xref: /linux/security/selinux/hooks.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *	      Chris Vance, <cvance@nai.com>
8  *	      Wayne Salamon, <wsalamon@nai.com>
9  *	      James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *					   Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *			    <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *	Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *	This program is free software; you can redistribute it and/or modify
22  *	it under the terms of the GNU General Public License version 2,
23  *	as published by the Free Software Foundation.
24  */
25 
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/lsm_hooks.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h>		/* for local_port_range[] */
54 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
55 #include <net/inet_connection_sock.h>
56 #include <net/net_namespace.h>
57 #include <net/netlabel.h>
58 #include <linux/uaccess.h>
59 #include <asm/ioctls.h>
60 #include <linux/atomic.h>
61 #include <linux/bitops.h>
62 #include <linux/interrupt.h>
63 #include <linux/netdevice.h>	/* for network interface checks */
64 #include <net/netlink.h>
65 #include <linux/tcp.h>
66 #include <linux/udp.h>
67 #include <linux/dccp.h>
68 #include <linux/quota.h>
69 #include <linux/un.h>		/* for Unix socket types */
70 #include <net/af_unix.h>	/* for Unix socket types */
71 #include <linux/parser.h>
72 #include <linux/nfs_mount.h>
73 #include <net/ipv6.h>
74 #include <linux/hugetlb.h>
75 #include <linux/personality.h>
76 #include <linux/audit.h>
77 #include <linux/string.h>
78 #include <linux/selinux.h>
79 #include <linux/mutex.h>
80 #include <linux/posix-timers.h>
81 #include <linux/syslog.h>
82 #include <linux/user_namespace.h>
83 #include <linux/export.h>
84 #include <linux/msg.h>
85 #include <linux/shm.h>
86 
87 #include "avc.h"
88 #include "objsec.h"
89 #include "netif.h"
90 #include "netnode.h"
91 #include "netport.h"
92 #include "xfrm.h"
93 #include "netlabel.h"
94 #include "audit.h"
95 #include "avc_ss.h"
96 
97 /* SECMARK reference count */
98 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
99 
100 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
101 int selinux_enforcing;
102 
103 static int __init enforcing_setup(char *str)
104 {
105 	unsigned long enforcing;
106 	if (!kstrtoul(str, 0, &enforcing))
107 		selinux_enforcing = enforcing ? 1 : 0;
108 	return 1;
109 }
110 __setup("enforcing=", enforcing_setup);
111 #endif
112 
113 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
114 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
115 
116 static int __init selinux_enabled_setup(char *str)
117 {
118 	unsigned long enabled;
119 	if (!kstrtoul(str, 0, &enabled))
120 		selinux_enabled = enabled ? 1 : 0;
121 	return 1;
122 }
123 __setup("selinux=", selinux_enabled_setup);
124 #else
125 int selinux_enabled = 1;
126 #endif
127 
128 static struct kmem_cache *sel_inode_cache;
129 
130 /**
131  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
132  *
133  * Description:
134  * This function checks the SECMARK reference counter to see if any SECMARK
135  * targets are currently configured, if the reference counter is greater than
136  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
137  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
138  * policy capability is enabled, SECMARK is always considered enabled.
139  *
140  */
141 static int selinux_secmark_enabled(void)
142 {
143 	return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
144 }
145 
146 /**
147  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
148  *
149  * Description:
150  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
151  * (1) if any are enabled or false (0) if neither are enabled.  If the
152  * always_check_network policy capability is enabled, peer labeling
153  * is always considered enabled.
