOCKET; 1063 case SOCK_DGRAM: 1064 return SECCLASS_UNIX_DGRAM_SOCKET; 1065 } 1066 break; 1067 case PF_INET: 1068 case PF_INET6: 1069 switch (type) { 1070 case SOCK_STREAM: 1071 if (default_protocol_stream(protocol)) 1072 return SECCLASS_TCP_SOCKET; 1073 else 1074 return SECCLASS_RAWIP_SOCKET; 1075 case SOCK_DGRAM: 1076 if (default_protocol_dgram(protocol)) 1077 return SECCLASS_UDP_SOCKET; 1078 else 1079 return SECCLASS_RAWIP_SOCKET; 1080 case SOCK_DCCP: 1081 return SECCLASS_DCCP_SOCKET; 1082 default: 1083 return SECCLASS_RAWIP_SOCKET; 1084 } 1085 break; 1086 case PF_NETLINK: 1087 switch (protocol) { 1088 case NETLINK_ROUTE: 1089 return SECCLASS_NETLINK_ROUTE_SOCKET; 1090 case NETLINK_FIREWALL: 1091 return SECCLASS_NETLINK_FIREWALL_SOCKET; 1092 case NETLINK_INET_DIAG: 1093 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1094 case NETLINK_NFLOG: 1095 return SECCLASS_NETLINK_NFLOG_SOCKET; 1096 case NETLINK_XFRM: 1097 return SECCLASS_NETLINK_XFRM_SOCKET; 1098 case NETLINK_SELINUX: 1099 return SECCLASS_NETLINK_SELINUX_SOCKET; 1100 case NETLINK_AUDIT: 1101 return SECCLASS_NETLINK_AUDIT_SOCKET; 1102 case NETLINK_IP6_FW: 1103 return SECCLASS_NETLINK_IP6FW_SOCKET; 1104 case NETLINK_DNRTMSG: 1105 return SECCLASS_NETLINK_DNRT_SOCKET; 1106 case NETLINK_KOBJECT_UEVENT: 1107 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1108 default: 1109 return SECCLASS_NETLINK_SOCKET; 1110 } 1111 case PF_PACKET: 1112 return SECCLASS_PACKET_SOCKET; 1113 case PF_KEY: 1114 return SECCLASS_KEY_SOCKET; 1115 case PF_APPLETALK: 1116 return SECCLASS_APPLETALK_SOCKET; 1117 } 1118 1119 return SECCLASS_SOCKET; 1120 } 1121 1122 #ifdef CONFIG_PROC_FS 1123 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1124 u16 tclass, 1125 u32 *sid) 1126 { 1127 int buflen, rc; 1128 char *buffer, *path, *end; 1129 1130 buffer = (char *)__get_free_page(GFP_KERNEL); 1131 if (!buffer) 1132 return -ENOMEM; 1133 1134 buflen = PAGE_SIZE; 1135 end = buffer+buflen; 1136 *--end = '\0'; 1137 buflen--; 1138 path = end-1; 1139 *path = '/'; 1140 while (de && de != de->parent) { 1141 buflen -= de->namelen + 1; 1142 if (buflen < 0) 1143 break; 1144 end -= de->namelen; 1145 memcpy(end, de->name, de->namelen); 1146 *--end = '/'; 1147 path = end; 1148 de = de->parent; 1149 } 1150 rc = security_genfs_sid("proc", path, tclass, sid); 1151 free_page((unsigned long)buffer); 1152 return rc; 1153 } 1154 #else 1155 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1156 u16 tclass, 1157 u32 *sid) 1158 { 1159 return -EINVAL; 1160 } 1161 #endif 1162 1163 /* The inode's security attributes must be initialized before first use. */ 1164 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1165 { 1166 struct superblock_security_struct *sbsec = NULL; 1167 struct inode_security_struct *isec = inode->i_security; 1168 u32 sid; 1169 struct dentry *dentry; 1170 #define INITCONTEXTLEN 255 1171 char *context = NULL; 1172 unsigned len = 0; 1173 int rc = 0; 1174 1175 if (isec->initialized) 1176 goto out; 1177 1178 mutex_lock(&isec->lock); 1179 if (isec->initialized) 1180 goto out_unlock; 1181 1182 sbsec = inode->i_sb->s_security; 1183 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1184 /* Defer initialization until selinux_complete_init, 1185 after the initial policy is loaded and the security 1186 server is ready to handle calls. */ 1187 spin_lock(&sbsec->isec_lock); 1188 if (list_empty(&isec->list)) 1189 list_add(&isec->list, &sbsec->isec_head); 1190 spin_unlock(&sbsec->isec_lock); 1191 goto out_unlock; 1192 } 1193 1194 switch (sbsec->behavior) { 1195 case SECURITY_FS_USE_XATTR: 1196 if (!inode->i_op->getxattr) { 1197 isec->sid = sbsec->def_sid; 1198 break; 1199 } 1200 1201 /* Need a dentry, since the xattr API requires one. 1202 Life would be simpler if we could just pass the inode. */ 1203 if (opt_dentry) { 1204 /* Called from d_instantiate or d_splice_alias. */ 1205 dentry = dget(opt_dentry); 1206 } else { 1207 /* Called from selinux_complete_init, try to find a dentry. */ 1208 dentry = d_find_alias(inode); 1209 } 1210 if (!dentry) { 1211 /* 1212 * this is can be hit on boot when a file is accessed 1213 * before the policy is loaded. When we load policy we 1214 * may find inodes that have no dentry on the 1215 * sbsec->isec_head list. No reason to complain as these 1216 * will get fixed up the next time we go through 1217 * inode_doinit with a dentry, before these inodes could 1218 * be used again by userspace. 1219 */ 1220 goto out_unlock; 1221 } 1222 1223 len = INITCONTEXTLEN; 1224 context = kmalloc(len+1, GFP_NOFS); 1225 if (!context) { 1226 rc = -ENOMEM; 1227 dput(dentry); 1228 goto out_unlock; 1229 } 1230 context[len] = '\0'; 1231 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1232 context, len); 1233 if (rc == -ERANGE) { 1234 kfree(context); 1235 1236 /* Need a larger buffer. Query for the right size. */ 1237 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1238 NULL, 0); 1239 if (rc < 0) { 1240 dput(dentry); 1241 goto out_unlock; 1242 } 1243 len = rc; 1244 context = kmalloc(len+1, GFP_NOFS); 1245 if (!context) { 1246 rc = -ENOMEM; 1247 dput(dentry); 1248 goto out_unlock; 1249 } 1250 context[len] = '\0'; 1251 rc = inode->i_op->getxattr(dentry, 1252 XATTR_NAME_SELINUX, 1253 context, len); 1254 } 1255 dput(dentry); 1256 if (rc < 0) { 1257 if (rc != -ENODATA) { 1258 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1259 "%d for dev=%s ino=%ld\n", __func__, 1260 -rc, inode->i_sb->s_id, inode->i_ino); 1261 kfree(context); 1262 goto out_unlock; 1263 } 1264 /* Map ENODATA to the default file SID */ 1265 sid = sbsec->def_sid; 1266 rc = 0; 1267 } else { 1268 rc = security_context_to_sid_default(context, rc, &sid, 1269 sbsec->def_sid, 1270 GFP_NOFS); 1271 if (rc) { 1272 char *dev = inode->i_sb->s_id; 1273 unsigned long ino = inode->i_ino; 1274 1275 if (rc == -EINVAL) { 1276 if (printk_ratelimit()) 1277 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid " 1278 "context=%s. This indicates you may need to relabel the inode or the " 1279 "filesystem in question.\n", ino, dev, context); 1280 } else { 1281 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1282 "returned %d for dev=%s ino=%ld\n", 1283 __func__, context, -rc, dev, ino); 1284 } 1285 kfree(context); 1286 /* Leave with the unlabeled SID */ 1287 rc = 0; 1288 break; 1289 } 1290 } 1291 kfree(context); 1292 isec->sid = sid; 1293 break; 1294 case SECURITY_FS_USE_TASK: 1295 isec->sid = isec->task_sid; 1296 break; 1297 case SECURITY_FS_USE_TRANS: 1298 /* Default to the fs SID. */ 1299 isec->sid = sbsec->sid; 1300 1301 /* Try to obtain a transition SID. */ 1302 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1303 rc = security_transition_sid(isec->task_sid, 1304 sbsec->sid, 1305 isec->sclass, 1306 &sid); 1307 if (rc) 1308 goto out_unlock; 1309 isec->sid = sid; 1310 break; 1311 case SECURITY_FS_USE_MNTPOINT: 1312 isec->sid = sbsec->mntpoint_sid; 1313 break; 1314 default: 1315 /* Default to the fs superblock SID. */ 1316 isec->sid = sbsec->sid; 1317 1318 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) { 1319 struct proc_inode *proci = PROC_I(inode); 1320 if (proci->pde) { 1321 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1322 rc = selinux_proc_get_sid(proci->pde, 1323 isec->sclass, 1324 &sid); 1325 if (rc) 1326 goto out_unlock; 1327 isec->sid = sid; 1328 } 1329 } 1330 break; 1331 } 1332 1333 isec->initialized = 1; 1334 1335 out_unlock: 1336 mutex_unlock(&isec->lock); 1337 out: 1338 if (isec->sclass == SECCLASS_FILE) 1339 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1340 return rc; 1341 } 1342 1343 /* Convert a Linux signal to an access vector. */ 1344 static inline u32 signal_to_av(int sig) 1345 { 1346 u32 perm = 0; 1347 1348 switch (sig) { 1349 case SIGCHLD: 1350 /* Commonly granted from child to parent. */ 1351 perm = PROCESS__SIGCHLD; 1352 break; 1353 case SIGKILL: 1354 /* Cannot be caught or ignored */ 1355 perm = PROCESS__SIGKILL; 1356 break; 1357 case SIGSTOP: 1358 /* Cannot be caught or ignored */ 1359 perm = PROCESS__SIGSTOP; 1360 break; 1361 default: 1362 /* All other signals. */ 1363 perm = PROCESS__SIGNAL; 1364 break; 1365 } 1366 1367 return perm; 1368 } 1369 1370 /* 1371 * Check permission between a pair of credentials 1372 * fork check, ptrace check, etc. 1373 */ 1374 static int cred_has_perm(const struct cred *actor, 1375 const struct cred *target, 1376 u32 perms) 1377 { 1378 u32 asid = cred_sid(actor), tsid = cred_sid(target); 1379 1380 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL); 1381 } 1382 1383 /* 1384 * Check permission between a pair of tasks, e.g. signal checks, 1385 * fork check, ptrace check, etc. 1386 * tsk1 is the actor and tsk2 is the target 1387 * - this uses the default subjective creds of tsk1 1388 */ 1389 static int task_has_perm(const struct task_struct *tsk1, 1390 const struct task_struct *tsk2, 1391 u32 perms) 1392 { 1393 const struct task_security_struct *__tsec1, *__tsec2; 1394 u32 sid1, sid2; 1395 1396 rcu_read_lock(); 1397 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid; 1398 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid; 1399 rcu_read_unlock(); 1400 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL); 1401 } 1402 1403 /* 1404 * Check permission between current and another task, e.g. signal checks, 1405 * fork check, ptrace check, etc. 1406 * current is the actor and tsk2 is the target 1407 * - this uses current's subjective creds 1408 */ 1409 static int current_has_perm(const struct task_struct *tsk, 1410 u32 perms) 1411 { 1412 u32 sid, tsid; 1413 1414 sid = current_sid(); 1415 tsid = task_sid(tsk); 1416 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL); 1417 } 1418 1419 #if CAP_LAST_CAP > 63 1420 #error Fix SELinux to handle capabilities > 63. 1421 #endif 1422 1423 /* Check whether a task is allowed to use a capability. */ 1424 static int task_has_capability(struct task_struct *tsk, 1425 const struct cred *cred, 1426 int cap, int audit) 1427 { 1428 struct common_audit_data ad; 1429 struct av_decision avd; 1430 u16 sclass; 1431 u32 sid = cred_sid(cred); 1432 u32 av = CAP_TO_MASK(cap); 1433 int rc; 1434 1435 COMMON_AUDIT_DATA_INIT(&ad, CAP); 1436 ad.tsk = tsk; 1437 ad.u.cap = cap; 1438 1439 switch (CAP_TO_INDEX(cap)) { 1440 case 0: 1441 sclass = SECCLASS_CAPABILITY; 1442 break; 1443 case 1: 1444 sclass = SECCLASS_CAPABILITY2; 1445 break; 1446 default: 1447 printk(KERN_ERR 1448 "SELinux: out of range capability %d\n", cap); 1449 BUG(); 1450 } 1451 1452 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1453 if (audit == SECURITY_CAP_AUDIT) 1454 avc_audit(sid, sid, sclass, av, &avd, rc, &ad); 1455 return rc; 1456 } 1457 1458 /* Check whether a task is allowed to use a system operation. */ 1459 static int task_has_system(struct task_struct *tsk, 1460 u32 perms) 1461 { 1462 u32 sid = task_sid(tsk); 1463 1464 return avc_has_perm(sid, SECINITSID_KERNEL, 1465 SECCLASS_SYSTEM, perms, NULL); 1466 } 1467 1468 /* Check whether a task has a particular permission to an inode. 1469 The 'adp' parameter is optional and allows other audit 1470 data to be passed (e.g. the dentry). */ 1471 static int inode_has_perm(const struct cred *cred, 1472 struct inode *inode, 1473 u32 perms, 1474 struct common_audit_data *adp) 1475 { 1476 struct inode_security_struct *isec; 1477 struct common_audit_data ad; 1478 u32 sid; 1479 1480 validate_creds(cred); 1481 1482 if (unlikely(IS_PRIVATE(inode))) 1483 return 0; 1484 1485 sid = cred_sid(cred); 1486 isec = inode->i_security; 1487 1488 if (!adp) { 1489 adp = &ad; 1490 COMMON_AUDIT_DATA_INIT(&ad, FS); 1491 ad.u.fs.inode = inode; 1492 } 1493 1494 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp); 1495 } 1496 1497 /* Same as inode_has_perm, but pass explicit audit data containing 1498 the dentry to help the auditing code to more easily generate the 1499 pathname if needed. */ 1500 static inline int dentry_has_perm(const struct cred *cred, 1501 struct vfsmount *mnt, 1502 struct dentry *dentry, 1503 u32 av) 1504 { 1505 struct inode *inode = dentry->d_inode; 1506 struct common_audit_data ad; 1507 1508 COMMON_AUDIT_DATA_INIT(&ad, FS); 1509 ad.u.fs.path.mnt = mnt; 1510 ad.u.fs.path.dentry = dentry; 1511 return inode_has_perm(cred, inode, av, &ad); 1512 } 1513 1514 /* Check whether a task can use an open file descriptor to 1515 access an inode in a given way. Check access to the 1516 descriptor itself, and then use dentry_has_perm to 1517 check a particular permission to the file. 1518 Access to the descriptor is implicitly granted if it 1519 has the same SID as the process. If av is zero, then 1520 access to the file is not checked, e.g. for cases 1521 where only the descriptor is affected like seek. */ 1522 static int file_has_perm(const struct cred *cred, 1523 struct file *file, 1524 u32 av) 1525 { 1526 struct file_security_struct *fsec = file->f_security; 1527 struct inode *inode = file->f_path.dentry->d_inode; 1528 struct common_audit_data ad; 1529 u32 sid = cred_sid(cred); 1530 int rc; 1531 1532 COMMON_AUDIT_DATA_INIT(&ad, FS); 1533 ad.u.fs.path = file->f_path; 1534 1535 if (sid != fsec->sid) { 1536 rc = avc_has_perm(sid, fsec->sid, 1537 SECCLASS_FD, 1538 FD__USE, 1539 &ad); 1540 if (rc) 1541 goto out; 1542 } 1543 1544 /* av is zero if only checking access to the descriptor. */ 1545 rc = 0; 1546 if (av) 1547 rc = inode_has_perm(cred, inode, av, &ad); 1548 1549 out: 1550 return rc; 1551 } 1552 1553 /* Check whether a task can create a file. */ 1554 static int may_create(struct inode *dir, 1555 struct dentry *dentry, 1556 u16 tclass) 1557 { 1558 const struct task_security_struct *tsec = current_security(); 1559 struct inode_security_struct *dsec; 1560 struct superblock_security_struct *sbsec; 1561 u32 sid, newsid; 1562 struct common_audit_data ad; 1563 int rc; 1564 1565 dsec = dir->i_security; 1566 sbsec = dir->i_sb->s_security; 1567 1568 sid = tsec->sid; 1569 newsid = tsec->create_sid; 1570 1571 COMMON_AUDIT_DATA_INIT(&ad, FS); 1572 ad.u.fs.path.dentry = dentry; 1573 1574 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1575 DIR__ADD_NAME | DIR__SEARCH, 1576 &ad); 1577 if (rc) 1578 return rc; 1579 1580 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) { 1581 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid); 1582 if (rc) 1583 return rc; 1584 } 1585 1586 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1587 if (rc) 1588 return rc; 1589 1590 return avc_has_perm(newsid, sbsec->sid, 1591 SECCLASS_FILESYSTEM, 1592 FILESYSTEM__ASSOCIATE, &ad); 1593 } 1594 1595 /* Check whether a task can create a key. */ 1596 static int may_create_key(u32 ksid, 1597 struct task_struct *ctx) 1598 { 1599 u32 sid = task_sid(ctx); 1600 1601 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1602 } 1603 1604 #define MAY_LINK 0 1605 #define MAY_UNLINK 1 1606 #define MAY_RMDIR 2 1607 1608 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1609 static int may_link(struct inode *dir, 1610 struct dentry *dentry, 1611 int kind) 1612 1613 { 1614 struct inode_security_struct *dsec, *isec; 1615 struct common_audit_data ad; 1616 u32 sid = current_sid(); 1617 u32 av; 1618 int rc; 1619 1620 dsec = dir->i_security; 1621 isec = dentry->d_inode->i_security; 1622 1623 COMMON_AUDIT_DATA_INIT(&ad, FS); 1624 ad.u.fs.path.dentry = dentry; 1625 1626 av = DIR__SEARCH; 1627 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1628 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1629 if (rc) 1630 return rc; 1631 1632 switch (kind) { 1633 case MAY_LINK: 1634 av = FILE__LINK; 1635 break; 1636 case MAY_UNLINK: 1637 av = FILE__UNLINK; 1638 break; 1639 case MAY_RMDIR: 1640 av = DIR__RMDIR; 1641 break; 1642 default: 1643 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1644 __func__, kind); 1645 return 0; 1646 } 1647 1648 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1649 return rc; 1650 } 1651 1652 static inline int may_rename(struct inode *old_dir, 1653 struct dentry *old_dentry, 1654 struct inode *new_dir, 1655 struct dentry *new_dentry) 1656 { 1657 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1658 struct common_audit_data ad; 1659 u32 sid = current_sid(); 