xref: /linux/security/selinux/hooks.c (revision cd3cec0a02c7338ce2901c574f3935b8f6984aab)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Security-Enhanced Linux (SELinux) security module
4  *
5  *  This file contains the SELinux hook function implementations.
6  *
7  *  Authors:  Stephen Smalley, <stephen.smalley.work@gmail.com>
8  *	      Chris Vance, <cvance@nai.com>
9  *	      Wayne Salamon, <wsalamon@nai.com>
10  *	      James Morris <jmorris@redhat.com>
11  *
12  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14  *					   Eric Paris <eparis@redhat.com>
15  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  *			    <dgoeddel@trustedcs.com>
17  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18  *	Paul Moore <paul@paul-moore.com>
19  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
21  *  Copyright (C) 2016 Mellanox Technologies
22  */
23 
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/errno.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/task.h>
31 #include <linux/lsm_hooks.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/swap.h>
41 #include <linux/spinlock.h>
42 #include <linux/syscalls.h>
43 #include <linux/dcache.h>
44 #include <linux/file.h>
45 #include <linux/fdtable.h>
46 #include <linux/namei.h>
47 #include <linux/mount.h>
48 #include <linux/fs_context.h>
49 #include <linux/fs_parser.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>		/* for local_port_range[] */
55 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>	/* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/sctp.h>
70 #include <net/sctp/structs.h>
71 #include <linux/quota.h>
72 #include <linux/un.h>		/* for Unix socket types */
73 #include <net/af_unix.h>	/* for Unix socket types */
74 #include <linux/parser.h>
75 #include <linux/nfs_mount.h>
76 #include <net/ipv6.h>
77 #include <linux/hugetlb.h>
78 #include <linux/personality.h>
79 #include <linux/audit.h>
80 #include <linux/string.h>
81 #include <linux/mutex.h>
82 #include <linux/posix-timers.h>
83 #include <linux/syslog.h>
84 #include <linux/user_namespace.h>
85 #include <linux/export.h>
86 #include <linux/msg.h>
87 #include <linux/shm.h>
88 #include <uapi/linux/shm.h>
89 #include <linux/bpf.h>
90 #include <linux/kernfs.h>
91 #include <linux/stringhash.h>	/* for hashlen_string() */
92 #include <uapi/linux/mount.h>
93 #include <linux/fsnotify.h>
94 #include <linux/fanotify.h>
95 #include <linux/io_uring/cmd.h>
96 #include <uapi/linux/lsm.h>
97 
98 #include "avc.h"
99 #include "objsec.h"
100 #include "netif.h"
101 #include "netnode.h"
102 #include "netport.h"
103 #include "ibpkey.h"
104 #include "xfrm.h"
105 #include "netlabel.h"
106 #include "audit.h"
107 #include "avc_ss.h"
108 
109 #define SELINUX_INODE_INIT_XATTRS 1
110 
111 struct selinux_state selinux_state;
112 
113 /* SECMARK reference count */
114 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
115 
116 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
117 static int selinux_enforcing_boot __initdata;
118 
119 static int __init enforcing_setup(char *str)
120 {
121 	unsigned long enforcing;
122 	if (!kstrtoul(str, 0, &enforcing))
123 		selinux_enforcing_boot = enforcing ? 1 : 0;
124 	return 1;
125 }
126 __setup("enforcing=", enforcing_setup);
127 #else
128 #define selinux_enforcing_boot 1
129 #endif
130 
131 int selinux_enabled_boot __initdata = 1;
132 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
133 static int __init selinux_enabled_setup(char *str)
134 {
135 	unsigned long enabled;
136 	if (!kstrtoul(str, 0, &enabled))
137 		selinux_enabled_boot = enabled ? 1 : 0;
138 	return 1;
139 }
140 __setup("selinux=", selinux_enabled_setup);
141 #endif
142 
143 static int __init checkreqprot_setup(char *str)
144 {
145 	unsigned long checkreqprot;
146 
147 	if (!kstrtoul(str, 0, &checkreqprot)) {
148 		if (checkreqprot)
149 			pr_err("SELinux: checkreqprot set to 1 via kernel parameter.  This is no longer supported.\n");
150 	}
151 	return 1;
152 }
153 __setup("checkreqprot=", checkreqprot_setup);
154 
155 /**
156  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157  *
158  * Description:
159  * This function checks the SECMARK reference counter to see if any SECMARK
160  * targets are currently configured, if the reference counter is greater than
161  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
162  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
163  * policy capability is enabled, SECMARK is always considered enabled.
164  *
165  */
166 static int selinux_secmark_enabled(void)
167 {
168 	return (selinux_policycap_alwaysnetwork() ||
169 		atomic_read(&selinux_secmark_refcount));
170 }
171 
172 /**
173  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174  *
175  * Description:
176  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
177  * (1) if any are enabled or false (0) if neither are enabled.  If the
178  * always_check_network policy capability is enabled, peer labeling
179  * is always considered enabled.
180  *
181  */
182 static int selinux_peerlbl_enabled(void)
183 {
184 	return (selinux_policycap_alwaysnetwork() ||
185 		netlbl_enabled() || selinux_xfrm_enabled());
186 }
187 
188 static int selinux_netcache_avc_callback(u32 event)
189 {
190 	if (event == AVC_CALLBACK_RESET) {
191 		sel_netif_flush();
192 		sel_netnode_flush();
193 		sel_netport_flush();
194 		synchronize_net();
195 	}
196 	return 0;
197 }
198 
199 static int selinux_lsm_notifier_avc_callback(u32 event)
200 {
201 	if (event == AVC_CALLBACK_RESET) {
202 		sel_ib_pkey_flush();
203 		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 	}
205 
206 	return 0;
207 }
208 
209 /*
210  * initialise the security for the init task
211  */
212 static void cred_init_security(void)
213 {
214 	struct task_security_struct *tsec;
215 
216 	tsec = selinux_cred(unrcu_pointer(current->real_cred));
217 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
218 }
219 
220 /*
221  * get the security ID of a set of credentials
222  */
223 static inline u32 cred_sid(const struct cred *cred)
224 {
225 	const struct task_security_struct *tsec;
226 
227 	tsec = selinux_cred(cred);
228 	return tsec->sid;
229 }
230 
231 static void __ad_net_init(struct common_audit_data *ad,
232 			  struct lsm_network_audit *net,
233 			  int ifindex, struct sock *sk, u16 family)
234 {
235 	ad->type = LSM_AUDIT_DATA_NET;
236 	ad->u.net = net;
237 	net->netif = ifindex;
238 	net->sk = sk;
239 	net->family = family;
240 }
241 
242 static void ad_net_init_from_sk(struct common_audit_data *ad,
243 				struct lsm_network_audit *net,
244 				struct sock *sk)
245 {
246 	__ad_net_init(ad, net, 0, sk, 0);
247 }
248 
249 static void ad_net_init_from_iif(struct common_audit_data *ad,
250 				 struct lsm_network_audit *net,
251 				 int ifindex, u16 family)
252 {
253 	__ad_net_init(ad, net, ifindex, NULL, family);
254 }
255 
256 /*
257  * get the objective security ID of a task
258  */
259 static inline u32 task_sid_obj(const struct task_struct *task)
260 {
261 	u32 sid;
262 
263 	rcu_read_lock();
264 	sid = cred_sid(__task_cred(task));
265 	rcu_read_unlock();
266 	return sid;
267 }
268 
269 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
270 
271 /*
272  * Try reloading inode security labels that have been marked as invalid.  The
273  * @may_sleep parameter indicates when sleeping and thus reloading labels is
274  * allowed; when set to false, returns -ECHILD when the label is
275  * invalid.  The @dentry parameter should be set to a dentry of the inode.
276  */
277 static int __inode_security_revalidate(struct inode *inode,
278 				       struct dentry *dentry,
279 				       bool may_sleep)
280 {
281 	struct inode_security_struct *isec = selinux_inode(inode);
282 
283 	might_sleep_if(may_sleep);
284 
285 	if (selinux_initialized() &&
286 	    isec->initialized != LABEL_INITIALIZED) {
287 		if (!may_sleep)
288 			return -ECHILD;
289 
290 		/*
291 		 * Try reloading the inode security label.  This will fail if
292 		 * @opt_dentry is NULL and no dentry for this inode can be
293 		 * found; in that case, continue using the old label.
294 		 */
295 		inode_doinit_with_dentry(inode, dentry);
296 	}
297 	return 0;
298 }
299 
300 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
301 {
302 	return selinux_inode(inode);
303 }
304 
305 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
306 {
307 	int error;
308 
309 	error = __inode_security_revalidate(inode, NULL, !rcu);
310 	if (error)
311 		return ERR_PTR(error);
312 	return selinux_inode(inode);
313 }
314 
315 /*
316  * Get the security label of an inode.
317  */
318 static struct inode_security_struct *inode_security(struct inode *inode)
319 {
320 	__inode_security_revalidate(inode, NULL, true);
321 	return selinux_inode(inode);
322 }
323 
324 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
325 {
326 	struct inode *inode = d_backing_inode(dentry);
327 
328 	return selinux_inode(inode);
329 }
330 
331 /*
332  * Get the security label of a dentry's backing inode.
333  */
334 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
335 {
336 	struct inode *inode = d_backing_inode(dentry);
337 
338 	__inode_security_revalidate(inode, dentry, true);
339 	return selinux_inode(inode);
340 }
341 
342 static void inode_free_security(struct inode *inode)
343 {
344 	struct inode_security_struct *isec = selinux_inode(inode);
345 	struct superblock_security_struct *sbsec;
346 
347 	if (!isec)
348 		return;
349 	sbsec = selinux_superblock(inode->i_sb);
350 	/*
351 	 * As not all inode security structures are in a list, we check for
352 	 * empty list outside of the lock to make sure that we won't waste
353 	 * time taking a lock doing nothing.
354 	 *
355 	 * The list_del_init() function can be safely called more than once.
356 	 * It should not be possible for this function to be called with
357 	 * concurrent list_add(), but for better safety against future changes
358 	 * in the code, we use list_empty_careful() here.
359 	 */
360 	if (!list_empty_careful(&isec->list)) {
361 		spin_lock(&sbsec->isec_lock);
362 		list_del_init(&isec->list);
363 		spin_unlock(&sbsec->isec_lock);
364 	}
365 }
366 
367 struct selinux_mnt_opts {
368 	u32 fscontext_sid;
369 	u32 context_sid;
370 	u32 rootcontext_sid;
371 	u32 defcontext_sid;
372 };
373 
374 static void selinux_free_mnt_opts(void *mnt_opts)
375 {
376 	kfree(mnt_opts);
377 }
378 
379 enum {
380 	Opt_error = -1,
381 	Opt_context = 0,
382 	Opt_defcontext = 1,
383 	Opt_fscontext = 2,
384 	Opt_rootcontext = 3,
385 	Opt_seclabel = 4,
386 };
387 
388 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
389 static const struct {
390 	const char *name;
391 	int len;
392 	int opt;
393 	bool has_arg;
394 } tokens[] = {
395 	A(context, true),
396 	A(fscontext, true),
397 	A(defcontext, true),
398 	A(rootcontext, true),
399 	A(seclabel, false),
400 };
401 #undef A
402 
403 static int match_opt_prefix(char *s, int l, char **arg)
404 {
405 	int i;
406 
407 	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
408 		size_t len = tokens[i].len;
409 		if (len > l || memcmp(s, tokens[i].name, len))
410 			continue;
411 		if (tokens[i].has_arg) {
412 			if (len == l || s[len] != '=')
413 				continue;
414 			*arg = s + len + 1;
415 		} else if (len != l)
416 			continue;
417 		return tokens[i].opt;
418 	}
419 	return Opt_error;
420 }
421 
422 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
423 
424 static int may_context_mount_sb_relabel(u32 sid,
425 			struct superblock_security_struct *sbsec,
426 			const struct cred *cred)
427 {
428 	const struct task_security_struct *tsec = selinux_cred(cred);
429 	int rc;
430 
431 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
432 			  FILESYSTEM__RELABELFROM, NULL);
433 	if (rc)
434 		return rc;
435 
436 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
437 			  FILESYSTEM__RELABELTO, NULL);
438 	return rc;
439 }
440 
441 static int may_context_mount_inode_relabel(u32 sid,
442 			struct superblock_security_struct *sbsec,
443 			const struct cred *cred)
444 {
445 	const struct task_security_struct *tsec = selinux_cred(cred);
446 	int rc;
447 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
448 			  FILESYSTEM__RELABELFROM, NULL);
449 	if (rc)
450 		return rc;
451 
452 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
453 			  FILESYSTEM__ASSOCIATE, NULL);
454 	return rc;
455 }
456 
457 static int selinux_is_genfs_special_handling(struct super_block *sb)
458 {
459 	/* Special handling. Genfs but also in-core setxattr handler */
460 	return	!strcmp(sb->s_type->name, "sysfs") ||
461 		!strcmp(sb->s_type->name, "pstore") ||
462 		!strcmp(sb->s_type->name, "debugfs") ||
463 		!strcmp(sb->s_type->name, "tracefs") ||
464 		!strcmp(sb->s_type->name, "rootfs") ||
465 		(selinux_policycap_cgroupseclabel() &&
466 		 (!strcmp(sb->s_type->name, "cgroup") ||
467 		  !strcmp(sb->s_type->name, "cgroup2")));
468 }
469 
470 static int selinux_is_sblabel_mnt(struct super_block *sb)
471 {
472 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
473 
474 	/*
475 	 * IMPORTANT: Double-check logic in this function when adding a new
476 	 * SECURITY_FS_USE_* definition!
477 	 */
478 	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
479 
480 	switch (sbsec->behavior) {
481 	case SECURITY_FS_USE_XATTR:
482 	case SECURITY_FS_USE_TRANS:
483 	case SECURITY_FS_USE_TASK:
484 	case SECURITY_FS_USE_NATIVE:
485 		return 1;
486 
487 	case SECURITY_FS_USE_GENFS:
488 		return selinux_is_genfs_special_handling(sb);
489 
490 	/* Never allow relabeling on context mounts */
491 	case SECURITY_FS_USE_MNTPOINT:
492 	case SECURITY_FS_USE_NONE:
493 	default:
494 		return 0;
495 	}
496 }
497 
498 static int sb_check_xattr_support(struct super_block *sb)
499 {
500 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
501 	struct dentry *root = sb->s_root;
502 	struct inode *root_inode = d_backing_inode(root);
503 	u32 sid;
504 	int rc;
505 
506 	/*
507 	 * Make sure that the xattr handler exists and that no
508 	 * error other than -ENODATA is returned by getxattr on
509 	 * the root directory.  -ENODATA is ok, as this may be
510 	 * the first boot of the SELinux kernel before we have
511 	 * assigned xattr values to the filesystem.
512 	 */
513 	if (!(root_inode->i_opflags & IOP_XATTR)) {
514 		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
515 			sb->s_id, sb->s_type->name);
516 		goto fallback;
517 	}
518 
519 	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
520 	if (rc < 0 && rc != -ENODATA) {
521 		if (rc == -EOPNOTSUPP) {
522 			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
523 				sb->s_id, sb->s_type->name);
524 			goto fallback;
525 		} else {
526 			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
527 				sb->s_id, sb->s_type->name, -rc);
528 			return rc;
529 		}
530 	}
531 	return 0;
532 
533 fallback:
534 	/* No xattr support - try to fallback to genfs if possible. */
535 	rc = security_genfs_sid(sb->s_type->name, "/",
536 				SECCLASS_DIR, &sid);
537 	if (rc)
538 		return -EOPNOTSUPP;
539 
540 	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
541 		sb->s_id, sb->s_type->name);
542 	sbsec->behavior = SECURITY_FS_USE_GENFS;
543 	sbsec->sid = sid;
544 	return 0;
545 }
546 
547 static int sb_finish_set_opts(struct super_block *sb)
548 {
549 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
550 	struct dentry *root = sb->s_root;
551 	struct inode *root_inode = d_backing_inode(root);
552 	int rc = 0;
553 
554 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
555 		rc = sb_check_xattr_support(sb);
556 		if (rc)
557 			return rc;
558 	}
559 
560 	sbsec->flags |= SE_SBINITIALIZED;
561 
562 	/*
563 	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
564 	 * leave the flag untouched because sb_clone_mnt_opts might be handing
565 	 * us a superblock that needs the flag to be cleared.
566 	 */
567 	if (selinux_is_sblabel_mnt(sb))
568 		sbsec->flags |= SBLABEL_MNT;
569 	else
570 		sbsec->flags &= ~SBLABEL_MNT;
571 
572 	/* Initialize the root inode. */
573 	rc = inode_doinit_with_dentry(root_inode, root);
574 
575 	/* Initialize any other inodes associated with the superblock, e.g.
576 	   inodes created prior to initial policy load or inodes created
577 	   during get_sb by a pseudo filesystem that directly
578 	   populates itself. */
579 	spin_lock(&sbsec->isec_lock);
580 	while (!list_empty(&sbsec->isec_head)) {
581 		struct inode_security_struct *isec =
582 				list_first_entry(&sbsec->isec_head,
583 					   struct inode_security_struct, list);
584 		struct inode *inode = isec->inode;
585 		list_del_init(&isec->list);
586 		spin_unlock(&sbsec->isec_lock);
587 		inode = igrab(inode);
588 		if (inode) {
589 			if (!IS_PRIVATE(inode))
590 				inode_doinit_with_dentry(inode, NULL);
591 			iput(inode);
592 		}
593 		spin_lock(&sbsec->isec_lock);
594 	}
595 	spin_unlock(&sbsec->isec_lock);
596 	return rc;
597 }
598 
599 static int bad_option(struct superblock_security_struct *sbsec, char flag,
600 		      u32 old_sid, u32 new_sid)
601 {
602 	char mnt_flags = sbsec->flags & SE_MNTMASK;
603 
604 	/* check if the old mount command had the same options */
605 	if (sbsec->flags & SE_SBINITIALIZED)
606 		if (!(sbsec->flags & flag) ||
607 		    (old_sid != new_sid))
608 			return 1;
609 
610 	/* check if we were passed the same options twice,
611 	 * aka someone passed context=a,context=b
612 	 */
613 	if (!(sbsec->flags & SE_SBINITIALIZED))
614 		if (mnt_flags & flag)
615 			return 1;
616 	return 0;
617 }
618 
619 /*
620  * Allow filesystems with binary mount data to explicitly set mount point
621  * labeling information.
622  */
623 static int selinux_set_mnt_opts(struct super_block *sb,
624 				void *mnt_opts,
625 				unsigned long kern_flags,
626 				unsigned long *set_kern_flags)
627 {
628 	const struct cred *cred = current_cred();
629 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
630 	struct dentry *root = sb->s_root;
631 	struct selinux_mnt_opts *opts = mnt_opts;
632 	struct inode_security_struct *root_isec;
633 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
634 	u32 defcontext_sid = 0;
635 	int rc = 0;
636 
637 	/*
638 	 * Specifying internal flags without providing a place to
639 	 * place the results is not allowed
640 	 */
641 	if (kern_flags && !set_kern_flags)
642 		return -EINVAL;
643 
644 	mutex_lock(&sbsec->lock);
645 
646 	if (!selinux_initialized()) {
647 		if (!opts) {
648 			/* Defer initialization until selinux_complete_init,
649 			   after the initial policy is loaded and the security
650 			   server is ready to handle calls. */
651 			if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
652 				sbsec->flags |= SE_SBNATIVE;
653 				*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
654 			}
655 			goto out;
656 		}
657 		rc = -EINVAL;
658 		pr_warn("SELinux: Unable to set superblock options "
659 			"before the security server is initialized\n");
660 		goto out;
661 	}
662 
663 	/*
664 	 * Binary mount data FS will come through this function twice.  Once
665 	 * from an explicit call and once from the generic calls from the vfs.
666 	 * Since the generic VFS calls will not contain any security mount data
667 	 * we need to skip the double mount verification.
668 	 *
669 	 * This does open a hole in which we will not notice if the first
670 	 * mount using this sb set explicit options and a second mount using
671 	 * this sb does not set any security options.  (The first options
672 	 * will be used for both mounts)
673 	 */
674 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
675 	    && !opts)
676 		goto out;
677 
678 	root_isec = backing_inode_security_novalidate(root);
679 
680 	/*
681 	 * parse the mount options, check if they are valid sids.
682 	 * also check if someone is trying to mount the same sb more
683 	 * than once with different security options.
684 	 */
685 	if (opts) {
686 		if (opts->fscontext_sid) {
687 			fscontext_sid = opts->fscontext_sid;
688 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
689 					fscontext_sid))
690 				goto out_double_mount;
691 			sbsec->flags |= FSCONTEXT_MNT;
692 		}
693 		if (opts->context_sid) {
694 			context_sid = opts->context_sid;
695 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
696 					context_sid))
697 				goto out_double_mount;
698 			sbsec->flags |= CONTEXT_MNT;
699 		}
700 		if (opts->rootcontext_sid) {
701 			rootcontext_sid = opts->rootcontext_sid;
702 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
703 					rootcontext_sid))
704 				goto out_double_mount;
705 			sbsec->flags |= ROOTCONTEXT_MNT;
706 		}
707 		if (opts->defcontext_sid) {
708 			defcontext_sid = opts->defcontext_sid;
709 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
710 					defcontext_sid))
711 				goto out_double_mount;
712 			sbsec->flags |= DEFCONTEXT_MNT;
713 		}
714 	}
715 
716 	if (sbsec->flags & SE_SBINITIALIZED) {
717 		/* previously mounted with options, but not on this attempt? */
718 		if ((sbsec->flags & SE_MNTMASK) && !opts)
719 			goto out_double_mount;
720 		rc = 0;
721 		goto out;
722 	}
723 
724 	if (strcmp(sb->s_type->name, "proc") == 0)
725 		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
726 
727 	if (!strcmp(sb->s_type->name, "debugfs") ||
728 	    !strcmp(sb->s_type->name, "tracefs") ||
729 	    !strcmp(sb->s_type->name, "binder") ||
730 	    !strcmp(sb->s_type->name, "bpf") ||
731 	    !strcmp(sb->s_type->name, "pstore") ||
732 	    !strcmp(sb->s_type->name, "securityfs"))
733 		sbsec->flags |= SE_SBGENFS;
734 
735 	if (!strcmp(sb->s_type->name, "sysfs") ||
736 	    !strcmp(sb->s_type->name, "cgroup") ||
737 	    !strcmp(sb->s_type->name, "cgroup2"))
738 		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
739 
740 	if (!sbsec->behavior) {
741 		/*
742 		 * Determine the labeling behavior to use for this
743 		 * filesystem type.
744 		 */
745 		rc = security_fs_use(sb);
746 		if (rc) {
747 			pr_warn("%s: security_fs_use(%s) returned %d\n",
748 					__func__, sb->s_type->name, rc);
749 			goto out;
750 		}
751 	}
752 
753 	/*
754 	 * If this is a user namespace mount and the filesystem type is not
755 	 * explicitly whitelisted, then no contexts are allowed on the command
756 	 * line and security labels must be ignored.
757 	 */
758 	if (sb->s_user_ns != &init_user_ns &&
759 	    strcmp(sb->s_type->name, "tmpfs") &&
760 	    strcmp(sb->s_type->name, "ramfs") &&
761 	    strcmp(sb->s_type->name, "devpts") &&
762 	    strcmp(sb->s_type->name, "overlay")) {
763 		if (context_sid || fscontext_sid || rootcontext_sid ||
764 		    defcontext_sid) {
765 			rc = -EACCES;
766 			goto out;
767 		}
768 		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
769 			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
770 			rc = security_transition_sid(current_sid(),
771 						     current_sid(),
772 						     SECCLASS_FILE, NULL,
773 						     &sbsec->mntpoint_sid);
774 			if (rc)
775 				goto out;
776 		}
777 		goto out_set_opts;
778 	}
779 
780 	/* sets the context of the superblock for the fs being mounted. */
781 	if (fscontext_sid) {
782 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
783 		if (rc)
784 			goto out;
785 
786 		sbsec->sid = fscontext_sid;
787 	}
788 
789 	/*
790 	 * Switch to using mount point labeling behavior.
791 	 * sets the label used on all file below the mountpoint, and will set
792 	 * the superblock context if not already set.
793 	 */
794 	if (sbsec->flags & SE_SBNATIVE) {
795 		/*
796 		 * This means we are initializing a superblock that has been
797 		 * mounted before the SELinux was initialized and the
798 		 * filesystem requested native labeling. We had already
799 		 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags
800 		 * in the original mount attempt, so now we just need to set
801 		 * the SECURITY_FS_USE_NATIVE behavior.
802 		 */
803 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
804 	} else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
805 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
806 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
807 	}
808 
809 	if (context_sid) {
810 		if (!fscontext_sid) {
811 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
812 							  cred);
813 			if (rc)
814 				goto out;
815 			sbsec->sid = context_sid;
816 		} else {
817 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
818 							     cred);
819 			if (rc)
820 				goto out;
821 		}
822 		if (!rootcontext_sid)
823 			rootcontext_sid = context_sid;
824 
825 		sbsec->mntpoint_sid = context_sid;
826 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
827 	}
828 
829 	if (rootcontext_sid) {
830 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
831 						     cred);
832 		if (rc)
833 			goto out;
834 
835 		root_isec->sid = rootcontext_sid;
836 		root_isec->initialized = LABEL_INITIALIZED;
837 	}
838 
839 	if (defcontext_sid) {
840 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
841 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
842 			rc = -EINVAL;
843 			pr_warn("SELinux: defcontext option is "
844 			       "invalid for this filesystem type\n");
845 			goto out;
846 		}
847 
848 		if (defcontext_sid != sbsec->def_sid) {
849 			rc = may_context_mount_inode_relabel(defcontext_sid,
850 							     sbsec, cred);
851 			if (rc)
852 				goto out;
853 		}
854 
855 		sbsec->def_sid = defcontext_sid;
856 	}
857 
858 out_set_opts:
859 	rc = sb_finish_set_opts(sb);
860 out:
861 	mutex_unlock(&sbsec->lock);
862 	return rc;
863 out_double_mount:
864 	rc = -EINVAL;
865 	pr_warn("SELinux: mount invalid.  Same superblock, different "
866 	       "security settings for (dev %s, type %s)\n", sb->s_id,
867 	       sb->s_type->name);
868 	goto out;
869 }
870 
871 static int selinux_cmp_sb_context(const struct super_block *oldsb,
872 				    const struct super_block *newsb)
873 {
874 	struct superblock_security_struct *old = selinux_superblock(oldsb);
875 	struct superblock_security_struct *new = selinux_superblock(newsb);
876 	char oldflags = old->flags & SE_MNTMASK;
877 	char newflags = new->flags & SE_MNTMASK;
878 
879 	if (oldflags != newflags)
880 		goto mismatch;
881 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
882 		goto mismatch;
883 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
884 		goto mismatch;
885 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
886 		goto mismatch;
887 	if (oldflags & ROOTCONTEXT_MNT) {
888 		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
889 		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
890 		if (oldroot->sid != newroot->sid)
891 			goto mismatch;
892 	}
893 	return 0;
894 mismatch:
895 	pr_warn("SELinux: mount invalid.  Same superblock, "
896 			    "different security settings for (dev %s, "
897 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
898 	return -EBUSY;
899 }
900 
901 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
902 					struct super_block *newsb,
903 					unsigned long kern_flags,
904 					unsigned long *set_kern_flags)
905 {
906 	int rc = 0;
907 	const struct superblock_security_struct *oldsbsec =
908 						selinux_superblock(oldsb);
909 	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
910 
911 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
912 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
913 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
914 
915 	/*
916 	 * Specifying internal flags without providing a place to
917 	 * place the results is not allowed.
918 	 */
919 	if (kern_flags && !set_kern_flags)
920 		return -EINVAL;
921 
922 	mutex_lock(&newsbsec->lock);
923 
924 	/*
925 	 * if the parent was able to be mounted it clearly had no special lsm
926 	 * mount options.  thus we can safely deal with this superblock later
927 	 */
928 	if (!selinux_initialized()) {
929 		if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
930 			newsbsec->flags |= SE_SBNATIVE;
931 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
932 		}
933 		goto out;
934 	}
935 
936 	/* how can we clone if the old one wasn't set up?? */
937 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
938 
939 	/* if fs is reusing a sb, make sure that the contexts match */
940 	if (newsbsec->flags & SE_SBINITIALIZED) {
941 		mutex_unlock(&newsbsec->lock);
942 		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
943 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
944 		return selinux_cmp_sb_context(oldsb, newsb);
945 	}
946 
947 	newsbsec->flags = oldsbsec->flags;
948 
949 	newsbsec->sid = oldsbsec->sid;
950 	newsbsec->def_sid = oldsbsec->def_sid;
951 	newsbsec->behavior = oldsbsec->behavior;
952 
953 	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
954 		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
955 		rc = security_fs_use(newsb);
956 		if (rc)
957 			goto out;
958 	}
959 
960 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
961 		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
962 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
963 	}
964 
965 	if (set_context) {
966 		u32 sid = oldsbsec->mntpoint_sid;
967 
968 		if (!set_fscontext)
969 			newsbsec->sid = sid;
970 		if (!set_rootcontext) {
971 			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
972 			newisec->sid = sid;
973 		}
974 		newsbsec->mntpoint_sid = sid;
975 	}
976 	if (set_rootcontext) {
977 		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
978 		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
979 
980 		newisec->sid = oldisec->sid;
981 	}
982 
983 	sb_finish_set_opts(newsb);
984 out:
985 	mutex_unlock(&newsbsec->lock);
986 	return rc;
987 }
988 
989 /*
990  * NOTE: the caller is responsible for freeing the memory even if on error.