154  *
155  */
156 static int selinux_peerlbl_enabled(void)
157 {
158 	return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
159 }
160 
161 static int selinux_netcache_avc_callback(u32 event)
162 {
163 	if (event == AVC_CALLBACK_RESET) {
164 		sel_netif_flush();
165 		sel_netnode_flush();
166 		sel_netport_flush();
167 		synchronize_net();
168 	}
169 	return 0;
170 }
171 
172 /*
173  * initialise the security for the init task
174  */
175 static void cred_init_security(void)
176 {
177 	struct cred *cred = (struct cred *) current->real_cred;
178 	struct task_security_struct *tsec;
179 
180 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
181 	if (!tsec)
182 		panic("SELinux:  Failed to initialize initial task.\n");
183 
184 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
185 	cred->security = tsec;
186 }
187 
188 /*
189  * get the security ID of a set of credentials
190  */
191 static inline u32 cred_sid(const struct cred *cred)
192 {
193 	const struct task_security_struct *tsec;
194 
195 	tsec = cred->security;
196 	return tsec->sid;
197 }
198 
199 /*
200  * get the objective security ID of a task
201  */
202 static inline u32 task_sid(const struct task_struct *task)
203 {
204 	u32 sid;
205 
206 	rcu_read_lock();
207 	sid = cred_sid(__task_cred(task));
208 	rcu_read_unlock();
209 	return sid;
210 }
211 
212 /*
213  * get the subjective security ID of the current task
214  */
215 static inline u32 current_sid(void)
216 {
217 	const struct task_security_struct *tsec = current_security();
218 
219 	return tsec->sid;
220 }
221 
222 /* Allocate and free functions for each kind of security blob. */
223 
224 static int inode_alloc_security(struct inode *inode)
225 {
226 	struct inode_security_struct *isec;
227 	u32 sid = current_sid();
228 
229 	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
230 	if (!isec)
231 		return -ENOMEM;
232 
233 	mutex_init(&isec->lock);
234 	INIT_LIST_HEAD(&isec->list);
235 	isec->inode = inode;
236 	isec->sid = SECINITSID_UNLABELED;
237 	isec->sclass = SECCLASS_FILE;
238 	isec->task_sid = sid;
239 	inode->i_security = isec;
240 
241 	return 0;
242 }
243 
244 static void inode_free_rcu(struct rcu_head *head)
245 {
246 	struct inode_security_struct *isec;
247 
248 	isec = container_of(head, struct inode_security_struct, rcu);
249 	kmem_cache_free(sel_inode_cache, isec);
250 }
251 
252 static void inode_free_security(struct inode *inode)
253 {
254 	struct inode_security_struct *isec = inode->i_security;
255 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
256 
257 	/*
258 	 * As not all inode security structures are in a list, we check for
259 	 * empty list outside of the lock to make sure that we won't waste
260 	 * time taking a lock doing nothing.
261 	 *
262 	 * The list_del_init() function can be safely called more than once.
263 	 * It should not be possible for this function to be called with
264 	 * concurrent list_add(), but for better safety against future changes
265 	 * in the code, we use list_empty_careful() here.
266 	 */
267 	if (!list_empty_careful(&isec->list)) {
268 		spin_lock(&sbsec->isec_lock);
269 		list_del_init(&isec->list);
270 		spin_unlock(&sbsec->isec_lock);
271 	}
272 
273 	/*
274 	 * The inode may still be referenced in a path walk and
275 	 * a call to selinux_inode_permission() can be made
276 	 * after inode_free_security() is called. Ideally, the VFS
277 	 * wouldn't do this, but fixing that is a much harder
278 	 * job. For now, simply free the i_security via RCU, and
279 	 * leave the current inode->i_security pointer intact.
280 	 * The inode will be freed after the RCU grace period too.