1660 u32 av; 1661 int old_is_dir, new_is_dir; 1662 int rc; 1663 1664 old_dsec = old_dir->i_security; 1665 old_isec = old_dentry->d_inode->i_security; 1666 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 1667 new_dsec = new_dir->i_security; 1668 1669 COMMON_AUDIT_DATA_INIT(&ad, FS); 1670 1671 ad.u.fs.path.dentry = old_dentry; 1672 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1673 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1674 if (rc) 1675 return rc; 1676 rc = avc_has_perm(sid, old_isec->sid, 1677 old_isec->sclass, FILE__RENAME, &ad); 1678 if (rc) 1679 return rc; 1680 if (old_is_dir && new_dir != old_dir) { 1681 rc = avc_has_perm(sid, old_isec->sid, 1682 old_isec->sclass, DIR__REPARENT, &ad); 1683 if (rc) 1684 return rc; 1685 } 1686 1687 ad.u.fs.path.dentry = new_dentry; 1688 av = DIR__ADD_NAME | DIR__SEARCH; 1689 if (new_dentry->d_inode) 1690 av |= DIR__REMOVE_NAME; 1691 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1692 if (rc) 1693 return rc; 1694 if (new_dentry->d_inode) { 1695 new_isec = new_dentry->d_inode->i_security; 1696 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode); 1697 rc = avc_has_perm(sid, new_isec->sid, 1698 new_isec->sclass, 1699 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1700 if (rc) 1701 return rc; 1702 } 1703 1704 return 0; 1705 } 1706 1707 /* Check whether a task can perform a filesystem operation. */ 1708 static int superblock_has_perm(const struct cred *cred, 1709 struct super_block *sb, 1710 u32 perms, 1711 struct common_audit_data *ad) 1712 { 1713 struct superblock_security_struct *sbsec; 1714 u32 sid = cred_sid(cred); 1715 1716 sbsec = sb->s_security; 1717 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1718 } 1719 1720 /* Convert a Linux mode and permission mask to an access vector. */ 1721 static inline u32 file_mask_to_av(int mode, int mask) 1722 { 1723 u32 av = 0; 1724 1725 if ((mode & S_IFMT) != S_IFDIR) { 1726 if (mask & MAY_EXEC) 1727 av |= FILE__EXECUTE; 1728 if (mask & MAY_READ) 1729 av |= FILE__READ; 1730 1731 if (mask & MAY_APPEND) 1732 av |= FILE__APPEND; 1733 else if (mask & MAY_WRITE) 1734 av |= FILE__WRITE; 1735 1736 } else { 1737 if (mask & MAY_EXEC) 1738 av |= DIR__SEARCH; 1739 if (mask & MAY_WRITE) 1740 av |= DIR__WRITE; 1741 if (mask & MAY_READ) 1742 av |= DIR__READ; 1743 } 1744 1745 return av; 1746 } 1747 1748 /* Convert a Linux file to an access vector. */ 1749 static inline u32 file_to_av(struct file *file) 1750 { 1751 u32 av = 0; 1752 1753 if (file->f_mode & FMODE_READ) 1754 av |= FILE__READ; 1755 if (file->f_mode & FMODE_WRITE) { 1756 if (file->f_flags & O_APPEND) 1757 av |= FILE__APPEND; 1758 else 1759 av |= FILE__WRITE; 1760 } 1761 if (!av) { 1762 /* 1763 * Special file opened with flags 3 for ioctl-only use. 1764 */ 1765 av = FILE__IOCTL; 1766 } 1767 1768 return av; 1769 } 1770 1771 /* 1772 * Convert a file to an access vector and include the correct open 1773 * open permission. 1774 */ 1775 static inline u32 open_file_to_av(struct file *file) 1776 { 1777 u32 av = file_to_av(file); 1778 1779 if (selinux_policycap_openperm) 1780 av |= FILE__OPEN; 1781 1782 return av; 1783 } 1784 1785 /* Hook functions begin here. */ 1786 1787 static int selinux_ptrace_access_check(struct task_struct *child, 1788 unsigned int mode) 1789 { 1790 int rc; 1791 1792 rc = cap_ptrace_access_check(child, mode); 1793 if (rc) 1794 return rc; 1795 1796 if (mode == PTRACE_MODE_READ) { 1797 u32 sid = current_sid(); 1798 u32 csid = task_sid(child); 1799 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL); 1800 } 1801 1802 return current_has_perm(child, PROCESS__PTRACE); 1803 } 1804 1805 static int selinux_ptrace_traceme(struct task_struct *parent) 1806 { 1807 int rc; 1808 1809 rc = cap_ptrace_traceme(parent); 1810 if (rc) 1811 return rc; 1812 1813 return task_has_perm(parent, current, PROCESS__PTRACE); 1814 } 1815 1816 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 1817 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1818 { 1819 int error; 1820 1821 error = current_has_perm(target, PROCESS__GETCAP); 1822 if (error) 1823 return error; 1824 1825 return cap_capget(target, effective, inheritable, permitted); 1826 } 1827 1828 static int selinux_capset(struct cred *new, const struct cred *old, 1829 const kernel_cap_t *effective, 1830 const kernel_cap_t *inheritable, 1831 const kernel_cap_t *permitted) 1832 { 1833 int error; 1834 1835 error = cap_capset(new, old, 1836 effective, inheritable, permitted); 1837 if (error) 1838 return error; 1839 1840 return cred_has_perm(old, new, PROCESS__SETCAP); 1841 } 1842 1843 /* 1844 * (This comment used to live with the selinux_task_setuid hook, 1845 * which was removed). 1846 * 1847 * Since setuid only affects the current process, and since the SELinux 1848 * controls are not based on the Linux identity attributes, SELinux does not 1849 * need to control this operation. However, SELinux does control the use of 1850 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 1851 */ 1852 1853 static int selinux_capable(struct task_struct *tsk, const struct cred *cred, 1854 int cap, int audit) 1855 { 1856 int rc; 1857 1858 rc = cap_capable(tsk, cred, cap, audit); 1859 if (rc) 1860 return rc; 1861 1862 return task_has_capability(tsk, cred, cap, audit); 1863 } 1864 1865 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid) 1866 { 1867 int buflen, rc; 1868 char *buffer, *path, *end; 1869 1870 rc = -ENOMEM; 1871 buffer = (char *)__get_free_page(GFP_KERNEL); 1872 if (!buffer) 1873 goto out; 1874 1875 buflen = PAGE_SIZE; 1876 end = buffer+buflen; 1877 *--end = '\0'; 1878 buflen--; 1879 path = end-1; 1880 *path = '/'; 1881 while (table) { 1882 const char *name = table->procname; 1883 size_t namelen = strlen(name); 1884 buflen -= namelen + 1; 1885 if (buflen < 0) 1886 goto out_free; 1887 end -= namelen; 1888 memcpy(end, name, namelen); 1889 *--end = '/'; 1890 path = end; 1891 table = table->parent; 1892 } 1893 buflen -= 4; 1894 if (buflen < 0) 1895 goto out_free; 1896 end -= 4; 1897 memcpy(end, "/sys", 4); 1898 path = end; 1899 rc = security_genfs_sid("proc", path, tclass, sid); 1900 out_free: 1901 free_page((unsigned long)buffer); 1902 out: 1903 return rc; 1904 } 1905 1906 static int selinux_sysctl(ctl_table *table, int op) 1907 { 1908 int error = 0; 1909 u32 av; 1910 u32 tsid, sid; 1911 int rc; 1912 1913 sid = current_sid(); 1914 1915 rc = selinux_sysctl_get_sid(table, (op == 0001) ? 1916 SECCLASS_DIR : SECCLASS_FILE, &tsid); 1917 if (rc) { 1918 /* Default to the well-defined sysctl SID. */ 1919 tsid = SECINITSID_SYSCTL; 1920 } 1921 1922 /* The op values are "defined" in sysctl.c, thereby creating 1923 * a bad coupling between this module and sysctl.c */ 1924 if (op == 001) { 1925 error = avc_has_perm(sid, tsid, 1926 SECCLASS_DIR, DIR__SEARCH, NULL); 1927 } else { 1928 av = 0; 1929 if (op & 004) 1930 av |= FILE__READ; 1931 if (op & 002) 1932 av |= FILE__WRITE; 1933 if (av) 1934 error = avc_has_perm(sid, tsid, 1935 SECCLASS_FILE, av, NULL); 1936 } 1937 1938 return error; 1939 } 1940 1941 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 1942 { 1943 const struct cred *cred = current_cred(); 1944 int rc = 0; 1945 1946 if (!sb) 1947 return 0; 1948 1949 switch (cmds) { 1950 case Q_SYNC: 1951 case Q_QUOTAON: 1952 case Q_QUOTAOFF: 1953 case Q_SETINFO: 1954 case Q_SETQUOTA: 1955 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 1956 break; 1957 case Q_GETFMT: 1958 case Q_GETINFO: 1959 case Q_GETQUOTA: 1960 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 1961 break; 1962 default: 1963 rc = 0; /* let the kernel handle invalid cmds */ 1964 break; 1965 } 1966 return rc; 1967 } 1968 1969 static int selinux_quota_on(struct dentry *dentry) 1970 { 1971 const struct cred *cred = current_cred(); 1972 1973 return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON); 1974 } 1975 1976 static int selinux_syslog(int type, bool from_file) 1977 { 1978 int rc; 1979 1980 rc = cap_syslog(type, from_file); 1981 if (rc) 1982 return rc; 1983 1984 switch (type) { 1985 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 1986 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 1987 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 1988 break; 1989 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 1990 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 1991 /* Set level of messages printed to console */ 1992 case SYSLOG_ACTION_CONSOLE_LEVEL: 1993 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 1994 break; 1995 case SYSLOG_ACTION_CLOSE: /* Close log */ 1996 case SYSLOG_ACTION_OPEN: /* Open log */ 1997 case SYSLOG_ACTION_READ: /* Read from log */ 1998 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */ 1999 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 2000 default: 2001 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 2002 break; 2003 } 2004 return rc; 2005 } 2006 2007 /* 2008 * Check that a process has enough memory to allocate a new virtual 2009 * mapping. 0 means there is enough memory for the allocation to 2010 * succeed and -ENOMEM implies there is not. 2011 * 2012 * Do not audit the selinux permission check, as this is applied to all 2013 * processes that allocate mappings. 2014 */ 2015 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2016 { 2017 int rc, cap_sys_admin = 0; 2018 2019 rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN, 2020 SECURITY_CAP_NOAUDIT); 2021 if (rc == 0) 2022 cap_sys_admin = 1; 2023 2024 return __vm_enough_memory(mm, pages, cap_sys_admin); 2025 } 2026 2027 /* binprm security operations */ 2028 2029 static int selinux_bprm_set_creds(struct linux_binprm *bprm) 2030 { 2031 const struct task_security_struct *old_tsec; 2032 struct task_security_struct *new_tsec; 2033 struct inode_security_struct *isec; 2034 struct common_audit_data ad; 2035 struct inode *inode = bprm->file->f_path.dentry->d_inode; 2036 int rc; 2037 2038 rc = cap_bprm_set_creds(bprm); 2039 if (rc) 2040 return rc; 2041 2042 /* SELinux context only depends on initial program or script and not 2043 * the script interpreter */ 2044 if (bprm->cred_prepared) 2045 return 0; 2046 2047 old_tsec = current_security(); 2048 new_tsec = bprm->cred->security; 2049 isec = inode->i_security; 2050 2051 /* Default to the current task SID. */ 2052 new_tsec->sid = old_tsec->sid; 2053 new_tsec->osid = old_tsec->sid; 2054 2055 /* Reset fs, key, and sock SIDs on execve. */ 2056 new_tsec->create_sid = 0; 2057 new_tsec->keycreate_sid = 0; 2058 new_tsec->sockcreate_sid = 0; 2059 2060 if (old_tsec->exec_sid) { 2061 new_tsec->sid = old_tsec->exec_sid; 2062 /* Reset exec SID on execve. */ 2063 new_tsec->exec_sid = 0; 2064 } else { 2065 /* Check for a default transition on this program. */ 2066 rc = security_transition_sid(old_tsec->sid, isec->sid, 2067 SECCLASS_PROCESS, &new_tsec->sid); 2068 if (rc) 2069 return rc; 2070 } 2071 2072 COMMON_AUDIT_DATA_INIT(&ad, FS); 2073 ad.u.fs.path = bprm->file->f_path; 2074 2075 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) 2076 new_tsec->sid = old_tsec->sid; 2077 2078 if (new_tsec->sid == old_tsec->sid) { 2079 rc = avc_has_perm(old_tsec->sid, isec->sid, 2080 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2081 if (rc) 2082 return rc; 2083 } else { 2084 /* Check permissions for the transition. */ 2085 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2086 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2087 if (rc) 2088 return rc; 2089 2090 rc = avc_has_perm(new_tsec->sid, isec->sid, 2091 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2092 if (rc) 2093 return rc; 2094 2095 /* Check for shared state */ 2096 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2097 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2098 SECCLASS_PROCESS, PROCESS__SHARE, 2099 NULL); 2100 if (rc) 2101 return -EPERM; 2102 } 2103 2104 /* Make sure that anyone attempting to ptrace over a task that 2105 * changes its SID has the appropriate permit */ 2106 if (bprm->unsafe & 2107 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2108 struct task_struct *tracer; 2109 struct task_security_struct *sec; 2110 u32 ptsid = 0; 2111 2112 rcu_read_lock(); 2113 tracer = tracehook_tracer_task(current); 2114 if (likely(tracer != NULL)) { 2115 sec = __task_cred(tracer)->security; 2116 ptsid = sec->sid; 2117 } 2118 rcu_read_unlock(); 2119 2120 if (ptsid != 0) { 2121 rc = avc_has_perm(ptsid, new_tsec->sid, 2122 SECCLASS_PROCESS, 2123 PROCESS__PTRACE, NULL); 2124 if (rc) 2125 return -EPERM; 2126 } 2127 } 2128 2129 /* Clear any possibly unsafe personality bits on exec: */ 2130 bprm->per_clear |= PER_CLEAR_ON_SETID; 2131 } 2132 2133 return 0; 2134 } 2135 2136 static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2137 { 2138 const struct task_security_struct *tsec = current_security(); 2139 u32 sid, osid; 2140 int atsecure = 0; 2141 2142 sid = tsec->sid; 2143 osid = tsec->osid; 2144 2145 if (osid != sid) { 2146 /* Enable secure mode for SIDs transitions unless 2147 the noatsecure permission is granted between 2148 the two SIDs, i.e. ahp returns 0. */ 2149 atsecure = avc_has_perm(osid, sid, 2150 SECCLASS_PROCESS, 2151 PROCESS__NOATSECURE, NULL); 2152 } 2153 2154 return (atsecure || cap_bprm_secureexec(bprm)); 2155 } 2156 2157 extern struct vfsmount *selinuxfs_mount; 2158 extern struct dentry *selinux_null; 2159 2160 /* Derived from fs/exec.c:flush_old_files. */ 2161 static inline void flush_unauthorized_files(const struct cred *cred, 2162 struct files_struct *files) 2163 { 2164 struct common_audit_data ad; 2165 struct file *file, *devnull = NULL; 2166 struct tty_struct *tty; 2167 struct fdtable *fdt; 2168 long j = -1; 2169 int drop_tty = 0; 2170 2171 tty = get_current_tty(); 2172 if (tty) { 2173 spin_lock(&tty_files_lock); 2174 if (!list_empty(&tty->tty_files)) { 2175 struct tty_file_private *file_priv; 2176 struct inode *inode; 2177 2178 /* Revalidate access to controlling tty. 2179 Use inode_has_perm on the tty inode directly rather 2180 than using file_has_perm, as this particular open 2181 file may belong to another process and we are only 2182 interested in the inode-based check here. */ 2183 file_priv = list_first_entry(&tty->tty_files, 2184 struct tty_file_private, list); 2185 file = file_priv->file; 2186 inode = file->f_path.dentry->d_inode; 2187 if (inode_has_perm(cred, inode, 2188 FILE__READ | FILE__WRITE, NULL)) { 2189 drop_tty = 1; 2190 } 2191 } 2192 spin_unlock(&tty_files_lock); 2193 tty_kref_put(tty); 2194 } 2195 /* Reset controlling tty. */ 2196 if (drop_tty) 2197 no_tty(); 2198 2199 /* Revalidate access to inherited open files. */ 2200 2201 COMMON_AUDIT_DATA_INIT(&ad, FS); 2202 2203 spin_lock(&files->file_lock); 2204 for (;;) { 2205 unsigned long set, i; 2206 int fd; 2207 2208 j++; 2209 i = j * __NFDBITS; 2210 fdt = files_fdtable(files); 2211 if (i >= fdt->max_fds) 2212 break; 2213 set = fdt->open_fds->fds_bits[j]; 2214 if (!set) 2215 continue; 2216 spin_unlock(&files->file_lock); 2217 for ( ; set ; i++, set >>= 1) { 2218 if (set & 1) { 2219 file = fget(i); 2220 if (!file) 2221 continue; 2222 if (file_has_perm(cred, 2223 file, 2224 file_to_av(file))) { 2225 sys_close(i); 2226 fd = get_unused_fd(); 2227 if (fd != i) { 2228 if (fd >= 0) 2229 put_unused_fd(fd); 2230 fput(file); 2231 continue; 2232 } 2233 if (devnull) { 2234 get_file(devnull); 2235 } else { 2236 devnull = dentry_open( 2237 dget(selinux_null), 2238 mntget(selinuxfs_mount), 2239 O_RDWR, cred); 2240 if (IS_ERR(devnull)) { 2241 devnull = NULL; 2242 put_unused_fd(fd); 2243 fput(file); 2244 continue; 2245 } 2246 } 2247 fd_install(fd, devnull); 2248 } 2249 fput(file); 2250 } 2251 } 2252 spin_lock(&files->file_lock); 2253 2254 } 2255 spin_unlock(&files->file_lock); 2256 } 2257 2258 /* 2259 * Prepare a process for imminent new credential changes due to exec 2260 */ 2261 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2262 { 2263 struct task_security_struct *new_tsec; 2264 struct rlimit *rlim, *initrlim; 2265 int rc, i; 2266 2267 new_tsec = bprm->cred->security; 2268 if (new_tsec->sid == new_tsec->osid) 2269 return; 2270 2271 /* Close files for which the new task SID is not authorized. */ 2272 flush_unauthorized_files(bprm->cred, current->files); 2273 2274 /* Always clear parent death signal on SID transitions. */ 2275 current->pdeath_signal = 0; 2276 2277 /* Check whether the new SID can inherit resource limits from the old 2278 * SID. If not, reset all soft limits to the lower of the current 2279 * task's hard limit and the init task's soft limit. 