991  */
992 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
993 {
994 	struct selinux_mnt_opts *opts = *mnt_opts;
995 	u32 *dst_sid;
996 	int rc;
997 
998 	if (token == Opt_seclabel)
999 		/* eaten and completely ignored */
1000 		return 0;
1001 	if (!s)
1002 		return -EINVAL;
1003 
1004 	if (!selinux_initialized()) {
1005 		pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
1006 		return -EINVAL;
1007 	}
1008 
1009 	if (!opts) {
1010 		opts = kzalloc(sizeof(*opts), GFP_KERNEL);
1011 		if (!opts)
1012 			return -ENOMEM;
1013 		*mnt_opts = opts;
1014 	}
1015 
1016 	switch (token) {
1017 	case Opt_context:
1018 		if (opts->context_sid || opts->defcontext_sid)
1019 			goto err;
1020 		dst_sid = &opts->context_sid;
1021 		break;
1022 	case Opt_fscontext:
1023 		if (opts->fscontext_sid)
1024 			goto err;
1025 		dst_sid = &opts->fscontext_sid;
1026 		break;
1027 	case Opt_rootcontext:
1028 		if (opts->rootcontext_sid)
1029 			goto err;
1030 		dst_sid = &opts->rootcontext_sid;
1031 		break;
1032 	case Opt_defcontext:
1033 		if (opts->context_sid || opts->defcontext_sid)
1034 			goto err;
1035 		dst_sid = &opts->defcontext_sid;
1036 		break;
1037 	default:
1038 		WARN_ON(1);
1039 		return -EINVAL;
1040 	}
1041 	rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL);
1042 	if (rc)
1043 		pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1044 			s, rc);
1045 	return rc;
1046 
1047 err:
1048 	pr_warn(SEL_MOUNT_FAIL_MSG);
1049 	return -EINVAL;
1050 }
1051 
1052 static int show_sid(struct seq_file *m, u32 sid)
1053 {
1054 	char *context = NULL;
1055 	u32 len;
1056 	int rc;
1057 
1058 	rc = security_sid_to_context(sid, &context, &len);
1059 	if (!rc) {
1060 		bool has_comma = strchr(context, ',');
1061 
1062 		seq_putc(m, '=');
1063 		if (has_comma)
1064 			seq_putc(m, '\"');
1065 		seq_escape(m, context, "\"\n\\");
1066 		if (has_comma)
1067 			seq_putc(m, '\"');
1068 	}
1069 	kfree(context);
1070 	return rc;
1071 }
1072 
1073 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1074 {
1075 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1076 	int rc;
1077 
1078 	if (!(sbsec->flags & SE_SBINITIALIZED))
1079 		return 0;
1080 
1081 	if (!selinux_initialized())
1082 		return 0;
1083 
1084 	if (sbsec->flags & FSCONTEXT_MNT) {
1085 		seq_putc(m, ',');
1086 		seq_puts(m, FSCONTEXT_STR);
1087 		rc = show_sid(m, sbsec->sid);
1088 		if (rc)
1089 			return rc;
1090 	}
1091 	if (sbsec->flags & CONTEXT_MNT) {
1092 		seq_putc(m, ',');
1093 		seq_puts(m, CONTEXT_STR);
1094 		rc = show_sid(m, sbsec->mntpoint_sid);
1095 		if (rc)
1096 			return rc;
1097 	}
1098 	if (sbsec->flags & DEFCONTEXT_MNT) {
1099 		seq_putc(m, ',');
1100 		seq_puts(m, DEFCONTEXT_STR);
1101 		rc = show_sid(m, sbsec->def_sid);
1102 		if (rc)
1103 			return rc;
1104 	}
1105 	if (sbsec->flags & ROOTCONTEXT_MNT) {
1106 		struct dentry *root = sb->s_root;
1107 		struct inode_security_struct *isec = backing_inode_security(root);
1108 		seq_putc(m, ',');
1109 		seq_puts(m, ROOTCONTEXT_STR);
1110 		rc = show_sid(m, isec->sid);
1111 		if (rc)
1112 			return rc;
1113 	}
1114 	if (sbsec->flags & SBLABEL_MNT) {
1115 		seq_putc(m, ',');
1116 		seq_puts(m, SECLABEL_STR);
1117 	}
1118 	return 0;
1119 }
1120 
1121 static inline u16 inode_mode_to_security_class(umode_t mode)
1122 {
1123 	switch (mode & S_IFMT) {
1124 	case S_IFSOCK:
1125 		return SECCLASS_SOCK_FILE;
1126 	case S_IFLNK:
1127 		return SECCLASS_LNK_FILE;
1128 	case S_IFREG:
1129 		return SECCLASS_FILE;
1130 	case S_IFBLK:
1131 		return SECCLASS_BLK_FILE;
1132 	case S_IFDIR:
1133 		return SECCLASS_DIR;
1134 	case S_IFCHR:
1135 		return SECCLASS_CHR_FILE;
1136 	case S_IFIFO:
1137 		return SECCLASS_FIFO_FILE;
1138 
1139 	}
1140 
1141 	return SECCLASS_FILE;
1142 }
1143 
1144 static inline int default_protocol_stream(int protocol)
1145 {
1146 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1147 		protocol == IPPROTO_MPTCP);
1148 }
1149 
1150 static inline int default_protocol_dgram(int protocol)
1151 {
1152 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1153 }
1154 
1155 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1156 {
1157 	bool extsockclass = selinux_policycap_extsockclass();
1158 
1159 	switch (family) {
1160 	case PF_UNIX:
1161 		switch (type) {
1162 		case SOCK_STREAM:
1163 		case SOCK_SEQPACKET:
1164 			return SECCLASS_UNIX_STREAM_SOCKET;
1165 		case SOCK_DGRAM:
1166 		case SOCK_RAW:
1167 			return SECCLASS_UNIX_DGRAM_SOCKET;
1168 		}
1169 		break;
1170 	case PF_INET:
1171 	case PF_INET6:
1172 		switch (type) {
1173 		case SOCK_STREAM:
1174 		case SOCK_SEQPACKET:
1175 			if (default_protocol_stream(protocol))
1176 				return SECCLASS_TCP_SOCKET;
1177 			else if (extsockclass && protocol == IPPROTO_SCTP)
1178 				return SECCLASS_SCTP_SOCKET;
1179 			else
1180 				return SECCLASS_RAWIP_SOCKET;
1181 		case SOCK_DGRAM:
1182 			if (default_protocol_dgram(protocol))
1183 				return SECCLASS_UDP_SOCKET;
1184 			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1185 						  protocol == IPPROTO_ICMPV6))
1186 				return SECCLASS_ICMP_SOCKET;
1187 			else
1188 				return SECCLASS_RAWIP_SOCKET;
1189 		case SOCK_DCCP:
1190 			return SECCLASS_DCCP_SOCKET;
1191 		default:
1192 			return SECCLASS_RAWIP_SOCKET;
1193 		}
1194 		break;
1195 	case PF_NETLINK:
1196 		switch (protocol) {
1197 		case NETLINK_ROUTE:
1198 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1199 		case NETLINK_SOCK_DIAG:
1200 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1201 		case NETLINK_NFLOG:
1202 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1203 		case NETLINK_XFRM:
1204 			return SECCLASS_NETLINK_XFRM_SOCKET;
1205 		case NETLINK_SELINUX:
1206 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1207 		case NETLINK_ISCSI:
1208 			return SECCLASS_NETLINK_ISCSI_SOCKET;
1209 		case NETLINK_AUDIT:
1210 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1211 		case NETLINK_FIB_LOOKUP:
1212 			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1213 		case NETLINK_CONNECTOR:
1214 			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1215 		case NETLINK_NETFILTER:
1216 			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1217 		case NETLINK_DNRTMSG:
1218 			return SECCLASS_NETLINK_DNRT_SOCKET;
1219 		case NETLINK_KOBJECT_UEVENT:
1220 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1221 		case NETLINK_GENERIC:
1222 			return SECCLASS_NETLINK_GENERIC_SOCKET;
1223 		case NETLINK_SCSITRANSPORT:
1224 			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1225 		case NETLINK_RDMA:
1226 			return SECCLASS_NETLINK_RDMA_SOCKET;
1227 		case NETLINK_CRYPTO:
1228 			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1229 		default:
1230 			return SECCLASS_NETLINK_SOCKET;
1231 		}
1232 	case PF_PACKET:
1233 		return SECCLASS_PACKET_SOCKET;
1234 	case PF_KEY:
1235 		return SECCLASS_KEY_SOCKET;
1236 	case PF_APPLETALK:
1237 		return SECCLASS_APPLETALK_SOCKET;
1238 	}
1239 
1240 	if (extsockclass) {
1241 		switch (family) {
1242 		case PF_AX25:
1243 			return SECCLASS_AX25_SOCKET;
1244 		case PF_IPX:
1245 			return SECCLASS_IPX_SOCKET;
1246 		case PF_NETROM:
1247 			return SECCLASS_NETROM_SOCKET;
1248 		case PF_ATMPVC:
1249 			return SECCLASS_ATMPVC_SOCKET;
1250 		case PF_X25:
1251 			return SECCLASS_X25_SOCKET;
1252 		case PF_ROSE:
1253 			return SECCLASS_ROSE_SOCKET;
1254 		case PF_DECnet:
1255 			return SECCLASS_DECNET_SOCKET;
1256 		case PF_ATMSVC:
1257 			return SECCLASS_ATMSVC_SOCKET;
1258 		case PF_RDS:
1259 			return SECCLASS_RDS_SOCKET;
1260 		case PF_IRDA:
1261 			return SECCLASS_IRDA_SOCKET;
1262 		case PF_PPPOX:
1263 			return SECCLASS_PPPOX_SOCKET;
1264 		case PF_LLC:
1265 			return SECCLASS_LLC_SOCKET;
1266 		case PF_CAN:
1267 			return SECCLASS_CAN_SOCKET;
1268 		case PF_TIPC:
1269 			return SECCLASS_TIPC_SOCKET;
1270 		case PF_BLUETOOTH:
1271 			return SECCLASS_BLUETOOTH_SOCKET;
1272 		case PF_IUCV:
1273 			return SECCLASS_IUCV_SOCKET;
1274 		case PF_RXRPC:
1275 			return SECCLASS_RXRPC_SOCKET;
1276 		case PF_ISDN:
1277 			return SECCLASS_ISDN_SOCKET;
1278 		case PF_PHONET:
1279 			return SECCLASS_PHONET_SOCKET;
1280 		case PF_IEEE802154:
1281 			return SECCLASS_IEEE802154_SOCKET;
1282 		case PF_CAIF:
1283 			return SECCLASS_CAIF_SOCKET;
1284 		case PF_ALG:
1285 			return SECCLASS_ALG_SOCKET;
1286 		case PF_NFC:
1287 			return SECCLASS_NFC_SOCKET;
1288 		case PF_VSOCK:
1289 			return SECCLASS_VSOCK_SOCKET;
1290 		case PF_KCM:
1291 			return SECCLASS_KCM_SOCKET;
1292 		case PF_QIPCRTR:
1293 			return SECCLASS_QIPCRTR_SOCKET;
1294 		case PF_SMC:
1295 			return SECCLASS_SMC_SOCKET;
1296 		case PF_XDP:
1297 			return SECCLASS_XDP_SOCKET;
1298 		case PF_MCTP:
1299 			return SECCLASS_MCTP_SOCKET;
1300 #if PF_MAX > 46
1301 #error New address family defined, please update this function.
1302 #endif
1303 		}
1304 	}
1305 
1306 	return SECCLASS_SOCKET;
1307 }
1308 
1309 static int selinux_genfs_get_sid(struct dentry *dentry,
1310 				 u16 tclass,
1311 				 u16 flags,
1312 				 u32 *sid)
1313 {
1314 	int rc;
1315 	struct super_block *sb = dentry->d_sb;
1316 	char *buffer, *path;
1317 
1318 	buffer = (char *)__get_free_page(GFP_KERNEL);
1319 	if (!buffer)
1320 		return -ENOMEM;
1321 
1322 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1323 	if (IS_ERR(path))
1324 		rc = PTR_ERR(path);
1325 	else {
1326 		if (flags & SE_SBPROC) {
1327 			/* each process gets a /proc/PID/ entry. Strip off the
1328 			 * PID part to get a valid selinux labeling.
1329 			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1330 			while (path[1] >= '0' && path[1] <= '9') {
1331 				path[1] = '/';
1332 				path++;
1333 			}
1334 		}
1335 		rc = security_genfs_sid(sb->s_type->name,
1336 					path, tclass, sid);
1337 		if (rc == -ENOENT) {
1338 			/* No match in policy, mark as unlabeled. */
1339 			*sid = SECINITSID_UNLABELED;
1340 			rc = 0;
1341 		}
1342 	}
1343 	free_page((unsigned long)buffer);
1344 	return rc;
1345 }
1346 
1347 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1348 				  u32 def_sid, u32 *sid)
1349 {
1350 #define INITCONTEXTLEN 255
1351 	char *context;
1352 	unsigned int len;
1353 	int rc;
1354 
1355 	len = INITCONTEXTLEN;
1356 	context = kmalloc(len + 1, GFP_NOFS);
1357 	if (!context)
1358 		return -ENOMEM;
1359 
1360 	context[len] = '\0';
1361 	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1362 	if (rc == -ERANGE) {
1363 		kfree(context);
1364 
1365 		/* Need a larger buffer.  Query for the right size. */
1366 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1367 		if (rc < 0)
1368 			return rc;
1369 
1370 		len = rc;
1371 		context = kmalloc(len + 1, GFP_NOFS);
1372 		if (!context)
1373 			return -ENOMEM;
1374 
1375 		context[len] = '\0';
1376 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1377 				    context, len);
1378 	}
1379 	if (rc < 0) {
1380 		kfree(context);
1381 		if (rc != -ENODATA) {
1382 			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1383 				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1384 			return rc;
1385 		}
1386 		*sid = def_sid;
1387 		return 0;
1388 	}
1389 
1390 	rc = security_context_to_sid_default(context, rc, sid,
1391 					     def_sid, GFP_NOFS);
1392 	if (rc) {
1393 		char *dev = inode->i_sb->s_id;
1394 		unsigned long ino = inode->i_ino;
1395 
1396 		if (rc == -EINVAL) {
1397 			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1398 					      ino, dev, context);
1399 		} else {
1400 			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1401 				__func__, context, -rc, dev, ino);
1402 		}
1403 	}
1404 	kfree(context);
1405 	return 0;
1406 }
1407 
1408 /* The inode's security attributes must be initialized before first use. */
1409 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1410 {
1411 	struct superblock_security_struct *sbsec = NULL;
1412 	struct inode_security_struct *isec = selinux_inode(inode);
1413 	u32 task_sid, sid = 0;
1414 	u16 sclass;
1415 	struct dentry *dentry;
1416 	int rc = 0;
1417 
1418 	if (isec->initialized == LABEL_INITIALIZED)
1419 		return 0;
1420 
1421 	spin_lock(&isec->lock);
1422 	if (isec->initialized == LABEL_INITIALIZED)
1423 		goto out_unlock;
1424 
1425 	if (isec->sclass == SECCLASS_FILE)
1426 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1427 
1428 	sbsec = selinux_superblock(inode->i_sb);
1429 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1430 		/* Defer initialization until selinux_complete_init,
1431 		   after the initial policy is loaded and the security
1432 		   server is ready to handle calls. */
1433 		spin_lock(&sbsec->isec_lock);
1434 		if (list_empty(&isec->list))
1435 			list_add(&isec->list, &sbsec->isec_head);
1436 		spin_unlock(&sbsec->isec_lock);
1437 		goto out_unlock;
1438 	}
1439 
1440 	sclass = isec->sclass;
1441 	task_sid = isec->task_sid;
1442 	sid = isec->sid;
1443 	isec->initialized = LABEL_PENDING;
1444 	spin_unlock(&isec->lock);
1445 
1446 	switch (sbsec->behavior) {
1447 	/*
1448 	 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels
1449 	 * via xattr when called from delayed_superblock_init().
1450 	 */
1451 	case SECURITY_FS_USE_NATIVE:
1452 	case SECURITY_FS_USE_XATTR:
1453 		if (!(inode->i_opflags & IOP_XATTR)) {
1454 			sid = sbsec->def_sid;
1455 			break;
1456 		}
1457 		/* Need a dentry, since the xattr API requires one.
1458 		   Life would be simpler if we could just pass the inode. */
1459 		if (opt_dentry) {
1460 			/* Called from d_instantiate or d_splice_alias. */
1461 			dentry = dget(opt_dentry);
1462 		} else {
1463 			/*
1464 			 * Called from selinux_complete_init, try to find a dentry.
1465 			 * Some filesystems really want a connected one, so try
1466 			 * that first.  We could split SECURITY_FS_USE_XATTR in
1467 			 * two, depending upon that...
1468 			 */
1469 			dentry = d_find_alias(inode);
1470 			if (!dentry)
1471 				dentry = d_find_any_alias(inode);
1472 		}
1473 		if (!dentry) {
1474 			/*
1475 			 * this is can be hit on boot when a file is accessed
1476 			 * before the policy is loaded.  When we load policy we
1477 			 * may find inodes that have no dentry on the
1478 			 * sbsec->isec_head list.  No reason to complain as these
1479 			 * will get fixed up the next time we go through
1480 			 * inode_doinit with a dentry, before these inodes could
1481 			 * be used again by userspace.
1482 			 */
1483 			goto out_invalid;
1484 		}
1485 
1486 		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1487 					    &sid);
1488 		dput(dentry);
1489 		if (rc)
1490 			goto out;
1491 		break;
1492 	case SECURITY_FS_USE_TASK:
1493 		sid = task_sid;
1494 		break;
1495 	case SECURITY_FS_USE_TRANS:
1496 		/* Default to the fs SID. */
1497 		sid = sbsec->sid;
1498 
1499 		/* Try to obtain a transition SID. */
1500 		rc = security_transition_sid(task_sid, sid,
1501 					     sclass, NULL, &sid);
1502 		if (rc)
1503 			goto out;
1504 		break;
1505 	case SECURITY_FS_USE_MNTPOINT:
1506 		sid = sbsec->mntpoint_sid;
1507 		break;
1508 	default:
1509 		/* Default to the fs superblock SID. */
1510 		sid = sbsec->sid;
1511 
1512 		if ((sbsec->flags & SE_SBGENFS) &&
1513 		     (!S_ISLNK(inode->i_mode) ||
1514 		      selinux_policycap_genfs_seclabel_symlinks())) {
1515 			/* We must have a dentry to determine the label on
1516 			 * procfs inodes */
1517 			if (opt_dentry) {
1518 				/* Called from d_instantiate or
1519 				 * d_splice_alias. */
1520 				dentry = dget(opt_dentry);
1521 			} else {
1522 				/* Called from selinux_complete_init, try to
1523 				 * find a dentry.  Some filesystems really want
1524 				 * a connected one, so try that first.
1525 				 */
1526 				dentry = d_find_alias(inode);
1527 				if (!dentry)
1528 					dentry = d_find_any_alias(inode);
1529 			}
1530 			/*
1531 			 * This can be hit on boot when a file is accessed
1532 			 * before the policy is loaded.  When we load policy we
1533 			 * may find inodes that have no dentry on the
1534 			 * sbsec->isec_head list.  No reason to complain as
1535 			 * these will get fixed up the next time we go through
1536 			 * inode_doinit() with a dentry, before these inodes
1537 			 * could be used again by userspace.
1538 			 */
1539 			if (!dentry)
1540 				goto out_invalid;
1541 			rc = selinux_genfs_get_sid(dentry, sclass,
1542 						   sbsec->flags, &sid);
1543 			if (rc) {
1544 				dput(dentry);
1545 				goto out;
1546 			}
1547 
1548 			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1549 			    (inode->i_opflags & IOP_XATTR)) {
1550 				rc = inode_doinit_use_xattr(inode, dentry,
1551 							    sid, &sid);
1552 				if (rc) {
1553 					dput(dentry);
1554 					goto out;
1555 				}
1556 			}
1557 			dput(dentry);
1558 		}
1559 		break;
1560 	}
1561 
1562 out:
1563 	spin_lock(&isec->lock);
1564 	if (isec->initialized == LABEL_PENDING) {
1565 		if (rc) {
1566 			isec->initialized = LABEL_INVALID;
1567 			goto out_unlock;
1568 		}
1569 		isec->initialized = LABEL_INITIALIZED;
1570 		isec->sid = sid;
1571 	}
1572 
1573 out_unlock:
1574 	spin_unlock(&isec->lock);
1575 	return rc;
1576 
1577 out_invalid:
1578 	spin_lock(&isec->lock);
1579 	if (isec->initialized == LABEL_PENDING) {
1580 		isec->initialized = LABEL_INVALID;
1581 		isec->sid = sid;
1582 	}
1583 	spin_unlock(&isec->lock);
1584 	return 0;
1585 }
1586 
1587 /* Convert a Linux signal to an access vector. */
1588 static inline u32 signal_to_av(int sig)
1589 {
1590 	u32 perm = 0;
1591 
1592 	switch (sig) {
1593 	case SIGCHLD:
1594 		/* Commonly granted from child to parent. */
1595 		perm = PROCESS__SIGCHLD;
1596 		break;
1597 	case SIGKILL:
1598 		/* Cannot be caught or ignored */
1599 		perm = PROCESS__SIGKILL;
1600 		break;
1601 	case SIGSTOP:
1602 		/* Cannot be caught or ignored */
1603 		perm = PROCESS__SIGSTOP;
1604 		break;
1605 	default:
1606 		/* All other signals. */
1607 		perm = PROCESS__SIGNAL;
1608 		break;
1609 	}
1610 
1611 	return perm;
1612 }
1613 
1614 #if CAP_LAST_CAP > 63
1615 #error Fix SELinux to handle capabilities > 63.
1616 #endif
1617 
1618 /* Check whether a task is allowed to use a capability. */
1619 static int cred_has_capability(const struct cred *cred,
1620 			       int cap, unsigned int opts, bool initns)
1621 {
1622 	struct common_audit_data ad;
1623 	struct av_decision avd;
1624 	u16 sclass;
1625 	u32 sid = cred_sid(cred);
1626 	u32 av = CAP_TO_MASK(cap);
1627 	int rc;
1628 
1629 	ad.type = LSM_AUDIT_DATA_CAP;
1630 	ad.u.cap = cap;
1631 
1632 	switch (CAP_TO_INDEX(cap)) {
1633 	case 0:
1634 		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1635 		break;
1636 	case 1:
1637 		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1638 		break;
1639 	default:
1640 		pr_err("SELinux:  out of range capability %d\n", cap);
1641 		BUG();
1642 		return -EINVAL;
1643 	}
1644 
1645 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1646 	if (!(opts & CAP_OPT_NOAUDIT)) {
1647 		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1648 		if (rc2)
1649 			return rc2;
1650 	}
1651 	return rc;
1652 }
1653 
1654 /* Check whether a task has a particular permission to an inode.
1655    The 'adp' parameter is optional and allows other audit
1656    data to be passed (e.g. the dentry). */
1657 static int inode_has_perm(const struct cred *cred,
1658 			  struct inode *inode,
1659 			  u32 perms,
1660 			  struct common_audit_data *adp)
1661 {
1662 	struct inode_security_struct *isec;
1663 	u32 sid;
1664 
1665 	if (unlikely(IS_PRIVATE(inode)))
1666 		return 0;
1667 
1668 	sid = cred_sid(cred);
1669 	isec = selinux_inode(inode);
1670 
1671 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1672 }
1673 
1674 /* Same as inode_has_perm, but pass explicit audit data containing
1675    the dentry to help the auditing code to more easily generate the
1676    pathname if needed. */
1677 static inline int dentry_has_perm(const struct cred *cred,
1678 				  struct dentry *dentry,
1679 				  u32 av)
1680 {
1681 	struct inode *inode = d_backing_inode(dentry);
1682 	struct common_audit_data ad;
1683 
1684 	ad.type = LSM_AUDIT_DATA_DENTRY;
1685 	ad.u.dentry = dentry;
1686 	__inode_security_revalidate(inode, dentry, true);
1687 	return inode_has_perm(cred, inode, av, &ad);
1688 }
1689 
1690 /* Same as inode_has_perm, but pass explicit audit data containing
1691    the path to help the auditing code to more easily generate the
1692    pathname if needed. */
1693 static inline int path_has_perm(const struct cred *cred,
1694 				const struct path *path,
1695 				u32 av)
1696 {
1697 	struct inode *inode = d_backing_inode(path->dentry);
1698 	struct common_audit_data ad;
1699 
1700 	ad.type = LSM_AUDIT_DATA_PATH;
1701 	ad.u.path = *path;
1702 	__inode_security_revalidate(inode, path->dentry, true);
1703 	return inode_has_perm(cred, inode, av, &ad);
1704 }
1705 
1706 /* Same as path_has_perm, but uses the inode from the file struct. */
1707 static inline int file_path_has_perm(const struct cred *cred,
1708 				     struct file *file,
1709 				     u32 av)
1710 {
1711 	struct common_audit_data ad;
1712 
1713 	ad.type = LSM_AUDIT_DATA_FILE;
1714 	ad.u.file = file;
1715 	return inode_has_perm(cred, file_inode(file), av, &ad);
1716 }
1717 
1718 #ifdef CONFIG_BPF_SYSCALL
1719 static int bpf_fd_pass(const struct file *file, u32 sid);
1720 #endif
1721 
1722 /* Check whether a task can use an open file descriptor to
1723    access an inode in a given way.  Check access to the
1724    descriptor itself, and then use dentry_has_perm to
1725    check a particular permission to the file.
1726    Access to the descriptor is implicitly granted if it
1727    has the same SID as the process.  If av is zero, then
1728    access to the file is not checked, e.g. for cases
1729    where only the descriptor is affected like seek. */
1730 static int file_has_perm(const struct cred *cred,
1731 			 struct file *file,
1732 			 u32 av)
1733 {
1734 	struct file_security_struct *fsec = selinux_file(file);
1735 	struct inode *inode = file_inode(file);
1736 	struct common_audit_data ad;
1737 	u32 sid = cred_sid(cred);
1738 	int rc;
1739 
1740 	ad.type = LSM_AUDIT_DATA_FILE;
1741 	ad.u.file = file;
1742 
1743 	if (sid != fsec->sid) {
1744 		rc = avc_has_perm(sid, fsec->sid,
1745 				  SECCLASS_FD,
1746 				  FD__USE,
1747 				  &ad);
1748 		if (rc)
1749 			goto out;
1750 	}
1751 
1752 #ifdef CONFIG_BPF_SYSCALL
1753 	rc = bpf_fd_pass(file, cred_sid(cred));
1754 	if (rc)
1755 		return rc;
1756 #endif
1757 
1758 	/* av is zero if only checking access to the descriptor. */
1759 	rc = 0;
1760 	if (av)
1761 		rc = inode_has_perm(cred, inode, av, &ad);
1762 
1763 out:
1764 	return rc;
1765 }
1766 
1767 /*
1768  * Determine the label for an inode that might be unioned.