281 	 */
282 	call_rcu(&isec->rcu, inode_free_rcu);
283 }
284 
285 static int file_alloc_security(struct file *file)
286 {
287 	struct file_security_struct *fsec;
288 	u32 sid = current_sid();
289 
290 	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
291 	if (!fsec)
292 		return -ENOMEM;
293 
294 	fsec->sid = sid;
295 	fsec->fown_sid = sid;
296 	file->f_security = fsec;
297 
298 	return 0;
299 }
300 
301 static void file_free_security(struct file *file)
302 {
303 	struct file_security_struct *fsec = file->f_security;
304 	file->f_security = NULL;
305 	kfree(fsec);
306 }
307 
308 static int superblock_alloc_security(struct super_block *sb)
309 {
310 	struct superblock_security_struct *sbsec;
311 
312 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
313 	if (!sbsec)
314 		return -ENOMEM;
315 
316 	mutex_init(&sbsec->lock);
317 	INIT_LIST_HEAD(&sbsec->isec_head);
318 	spin_lock_init(&sbsec->isec_lock);
319 	sbsec->sb = sb;
320 	sbsec->sid = SECINITSID_UNLABELED;
321 	sbsec->def_sid = SECINITSID_FILE;
322 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
323 	sb->s_security = sbsec;
324 
325 	return 0;
326 }
327 
328 static void superblock_free_security(struct super_block *sb)
329 {
330 	struct superblock_security_struct *sbsec = sb->s_security;
331 	sb->s_security = NULL;
332 	kfree(sbsec);
333 }
334 
335 /* The file system's label must be initialized prior to use. */
336 
337 static const char *labeling_behaviors[7] = {
338 	"uses xattr",
339 	"uses transition SIDs",
340 	"uses task SIDs",
341 	"uses genfs_contexts",
342 	"not configured for labeling",
343 	"uses mountpoint labeling",
344 	"uses native labeling",
345 };
346 
347 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
348 
349 static inline int inode_doinit(struct inode *inode)
350 {
351 	return inode_doinit_with_dentry(inode, NULL);
352 }
353 
354 enum {
355 	Opt_error = -1,
356 	Opt_context = 1,
357 	Opt_fscontext = 2,
358 	Opt_defcontext = 3,
359 	Opt_rootcontext = 4,
360 	Opt_labelsupport = 5,
361 	Opt_nextmntopt = 6,
362 };
363 
364 #define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
365 
366 static const match_table_t tokens = {
367 	{Opt_context, CONTEXT_STR "%s"},
368 	{Opt_fscontext, FSCONTEXT_STR "%s"},
369 	{Opt_defcontext, DEFCONTEXT_STR "%s"},
370 	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
371 	{Opt_labelsupport, LABELSUPP_STR},
372 	{Opt_error, NULL},
373 };
374 
375 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
376 
377 static int may_context_mount_sb_relabel(u32 sid,
378 			struct superblock_security_struct *sbsec,
379 			const struct cred *cred)
380 {
381 	const struct task_security_struct *tsec = cred->security;
382 	int rc;
383 
384 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
385 			  FILESYSTEM__RELABELFROM, NULL);
386 	if (rc)
387 		return rc;
388 
389 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
390 			  FILESYSTEM__RELABELTO, NULL);
391 	return rc;
392 }
393 
394 static int may_context_mount_inode_relabel(u32 sid,
395 			struct superblock_security_struct *sbsec,
396 			const struct cred *cred)
397 {
398 	const struct task_security_struct *tsec = cred->security;
399 	int rc;
400 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
401 			  FILESYSTEM__RELABELFROM, NULL);
402 	if (rc)
403 		return rc;
404 
405 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
406 			  FILESYSTEM__ASSOCIATE, NULL);
407 	return rc;
408 }
409 
410 static int selinux_is_sblabel_mnt(struct super_block *sb)
411 {
412 	struct superblock_security_struct *sbsec = sb->s_security;
413 
414 	return sbsec->behavior == SECURITY_FS_USE_XATTR ||
415 		sbsec->behavior == SECURITY_FS_USE_TRANS ||
416 		sbsec->behavior == SECURITY_FS_USE_TASK ||
417 		sbsec->behavior == SECURITY_FS_USE_NATIVE ||
418 		/* Special handling. Genfs but also in-core setxattr handler */
419 		!strcmp(sb->s_type->name, "sysfs") ||
420 		!strcmp(sb->s_type->name, "pstore") ||
421 		!strcmp(sb->s_type->name, "debugfs") ||
422 		!strcmp(sb->s_type->name, "rootfs");
423 }
424 
425 static int sb_finish_set_opts(struct super_block *sb)
426 {
427 	struct superblock_security_struct *sbsec = sb->s_security;
428 	struct dentry *root = sb->s_root;
429 	struct inode *root_inode = d_backing_inode(root);
430 	int rc = 0;
431 
432 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
433 		/* Make sure that the xattr handler exists and that no
434 		   error other than -ENODATA is returned by getxattr on
435 		   the root directory.  -ENODATA is ok, as this may be
436 		   the first boot of the SELinux kernel before we have
437 		   assigned xattr values to the filesystem. */
438 		if (!root_inode->i_op->getxattr) {
439 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
440 			       "xattr support\n", sb->s_id, sb->s_type->name);
441 			rc = -EOPNOTSUPP;
442 			goto out;
443 		}
444 		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
445 		if (rc < 0 && rc != -ENODATA) {
446 			if (rc == -EOPNOTSUPP)
447 				printk(KERN_WARNING "SELinux: (dev %s, type "
448 				       "%s) has no security xattr handler\n",
449 				       sb->s_id, sb->s_type->name);
450 			else
451 				printk(KERN_WARNING "SELinux: (dev %s, type "
452 				       "%s) getxattr errno %d\n", sb->s_id,
453 				       sb->s_type->name, -rc);
454 			goto out;
455 		}
456 	}
457 
458 	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
459 		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
460 		       sb->s_id, sb->s_type->name);
461 
462 	sbsec->flags |= SE_SBINITIALIZED;
463 	if (selinux_is_sblabel_mnt(sb))
464 		sbsec->flags |= SBLABEL_MNT;
465 
466 	/* Initialize the root inode. */
467 	rc = inode_doinit_with_dentry(root_inode, root);
468 
469 	/* Initialize any other inodes associated with the superblock, e.g.