2280 * 2281 * Note that the setting of hard limits (even to lower them) can be 2282 * controlled by the setrlimit check. The inclusion of the init task's 2283 * soft limit into the computation is to avoid resetting soft limits 2284 * higher than the default soft limit for cases where the default is 2285 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2286 */ 2287 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2288 PROCESS__RLIMITINH, NULL); 2289 if (rc) { 2290 /* protect against do_prlimit() */ 2291 task_lock(current); 2292 for (i = 0; i < RLIM_NLIMITS; i++) { 2293 rlim = current->signal->rlim + i; 2294 initrlim = init_task.signal->rlim + i; 2295 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2296 } 2297 task_unlock(current); 2298 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2299 } 2300 } 2301 2302 /* 2303 * Clean up the process immediately after the installation of new credentials 2304 * due to exec 2305 */ 2306 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2307 { 2308 const struct task_security_struct *tsec = current_security(); 2309 struct itimerval itimer; 2310 u32 osid, sid; 2311 int rc, i; 2312 2313 osid = tsec->osid; 2314 sid = tsec->sid; 2315 2316 if (sid == osid) 2317 return; 2318 2319 /* Check whether the new SID can inherit signal state from the old SID. 2320 * If not, clear itimers to avoid subsequent signal generation and 2321 * flush and unblock signals. 2322 * 2323 * This must occur _after_ the task SID has been updated so that any 2324 * kill done after the flush will be checked against the new SID. 2325 */ 2326 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2327 if (rc) { 2328 memset(&itimer, 0, sizeof itimer); 2329 for (i = 0; i < 3; i++) 2330 do_setitimer(i, &itimer, NULL); 2331 spin_lock_irq(¤t->sighand->siglock); 2332 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) { 2333 __flush_signals(current); 2334 flush_signal_handlers(current, 1); 2335 sigemptyset(¤t->blocked); 2336 } 2337 spin_unlock_irq(¤t->sighand->siglock); 2338 } 2339 2340 /* Wake up the parent if it is waiting so that it can recheck 2341 * wait permission to the new task SID. */ 2342 read_lock(&tasklist_lock); 2343 __wake_up_parent(current, current->real_parent); 2344 read_unlock(&tasklist_lock); 2345 } 2346 2347 /* superblock security operations */ 2348 2349 static int selinux_sb_alloc_security(struct super_block *sb) 2350 { 2351 return superblock_alloc_security(sb); 2352 } 2353 2354 static void selinux_sb_free_security(struct super_block *sb) 2355 { 2356 superblock_free_security(sb); 2357 } 2358 2359 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2360 { 2361 if (plen > olen) 2362 return 0; 2363 2364 return !memcmp(prefix, option, plen); 2365 } 2366 2367 static inline int selinux_option(char *option, int len) 2368 { 2369 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2370 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2371 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2372 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) || 2373 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len)); 2374 } 2375 2376 static inline void take_option(char **to, char *from, int *first, int len) 2377 { 2378 if (!*first) { 2379 **to = ','; 2380 *to += 1; 2381 } else 2382 *first = 0; 2383 memcpy(*to, from, len); 2384 *to += len; 2385 } 2386 2387 static inline void take_selinux_option(char **to, char *from, int *first, 2388 int len) 2389 { 2390 int current_size = 0; 2391 2392 if (!*first) { 2393 **to = '|'; 2394 *to += 1; 2395 } else 2396 *first = 0; 2397 2398 while (current_size < len) { 2399 if (*from != '"') { 2400 **to = *from; 2401 *to += 1; 2402 } 2403 from += 1; 2404 current_size += 1; 2405 } 2406 } 2407 2408 static int selinux_sb_copy_data(char *orig, char *copy) 2409 { 2410 int fnosec, fsec, rc = 0; 2411 char *in_save, *in_curr, *in_end; 2412 char *sec_curr, *nosec_save, *nosec; 2413 int open_quote = 0; 2414 2415 in_curr = orig; 2416 sec_curr = copy; 2417 2418 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2419 if (!nosec) { 2420 rc = -ENOMEM; 2421 goto out; 2422 } 2423 2424 nosec_save = nosec; 2425 fnosec = fsec = 1; 2426 in_save = in_end = orig; 2427 2428 do { 2429 if (*in_end == '"') 2430 open_quote = !open_quote; 2431 if ((*in_end == ',' && open_quote == 0) || 2432 *in_end == '\0') { 2433 int len = in_end - in_curr; 2434 2435 if (selinux_option(in_curr, len)) 2436 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2437 else 2438 take_option(&nosec, in_curr, &fnosec, len); 2439 2440 in_curr = in_end + 1; 2441 } 2442 } while (*in_end++); 2443 2444 strcpy(in_save, nosec_save); 2445 free_page((unsigned long)nosec_save); 2446 out: 2447 return rc; 2448 } 2449 2450 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data) 2451 { 2452 const struct cred *cred = current_cred(); 2453 struct common_audit_data ad; 2454 int rc; 2455 2456 rc = superblock_doinit(sb, data); 2457 if (rc) 2458 return rc; 2459 2460 /* Allow all mounts performed by the kernel */ 2461 if (flags & MS_KERNMOUNT) 2462 return 0; 2463 2464 COMMON_AUDIT_DATA_INIT(&ad, FS); 2465 ad.u.fs.path.dentry = sb->s_root; 2466 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2467 } 2468 2469 static int selinux_sb_statfs(struct dentry *dentry) 2470 { 2471 const struct cred *cred = current_cred(); 2472 struct common_audit_data ad; 2473 2474 COMMON_AUDIT_DATA_INIT(&ad, FS); 2475 ad.u.fs.path.dentry = dentry->d_sb->s_root; 2476 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2477 } 2478 2479 static int selinux_mount(char *dev_name, 2480 struct path *path, 2481 char *type, 2482 unsigned long flags, 2483 void *data) 2484 { 2485 const struct cred *cred = current_cred(); 2486 2487 if (flags & MS_REMOUNT) 2488 return superblock_has_perm(cred, path->mnt->mnt_sb, 2489 FILESYSTEM__REMOUNT, NULL); 2490 else 2491 return dentry_has_perm(cred, path->mnt, path->dentry, 2492 FILE__MOUNTON); 2493 } 2494 2495 static int selinux_umount(struct vfsmount *mnt, int flags) 2496 { 2497 const struct cred *cred = current_cred(); 2498 2499 return superblock_has_perm(cred, mnt->mnt_sb, 2500 FILESYSTEM__UNMOUNT, NULL); 2501 } 2502 2503 /* inode security operations */ 2504 2505 static int selinux_inode_alloc_security(struct inode *inode) 2506 { 2507 return inode_alloc_security(inode); 2508 } 2509 2510 static void selinux_inode_free_security(struct inode *inode) 2511 { 2512 inode_free_security(inode); 2513 } 2514 2515 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2516 char **name, void **value, 2517 size_t *len) 2518 { 2519 const struct task_security_struct *tsec = current_security(); 2520 struct inode_security_struct *dsec; 2521 struct superblock_security_struct *sbsec; 2522 u32 sid, newsid, clen; 2523 int rc; 2524 char *namep = NULL, *context; 2525 2526 dsec = dir->i_security; 2527 sbsec = dir->i_sb->s_security; 2528 2529 sid = tsec->sid; 2530 newsid = tsec->create_sid; 2531 2532 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) { 2533 rc = security_transition_sid(sid, dsec->sid, 2534 inode_mode_to_security_class(inode->i_mode), 2535 &newsid); 2536 if (rc) { 2537 printk(KERN_WARNING "%s: " 2538 "security_transition_sid failed, rc=%d (dev=%s " 2539 "ino=%ld)\n", 2540 __func__, 2541 -rc, inode->i_sb->s_id, inode->i_ino); 2542 return rc; 2543 } 2544 } 2545 2546 /* Possibly defer initialization to selinux_complete_init. */ 2547 if (sbsec->flags & SE_SBINITIALIZED) { 2548 struct inode_security_struct *isec = inode->i_security; 2549 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2550 isec->sid = newsid; 2551 isec->initialized = 1; 2552 } 2553 2554 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP)) 2555 return -EOPNOTSUPP; 2556 2557 if (name) { 2558 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS); 2559 if (!namep) 2560 return -ENOMEM; 2561 *name = namep; 2562 } 2563 2564 if (value && len) { 2565 rc = security_sid_to_context_force(newsid, &context, &clen); 2566 if (rc) { 2567 kfree(namep); 2568 return rc; 2569 } 2570 *value = context; 2571 *len = clen; 2572 } 2573 2574 return 0; 2575 } 2576 2577 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask) 2578 { 2579 return may_create(dir, dentry, SECCLASS_FILE); 2580 } 2581 2582 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2583 { 2584 return may_link(dir, old_dentry, MAY_LINK); 2585 } 2586 2587 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2588 { 2589 return may_link(dir, dentry, MAY_UNLINK); 2590 } 2591 2592 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2593 { 2594 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2595 } 2596 2597 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask) 2598 { 2599 return may_create(dir, dentry, SECCLASS_DIR); 2600 } 2601 2602 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2603 { 2604 return may_link(dir, dentry, MAY_RMDIR); 2605 } 2606 2607 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2608 { 2609 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2610 } 2611 2612 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2613 struct inode *new_inode, struct dentry *new_dentry) 2614 { 2615 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2616 } 2617 2618 static int selinux_inode_readlink(struct dentry *dentry) 2619 { 2620 const struct cred *cred = current_cred(); 2621 2622 return dentry_has_perm(cred, NULL, dentry, FILE__READ); 2623 } 2624 2625 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2626 { 2627 const struct cred *cred = current_cred(); 2628 2629 return dentry_has_perm(cred, NULL, dentry, FILE__READ); 2630 } 2631 2632 static int selinux_inode_permission(struct inode *inode, int mask) 2633 { 2634 const struct cred *cred = current_cred(); 2635 struct common_audit_data ad; 2636 u32 perms; 2637 bool from_access; 2638 2639 from_access = mask & MAY_ACCESS; 2640 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 2641 2642 /* No permission to check. Existence test. */ 2643 if (!mask) 2644 return 0; 2645 2646 COMMON_AUDIT_DATA_INIT(&ad, FS); 2647 ad.u.fs.inode = inode; 2648 2649 if (from_access) 2650 ad.selinux_audit_data.auditdeny |= FILE__AUDIT_ACCESS; 2651 2652 perms = file_mask_to_av(inode->i_mode, mask); 2653 2654 return inode_has_perm(cred, inode, perms, &ad); 2655 } 2656 2657 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2658 { 2659 const struct cred *cred = current_cred(); 2660 unsigned int ia_valid = iattr->ia_valid; 2661 2662 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 2663 if (ia_valid & ATTR_FORCE) { 2664 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 2665 ATTR_FORCE); 2666 if (!ia_valid) 2667 return 0; 2668 } 2669 2670 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2671 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 2672 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR); 2673 2674 return dentry_has_perm(cred, NULL, dentry, FILE__WRITE); 2675 } 2676 2677 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 2678 { 2679 const struct cred *cred = current_cred(); 2680 2681 return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR); 2682 } 2683 2684 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 2685 { 2686 const struct cred *cred = current_cred(); 2687 2688 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2689 sizeof XATTR_SECURITY_PREFIX - 1)) { 2690 if (!strcmp(name, XATTR_NAME_CAPS)) { 2691 if (!capable(CAP_SETFCAP)) 2692 return -EPERM; 2693 } else if (!capable(CAP_SYS_ADMIN)) { 2694 /* A different attribute in the security namespace. 2695 Restrict to administrator. */ 2696 return -EPERM; 2697 } 2698 } 2699 2700 /* Not an attribute we recognize, so just check the 2701 ordinary setattr permission. */ 2702 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR); 2703 } 2704 2705 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 2706 const void *value, size_t size, int flags) 2707 { 2708 struct inode *inode = dentry->d_inode; 2709 struct inode_security_struct *isec = inode->i_security; 2710 struct superblock_security_struct *sbsec; 2711 struct common_audit_data ad; 2712 u32 newsid, sid = current_sid(); 2713 int rc = 0; 2714 2715 if (strcmp(name, XATTR_NAME_SELINUX)) 2716 return selinux_inode_setotherxattr(dentry, name); 2717 2718 sbsec = inode->i_sb->s_security; 2719 if (!(sbsec->flags & SE_SBLABELSUPP)) 2720 return -EOPNOTSUPP; 2721 2722 if (!is_owner_or_cap(inode)) 2723 return -EPERM; 2724 2725 COMMON_AUDIT_DATA_INIT(&ad, FS); 2726 ad.u.fs.path.dentry = dentry; 2727 2728 rc = avc_has_perm(sid, isec->sid, isec->sclass, 2729 FILE__RELABELFROM, &ad); 2730 if (rc) 2731 return rc; 2732 2733 rc = security_context_to_sid(value, size, &newsid); 2734 if (rc == -EINVAL) { 2735 if (!capable(CAP_MAC_ADMIN)) 2736 return rc; 2737 rc = security_context_to_sid_force(value, size, &newsid); 2738 } 2739 if (rc) 2740 return rc; 2741 2742 rc = avc_has_perm(sid, newsid, isec->sclass, 2743 FILE__RELABELTO, &ad); 2744 if (rc) 2745 return rc; 2746 2747 rc = security_validate_transition(isec->sid, newsid, sid, 2748 isec->sclass); 2749 if (rc) 2750 return rc; 2751 2752 return avc_has_perm(newsid, 2753 sbsec->sid, 2754 SECCLASS_FILESYSTEM, 2755 FILESYSTEM__ASSOCIATE, 2756 &ad); 2757 } 2758 2759 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 2760 const void *value, size_t size, 2761 int flags) 2762 { 2763 struct inode *inode = dentry->d_inode; 2764 struct inode_security_struct *isec = inode->i_security; 2765 u32 newsid; 2766 int rc; 2767 2768 if (strcmp(name, XATTR_NAME_SELINUX)) { 2769 /* Not an attribute we recognize, so nothing to do. */ 2770 return; 2771 } 2772 2773 rc = security_context_to_sid_force(value, size, &newsid); 2774 if (rc) { 2775 printk(KERN_ERR "SELinux: unable to map context to SID" 2776 "for (%s, %lu), rc=%d\n", 2777 inode->i_sb->s_id, inode->i_ino, -rc); 2778 return; 2779 } 2780 2781 isec->sid = newsid; 2782 return; 2783 } 2784 2785 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 2786 { 2787 const struct cred *cred = current_cred(); 2788 2789 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR); 2790 } 2791 2792 static int selinux_inode_listxattr(struct dentry *dentry) 2793 { 2794 const struct cred *cred = current_cred(); 2795 2796 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR); 2797 } 2798 2799 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 2800 { 2801 if (strcmp(name, XATTR_NAME_SELINUX)) 2802 return selinux_inode_setotherxattr(dentry, name); 2803 2804 /* No one is allowed to remove a SELinux security label. 2805 You can change the label, but all data must be labeled. */ 2806 return -EACCES; 2807 } 2808 2809 /* 2810 * Copy the inode security context value to the user. 2811 * 2812 * Permission check is handled by selinux_inode_getxattr hook. 2813 */ 2814 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 2815 { 2816 u32 size; 2817 int error; 2818 char *context = NULL; 2819 struct inode_security_struct *isec = inode->i_security; 2820 2821 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2822 return -EOPNOTSUPP; 2823 2824 /* 2825 * If the caller has CAP_MAC_ADMIN, then get the raw context 2826 * value even if it is not defined by current policy; otherwise, 2827 * use the in-core value under current policy. 2828 * Use the non-auditing forms of the permission checks since 2829 * getxattr may be called by unprivileged processes commonly 2830 * and lack of permission just means that we fall back to the 2831 * in-core context value, not a denial. 