1769  */
1770 static int
1771 selinux_determine_inode_label(const struct task_security_struct *tsec,
1772 				 struct inode *dir,
1773 				 const struct qstr *name, u16 tclass,
1774 				 u32 *_new_isid)
1775 {
1776 	const struct superblock_security_struct *sbsec =
1777 						selinux_superblock(dir->i_sb);
1778 
1779 	if ((sbsec->flags & SE_SBINITIALIZED) &&
1780 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1781 		*_new_isid = sbsec->mntpoint_sid;
1782 	} else if ((sbsec->flags & SBLABEL_MNT) &&
1783 		   tsec->create_sid) {
1784 		*_new_isid = tsec->create_sid;
1785 	} else {
1786 		const struct inode_security_struct *dsec = inode_security(dir);
1787 		return security_transition_sid(tsec->sid,
1788 					       dsec->sid, tclass,
1789 					       name, _new_isid);
1790 	}
1791 
1792 	return 0;
1793 }
1794 
1795 /* Check whether a task can create a file. */
1796 static int may_create(struct inode *dir,
1797 		      struct dentry *dentry,
1798 		      u16 tclass)
1799 {
1800 	const struct task_security_struct *tsec = selinux_cred(current_cred());
1801 	struct inode_security_struct *dsec;
1802 	struct superblock_security_struct *sbsec;
1803 	u32 sid, newsid;
1804 	struct common_audit_data ad;
1805 	int rc;
1806 
1807 	dsec = inode_security(dir);
1808 	sbsec = selinux_superblock(dir->i_sb);
1809 
1810 	sid = tsec->sid;
1811 
1812 	ad.type = LSM_AUDIT_DATA_DENTRY;
1813 	ad.u.dentry = dentry;
1814 
1815 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1816 			  DIR__ADD_NAME | DIR__SEARCH,
1817 			  &ad);
1818 	if (rc)
1819 		return rc;
1820 
1821 	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1822 					   &newsid);
1823 	if (rc)
1824 		return rc;
1825 
1826 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1827 	if (rc)
1828 		return rc;
1829 
1830 	return avc_has_perm(newsid, sbsec->sid,
1831 			    SECCLASS_FILESYSTEM,
1832 			    FILESYSTEM__ASSOCIATE, &ad);
1833 }
1834 
1835 #define MAY_LINK	0
1836 #define MAY_UNLINK	1
1837 #define MAY_RMDIR	2
1838 
1839 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1840 static int may_link(struct inode *dir,
1841 		    struct dentry *dentry,
1842 		    int kind)
1843 
1844 {
1845 	struct inode_security_struct *dsec, *isec;
1846 	struct common_audit_data ad;
1847 	u32 sid = current_sid();
1848 	u32 av;
1849 	int rc;
1850 
1851 	dsec = inode_security(dir);
1852 	isec = backing_inode_security(dentry);
1853 
1854 	ad.type = LSM_AUDIT_DATA_DENTRY;
1855 	ad.u.dentry = dentry;
1856 
1857 	av = DIR__SEARCH;
1858 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1859 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1860 	if (rc)
1861 		return rc;
1862 
1863 	switch (kind) {
1864 	case MAY_LINK:
1865 		av = FILE__LINK;
1866 		break;
1867 	case MAY_UNLINK:
1868 		av = FILE__UNLINK;
1869 		break;
1870 	case MAY_RMDIR:
1871 		av = DIR__RMDIR;
1872 		break;
1873 	default:
1874 		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1875 			__func__, kind);
1876 		return 0;
1877 	}
1878 
1879 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1880 	return rc;
1881 }
1882 
1883 static inline int may_rename(struct inode *old_dir,
1884 			     struct dentry *old_dentry,
1885 			     struct inode *new_dir,
1886 			     struct dentry *new_dentry)
1887 {
1888 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1889 	struct common_audit_data ad;
1890 	u32 sid = current_sid();
1891 	u32 av;
1892 	int old_is_dir, new_is_dir;
1893 	int rc;
1894 
1895 	old_dsec = inode_security(old_dir);
1896 	old_isec = backing_inode_security(old_dentry);
1897 	old_is_dir = d_is_dir(old_dentry);
1898 	new_dsec = inode_security(new_dir);
1899 
1900 	ad.type = LSM_AUDIT_DATA_DENTRY;
1901 
1902 	ad.u.dentry = old_dentry;
1903 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1904 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1905 	if (rc)
1906 		return rc;
1907 	rc = avc_has_perm(sid, old_isec->sid,
1908 			  old_isec->sclass, FILE__RENAME, &ad);
1909 	if (rc)
1910 		return rc;
1911 	if (old_is_dir && new_dir != old_dir) {
1912 		rc = avc_has_perm(sid, old_isec->sid,
1913 				  old_isec->sclass, DIR__REPARENT, &ad);
1914 		if (rc)
1915 			return rc;
1916 	}
1917 
1918 	ad.u.dentry = new_dentry;
1919 	av = DIR__ADD_NAME | DIR__SEARCH;
1920 	if (d_is_positive(new_dentry))
1921 		av |= DIR__REMOVE_NAME;
1922 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1923 	if (rc)
1924 		return rc;
1925 	if (d_is_positive(new_dentry)) {
1926 		new_isec = backing_inode_security(new_dentry);
1927 		new_is_dir = d_is_dir(new_dentry);
1928 		rc = avc_has_perm(sid, new_isec->sid,
1929 				  new_isec->sclass,
1930 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1931 		if (rc)
1932 			return rc;
1933 	}
1934 
1935 	return 0;
1936 }
1937 
1938 /* Check whether a task can perform a filesystem operation. */
1939 static int superblock_has_perm(const struct cred *cred,
1940 			       const struct super_block *sb,
1941 			       u32 perms,
1942 			       struct common_audit_data *ad)
1943 {
1944 	struct superblock_security_struct *sbsec;
1945 	u32 sid = cred_sid(cred);
1946 
1947 	sbsec = selinux_superblock(sb);
1948 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1949 }
1950 
1951 /* Convert a Linux mode and permission mask to an access vector. */
1952 static inline u32 file_mask_to_av(int mode, int mask)
1953 {
1954 	u32 av = 0;
1955 
1956 	if (!S_ISDIR(mode)) {
1957 		if (mask & MAY_EXEC)
1958 			av |= FILE__EXECUTE;
1959 		if (mask & MAY_READ)
1960 			av |= FILE__READ;
1961 
1962 		if (mask & MAY_APPEND)
1963 			av |= FILE__APPEND;
1964 		else if (mask & MAY_WRITE)
1965 			av |= FILE__WRITE;
1966 
1967 	} else {
1968 		if (mask & MAY_EXEC)
1969 			av |= DIR__SEARCH;
1970 		if (mask & MAY_WRITE)
1971 			av |= DIR__WRITE;
1972 		if (mask & MAY_READ)
1973 			av |= DIR__READ;
1974 	}
1975 
1976 	return av;
1977 }
1978 
1979 /* Convert a Linux file to an access vector. */
1980 static inline u32 file_to_av(const struct file *file)
1981 {
1982 	u32 av = 0;
1983 
1984 	if (file->f_mode & FMODE_READ)
1985 		av |= FILE__READ;
1986 	if (file->f_mode & FMODE_WRITE) {
1987 		if (file->f_flags & O_APPEND)
1988 			av |= FILE__APPEND;
1989 		else
1990 			av |= FILE__WRITE;
1991 	}
1992 	if (!av) {
1993 		/*
1994 		 * Special file opened with flags 3 for ioctl-only use.
1995 		 */
1996 		av = FILE__IOCTL;
1997 	}
1998 
1999 	return av;
2000 }
2001 
2002 /*
2003  * Convert a file to an access vector and include the correct
2004  * open permission.
2005  */
2006 static inline u32 open_file_to_av(struct file *file)
2007 {
2008 	u32 av = file_to_av(file);
2009 	struct inode *inode = file_inode(file);
2010 
2011 	if (selinux_policycap_openperm() &&
2012 	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2013 		av |= FILE__OPEN;
2014 
2015 	return av;
2016 }
2017 
2018 /* Hook functions begin here. */
2019 
2020 static int selinux_binder_set_context_mgr(const struct cred *mgr)
2021 {
2022 	return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER,
2023 			    BINDER__SET_CONTEXT_MGR, NULL);
2024 }
2025 
2026 static int selinux_binder_transaction(const struct cred *from,
2027 				      const struct cred *to)
2028 {
2029 	u32 mysid = current_sid();
2030 	u32 fromsid = cred_sid(from);
2031 	u32 tosid = cred_sid(to);
2032 	int rc;
2033 
2034 	if (mysid != fromsid) {
2035 		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2036 				  BINDER__IMPERSONATE, NULL);
2037 		if (rc)
2038 			return rc;
2039 	}
2040 
2041 	return avc_has_perm(fromsid, tosid,
2042 			    SECCLASS_BINDER, BINDER__CALL, NULL);
2043 }
2044 
2045 static int selinux_binder_transfer_binder(const struct cred *from,
2046 					  const struct cred *to)
2047 {
2048 	return avc_has_perm(cred_sid(from), cred_sid(to),
2049 			    SECCLASS_BINDER, BINDER__TRANSFER,
2050 			    NULL);
2051 }
2052 
2053 static int selinux_binder_transfer_file(const struct cred *from,
2054 					const struct cred *to,
2055 					const struct file *file)
2056 {
2057 	u32 sid = cred_sid(to);
2058 	struct file_security_struct *fsec = selinux_file(file);
2059 	struct dentry *dentry = file->f_path.dentry;
2060 	struct inode_security_struct *isec;
2061 	struct common_audit_data ad;
2062 	int rc;
2063 
2064 	ad.type = LSM_AUDIT_DATA_PATH;
2065 	ad.u.path = file->f_path;
2066 
2067 	if (sid != fsec->sid) {
2068 		rc = avc_has_perm(sid, fsec->sid,
2069 				  SECCLASS_FD,
2070 				  FD__USE,
2071 				  &ad);
2072 		if (rc)
2073 			return rc;
2074 	}
2075 
2076 #ifdef CONFIG_BPF_SYSCALL
2077 	rc = bpf_fd_pass(file, sid);
2078 	if (rc)
2079 		return rc;
2080 #endif
2081 
2082 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2083 		return 0;
2084 
2085 	isec = backing_inode_security(dentry);
2086 	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2087 			    &ad);
2088 }
2089 
2090 static int selinux_ptrace_access_check(struct task_struct *child,
2091 				       unsigned int mode)
2092 {
2093 	u32 sid = current_sid();
2094 	u32 csid = task_sid_obj(child);
2095 
2096 	if (mode & PTRACE_MODE_READ)
2097 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ,
2098 				NULL);
2099 
2100 	return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE,
2101 			NULL);
2102 }
2103 
2104 static int selinux_ptrace_traceme(struct task_struct *parent)
2105 {
2106 	return avc_has_perm(task_sid_obj(parent), task_sid_obj(current),
2107 			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2108 }
2109 
2110 static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective,
2111 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2112 {
2113 	return avc_has_perm(current_sid(), task_sid_obj(target),
2114 			SECCLASS_PROCESS, PROCESS__GETCAP, NULL);
2115 }
2116 
2117 static int selinux_capset(struct cred *new, const struct cred *old,
2118 			  const kernel_cap_t *effective,
2119 			  const kernel_cap_t *inheritable,
2120 			  const kernel_cap_t *permitted)
2121 {
2122 	return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2123 			    PROCESS__SETCAP, NULL);
2124 }
2125 
2126 /*
2127  * (This comment used to live with the selinux_task_setuid hook,
2128  * which was removed).
2129  *
2130  * Since setuid only affects the current process, and since the SELinux
2131  * controls are not based on the Linux identity attributes, SELinux does not
2132  * need to control this operation.  However, SELinux does control the use of
2133  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2134  */
2135 
2136 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2137 			   int cap, unsigned int opts)
2138 {
2139 	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2140 }
2141 
2142 static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb)
2143 {
2144 	const struct cred *cred = current_cred();
2145 	int rc = 0;
2146 
2147 	if (!sb)
2148 		return 0;
2149 
2150 	switch (cmds) {
2151 	case Q_SYNC:
2152 	case Q_QUOTAON:
2153 	case Q_QUOTAOFF:
2154 	case Q_SETINFO:
2155 	case Q_SETQUOTA:
2156 	case Q_XQUOTAOFF:
2157 	case Q_XQUOTAON:
2158 	case Q_XSETQLIM:
2159 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2160 		break;
2161 	case Q_GETFMT:
2162 	case Q_GETINFO:
2163 	case Q_GETQUOTA:
2164 	case Q_XGETQUOTA:
2165 	case Q_XGETQSTAT:
2166 	case Q_XGETQSTATV:
2167 	case Q_XGETNEXTQUOTA:
2168 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2169 		break;
2170 	default:
2171 		rc = 0;  /* let the kernel handle invalid cmds */
2172 		break;
2173 	}
2174 	return rc;
2175 }
2176 
2177 static int selinux_quota_on(struct dentry *dentry)
2178 {
2179 	const struct cred *cred = current_cred();
2180 
2181 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2182 }
2183 
2184 static int selinux_syslog(int type)
2185 {
2186 	switch (type) {
2187 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2188 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2189 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2190 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2191 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2192 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2193 	/* Set level of messages printed to console */
2194 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2195 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2196 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2197 				    NULL);
2198 	}
2199 	/* All other syslog types */
2200 	return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2201 			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2202 }
2203 
2204 /*
2205  * Check that a process has enough memory to allocate a new virtual
2206  * mapping. 0 means there is enough memory for the allocation to
2207  * succeed and -ENOMEM implies there is not.
2208  *
2209  * Do not audit the selinux permission check, as this is applied to all
2210  * processes that allocate mappings.
2211  */
2212 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2213 {
2214 	int rc, cap_sys_admin = 0;
2215 
2216 	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2217 				 CAP_OPT_NOAUDIT, true);
2218 	if (rc == 0)
2219 		cap_sys_admin = 1;
2220 
2221 	return cap_sys_admin;
2222 }
2223 
2224 /* binprm security operations */
2225 
2226 static u32 ptrace_parent_sid(void)
2227 {
2228 	u32 sid = 0;
2229 	struct task_struct *tracer;
2230 
2231 	rcu_read_lock();
2232 	tracer = ptrace_parent(current);
2233 	if (tracer)
2234 		sid = task_sid_obj(tracer);
2235 	rcu_read_unlock();
2236 
2237 	return sid;
2238 }
2239 
2240 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2241 			    const struct task_security_struct *old_tsec,
2242 			    const struct task_security_struct *new_tsec)
2243 {
2244 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2245 	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2246 	int rc;
2247 	u32 av;
2248 
2249 	if (!nnp && !nosuid)
2250 		return 0; /* neither NNP nor nosuid */
2251 
2252 	if (new_tsec->sid == old_tsec->sid)
2253 		return 0; /* No change in credentials */
2254 
2255 	/*
2256 	 * If the policy enables the nnp_nosuid_transition policy capability,
2257 	 * then we permit transitions under NNP or nosuid if the
2258 	 * policy allows the corresponding permission between
2259 	 * the old and new contexts.
2260 	 */
2261 	if (selinux_policycap_nnp_nosuid_transition()) {
2262 		av = 0;
2263 		if (nnp)
2264 			av |= PROCESS2__NNP_TRANSITION;
2265 		if (nosuid)
2266 			av |= PROCESS2__NOSUID_TRANSITION;
2267 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2268 				  SECCLASS_PROCESS2, av, NULL);
2269 		if (!rc)
2270 			return 0;
2271 	}
2272 
2273 	/*
2274 	 * We also permit NNP or nosuid transitions to bounded SIDs,
2275 	 * i.e. SIDs that are guaranteed to only be allowed a subset
2276 	 * of the permissions of the current SID.
2277 	 */
2278 	rc = security_bounded_transition(old_tsec->sid,
2279 					 new_tsec->sid);
2280 	if (!rc)
2281 		return 0;
2282 
2283 	/*
2284 	 * On failure, preserve the errno values for NNP vs nosuid.
2285 	 * NNP:  Operation not permitted for caller.
2286 	 * nosuid:  Permission denied to file.
2287 	 */
2288 	if (nnp)
2289 		return -EPERM;
2290 	return -EACCES;
2291 }
2292 
2293 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2294 {
2295 	const struct task_security_struct *old_tsec;
2296 	struct task_security_struct *new_tsec;
2297 	struct inode_security_struct *isec;
2298 	struct common_audit_data ad;
2299 	struct inode *inode = file_inode(bprm->file);
2300 	int rc;
2301 
2302 	/* SELinux context only depends on initial program or script and not
2303 	 * the script interpreter */
2304 
2305 	old_tsec = selinux_cred(current_cred());
2306 	new_tsec = selinux_cred(bprm->cred);
2307 	isec = inode_security(inode);
2308 
2309 	/* Default to the current task SID. */
2310 	new_tsec->sid = old_tsec->sid;
2311 	new_tsec->osid = old_tsec->sid;
2312 
2313 	/* Reset fs, key, and sock SIDs on execve. */
2314 	new_tsec->create_sid = 0;
2315 	new_tsec->keycreate_sid = 0;
2316 	new_tsec->sockcreate_sid = 0;
2317 
2318 	/*
2319 	 * Before policy is loaded, label any task outside kernel space
2320 	 * as SECINITSID_INIT, so that any userspace tasks surviving from
2321 	 * early boot end up with a label different from SECINITSID_KERNEL
2322 	 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL).
2323 	 */
2324 	if (!selinux_initialized()) {
2325 		new_tsec->sid = SECINITSID_INIT;
2326 		/* also clear the exec_sid just in case */
2327 		new_tsec->exec_sid = 0;
2328 		return 0;
2329 	}
2330 
2331 	if (old_tsec->exec_sid) {
2332 		new_tsec->sid = old_tsec->exec_sid;
2333 		/* Reset exec SID on execve. */
2334 		new_tsec->exec_sid = 0;
2335 
2336 		/* Fail on NNP or nosuid if not an allowed transition. */
2337 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2338 		if (rc)
2339 			return rc;
2340 	} else {
2341 		/* Check for a default transition on this program. */
2342 		rc = security_transition_sid(old_tsec->sid,
2343 					     isec->sid, SECCLASS_PROCESS, NULL,
2344 					     &new_tsec->sid);
2345 		if (rc)
2346 			return rc;
2347 
2348 		/*
2349 		 * Fallback to old SID on NNP or nosuid if not an allowed
2350 		 * transition.
2351 		 */
2352 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2353 		if (rc)
2354 			new_tsec->sid = old_tsec->sid;
2355 	}
2356 
2357 	ad.type = LSM_AUDIT_DATA_FILE;
2358 	ad.u.file = bprm->file;
2359 
2360 	if (new_tsec->sid == old_tsec->sid) {
2361 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2362 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2363 		if (rc)
2364 			return rc;
2365 	} else {
2366 		/* Check permissions for the transition. */
2367 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2368 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2369 		if (rc)
2370 			return rc;
2371 
2372 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2373 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2374 		if (rc)
2375 			return rc;
2376 
2377 		/* Check for shared state */
2378 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2379 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2380 					  SECCLASS_PROCESS, PROCESS__SHARE,
2381 					  NULL);
2382 			if (rc)
2383 				return -EPERM;
2384 		}
2385 
2386 		/* Make sure that anyone attempting to ptrace over a task that
2387 		 * changes its SID has the appropriate permit */
2388 		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2389 			u32 ptsid = ptrace_parent_sid();
2390 			if (ptsid != 0) {
2391 				rc = avc_has_perm(ptsid, new_tsec->sid,
2392 						  SECCLASS_PROCESS,
2393 						  PROCESS__PTRACE, NULL);
2394 				if (rc)
2395 					return -EPERM;
2396 			}
2397 		}
2398 
2399 		/* Clear any possibly unsafe personality bits on exec: */
2400 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2401 
2402 		/* Enable secure mode for SIDs transitions unless
2403 		   the noatsecure permission is granted between
2404 		   the two SIDs, i.e. ahp returns 0. */
2405 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2406 				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2407 				  NULL);
2408 		bprm->secureexec |= !!rc;
2409 	}
2410 
2411 	return 0;
2412 }
2413 
2414 static int match_file(const void *p, struct file *file, unsigned fd)
2415 {
2416 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2417 }
2418 
2419 /* Derived from fs/exec.c:flush_old_files. */
2420 static inline void flush_unauthorized_files(const struct cred *cred,
2421 					    struct files_struct *files)
2422 {
2423 	struct file *file, *devnull = NULL;
2424 	struct tty_struct *tty;
2425 	int drop_tty = 0;
2426 	unsigned n;
2427 
2428 	tty = get_current_tty();
2429 	if (tty) {
2430 		spin_lock(&tty->files_lock);
2431 		if (!list_empty(&tty->tty_files)) {
2432 			struct tty_file_private *file_priv;
2433 
2434 			/* Revalidate access to controlling tty.
2435 			   Use file_path_has_perm on the tty path directly
2436 			   rather than using file_has_perm, as this particular
2437 			   open file may belong to another process and we are
2438 			   only interested in the inode-based check here. */
2439 			file_priv = list_first_entry(&tty->tty_files,
2440 						struct tty_file_private, list);
2441 			file = file_priv->file;
2442 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2443 				drop_tty = 1;
2444 		}
2445 		spin_unlock(&tty->files_lock);
2446 		tty_kref_put(tty);
2447 	}
2448 	/* Reset controlling tty. */
2449 	if (drop_tty)
2450 		no_tty();
2451 
2452 	/* Revalidate access to inherited open files. */
2453 	n = iterate_fd(files, 0, match_file, cred);
2454 	if (!n) /* none found? */
2455 		return;
2456 
2457 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2458 	if (IS_ERR(devnull))
2459 		devnull = NULL;
2460 	/* replace all the matching ones with this */
2461 	do {
2462 		replace_fd(n - 1, devnull, 0);
2463 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2464 	if (devnull)
2465 		fput(devnull);
2466 }
2467 
2468 /*
2469  * Prepare a process for imminent new credential changes due to exec
2470  */
2471 static void selinux_bprm_committing_creds(const struct linux_binprm *bprm)
2472 {
2473 	struct task_security_struct *new_tsec;
2474 	struct rlimit *rlim, *initrlim;
2475 	int rc, i;
2476 
2477 	new_tsec = selinux_cred(bprm->cred);
2478 	if (new_tsec->sid == new_tsec->osid)
2479 		return;
2480 
2481 	/* Close files for which the new task SID is not authorized. */
2482 	flush_unauthorized_files(bprm->cred, current->files);
2483 
2484 	/* Always clear parent death signal on SID transitions. */
2485 	current->pdeath_signal = 0;
2486 
2487 	/* Check whether the new SID can inherit resource limits from the old
2488 	 * SID.  If not, reset all soft limits to the lower of the current
2489 	 * task's hard limit and the init task's soft limit.
2490 	 *
2491 	 * Note that the setting of hard limits (even to lower them) can be
2492 	 * controlled by the setrlimit check.  The inclusion of the init task's
2493 	 * soft limit into the computation is to avoid resetting soft limits
2494 	 * higher than the default soft limit for cases where the default is
2495 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2496 	 */
2497 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2498 			  PROCESS__RLIMITINH, NULL);
2499 	if (rc) {
2500 		/* protect against do_prlimit() */
2501 		task_lock(current);
2502 		for (i = 0; i < RLIM_NLIMITS; i++) {
2503 			rlim = current->signal->rlim + i;
2504 			initrlim = init_task.signal->rlim + i;
2505 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2506 		}
2507 		task_unlock(current);
2508 		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2509 			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2510 	}
2511 }
2512 
2513 /*
2514  * Clean up the process immediately after the installation of new credentials
2515  * due to exec
2516  */
2517 static void selinux_bprm_committed_creds(const struct linux_binprm *bprm)
2518 {
2519 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2520 	u32 osid, sid;
2521 	int rc;
2522 
2523 	osid = tsec->osid;
2524 	sid = tsec->sid;
2525 
2526 	if (sid == osid)
2527 		return;
2528 
2529 	/* Check whether the new SID can inherit signal state from the old SID.
2530 	 * If not, clear itimers to avoid subsequent signal generation and
2531 	 * flush and unblock signals.
2532 	 *
2533 	 * This must occur _after_ the task SID has been updated so that any
2534 	 * kill done after the flush will be checked against the new SID.
2535 	 */
2536 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2537 	if (rc) {
2538 		clear_itimer();
2539 
2540 		spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2541 		if (!fatal_signal_pending(current)) {
2542 			flush_sigqueue(&current->pending);
2543 			flush_sigqueue(&current->signal->shared_pending);
2544 			flush_signal_handlers(current, 1);
2545 			sigemptyset(&current->blocked);
2546 			recalc_sigpending();
2547 		}
2548 		spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2549 	}
2550 
2551 	/* Wake up the parent if it is waiting so that it can recheck
2552 	 * wait permission to the new task SID. */
2553 	read_lock(&tasklist_lock);
2554 	__wake_up_parent(current, unrcu_pointer(current->real_parent));
2555 	read_unlock(&tasklist_lock);
2556 }
2557 
2558 /* superblock security operations */
2559 
2560 static int selinux_sb_alloc_security(struct super_block *sb)
2561 {
2562 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2563 
2564 	mutex_init(&sbsec->lock);
2565 	INIT_LIST_HEAD(&sbsec->isec_head);
2566 	spin_lock_init(&sbsec->isec_lock);
2567 	sbsec->sid = SECINITSID_UNLABELED;
2568 	sbsec->def_sid = SECINITSID_FILE;
2569 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2570 
2571 	return 0;
2572 }
2573 
2574 static inline int opt_len(const char *s)
2575 {
2576 	bool open_quote = false;
2577 	int len;
2578 	char c;
2579 
2580 	for (len = 0; (c = s[len]) != '\0'; len++) {
2581 		if (c == '"')
2582 			open_quote = !open_quote;
2583 		if (c == ',' && !open_quote)
2584 			break;
2585 	}
2586 	return len;
2587 }
2588 
2589 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2590 {
2591 	char *from = options;
2592 	char *to = options;
2593 	bool first = true;
2594 	int rc;
2595 
2596 	while (1) {
2597 		int len = opt_len(from);
2598 		int token;
2599 		char *arg = NULL;
2600 
2601 		token = match_opt_prefix(from, len, &arg);
2602 
2603 		if (token != Opt_error) {
2604 			char *p, *q;
2605 
2606 			/* strip quotes */
2607 			if (arg) {
2608 				for (p = q = arg; p < from + len; p++) {
2609 					char c = *p;
2610 					if (c != '"')
2611 						*q++ = c;
2612 				}
2613 				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2614 				if (!arg) {
2615 					rc = -ENOMEM;
2616 					goto free_opt;
2617 				}
2618 			}
2619 			rc = selinux_add_opt(token, arg, mnt_opts);
2620 			kfree(arg);
2621 			arg = NULL;
2622 			if (unlikely(rc)) {
2623 				goto free_opt;
2624 			}
2625 		} else {
2626 			if (!first) {	// copy with preceding comma
2627 				from--;
2628 				len++;
2629 			}
2630 			if (to != from)
2631 				memmove(to, from, len);
2632 			to += len;
2633 			first = false;
2634 		}
2635 		if (!from[len])
2636 			break;
2637 		from += len + 1;
2638 	}
2639 	*to = '\0';
2640 	return 0;
2641 
2642 free_opt:
2643 	if (*mnt_opts) {
2644 		selinux_free_mnt_opts(*mnt_opts);
2645 		*mnt_opts = NULL;
2646 	}
2647 	return rc;
2648 }
2649 
2650 static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2651 {
2652 	struct selinux_mnt_opts *opts = mnt_opts;
2653 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2654 
2655 	/*
2656 	 * Superblock not initialized (i.e. no options) - reject if any
2657 	 * options specified, otherwise accept.
2658 	 */
2659 	if (!(sbsec->flags & SE_SBINITIALIZED))
2660 		return opts ? 1 : 0;
2661 
2662 	/*
2663 	 * Superblock initialized and no options specified - reject if
2664 	 * superblock has any options set, otherwise accept.