470 	   inodes created prior to initial policy load or inodes created
471 	   during get_sb by a pseudo filesystem that directly
472 	   populates itself. */
473 	spin_lock(&sbsec->isec_lock);
474 next_inode:
475 	if (!list_empty(&sbsec->isec_head)) {
476 		struct inode_security_struct *isec =
477 				list_entry(sbsec->isec_head.next,
478 					   struct inode_security_struct, list);
479 		struct inode *inode = isec->inode;
480 		list_del_init(&isec->list);
481 		spin_unlock(&sbsec->isec_lock);
482 		inode = igrab(inode);
483 		if (inode) {
484 			if (!IS_PRIVATE(inode))
485 				inode_doinit(inode);
486 			iput(inode);
487 		}
488 		spin_lock(&sbsec->isec_lock);
489 		goto next_inode;
490 	}
491 	spin_unlock(&sbsec->isec_lock);
492 out:
493 	return rc;
494 }
495 
496 /*
497  * This function should allow an FS to ask what it's mount security
498  * options were so it can use those later for submounts, displaying
499  * mount options, or whatever.
500  */
501 static int selinux_get_mnt_opts(const struct super_block *sb,
502 				struct security_mnt_opts *opts)
503 {
504 	int rc = 0, i;
505 	struct superblock_security_struct *sbsec = sb->s_security;
506 	char *context = NULL;
507 	u32 len;
508 	char tmp;
509 
510 	security_init_mnt_opts(opts);
511 
512 	if (!(sbsec->flags & SE_SBINITIALIZED))
513 		return -EINVAL;
514 
515 	if (!ss_initialized)
516 		return -EINVAL;
517 
518 	/* make sure we always check enough bits to cover the mask */
519 	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
520 
521 	tmp = sbsec->flags & SE_MNTMASK;
522 	/* count the number of mount options for this sb */
523 	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
524 		if (tmp & 0x01)
525 			opts->num_mnt_opts++;
526 		tmp >>= 1;
527 	}
528 	/* Check if the Label support flag is set */
529 	if (sbsec->flags & SBLABEL_MNT)
530 		opts->num_mnt_opts++;
531 
532 	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
533 	if (!opts->mnt_opts) {
534 		rc = -ENOMEM;
535 		goto out_free;
536 	}
537 
538 	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
539 	if (!opts->mnt_opts_flags) {
540 		rc = -ENOMEM;
541 		goto out_free;
542 	}
543 
544 	i = 0;
545 	if (sbsec->flags & FSCONTEXT_MNT) {
546 		rc = security_sid_to_context(sbsec->sid, &context, &len);
547 		if (rc)
548 			goto out_free;
549 		opts->mnt_opts[i] = context;
550 		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
551 	}
552 	if (sbsec->flags & CONTEXT_MNT) {
553 		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
554 		if (rc)
555 			goto out_free;
556 		opts->mnt_opts[i] = context;
557 		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
558 	}
559 	if (sbsec->flags & DEFCONTEXT_MNT) {
560 		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
561 		if (rc)
562 			goto out_free;
563 		opts->mnt_opts[i] = context;
564 		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
565 	}
566 	if (sbsec->flags & ROOTCONTEXT_MNT) {
567 		struct inode *root = d_backing_inode(sbsec->sb->s_root);
568 		struct inode_security_struct *isec = root->i_security;
569 
570 		rc = security_sid_to_context(isec->sid, &context, &len);
571 		if (rc)
572 			goto out_free;
573 		opts->mnt_opts[i] = context;
574 		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