2832 */ 2833 error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN, 2834 SECURITY_CAP_NOAUDIT); 2835 if (!error) 2836 error = security_sid_to_context_force(isec->sid, &context, 2837 &size); 2838 else 2839 error = security_sid_to_context(isec->sid, &context, &size); 2840 if (error) 2841 return error; 2842 error = size; 2843 if (alloc) { 2844 *buffer = context; 2845 goto out_nofree; 2846 } 2847 kfree(context); 2848 out_nofree: 2849 return error; 2850 } 2851 2852 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 2853 const void *value, size_t size, int flags) 2854 { 2855 struct inode_security_struct *isec = inode->i_security; 2856 u32 newsid; 2857 int rc; 2858 2859 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2860 return -EOPNOTSUPP; 2861 2862 if (!value || !size) 2863 return -EACCES; 2864 2865 rc = security_context_to_sid((void *)value, size, &newsid); 2866 if (rc) 2867 return rc; 2868 2869 isec->sid = newsid; 2870 isec->initialized = 1; 2871 return 0; 2872 } 2873 2874 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2875 { 2876 const int len = sizeof(XATTR_NAME_SELINUX); 2877 if (buffer && len <= buffer_size) 2878 memcpy(buffer, XATTR_NAME_SELINUX, len); 2879 return len; 2880 } 2881 2882 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid) 2883 { 2884 struct inode_security_struct *isec = inode->i_security; 2885 *secid = isec->sid; 2886 } 2887 2888 /* file security operations */ 2889 2890 static int selinux_revalidate_file_permission(struct file *file, int mask) 2891 { 2892 const struct cred *cred = current_cred(); 2893 struct inode *inode = file->f_path.dentry->d_inode; 2894 2895 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 2896 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 2897 mask |= MAY_APPEND; 2898 2899 return file_has_perm(cred, file, 2900 file_mask_to_av(inode->i_mode, mask)); 2901 } 2902 2903 static int selinux_file_permission(struct file *file, int mask) 2904 { 2905 struct inode *inode = file->f_path.dentry->d_inode; 2906 struct file_security_struct *fsec = file->f_security; 2907 struct inode_security_struct *isec = inode->i_security; 2908 u32 sid = current_sid(); 2909 2910 if (!mask) 2911 /* No permission to check. Existence test. */ 2912 return 0; 2913 2914 if (sid == fsec->sid && fsec->isid == isec->sid && 2915 fsec->pseqno == avc_policy_seqno()) 2916 /* No change since dentry_open check. */ 2917 return 0; 2918 2919 return selinux_revalidate_file_permission(file, mask); 2920 } 2921 2922 static int selinux_file_alloc_security(struct file *file) 2923 { 2924 return file_alloc_security(file); 2925 } 2926 2927 static void selinux_file_free_security(struct file *file) 2928 { 2929 file_free_security(file); 2930 } 2931 2932 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 2933 unsigned long arg) 2934 { 2935 const struct cred *cred = current_cred(); 2936 u32 av = 0; 2937 2938 if (_IOC_DIR(cmd) & _IOC_WRITE) 2939 av |= FILE__WRITE; 2940 if (_IOC_DIR(cmd) & _IOC_READ) 2941 av |= FILE__READ; 2942 if (!av) 2943 av = FILE__IOCTL; 2944 2945 return file_has_perm(cred, file, av); 2946 } 2947 2948 static int default_noexec; 2949 2950 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 2951 { 2952 const struct cred *cred = current_cred(); 2953 int rc = 0; 2954 2955 if (default_noexec && 2956 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 2957 /* 2958 * We are making executable an anonymous mapping or a 2959 * private file mapping that will also be writable. 2960 * This has an additional check. 2961 */ 2962 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM); 2963 if (rc) 2964 goto error; 2965 } 2966 2967 if (file) { 2968 /* read access is always possible with a mapping */ 2969 u32 av = FILE__READ; 2970 2971 /* write access only matters if the mapping is shared */ 2972 if (shared && (prot & PROT_WRITE)) 2973 av |= FILE__WRITE; 2974 2975 if (prot & PROT_EXEC) 2976 av |= FILE__EXECUTE; 2977 2978 return file_has_perm(cred, file, av); 2979 } 2980 2981 error: 2982 return rc; 2983 } 2984 2985 static int selinux_file_mmap(struct file *file, unsigned long reqprot, 2986 unsigned long prot, unsigned long flags, 2987 unsigned long addr, unsigned long addr_only) 2988 { 2989 int rc = 0; 2990 u32 sid = current_sid(); 2991 2992 /* 2993 * notice that we are intentionally putting the SELinux check before 2994 * the secondary cap_file_mmap check. This is such a likely attempt 2995 * at bad behaviour/exploit that we always want to get the AVC, even 2996 * if DAC would have also denied the operation. 2997 */ 2998 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 2999 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3000 MEMPROTECT__MMAP_ZERO, NULL); 3001 if (rc) 3002 return rc; 3003 } 3004 3005 /* do DAC check on address space usage */ 3006 rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only); 3007 if (rc || addr_only) 3008 return rc; 3009 3010 if (selinux_checkreqprot) 3011 prot = reqprot; 3012 3013 return file_map_prot_check(file, prot, 3014 (flags & MAP_TYPE) == MAP_SHARED); 3015 } 3016 3017 static int selinux_file_mprotect(struct vm_area_struct *vma, 3018 unsigned long reqprot, 3019 unsigned long prot) 3020 { 3021 const struct cred *cred = current_cred(); 3022 3023 if (selinux_checkreqprot) 3024 prot = reqprot; 3025 3026 if (default_noexec && 3027 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3028 int rc = 0; 3029 if (vma->vm_start >= vma->vm_mm->start_brk && 3030 vma->vm_end <= vma->vm_mm->brk) { 3031 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP); 3032 } else if (!vma->vm_file && 3033 vma->vm_start <= vma->vm_mm->start_stack && 3034 vma->vm_end >= vma->vm_mm->start_stack) { 3035 rc = current_has_perm(current, PROCESS__EXECSTACK); 3036 } else if (vma->vm_file && vma->anon_vma) { 3037 /* 3038 * We are making executable a file mapping that has 3039 * had some COW done. Since pages might have been 3040 * written, check ability to execute the possibly 3041 * modified content. This typically should only 3042 * occur for text relocations. 3043 */ 3044 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3045 } 3046 if (rc) 3047 return rc; 3048 } 3049 3050 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3051 } 3052 3053 static int selinux_file_lock(struct file *file, unsigned int cmd) 3054 { 3055 const struct cred *cred = current_cred(); 3056 3057 return file_has_perm(cred, file, FILE__LOCK); 3058 } 3059 3060 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3061 unsigned long arg) 3062 { 3063 const struct cred *cred = current_cred(); 3064 int err = 0; 3065 3066 switch (cmd) { 3067 case F_SETFL: 3068 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3069 err = -EINVAL; 3070 break; 3071 } 3072 3073 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3074 err = file_has_perm(cred, file, FILE__WRITE); 3075 break; 3076 } 3077 /* fall through */ 3078 case F_SETOWN: 3079 case F_SETSIG: 3080 case F_GETFL: 3081 case F_GETOWN: 3082 case F_GETSIG: 3083 /* Just check FD__USE permission */ 3084 err = file_has_perm(cred, file, 0); 3085 break; 3086 case F_GETLK: 3087 case F_SETLK: 3088 case F_SETLKW: 3089 #if BITS_PER_LONG == 32 3090 case F_GETLK64: 3091 case F_SETLK64: 3092 case F_SETLKW64: 3093 #endif 3094 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3095 err = -EINVAL; 3096 break; 3097 } 3098 err = file_has_perm(cred, file, FILE__LOCK); 3099 break; 3100 } 3101 3102 return err; 3103 } 3104 3105 static int selinux_file_set_fowner(struct file *file) 3106 { 3107 struct file_security_struct *fsec; 3108 3109 fsec = file->f_security; 3110 fsec->fown_sid = current_sid(); 3111 3112 return 0; 3113 } 3114 3115 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3116 struct fown_struct *fown, int signum) 3117 { 3118 struct file *file; 3119 u32 sid = task_sid(tsk); 3120 u32 perm; 3121 struct file_security_struct *fsec; 3122 3123 /* struct fown_struct is never outside the context of a struct file */ 3124 file = container_of(fown, struct file, f_owner); 3125 3126 fsec = file->f_security; 3127 3128 if (!signum) 3129 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3130 else 3131 perm = signal_to_av(signum); 3132 3133 return avc_has_perm(fsec->fown_sid, sid, 3134 SECCLASS_PROCESS, perm, NULL); 3135 } 3136 3137 static int selinux_file_receive(struct file *file) 3138 { 3139 const struct cred *cred = current_cred(); 3140 3141 return file_has_perm(cred, file, file_to_av(file)); 3142 } 3143 3144 static int selinux_dentry_open(struct file *file, const struct cred *cred) 3145 { 3146 struct file_security_struct *fsec; 3147 struct inode *inode; 3148 struct inode_security_struct *isec; 3149 3150 inode = file->f_path.dentry->d_inode; 3151 fsec = file->f_security; 3152 isec = inode->i_security; 3153 /* 3154 * Save inode label and policy sequence number 3155 * at open-time so that selinux_file_permission 3156 * can determine whether revalidation is necessary. 3157 * Task label is already saved in the file security 3158 * struct as its SID. 3159 */ 3160 fsec->isid = isec->sid; 3161 fsec->pseqno = avc_policy_seqno(); 3162 /* 3163 * Since the inode label or policy seqno may have changed 3164 * between the selinux_inode_permission check and the saving 3165 * of state above, recheck that access is still permitted. 3166 * Otherwise, access might never be revalidated against the 3167 * new inode label or new policy. 3168 * This check is not redundant - do not remove. 3169 */ 3170 return inode_has_perm(cred, inode, open_file_to_av(file), NULL); 3171 } 3172 3173 /* task security operations */ 3174 3175 static int selinux_task_create(unsigned long clone_flags) 3176 { 3177 return current_has_perm(current, PROCESS__FORK); 3178 } 3179 3180 /* 3181 * allocate the SELinux part of blank credentials 3182 */ 3183 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3184 { 3185 struct task_security_struct *tsec; 3186 3187 tsec = kzalloc(sizeof(struct task_security_struct), gfp); 3188 if (!tsec) 3189 return -ENOMEM; 3190 3191 cred->security = tsec; 3192 return 0; 3193 } 3194 3195 /* 3196 * detach and free the LSM part of a set of credentials 3197 */ 3198 static void selinux_cred_free(struct cred *cred) 3199 { 3200 struct task_security_struct *tsec = cred->security; 3201 3202 BUG_ON((unsigned long) cred->security < PAGE_SIZE); 3203 cred->security = (void *) 0x7UL; 3204 kfree(tsec); 3205 } 3206 3207 /* 3208 * prepare a new set of credentials for modification 3209 */ 3210 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3211 gfp_t gfp) 3212 { 3213 const struct task_security_struct *old_tsec; 3214 struct task_security_struct *tsec; 3215 3216 old_tsec = old->security; 3217 3218 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp); 3219 if (!tsec) 3220 return -ENOMEM; 3221 3222 new->security = tsec; 3223 return 0; 3224 } 3225 3226 /* 3227 * transfer the SELinux data to a blank set of creds 3228 */ 3229 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3230 { 3231 const struct task_security_struct *old_tsec = old->security; 3232 struct task_security_struct *tsec = new->security; 3233 3234 *tsec = *old_tsec; 3235 } 3236 3237 /* 3238 * set the security data for a kernel service 3239 * - all the creation contexts are set to unlabelled 3240 */ 3241 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3242 { 3243 struct task_security_struct *tsec = new->security; 3244 u32 sid = current_sid(); 3245 int ret; 3246 3247 ret = avc_has_perm(sid, secid, 3248 SECCLASS_KERNEL_SERVICE, 3249 KERNEL_SERVICE__USE_AS_OVERRIDE, 3250 NULL); 3251 if (ret == 0) { 3252 tsec->sid = secid; 3253 tsec->create_sid = 0; 3254 tsec->keycreate_sid = 0; 3255 tsec->sockcreate_sid = 0; 3256 } 3257 return ret; 3258 } 3259 3260 /* 3261 * set the file creation context in a security record to the same as the 3262 * objective context of the specified inode 3263 */ 3264 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3265 { 3266 struct inode_security_struct *isec = inode->i_security; 3267 struct task_security_struct *tsec = new->security; 3268 u32 sid = current_sid(); 3269 int ret; 3270 3271 ret = avc_has_perm(sid, isec->sid, 3272 SECCLASS_KERNEL_SERVICE, 3273 KERNEL_SERVICE__CREATE_FILES_AS, 3274 NULL); 3275 3276 if (ret == 0) 3277 tsec->create_sid = isec->sid; 3278 return ret; 3279 } 3280 3281 static int selinux_kernel_module_request(char *kmod_name) 3282 { 3283 u32 sid; 3284 struct common_audit_data ad; 3285 3286 sid = task_sid(current); 3287 3288 COMMON_AUDIT_DATA_INIT(&ad, KMOD); 3289 ad.u.kmod_name = kmod_name; 3290 3291 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM, 3292 SYSTEM__MODULE_REQUEST, &ad); 3293 } 3294 3295 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3296 { 3297 return current_has_perm(p, PROCESS__SETPGID); 3298 } 3299 3300 static int selinux_task_getpgid(struct task_struct *p) 3301 { 3302 return current_has_perm(p, PROCESS__GETPGID); 3303 } 3304 3305 static int selinux_task_getsid(struct task_struct *p) 3306 { 3307 return current_has_perm(p, PROCESS__GETSESSION); 3308 } 3309 3310 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3311 { 3312 *secid = task_sid(p); 3313 } 3314 3315 static int selinux_task_setnice(struct task_struct *p, int nice) 3316 { 3317 int rc; 3318 3319 rc = cap_task_setnice(p, nice); 3320 if (rc) 3321 return rc; 3322 3323 return current_has_perm(p, PROCESS__SETSCHED); 3324 } 3325 3326 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3327 { 3328 int rc; 3329 3330 rc = cap_task_setioprio(p, ioprio); 3331 if (rc) 3332 return rc; 3333 3334 return current_has_perm(p, PROCESS__SETSCHED); 3335 } 3336 3337 static int selinux_task_getioprio(struct task_struct *p) 3338 { 3339 return current_has_perm(p, PROCESS__GETSCHED); 3340 } 3341 3342 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 3343 struct rlimit *new_rlim) 3344 { 3345 struct rlimit *old_rlim = p->signal->rlim + resource; 3346 3347 /* Control the ability to change the hard limit (whether 3348 lowering or raising it), so that the hard limit can 3349 later be used as a safe reset point for the soft limit 3350 upon context transitions. See selinux_bprm_committing_creds. */ 3351 if (old_rlim->rlim_max != new_rlim->rlim_max) 3352 return current_has_perm(p, PROCESS__SETRLIMIT); 3353 3354 return 0; 3355 } 3356 3357 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp) 3358 { 3359 int rc; 3360 3361 rc = cap_task_setscheduler(p, policy, lp); 3362 if (rc) 3363 return rc; 3364 3365 return current_has_perm(p, PROCESS__SETSCHED); 3366 } 3367 3368 static int selinux_task_getscheduler(struct task_struct *p) 3369 { 3370 return current_has_perm(p, PROCESS__GETSCHED); 3371 } 3372 3373 static int selinux_task_movememory(struct task_struct *p) 3374 { 3375 return current_has_perm(p, PROCESS__SETSCHED); 3376 } 3377 3378 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3379 int sig, u32 secid) 3380 { 3381 u32 perm; 3382 int rc; 3383 3384 if (!sig) 3385 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3386 else 3387 perm = signal_to_av(sig); 3388 if (secid) 3389 rc = avc_has_perm(secid, task_sid(p), 3390 SECCLASS_PROCESS, perm, NULL); 3391 else 3392 rc = current_has_perm(p, perm); 3393 return rc; 3394 } 3395 3396 static int selinux_task_wait(struct task_struct *p) 3397 { 3398 return task_has_perm(p, current, PROCESS__SIGCHLD); 3399 } 3400 3401 static void selinux_task_to_inode(struct task_struct *p, 3402 struct inode *inode) 3403 { 3404 struct inode_security_struct *isec = inode->i_security; 3405 u32 sid = task_sid(p); 3406 3407 isec->sid = sid; 3408 isec->initialized = 1; 3409 } 3410 3411 /* Returns error only if unable to parse addresses */ 3412 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3413 struct common_audit_data *ad, u8 *proto) 3414 { 3415 int offset, ihlen, ret = -EINVAL; 3416 struct iphdr _iph, *ih; 3417 3418 offset = skb_network_offset(skb); 3419 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3420 if (ih == NULL) 3421 goto out; 3422 3423 ihlen = ih->ihl * 4; 3424 if (ihlen < sizeof(_iph)) 3425 goto out; 3426 3427 ad->u.net.v4info.saddr = ih->saddr; 3428 ad->u.net.v4info.daddr = ih->daddr; 3429 ret = 0; 3430 3431 if (proto) 3432 *proto = ih->protocol; 3433 3434 switch (ih->protocol) { 3435 case IPPROTO_TCP: { 3436 struct tcphdr _tcph, *th; 3437 3438 if (ntohs(ih->frag_off) & IP_OFFSET) 3439 break; 3440 3441 offset += ihlen; 3442 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3443 if (th == NULL) 3444 break; 3445 3446 