2665 	 */
2666 	if (!opts)
2667 		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2668 
2669 	if (opts->fscontext_sid) {
2670 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2671 			       opts->fscontext_sid))
2672 			return 1;
2673 	}
2674 	if (opts->context_sid) {
2675 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2676 			       opts->context_sid))
2677 			return 1;
2678 	}
2679 	if (opts->rootcontext_sid) {
2680 		struct inode_security_struct *root_isec;
2681 
2682 		root_isec = backing_inode_security(sb->s_root);
2683 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2684 			       opts->rootcontext_sid))
2685 			return 1;
2686 	}
2687 	if (opts->defcontext_sid) {
2688 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2689 			       opts->defcontext_sid))
2690 			return 1;
2691 	}
2692 	return 0;
2693 }
2694 
2695 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2696 {
2697 	struct selinux_mnt_opts *opts = mnt_opts;
2698 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2699 
2700 	if (!(sbsec->flags & SE_SBINITIALIZED))
2701 		return 0;
2702 
2703 	if (!opts)
2704 		return 0;
2705 
2706 	if (opts->fscontext_sid) {
2707 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2708 			       opts->fscontext_sid))
2709 			goto out_bad_option;
2710 	}
2711 	if (opts->context_sid) {
2712 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2713 			       opts->context_sid))
2714 			goto out_bad_option;
2715 	}
2716 	if (opts->rootcontext_sid) {
2717 		struct inode_security_struct *root_isec;
2718 		root_isec = backing_inode_security(sb->s_root);
2719 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2720 			       opts->rootcontext_sid))
2721 			goto out_bad_option;
2722 	}
2723 	if (opts->defcontext_sid) {
2724 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2725 			       opts->defcontext_sid))
2726 			goto out_bad_option;
2727 	}
2728 	return 0;
2729 
2730 out_bad_option:
2731 	pr_warn("SELinux: unable to change security options "
2732 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2733 	       sb->s_type->name);
2734 	return -EINVAL;
2735 }
2736 
2737 static int selinux_sb_kern_mount(const struct super_block *sb)
2738 {
2739 	const struct cred *cred = current_cred();
2740 	struct common_audit_data ad;
2741 
2742 	ad.type = LSM_AUDIT_DATA_DENTRY;
2743 	ad.u.dentry = sb->s_root;
2744 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2745 }
2746 
2747 static int selinux_sb_statfs(struct dentry *dentry)
2748 {
2749 	const struct cred *cred = current_cred();
2750 	struct common_audit_data ad;
2751 
2752 	ad.type = LSM_AUDIT_DATA_DENTRY;
2753 	ad.u.dentry = dentry->d_sb->s_root;
2754 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2755 }
2756 
2757 static int selinux_mount(const char *dev_name,
2758 			 const struct path *path,
2759 			 const char *type,
2760 			 unsigned long flags,
2761 			 void *data)
2762 {
2763 	const struct cred *cred = current_cred();
2764 
2765 	if (flags & MS_REMOUNT)
2766 		return superblock_has_perm(cred, path->dentry->d_sb,
2767 					   FILESYSTEM__REMOUNT, NULL);
2768 	else
2769 		return path_has_perm(cred, path, FILE__MOUNTON);
2770 }
2771 
2772 static int selinux_move_mount(const struct path *from_path,
2773 			      const struct path *to_path)
2774 {
2775 	const struct cred *cred = current_cred();
2776 
2777 	return path_has_perm(cred, to_path, FILE__MOUNTON);
2778 }
2779 
2780 static int selinux_umount(struct vfsmount *mnt, int flags)
2781 {
2782 	const struct cred *cred = current_cred();
2783 
2784 	return superblock_has_perm(cred, mnt->mnt_sb,
2785 				   FILESYSTEM__UNMOUNT, NULL);
2786 }
2787 
2788 static int selinux_fs_context_submount(struct fs_context *fc,
2789 				   struct super_block *reference)
2790 {
2791 	const struct superblock_security_struct *sbsec = selinux_superblock(reference);
2792 	struct selinux_mnt_opts *opts;
2793 
2794 	/*
2795 	 * Ensure that fc->security remains NULL when no options are set
2796 	 * as expected by selinux_set_mnt_opts().
2797 	 */
2798 	if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT)))
2799 		return 0;
2800 
2801 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
2802 	if (!opts)
2803 		return -ENOMEM;
2804 
2805 	if (sbsec->flags & FSCONTEXT_MNT)
2806 		opts->fscontext_sid = sbsec->sid;
2807 	if (sbsec->flags & CONTEXT_MNT)
2808 		opts->context_sid = sbsec->mntpoint_sid;
2809 	if (sbsec->flags & DEFCONTEXT_MNT)
2810 		opts->defcontext_sid = sbsec->def_sid;
2811 	fc->security = opts;
2812 	return 0;
2813 }
2814 
2815 static int selinux_fs_context_dup(struct fs_context *fc,
2816 				  struct fs_context *src_fc)
2817 {
2818 	const struct selinux_mnt_opts *src = src_fc->security;
2819 
2820 	if (!src)
2821 		return 0;
2822 
2823 	fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2824 	return fc->security ? 0 : -ENOMEM;
2825 }
2826 
2827 static const struct fs_parameter_spec selinux_fs_parameters[] = {
2828 	fsparam_string(CONTEXT_STR,	Opt_context),
2829 	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2830 	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2831 	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2832 	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2833 	{}
2834 };
2835 
2836 static int selinux_fs_context_parse_param(struct fs_context *fc,
2837 					  struct fs_parameter *param)
2838 {
2839 	struct fs_parse_result result;
2840 	int opt;
2841 
2842 	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2843 	if (opt < 0)
2844 		return opt;
2845 
2846 	return selinux_add_opt(opt, param->string, &fc->security);
2847 }
2848 
2849 /* inode security operations */
2850 
2851 static int selinux_inode_alloc_security(struct inode *inode)
2852 {
2853 	struct inode_security_struct *isec = selinux_inode(inode);
2854 	u32 sid = current_sid();
2855 
2856 	spin_lock_init(&isec->lock);
2857 	INIT_LIST_HEAD(&isec->list);
2858 	isec->inode = inode;
2859 	isec->sid = SECINITSID_UNLABELED;
2860 	isec->sclass = SECCLASS_FILE;
2861 	isec->task_sid = sid;
2862 	isec->initialized = LABEL_INVALID;
2863 
2864 	return 0;
2865 }
2866 
2867 static void selinux_inode_free_security(struct inode *inode)
2868 {
2869 	inode_free_security(inode);
2870 }
2871 
2872 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2873 					const struct qstr *name,
2874 					const char **xattr_name, void **ctx,
2875 					u32 *ctxlen)
2876 {
2877 	u32 newsid;
2878 	int rc;
2879 
2880 	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2881 					   d_inode(dentry->d_parent), name,
2882 					   inode_mode_to_security_class(mode),
2883 					   &newsid);
2884 	if (rc)
2885 		return rc;
2886 
2887 	if (xattr_name)
2888 		*xattr_name = XATTR_NAME_SELINUX;
2889 
2890 	return security_sid_to_context(newsid, (char **)ctx,
2891 				       ctxlen);
2892 }
2893 
2894 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2895 					  struct qstr *name,
2896 					  const struct cred *old,
2897 					  struct cred *new)
2898 {
2899 	u32 newsid;
2900 	int rc;
2901 	struct task_security_struct *tsec;
2902 
2903 	rc = selinux_determine_inode_label(selinux_cred(old),
2904 					   d_inode(dentry->d_parent), name,
2905 					   inode_mode_to_security_class(mode),
2906 					   &newsid);
2907 	if (rc)
2908 		return rc;
2909 
2910 	tsec = selinux_cred(new);
2911 	tsec->create_sid = newsid;
2912 	return 0;
2913 }
2914 
2915 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2916 				       const struct qstr *qstr,
2917 				       struct xattr *xattrs, int *xattr_count)
2918 {
2919 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2920 	struct superblock_security_struct *sbsec;
2921 	struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count);
2922 	u32 newsid, clen;
2923 	int rc;
2924 	char *context;
2925 
2926 	sbsec = selinux_superblock(dir->i_sb);
2927 
2928 	newsid = tsec->create_sid;
2929 
2930 	rc = selinux_determine_inode_label(tsec, dir, qstr,
2931 		inode_mode_to_security_class(inode->i_mode),
2932 		&newsid);
2933 	if (rc)
2934 		return rc;
2935 
2936 	/* Possibly defer initialization to selinux_complete_init. */
2937 	if (sbsec->flags & SE_SBINITIALIZED) {
2938 		struct inode_security_struct *isec = selinux_inode(inode);
2939 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2940 		isec->sid = newsid;
2941 		isec->initialized = LABEL_INITIALIZED;
2942 	}
2943 
2944 	if (!selinux_initialized() ||
2945 	    !(sbsec->flags & SBLABEL_MNT))
2946 		return -EOPNOTSUPP;
2947 
2948 	if (xattr) {
2949 		rc = security_sid_to_context_force(newsid,
2950 						   &context, &clen);
2951 		if (rc)
2952 			return rc;
2953 		xattr->value = context;
2954 		xattr->value_len = clen;
2955 		xattr->name = XATTR_SELINUX_SUFFIX;
2956 	}
2957 
2958 	return 0;
2959 }
2960 
2961 static int selinux_inode_init_security_anon(struct inode *inode,
2962 					    const struct qstr *name,
2963 					    const struct inode *context_inode)
2964 {
2965 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2966 	struct common_audit_data ad;
2967 	struct inode_security_struct *isec;
2968 	int rc;
2969 
2970 	if (unlikely(!selinux_initialized()))
2971 		return 0;
2972 
2973 	isec = selinux_inode(inode);
2974 
2975 	/*
2976 	 * We only get here once per ephemeral inode.  The inode has
2977 	 * been initialized via inode_alloc_security but is otherwise
2978 	 * untouched.
2979 	 */
2980 
2981 	if (context_inode) {
2982 		struct inode_security_struct *context_isec =
2983 			selinux_inode(context_inode);
2984 		if (context_isec->initialized != LABEL_INITIALIZED) {
2985 			pr_err("SELinux:  context_inode is not initialized\n");
2986 			return -EACCES;
2987 		}
2988 
2989 		isec->sclass = context_isec->sclass;
2990 		isec->sid = context_isec->sid;
2991 	} else {
2992 		isec->sclass = SECCLASS_ANON_INODE;
2993 		rc = security_transition_sid(
2994 			tsec->sid, tsec->sid,
2995 			isec->sclass, name, &isec->sid);
2996 		if (rc)
2997 			return rc;
2998 	}
2999 
3000 	isec->initialized = LABEL_INITIALIZED;
3001 	/*
3002 	 * Now that we've initialized security, check whether we're
3003 	 * allowed to actually create this type of anonymous inode.
3004 	 */
3005 
3006 	ad.type = LSM_AUDIT_DATA_ANONINODE;
3007 	ad.u.anonclass = name ? (const char *)name->name : "?";
3008 
3009 	return avc_has_perm(tsec->sid,
3010 			    isec->sid,
3011 			    isec->sclass,
3012 			    FILE__CREATE,
3013 			    &ad);
3014 }
3015 
3016 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3017 {
3018 	return may_create(dir, dentry, SECCLASS_FILE);
3019 }
3020 
3021 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3022 {
3023 	return may_link(dir, old_dentry, MAY_LINK);
3024 }
3025 
3026 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3027 {
3028 	return may_link(dir, dentry, MAY_UNLINK);
3029 }
3030 
3031 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3032 {
3033 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3034 }
3035 
3036 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3037 {
3038 	return may_create(dir, dentry, SECCLASS_DIR);
3039 }
3040 
3041 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3042 {
3043 	return may_link(dir, dentry, MAY_RMDIR);
3044 }
3045 
3046 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3047 {
3048 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3049 }
3050 
3051 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3052 				struct inode *new_inode, struct dentry *new_dentry)
3053 {
3054 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3055 }
3056 
3057 static int selinux_inode_readlink(struct dentry *dentry)
3058 {
3059 	const struct cred *cred = current_cred();
3060 
3061 	return dentry_has_perm(cred, dentry, FILE__READ);
3062 }
3063 
3064 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3065 				     bool rcu)
3066 {
3067 	const struct cred *cred = current_cred();
3068 	struct common_audit_data ad;
3069 	struct inode_security_struct *isec;
3070 	u32 sid;
3071 
3072 	ad.type = LSM_AUDIT_DATA_DENTRY;
3073 	ad.u.dentry = dentry;
3074 	sid = cred_sid(cred);
3075 	isec = inode_security_rcu(inode, rcu);
3076 	if (IS_ERR(isec))
3077 		return PTR_ERR(isec);
3078 
3079 	return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad);
3080 }
3081 
3082 static noinline int audit_inode_permission(struct inode *inode,
3083 					   u32 perms, u32 audited, u32 denied,
3084 					   int result)
3085 {
3086 	struct common_audit_data ad;
3087 	struct inode_security_struct *isec = selinux_inode(inode);
3088 
3089 	ad.type = LSM_AUDIT_DATA_INODE;
3090 	ad.u.inode = inode;
3091 
3092 	return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3093 			    audited, denied, result, &ad);
3094 }
3095 
3096 static int selinux_inode_permission(struct inode *inode, int mask)
3097 {
3098 	const struct cred *cred = current_cred();
3099 	u32 perms;
3100 	bool from_access;
3101 	bool no_block = mask & MAY_NOT_BLOCK;
3102 	struct inode_security_struct *isec;
3103 	u32 sid;
3104 	struct av_decision avd;
3105 	int rc, rc2;
3106 	u32 audited, denied;
3107 
3108 	from_access = mask & MAY_ACCESS;
3109 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3110 
3111 	/* No permission to check.  Existence test. */
3112 	if (!mask)
3113 		return 0;
3114 
3115 	if (unlikely(IS_PRIVATE(inode)))
3116 		return 0;
3117 
3118 	perms = file_mask_to_av(inode->i_mode, mask);
3119 
3120 	sid = cred_sid(cred);
3121 	isec = inode_security_rcu(inode, no_block);
3122 	if (IS_ERR(isec))
3123 		return PTR_ERR(isec);
3124 
3125 	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0,
3126 				  &avd);
3127 	audited = avc_audit_required(perms, &avd, rc,
3128 				     from_access ? FILE__AUDIT_ACCESS : 0,
3129 				     &denied);
3130 	if (likely(!audited))
3131 		return rc;
3132 
3133 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3134 	if (rc2)
3135 		return rc2;
3136 	return rc;
3137 }
3138 
3139 static int selinux_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3140 				 struct iattr *iattr)
3141 {
3142 	const struct cred *cred = current_cred();
3143 	struct inode *inode = d_backing_inode(dentry);
3144 	unsigned int ia_valid = iattr->ia_valid;
3145 	__u32 av = FILE__WRITE;
3146 
3147 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3148 	if (ia_valid & ATTR_FORCE) {
3149 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3150 			      ATTR_FORCE);
3151 		if (!ia_valid)
3152 			return 0;
3153 	}
3154 
3155 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3156 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3157 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3158 
3159 	if (selinux_policycap_openperm() &&
3160 	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3161 	    (ia_valid & ATTR_SIZE) &&
3162 	    !(ia_valid & ATTR_FILE))
3163 		av |= FILE__OPEN;
3164 
3165 	return dentry_has_perm(cred, dentry, av);
3166 }
3167 
3168 static int selinux_inode_getattr(const struct path *path)
3169 {
3170 	return path_has_perm(current_cred(), path, FILE__GETATTR);
3171 }
3172 
3173 static bool has_cap_mac_admin(bool audit)
3174 {
3175 	const struct cred *cred = current_cred();
3176 	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3177 
3178 	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3179 		return false;
3180 	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3181 		return false;
3182 	return true;
3183 }
3184 
3185 static int selinux_inode_setxattr(struct mnt_idmap *idmap,
3186 				  struct dentry *dentry, const char *name,
3187 				  const void *value, size_t size, int flags)
3188 {
3189 	struct inode *inode = d_backing_inode(dentry);
3190 	struct inode_security_struct *isec;
3191 	struct superblock_security_struct *sbsec;
3192 	struct common_audit_data ad;
3193 	u32 newsid, sid = current_sid();
3194 	int rc = 0;
3195 
3196 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3197 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3198 		if (rc)
3199 			return rc;
3200 
3201 		/* Not an attribute we recognize, so just check the
3202 		   ordinary setattr permission. */
3203 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3204 	}
3205 
3206 	if (!selinux_initialized())
3207 		return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM);
3208 
3209 	sbsec = selinux_superblock(inode->i_sb);
3210 	if (!(sbsec->flags & SBLABEL_MNT))
3211 		return -EOPNOTSUPP;
3212 
3213 	if (!inode_owner_or_capable(idmap, inode))
3214 		return -EPERM;
3215 
3216 	ad.type = LSM_AUDIT_DATA_DENTRY;
3217 	ad.u.dentry = dentry;
3218 
3219 	isec = backing_inode_security(dentry);
3220 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
3221 			  FILE__RELABELFROM, &ad);
3222 	if (rc)
3223 		return rc;
3224 
3225 	rc = security_context_to_sid(value, size, &newsid,
3226 				     GFP_KERNEL);
3227 	if (rc == -EINVAL) {
3228 		if (!has_cap_mac_admin(true)) {
3229 			struct audit_buffer *ab;
3230 			size_t audit_size;
3231 
3232 			/* We strip a nul only if it is at the end, otherwise the
3233 			 * context contains a nul and we should audit that */
3234 			if (value) {
3235 				const char *str = value;
3236 
3237 				if (str[size - 1] == '\0')
3238 					audit_size = size - 1;
3239 				else
3240 					audit_size = size;
3241 			} else {
3242 				audit_size = 0;
3243 			}
3244 			ab = audit_log_start(audit_context(),
3245 					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3246 			if (!ab)
3247 				return rc;
3248 			audit_log_format(ab, "op=setxattr invalid_context=");
3249 			audit_log_n_untrustedstring(ab, value, audit_size);
3250 			audit_log_end(ab);
3251 
3252 			return rc;
3253 		}
3254 		rc = security_context_to_sid_force(value,
3255 						   size, &newsid);
3256 	}
3257 	if (rc)
3258 		return rc;
3259 
3260 	rc = avc_has_perm(sid, newsid, isec->sclass,
3261 			  FILE__RELABELTO, &ad);
3262 	if (rc)
3263 		return rc;
3264 
3265 	rc = security_validate_transition(isec->sid, newsid,
3266 					  sid, isec->sclass);
3267 	if (rc)
3268 		return rc;
3269 
3270 	return avc_has_perm(newsid,
3271 			    sbsec->sid,
3272 			    SECCLASS_FILESYSTEM,
3273 			    FILESYSTEM__ASSOCIATE,
3274 			    &ad);
3275 }
3276 
3277 static int selinux_inode_set_acl(struct mnt_idmap *idmap,
3278 				 struct dentry *dentry, const char *acl_name,
3279 				 struct posix_acl *kacl)
3280 {
3281 	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3282 }
3283 
3284 static int selinux_inode_get_acl(struct mnt_idmap *idmap,
3285 				 struct dentry *dentry, const char *acl_name)
3286 {
3287 	return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3288 }
3289 
3290 static int selinux_inode_remove_acl(struct mnt_idmap *idmap,
3291 				    struct dentry *dentry, const char *acl_name)
3292 {
3293 	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3294 }
3295 
3296 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3297 					const void *value, size_t size,
3298 					int flags)
3299 {
3300 	struct inode *inode = d_backing_inode(dentry);
3301 	struct inode_security_struct *isec;
3302 	u32 newsid;
3303 	int rc;
3304 
3305 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3306 		/* Not an attribute we recognize, so nothing to do. */
3307 		return;
3308 	}
3309 
3310 	if (!selinux_initialized()) {
3311 		/* If we haven't even been initialized, then we can't validate
3312 		 * against a policy, so leave the label as invalid. It may
3313 		 * resolve to a valid label on the next revalidation try if
3314 		 * we've since initialized.
3315 		 */
3316 		return;
3317 	}
3318 
3319 	rc = security_context_to_sid_force(value, size,
3320 					   &newsid);
3321 	if (rc) {
3322 		pr_err("SELinux:  unable to map context to SID"
3323 		       "for (%s, %lu), rc=%d\n",
3324 		       inode->i_sb->s_id, inode->i_ino, -rc);
3325 		return;
3326 	}
3327 
3328 	isec = backing_inode_security(dentry);
3329 	spin_lock(&isec->lock);
3330 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3331 	isec->sid = newsid;
3332 	isec->initialized = LABEL_INITIALIZED;
3333 	spin_unlock(&isec->lock);
3334 }
3335 
3336 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3337 {
3338 	const struct cred *cred = current_cred();
3339 
3340 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3341 }
3342 
3343 static int selinux_inode_listxattr(struct dentry *dentry)
3344 {
3345 	const struct cred *cred = current_cred();
3346 
3347 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3348 }
3349 
3350 static int selinux_inode_removexattr(struct mnt_idmap *idmap,
3351 				     struct dentry *dentry, const char *name)
3352 {
3353 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3354 		int rc = cap_inode_removexattr(idmap, dentry, name);
3355 		if (rc)
3356 			return rc;
3357 
3358 		/* Not an attribute we recognize, so just check the
3359 		   ordinary setattr permission. */
3360 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3361 	}
3362 
3363 	if (!selinux_initialized())
3364 		return 0;
3365 
3366 	/* No one is allowed to remove a SELinux security label.
3367 	   You can change the label, but all data must be labeled. */
3368 	return -EACCES;
3369 }
3370 
3371 static int selinux_path_notify(const struct path *path, u64 mask,
3372 						unsigned int obj_type)
3373 {
3374 	int ret;
3375 	u32 perm;
3376 
3377 	struct common_audit_data ad;
3378 
3379 	ad.type = LSM_AUDIT_DATA_PATH;
3380 	ad.u.path = *path;
3381 
3382 	/*
3383 	 * Set permission needed based on the type of mark being set.
3384 	 * Performs an additional check for sb watches.
3385 	 */
3386 	switch (obj_type) {
3387 	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3388 		perm = FILE__WATCH_MOUNT;
3389 		break;
3390 	case FSNOTIFY_OBJ_TYPE_SB:
3391 		perm = FILE__WATCH_SB;
3392 		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3393 						FILESYSTEM__WATCH, &ad);
3394 		if (ret)
3395 			return ret;
3396 		break;
3397 	case FSNOTIFY_OBJ_TYPE_INODE:
3398 		perm = FILE__WATCH;
3399 		break;
3400 	default:
3401 		return -EINVAL;
3402 	}
3403 
3404 	/* blocking watches require the file:watch_with_perm permission */
3405 	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3406 		perm |= FILE__WATCH_WITH_PERM;
3407 
3408 	/* watches on read-like events need the file:watch_reads permission */
3409 	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3410 		perm |= FILE__WATCH_READS;
3411 
3412 	return path_has_perm(current_cred(), path, perm);
3413 }
3414 
3415 /*
3416  * Copy the inode security context value to the user.
3417  *
3418  * Permission check is handled by selinux_inode_getxattr hook.
3419  */
3420 static int selinux_inode_getsecurity(struct mnt_idmap *idmap,
3421 				     struct inode *inode, const char *name,
3422 				     void **buffer, bool alloc)
3423 {
3424 	u32 size;
3425 	int error;
3426 	char *context = NULL;
3427 	struct inode_security_struct *isec;
3428 
3429 	/*
3430 	 * If we're not initialized yet, then we can't validate contexts, so
3431 	 * just let vfs_getxattr fall back to using the on-disk xattr.
3432 	 */
3433 	if (!selinux_initialized() ||
3434 	    strcmp(name, XATTR_SELINUX_SUFFIX))
3435 		return -EOPNOTSUPP;
3436 
3437 	/*
3438 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3439 	 * value even if it is not defined by current policy; otherwise,
3440 	 * use the in-core value under current policy.
3441 	 * Use the non-auditing forms of the permission checks since
3442 	 * getxattr may be called by unprivileged processes commonly
3443 	 * and lack of permission just means that we fall back to the
3444 	 * in-core context value, not a denial.
3445 	 */
3446 	isec = inode_security(inode);
3447 	if (has_cap_mac_admin(false))
3448 		error = security_sid_to_context_force(isec->sid, &context,
3449 						      &size);
3450 	else
3451 		error = security_sid_to_context(isec->sid,
3452 						&context, &size);
3453 	if (error)
3454 		return error;
3455 	error = size;
3456 	if (alloc) {
3457 		*buffer = context;
3458 		goto out_nofree;
3459 	}
3460 	kfree(context);
3461 out_nofree:
3462 	return error;
3463 }
3464 
3465 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3466 				     const void *value, size_t size, int flags)
3467 {
3468 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3469 	struct superblock_security_struct *sbsec;
3470 	u32 newsid;
3471 	int rc;
3472 
3473 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3474 		return -EOPNOTSUPP;
3475 
3476 	sbsec = selinux_superblock(inode->i_sb);
3477 	if (!(sbsec->flags & SBLABEL_MNT))
3478 		return -EOPNOTSUPP;
3479 
3480 	if (!value || !size)
3481 		return -EACCES;
3482 
3483 	rc = security_context_to_sid(value, size, &newsid,
3484 				     GFP_KERNEL);
3485 	if (rc)
3486 		return rc;
3487 
3488 	spin_lock(&isec->lock);
3489 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3490 	isec->sid = newsid;
3491 	isec->initialized = LABEL_INITIALIZED;
3492 	spin_unlock(&isec->lock);
3493 	return 0;
3494 }
3495 
3496 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3497 {
3498 	const int len = sizeof(XATTR_NAME_SELINUX);
3499 
3500 	if (!selinux_initialized())
3501 		return 0;
3502 
3503 	if (buffer && len <= buffer_size)
3504 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3505 	return len;
3506 }
3507 
3508 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3509 {
3510 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3511 	*secid = isec->sid;
3512 }
3513 
3514 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3515 {
3516 	u32 sid;
3517 	struct task_security_struct *tsec;
3518 	struct cred *new_creds = *new;
3519 
3520 	if (new_creds == NULL) {
3521 		new_creds = prepare_creds();
3522 		if (!new_creds)
3523 			return -ENOMEM;
3524 	}
3525 
3526 	tsec = selinux_cred(new_creds);
3527 	/* Get label from overlay inode and set it in create_sid */
3528 	selinux_inode_getsecid(d_inode(src), &sid);
3529 	tsec->create_sid = sid;
3530 	*new = new_creds;
3531 	return 0;
3532 }
3533 
3534 static int selinux_inode_copy_up_xattr(const char *name)
3535 {
3536 	/* The copy_up hook above sets the initial context on an inode, but we
3537 	 * don't then want to overwrite it by blindly copying all the lower
3538 	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3539 	 */
3540 	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3541 		return 1; /* Discard */
3542 	/*
3543 	 * Any other attribute apart from SELINUX is not claimed, supported
3544 	 * by selinux.
3545 	 */
3546 	return -EOPNOTSUPP;
3547 }
3548 
3549 /* kernfs node operations */
3550 
3551 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3552 					struct kernfs_node *kn)
3553 {
3554 	const struct task_security_struct *tsec = selinux_cred(current_cred());
3555 	u32 parent_sid, newsid, clen;
3556 	int rc;
3557 	char *context;
3558 
3559 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3560 	if (rc == -ENODATA)
3561 		return 0;
3562 	else if (rc < 0)
3563 		return rc;
3564 
3565 	clen = (u32)rc;
3566 	context = kmalloc(clen, GFP_KERNEL);
3567 	if (!context)
3568 		return -ENOMEM;
3569 
3570 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3571 	if (rc < 0) {
3572 		kfree(context);
3573 		return rc;
3574 	}
3575 
3576 	rc = security_context_to_sid(context, clen, &parent_sid,
3577 				     GFP_KERNEL);
3578 	kfree(context);
3579 	if (rc)
3580 		return rc;
3581 
3582 	if (tsec->create_sid) {
3583 		newsid = tsec->create_sid;
3584 	} else {
3585 		u16 secclass = inode_mode_to_security_class(kn->mode);
3586 		struct qstr q;
3587 
3588 		q.name = kn->name;
3589 		q.hash_len = hashlen_string(kn_dir, kn->name);
3590 
3591 		rc = security_transition_sid(tsec->sid,
3592 					     parent_sid, secclass, &q,
3593 					     &newsid);
3594 		if (rc)
3595 			return rc;
3596 	}
3597 
3598 	rc = security_sid_to_context_force(newsid,
3599 					   &context, &clen);
3600 	if (rc)
3601 		return rc;
3602 
3603 	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3604 			      XATTR_CREATE);
3605 	kfree(context);
3606 	return rc;
3607 }
3608 
3609 
3610 /* file security operations */
3611 
3612 static int selinux_revalidate_file_permission(struct file *file, int mask)
3613 {
3614 	const struct cred *cred = current_cred();
3615 	struct inode *inode = file_inode(file);
3616 
3617 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3618 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3619 		mask |= MAY_APPEND;
3620 
3621 	return file_has_perm(cred, file,
3622 			     file_mask_to_av(inode->i_mode, mask));
3623 }
3624 
3625 static int selinux_file_permission(struct file *file, int mask)
3626 {
3627 	struct inode *inode = file_inode(file);
3628 	struct file_security_struct *fsec = selinux_file(file);
3629 	struct inode_security_struct *isec;
3630 	u32 sid = current_sid();
3631 
3632 	if (!mask)
3633 		/* No permission to check.  Existence test. */
3634 		return 0;
3635 
3636 	isec = inode_security(inode);
3637 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3638 	    fsec->pseqno == avc_policy_seqno())
3639 		/* No change since file_open check. */
3640 		return 0;
3641 
3642 	return selinux_revalidate_file_permission(file, mask);
3643 }
3644 
3645 static int selinux_file_alloc_security(struct file *file)
3646 {
3647 	struct file_security_struct *fsec = selinux_file(file);
3648 	u32 sid = current_sid();
3649 
3650 	fsec->sid = sid;
3651 	fsec->fown_sid = sid;
3652 
3653 	return 0;
3654 }
3655 
3656 /*
3657  * Check whether a task has the ioctl permission and cmd
3658  * operation to an inode.