575 	}
576 	if (sbsec->flags & SBLABEL_MNT) {
577 		opts->mnt_opts[i] = NULL;
578 		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
579 	}
580 
581 	BUG_ON(i != opts->num_mnt_opts);
582 
583 	return 0;
584 
585 out_free:
586 	security_free_mnt_opts(opts);
587 	return rc;
588 }
589 
590 static int bad_option(struct superblock_security_struct *sbsec, char flag,
591 		      u32 old_sid, u32 new_sid)
592 {
593 	char mnt_flags = sbsec->flags & SE_MNTMASK;
594 
595 	/* check if the old mount command had the same options */
596 	if (sbsec->flags & SE_SBINITIALIZED)
597 		if (!(sbsec->flags & flag) ||
598 		    (old_sid != new_sid))
599 			return 1;
600 
601 	/* check if we were passed the same options twice,
602 	 * aka someone passed context=a,context=b
603 	 */
604 	if (!(sbsec->flags & SE_SBINITIALIZED))
605 		if (mnt_flags & flag)
606 			return 1;
607 	return 0;
608 }
609 
610 /*
611  * Allow filesystems with binary mount data to explicitly set mount point
612  * labeling information.
613  */
614 static int selinux_set_mnt_opts(struct super_block *sb,
615 				struct security_mnt_opts *opts,
616 				unsigned long kern_flags,
617 				unsigned long *set_kern_flags)
618 {
619 	const struct cred *cred = current_cred();
620 	int rc = 0, i;
621 	struct superblock_security_struct *sbsec = sb->s_security;
622 	const char *name = sb->s_type->name;
623 	struct inode *inode = d_backing_inode(sbsec->sb->s_root);
624 	struct inode_security_struct *root_isec = inode->i_security;
625 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
626 	u32 defcontext_sid = 0;
627 	char **mount_options = opts->mnt_opts;
628 	int *flags = opts->mnt_opts_flags;
629 	int num_opts = opts->num_mnt_opts;
630 
631 	mutex_lock(&sbsec->lock);
632 
633 	if (!ss_initialized) {
634 		if (!num_opts) {
635 			/* Defer initialization until selinux_complete_init,
636 			   after the initial policy is loaded and the security
637 			   server is ready to handle calls. */
638 			goto out;
639 		}
640 		rc = -EINVAL;
641 		printk(KERN_WARNING "SELinux: Unable to set superblock options "
642 			"before the security server is initialized\n");
643 		goto out;
644 	}
645 	if (kern_flags && !set_kern_flags) {
646 		/* Specifying internal flags without providing a place to
647 		 * place the results is not allowed */
648 		rc = -EINVAL;
649 		goto out;
650 	}
651 
652 	/*
653 	 * Binary mount data FS will come through this function twice.  Once
654 	 * from an explicit call and once from the generic calls from the vfs.
655 	 * Since the generic VFS calls will not contain any security mount data
656 	 * we need to skip the double mount verification.
657 	 *
658 	 * This does open a hole in which we will not notice if the first
659 	 * mount using this sb set explict options and a second mount using
660 	 * this sb does not set any security options.  (The first options
661 	 * will be used for both mounts)
662 	 */
663 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
664 	    && (num_opts == 0))
665 		goto out;
666 
667 	/*
668 	 * parse the mount options, check if they are valid sids.
669 	 * also check if someone is trying to mount the same sb more
670 	 * than once with different security options.