ad->u.net.sport = th->source; 3447 ad->u.net.dport = th->dest; 3448 break; 3449 } 3450 3451 case IPPROTO_UDP: { 3452 struct udphdr _udph, *uh; 3453 3454 if (ntohs(ih->frag_off) & IP_OFFSET) 3455 break; 3456 3457 offset += ihlen; 3458 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3459 if (uh == NULL) 3460 break; 3461 3462 ad->u.net.sport = uh->source; 3463 ad->u.net.dport = uh->dest; 3464 break; 3465 } 3466 3467 case IPPROTO_DCCP: { 3468 struct dccp_hdr _dccph, *dh; 3469 3470 if (ntohs(ih->frag_off) & IP_OFFSET) 3471 break; 3472 3473 offset += ihlen; 3474 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3475 if (dh == NULL) 3476 break; 3477 3478 ad->u.net.sport = dh->dccph_sport; 3479 ad->u.net.dport = dh->dccph_dport; 3480 break; 3481 } 3482 3483 default: 3484 break; 3485 } 3486 out: 3487 return ret; 3488 } 3489 3490 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3491 3492 /* Returns error only if unable to parse addresses */ 3493 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3494 struct common_audit_data *ad, u8 *proto) 3495 { 3496 u8 nexthdr; 3497 int ret = -EINVAL, offset; 3498 struct ipv6hdr _ipv6h, *ip6; 3499 3500 offset = skb_network_offset(skb); 3501 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3502 if (ip6 == NULL) 3503 goto out; 3504 3505 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr); 3506 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr); 3507 ret = 0; 3508 3509 nexthdr = ip6->nexthdr; 3510 offset += sizeof(_ipv6h); 3511 offset = ipv6_skip_exthdr(skb, offset, &nexthdr); 3512 if (offset < 0) 3513 goto out; 3514 3515 if (proto) 3516 *proto = nexthdr; 3517 3518 switch (nexthdr) { 3519 case IPPROTO_TCP: { 3520 struct tcphdr _tcph, *th; 3521 3522 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3523 if (th == NULL) 3524 break; 3525 3526 ad->u.net.sport = th->source; 3527 ad->u.net.dport = th->dest; 3528 break; 3529 } 3530 3531 case IPPROTO_UDP: { 3532 struct udphdr _udph, *uh; 3533 3534 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3535 if (uh == NULL) 3536 break; 3537 3538 ad->u.net.sport = uh->source; 3539 ad->u.net.dport = uh->dest; 3540 break; 3541 } 3542 3543 case IPPROTO_DCCP: { 3544 struct dccp_hdr _dccph, *dh; 3545 3546 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3547 if (dh == NULL) 3548 break; 3549 3550 ad->u.net.sport = dh->dccph_sport; 3551 ad->u.net.dport = dh->dccph_dport; 3552 break; 3553 } 3554 3555 /* includes fragments */ 3556 default: 3557 break; 3558 } 3559 out: 3560 return ret; 3561 } 3562 3563 #endif /* IPV6 */ 3564 3565 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 3566 char **_addrp, int src, u8 *proto) 3567 { 3568 char *addrp; 3569 int ret; 3570 3571 switch (ad->u.net.family) { 3572 case PF_INET: 3573 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3574 if (ret) 3575 goto parse_error; 3576 addrp = (char *)(src ? &ad->u.net.v4info.saddr : 3577 &ad->u.net.v4info.daddr); 3578 goto okay; 3579 3580 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3581 case PF_INET6: 3582 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3583 if (ret) 3584 goto parse_error; 3585 addrp = (char *)(src ? &ad->u.net.v6info.saddr : 3586 &ad->u.net.v6info.daddr); 3587 goto okay; 3588 #endif /* IPV6 */ 3589 default: 3590 addrp = NULL; 3591 goto okay; 3592 } 3593 3594 parse_error: 3595 printk(KERN_WARNING 3596 "SELinux: failure in selinux_parse_skb()," 3597 " unable to parse packet\n"); 3598 return ret; 3599 3600 okay: 3601 if (_addrp) 3602 *_addrp = addrp; 3603 return 0; 3604 } 3605 3606 /** 3607 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 3608 * @skb: the packet 3609 * @family: protocol family 3610 * @sid: the packet's peer label SID 3611 * 3612 * Description: 3613 * Check the various different forms of network peer labeling and determine 3614 * the peer label/SID for the packet; most of the magic actually occurs in 3615 * the security server function security_net_peersid_cmp(). The function 3616 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 3617 * or -EACCES if @sid is invalid due to inconsistencies with the different 3618 * peer labels. 3619 * 3620 */ 3621 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 3622 { 3623 int err; 3624 u32 xfrm_sid; 3625 u32 nlbl_sid; 3626 u32 nlbl_type; 3627 3628 selinux_skb_xfrm_sid(skb, &xfrm_sid); 3629 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 3630 3631 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 3632 if (unlikely(err)) { 3633 printk(KERN_WARNING 3634 "SELinux: failure in selinux_skb_peerlbl_sid()," 3635 " unable to determine packet's peer label\n"); 3636 return -EACCES; 3637 } 3638 3639 return 0; 3640 } 3641 3642 /* socket security operations */ 3643 3644 static u32 socket_sockcreate_sid(const struct task_security_struct *tsec) 3645 { 3646 return tsec->sockcreate_sid ? : tsec->sid; 3647 } 3648 3649 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms) 3650 { 3651 struct sk_security_struct *sksec = sk->sk_security; 3652 struct common_audit_data ad; 3653 u32 tsid = task_sid(task); 3654 3655 if (sksec->sid == SECINITSID_KERNEL) 3656 return 0; 3657 3658 COMMON_AUDIT_DATA_INIT(&ad, NET); 3659 ad.u.net.sk = sk; 3660 3661 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad); 3662 } 3663 3664 static int selinux_socket_create(int family, int type, 3665 int protocol, int kern) 3666 { 3667 const struct task_security_struct *tsec = current_security(); 3668 u32 newsid; 3669 u16 secclass; 3670 3671 if (kern) 3672 return 0; 3673 3674 newsid = socket_sockcreate_sid(tsec); 3675 secclass = socket_type_to_security_class(family, type, protocol); 3676 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 3677 } 3678 3679 static int selinux_socket_post_create(struct socket *sock, int family, 3680 int type, int protocol, int kern) 3681 { 3682 const struct task_security_struct *tsec = current_security(); 3683 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 3684 struct sk_security_struct *sksec; 3685 int err = 0; 3686 3687 if (kern) 3688 isec->sid = SECINITSID_KERNEL; 3689 else 3690 isec->sid = socket_sockcreate_sid(tsec); 3691 3692 isec->sclass = socket_type_to_security_class(family, type, protocol); 3693 isec->initialized = 1; 3694 3695 if (sock->sk) { 3696 sksec = sock->sk->sk_security; 3697 sksec->sid = isec->sid; 3698 sksec->sclass = isec->sclass; 3699 err = selinux_netlbl_socket_post_create(sock->sk, family); 3700 } 3701 3702 return err; 3703 } 3704 3705 /* Range of port numbers used to automatically bind. 3706 Need to determine whether we should perform a name_bind 3707 permission check between the socket and the port number. */ 3708 3709 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 3710 { 3711 struct sock *sk = sock->sk; 3712 u16 family; 3713 int err; 3714 3715 err = sock_has_perm(current, sk, SOCKET__BIND); 3716 if (err) 3717 goto out; 3718 3719 /* 3720 * If PF_INET or PF_INET6, check name_bind permission for the port. 3721 * Multiple address binding for SCTP is not supported yet: we just 3722 * check the first address now. 3723 */ 3724 family = sk->sk_family; 3725 if (family == PF_INET || family == PF_INET6) { 3726 char *addrp; 3727 struct sk_security_struct *sksec = sk->sk_security; 3728 struct common_audit_data ad; 3729 struct sockaddr_in *addr4 = NULL; 3730 struct sockaddr_in6 *addr6 = NULL; 3731 unsigned short snum; 3732 u32 sid, node_perm; 3733 3734 if (family == PF_INET) { 3735 addr4 = (struct sockaddr_in *)address; 3736 snum = ntohs(addr4->sin_port); 3737 addrp = (char *)&addr4->sin_addr.s_addr; 3738 } else { 3739 addr6 = (struct sockaddr_in6 *)address; 3740 snum = ntohs(addr6->sin6_port); 3741 addrp = (char *)&addr6->sin6_addr.s6_addr; 3742 } 3743 3744 if (snum) { 3745 int low, high; 3746 3747 inet_get_local_port_range(&low, &high); 3748 3749 if (snum < max(PROT_SOCK, low) || snum > high) { 3750 err = sel_netport_sid(sk->sk_protocol, 3751 snum, &sid); 3752 if (err) 3753 goto out; 3754 COMMON_AUDIT_DATA_INIT(&ad, NET); 3755 ad.u.net.sport = htons(snum); 3756 ad.u.net.family = family; 3757 err = avc_has_perm(sksec->sid, sid, 3758 sksec->sclass, 3759 SOCKET__NAME_BIND, &ad); 3760 if (err) 3761 goto out; 3762 } 3763 } 3764 3765 switch (sksec->sclass) { 3766 case SECCLASS_TCP_SOCKET: 3767 node_perm = TCP_SOCKET__NODE_BIND; 3768 break; 3769 3770 case SECCLASS_UDP_SOCKET: 3771 node_perm = UDP_SOCKET__NODE_BIND; 3772 break; 3773 3774 case SECCLASS_DCCP_SOCKET: 3775 node_perm = DCCP_SOCKET__NODE_BIND; 3776 break; 3777 3778 default: 3779 node_perm = RAWIP_SOCKET__NODE_BIND; 3780 break; 3781 } 3782 3783 err = sel_netnode_sid(addrp, family, &sid); 3784 if (err) 3785 goto out; 3786 3787 COMMON_AUDIT_DATA_INIT(&ad, NET); 3788 ad.u.net.sport = htons(snum); 3789 ad.u.net.family = family; 3790 3791 if (family == PF_INET) 3792 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr; 3793 else 3794 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr); 3795 3796 err = avc_has_perm(sksec->sid, sid, 3797 sksec->sclass, node_perm, &ad); 3798 if (err) 3799 goto out; 3800 } 3801 out: 3802 return err; 3803 } 3804 3805 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 3806 { 3807 struct sock *sk = sock->sk; 3808 struct sk_security_struct *sksec = sk->sk_security; 3809 int err; 3810 3811 err = sock_has_perm(current, sk, SOCKET__CONNECT); 3812 if (err) 3813 return err; 3814 3815 /* 3816 * If a TCP or DCCP socket, check name_connect permission for the port. 3817 */ 3818 if (sksec->sclass == SECCLASS_TCP_SOCKET || 3819 sksec->sclass == SECCLASS_DCCP_SOCKET) { 3820 struct common_audit_data ad; 3821 struct sockaddr_in *addr4 = NULL; 3822 struct sockaddr_in6 *addr6 = NULL; 3823 unsigned short snum; 3824 u32 sid, perm; 3825 3826 if (sk->sk_family == PF_INET) { 3827 addr4 = (struct sockaddr_in *)address; 3828 if (addrlen < sizeof(struct sockaddr_in)) 3829 return -EINVAL; 3830 snum = ntohs(addr4->sin_port); 3831 } else { 3832 addr6 = (struct sockaddr_in6 *)address; 3833 if (addrlen < SIN6_LEN_RFC2133) 3834 return -EINVAL; 3835 snum = ntohs(addr6->sin6_port); 3836 } 3837 3838 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 3839 if (err) 3840 goto out; 3841 3842 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ? 3843 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 3844 3845 COMMON_AUDIT_DATA_INIT(&ad, NET); 3846 ad.u.net.dport = htons(snum); 3847 ad.u.net.family = sk->sk_family; 3848 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad); 3849 if (err) 3850 goto out; 3851 } 3852 3853 err = selinux_netlbl_socket_connect(sk, address); 3854 3855 out: 3856 return err; 3857 } 3858 3859 static int selinux_socket_listen(struct socket *sock, int backlog) 3860 { 3861 return sock_has_perm(current, sock->sk, SOCKET__LISTEN); 3862 } 3863 3864 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 3865 { 3866 int err; 3867 struct inode_security_struct *isec; 3868 struct inode_security_struct *newisec; 3869 3870 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT); 3871 if (err) 3872 return err; 3873 3874 newisec = SOCK_INODE(newsock)->i_security; 3875 3876 isec = SOCK_INODE(sock)->i_security; 3877 newisec->sclass = isec->sclass; 3878 newisec->sid = isec->sid; 3879 newisec->initialized = 1; 3880 3881 return 0; 3882 } 3883 3884 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 3885 int size) 3886 { 3887 return sock_has_perm(current, sock->sk, SOCKET__WRITE); 3888 } 3889 3890 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 3891 int size, int flags) 3892 { 3893 return sock_has_perm(current, sock->sk, SOCKET__READ); 3894 } 3895 3896 static int selinux_socket_getsockname(struct socket *sock) 3897 { 3898 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 3899 } 3900 3901 static int selinux_socket_getpeername(struct socket *sock) 3902 { 3903 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 3904 } 3905 3906 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 3907 { 3908 int err; 3909 3910 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT); 3911 if (err) 3912 return err; 3913 3914 return selinux_netlbl_socket_setsockopt(sock, level, optname); 3915 } 3916 3917 static int selinux_socket_getsockopt(struct socket *sock, int level, 3918 int optname) 3919 { 3920 return sock_has_perm(current, sock->sk, SOCKET__GETOPT); 3921 } 3922 3923 static int selinux_socket_shutdown(struct socket *sock, int how) 3924 { 3925 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN); 3926 } 3927 3928 static int selinux_socket_unix_stream_connect(struct socket *sock, 3929 struct socket *other, 3930 struct sock *newsk) 3931 { 3932 struct sk_security_struct *sksec_sock = sock->sk->sk_security; 3933 struct sk_security_struct *sksec_other = other->sk->sk_security; 3934 struct sk_security_struct *sksec_new = newsk->sk_security; 3935 struct common_audit_data ad; 3936 int err; 3937 3938 COMMON_AUDIT_DATA_INIT(&ad, NET); 3939 ad.u.net.sk = other->sk; 3940 3941 err = avc_has_perm(sksec_sock->sid, sksec_other->sid, 3942 sksec_other->sclass, 3943 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 3944 if (err) 3945 return err; 3946 3947 /* server child socket */ 3948 sksec_new->peer_sid = sksec_sock->sid; 3949 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid, 3950 &sksec_new->sid); 3951 if (err) 3952 return err; 3953 3954 /* connecting socket */ 3955 sksec_sock->peer_sid = sksec_new->sid; 3956 3957 return 0; 3958 } 3959 3960 static int selinux_socket_unix_may_send(struct socket *sock, 3961 struct socket *other) 3962 { 3963 struct sk_security_struct *ssec = sock->sk->sk_security; 3964 struct sk_security_struct *osec = other->sk->sk_security; 3965 struct common_audit_data ad; 3966 3967 COMMON_AUDIT_DATA_INIT(&ad, NET); 3968 ad.u.net.sk = other->sk; 3969 3970 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 3971 &ad); 3972 } 3973 3974 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family, 3975 u32 peer_sid, 3976 struct common_audit_data *ad) 3977 { 3978 int err; 3979 u32 if_sid; 3980 u32 node_sid; 3981 3982 err = sel_netif_sid(ifindex, &if_sid); 3983 if (err) 3984 return err; 3985 err = avc_has_perm(peer_sid, if_sid, 3986 SECCLASS_NETIF, NETIF__INGRESS, ad); 3987 if (err) 3988 return err; 3989 3990 err = sel_netnode_sid(addrp, family, &node_sid); 3991 if (err) 3992 return err; 3993 return avc_has_perm(peer_sid, node_sid, 3994 SECCLASS_NODE, NODE__RECVFROM, ad); 3995 } 3996 3997 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 3998 u16 family) 3999 { 4000 int err = 0; 4001 struct sk_security_struct *sksec = sk->sk_security; 4002 u32 peer_sid; 4003 u32 sk_sid = sksec->sid; 4004 struct common_audit_data ad; 4005 char *addrp; 4006 4007 COMMON_AUDIT_DATA_INIT(&ad, NET); 4008 ad.u.net.netif = skb->skb_iif; 4009 ad.u.net.family = family; 4010 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4011 if (err) 4012 return err; 4013 4014 if (selinux_secmark_enabled()) { 4015 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4016 PACKET__RECV, &ad); 4017 if (err) 4018 return err; 4019 } 4020 4021 if (selinux_policycap_netpeer) { 4022 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4023 if (err) 4024 return err; 4025 err = avc_has_perm(sk_sid, peer_sid, 4026 SECCLASS_PEER, PEER__RECV, &ad); 4027 if (err) 4028 selinux_netlbl_err(skb, err, 0); 4029 } else { 4030 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4031 if (err) 4032 return err; 4033 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4034 } 4035 4036 return err; 4037 } 4038 4039 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4040 { 4041 int err; 4042 struct sk_security_struct *sksec = sk->sk_security; 4043 u16 family = sk->sk_family; 4044 u32 sk_sid = sksec->sid; 4045 struct common_audit_data ad; 4046 char *addrp; 4047 u8 secmark_active; 4048 u8 peerlbl_active; 4049 4050 if (family != PF_INET && family != PF_INET6) 4051 return 0; 4052 4053 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4054 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4055 family = PF_INET; 4056 4057 /* If any sort of compatibility mode is enabled then handoff processing 4058 * to the selinux_sock_rcv_skb_compat() function to deal with the 4059 * special