3659  */
3660 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3661 		u32 requested, u16 cmd)
3662 {
3663 	struct common_audit_data ad;
3664 	struct file_security_struct *fsec = selinux_file(file);
3665 	struct inode *inode = file_inode(file);
3666 	struct inode_security_struct *isec;
3667 	struct lsm_ioctlop_audit ioctl;
3668 	u32 ssid = cred_sid(cred);
3669 	int rc;
3670 	u8 driver = cmd >> 8;
3671 	u8 xperm = cmd & 0xff;
3672 
3673 	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3674 	ad.u.op = &ioctl;
3675 	ad.u.op->cmd = cmd;
3676 	ad.u.op->path = file->f_path;
3677 
3678 	if (ssid != fsec->sid) {
3679 		rc = avc_has_perm(ssid, fsec->sid,
3680 				SECCLASS_FD,
3681 				FD__USE,
3682 				&ad);
3683 		if (rc)
3684 			goto out;
3685 	}
3686 
3687 	if (unlikely(IS_PRIVATE(inode)))
3688 		return 0;
3689 
3690 	isec = inode_security(inode);
3691 	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3692 				    requested, driver, xperm, &ad);
3693 out:
3694 	return rc;
3695 }
3696 
3697 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3698 			      unsigned long arg)
3699 {
3700 	const struct cred *cred = current_cred();
3701 	int error = 0;
3702 
3703 	switch (cmd) {
3704 	case FIONREAD:
3705 	case FIBMAP:
3706 	case FIGETBSZ:
3707 	case FS_IOC_GETFLAGS:
3708 	case FS_IOC_GETVERSION:
3709 		error = file_has_perm(cred, file, FILE__GETATTR);
3710 		break;
3711 
3712 	case FS_IOC_SETFLAGS:
3713 	case FS_IOC_SETVERSION:
3714 		error = file_has_perm(cred, file, FILE__SETATTR);
3715 		break;
3716 
3717 	/* sys_ioctl() checks */
3718 	case FIONBIO:
3719 	case FIOASYNC:
3720 		error = file_has_perm(cred, file, 0);
3721 		break;
3722 
3723 	case KDSKBENT:
3724 	case KDSKBSENT:
3725 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3726 					    CAP_OPT_NONE, true);
3727 		break;
3728 
3729 	case FIOCLEX:
3730 	case FIONCLEX:
3731 		if (!selinux_policycap_ioctl_skip_cloexec())
3732 			error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3733 		break;
3734 
3735 	/* default case assumes that the command will go
3736 	 * to the file's ioctl() function.
3737 	 */
3738 	default:
3739 		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3740 	}
3741 	return error;
3742 }
3743 
3744 static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd,
3745 			      unsigned long arg)
3746 {
3747 	/*
3748 	 * If we are in a 64-bit kernel running 32-bit userspace, we need to
3749 	 * make sure we don't compare 32-bit flags to 64-bit flags.
3750 	 */
3751 	switch (cmd) {
3752 	case FS_IOC32_GETFLAGS:
3753 		cmd = FS_IOC_GETFLAGS;
3754 		break;
3755 	case FS_IOC32_SETFLAGS:
3756 		cmd = FS_IOC_SETFLAGS;
3757 		break;
3758 	case FS_IOC32_GETVERSION:
3759 		cmd = FS_IOC_GETVERSION;
3760 		break;
3761 	case FS_IOC32_SETVERSION:
3762 		cmd = FS_IOC_SETVERSION;
3763 		break;
3764 	default:
3765 		break;
3766 	}
3767 
3768 	return selinux_file_ioctl(file, cmd, arg);
3769 }
3770 
3771 static int default_noexec __ro_after_init;
3772 
3773 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3774 {
3775 	const struct cred *cred = current_cred();
3776 	u32 sid = cred_sid(cred);
3777 	int rc = 0;
3778 
3779 	if (default_noexec &&
3780 	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3781 				   (!shared && (prot & PROT_WRITE)))) {
3782 		/*
3783 		 * We are making executable an anonymous mapping or a
3784 		 * private file mapping that will also be writable.
3785 		 * This has an additional check.
3786 		 */
3787 		rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3788 				  PROCESS__EXECMEM, NULL);
3789 		if (rc)
3790 			goto error;
3791 	}
3792 
3793 	if (file) {
3794 		/* read access is always possible with a mapping */
3795 		u32 av = FILE__READ;
3796 
3797 		/* write access only matters if the mapping is shared */
3798 		if (shared && (prot & PROT_WRITE))
3799 			av |= FILE__WRITE;
3800 
3801 		if (prot & PROT_EXEC)
3802 			av |= FILE__EXECUTE;
3803 
3804 		return file_has_perm(cred, file, av);
3805 	}
3806 
3807 error:
3808 	return rc;
3809 }
3810 
3811 static int selinux_mmap_addr(unsigned long addr)
3812 {
3813 	int rc = 0;
3814 
3815 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3816 		u32 sid = current_sid();
3817 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3818 				  MEMPROTECT__MMAP_ZERO, NULL);
3819 	}
3820 
3821 	return rc;
3822 }
3823 
3824 static int selinux_mmap_file(struct file *file,
3825 			     unsigned long reqprot __always_unused,
3826 			     unsigned long prot, unsigned long flags)
3827 {
3828 	struct common_audit_data ad;
3829 	int rc;
3830 
3831 	if (file) {
3832 		ad.type = LSM_AUDIT_DATA_FILE;
3833 		ad.u.file = file;
3834 		rc = inode_has_perm(current_cred(), file_inode(file),
3835 				    FILE__MAP, &ad);
3836 		if (rc)
3837 			return rc;
3838 	}
3839 
3840 	return file_map_prot_check(file, prot,
3841 				   (flags & MAP_TYPE) == MAP_SHARED);
3842 }
3843 
3844 static int selinux_file_mprotect(struct vm_area_struct *vma,
3845 				 unsigned long reqprot __always_unused,
3846 				 unsigned long prot)
3847 {
3848 	const struct cred *cred = current_cred();
3849 	u32 sid = cred_sid(cred);
3850 
3851 	if (default_noexec &&
3852 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3853 		int rc = 0;
3854 		if (vma_is_initial_heap(vma)) {
3855 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3856 					  PROCESS__EXECHEAP, NULL);
3857 		} else if (!vma->vm_file && (vma_is_initial_stack(vma) ||
3858 			    vma_is_stack_for_current(vma))) {
3859 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3860 					  PROCESS__EXECSTACK, NULL);
3861 		} else if (vma->vm_file && vma->anon_vma) {
3862 			/*
3863 			 * We are making executable a file mapping that has
3864 			 * had some COW done. Since pages might have been
3865 			 * written, check ability to execute the possibly
3866 			 * modified content.  This typically should only
3867 			 * occur for text relocations.
3868 			 */
3869 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3870 		}
3871 		if (rc)
3872 			return rc;
3873 	}
3874 
3875 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3876 }
3877 
3878 static int selinux_file_lock(struct file *file, unsigned int cmd)
3879 {
3880 	const struct cred *cred = current_cred();
3881 
3882 	return file_has_perm(cred, file, FILE__LOCK);
3883 }
3884 
3885 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3886 			      unsigned long arg)
3887 {
3888 	const struct cred *cred = current_cred();
3889 	int err = 0;
3890 
3891 	switch (cmd) {
3892 	case F_SETFL:
3893 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3894 			err = file_has_perm(cred, file, FILE__WRITE);
3895 			break;
3896 		}
3897 		fallthrough;
3898 	case F_SETOWN:
3899 	case F_SETSIG:
3900 	case F_GETFL:
3901 	case F_GETOWN:
3902 	case F_GETSIG:
3903 	case F_GETOWNER_UIDS:
3904 		/* Just check FD__USE permission */
3905 		err = file_has_perm(cred, file, 0);
3906 		break;
3907 	case F_GETLK:
3908 	case F_SETLK:
3909 	case F_SETLKW:
3910 	case F_OFD_GETLK:
3911 	case F_OFD_SETLK:
3912 	case F_OFD_SETLKW:
3913 #if BITS_PER_LONG == 32
3914 	case F_GETLK64:
3915 	case F_SETLK64:
3916 	case F_SETLKW64:
3917 #endif
3918 		err = file_has_perm(cred, file, FILE__LOCK);
3919 		break;
3920 	}
3921 
3922 	return err;
3923 }
3924 
3925 static void selinux_file_set_fowner(struct file *file)
3926 {
3927 	struct file_security_struct *fsec;
3928 
3929 	fsec = selinux_file(file);
3930 	fsec->fown_sid = current_sid();
3931 }
3932 
3933 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3934 				       struct fown_struct *fown, int signum)
3935 {
3936 	struct file *file;
3937 	u32 sid = task_sid_obj(tsk);
3938 	u32 perm;
3939 	struct file_security_struct *fsec;
3940 
3941 	/* struct fown_struct is never outside the context of a struct file */
3942 	file = container_of(fown, struct file, f_owner);
3943 
3944 	fsec = selinux_file(file);
3945 
3946 	if (!signum)
3947 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3948 	else
3949 		perm = signal_to_av(signum);
3950 
3951 	return avc_has_perm(fsec->fown_sid, sid,
3952 			    SECCLASS_PROCESS, perm, NULL);
3953 }
3954 
3955 static int selinux_file_receive(struct file *file)
3956 {
3957 	const struct cred *cred = current_cred();
3958 
3959 	return file_has_perm(cred, file, file_to_av(file));
3960 }
3961 
3962 static int selinux_file_open(struct file *file)
3963 {
3964 	struct file_security_struct *fsec;
3965 	struct inode_security_struct *isec;
3966 
3967 	fsec = selinux_file(file);
3968 	isec = inode_security(file_inode(file));
3969 	/*
3970 	 * Save inode label and policy sequence number
3971 	 * at open-time so that selinux_file_permission
3972 	 * can determine whether revalidation is necessary.
3973 	 * Task label is already saved in the file security
3974 	 * struct as its SID.
3975 	 */
3976 	fsec->isid = isec->sid;
3977 	fsec->pseqno = avc_policy_seqno();
3978 	/*
3979 	 * Since the inode label or policy seqno may have changed
3980 	 * between the selinux_inode_permission check and the saving
3981 	 * of state above, recheck that access is still permitted.
3982 	 * Otherwise, access might never be revalidated against the
3983 	 * new inode label or new policy.
3984 	 * This check is not redundant - do not remove.
3985 	 */
3986 	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3987 }
3988 
3989 /* task security operations */
3990 
3991 static int selinux_task_alloc(struct task_struct *task,
3992 			      unsigned long clone_flags)
3993 {
3994 	u32 sid = current_sid();
3995 
3996 	return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3997 }
3998 
3999 /*
4000  * prepare a new set of credentials for modification
4001  */
4002 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4003 				gfp_t gfp)
4004 {
4005 	const struct task_security_struct *old_tsec = selinux_cred(old);
4006 	struct task_security_struct *tsec = selinux_cred(new);
4007 
4008 	*tsec = *old_tsec;
4009 	return 0;
4010 }
4011 
4012 /*
4013  * transfer the SELinux data to a blank set of creds
4014  */
4015 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4016 {
4017 	const struct task_security_struct *old_tsec = selinux_cred(old);
4018 	struct task_security_struct *tsec = selinux_cred(new);
4019 
4020 	*tsec = *old_tsec;
4021 }
4022 
4023 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4024 {
4025 	*secid = cred_sid(c);
4026 }
4027 
4028 /*
4029  * set the security data for a kernel service
4030  * - all the creation contexts are set to unlabelled
4031  */
4032 static int selinux_kernel_act_as(struct cred *new, u32 secid)
4033 {
4034 	struct task_security_struct *tsec = selinux_cred(new);
4035 	u32 sid = current_sid();
4036 	int ret;
4037 
4038 	ret = avc_has_perm(sid, secid,
4039 			   SECCLASS_KERNEL_SERVICE,
4040 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
4041 			   NULL);
4042 	if (ret == 0) {
4043 		tsec->sid = secid;
4044 		tsec->create_sid = 0;
4045 		tsec->keycreate_sid = 0;
4046 		tsec->sockcreate_sid = 0;
4047 	}
4048 	return ret;
4049 }
4050 
4051 /*
4052  * set the file creation context in a security record to the same as the
4053  * objective context of the specified inode
4054  */
4055 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4056 {
4057 	struct inode_security_struct *isec = inode_security(inode);
4058 	struct task_security_struct *tsec = selinux_cred(new);
4059 	u32 sid = current_sid();
4060 	int ret;
4061 
4062 	ret = avc_has_perm(sid, isec->sid,
4063 			   SECCLASS_KERNEL_SERVICE,
4064 			   KERNEL_SERVICE__CREATE_FILES_AS,
4065 			   NULL);
4066 
4067 	if (ret == 0)
4068 		tsec->create_sid = isec->sid;
4069 	return ret;
4070 }
4071 
4072 static int selinux_kernel_module_request(char *kmod_name)
4073 {
4074 	struct common_audit_data ad;
4075 
4076 	ad.type = LSM_AUDIT_DATA_KMOD;
4077 	ad.u.kmod_name = kmod_name;
4078 
4079 	return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4080 			    SYSTEM__MODULE_REQUEST, &ad);
4081 }
4082 
4083 static int selinux_kernel_module_from_file(struct file *file)
4084 {
4085 	struct common_audit_data ad;
4086 	struct inode_security_struct *isec;
4087 	struct file_security_struct *fsec;
4088 	u32 sid = current_sid();
4089 	int rc;
4090 
4091 	/* init_module */
4092 	if (file == NULL)
4093 		return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
4094 					SYSTEM__MODULE_LOAD, NULL);
4095 
4096 	/* finit_module */
4097 
4098 	ad.type = LSM_AUDIT_DATA_FILE;
4099 	ad.u.file = file;
4100 
4101 	fsec = selinux_file(file);
4102 	if (sid != fsec->sid) {
4103 		rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4104 		if (rc)
4105 			return rc;
4106 	}
4107 
4108 	isec = inode_security(file_inode(file));
4109 	return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
4110 				SYSTEM__MODULE_LOAD, &ad);
4111 }
4112 
4113 static int selinux_kernel_read_file(struct file *file,
4114 				    enum kernel_read_file_id id,
4115 				    bool contents)
4116 {
4117 	int rc = 0;
4118 
4119 	switch (id) {
4120 	case READING_MODULE:
4121 		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4122 		break;
4123 	default:
4124 		break;
4125 	}
4126 
4127 	return rc;
4128 }
4129 
4130 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4131 {
4132 	int rc = 0;
4133 
4134 	switch (id) {
4135 	case LOADING_MODULE:
4136 		rc = selinux_kernel_module_from_file(NULL);
4137 		break;
4138 	default:
4139 		break;
4140 	}
4141 
4142 	return rc;
4143 }
4144 
4145 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4146 {
4147 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4148 			    PROCESS__SETPGID, NULL);
4149 }
4150 
4151 static int selinux_task_getpgid(struct task_struct *p)
4152 {
4153 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4154 			    PROCESS__GETPGID, NULL);
4155 }
4156 
4157 static int selinux_task_getsid(struct task_struct *p)
4158 {
4159 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4160 			    PROCESS__GETSESSION, NULL);
4161 }
4162 
4163 static void selinux_current_getsecid_subj(u32 *secid)
4164 {
4165 	*secid = current_sid();
4166 }
4167 
4168 static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4169 {
4170 	*secid = task_sid_obj(p);
4171 }
4172 
4173 static int selinux_task_setnice(struct task_struct *p, int nice)
4174 {
4175 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4176 			    PROCESS__SETSCHED, NULL);
4177 }
4178 
4179 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4180 {
4181 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4182 			    PROCESS__SETSCHED, NULL);
4183 }
4184 
4185 static int selinux_task_getioprio(struct task_struct *p)
4186 {
4187 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4188 			    PROCESS__GETSCHED, NULL);
4189 }
4190 
4191 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4192 				unsigned int flags)
4193 {
4194 	u32 av = 0;
4195 
4196 	if (!flags)
4197 		return 0;
4198 	if (flags & LSM_PRLIMIT_WRITE)
4199 		av |= PROCESS__SETRLIMIT;
4200 	if (flags & LSM_PRLIMIT_READ)
4201 		av |= PROCESS__GETRLIMIT;
4202 	return avc_has_perm(cred_sid(cred), cred_sid(tcred),
4203 			    SECCLASS_PROCESS, av, NULL);
4204 }
4205 
4206 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4207 		struct rlimit *new_rlim)
4208 {
4209 	struct rlimit *old_rlim = p->signal->rlim + resource;
4210 
4211 	/* Control the ability to change the hard limit (whether
4212 	   lowering or raising it), so that the hard limit can
4213 	   later be used as a safe reset point for the soft limit
4214 	   upon context transitions.  See selinux_bprm_committing_creds. */
4215 	if (old_rlim->rlim_max != new_rlim->rlim_max)
4216 		return avc_has_perm(current_sid(), task_sid_obj(p),
4217 				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4218 
4219 	return 0;
4220 }
4221 
4222 static int selinux_task_setscheduler(struct task_struct *p)
4223 {
4224 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4225 			    PROCESS__SETSCHED, NULL);
4226 }
4227 
4228 static int selinux_task_getscheduler(struct task_struct *p)
4229 {
4230 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4231 			    PROCESS__GETSCHED, NULL);
4232 }
4233 
4234 static int selinux_task_movememory(struct task_struct *p)
4235 {
4236 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4237 			    PROCESS__SETSCHED, NULL);
4238 }
4239 
4240 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4241 				int sig, const struct cred *cred)
4242 {
4243 	u32 secid;
4244 	u32 perm;
4245 
4246 	if (!sig)
4247 		perm = PROCESS__SIGNULL; /* null signal; existence test */
4248 	else
4249 		perm = signal_to_av(sig);
4250 	if (!cred)
4251 		secid = current_sid();
4252 	else
4253 		secid = cred_sid(cred);
4254 	return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4255 }
4256 
4257 static void selinux_task_to_inode(struct task_struct *p,
4258 				  struct inode *inode)
4259 {
4260 	struct inode_security_struct *isec = selinux_inode(inode);
4261 	u32 sid = task_sid_obj(p);
4262 
4263 	spin_lock(&isec->lock);
4264 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4265 	isec->sid = sid;
4266 	isec->initialized = LABEL_INITIALIZED;
4267 	spin_unlock(&isec->lock);
4268 }
4269 
4270 static int selinux_userns_create(const struct cred *cred)
4271 {
4272 	u32 sid = current_sid();
4273 
4274 	return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE,
4275 			USER_NAMESPACE__CREATE, NULL);
4276 }
4277 
4278 /* Returns error only if unable to parse addresses */
4279 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4280 			struct common_audit_data *ad, u8 *proto)
4281 {
4282 	int offset, ihlen, ret = -EINVAL;
4283 	struct iphdr _iph, *ih;
4284 
4285 	offset = skb_network_offset(skb);
4286 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4287 	if (ih == NULL)
4288 		goto out;
4289 
4290 	ihlen = ih->ihl * 4;
4291 	if (ihlen < sizeof(_iph))
4292 		goto out;
4293 
4294 	ad->u.net->v4info.saddr = ih->saddr;
4295 	ad->u.net->v4info.daddr = ih->daddr;
4296 	ret = 0;
4297 
4298 	if (proto)
4299 		*proto = ih->protocol;
4300 
4301 	switch (ih->protocol) {
4302 	case IPPROTO_TCP: {
4303 		struct tcphdr _tcph, *th;
4304 
4305 		if (ntohs(ih->frag_off) & IP_OFFSET)
4306 			break;
4307 
4308 		offset += ihlen;
4309 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4310 		if (th == NULL)
4311 			break;
4312 
4313 		ad->u.net->sport = th->source;
4314 		ad->u.net->dport = th->dest;
4315 		break;
4316 	}
4317 
4318 	case IPPROTO_UDP: {
4319 		struct udphdr _udph, *uh;
4320 
4321 		if (ntohs(ih->frag_off) & IP_OFFSET)
4322 			break;
4323 
4324 		offset += ihlen;
4325 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4326 		if (uh == NULL)
4327 			break;
4328 
4329 		ad->u.net->sport = uh->source;
4330 		ad->u.net->dport = uh->dest;
4331 		break;
4332 	}
4333 
4334 	case IPPROTO_DCCP: {
4335 		struct dccp_hdr _dccph, *dh;
4336 
4337 		if (ntohs(ih->frag_off) & IP_OFFSET)
4338 			break;
4339 
4340 		offset += ihlen;
4341 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4342 		if (dh == NULL)
4343 			break;
4344 
4345 		ad->u.net->sport = dh->dccph_sport;
4346 		ad->u.net->dport = dh->dccph_dport;
4347 		break;
4348 	}
4349 
4350 #if IS_ENABLED(CONFIG_IP_SCTP)
4351 	case IPPROTO_SCTP: {
4352 		struct sctphdr _sctph, *sh;
4353 
4354 		if (ntohs(ih->frag_off) & IP_OFFSET)
4355 			break;
4356 
4357 		offset += ihlen;
4358 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4359 		if (sh == NULL)
4360 			break;
4361 
4362 		ad->u.net->sport = sh->source;
4363 		ad->u.net->dport = sh->dest;
4364 		break;
4365 	}
4366 #endif
4367 	default:
4368 		break;
4369 	}
4370 out:
4371 	return ret;
4372 }
4373 
4374 #if IS_ENABLED(CONFIG_IPV6)
4375 
4376 /* Returns error only if unable to parse addresses */
4377 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4378 			struct common_audit_data *ad, u8 *proto)
4379 {
4380 	u8 nexthdr;
4381 	int ret = -EINVAL, offset;
4382 	struct ipv6hdr _ipv6h, *ip6;
4383 	__be16 frag_off;
4384 
4385 	offset = skb_network_offset(skb);
4386 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4387 	if (ip6 == NULL)
4388 		goto out;
4389 
4390 	ad->u.net->v6info.saddr = ip6->saddr;
4391 	ad->u.net->v6info.daddr = ip6->daddr;
4392 	ret = 0;
4393 
4394 	nexthdr = ip6->nexthdr;
4395 	offset += sizeof(_ipv6h);
4396 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4397 	if (offset < 0)
4398 		goto out;
4399 
4400 	if (proto)
4401 		*proto = nexthdr;
4402 
4403 	switch (nexthdr) {
4404 	case IPPROTO_TCP: {
4405 		struct tcphdr _tcph, *th;
4406 
4407 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4408 		if (th == NULL)
4409 			break;
4410 
4411 		ad->u.net->sport = th->source;
4412 		ad->u.net->dport = th->dest;
4413 		break;
4414 	}
4415 
4416 	case IPPROTO_UDP: {
4417 		struct udphdr _udph, *uh;
4418 
4419 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4420 		if (uh == NULL)
4421 			break;
4422 
4423 		ad->u.net->sport = uh->source;
4424 		ad->u.net->dport = uh->dest;
4425 		break;
4426 	}
4427 
4428 	case IPPROTO_DCCP: {
4429 		struct dccp_hdr _dccph, *dh;
4430 
4431 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4432 		if (dh == NULL)
4433 			break;
4434 
4435 		ad->u.net->sport = dh->dccph_sport;
4436 		ad->u.net->dport = dh->dccph_dport;
4437 		break;
4438 	}
4439 
4440 #if IS_ENABLED(CONFIG_IP_SCTP)
4441 	case IPPROTO_SCTP: {
4442 		struct sctphdr _sctph, *sh;
4443 
4444 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4445 		if (sh == NULL)
4446 			break;
4447 
4448 		ad->u.net->sport = sh->source;
4449 		ad->u.net->dport = sh->dest;
4450 		break;
4451 	}
4452 #endif
4453 	/* includes fragments */
4454 	default:
4455 		break;
4456 	}
4457 out:
4458 	return ret;
4459 }
4460 
4461 #endif /* IPV6 */
4462 
4463 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4464 			     char **_addrp, int src, u8 *proto)
4465 {
4466 	char *addrp;
4467 	int ret;
4468 
4469 	switch (ad->u.net->family) {
4470 	case PF_INET:
4471 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4472 		if (ret)
4473 			goto parse_error;
4474 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4475 				       &ad->u.net->v4info.daddr);
4476 		goto okay;
4477 
4478 #if IS_ENABLED(CONFIG_IPV6)
4479 	case PF_INET6:
4480 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4481 		if (ret)
4482 			goto parse_error;
4483 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4484 				       &ad->u.net->v6info.daddr);
4485 		goto okay;
4486 #endif	/* IPV6 */
4487 	default:
4488 		addrp = NULL;
4489 		goto okay;
4490 	}
4491 
4492 parse_error:
4493 	pr_warn(
4494 	       "SELinux: failure in selinux_parse_skb(),"
4495 	       " unable to parse packet\n");
4496 	return ret;
4497 
4498 okay:
4499 	if (_addrp)
4500 		*_addrp = addrp;
4501 	return 0;
4502 }
4503 
4504 /**
4505  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4506  * @skb: the packet
4507  * @family: protocol family
4508  * @sid: the packet's peer label SID
4509  *
4510  * Description:
4511  * Check the various different forms of network peer labeling and determine
4512  * the peer label/SID for the packet; most of the magic actually occurs in
4513  * the security server function security_net_peersid_cmp().  The function
4514  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4515  * or -EACCES if @sid is invalid due to inconsistencies with the different
4516  * peer labels.
4517  *
4518  */
4519 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4520 {
4521 	int err;
4522 	u32 xfrm_sid;
4523 	u32 nlbl_sid;
4524 	u32 nlbl_type;
4525 
4526 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4527 	if (unlikely(err))
4528 		return -EACCES;
4529 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4530 	if (unlikely(err))
4531 		return -EACCES;
4532 
4533 	err = security_net_peersid_resolve(nlbl_sid,
4534 					   nlbl_type, xfrm_sid, sid);
4535 	if (unlikely(err)) {
4536 		pr_warn(
4537 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4538 		       " unable to determine packet's peer label\n");
4539 		return -EACCES;
4540 	}
4541 
4542 	return 0;
4543 }
4544 
4545 /**
4546  * selinux_conn_sid - Determine the child socket label for a connection
4547  * @sk_sid: the parent socket's SID
4548  * @skb_sid: the packet's SID
4549  * @conn_sid: the resulting connection SID
4550  *
4551  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4552  * combined with the MLS information from @skb_sid in order to create
4553  * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4554  * of @sk_sid.  Returns zero on success, negative values on failure.
4555  *
4556  */
4557 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4558 {
4559 	int err = 0;
4560 
4561 	if (skb_sid != SECSID_NULL)
4562 		err = security_sid_mls_copy(sk_sid, skb_sid,
4563 					    conn_sid);
4564 	else
4565 		*conn_sid = sk_sid;
4566 
4567 	return err;
4568 }
4569 
4570 /* socket security operations */
4571 
4572 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4573 				 u16 secclass, u32 *socksid)
4574 {
4575 	if (tsec->sockcreate_sid > SECSID_NULL) {
4576 		*socksid = tsec->sockcreate_sid;
4577 		return 0;
4578 	}
4579 
4580 	return security_transition_sid(tsec->sid, tsec->sid,
4581 				       secclass, NULL, socksid);
4582 }
4583 
4584 static int sock_has_perm(struct sock *sk, u32 perms)
4585 {
4586 	struct sk_security_struct *sksec = sk->sk_security;
4587 	struct common_audit_data ad;
4588 	struct lsm_network_audit net;
4589 
4590 	if (sksec->sid == SECINITSID_KERNEL)
4591 		return 0;
4592 
4593 	/*
4594 	 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that
4595 	 * inherited the kernel context from early boot used to be skipped
4596 	 * here, so preserve that behavior unless the capability is set.
4597 	 *
4598 	 * By setting the capability the policy signals that it is ready
4599 	 * for this quirk to be fixed. Note that sockets created by a kernel
4600 	 * thread or a usermode helper executed without a transition will
4601 	 * still be skipped in this check regardless of the policycap
4602 	 * setting.
4603 	 */
4604 	if (!selinux_policycap_userspace_initial_context() &&
4605 	    sksec->sid == SECINITSID_INIT)
4606 		return 0;
4607 
4608 	ad_net_init_from_sk(&ad, &net, sk);
4609 
4610 	return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
4611 			    &ad);
4612 }
4613 
4614 static int selinux_socket_create(int family, int type,
4615 				 int protocol, int kern)
4616 {
4617 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4618 	u32 newsid;
4619 	u16 secclass;
4620 	int rc;
4621 
4622 	if (kern)
4623 		return 0;
4624 
4625 	secclass = socket_type_to_security_class(family, type, protocol);
4626 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4627 	if (rc)
4628 		return rc;
4629 
4630 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4631 }
4632 
4633 static int selinux_socket_post_create(struct socket *sock, int family,
4634 				      int type, int protocol, int kern)
4635 {
4636 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4637 	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4638 	struct sk_security_struct *sksec;
4639 	u16 sclass = socket_type_to_security_class(family, type, protocol);
4640 	u32 sid = SECINITSID_KERNEL;
4641 	int err = 0;
4642 
4643 	if (!kern) {
4644 		err = socket_sockcreate_sid(tsec, sclass, &sid);
4645 		if (err)
4646 			return err;
4647 	}
4648 
4649 	isec->sclass = sclass;
4650 	isec->sid = sid;
4651 	isec->initialized = LABEL_INITIALIZED;
4652 
4653 	if (sock->sk) {
4654 		sksec = sock->sk->sk_security;
4655 		sksec->sclass = sclass;
4656 		sksec->sid = sid;
4657 		/* Allows detection of the first association on this socket */
4658 		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4659 			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4660 
4661 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4662 	}
4663 
4664 	return err;
4665 }
4666 
4667 static int selinux_socket_socketpair(struct socket *socka,
4668 				     struct socket *sockb)
4669 {
4670 	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4671 	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4672 
4673 	sksec_a->peer_sid = sksec_b->sid;
4674 	sksec_b->peer_sid = sksec_a->sid;
4675 
4676 	return 0;
4677 }
4678 
4679 /* Range of port numbers used to automatically bind.