handling. We do this in an attempt to keep this function 4060 * as fast and as clean as possible. */ 4061 if (!selinux_policycap_netpeer) 4062 return selinux_sock_rcv_skb_compat(sk, skb, family); 4063 4064 secmark_active = selinux_secmark_enabled(); 4065 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4066 if (!secmark_active && !peerlbl_active) 4067 return 0; 4068 4069 COMMON_AUDIT_DATA_INIT(&ad, NET); 4070 ad.u.net.netif = skb->skb_iif; 4071 ad.u.net.family = family; 4072 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4073 if (err) 4074 return err; 4075 4076 if (peerlbl_active) { 4077 u32 peer_sid; 4078 4079 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4080 if (err) 4081 return err; 4082 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family, 4083 peer_sid, &ad); 4084 if (err) { 4085 selinux_netlbl_err(skb, err, 0); 4086 return err; 4087 } 4088 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4089 PEER__RECV, &ad); 4090 if (err) 4091 selinux_netlbl_err(skb, err, 0); 4092 } 4093 4094 if (secmark_active) { 4095 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4096 PACKET__RECV, &ad); 4097 if (err) 4098 return err; 4099 } 4100 4101 return err; 4102 } 4103 4104 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4105 int __user *optlen, unsigned len) 4106 { 4107 int err = 0; 4108 char *scontext; 4109 u32 scontext_len; 4110 struct sk_security_struct *sksec = sock->sk->sk_security; 4111 u32 peer_sid = SECSID_NULL; 4112 4113 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4114 sksec->sclass == SECCLASS_TCP_SOCKET) 4115 peer_sid = sksec->peer_sid; 4116 if (peer_sid == SECSID_NULL) 4117 return -ENOPROTOOPT; 4118 4119 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4120 if (err) 4121 return err; 4122 4123 if (scontext_len > len) { 4124 err = -ERANGE; 4125 goto out_len; 4126 } 4127 4128 if (copy_to_user(optval, scontext, scontext_len)) 4129 err = -EFAULT; 4130 4131 out_len: 4132 if (put_user(scontext_len, optlen)) 4133 err = -EFAULT; 4134 kfree(scontext); 4135 return err; 4136 } 4137 4138 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4139 { 4140 u32 peer_secid = SECSID_NULL; 4141 u16 family; 4142 4143 if (skb && skb->protocol == htons(ETH_P_IP)) 4144 family = PF_INET; 4145 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 4146 family = PF_INET6; 4147 else if (sock) 4148 family = sock->sk->sk_family; 4149 else 4150 goto out; 4151 4152 if (sock && family == PF_UNIX) 4153 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid); 4154 else if (skb) 4155 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4156 4157 out: 4158 *secid = peer_secid; 4159 if (peer_secid == SECSID_NULL) 4160 return -EINVAL; 4161 return 0; 4162 } 4163 4164 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4165 { 4166 struct sk_security_struct *sksec; 4167 4168 sksec = kzalloc(sizeof(*sksec), priority); 4169 if (!sksec) 4170 return -ENOMEM; 4171 4172 sksec->peer_sid = SECINITSID_UNLABELED; 4173 sksec->sid = SECINITSID_UNLABELED; 4174 selinux_netlbl_sk_security_reset(sksec); 4175 sk->sk_security = sksec; 4176 4177 return 0; 4178 } 4179 4180 static void selinux_sk_free_security(struct sock *sk) 4181 { 4182 struct sk_security_struct *sksec = sk->sk_security; 4183 4184 sk->sk_security = NULL; 4185 selinux_netlbl_sk_security_free(sksec); 4186 kfree(sksec); 4187 } 4188 4189 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4190 { 4191 struct sk_security_struct *sksec = sk->sk_security; 4192 struct sk_security_struct *newsksec = newsk->sk_security; 4193 4194 newsksec->sid = sksec->sid; 4195 newsksec->peer_sid = sksec->peer_sid; 4196 newsksec->sclass = sksec->sclass; 4197 4198 selinux_netlbl_sk_security_reset(newsksec); 4199 } 4200 4201 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4202 { 4203 if (!sk) 4204 *secid = SECINITSID_ANY_SOCKET; 4205 else { 4206 struct sk_security_struct *sksec = sk->sk_security; 4207 4208 *secid = sksec->sid; 4209 } 4210 } 4211 4212 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4213 { 4214 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 4215 struct sk_security_struct *sksec = sk->sk_security; 4216 4217 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4218 sk->sk_family == PF_UNIX) 4219 isec->sid = sksec->sid; 4220 sksec->sclass = isec->sclass; 4221 } 4222 4223 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4224 struct request_sock *req) 4225 { 4226 struct sk_security_struct *sksec = sk->sk_security; 4227 int err; 4228 u16 family = sk->sk_family; 4229 u32 newsid; 4230 u32 peersid; 4231 4232 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4233 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4234 family = PF_INET; 4235 4236 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 4237 if (err) 4238 return err; 4239 if (peersid == SECSID_NULL) { 4240 req->secid = sksec->sid; 4241 req->peer_secid = SECSID_NULL; 4242 } else { 4243 err = security_sid_mls_copy(sksec->sid, peersid, &newsid); 4244 if (err) 4245 return err; 4246 req->secid = newsid; 4247 req->peer_secid = peersid; 4248 } 4249 4250 return selinux_netlbl_inet_conn_request(req, family); 4251 } 4252 4253 static void selinux_inet_csk_clone(struct sock *newsk, 4254 const struct request_sock *req) 4255 { 4256 struct sk_security_struct *newsksec = newsk->sk_security; 4257 4258 newsksec->sid = req->secid; 4259 newsksec->peer_sid = req->peer_secid; 4260 /* NOTE: Ideally, we should also get the isec->sid for the 4261 new socket in sync, but we don't have the isec available yet. 4262 So we will wait until sock_graft to do it, by which 4263 time it will have been created and available. */ 4264 4265 /* We don't need to take any sort of lock here as we are the only 4266 * thread with access to newsksec */ 4267 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 4268 } 4269 4270 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 4271 { 4272 u16 family = sk->sk_family; 4273 struct sk_security_struct *sksec = sk->sk_security; 4274 4275 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4276 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4277 family = PF_INET; 4278 4279 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 4280 } 4281 4282 static void selinux_req_classify_flow(const struct request_sock *req, 4283 struct flowi *fl) 4284 { 4285 fl->secid = req->secid; 4286 } 4287 4288 static int selinux_tun_dev_create(void) 4289 { 4290 u32 sid = current_sid(); 4291 4292 /* we aren't taking into account the "sockcreate" SID since the socket 4293 * that is being created here is not a socket in the traditional sense, 4294 * instead it is a private sock, accessible only to the kernel, and 4295 * representing a wide range of network traffic spanning multiple 4296 * connections unlike traditional sockets - check the TUN driver to 4297 * get a better understanding of why this socket is special */ 4298 4299 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 4300 NULL); 4301 } 4302 4303 static void selinux_tun_dev_post_create(struct sock *sk) 4304 { 4305 struct sk_security_struct *sksec = sk->sk_security; 4306 4307 /* we don't currently perform any NetLabel based labeling here and it 4308 * isn't clear that we would want to do so anyway; while we could apply 4309 * labeling without the support of the TUN user the resulting labeled 4310 * traffic from the other end of the connection would almost certainly 4311 * cause confusion to the TUN user that had no idea network labeling 4312 * protocols were being used */ 4313 4314 /* see the comments in selinux_tun_dev_create() about why we don't use 4315 * the sockcreate SID here */ 4316 4317 sksec->sid = current_sid(); 4318 sksec->sclass = SECCLASS_TUN_SOCKET; 4319 } 4320 4321 static int selinux_tun_dev_attach(struct sock *sk) 4322 { 4323 struct sk_security_struct *sksec = sk->sk_security; 4324 u32 sid = current_sid(); 4325 int err; 4326 4327 err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET, 4328 TUN_SOCKET__RELABELFROM, NULL); 4329 if (err) 4330 return err; 4331 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, 4332 TUN_SOCKET__RELABELTO, NULL); 4333 if (err) 4334 return err; 4335 4336 sksec->sid = sid; 4337 4338 return 0; 4339 } 4340 4341 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 4342 { 4343 int err = 0; 4344 u32 perm; 4345 struct nlmsghdr *nlh; 4346 struct sk_security_struct *sksec = sk->sk_security; 4347 4348 if (skb->len < NLMSG_SPACE(0)) { 4349 err = -EINVAL; 4350 goto out; 4351 } 4352 nlh = nlmsg_hdr(skb); 4353 4354 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm); 4355 if (err) { 4356 if (err == -EINVAL) { 4357 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR, 4358 "SELinux: unrecognized netlink message" 4359 " type=%hu for sclass=%hu\n", 4360 nlh->nlmsg_type, sksec->sclass); 4361 if (!selinux_enforcing || security_get_allow_unknown()) 4362 err = 0; 4363 } 4364 4365 /* Ignore */ 4366 if (err == -ENOENT) 4367 err = 0; 4368 goto out; 4369 } 4370 4371 err = sock_has_perm(current, sk, perm); 4372 out: 4373 return err; 4374 } 4375 4376 #ifdef CONFIG_NETFILTER 4377 4378 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex, 4379 u16 family) 4380 { 4381 int err; 4382 char *addrp; 4383 u32 peer_sid; 4384 struct common_audit_data ad; 4385 u8 secmark_active; 4386 u8 netlbl_active; 4387 u8 peerlbl_active; 4388 4389 if (!selinux_policycap_netpeer) 4390 return NF_ACCEPT; 4391 4392 secmark_active = selinux_secmark_enabled(); 4393 netlbl_active = netlbl_enabled(); 4394 peerlbl_active = netlbl_active || selinux_xfrm_enabled(); 4395 if (!secmark_active && !peerlbl_active) 4396 return NF_ACCEPT; 4397 4398 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 4399 return NF_DROP; 4400 4401 COMMON_AUDIT_DATA_INIT(&ad, NET); 4402 ad.u.net.netif = ifindex; 4403 ad.u.net.family = family; 4404 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 4405 return NF_DROP; 4406 4407 if (peerlbl_active) { 4408 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family, 4409 peer_sid, &ad); 4410 if (err) { 4411 selinux_netlbl_err(skb, err, 1); 4412 return NF_DROP; 4413 } 4414 } 4415 4416 if (secmark_active) 4417 if (avc_has_perm(peer_sid, skb->secmark, 4418 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 4419 return NF_DROP; 4420 4421 if (netlbl_active) 4422 /* we do this in the FORWARD path and not the POST_ROUTING 4423 * path because we want to make sure we apply the necessary 4424 * labeling before IPsec is applied so we can leverage AH 4425 * protection */ 4426 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 4427 return NF_DROP; 4428 4429 return NF_ACCEPT; 4430 } 4431 4432 static unsigned int selinux_ipv4_forward(unsigned int hooknum, 4433 struct sk_buff *skb, 4434 const struct net_device *in, 4435 const struct net_device *out, 4436 int (*okfn)(struct sk_buff *)) 4437 { 4438 return selinux_ip_forward(skb, in->ifindex, PF_INET); 4439 } 4440 4441 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4442 static unsigned int selinux_ipv6_forward(unsigned int hooknum, 4443 struct sk_buff *skb, 4444 const struct net_device *in, 4445 const struct net_device *out, 4446 int (*okfn)(struct sk_buff *)) 4447 { 4448 return selinux_ip_forward(skb, in->ifindex, PF_INET6); 4449 } 4450 #endif /* IPV6 */ 4451 4452 static unsigned int selinux_ip_output(struct sk_buff *skb, 4453 u16 family) 4454 { 4455 u32 sid; 4456 4457 if (!netlbl_enabled()) 4458 return NF_ACCEPT; 4459 4460 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 4461 * because we want to make sure we apply the necessary labeling 4462 * before IPsec is applied so we can leverage AH protection */ 4463 if (skb->sk) { 4464 struct sk_security_struct *sksec = skb->sk->sk_security; 4465 sid = sksec->sid; 4466 } else 4467 sid = SECINITSID_KERNEL; 4468 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 4469 return NF_DROP; 4470 4471 return NF_ACCEPT; 4472 } 4473 4474 static unsigned int selinux_ipv4_output(unsigned int hooknum, 4475 struct sk_buff *skb, 4476 const struct net_device *in, 4477 const struct net_device *out, 4478 int (*okfn)(struct sk_buff *)) 4479 { 4480 return selinux_ip_output(skb, PF_INET); 4481 } 4482 4483 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 4484 int ifindex, 4485 u16 family) 4486 { 4487 struct sock *sk = skb->sk; 4488 struct sk_security_struct *sksec; 4489 struct common_audit_data ad; 4490 char *addrp; 4491 u8 proto; 4492 4493 if (sk == NULL) 4494 return NF_ACCEPT; 4495 sksec = sk->sk_security; 4496 4497 COMMON_AUDIT_DATA_INIT(&ad, NET); 4498 ad.u.net.netif = ifindex; 4499 ad.u.net.family = family; 4500 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 4501 return NF_DROP; 4502 4503 if (selinux_secmark_enabled()) 4504 if (avc_has_perm(sksec->sid, skb->secmark, 4505 SECCLASS_PACKET, PACKET__SEND, &ad)) 4506 return NF_DROP; 4507 4508 if (selinux_policycap_netpeer) 4509 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 4510 return NF_DROP; 4511 4512 return NF_ACCEPT; 4513 } 4514 4515 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex, 4516 u16 family) 4517 { 4518 u32 secmark_perm; 4519 u32 peer_sid; 4520 struct sock *sk; 4521 struct common_audit_data ad; 4522 char *addrp; 4523 u8 secmark_active; 4524 u8 peerlbl_active; 4525 4526 /* If any sort of compatibility mode is enabled then handoff processing 4527 * to the selinux_ip_postroute_compat() function to deal with the 4528 * special handling. We do this in an attempt to keep this function 4529 * as fast and as clean as possible. */ 4530 if (!selinux_policycap_netpeer) 4531 return selinux_ip_postroute_compat(skb, ifindex, family); 4532 #ifdef CONFIG_XFRM 4533 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 4534 * packet transformation so allow the packet to pass without any checks 4535 * since we'll have another chance to perform access control checks 4536 * when the packet is on it's final way out. 4537 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 4538 * is NULL, in this case go ahead and apply access control. */ 4539 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL) 4540 return NF_ACCEPT; 4541 #endif 4542 secmark_active = selinux_secmark_enabled(); 4543 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4544 if (!secmark_active && !peerlbl_active) 4545 return NF_ACCEPT; 4546 4547 /* if the packet is being forwarded then get the peer label from the 4548 * packet itself; otherwise check to see if it is from a local 4549 * application or the kernel, if from an application get the peer label 4550 * from the sending socket, otherwise use the kernel's sid */ 4551 sk = skb->sk; 4552 if (sk == NULL) { 4553 switch (family) { 4554 case PF_INET: 4555 if (IPCB(skb)->flags & IPSKB_FORWARDED) 4556 secmark_perm = PACKET__FORWARD_OUT; 4557 else 4558 secmark_perm = PACKET__SEND; 4559 break; 4560 case PF_INET6: 4561 if (IP6CB(skb)->flags & IP6SKB_FORWARDED) 4562 secmark_perm = PACKET__FORWARD_OUT; 4563 else 4564 secmark_perm = PACKET__SEND; 4565 break; 4566 default: 4567 return NF_DROP; 4568 } 4569 if (secmark_perm == PACKET__FORWARD_OUT) { 4570 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 4571 return NF_DROP; 4572 } else 4573 peer_sid = SECINITSID_KERNEL; 4574 } else { 4575 struct sk_security_struct *sksec = sk->sk_security; 4576 peer_sid = sksec->sid; 4577 secmark_perm = PACKET__SEND; 4578 } 4579 4580 COMMON_AUDIT_DATA_INIT(&ad, NET); 4581 ad.u.net.netif = ifindex; 4582 ad.u.net.family = family; 4583 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 4584 return NF_DROP; 4585 4586 if (secmark_active) 4587 if (avc_has_perm(peer_sid, skb->secmark, 4588 SECCLASS_PACKET, secmark_perm, &ad)) 4589 return NF_DROP; 4590 4591 if (peerlbl_active) { 4592 u32 if_sid; 4593 u32 node_sid; 4594 4595 if (sel_netif_sid(ifindex, &if_sid)) 4596 return NF_DROP; 4597 if (avc_has_perm(peer_sid, if_sid, 4598 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 4599 return NF_DROP; 4600 4601 if (sel_netnode_sid(addrp, family, &node_sid)) 4602 return NF_DROP; 4603 if (avc_has_perm(peer_sid, node_sid, 4604 SECCLASS_NODE, NODE__SENDTO, &ad)) 4605 return NF_DROP; 4606 } 4607 4608 return NF_ACCEPT; 4609 } 4610 4611 static unsigned int selinux_ipv4_postroute(unsigned int hooknum, 4612 struct sk_buff *skb, 4613 const struct net_device *in, 4614 const struct net_device *out, 4615 int (*okfn)(struct sk_buff *)) 4616 { 4617 return selinux_ip_postroute(skb, out->ifindex, PF_INET); 4618 } 4619 4620 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4621 static unsigned int selinux_ipv6_postroute(unsigned int hooknum, 4622 struct sk_buff *skb, 4623 const struct net_device *in, 4624 const struct net_device *out, 4625 int (*okfn)(struct sk_buff *)) 4626 { 4627 return selinux_ip_postroute(skb, out->ifindex, PF_INET6); 4628 } 4629 #endif /* IPV6 */ 4630 4631 #endif /* CONFIG_NETFILTER */ 4632 4633 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 4634 { 4635 int err; 4636 4637 err = cap_netlink_send(sk, skb); 4638 if (err) 4639 return err; 4640 4641 return selinux_nlmsg_perm(sk, skb); 4642 } 4643 4644 static int selinux_netlink_recv(struct sk_buff *skb, int capability) 4645 { 4646 int err; 4647 struct common_audit_data ad; 4648 4649 err = cap_netlink_recv(skb, capability); 4650 if (err) 4651 return err; 4652 4653 COMMON_AUDIT_DATA_INIT(&ad, CAP); 4654 ad.u.cap = capability; 4655 4656 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid, 4657 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad); 4658 } 4659 4660 static int ipc_alloc_security(struct task_struct *task, 4661 struct kern_ipc_perm *perm, 4662 u16 sclass) 4663 { 4664 struct ipc_security_struct *isec; 4665 u32 sid; 4666 4667 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 4668 if (!isec) 4669 return -ENOMEM; 4670 4671 sid = task_sid(task); 4672 isec->sclass = sclass; 4673 isec->sid = sid; 4674 perm->security = isec; 4675 4676 return 0; 4677 } 4678 4679 static void ipc_free_security(struct kern_ipc_perm *perm) 4680 { 4681 struct ipc_security_struct *isec = perm->security; 4682 perm->security = NULL; 4683 kfree(isec); 4684 } 4685 4686 static int msg_msg_alloc_security(struct msg_msg *msg) 4687 { 4688 struct msg_security_struct *msec; 4689 4690 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 4691 if (!msec) 4692 return -ENOMEM; 4693 4694 msec->sid = SECINITSID_UNLABELED; 4695 msg->security = msec; 4696 4697 return 0; 4698 } 4699 4700 static void msg_msg_free_security(struct msg_msg *msg) 4701 { 4702 struct msg_security_struct *msec = msg->security; 4703 4704 msg->security = NULL; 4705 kfree(msec); 4706 } 4707 4708 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 4709 u32 perms) 4710 { 4711 struct ipc_security_struct *isec; 4712 struct common_audit_data ad; 4713 u32 sid = current_sid(); 4714 4715 isec = ipc_perms->security; 4716 4717 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4718 ad.u.ipc_id = ipc_perms->key; 4719 4720 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 4721 } 4722 4723 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 4724 { 4725 return msg_msg_alloc_security(msg); 4726 } 4727 4728 static void selinux_msg_msg_free_security(struct msg_msg *msg) 4729 { 4730 msg_msg_free_security(msg); 4731 } 4732 4733 /* message queue security operations */ 4734 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 4735 { 4736 struct ipc_security_struct *isec; 4737 struct common_audit_data ad; 4738 u32 sid = current_sid(); 4739 int rc; 4740 4741 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 4742 if (rc) 4743 return rc; 4744 4745 isec = msq->q_perm.security; 4746 4747 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4748 ad.u.ipc_id = msq->q_perm.key; 4749 4750 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4751 MSGQ__CREATE, &ad); 4752 if (rc) { 4753 ipc_free_security(&msq->q_perm); 4754 return rc; 4755 } 4756 return 0; 4757 } 4758 4759 static void selinux_msg_queue_free_security(struct msg_queue *msq) 4760 { 4761 ipc_free_security(&msq->q_perm); 4762 } 4763 4764 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 4765 { 4766 struct ipc_security_struct *isec; 4767 struct common_audit_data ad; 4768 u32 sid = current_sid(); 4769 4770 isec = msq->q_perm.security; 4771 4772 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4773 ad.u.ipc_id = msq->q_perm.key; 4774 4775 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4776 MSGQ__ASSOCIATE, &ad); 4777 } 4778 4779 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 4780 { 4781 int err; 4782 int perms; 4783 4784 switch (cmd) { 4785 case IPC_INFO: 4786 case MSG_INFO: 4787 /* No specific object, just general system-wide information. */ 4788 return task_has_system(current, SYSTEM__IPC_INFO); 4789 case IPC_STAT: 4790 case MSG_STAT: 4791 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 4792 break; 4793 case IPC_SET: 4794 perms = MSGQ__SETATTR; 4795 break; 4796 case IPC_RMID: 4797 perms = MSGQ__DESTROY; 4798 break; 4799 default: 4800 return 0; 4801 } 4802 4803 err = ipc_has_perm(&msq->q_perm, perms); 4804 return err; 4805 } 4806 4807 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 4808 { 4809 struct ipc_security_struct *isec; 4810 struct msg_security_struct *msec; 4811 struct common_audit_data ad; 4812 u32 sid = current_sid(); 4813 int rc; 4814 4815 isec = msq->q_perm.security; 4816 msec = msg->security; 4817 4818 /* 4819 * First time through, need to assign label to the message 4820 */ 4821 if (msec->sid == SECINITSID_UNLABELED) { 4822 /* 4823 * Compute new sid based on current process and 4824 * message queue this message will be stored in 4825 */ 4826 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG, 4827 &msec->sid); 4828 if (rc) 4829 return rc; 4830 } 4831 4832 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4833 ad.u.ipc_id = msq->q_perm.key; 4834 4835 /* Can this process write to the queue? */ 4836 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4837 MSGQ__WRITE, &ad); 4838 if (!rc) 4839 /* Can this process send the message */ 4840 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 4841 MSG__SEND, &ad); 4842 if (!rc) 4843 /* Can the message be put in the queue? */ 4844 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 4845 MSGQ__ENQUEUE, &ad); 4846 4847 return rc; 4848 } 4849 4850 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 4851 struct task_struct *target, 4852 long type, int mode) 4853 { 4854 struct ipc_security_struct *isec; 4855 struct msg_security_struct *msec; 4856 struct common_audit_data ad; 4857 u32 sid = task_sid(target); 4858 int rc; 4859 4860 isec = msq->q_perm.security; 4861 msec = msg->security; 4862 4863 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4864 ad.u.ipc_id = msq->q_perm.key; 4865 4866 rc = avc_has_perm(sid, isec->sid, 4867 SECCLASS_MSGQ, MSGQ__READ, &ad); 4868 if (!rc) 4869 rc = avc_has_perm(sid, msec->sid, 4870 SECCLASS_MSG, MSG__RECEIVE, &ad); 4871 return rc; 4872 } 4873 4874 /* Shared Memory security operations */ 4875 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 4876 { 4877 struct ipc_security_struct *isec; 4878 struct common_audit_data ad; 4879 u32 sid = current_sid(); 4880 int rc; 4881 4882 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 4883 if (rc) 4884 return rc; 4885 4886 isec = shp->shm_perm.security; 4887 4888 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4889 ad.u.ipc_id = shp->shm_perm.key; 4890 4891 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM, 4892 SHM__CREATE, &ad); 4893 if (rc) { 4894 ipc_free_security(&shp->shm_perm); 4895 return rc; 4896 } 4897 return 0; 4898 } 4899 4900 static void selinux_shm_free_security(struct shmid_kernel *shp) 4901 { 4902 ipc_free_security(&shp->shm_perm); 4903 } 4904 4905 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 4906 { 4907 struct ipc_security_struct *isec; 4908 struct common_audit_data ad; 4909 u32 sid = current_sid(); 4910 4911 isec = shp->shm_perm.security; 4912 4913 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4914 ad.u.ipc_id = shp->shm_perm.key; 4915 4916 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 4917 SHM__ASSOCIATE, &ad); 4918 } 4919 4920 /* Note, at this point, shp is locked down */ 4921 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 4922 { 4923 int perms; 4924 int err; 4925 4926 switch (cmd) { 4927 case IPC_INFO: 4928 case SHM_INFO: 4929 /* No specific object, just general system-wide information. */ 4930 return task_has_system(current, SYSTEM__IPC_INFO); 4931 case IPC_STAT: 4932 case SHM_STAT: 4933 perms = SHM__GETATTR | SHM__ASSOCIATE; 4934 break; 4935 case IPC_SET: 4936 perms = SHM__SETATTR; 4937 break; 4938 case SHM_LOCK: 4939 case SHM_UNLOCK: 4940 perms = SHM__LOCK; 4941 break; 4942 case IPC_RMID: 4943 perms = SHM__DESTROY; 4944 break; 4945 default: 4946 return 0; 4947 } 4948 4949 err = ipc_has_perm(&shp->shm_perm, perms); 4950 return err; 4951 } 4952 4953 static int selinux_shm_shmat(struct shmid_kernel *shp, 4954 char __user *shmaddr, int shmflg) 4955 { 4956 u32 perms; 4957 4958 if (shmflg & SHM_RDONLY) 4959 perms = SHM__READ; 4960 else 4961 perms = SHM__READ | SHM__WRITE; 4962 4963 return ipc_has_perm(&shp->shm_perm, perms); 4964 } 4965 4966 /* Semaphore security operations */ 4967 static int selinux_sem_alloc_security(struct sem_array *sma) 4968 { 4969 struct ipc_security_struct *isec; 4970 struct common_audit_data ad; 4971 u32 sid = current_sid(); 4972 int rc; 4973 4974 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 4975 if (rc) 4976 return rc; 4977 4978 isec = sma->sem_perm.security; 4979 4980 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4981 ad.u.ipc_id = sma->sem_perm.key; 4982 4983 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM, 4984 SEM__CREATE, &ad); 4985 if (rc) { 4986 ipc_free_security(&sma->sem_perm); 4987 return rc; 4988 } 4989 return 0; 4990 } 4991 4992 static void selinux_sem_free_security(struct sem_array *sma) 4993 { 4994 ipc_free_security(&sma->sem_perm); 4995 } 4996 4997 static int selinux_sem_associate(struct sem_array *sma, int semflg) 4998 { 4999 struct ipc_security_struct *isec; 5000 struct common_audit_data ad; 5001 u32 sid = current_sid(); 5002 5003 isec = sma->sem_perm.security; 5004 5005 COMMON_AUDIT_DATA_INIT(&ad, IPC); 5006 ad.u.ipc_id = sma->sem_perm.key; 5007 5008 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5009 SEM__ASSOCIATE, &ad); 5010 } 5011 5012 /* Note, at this point, sma is locked down */ 5013 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 5014 { 5015 int err; 5016 u32 perms; 5017 5018 switch (cmd) { 5019 case IPC_INFO: 5020 case SEM_INFO: 5021 /* No specific object, just general system-wide information. */ 5022 return task_has_system(current, SYSTEM__IPC_INFO); 5023 case GETPID: 5024 case GETNCNT: 5025 case GETZCNT: 5026 perms = SEM__GETATTR; 5027 break; 5028 case GETVAL: 5029 case GETALL: 5030 perms = SEM__READ; 5031 break; 5032 case SETVAL: 5033 case SETALL: 5034 perms = SEM__WRITE; 5035 break; 5036 case IPC_RMID: 5037 perms = SEM__DESTROY; 5038 break; 5039 case IPC_SET: 5040 perms = SEM__SETATTR; 5041 break; 5042 case IPC_STAT: 5043 case SEM_STAT: 5044 perms = SEM__GETATTR | SEM__ASSOCIATE; 5045 break; 5046 default: 5047 return 0; 5048 } 5049 5050 err = ipc_has_perm(&sma->sem_perm, perms); 5051 return err; 5052 } 5053 5054 static int selinux_sem_semop(struct sem_array *sma, 5055 struct sembuf *sops, unsigned nsops, int alter) 5056 { 5057 u32 perms; 5058 5059 if (alter) 5060 perms = SEM__READ | SEM__WRITE; 5061 else 5062 perms = SEM__READ; 5063 5064 return ipc_has_perm(&sma->sem_perm, perms); 5065 } 5066 5067 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5068 { 5069 u32 av = 0; 5070 5071 av = 0; 5072 if (flag & S_IRUGO) 5073 av |= IPC__UNIX_READ; 5074 if (flag & S_IWUGO) 5075 av |= IPC__UNIX_WRITE; 5076 5077 if (av == 0) 5078 return 0; 5079 5080 return ipc_has_perm(ipcp, av); 5081 } 5082 5083 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5084 { 5085 struct ipc_security_struct *isec = ipcp->security; 5086 *secid = isec->sid; 5087 } 5088 5089 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5090 { 5091 if (inode) 5092 inode_doinit_with_dentry(inode, dentry); 5093 } 5094 5095 static int selinux_getprocattr(struct task_struct *p, 5096 char *name, char **value) 5097 { 5098 const struct task_security_struct *__tsec; 5099 u32 sid; 5100 int error; 5101 unsigned len; 5102 5103 if (current != p) { 5104 error = current_has_perm(p, PROCESS__GETATTR); 5105 if (error) 5106 return error; 5107 } 5108 5109 rcu_read_lock(); 5110 __tsec = __task_cred(p)->security; 5111 5112 if (!strcmp(name, "current")) 5113 sid = __tsec->sid; 5114 else if (!strcmp(name, "prev")) 5115 sid = __tsec->osid; 5116 else if (!strcmp(name, "exec")) 5117 sid = __tsec->exec_sid; 5118 else if (!strcmp(name, "fscreate")) 5119 sid = __tsec->create_sid; 5120 else if (!strcmp(name, "keycreate")) 5121 sid = __tsec->keycreate_sid; 5122 else if (!strcmp(name, "sockcreate")) 5123 sid = __tsec->sockcreate_sid; 5124 else 5125 goto invalid; 5126 rcu_read_unlock(); 5127 5128 if (!sid) 5129 return 0; 5130 5131 error = security_sid_to_context(sid, value, &len); 5132 if (error) 5133 return error; 5134 return len; 5135 5136 invalid: 5137 rcu_read_unlock(); 5138 return -EINVAL; 5139 } 5140 5141 static int selinux_setprocattr(struct task_struct *p, 5142 char *name, void *value, size_t size) 5143 { 5144 struct task_security_struct *tsec; 5145 struct task_struct *tracer; 5146 struct cred *new; 5147 u32 sid = 0, ptsid; 5148 int error; 5149 char *str = value; 5150 5151 if (current != p) { 5152 /* SELinux only allows a process to change its own 5153 security attributes. */ 5154 return -EACCES; 5155 } 5156 5157 /* 5158 * Basic control over ability to set these attributes at all. 5159 * current == p, but we'll pass them separately in case the 5160 * above restriction is ever removed. 5161 */ 5162 if (!strcmp(name, "exec")) 5163 error = current_has_perm(p, PROCESS__SETEXEC); 5164 else if (!strcmp(name, "fscreate")) 5165 error = current_has_perm(p, PROCESS__SETFSCREATE); 5166 else if (!strcmp(name, "keycreate")) 5167 error = current_has_perm(p, PROCESS__SETKEYCREATE); 5168 else if (!strcmp(name, "sockcreate")) 5169 error = current_has_perm(p, PROCESS__SETSOCKCREATE); 5170 else if (!strcmp(name, "current")) 5171 error = current_has_perm(p, PROCESS__SETCURRENT); 5172 else 5173 error = -EINVAL; 5174 if (error) 5175 return error; 5176 5177 /* Obtain a SID for the context, if one was specified. */ 5178 if (size && str[1] && str[1] != '\n') { 5179 if (str[size-1] == '\n') { 5180 str[size-1] = 0; 5181 size--; 5182 } 5183 error = security_context_to_sid(value, size, &sid); 5184 if (error == -EINVAL && !strcmp(name, "fscreate")) { 5185 if (!capable(CAP_MAC_ADMIN)) 5186 return error; 5187 error = security_context_to_sid_force(value, size, 5188 &sid); 5189 } 5190 if (error) 5191 return error; 5192 } 5193 5194 new = prepare_creds(); 5195 if (!new) 5196 return -ENOMEM; 5197 5198 /* Permission checking based on the specified context is 5199 performed during the actual operation (execve, 5200 open/mkdir/...), when we know the full context of the 5201 operation. See selinux_bprm_set_creds for the execve 5202 checks and may_create for the file creation checks. The 5203 operation will then fail if the context is not permitted. */ 5204 tsec = new->security; 5205 if (!strcmp(name, "exec")) { 5206 tsec->exec_sid = sid; 5207 } else if (!strcmp(name, "fscreate")) { 5208 tsec->create_sid = sid; 5209 } else if (!strcmp(name, "keycreate")) { 5210 error = may_create_key(sid, p); 5211 if (error) 5212 goto abort_change; 5213 tsec->keycreate_sid = sid; 5214 } else if (!strcmp(name, "sockcreate")) { 5215 tsec->sockcreate_sid = sid; 5216 } else if (!strcmp(name, "current")) { 5217 error = -EINVAL; 5218 if (sid == 0) 5219 goto abort_change; 5220 5221 /* Only allow single threaded processes to change context */ 5222 error = -EPERM; 5223 if (!current_is_single_threaded()) { 5224 error = security_bounded_transition(tsec->sid, sid); 5225 if (error) 5226 goto abort_change; 5227 } 5228 5229 /* Check permissions for the transition. */ 5230 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5231 PROCESS__DYNTRANSITION, NULL); 5232 if (error) 5233 goto abort_change; 5234 5235 /* Check for ptracing, and update the task SID if ok. 5236 Otherwise, leave