4680    Need to determine whether we should perform a name_bind
4681    permission check between the socket and the port number. */
4682 
4683 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4684 {
4685 	struct sock *sk = sock->sk;
4686 	struct sk_security_struct *sksec = sk->sk_security;
4687 	u16 family;
4688 	int err;
4689 
4690 	err = sock_has_perm(sk, SOCKET__BIND);
4691 	if (err)
4692 		goto out;
4693 
4694 	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4695 	family = sk->sk_family;
4696 	if (family == PF_INET || family == PF_INET6) {
4697 		char *addrp;
4698 		struct common_audit_data ad;
4699 		struct lsm_network_audit net = {0,};
4700 		struct sockaddr_in *addr4 = NULL;
4701 		struct sockaddr_in6 *addr6 = NULL;
4702 		u16 family_sa;
4703 		unsigned short snum;
4704 		u32 sid, node_perm;
4705 
4706 		/*
4707 		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4708 		 * that validates multiple binding addresses. Because of this
4709 		 * need to check address->sa_family as it is possible to have
4710 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4711 		 */
4712 		if (addrlen < offsetofend(struct sockaddr, sa_family))
4713 			return -EINVAL;
4714 		family_sa = address->sa_family;
4715 		switch (family_sa) {
4716 		case AF_UNSPEC:
4717 		case AF_INET:
4718 			if (addrlen < sizeof(struct sockaddr_in))
4719 				return -EINVAL;
4720 			addr4 = (struct sockaddr_in *)address;
4721 			if (family_sa == AF_UNSPEC) {
4722 				if (family == PF_INET6) {
4723 					/* Length check from inet6_bind_sk() */
4724 					if (addrlen < SIN6_LEN_RFC2133)
4725 						return -EINVAL;
4726 					/* Family check from __inet6_bind() */
4727 					goto err_af;
4728 				}
4729 				/* see __inet_bind(), we only want to allow
4730 				 * AF_UNSPEC if the address is INADDR_ANY
4731 				 */
4732 				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4733 					goto err_af;
4734 				family_sa = AF_INET;
4735 			}
4736 			snum = ntohs(addr4->sin_port);
4737 			addrp = (char *)&addr4->sin_addr.s_addr;
4738 			break;
4739 		case AF_INET6:
4740 			if (addrlen < SIN6_LEN_RFC2133)
4741 				return -EINVAL;
4742 			addr6 = (struct sockaddr_in6 *)address;
4743 			snum = ntohs(addr6->sin6_port);
4744 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4745 			break;
4746 		default:
4747 			goto err_af;
4748 		}
4749 
4750 		ad.type = LSM_AUDIT_DATA_NET;
4751 		ad.u.net = &net;
4752 		ad.u.net->sport = htons(snum);
4753 		ad.u.net->family = family_sa;
4754 
4755 		if (snum) {
4756 			int low, high;
4757 
4758 			inet_get_local_port_range(sock_net(sk), &low, &high);
4759 
4760 			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4761 			    snum < low || snum > high) {
4762 				err = sel_netport_sid(sk->sk_protocol,
4763 						      snum, &sid);
4764 				if (err)
4765 					goto out;
4766 				err = avc_has_perm(sksec->sid, sid,
4767 						   sksec->sclass,
4768 						   SOCKET__NAME_BIND, &ad);
4769 				if (err)
4770 					goto out;
4771 			}
4772 		}
4773 
4774 		switch (sksec->sclass) {
4775 		case SECCLASS_TCP_SOCKET:
4776 			node_perm = TCP_SOCKET__NODE_BIND;
4777 			break;
4778 
4779 		case SECCLASS_UDP_SOCKET:
4780 			node_perm = UDP_SOCKET__NODE_BIND;
4781 			break;
4782 
4783 		case SECCLASS_DCCP_SOCKET:
4784 			node_perm = DCCP_SOCKET__NODE_BIND;
4785 			break;
4786 
4787 		case SECCLASS_SCTP_SOCKET:
4788 			node_perm = SCTP_SOCKET__NODE_BIND;
4789 			break;
4790 
4791 		default:
4792 			node_perm = RAWIP_SOCKET__NODE_BIND;
4793 			break;
4794 		}
4795 
4796 		err = sel_netnode_sid(addrp, family_sa, &sid);
4797 		if (err)
4798 			goto out;
4799 
4800 		if (family_sa == AF_INET)
4801 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4802 		else
4803 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4804 
4805 		err = avc_has_perm(sksec->sid, sid,
4806 				   sksec->sclass, node_perm, &ad);
4807 		if (err)
4808 			goto out;
4809 	}
4810 out:
4811 	return err;
4812 err_af:
4813 	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4814 	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4815 		return -EINVAL;
4816 	return -EAFNOSUPPORT;
4817 }
4818 
4819 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4820  * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4821  */
4822 static int selinux_socket_connect_helper(struct socket *sock,
4823 					 struct sockaddr *address, int addrlen)
4824 {
4825 	struct sock *sk = sock->sk;
4826 	struct sk_security_struct *sksec = sk->sk_security;
4827 	int err;
4828 
4829 	err = sock_has_perm(sk, SOCKET__CONNECT);
4830 	if (err)
4831 		return err;
4832 	if (addrlen < offsetofend(struct sockaddr, sa_family))
4833 		return -EINVAL;
4834 
4835 	/* connect(AF_UNSPEC) has special handling, as it is a documented
4836 	 * way to disconnect the socket
4837 	 */
4838 	if (address->sa_family == AF_UNSPEC)
4839 		return 0;
4840 
4841 	/*
4842 	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4843 	 * for the port.
4844 	 */
4845 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4846 	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4847 	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4848 		struct common_audit_data ad;
4849 		struct lsm_network_audit net = {0,};
4850 		struct sockaddr_in *addr4 = NULL;
4851 		struct sockaddr_in6 *addr6 = NULL;
4852 		unsigned short snum;
4853 		u32 sid, perm;
4854 
4855 		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4856 		 * that validates multiple connect addresses. Because of this
4857 		 * need to check address->sa_family as it is possible to have
4858 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4859 		 */
4860 		switch (address->sa_family) {
4861 		case AF_INET:
4862 			addr4 = (struct sockaddr_in *)address;
4863 			if (addrlen < sizeof(struct sockaddr_in))
4864 				return -EINVAL;
4865 			snum = ntohs(addr4->sin_port);
4866 			break;
4867 		case AF_INET6:
4868 			addr6 = (struct sockaddr_in6 *)address;
4869 			if (addrlen < SIN6_LEN_RFC2133)
4870 				return -EINVAL;
4871 			snum = ntohs(addr6->sin6_port);
4872 			break;
4873 		default:
4874 			/* Note that SCTP services expect -EINVAL, whereas
4875 			 * others expect -EAFNOSUPPORT.
4876 			 */
4877 			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4878 				return -EINVAL;
4879 			else
4880 				return -EAFNOSUPPORT;
4881 		}
4882 
4883 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4884 		if (err)
4885 			return err;
4886 
4887 		switch (sksec->sclass) {
4888 		case SECCLASS_TCP_SOCKET:
4889 			perm = TCP_SOCKET__NAME_CONNECT;
4890 			break;
4891 		case SECCLASS_DCCP_SOCKET:
4892 			perm = DCCP_SOCKET__NAME_CONNECT;
4893 			break;
4894 		case SECCLASS_SCTP_SOCKET:
4895 			perm = SCTP_SOCKET__NAME_CONNECT;
4896 			break;
4897 		}
4898 
4899 		ad.type = LSM_AUDIT_DATA_NET;
4900 		ad.u.net = &net;
4901 		ad.u.net->dport = htons(snum);
4902 		ad.u.net->family = address->sa_family;
4903 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4904 		if (err)
4905 			return err;
4906 	}
4907 
4908 	return 0;
4909 }
4910 
4911 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4912 static int selinux_socket_connect(struct socket *sock,
4913 				  struct sockaddr *address, int addrlen)
4914 {
4915 	int err;
4916 	struct sock *sk = sock->sk;
4917 
4918 	err = selinux_socket_connect_helper(sock, address, addrlen);
4919 	if (err)
4920 		return err;
4921 
4922 	return selinux_netlbl_socket_connect(sk, address);
4923 }
4924 
4925 static int selinux_socket_listen(struct socket *sock, int backlog)
4926 {
4927 	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4928 }
4929 
4930 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4931 {
4932 	int err;
4933 	struct inode_security_struct *isec;
4934 	struct inode_security_struct *newisec;
4935 	u16 sclass;
4936 	u32 sid;
4937 
4938 	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4939 	if (err)
4940 		return err;
4941 
4942 	isec = inode_security_novalidate(SOCK_INODE(sock));
4943 	spin_lock(&isec->lock);
4944 	sclass = isec->sclass;
4945 	sid = isec->sid;
4946 	spin_unlock(&isec->lock);
4947 
4948 	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4949 	newisec->sclass = sclass;
4950 	newisec->sid = sid;
4951 	newisec->initialized = LABEL_INITIALIZED;
4952 
4953 	return 0;
4954 }
4955 
4956 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4957 				  int size)
4958 {
4959 	return sock_has_perm(sock->sk, SOCKET__WRITE);
4960 }
4961 
4962 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4963 				  int size, int flags)
4964 {
4965 	return sock_has_perm(sock->sk, SOCKET__READ);
4966 }
4967 
4968 static int selinux_socket_getsockname(struct socket *sock)
4969 {
4970 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4971 }
4972 
4973 static int selinux_socket_getpeername(struct socket *sock)
4974 {
4975 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4976 }
4977 
4978 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4979 {
4980 	int err;
4981 
4982 	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4983 	if (err)
4984 		return err;
4985 
4986 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4987 }
4988 
4989 static int selinux_socket_getsockopt(struct socket *sock, int level,
4990 				     int optname)
4991 {
4992 	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4993 }
4994 
4995 static int selinux_socket_shutdown(struct socket *sock, int how)
4996 {
4997 	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4998 }
4999 
5000 static int selinux_socket_unix_stream_connect(struct sock *sock,
5001 					      struct sock *other,
5002 					      struct sock *newsk)
5003 {
5004 	struct sk_security_struct *sksec_sock = sock->sk_security;
5005 	struct sk_security_struct *sksec_other = other->sk_security;
5006 	struct sk_security_struct *sksec_new = newsk->sk_security;
5007 	struct common_audit_data ad;
5008 	struct lsm_network_audit net;
5009 	int err;
5010 
5011 	ad_net_init_from_sk(&ad, &net, other);
5012 
5013 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
5014 			   sksec_other->sclass,
5015 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5016 	if (err)
5017 		return err;
5018 
5019 	/* server child socket */
5020 	sksec_new->peer_sid = sksec_sock->sid;
5021 	err = security_sid_mls_copy(sksec_other->sid,
5022 				    sksec_sock->sid, &sksec_new->sid);
5023 	if (err)
5024 		return err;
5025 
5026 	/* connecting socket */
5027 	sksec_sock->peer_sid = sksec_new->sid;
5028 
5029 	return 0;
5030 }
5031 
5032 static int selinux_socket_unix_may_send(struct socket *sock,
5033 					struct socket *other)
5034 {
5035 	struct sk_security_struct *ssec = sock->sk->sk_security;
5036 	struct sk_security_struct *osec = other->sk->sk_security;
5037 	struct common_audit_data ad;
5038 	struct lsm_network_audit net;
5039 
5040 	ad_net_init_from_sk(&ad, &net, other->sk);
5041 
5042 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5043 			    &ad);
5044 }
5045 
5046 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5047 				    char *addrp, u16 family, u32 peer_sid,
5048 				    struct common_audit_data *ad)
5049 {
5050 	int err;
5051 	u32 if_sid;
5052 	u32 node_sid;
5053 
5054 	err = sel_netif_sid(ns, ifindex, &if_sid);
5055 	if (err)
5056 		return err;
5057 	err = avc_has_perm(peer_sid, if_sid,
5058 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5059 	if (err)
5060 		return err;
5061 
5062 	err = sel_netnode_sid(addrp, family, &node_sid);
5063 	if (err)
5064 		return err;
5065 	return avc_has_perm(peer_sid, node_sid,
5066 			    SECCLASS_NODE, NODE__RECVFROM, ad);
5067 }
5068 
5069 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5070 				       u16 family)
5071 {
5072 	int err = 0;
5073 	struct sk_security_struct *sksec = sk->sk_security;
5074 	u32 sk_sid = sksec->sid;
5075 	struct common_audit_data ad;
5076 	struct lsm_network_audit net;
5077 	char *addrp;
5078 
5079 	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5080 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5081 	if (err)
5082 		return err;
5083 
5084 	if (selinux_secmark_enabled()) {
5085 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5086 				   PACKET__RECV, &ad);
5087 		if (err)
5088 			return err;
5089 	}
5090 
5091 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5092 	if (err)
5093 		return err;
5094 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5095 
5096 	return err;
5097 }
5098 
5099 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5100 {
5101 	int err, peerlbl_active, secmark_active;
5102 	struct sk_security_struct *sksec = sk->sk_security;
5103 	u16 family = sk->sk_family;
5104 	u32 sk_sid = sksec->sid;
5105 	struct common_audit_data ad;
5106 	struct lsm_network_audit net;
5107 	char *addrp;
5108 
5109 	if (family != PF_INET && family != PF_INET6)
5110 		return 0;
5111 
5112 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5113 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5114 		family = PF_INET;
5115 
5116 	/* If any sort of compatibility mode is enabled then handoff processing
5117 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5118 	 * special handling.  We do this in an attempt to keep this function
5119 	 * as fast and as clean as possible. */
5120 	if (!selinux_policycap_netpeer())
5121 		return selinux_sock_rcv_skb_compat(sk, skb, family);
5122 
5123 	secmark_active = selinux_secmark_enabled();
5124 	peerlbl_active = selinux_peerlbl_enabled();
5125 	if (!secmark_active && !peerlbl_active)
5126 		return 0;
5127 
5128 	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5129 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5130 	if (err)
5131 		return err;
5132 
5133 	if (peerlbl_active) {
5134 		u32 peer_sid;
5135 
5136 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5137 		if (err)
5138 			return err;
5139 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5140 					       addrp, family, peer_sid, &ad);
5141 		if (err) {
5142 			selinux_netlbl_err(skb, family, err, 0);
5143 			return err;
5144 		}
5145 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
5146 				   PEER__RECV, &ad);
5147 		if (err) {
5148 			selinux_netlbl_err(skb, family, err, 0);
5149 			return err;
5150 		}
5151 	}
5152 
5153 	if (secmark_active) {
5154 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5155 				   PACKET__RECV, &ad);
5156 		if (err)
5157 			return err;
5158 	}
5159 
5160 	return err;
5161 }
5162 
5163 static int selinux_socket_getpeersec_stream(struct socket *sock,
5164 					    sockptr_t optval, sockptr_t optlen,
5165 					    unsigned int len)
5166 {
5167 	int err = 0;
5168 	char *scontext = NULL;
5169 	u32 scontext_len;
5170 	struct sk_security_struct *sksec = sock->sk->sk_security;
5171 	u32 peer_sid = SECSID_NULL;
5172 
5173 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5174 	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5175 	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5176 		peer_sid = sksec->peer_sid;
5177 	if (peer_sid == SECSID_NULL)
5178 		return -ENOPROTOOPT;
5179 
5180 	err = security_sid_to_context(peer_sid, &scontext,
5181 				      &scontext_len);
5182 	if (err)
5183 		return err;
5184 	if (scontext_len > len) {
5185 		err = -ERANGE;
5186 		goto out_len;
5187 	}
5188 
5189 	if (copy_to_sockptr(optval, scontext, scontext_len))
5190 		err = -EFAULT;
5191 out_len:
5192 	if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5193 		err = -EFAULT;
5194 	kfree(scontext);
5195 	return err;
5196 }
5197 
5198 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5199 {
5200 	u32 peer_secid = SECSID_NULL;
5201 	u16 family;
5202 	struct inode_security_struct *isec;
5203 
5204 	if (skb && skb->protocol == htons(ETH_P_IP))
5205 		family = PF_INET;
5206 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5207 		family = PF_INET6;
5208 	else if (sock)
5209 		family = sock->sk->sk_family;
5210 	else
5211 		goto out;
5212 
5213 	if (sock && family == PF_UNIX) {
5214 		isec = inode_security_novalidate(SOCK_INODE(sock));
5215 		peer_secid = isec->sid;
5216 	} else if (skb)
5217 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5218 
5219 out:
5220 	*secid = peer_secid;
5221 	if (peer_secid == SECSID_NULL)
5222 		return -EINVAL;
5223 	return 0;
5224 }
5225 
5226 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5227 {
5228 	struct sk_security_struct *sksec;
5229 
5230 	sksec = kzalloc(sizeof(*sksec), priority);
5231 	if (!sksec)
5232 		return -ENOMEM;
5233 
5234 	sksec->peer_sid = SECINITSID_UNLABELED;
5235 	sksec->sid = SECINITSID_UNLABELED;
5236 	sksec->sclass = SECCLASS_SOCKET;
5237 	selinux_netlbl_sk_security_reset(sksec);
5238 	sk->sk_security = sksec;
5239 
5240 	return 0;
5241 }
5242 
5243 static void selinux_sk_free_security(struct sock *sk)
5244 {
5245 	struct sk_security_struct *sksec = sk->sk_security;
5246 
5247 	sk->sk_security = NULL;
5248 	selinux_netlbl_sk_security_free(sksec);
5249 	kfree(sksec);
5250 }
5251 
5252 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5253 {
5254 	struct sk_security_struct *sksec = sk->sk_security;
5255 	struct sk_security_struct *newsksec = newsk->sk_security;
5256 
5257 	newsksec->sid = sksec->sid;
5258 	newsksec->peer_sid = sksec->peer_sid;
5259 	newsksec->sclass = sksec->sclass;
5260 
5261 	selinux_netlbl_sk_security_reset(newsksec);
5262 }
5263 
5264 static void selinux_sk_getsecid(const struct sock *sk, u32 *secid)
5265 {
5266 	if (!sk)
5267 		*secid = SECINITSID_ANY_SOCKET;
5268 	else {
5269 		const struct sk_security_struct *sksec = sk->sk_security;
5270 
5271 		*secid = sksec->sid;
5272 	}
5273 }
5274 
5275 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5276 {
5277 	struct inode_security_struct *isec =
5278 		inode_security_novalidate(SOCK_INODE(parent));
5279 	struct sk_security_struct *sksec = sk->sk_security;
5280 
5281 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5282 	    sk->sk_family == PF_UNIX)
5283 		isec->sid = sksec->sid;
5284 	sksec->sclass = isec->sclass;
5285 }
5286 
5287 /*
5288  * Determines peer_secid for the asoc and updates socket's peer label
5289  * if it's the first association on the socket.
5290  */
5291 static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5292 					  struct sk_buff *skb)
5293 {
5294 	struct sock *sk = asoc->base.sk;
5295 	u16 family = sk->sk_family;
5296 	struct sk_security_struct *sksec = sk->sk_security;
5297 	struct common_audit_data ad;
5298 	struct lsm_network_audit net;
5299 	int err;
5300 
5301 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5302 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5303 		family = PF_INET;
5304 
5305 	if (selinux_peerlbl_enabled()) {
5306 		asoc->peer_secid = SECSID_NULL;
5307 
5308 		/* This will return peer_sid = SECSID_NULL if there are
5309 		 * no peer labels, see security_net_peersid_resolve().
5310 		 */
5311 		err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5312 		if (err)
5313 			return err;
5314 
5315 		if (asoc->peer_secid == SECSID_NULL)
5316 			asoc->peer_secid = SECINITSID_UNLABELED;
5317 	} else {
5318 		asoc->peer_secid = SECINITSID_UNLABELED;
5319 	}
5320 
5321 	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5322 		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5323 
5324 		/* Here as first association on socket. As the peer SID
5325 		 * was allowed by peer recv (and the netif/node checks),
5326 		 * then it is approved by policy and used as the primary
5327 		 * peer SID for getpeercon(3).
5328 		 */
5329 		sksec->peer_sid = asoc->peer_secid;
5330 	} else if (sksec->peer_sid != asoc->peer_secid) {
5331 		/* Other association peer SIDs are checked to enforce
5332 		 * consistency among the peer SIDs.
5333 		 */
5334 		ad_net_init_from_sk(&ad, &net, asoc->base.sk);
5335 		err = avc_has_perm(sksec->peer_sid, asoc->peer_secid,
5336 				   sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5337 				   &ad);
5338 		if (err)
5339 			return err;
5340 	}
5341 	return 0;
5342 }
5343 
5344 /* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5345  * happens on an incoming connect(2), sctp_connectx(3) or
5346  * sctp_sendmsg(3) (with no association already present).
5347  */
5348 static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5349 				      struct sk_buff *skb)
5350 {
5351 	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5352 	u32 conn_sid;
5353 	int err;
5354 
5355 	if (!selinux_policycap_extsockclass())
5356 		return 0;
5357 
5358 	err = selinux_sctp_process_new_assoc(asoc, skb);
5359 	if (err)
5360 		return err;
5361 
5362 	/* Compute the MLS component for the connection and store
5363 	 * the information in asoc. This will be used by SCTP TCP type
5364 	 * sockets and peeled off connections as they cause a new
5365 	 * socket to be generated. selinux_sctp_sk_clone() will then
5366 	 * plug this into the new socket.
5367 	 */
5368 	err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5369 	if (err)
5370 		return err;
5371 
5372 	asoc->secid = conn_sid;
5373 
5374 	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5375 	return selinux_netlbl_sctp_assoc_request(asoc, skb);
5376 }
5377 
5378 /* Called when SCTP receives a COOKIE ACK chunk as the final
5379  * response to an association request (initited by us).
5380  */
5381 static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5382 					  struct sk_buff *skb)
5383 {
5384 	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5385 
5386 	if (!selinux_policycap_extsockclass())
5387 		return 0;
5388 
5389 	/* Inherit secid from the parent socket - this will be picked up
5390 	 * by selinux_sctp_sk_clone() if the association gets peeled off
5391 	 * into a new socket.
5392 	 */
5393 	asoc->secid = sksec->sid;
5394 
5395 	return selinux_sctp_process_new_assoc(asoc, skb);
5396 }
5397 
5398 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5399  * based on their @optname.
5400  */
5401 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5402 				     struct sockaddr *address,
5403 				     int addrlen)
5404 {
5405 	int len, err = 0, walk_size = 0;
5406 	void *addr_buf;
5407 	struct sockaddr *addr;
5408 	struct socket *sock;
5409 
5410 	if (!selinux_policycap_extsockclass())
5411 		return 0;
5412 
5413 	/* Process one or more addresses that may be IPv4 or IPv6 */
5414 	sock = sk->sk_socket;
5415 	addr_buf = address;
5416 
5417 	while (walk_size < addrlen) {
5418 		if (walk_size + sizeof(sa_family_t) > addrlen)
5419 			return -EINVAL;
5420 
5421 		addr = addr_buf;
5422 		switch (addr->sa_family) {
5423 		case AF_UNSPEC:
5424 		case AF_INET:
5425 			len = sizeof(struct sockaddr_in);
5426 			break;
5427 		case AF_INET6:
5428 			len = sizeof(struct sockaddr_in6);
5429 			break;
5430 		default:
5431 			return -EINVAL;
5432 		}
5433 
5434 		if (walk_size + len > addrlen)
5435 			return -EINVAL;
5436 
5437 		err = -EINVAL;
5438 		switch (optname) {
5439 		/* Bind checks */
5440 		case SCTP_PRIMARY_ADDR:
5441 		case SCTP_SET_PEER_PRIMARY_ADDR:
5442 		case SCTP_SOCKOPT_BINDX_ADD:
5443 			err = selinux_socket_bind(sock, addr, len);
5444 			break;
5445 		/* Connect checks */
5446 		case SCTP_SOCKOPT_CONNECTX:
5447 		case SCTP_PARAM_SET_PRIMARY:
5448 		case SCTP_PARAM_ADD_IP:
5449 		case SCTP_SENDMSG_CONNECT:
5450 			err = selinux_socket_connect_helper(sock, addr, len);
5451 			if (err)
5452 				return err;
5453 
5454 			/* As selinux_sctp_bind_connect() is called by the
5455 			 * SCTP protocol layer, the socket is already locked,
5456 			 * therefore selinux_netlbl_socket_connect_locked()
5457 			 * is called here. The situations handled are:
5458 			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5459 			 * whenever a new IP address is added or when a new
5460 			 * primary address is selected.
5461 			 * Note that an SCTP connect(2) call happens before
5462 			 * the SCTP protocol layer and is handled via
5463 			 * selinux_socket_connect().
5464 			 */
5465 			err = selinux_netlbl_socket_connect_locked(sk, addr);
5466 			break;
5467 		}
5468 
5469 		if (err)
5470 			return err;
5471 
5472 		addr_buf += len;
5473 		walk_size += len;
5474 	}
5475 
5476 	return 0;
5477 }
5478 
5479 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5480 static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5481 				  struct sock *newsk)
5482 {
5483 	struct sk_security_struct *sksec = sk->sk_security;
5484 	struct sk_security_struct *newsksec = newsk->sk_security;
5485 
5486 	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5487 	 * the non-sctp clone version.
5488 	 */
5489 	if (!selinux_policycap_extsockclass())
5490 		return selinux_sk_clone_security(sk, newsk);
5491 
5492 	newsksec->sid = asoc->secid;
5493 	newsksec->peer_sid = asoc->peer_secid;
5494 	newsksec->sclass = sksec->sclass;
5495 	selinux_netlbl_sctp_sk_clone(sk, newsk);
5496 }
5497 
5498 static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5499 {
5500 	struct sk_security_struct *ssksec = ssk->sk_security;
5501 	struct sk_security_struct *sksec = sk->sk_security;
5502 
5503 	ssksec->sclass = sksec->sclass;
5504 	ssksec->sid = sksec->sid;
5505 
5506 	/* replace the existing subflow label deleting the existing one
5507 	 * and re-recreating a new label using the updated context
5508 	 */
5509 	selinux_netlbl_sk_security_free(ssksec);
5510 	return selinux_netlbl_socket_post_create(ssk, ssk->sk_family);
5511 }
5512 
5513 static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5514 				     struct request_sock *req)
5515 {
5516 	struct sk_security_struct *sksec = sk->sk_security;
5517 	int err;
5518 	u16 family = req->rsk_ops->family;
5519 	u32 connsid;
5520 	u32 peersid;
5521 
5522 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5523 	if (err)
5524 		return err;
5525 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5526 	if (err)
5527 		return err;
5528 	req->secid = connsid;
5529 	req->peer_secid = peersid;
5530 
5531 	return selinux_netlbl_inet_conn_request(req, family);
5532 }
5533 
5534 static void selinux_inet_csk_clone(struct sock *newsk,
5535 				   const struct request_sock *req)
5536 {
5537 	struct sk_security_struct *newsksec = newsk->sk_security;
5538 
5539 	newsksec->sid = req->secid;
5540 	newsksec->peer_sid = req->peer_secid;
5541 	/* NOTE: Ideally, we should also get the isec->sid for the
5542 	   new socket in sync, but we don't have the isec available yet.