SID unchanged and fail. */ 5237 ptsid = 0; 5238 task_lock(p); 5239 tracer = tracehook_tracer_task(p); 5240 if (tracer) 5241 ptsid = task_sid(tracer); 5242 task_unlock(p); 5243 5244 if (tracer) { 5245 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 5246 PROCESS__PTRACE, NULL); 5247 if (error) 5248 goto abort_change; 5249 } 5250 5251 tsec->sid = sid; 5252 } else { 5253 error = -EINVAL; 5254 goto abort_change; 5255 } 5256 5257 commit_creds(new); 5258 return size; 5259 5260 abort_change: 5261 abort_creds(new); 5262 return error; 5263 } 5264 5265 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5266 { 5267 return security_sid_to_context(secid, secdata, seclen); 5268 } 5269 5270 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 5271 { 5272 return security_context_to_sid(secdata, seclen, secid); 5273 } 5274 5275 static void selinux_release_secctx(char *secdata, u32 seclen) 5276 { 5277 kfree(secdata); 5278 } 5279 5280 /* 5281 * called with inode->i_mutex locked 5282 */ 5283 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 5284 { 5285 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0); 5286 } 5287 5288 /* 5289 * called with inode->i_mutex locked 5290 */ 5291 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 5292 { 5293 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); 5294 } 5295 5296 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 5297 { 5298 int len = 0; 5299 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, 5300 ctx, true); 5301 if (len < 0) 5302 return len; 5303 *ctxlen = len; 5304 return 0; 5305 } 5306 #ifdef CONFIG_KEYS 5307 5308 static int selinux_key_alloc(struct key *k, const struct cred *cred, 5309 unsigned long flags) 5310 { 5311 const struct task_security_struct *tsec; 5312 struct key_security_struct *ksec; 5313 5314 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 5315 if (!ksec) 5316 return -ENOMEM; 5317 5318 tsec = cred->security; 5319 if (tsec->keycreate_sid) 5320 ksec->sid = tsec->keycreate_sid; 5321 else 5322 ksec->sid = tsec->sid; 5323 5324 k->security = ksec; 5325 return 0; 5326 } 5327 5328 static void selinux_key_free(struct key *k) 5329 { 5330 struct key_security_struct *ksec = k->security; 5331 5332 k->security = NULL; 5333 kfree(ksec); 5334 } 5335 5336 static int selinux_key_permission(key_ref_t key_ref, 5337 const struct cred *cred, 5338 key_perm_t perm) 5339 { 5340 struct key *key; 5341 struct key_security_struct *ksec; 5342 u32 sid; 5343 5344 /* if no specific permissions are requested, we skip the 5345 permission check. No serious, additional covert channels 5346 appear to be created. */ 5347 if (perm == 0) 5348 return 0; 5349 5350 sid = cred_sid(cred); 5351 5352 key = key_ref_to_ptr(key_ref); 5353 ksec = key->security; 5354 5355 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 5356 } 5357 5358 static int selinux_key_getsecurity(struct key *key, char **_buffer) 5359 { 5360 struct key_security_struct *ksec = key->security; 5361 char *context = NULL; 5362 unsigned len; 5363 int rc; 5364 5365 rc = security_sid_to_context(ksec->sid, &context, &len); 5366 if (!rc) 5367 rc = len; 5368 *_buffer = context; 5369 return rc; 5370 } 5371 5372 #endif 5373 5374 static struct security_operations selinux_ops = { 5375 .name = "selinux", 5376 5377 .ptrace_access_check = selinux_ptrace_access_check, 5378 .ptrace_traceme = selinux_ptrace_traceme, 5379 .capget = selinux_capget, 5380 .capset = selinux_capset, 5381 .sysctl = selinux_sysctl, 5382 .capable = selinux_capable, 5383 .quotactl = selinux_quotactl, 5384 .quota_on = selinux_quota_on, 5385 .syslog = selinux_syslog, 5386 .vm_enough_memory = selinux_vm_enough_memory, 5387 5388 .netlink_send = selinux_netlink_send, 5389 .netlink_recv = selinux_netlink_recv, 5390 5391 .bprm_set_creds = selinux_bprm_set_creds, 5392 .bprm_committing_creds = selinux_bprm_committing_creds, 5393 .bprm_committed_creds = selinux_bprm_committed_creds, 5394 .bprm_secureexec = selinux_bprm_secureexec, 5395 5396 .sb_alloc_security = selinux_sb_alloc_security, 5397 .sb_free_security = selinux_sb_free_security, 5398 .sb_copy_data = selinux_sb_copy_data, 5399 .sb_kern_mount = selinux_sb_kern_mount, 5400 .sb_show_options = selinux_sb_show_options, 5401 .sb_statfs = selinux_sb_statfs, 5402 .sb_mount = selinux_mount, 5403 .sb_umount = selinux_umount, 5404 .sb_set_mnt_opts = selinux_set_mnt_opts, 5405 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts, 5406 .sb_parse_opts_str = selinux_parse_opts_str, 5407 5408 5409 .inode_alloc_security = selinux_inode_alloc_security, 5410 .inode_free_security = selinux_inode_free_security, 5411 .inode_init_security = selinux_inode_init_security, 5412 .inode_create = selinux_inode_create, 5413 .inode_link = selinux_inode_link, 5414 .inode_unlink = selinux_inode_unlink, 5415 .inode_symlink = selinux_inode_symlink, 5416 .inode_mkdir = selinux_inode_mkdir, 5417 .inode_rmdir = selinux_inode_rmdir, 5418 .inode_mknod = selinux_inode_mknod, 5419 .inode_rename = selinux_inode_rename, 5420 .inode_readlink = selinux_inode_readlink, 5421 .inode_follow_link = selinux_inode_follow_link, 5422 .inode_permission = selinux_inode_permission, 5423 .inode_setattr = selinux_inode_setattr, 5424 .inode_getattr = selinux_inode_getattr, 5425 .inode_setxattr = selinux_inode_setxattr, 5426 .inode_post_setxattr = selinux_inode_post_setxattr, 5427 .inode_getxattr = selinux_inode_getxattr, 5428 .inode_listxattr = selinux_inode_listxattr, 5429 .inode_removexattr = selinux_inode_removexattr, 5430 .inode_getsecurity = selinux_inode_getsecurity, 5431 .inode_setsecurity = selinux_inode_setsecurity, 5432 .inode_listsecurity = selinux_inode_listsecurity, 5433 .inode_getsecid = selinux_inode_getsecid, 5434 5435 .file_permission = selinux_file_permission, 5436 .file_alloc_security = selinux_file_alloc_security, 5437 .file_free_security = selinux_file_free_security, 5438 .file_ioctl = selinux_file_ioctl, 5439 .file_mmap = selinux_file_mmap, 5440 .file_mprotect = selinux_file_mprotect, 5441 .file_lock = selinux_file_lock, 5442 .file_fcntl = selinux_file_fcntl, 5443 .file_set_fowner = selinux_file_set_fowner, 5444 .file_send_sigiotask = selinux_file_send_sigiotask, 5445 .file_receive = selinux_file_receive, 5446 5447 .dentry_open = selinux_dentry_open, 5448 5449 .task_create = selinux_task_create, 5450 .cred_alloc_blank = selinux_cred_alloc_blank, 5451 .cred_free = selinux_cred_free, 5452 .cred_prepare = selinux_cred_prepare, 5453 .cred_transfer = selinux_cred_transfer, 5454 .kernel_act_as = selinux_kernel_act_as, 5455 .kernel_create_files_as = selinux_kernel_create_files_as, 5456 .kernel_module_request = selinux_kernel_module_request, 5457 .task_setpgid = selinux_task_setpgid, 5458 .task_getpgid = selinux_task_getpgid, 5459 .task_getsid = selinux_task_getsid, 5460 .task_getsecid = selinux_task_getsecid, 5461 .task_setnice = selinux_task_setnice, 5462 .task_setioprio = selinux_task_setioprio, 5463 .task_getioprio = selinux_task_getioprio, 5464 .task_setrlimit = selinux_task_setrlimit, 5465 .task_setscheduler = selinux_task_setscheduler, 5466 .task_getscheduler = selinux_task_getscheduler, 5467 .task_movememory = selinux_task_movememory, 5468 .task_kill = selinux_task_kill, 5469 .task_wait = selinux_task_wait, 5470 .task_to_inode = selinux_task_to_inode, 5471 5472 .ipc_permission = selinux_ipc_permission, 5473 .ipc_getsecid = selinux_ipc_getsecid, 5474 5475 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 5476 .msg_msg_free_security = selinux_msg_msg_free_security, 5477 5478 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 5479 .msg_queue_free_security = selinux_msg_queue_free_security, 5480 .msg_queue_associate = selinux_msg_queue_associate, 5481 .msg_queue_msgctl = selinux_msg_queue_msgctl, 5482 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 5483 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 5484 5485 .shm_alloc_security = selinux_shm_alloc_security, 5486 .shm_free_security = selinux_shm_free_security, 5487 .shm_associate = selinux_shm_associate, 5488 .shm_shmctl = selinux_shm_shmctl, 5489 .shm_shmat = selinux_shm_shmat, 5490 5491 .sem_alloc_security = selinux_sem_alloc_security, 5492 .sem_free_security = selinux_sem_free_security, 5493 .sem_associate = selinux_sem_associate, 5494 .sem_semctl = selinux_sem_semctl, 5495 .sem_semop = selinux_sem_semop, 5496 5497 .d_instantiate = selinux_d_instantiate, 5498 5499 .getprocattr = selinux_getprocattr, 5500 .setprocattr = selinux_setprocattr, 5501 5502 .secid_to_secctx = selinux_secid_to_secctx, 5503 .secctx_to_secid = selinux_secctx_to_secid, 5504 .release_secctx = selinux_release_secctx, 5505 .inode_notifysecctx = selinux_inode_notifysecctx, 5506 .inode_setsecctx = selinux_inode_setsecctx, 5507 .inode_getsecctx = selinux_inode_getsecctx, 5508 5509 .unix_stream_connect = selinux_socket_unix_stream_connect, 5510 .unix_may_send = selinux_socket_unix_may_send, 5511 5512 .socket_create = selinux_socket_create, 5513 .socket_post_create = selinux_socket_post_create, 5514 .socket_bind = selinux_socket_bind, 5515 .socket_connect = selinux_socket_connect, 5516 .socket_listen = selinux_socket_listen, 5517 .socket_accept = selinux_socket_accept, 5518 .socket_sendmsg = selinux_socket_sendmsg, 5519 .socket_recvmsg = selinux_socket_recvmsg, 5520 .socket_getsockname = selinux_socket_getsockname, 5521 .socket_getpeername = selinux_socket_getpeername, 5522 .socket_getsockopt = selinux_socket_getsockopt, 5523 .socket_setsockopt = selinux_socket_setsockopt, 5524 .socket_shutdown = selinux_socket_shutdown, 5525 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 5526 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 5527 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 5528 .sk_alloc_security = selinux_sk_alloc_security, 5529 .sk_free_security = selinux_sk_free_security, 5530 .sk_clone_security = selinux_sk_clone_security, 5531 .sk_getsecid = selinux_sk_getsecid, 5532 .sock_graft = selinux_sock_graft, 5533 .inet_conn_request = selinux_inet_conn_request, 5534 .inet_csk_clone = selinux_inet_csk_clone, 5535 .inet_conn_established = selinux_inet_conn_established, 5536 .req_classify_flow = selinux_req_classify_flow, 5537 .tun_dev_create = selinux_tun_dev_create, 5538 .tun_dev_post_create = selinux_tun_dev_post_create, 5539 .tun_dev_attach = selinux_tun_dev_attach, 5540 5541 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5542 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 5543 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 5544 .xfrm_policy_free_security = selinux_xfrm_policy_free, 5545 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 5546 .xfrm_state_alloc_security = selinux_xfrm_state_alloc, 5547 .xfrm_state_free_security = selinux_xfrm_state_free, 5548 .xfrm_state_delete_security = selinux_xfrm_state_delete, 5549 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 5550 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 5551 .xfrm_decode_session = selinux_xfrm_decode_session, 5552 #endif 5553 5554 #ifdef CONFIG_KEYS 5555 .key_alloc = selinux_key_alloc, 5556 .key_free = selinux_key_free, 5557 .key_permission = selinux_key_permission, 5558 .key_getsecurity = selinux_key_getsecurity, 5559 #endif 5560 5561 #ifdef CONFIG_AUDIT 5562 .audit_rule_init = selinux_audit_rule_init, 5563 .audit_rule_known = selinux_audit_rule_known, 5564 .audit_rule_match = selinux_audit_rule_match, 5565 .audit_rule_free = selinux_audit_rule_free, 5566 #endif 5567 }; 5568 5569 static __init int selinux_init(void) 5570 { 5571 if (!security_module_enable(&selinux_ops)) { 5572 selinux_enabled = 0; 5573 return 0; 5574 } 5575 5576 if (!selinux_enabled) { 5577 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 5578 return 0; 5579 } 5580 5581 printk(KERN_INFO "SELinux: Initializing.\n"); 5582 5583 /* Set the security state for the initial task. */ 5584 cred_init_security(); 5585 5586 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 5587 5588 sel_inode_cache = kmem_cache_create("selinux_inode_security", 5589 sizeof(struct inode_security_struct), 5590 0, SLAB_PANIC, NULL); 5591 avc_init(); 5592 5593 if (register_security(&selinux_ops)) 5594 panic("SELinux: Unable to register with kernel.\n"); 5595 5596 if (selinux_enforcing) 5597 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 5598 else 5599 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 5600 5601 return 0; 5602 } 5603 5604 static void delayed_superblock_init(struct super_block *sb, void *unused) 5605 { 5606 superblock_doinit(sb, NULL); 5607 } 5608 5609 void selinux_complete_init(void) 5610 { 5611 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 5612 5613 /* Set up any superblocks initialized prior to the policy load. */ 5614 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 5615 iterate_supers(delayed_superblock_init, NULL); 5616 } 5617 5618 /* SELinux requires early initialization in order to label 5619 all processes and objects when they are created. */ 5620 security_initcall(selinux_init); 5621 5622 #if defined(CONFIG_NETFILTER) 5623 5624 static struct nf_hook_ops selinux_ipv4_ops[] = { 5625 { 5626 .hook = selinux_ipv4_postroute, 5627 .owner = THIS_MODULE, 5628 .pf = PF_INET, 5629 .hooknum = NF_INET_POST_ROUTING, 5630 .priority = NF_IP_PRI_SELINUX_LAST, 5631 }, 5632 { 5633 .hook = selinux_ipv4_forward, 5634 .owner = THIS_MODULE, 5635 .pf = PF_INET, 5636 .hooknum = NF_INET_FORWARD, 5637 .priority = NF_IP_PRI_SELINUX_FIRST, 5638 }, 5639 { 5640 .hook = selinux_ipv4_output, 5641 .owner = THIS_MODULE, 5642 .pf = PF_INET, 5643 .hooknum = NF_INET_LOCAL_OUT, 5644 .priority = NF_IP_PRI_SELINUX_FIRST, 5645 } 5646 }; 5647 5648 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5649 5650 static struct nf_hook_ops selinux_ipv6_ops[] = { 5651 { 5652 .hook = selinux_ipv6_postroute, 5653 .owner = THIS_MODULE, 5654 .pf = PF_INET6, 5655 .hooknum = NF_INET_POST_ROUTING, 5656 .priority = NF_IP6_PRI_SELINUX_LAST, 5657 }, 5658 { 5659 .hook = selinux_ipv6_forward, 5660 .owner = THIS_MODULE, 5661 .pf = PF_INET6, 5662 .hooknum = NF_INET_FORWARD, 5663 .priority = NF_IP6_PRI_SELINUX_FIRST, 5664 } 5665 }; 5666 5667 #endif /* IPV6 */ 5668 5669 static int __init selinux_nf_ip_init(void) 5670 { 5671 int err = 0; 5672 5673 if (!selinux_enabled) 5674 goto out; 5675 5676 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 5677 5678 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5679 if (err) 5680 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err); 5681 5682 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5683 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5684 if (err) 5685 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err); 5686 #endif /* IPV6 */ 5687 5688 out: 5689 return err; 5690 } 5691 5692 __initcall(selinux_nf_ip_init); 5693 5694 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5695 static void selinux_nf_ip_exit(void) 5696 { 5697 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 5698 5699 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5700 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5701 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5702 #endif /* IPV6 */ 5703 } 5704 #endif 5705 5706 #else /* CONFIG_NETFILTER */ 5707 5708 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5709 #define selinux_nf_ip_exit() 5710 #endif 5711 5712 #endif /* CONFIG_NETFILTER */ 5713 5714 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5715 static int selinux_disabled; 5716 5717 int selinux_disable(void) 5718 { 5719 extern void exit_sel_fs(void); 5720 5721 if (ss_initialized) { 5722 /* Not permitted after initial policy load. */ 5723 return -EINVAL; 5724 } 5725 5726 if (selinux_disabled) { 5727 /* Only do this once. */ 5728 return -EINVAL; 5729 } 5730 5731 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 5732 5733 selinux_disabled = 1; 5734 selinux_enabled = 0; 5735 5736 reset_security_ops(); 5737 5738 /* Try to destroy the avc node cache */ 5739 avc_disable(); 5740 5741 /* Unregister netfilter hooks. */ 5742 selinux_nf_ip_exit(); 5743 5744 /* Unregister selinuxfs. */ 5745 exit_sel_fs(); 5746 5747 return 0; 5748 } 5749 #endif 5750