5543 	   So we will wait until sock_graft to do it, by which
5544 	   time it will have been created and available. */
5545 
5546 	/* We don't need to take any sort of lock here as we are the only
5547 	 * thread with access to newsksec */
5548 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5549 }
5550 
5551 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5552 {
5553 	u16 family = sk->sk_family;
5554 	struct sk_security_struct *sksec = sk->sk_security;
5555 
5556 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5557 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5558 		family = PF_INET;
5559 
5560 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5561 }
5562 
5563 static int selinux_secmark_relabel_packet(u32 sid)
5564 {
5565 	const struct task_security_struct *tsec;
5566 	u32 tsid;
5567 
5568 	tsec = selinux_cred(current_cred());
5569 	tsid = tsec->sid;
5570 
5571 	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5572 			    NULL);
5573 }
5574 
5575 static void selinux_secmark_refcount_inc(void)
5576 {
5577 	atomic_inc(&selinux_secmark_refcount);
5578 }
5579 
5580 static void selinux_secmark_refcount_dec(void)
5581 {
5582 	atomic_dec(&selinux_secmark_refcount);
5583 }
5584 
5585 static void selinux_req_classify_flow(const struct request_sock *req,
5586 				      struct flowi_common *flic)
5587 {
5588 	flic->flowic_secid = req->secid;
5589 }
5590 
5591 static int selinux_tun_dev_alloc_security(void **security)
5592 {
5593 	struct tun_security_struct *tunsec;
5594 
5595 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5596 	if (!tunsec)
5597 		return -ENOMEM;
5598 	tunsec->sid = current_sid();
5599 
5600 	*security = tunsec;
5601 	return 0;
5602 }
5603 
5604 static void selinux_tun_dev_free_security(void *security)
5605 {
5606 	kfree(security);
5607 }
5608 
5609 static int selinux_tun_dev_create(void)
5610 {
5611 	u32 sid = current_sid();
5612 
5613 	/* we aren't taking into account the "sockcreate" SID since the socket
5614 	 * that is being created here is not a socket in the traditional sense,
5615 	 * instead it is a private sock, accessible only to the kernel, and
5616 	 * representing a wide range of network traffic spanning multiple
5617 	 * connections unlike traditional sockets - check the TUN driver to
5618 	 * get a better understanding of why this socket is special */
5619 
5620 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5621 			    NULL);
5622 }
5623 
5624 static int selinux_tun_dev_attach_queue(void *security)
5625 {
5626 	struct tun_security_struct *tunsec = security;
5627 
5628 	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5629 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5630 }
5631 
5632 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5633 {
5634 	struct tun_security_struct *tunsec = security;
5635 	struct sk_security_struct *sksec = sk->sk_security;
5636 
5637 	/* we don't currently perform any NetLabel based labeling here and it
5638 	 * isn't clear that we would want to do so anyway; while we could apply
5639 	 * labeling without the support of the TUN user the resulting labeled
5640 	 * traffic from the other end of the connection would almost certainly
5641 	 * cause confusion to the TUN user that had no idea network labeling
5642 	 * protocols were being used */
5643 
5644 	sksec->sid = tunsec->sid;
5645 	sksec->sclass = SECCLASS_TUN_SOCKET;
5646 
5647 	return 0;
5648 }
5649 
5650 static int selinux_tun_dev_open(void *security)
5651 {
5652 	struct tun_security_struct *tunsec = security;
5653 	u32 sid = current_sid();
5654 	int err;
5655 
5656 	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5657 			   TUN_SOCKET__RELABELFROM, NULL);
5658 	if (err)
5659 		return err;
5660 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5661 			   TUN_SOCKET__RELABELTO, NULL);
5662 	if (err)
5663 		return err;
5664 	tunsec->sid = sid;
5665 
5666 	return 0;
5667 }
5668 
5669 #ifdef CONFIG_NETFILTER
5670 
5671 static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5672 				       const struct nf_hook_state *state)
5673 {
5674 	int ifindex;
5675 	u16 family;
5676 	char *addrp;
5677 	u32 peer_sid;
5678 	struct common_audit_data ad;
5679 	struct lsm_network_audit net;
5680 	int secmark_active, peerlbl_active;
5681 
5682 	if (!selinux_policycap_netpeer())
5683 		return NF_ACCEPT;
5684 
5685 	secmark_active = selinux_secmark_enabled();
5686 	peerlbl_active = selinux_peerlbl_enabled();
5687 	if (!secmark_active && !peerlbl_active)
5688 		return NF_ACCEPT;
5689 
5690 	family = state->pf;
5691 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5692 		return NF_DROP;
5693 
5694 	ifindex = state->in->ifindex;
5695 	ad_net_init_from_iif(&ad, &net, ifindex, family);
5696 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5697 		return NF_DROP;
5698 
5699 	if (peerlbl_active) {
5700 		int err;
5701 
5702 		err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5703 					       addrp, family, peer_sid, &ad);
5704 		if (err) {
5705 			selinux_netlbl_err(skb, family, err, 1);
5706 			return NF_DROP;
5707 		}
5708 	}
5709 
5710 	if (secmark_active)
5711 		if (avc_has_perm(peer_sid, skb->secmark,
5712 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5713 			return NF_DROP;
5714 
5715 	if (netlbl_enabled())
5716 		/* we do this in the FORWARD path and not the POST_ROUTING
5717 		 * path because we want to make sure we apply the necessary
5718 		 * labeling before IPsec is applied so we can leverage AH
5719 		 * protection */
5720 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5721 			return NF_DROP;
5722 
5723 	return NF_ACCEPT;
5724 }
5725 
5726 static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5727 				      const struct nf_hook_state *state)
5728 {
5729 	struct sock *sk;
5730 	u32 sid;
5731 
5732 	if (!netlbl_enabled())
5733 		return NF_ACCEPT;
5734 
5735 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5736 	 * because we want to make sure we apply the necessary labeling
5737 	 * before IPsec is applied so we can leverage AH protection */
5738 	sk = skb->sk;
5739 	if (sk) {
5740 		struct sk_security_struct *sksec;
5741 
5742 		if (sk_listener(sk))
5743 			/* if the socket is the listening state then this
5744 			 * packet is a SYN-ACK packet which means it needs to
5745 			 * be labeled based on the connection/request_sock and
5746 			 * not the parent socket.  unfortunately, we can't
5747 			 * lookup the request_sock yet as it isn't queued on
5748 			 * the parent socket until after the SYN-ACK is sent.
5749 			 * the "solution" is to simply pass the packet as-is
5750 			 * as any IP option based labeling should be copied
5751 			 * from the initial connection request (in the IP
5752 			 * layer).  it is far from ideal, but until we get a
5753 			 * security label in the packet itself this is the
5754 			 * best we can do. */
5755 			return NF_ACCEPT;
5756 
5757 		/* standard practice, label using the parent socket */
5758 		sksec = sk->sk_security;
5759 		sid = sksec->sid;
5760 	} else
5761 		sid = SECINITSID_KERNEL;
5762 	if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5763 		return NF_DROP;
5764 
5765 	return NF_ACCEPT;
5766 }
5767 
5768 
5769 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5770 					const struct nf_hook_state *state)
5771 {
5772 	struct sock *sk;
5773 	struct sk_security_struct *sksec;
5774 	struct common_audit_data ad;
5775 	struct lsm_network_audit net;
5776 	u8 proto = 0;
5777 
5778 	sk = skb_to_full_sk(skb);
5779 	if (sk == NULL)
5780 		return NF_ACCEPT;
5781 	sksec = sk->sk_security;
5782 
5783 	ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf);
5784 	if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5785 		return NF_DROP;
5786 
5787 	if (selinux_secmark_enabled())
5788 		if (avc_has_perm(sksec->sid, skb->secmark,
5789 				 SECCLASS_PACKET, PACKET__SEND, &ad))
5790 			return NF_DROP_ERR(-ECONNREFUSED);
5791 
5792 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5793 		return NF_DROP_ERR(-ECONNREFUSED);
5794 
5795 	return NF_ACCEPT;
5796 }
5797 
5798 static unsigned int selinux_ip_postroute(void *priv,
5799 					 struct sk_buff *skb,
5800 					 const struct nf_hook_state *state)
5801 {
5802 	u16 family;
5803 	u32 secmark_perm;
5804 	u32 peer_sid;
5805 	int ifindex;
5806 	struct sock *sk;
5807 	struct common_audit_data ad;
5808 	struct lsm_network_audit net;
5809 	char *addrp;
5810 	int secmark_active, peerlbl_active;
5811 
5812 	/* If any sort of compatibility mode is enabled then handoff processing
5813 	 * to the selinux_ip_postroute_compat() function to deal with the
5814 	 * special handling.  We do this in an attempt to keep this function
5815 	 * as fast and as clean as possible. */
5816 	if (!selinux_policycap_netpeer())
5817 		return selinux_ip_postroute_compat(skb, state);
5818 
5819 	secmark_active = selinux_secmark_enabled();
5820 	peerlbl_active = selinux_peerlbl_enabled();
5821 	if (!secmark_active && !peerlbl_active)
5822 		return NF_ACCEPT;
5823 
5824 	sk = skb_to_full_sk(skb);
5825 
5826 #ifdef CONFIG_XFRM
5827 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5828 	 * packet transformation so allow the packet to pass without any checks
5829 	 * since we'll have another chance to perform access control checks
5830 	 * when the packet is on it's final way out.
5831 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5832 	 *       is NULL, in this case go ahead and apply access control.
5833 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5834 	 *       TCP listening state we cannot wait until the XFRM processing
5835 	 *       is done as we will miss out on the SA label if we do;
5836 	 *       unfortunately, this means more work, but it is only once per
5837 	 *       connection. */
5838 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5839 	    !(sk && sk_listener(sk)))
5840 		return NF_ACCEPT;
5841 #endif
5842 
5843 	family = state->pf;
5844 	if (sk == NULL) {
5845 		/* Without an associated socket the packet is either coming
5846 		 * from the kernel or it is being forwarded; check the packet
5847 		 * to determine which and if the packet is being forwarded
5848 		 * query the packet directly to determine the security label. */
5849 		if (skb->skb_iif) {
5850 			secmark_perm = PACKET__FORWARD_OUT;
5851 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5852 				return NF_DROP;
5853 		} else {
5854 			secmark_perm = PACKET__SEND;
5855 			peer_sid = SECINITSID_KERNEL;
5856 		}
5857 	} else if (sk_listener(sk)) {
5858 		/* Locally generated packet but the associated socket is in the
5859 		 * listening state which means this is a SYN-ACK packet.  In
5860 		 * this particular case the correct security label is assigned
5861 		 * to the connection/request_sock but unfortunately we can't
5862 		 * query the request_sock as it isn't queued on the parent
5863 		 * socket until after the SYN-ACK packet is sent; the only
5864 		 * viable choice is to regenerate the label like we do in
5865 		 * selinux_inet_conn_request().  See also selinux_ip_output()
5866 		 * for similar problems. */
5867 		u32 skb_sid;
5868 		struct sk_security_struct *sksec;
5869 
5870 		sksec = sk->sk_security;
5871 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5872 			return NF_DROP;
5873 		/* At this point, if the returned skb peerlbl is SECSID_NULL
5874 		 * and the packet has been through at least one XFRM
5875 		 * transformation then we must be dealing with the "final"
5876 		 * form of labeled IPsec packet; since we've already applied
5877 		 * all of our access controls on this packet we can safely
5878 		 * pass the packet. */
5879 		if (skb_sid == SECSID_NULL) {
5880 			switch (family) {
5881 			case PF_INET:
5882 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5883 					return NF_ACCEPT;
5884 				break;
5885 			case PF_INET6:
5886 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5887 					return NF_ACCEPT;
5888 				break;
5889 			default:
5890 				return NF_DROP_ERR(-ECONNREFUSED);
5891 			}
5892 		}
5893 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5894 			return NF_DROP;
5895 		secmark_perm = PACKET__SEND;
5896 	} else {
5897 		/* Locally generated packet, fetch the security label from the
5898 		 * associated socket. */
5899 		struct sk_security_struct *sksec = sk->sk_security;
5900 		peer_sid = sksec->sid;
5901 		secmark_perm = PACKET__SEND;
5902 	}
5903 
5904 	ifindex = state->out->ifindex;
5905 	ad_net_init_from_iif(&ad, &net, ifindex, family);
5906 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5907 		return NF_DROP;
5908 
5909 	if (secmark_active)
5910 		if (avc_has_perm(peer_sid, skb->secmark,
5911 				 SECCLASS_PACKET, secmark_perm, &ad))
5912 			return NF_DROP_ERR(-ECONNREFUSED);
5913 
5914 	if (peerlbl_active) {
5915 		u32 if_sid;
5916 		u32 node_sid;
5917 
5918 		if (sel_netif_sid(state->net, ifindex, &if_sid))
5919 			return NF_DROP;
5920 		if (avc_has_perm(peer_sid, if_sid,
5921 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5922 			return NF_DROP_ERR(-ECONNREFUSED);
5923 
5924 		if (sel_netnode_sid(addrp, family, &node_sid))
5925 			return NF_DROP;
5926 		if (avc_has_perm(peer_sid, node_sid,
5927 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5928 			return NF_DROP_ERR(-ECONNREFUSED);
5929 	}
5930 
5931 	return NF_ACCEPT;
5932 }
5933 #endif	/* CONFIG_NETFILTER */
5934 
5935 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5936 {
5937 	int rc = 0;
5938 	unsigned int msg_len;
5939 	unsigned int data_len = skb->len;
5940 	unsigned char *data = skb->data;
5941 	struct nlmsghdr *nlh;
5942 	struct sk_security_struct *sksec = sk->sk_security;
5943 	u16 sclass = sksec->sclass;
5944 	u32 perm;
5945 
5946 	while (data_len >= nlmsg_total_size(0)) {
5947 		nlh = (struct nlmsghdr *)data;
5948 
5949 		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5950 		 *       users which means we can't reject skb's with bogus
5951 		 *       length fields; our solution is to follow what
5952 		 *       netlink_rcv_skb() does and simply skip processing at
5953 		 *       messages with length fields that are clearly junk
5954 		 */
5955 		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5956 			return 0;
5957 
5958 		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5959 		if (rc == 0) {
5960 			rc = sock_has_perm(sk, perm);
5961 			if (rc)
5962 				return rc;
5963 		} else if (rc == -EINVAL) {
5964 			/* -EINVAL is a missing msg/perm mapping */
5965 			pr_warn_ratelimited("SELinux: unrecognized netlink"
5966 				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5967 				" pid=%d comm=%s\n",
5968 				sk->sk_protocol, nlh->nlmsg_type,
5969 				secclass_map[sclass - 1].name,
5970 				task_pid_nr(current), current->comm);
5971 			if (enforcing_enabled() &&
5972 			    !security_get_allow_unknown())
5973 				return rc;
5974 			rc = 0;
5975 		} else if (rc == -ENOENT) {
5976 			/* -ENOENT is a missing socket/class mapping, ignore */
5977 			rc = 0;
5978 		} else {
5979 			return rc;
5980 		}
5981 
5982 		/* move to the next message after applying netlink padding */
5983 		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5984 		if (msg_len >= data_len)
5985 			return 0;
5986 		data_len -= msg_len;
5987 		data += msg_len;
5988 	}
5989 
5990 	return rc;
5991 }
5992 
5993 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5994 {
5995 	isec->sclass = sclass;
5996 	isec->sid = current_sid();
5997 }
5998 
5999 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6000 			u32 perms)
6001 {
6002 	struct ipc_security_struct *isec;
6003 	struct common_audit_data ad;
6004 	u32 sid = current_sid();
6005 
6006 	isec = selinux_ipc(ipc_perms);
6007 
6008 	ad.type = LSM_AUDIT_DATA_IPC;
6009 	ad.u.ipc_id = ipc_perms->key;
6010 
6011 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
6012 }
6013 
6014 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6015 {
6016 	struct msg_security_struct *msec;
6017 
6018 	msec = selinux_msg_msg(msg);
6019 	msec->sid = SECINITSID_UNLABELED;
6020 
6021 	return 0;
6022 }
6023 
6024 /* message queue security operations */
6025 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6026 {
6027 	struct ipc_security_struct *isec;
6028 	struct common_audit_data ad;
6029 	u32 sid = current_sid();
6030 
6031 	isec = selinux_ipc(msq);
6032 	ipc_init_security(isec, SECCLASS_MSGQ);
6033 
6034 	ad.type = LSM_AUDIT_DATA_IPC;
6035 	ad.u.ipc_id = msq->key;
6036 
6037 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6038 			    MSGQ__CREATE, &ad);
6039 }
6040 
6041 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6042 {
6043 	struct ipc_security_struct *isec;
6044 	struct common_audit_data ad;
6045 	u32 sid = current_sid();
6046 
6047 	isec = selinux_ipc(msq);
6048 
6049 	ad.type = LSM_AUDIT_DATA_IPC;
6050 	ad.u.ipc_id = msq->key;
6051 
6052 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6053 			    MSGQ__ASSOCIATE, &ad);
6054 }
6055 
6056 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6057 {
6058 	u32 perms;
6059 
6060 	switch (cmd) {
6061 	case IPC_INFO:
6062 	case MSG_INFO:
6063 		/* No specific object, just general system-wide information. */
6064 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6065 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6066 	case IPC_STAT:
6067 	case MSG_STAT:
6068 	case MSG_STAT_ANY:
6069 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6070 		break;
6071 	case IPC_SET:
6072 		perms = MSGQ__SETATTR;
6073 		break;
6074 	case IPC_RMID:
6075 		perms = MSGQ__DESTROY;
6076 		break;
6077 	default:
6078 		return 0;
6079 	}
6080 
6081 	return ipc_has_perm(msq, perms);
6082 }
6083 
6084 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6085 {
6086 	struct ipc_security_struct *isec;
6087 	struct msg_security_struct *msec;
6088 	struct common_audit_data ad;
6089 	u32 sid = current_sid();
6090 	int rc;
6091 
6092 	isec = selinux_ipc(msq);
6093 	msec = selinux_msg_msg(msg);
6094 
6095 	/*
6096 	 * First time through, need to assign label to the message
6097 	 */
6098 	if (msec->sid == SECINITSID_UNLABELED) {
6099 		/*
6100 		 * Compute new sid based on current process and
6101 		 * message queue this message will be stored in
6102 		 */
6103 		rc = security_transition_sid(sid, isec->sid,
6104 					     SECCLASS_MSG, NULL, &msec->sid);
6105 		if (rc)
6106 			return rc;
6107 	}
6108 
6109 	ad.type = LSM_AUDIT_DATA_IPC;
6110 	ad.u.ipc_id = msq->key;
6111 
6112 	/* Can this process write to the queue? */
6113 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6114 			  MSGQ__WRITE, &ad);
6115 	if (!rc)
6116 		/* Can this process send the message */
6117 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
6118 				  MSG__SEND, &ad);
6119 	if (!rc)
6120 		/* Can the message be put in the queue? */
6121 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
6122 				  MSGQ__ENQUEUE, &ad);
6123 
6124 	return rc;
6125 }
6126 
6127 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6128 				    struct task_struct *target,
6129 				    long type, int mode)
6130 {
6131 	struct ipc_security_struct *isec;
6132 	struct msg_security_struct *msec;
6133 	struct common_audit_data ad;
6134 	u32 sid = task_sid_obj(target);
6135 	int rc;
6136 
6137 	isec = selinux_ipc(msq);
6138 	msec = selinux_msg_msg(msg);
6139 
6140 	ad.type = LSM_AUDIT_DATA_IPC;
6141 	ad.u.ipc_id = msq->key;
6142 
6143 	rc = avc_has_perm(sid, isec->sid,
6144 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6145 	if (!rc)
6146 		rc = avc_has_perm(sid, msec->sid,
6147 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6148 	return rc;
6149 }
6150 
6151 /* Shared Memory security operations */
6152 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6153 {
6154 	struct ipc_security_struct *isec;
6155 	struct common_audit_data ad;
6156 	u32 sid = current_sid();
6157 
6158 	isec = selinux_ipc(shp);
6159 	ipc_init_security(isec, SECCLASS_SHM);
6160 
6161 	ad.type = LSM_AUDIT_DATA_IPC;
6162 	ad.u.ipc_id = shp->key;
6163 
6164 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6165 			    SHM__CREATE, &ad);
6166 }
6167 
6168 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6169 {
6170 	struct ipc_security_struct *isec;
6171 	struct common_audit_data ad;
6172 	u32 sid = current_sid();
6173 
6174 	isec = selinux_ipc(shp);
6175 
6176 	ad.type = LSM_AUDIT_DATA_IPC;
6177 	ad.u.ipc_id = shp->key;
6178 
6179 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6180 			    SHM__ASSOCIATE, &ad);
6181 }
6182 
6183 /* Note, at this point, shp is locked down */
6184 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6185 {
6186 	u32 perms;
6187 
6188 	switch (cmd) {
6189 	case IPC_INFO:
6190 	case SHM_INFO:
6191 		/* No specific object, just general system-wide information. */
6192 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6193 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6194 	case IPC_STAT:
6195 	case SHM_STAT:
6196 	case SHM_STAT_ANY:
6197 		perms = SHM__GETATTR | SHM__ASSOCIATE;
6198 		break;
6199 	case IPC_SET:
6200 		perms = SHM__SETATTR;
6201 		break;
6202 	case SHM_LOCK:
6203 	case SHM_UNLOCK:
6204 		perms = SHM__LOCK;
6205 		break;
6206 	case IPC_RMID:
6207 		perms = SHM__DESTROY;
6208 		break;
6209 	default:
6210 		return 0;
6211 	}
6212 
6213 	return ipc_has_perm(shp, perms);
6214 }
6215 
6216 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6217 			     char __user *shmaddr, int shmflg)
6218 {
6219 	u32 perms;
6220 
6221 	if (shmflg & SHM_RDONLY)
6222 		perms = SHM__READ;
6223 	else
6224 		perms = SHM__READ | SHM__WRITE;
6225 
6226 	return ipc_has_perm(shp, perms);
6227 }
6228 
6229 /* Semaphore security operations */
6230 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6231 {
6232 	struct ipc_security_struct *isec;
6233 	struct common_audit_data ad;
6234 	u32 sid = current_sid();
6235 
6236 	isec = selinux_ipc(sma);
6237 	ipc_init_security(isec, SECCLASS_SEM);
6238 
6239 	ad.type = LSM_AUDIT_DATA_IPC;
6240 	ad.u.ipc_id = sma->key;
6241 
6242 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6243 			    SEM__CREATE, &ad);
6244 }
6245 
6246 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6247 {
6248 	struct ipc_security_struct *isec;
6249 	struct common_audit_data ad;
6250 	u32 sid = current_sid();
6251 
6252 	isec = selinux_ipc(sma);
6253 
6254 	ad.type = LSM_AUDIT_DATA_IPC;
6255 	ad.u.ipc_id = sma->key;
6256 
6257 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6258 			    SEM__ASSOCIATE, &ad);
6259 }
6260 
6261 /* Note, at this point, sma is locked down */
6262 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6263 {
6264 	int err;
6265 	u32 perms;
6266 
6267 	switch (cmd) {
6268 	case IPC_INFO:
6269 	case SEM_INFO:
6270 		/* No specific object, just general system-wide information. */
6271 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6272 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6273 	case GETPID:
6274 	case GETNCNT:
6275 	case GETZCNT:
6276 		perms = SEM__GETATTR;
6277 		break;
6278 	case GETVAL:
6279 	case GETALL:
6280 		perms = SEM__READ;
6281 		break;
6282 	case SETVAL:
6283 	case SETALL:
6284 		perms = SEM__WRITE;
6285 		break;
6286 	case IPC_RMID:
6287 		perms = SEM__DESTROY;
6288 		break;
6289 	case IPC_SET:
6290 		perms = SEM__SETATTR;
6291 		break;
6292 	case IPC_STAT:
6293 	case SEM_STAT:
6294 	case SEM_STAT_ANY:
6295 		perms = SEM__GETATTR | SEM__ASSOCIATE;
6296 		break;
6297 	default:
6298 		return 0;
6299 	}
6300 
6301 	err = ipc_has_perm(sma, perms);
6302 	return err;
6303 }
6304 
6305 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6306 			     struct sembuf *sops, unsigned nsops, int alter)
6307 {
6308 	u32 perms;
6309 
6310 	if (alter)
6311 		perms = SEM__READ | SEM__WRITE;
6312 	else
6313 		perms = SEM__READ;
6314 
6315 	return ipc_has_perm(sma, perms);
6316 }
6317 
6318 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6319 {
6320 	u32 av = 0;
6321 
6322 	av = 0;
6323 	if (flag & S_IRUGO)
6324 		av |= IPC__UNIX_READ;
6325 	if (flag & S_IWUGO)
6326 		av |= IPC__UNIX_WRITE;
6327 
6328 	if (av == 0)
6329 		return 0;
6330 
6331 	return ipc_has_perm(ipcp, av);
6332 }
6333 
6334 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6335 {
6336 	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6337 	*secid = isec->sid;
6338 }
6339 
6340 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6341 {
6342 	if (inode)
6343 		inode_doinit_with_dentry(inode, dentry);
6344 }
6345 
6346 static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p,
6347 			       char **value)
6348 {
6349 	const struct task_security_struct *__tsec;
6350 	u32 sid;
6351 	int error;
6352 	unsigned len;
6353 
6354 	rcu_read_lock();
6355 	__tsec = selinux_cred(__task_cred(p));
6356 
6357 	if (current != p) {
6358 		error = avc_has_perm(current_sid(), __tsec->sid,
6359 				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6360 		if (error)
6361 			goto bad;
6362 	}
6363 
6364 	switch (attr) {
6365 	case LSM_ATTR_CURRENT:
6366 		sid = __tsec->sid;
6367 		break;
6368 	case LSM_ATTR_PREV:
6369 		sid = __tsec->osid;
6370 		break;
6371 	case LSM_ATTR_EXEC:
6372 		sid = __tsec->exec_sid;
6373 		break;
6374 	case LSM_ATTR_FSCREATE:
6375 		sid = __tsec->create_sid;
6376 		break;
6377 	case LSM_ATTR_KEYCREATE:
6378 		sid = __tsec->keycreate_sid;
6379 		break;
6380 	case LSM_ATTR_SOCKCREATE:
6381 		sid = __tsec->sockcreate_sid;
6382 		break;
6383 	default:
6384 		error = -EOPNOTSUPP;
6385 		goto bad;
6386 	}
6387 	rcu_read_unlock();
6388 
6389 	if (!sid)
6390 		return 0;
6391 
6392 	error = security_sid_to_context(sid, value, &len);
6393 	if (error)
6394 		return error;
6395 	return len;
6396 
6397 bad:
6398 	rcu_read_unlock();
6399 	return error;
6400 }
6401 
6402 static int selinux_lsm_setattr(u64 attr, void *value, size_t size)
6403 {
6404 	struct task_security_struct *tsec;
6405 	struct cred *new;
6406 	u32 mysid = current_sid(), sid = 0, ptsid;
6407 	int error;
6408 	char *str = value;
6409 
6410 	/*
6411 	 * Basic control over ability to set these attributes at all.
6412 	 */
6413 	switch (attr) {
6414 	case LSM_ATTR_EXEC:
6415 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6416 				     PROCESS__SETEXEC, NULL);
6417 		break;
6418 	case LSM_ATTR_FSCREATE:
6419 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6420 				     PROCESS__SETFSCREATE, NULL);
6421 		break;
6422 	case LSM_ATTR_KEYCREATE:
6423 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6424 				     PROCESS__SETKEYCREATE, NULL);
6425 		break;
6426 	case LSM_ATTR_SOCKCREATE:
6427 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6428 				     PROCESS__SETSOCKCREATE, NULL);
6429 		break;
6430 	case LSM_ATTR_CURRENT:
6431 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6432 				     PROCESS__SETCURRENT, NULL);
6433 		break;
6434 	default:
6435 		error = -EOPNOTSUPP;
6436 		break;
6437 	}
6438 	if (error)
6439 		return error;
6440 
6441 	/* Obtain a SID for the context, if one was specified. */
6442 	if (size && str[0] && str[0] != '\n') {
6443 		if (str[size-1] == '\n') {
6444 			str[size-1] = 0;
6445 			size--;
6446 		}
6447 		error = security_context_to_sid(value, size,
6448 						&sid, GFP_KERNEL);
6449 		if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) {
6450 			if (!has_cap_mac_admin(true)) {
6451 				struct audit_buffer *ab;
6452 				size_t audit_size;
6453 
6454 				/* We strip a nul only if it is at the end,
6455 				 * otherwise the context contains a nul and
6456 				 * we should audit that */
6457 				if (str[size - 1] == '\0')
6458 					audit_size = size - 1;
6459 				else
6460 					audit_size = size;
6461 				ab = audit_log_start(audit_context(),
6462 						     GFP_ATOMIC,
6463 						     AUDIT_SELINUX_ERR);
6464 				if (!ab)
6465 					return error;
6466 				audit_log_format(ab, "op=fscreate invalid_context=");
6467 				audit_log_n_untrustedstring(ab, value,
6468 							    audit_size);
6469 				audit_log_end(ab);
6470 
6471 				return error;
6472 			}
6473 			error = security_context_to_sid_force(value, size,
6474 							&sid);
6475 		}
6476 		if (error)
6477 			return error;
6478 	}
6479 
6480 	new = prepare_creds();
6481 	if (!new)
6482 		return -ENOMEM;
6483 
6484 	/* Permission checking based on the specified context is
6485 	   performed during the actual operation (execve,
6486 	   open/mkdir/...), when we know the full context of the
6487 	   operation.  See selinux_bprm_creds_for_exec for the execve
6488 	   checks and may_create for the file creation checks. The
6489 	   operation will then fail if the context is not permitted. */
6490 	tsec = selinux_cred(new);
6491 	if (attr == LSM_ATTR_EXEC) {
6492 		tsec->exec_sid = sid;
6493 	} else if (attr == LSM_ATTR_FSCREATE) {
6494 		tsec->create_sid = sid;
6495 	} else if (attr == LSM_ATTR_KEYCREATE) {
6496 		if (sid) {
6497 			error = avc_has_perm(mysid, sid,
6498 					     SECCLASS_KEY, KEY__CREATE, NULL);
6499 			if (error)
6500 				goto abort_change;
6501 		}
6502 		tsec->keycreate_sid = sid;
6503 	} else if (attr == LSM_ATTR_SOCKCREATE) {
6504 		tsec->sockcreate_sid = sid;
6505 	} else if (attr == LSM_ATTR_CURRENT) {
6506 		error = -EINVAL;
6507 		if (sid == 0)
6508 			goto abort_change;
6509 
6510 		if (!current_is_single_threaded()) {
6511 			error = security_bounded_transition(tsec->sid, sid);
6512 			if (error)
6513 				goto abort_change;
6514 		}
6515 
6516 		/* Check permissions for the transition. */
6517 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
6518 				     PROCESS__DYNTRANSITION, NULL);
6519 		if (error)
6520 			goto abort_change;
6521 
6522 		/* Check for ptracing, and update the task SID if ok.
6523 		   Otherwise, leave SID unchanged and fail. */
6524 		ptsid = ptrace_parent_sid();
6525 		if (ptsid != 0) {
6526 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
6527 					     PROCESS__PTRACE, NULL);
6528 			if (error)
6529 				goto abort_change;
6530 		}
6531 
6532 		tsec->sid = sid;
6533 	} else {
6534 		error = -EINVAL;
6535 		goto abort_change;
6536 	}
6537 
6538 	commit_creds(new);
6539 	return size;
6540 
6541 abort_change:
6542 	abort_creds(new);
6543 	return error;
6544 }
6545 
6546 /**
6547  * selinux_getselfattr - Get SELinux current task attributes
6548  * @attr: the requested attribute
6549  * @ctx: buffer to receive the result
6550  * @size: buffer size (input), buffer size used (output)
6551  * @flags: unused
6552  *
6553  * Fill the passed user space @ctx with the details of the requested
6554  * attribute.
6555  *
6556  * Returns the number of attributes on success, an error code otherwise.
6557  * There will only ever be one attribute.
6558  */
6559 static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx,
6560 			       size_t *size, u32 flags)
6561 {
6562 	int rc;
6563 	char *val;
6564 	int val_len;
6565 
6566 	val_len = selinux_lsm_getattr(attr, current, &val);
6567 	if (val_len < 0)
6568 		return val_len;
6569 	rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0);
6570 	kfree(val);
6571 	return (!rc ? 1 : rc);
6572 }
6573 
6574 static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx,
6575 			       size_t size, u32 flags)
6576 {
6577 	int rc;
6578 
6579 	rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len);
6580 	if (rc > 0)
6581 		return 0;
6582 	return rc;
6583 }
6584 
6585 static int selinux_getprocattr(struct task_struct *p,
6586 			       const char *name, char **value)
6587 {
6588 	unsigned int attr = lsm_name_to_attr(name);
6589 	int rc;
6590 
6591 	if (attr) {
6592 		rc = selinux_lsm_getattr(attr, p, value);
6593 		if (rc != -EOPNOTSUPP)
6594 			return rc;
6595 	}
6596 
6597 	return -EINVAL;
6598 }
6599 
6600 static int selinux_setprocattr(const char *name, void *value, size_t size)
6601 {
6602 	int attr = lsm_name_to_attr(name);
6603 
6604 	if (attr)
6605 		return selinux_lsm_setattr(attr, value, size);
6606 	return -EINVAL;
6607 }
6608 
6609 static int selinux_ismaclabel(const char *name)
6610 {
6611 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6612 }
6613 
6614 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6615 {
6616 	return security_sid_to_context(secid,
6617 				       secdata, seclen);
6618 }
6619 
6620 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6621 {
6622 	return security_context_to_sid(secdata, seclen,
6623 				       secid, GFP_KERNEL);
6624 }
6625 
6626 static void selinux_release_secctx(char *secdata, u32 seclen)
6627 {
6628 	kfree(secdata);
6629 }
6630 
6631 static void selinux_inode_invalidate_secctx(struct inode *inode)
6632 {
6633 	struct inode_security_struct *isec = selinux_inode(inode);
6634 
6635 	spin_lock(&isec->lock);
6636 	isec->initialized = LABEL_INVALID;
6637 	spin_unlock(&isec->lock);
6638 }
6639 
6640 /*
6641  *	called with inode->i_mutex locked
6642  */
6643 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6644 {
6645 	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6646 					   ctx, ctxlen, 0);
6647 	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6648 	return rc == -EOPNOTSUPP ? 0 : rc;
6649 }
6650 
6651 /*
6652  *	called with inode->i_mutex locked
6653  */
6654 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6655 {
6656 	return __vfs_setxattr_noperm(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX,
6657 				     ctx, ctxlen, 0);
6658 }
6659 
6660 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6661 {
6662 	int len = 0;
6663 	len = selinux_inode_getsecurity(&nop_mnt_idmap, inode,
6664 					XATTR_SELINUX_SUFFIX, ctx, true);
6665 	if (len < 0)
6666 		return len;
6667 	*ctxlen = len;
6668 	return 0;
6669 }
6670 #ifdef CONFIG_KEYS
6671 
6672 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6673 			     unsigned long flags)
6674 {
6675 	const struct task_security_struct *tsec;
6676 	struct key_security_struct *ksec;
6677 
6678 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6679 	if (!ksec)
6680 		return -ENOMEM;
6681 
6682 	tsec = selinux_cred(cred);
6683 	if (tsec->keycreate_sid)
6684 		ksec->sid = tsec->keycreate_sid;
6685 	else
6686 		ksec->sid = tsec->sid;
6687 
6688 	k->security = ksec;
6689 	return 0;
6690 }
6691 
6692 static void selinux_key_free(struct key *k)
6693 {
6694 	struct key_security_struct *ksec = k->security;
6695 
6696 	k->security = NULL;
6697 	kfree(ksec);
6698 }
6699 
6700 static int selinux_key_permission(key_ref_t key_ref,
6701 				  const struct cred *cred,
6702 				  enum key_need_perm need_perm)
6703 {
6704 	struct key *key;
6705 	struct key_security_struct *ksec;
6706 	u32 perm, sid;
6707 
6708 	switch (need_perm) {
6709 	case KEY_NEED_VIEW:
6710 		perm = KEY__VIEW;
6711 		break;
6712 	case KEY_NEED_READ:
6713 		perm = KEY__READ;
6714 		break;
6715 	case KEY_NEED_WRITE:
6716 		perm = KEY__WRITE;
6717 		break;
6718 	case KEY_NEED_SEARCH:
6719 		perm = KEY__SEARCH;
6720 		break;
6721 	case KEY_NEED_LINK:
6722 		perm = KEY__LINK;
6723 		break;
6724 	case KEY_NEED_SETATTR:
6725 		perm = KEY__SETATTR;
6726 		break;
6727 	case KEY_NEED_UNLINK:
6728 	case KEY_SYSADMIN_OVERRIDE:
6729 	case KEY_AUTHTOKEN_OVERRIDE:
6730 	case KEY_DEFER_PERM_CHECK:
6731 		return 0;
6732 	default:
6733 		WARN_ON(1);
6734 		return -EPERM;
6735 
6736 	}
6737 
6738 	sid = cred_sid(cred);
6739 	key = key_ref_to_ptr(key_ref);
6740 	ksec = key->security;
6741 
6742 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6743 }
6744 
6745 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6746 {
6747 	struct key_security_struct *ksec = key->security;
6748 	char *context = NULL;
6749 	unsigned len;
6750 	int rc;
6751 
6752 	rc = security_sid_to_context(ksec->sid,
6753 				     &context, &len);
6754 	if (!rc)
6755 		rc = len;
6756 	*_buffer = context;
6757 	return rc;
6758 }
6759 
6760 #ifdef CONFIG_KEY_NOTIFICATIONS
6761 static int selinux_watch_key(struct key *key)
6762 {
6763 	struct key_security_struct *ksec = key->security;
6764 	u32 sid = current_sid();
6765 
6766 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6767 }
6768 #endif
6769 #endif
6770 
6771 #ifdef CONFIG_SECURITY_INFINIBAND
6772 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6773 {
6774 	struct common_audit_data ad;
6775 	int err;
6776 	u32 sid = 0;
6777 	struct ib_security_struct *sec = ib_sec;
6778 	struct lsm_ibpkey_audit ibpkey;
6779 
6780 	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6781 	if (err)
6782 		return err;
6783 
6784 	ad.type = LSM_AUDIT_DATA_IBPKEY;
6785 	ibpkey.subnet_prefix = subnet_prefix;
6786 	ibpkey.pkey = pkey_val;
6787 	ad.u.ibpkey = &ibpkey;
6788 	return avc_has_perm(sec->sid, sid,
6789 			    SECCLASS_INFINIBAND_PKEY,
6790 			    INFINIBAND_PKEY__ACCESS, &ad);
6791 }
6792 
6793 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6794 					    u8 port_num)
6795 {
6796 	struct common_audit_data ad;
6797 	int err;
6798 	u32 sid = 0;
6799 	struct ib_security_struct *sec = ib_sec;
6800 	struct lsm_ibendport_audit ibendport;
6801 
6802 	err = security_ib_endport_sid(dev_name, port_num,
6803 				      &sid);
6804 
6805 	if (err)
6806 		return err;
6807 
6808 	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6809 	ibendport.dev_name = dev_name;
6810 	ibendport.port = port_num;
6811 	ad.u.ibendport = &ibendport;
6812 	return avc_has_perm(sec->sid, sid,
6813 			    SECCLASS_INFINIBAND_ENDPORT,
6814 			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6815 }
6816 
6817 static int selinux_ib_alloc_security(void **ib_sec)
6818 {
6819 	struct ib_security_struct *sec;
6820 
6821 	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6822 	if (!sec)
6823 		return -ENOMEM;
6824 	sec->sid = current_sid();
6825 
6826 	*ib_sec = sec;
6827 	return 0;
6828 }
6829 
6830 static void selinux_ib_free_security(void *ib_sec)
6831 {
6832 	kfree(ib_sec);
6833 }
6834 #endif
6835 
6836 #ifdef CONFIG_BPF_SYSCALL
6837 static int selinux_bpf(int cmd, union bpf_attr *attr,
6838 				     unsigned int size)
6839 {
6840 	u32 sid = current_sid();
6841 	int ret;
6842 
6843 	switch (cmd) {
6844 	case BPF_MAP_CREATE:
6845 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6846 				   NULL);
6847 		break;
6848 	case BPF_PROG_LOAD:
6849 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6850 				   NULL);
6851 		break;
6852 	default:
6853 		ret = 0;
6854 		break;
6855 	}
6856 
6857 	return ret;
6858 }
6859 
6860 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6861 {
6862 	u32 av = 0;
6863 
6864 	if (fmode & FMODE_READ)
6865 		av |= BPF__MAP_READ;
6866 	if (fmode & FMODE_WRITE)
6867 		av |= BPF__MAP_WRITE;
6868 	return av;
6869 }
6870 
6871 /* This function will check the file pass through unix socket or binder to see
6872  * if it is a bpf related object. And apply corresponding checks on the bpf
6873  * object based on the type. The bpf maps and programs, not like other files and
6874  * socket, are using a shared anonymous inode inside the kernel as their inode.
6875  * So checking that inode cannot identify if the process have privilege to
6876  * access the bpf object and that's why we have to add this additional check in
6877  * selinux_file_receive and selinux_binder_transfer_files.
6878  */
6879 static int bpf_fd_pass(const struct file *file, u32 sid)
6880 {
6881 	struct bpf_security_struct *bpfsec;
6882 	struct bpf_prog *prog;
6883 	struct bpf_map *map;
6884 	int ret;
6885 
6886 	if (file->f_op == &bpf_map_fops) {
6887 		map = file->private_data;
6888 		bpfsec = map->security;
6889 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6890 				   bpf_map_fmode_to_av(file->f_mode), NULL);
6891 		if (ret)
6892 			return ret;
6893 	} else if (file->f_op == &bpf_prog_fops) {
6894 		prog = file->private_data;
6895 		bpfsec = prog->aux->security;
6896 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6897 				   BPF__PROG_RUN, NULL);
6898 		if (ret)
6899 			return ret;
6900 	}
6901 	return 0;
6902 }
6903 
6904 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6905 {
6906 	u32 sid = current_sid();
6907 	struct bpf_security_struct *bpfsec;
6908 
6909 	bpfsec = map->security;
6910 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6911 			    bpf_map_fmode_to_av(fmode), NULL);
6912 }
6913 
6914 static int selinux_bpf_prog(struct bpf_prog *prog)
6915 {
6916 	u32 sid = current_sid();
6917 	struct bpf_security_struct *bpfsec;
6918 
6919 	bpfsec = prog->aux->security;
6920 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6921 			    BPF__PROG_RUN, NULL);
6922 }
6923 
6924 static int selinux_bpf_map_alloc(struct bpf_map *map)
6925 {
6926 	struct bpf_security_struct *bpfsec;
6927 
6928 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6929 	if (!bpfsec)
6930 		return -ENOMEM;
6931 
6932 	bpfsec->sid = current_sid();
6933 	map->security = bpfsec;
6934 
6935 	return 0;
6936 }
6937 
6938 static void selinux_bpf_map_free(struct bpf_map *map)
6939 {
6940 	struct bpf_security_struct *bpfsec = map->security;
6941 
6942 	map->security = NULL;
6943 	kfree(bpfsec);
6944 }
6945 
6946 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6947 {
6948 	struct bpf_security_struct *bpfsec;
6949 
6950 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6951 	if (!bpfsec)
6952 		return -ENOMEM;
6953 
6954 	bpfsec->sid = current_sid();
6955 	aux->security = bpfsec;
6956 
6957 	return 0;
6958 }
6959 
6960 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6961 {
6962 	struct bpf_security_struct *bpfsec = aux->security;
6963 
6964 	aux->security = NULL;
6965 	kfree(bpfsec);
6966 }
6967 #endif
6968 
6969 struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = {
6970 	.lbs_cred = sizeof(struct task_security_struct),
6971 	.lbs_file = sizeof(struct file_security_struct),
6972 	.lbs_inode = sizeof(struct inode_security_struct),
6973 	.lbs_ipc = sizeof(struct ipc_security_struct),
6974 	.lbs_msg_msg = sizeof(struct msg_security_struct),
6975 	.lbs_superblock = sizeof(struct superblock_security_struct),
6976 	.lbs_xattr_count = SELINUX_INODE_INIT_XATTRS,
6977 };
6978 
6979 #ifdef CONFIG_PERF_EVENTS
6980 static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6981 {
6982 	u32 requested, sid = current_sid();
6983 
6984 	if (type == PERF_SECURITY_OPEN)
6985 		requested = PERF_EVENT__OPEN;
6986 	else if (type == PERF_SECURITY_CPU)
6987 		requested = PERF_EVENT__CPU;
6988 	else if (type == PERF_SECURITY_KERNEL)
6989 		requested = PERF_EVENT__KERNEL;
6990 	else if (type == PERF_SECURITY_TRACEPOINT)
6991 		requested = PERF_EVENT__TRACEPOINT;
6992 	else
6993 		return -EINVAL;
6994 
6995 	return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT,
6996 			    requested, NULL);
6997 }
6998 
6999 static int selinux_perf_event_alloc(struct perf_event *event)
7000 {
7001 	struct perf_event_security_struct *perfsec;
7002 
7003 	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
7004 	if (!perfsec)
7005 		return -ENOMEM;
7006 
7007 	perfsec->sid = current_sid();
7008 	event->security = perfsec;
7009 
7010 	return 0;
7011 }
7012 
7013 static void selinux_perf_event_free(struct perf_event *event)
7014 {
7015 	struct perf_event_security_struct *perfsec = event->security;
7016 
7017 	event->security = NULL;
7018 	kfree(perfsec);
7019 }
7020 
7021 static int selinux_perf_event_read(struct perf_event *event)
7022 {
7023 	struct perf_event_security_struct *perfsec = event->security;
7024 	u32 sid = current_sid();
7025 
7026 	return avc_has_perm(sid, perfsec->sid,
7027 			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7028 }
7029 
7030 static int selinux_perf_event_write(struct perf_event *event)
7031 {
7032 	struct perf_event_security_struct *perfsec = event->security;
7033 	u32 sid = current_sid();
7034 
7035 	return avc_has_perm(sid, perfsec->sid,
7036 			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7037 }
7038 #endif
7039 
7040 #ifdef CONFIG_IO_URING
7041 /**
7042  * selinux_uring_override_creds - check the requested cred override
7043  * @new: the target creds
7044  *
7045  * Check to see if the current task is allowed to override it's credentials
7046  * to service an io_uring operation.
7047  */
7048 static int selinux_uring_override_creds(const struct cred *new)
7049 {
7050 	return avc_has_perm(current_sid(), cred_sid(new),
7051 			    SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
7052 }
7053 
7054 /**
7055  * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7056  *
7057  * Check to see if the current task is allowed to create a new io_uring
7058  * kernel polling thread.
7059  */
7060 static int selinux_uring_sqpoll(void)
7061 {
7062 	u32 sid = current_sid();
7063 
7064 	return avc_has_perm(sid, sid,
7065 			    SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7066 }
7067 
7068 /**
7069  * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7070  * @ioucmd: the io_uring command structure
7071  *
7072  * Check to see if the current domain is allowed to execute an
7073  * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7074  *
7075  */
7076 static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7077 {
7078 	struct file *file = ioucmd->file;
7079 	struct inode *inode = file_inode(file);
7080 	struct inode_security_struct *isec = selinux_inode(inode);
7081 	struct common_audit_data ad;
7082 
7083 	ad.type = LSM_AUDIT_DATA_FILE;
7084 	ad.u.file = file;
7085 
7086 	return avc_has_perm(current_sid(), isec->sid,
7087 			    SECCLASS_IO_URING, IO_URING__CMD, &ad);
7088 }
7089 #endif /* CONFIG_IO_URING */
7090 
7091 static const struct lsm_id selinux_lsmid = {
7092 	.name = "selinux",
7093 	.id = LSM_ID_SELINUX,
7094 };
7095 
7096 /*
7097  * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7098  * 1. any hooks that don't belong to (2.) or (3.) below,
7099  * 2. hooks that both access structures allocated by other hooks, and allocate
7100  *    structures that can be later accessed by other hooks (mostly "cloning"
7101  *    hooks),
7102  * 3. hooks that only allocate structures that can be later accessed by other
7103  *    hooks ("allocating" hooks).
7104  *
7105  * Please follow block comment delimiters in the list to keep this order.
7106  */
7107 static struct security_hook_list selinux_hooks[] __ro_after_init = {
7108 	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7109 	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7110 	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7111 	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7112 
7113 	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7114 	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7115 	LSM_HOOK_INIT(capget, selinux_capget),
7116 	LSM_HOOK_INIT(capset, selinux_capset),
7117 	LSM_HOOK_INIT(capable, selinux_capable),
7118 	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7119 	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7120 	LSM_HOOK_INIT(syslog, selinux_syslog),
7121 	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7122 
7123 	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7124 
7125 	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7126 	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7127 	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7128 
7129 	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7130 	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7131 	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7132 	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7133 	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7134 	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7135 	LSM_HOOK_INIT(sb_mount, selinux_mount),
7136 	LSM_HOOK_INIT(sb_umount, selinux_umount),
7137 	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7138 	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7139 
7140 	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7141 
7142 	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7143 	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7144 
7145 	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7146 	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7147 	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7148 	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7149 	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7150 	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7151 	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7152 	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7153 	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7154 	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7155 	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7156 	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7157 	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7158 	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7159 	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7160 	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7161 	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7162 	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7163 	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7164 	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7165 	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7166 	LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7167 	LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7168 	LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7169 	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7170 	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7171 	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7172 	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7173 	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7174 	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7175 	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7176 
7177 	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7178 
7179 	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7180 	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7181 	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7182 	LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat),
7183 	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7184 	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7185 	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7186 	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7187 	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7188 	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7189 	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7190 	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7191 
7192 	LSM_HOOK_INIT(file_open, selinux_file_open),
7193 
7194 	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7195 	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7196 	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7197 	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7198 	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7199 	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7200 	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7201 	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7202 	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7203 	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7204 	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7205 	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7206 	LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7207 	LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7208 	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7209 	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7210 	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7211 	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7212 	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7213 	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7214 	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7215 	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7216 	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7217 	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7218 	LSM_HOOK_INIT(userns_create, selinux_userns_create),
7219 
7220 	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7221 	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7222 
7223 	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7224 	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7225 	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7226 	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7227 
7228 	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7229 	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7230 	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7231 
7232 	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7233 	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7234 	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7235 
7236 	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7237 
7238 	LSM_HOOK_INIT(getselfattr, selinux_getselfattr),
7239 	LSM_HOOK_INIT(setselfattr, selinux_setselfattr),
7240 	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7241 	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7242 
7243 	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7244 	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7245 	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7246 	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7247 	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7248 	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7249 
7250 	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7251 	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7252 
7253 	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7254 	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7255 	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7256 	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7257 	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7258 	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7259 	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7260 	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7261 	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7262 	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7263 	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7264 	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7265 	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7266 	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7267 	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7268 	LSM_HOOK_INIT(socket_getpeersec_stream,
7269 			selinux_socket_getpeersec_stream),
7270 	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7271 	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7272 	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7273 	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7274 	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7275 	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7276 	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7277 	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7278 	LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7279 	LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow),
7280 	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7281 	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7282 	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7283 	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7284 	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7285 	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7286 	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7287 	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7288 	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7289 	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7290 	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7291 	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7292 #ifdef CONFIG_SECURITY_INFINIBAND
7293 	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7294 	LSM_HOOK_INIT(ib_endport_manage_subnet,
7295 		      selinux_ib_endport_manage_subnet),
7296 	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7297 #endif
7298 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7299 	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7300 	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7301 	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7302 	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7303 	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7304 	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7305 			selinux_xfrm_state_pol_flow_match),
7306 	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7307 #endif
7308 
7309 #ifdef CONFIG_KEYS
7310 	LSM_HOOK_INIT(key_free, selinux_key_free),
7311 	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7312 	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7313 #ifdef CONFIG_KEY_NOTIFICATIONS
7314 	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7315 #endif
7316 #endif
7317 
7318 #ifdef CONFIG_AUDIT
7319 	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7320 	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7321 	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7322 #endif
7323 
7324 #ifdef CONFIG_BPF_SYSCALL
7325 	LSM_HOOK_INIT(bpf, selinux_bpf),
7326 	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7327 	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7328 	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7329 	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7330 #endif
7331 
7332 #ifdef CONFIG_PERF_EVENTS
7333 	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7334 	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7335 	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7336 	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7337 #endif
7338 
7339 #ifdef CONFIG_IO_URING
7340 	LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7341 	LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7342 	LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7343 #endif
7344 
7345 	/*
7346 	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7347 	 */
7348 	LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount),
7349 	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7350 	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7351 	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7352 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7353 	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7354 #endif
7355 
7356 	/*
7357 	 * PUT "ALLOCATING" HOOKS HERE
7358 	 */
7359 	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7360 	LSM_HOOK_INIT(msg_queue_alloc_security,
7361 		      selinux_msg_queue_alloc_security),
7362 	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7363 	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7364 	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7365 	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7366 	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7367 	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7368 	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7369 	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7370 #ifdef CONFIG_SECURITY_INFINIBAND
7371 	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7372 #endif
7373 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7374 	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7375 	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7376 	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7377 		      selinux_xfrm_state_alloc_acquire),
7378 #endif
7379 #ifdef CONFIG_KEYS
7380 	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7381 #endif
7382 #ifdef CONFIG_AUDIT
7383 	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7384 #endif
7385 #ifdef CONFIG_BPF_SYSCALL
7386 	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7387 	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7388 #endif
7389 #ifdef CONFIG_PERF_EVENTS
7390 	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7391 #endif
7392 };
7393 
7394 static __init int selinux_init(void)
7395 {
7396 	pr_info("SELinux:  Initializing.\n");
7397 
7398 	memset(&selinux_state, 0, sizeof(selinux_state));
7399 	enforcing_set(selinux_enforcing_boot);
7400 	selinux_avc_init();
7401 	mutex_init(&selinux_state.status_lock);
7402 	mutex_init(&selinux_state.policy_mutex);
7403 
7404 	/* Set the security state for the initial task. */
7405 	cred_init_security();
7406 
7407 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7408 	if (!default_noexec)
7409 		pr_notice("SELinux:  virtual memory is executable by default\n");
7410 
7411 	avc_init();
7412 
7413 	avtab_cache_init();
7414 
7415 	ebitmap_cache_init();
7416 
7417 	hashtab_cache_init();
7418 
7419 	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks),
7420 			   &selinux_lsmid);
7421 
7422 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7423 		panic("SELinux: Unable to register AVC netcache callback\n");
7424 
7425 	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7426 		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7427 
7428 	if (selinux_enforcing_boot)
7429 		pr_debug("SELinux:  Starting in enforcing mode\n");
7430 	else
7431 		pr_debug("SELinux:  Starting in permissive mode\n");
7432 
7433 	fs_validate_description("selinux", selinux_fs_parameters);
7434 
7435 	return 0;
7436 }
7437 
7438 static void delayed_superblock_init(struct super_block *sb, void *unused)
7439 {
7440 	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7441 }
7442 
7443 void selinux_complete_init(void)
7444 {
7445 	pr_debug("SELinux:  Completing initialization.\n");
7446 
7447 	/* Set up any superblocks initialized prior to the policy load. */
7448 	pr_debug("SELinux:  Setting up existing superblocks.\n");
7449 	iterate_supers(delayed_superblock_init, NULL);
7450 }
7451 
7452 /* SELinux requires early initialization in order to label
7453    all processes and objects when they are created. */
7454 DEFINE_LSM(selinux) = {
7455 	.name = "selinux",
7456 	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7457 	.enabled = &selinux_enabled_boot,
7458 	.blobs = &selinux_blob_sizes,
7459 	.init = selinux_init,
7460 };
7461 
7462 #if defined(CONFIG_NETFILTER)
7463 static const struct nf_hook_ops selinux_nf_ops[] = {
7464 	{
7465 		.hook =		selinux_ip_postroute,
7466 		.pf =		NFPROTO_IPV4,
7467 		.hooknum =	NF_INET_POST_ROUTING,
7468 		.priority =	NF_IP_PRI_SELINUX_LAST,
7469 	},
7470 	{
7471 		.hook =		selinux_ip_forward,
7472 		.pf =		NFPROTO_IPV4,
7473 		.hooknum =	NF_INET_FORWARD,
7474 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7475 	},
7476 	{
7477 		.hook =		selinux_ip_output,
7478 		.pf =		NFPROTO_IPV4,
7479 		.hooknum =	NF_INET_LOCAL_OUT,
7480 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7481 	},
7482 #if IS_ENABLED(CONFIG_IPV6)
7483 	{
7484 		.hook =		selinux_ip_postroute,
7485 		.pf =		NFPROTO_IPV6,
7486 		.hooknum =	NF_INET_POST_ROUTING,
7487 		.priority =	NF_IP6_PRI_SELINUX_LAST,
7488 	},
7489 	{
7490 		.hook =		selinux_ip_forward,
7491 		.pf =		NFPROTO_IPV6,
7492 		.hooknum =	NF_INET_FORWARD,
7493 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7494 	},
7495 	{
7496 		.hook =		selinux_ip_output,
7497 		.pf =		NFPROTO_IPV6,
7498 		.hooknum =	NF_INET_LOCAL_OUT,
7499 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7500 	},
7501 #endif	/* IPV6 */
7502 };
7503 
7504 static int __net_init selinux_nf_register(struct net *net)
7505 {
7506 	return nf_register_net_hooks(net, selinux_nf_ops,
7507 				     ARRAY_SIZE(selinux_nf_ops));
7508 }
7509 
7510 static void __net_exit selinux_nf_unregister(struct net *net)
7511 {
7512 	nf_unregister_net_hooks(net, selinux_nf_ops,
7513 				ARRAY_SIZE(selinux_nf_ops));
7514 }
7515 
7516 static struct pernet_operations selinux_net_ops = {
7517 	.init = selinux_nf_register,
7518 	.exit = selinux_nf_unregister,
7519 };
7520 
7521 static int __init selinux_nf_ip_init(void)
7522 {
7523 	int err;
7524 
7525 	if (!selinux_enabled_boot)
7526 		return 0;
7527 
7528 	pr_debug("SELinux:  Registering netfilter hooks\n");
7529 
7530 	err = register_pernet_subsys(&selinux_net_ops);
7531 	if (err)
7532 		panic("SELinux: register_pernet_subsys: error %d\n", err);
7533 
7534 	return 0;
7535 }
7536 __initcall(selinux_nf_ip_init);
7537 #endif /* CONFIG_NETFILTER */
7538