671 	 */
672 	for (i = 0; i < num_opts; i++) {
673 		u32 sid;
674 
675 		if (flags[i] == SBLABEL_MNT)
676 			continue;
677 		rc = security_context_to_sid(mount_options[i],
678 					     strlen(mount_options[i]), &sid, GFP_KERNEL);
679 		if (rc) {
680 			printk(KERN_WARNING "SELinux: security_context_to_sid"
681 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
682 			       mount_options[i], sb->s_id, name, rc);
683 			goto out;
684 		}
685 		switch (flags[i]) {
686 		case FSCONTEXT_MNT:
687 			fscontext_sid = sid;
688 
689 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
690 					fscontext_sid))
691 				goto out_double_mount;
692 
693 			sbsec->flags |= FSCONTEXT_MNT;
694 			break;
695 		case CONTEXT_MNT:
696 			context_sid = sid;
697 
698 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
699 					context_sid))
700 				goto out_double_mount;
701 
702 			sbsec->flags |= CONTEXT_MNT;
703 			break;
704 		case ROOTCONTEXT_MNT:
705 			rootcontext_sid = sid;
706 
707 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
708 					rootcontext_sid))
709 				goto out_double_mount;
710 
711 			sbsec->flags |= ROOTCONTEXT_MNT;
712 
713 			break;
714 		case DEFCONTEXT_MNT:
715 			defcontext_sid = sid;
716 
717 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
718 					defcontext_sid))
719 				goto out_double_mount;
720 
721 			sbsec->flags |= DEFCONTEXT_MNT;
722 
723 			break;
724 		default:
725 			rc = -EINVAL;
726 			goto out;
727 		}
728 	}
729 
730 	if (sbsec->flags & SE_SBINITIALIZED) {
731 		/* previously mounted with options, but not on this attempt? */
732 		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
733 			goto out_double_mount;
734 		rc = 0;
735 		goto out;
736 	}
737 
738 	if (strcmp(sb->s_type->name, "proc") == 0)
739 		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
740 
741 	if (!strcmp(sb->s_type->name, "debugfs") ||
742 	    !strcmp(sb->s_type->name, "sysfs") ||
743 	    !strcmp(sb->s_type->name, "pstore"))
744 		sbsec->flags |= SE_SBGENFS;
745 
746 	if (!sbsec->behavior) {
747 		/*
748 		 * Determine the labeling behavior to use for this
749 		 * filesystem type.
750 		 */
751 		rc = security_fs_use(sb);
752 		if (rc) {
753 			printk(KERN_WARNING
754 				"%s: security_fs_use(%s) returned %d\n",
755 					__func__, sb->s_type->name, rc);
756 			goto out;
757 		}
758 	}
759 	/* sets the context of the superblock for the fs being mounted. */
760 	if (fscontext_sid) {
761 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
762 		if (rc)
763 			goto out;
764 
765 		sbsec->sid = fscontext_sid;
766 	}
767 
768 	/*
769 	 * Switch to using mount point labeling behavior.
770 	 * sets the label used on all file below the mountpoint, and will set
771 	 * the superblock context if not already set.
772 	 */
773 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
774 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
775 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
776 	}
777 
778 	if (context_sid) {
779 		if (!fscontext_sid) {
780 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
781 							  cred);
782 			if (rc)
783 				goto out;
784 			sbsec->sid = context_sid;
785 		} else {
786 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
787 							     cred);
788 			if (rc)
789 				goto out;
790 		}
791 		if (!rootcontext_sid)
792 			rootcontext_sid = context_sid;
793 
794 		sbsec->mntpoint_sid = context_sid;
795 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
796 	}
797 
798 	if (rootcontext_sid) {
799 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
800 						     cred);
801 		if (rc)
802 			goto out;
803 
804 		root_isec->sid = rootcontext_sid;
805 		root_isec->initialized = 1;
806 	}
807 
808 	if (defcontext_sid) {
809 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
810 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
811 			rc = -EINVAL;
812 			printk(KERN_WARNING "SELinux: defcontext option is "
813 			       "invalid for this filesystem type\n");
814 			goto out;
815 		}
816 
817 		if (defcontext_sid != sbsec->def_sid) {
818 			rc = may_context_mount_inode_relabel(defcontext_sid,
819 							     sbsec, cred);
820 			if (rc)
821 				goto out;
822 		}
823 
824 		sbsec->def_sid = defcontext_sid;
825 	}
826 
827 	rc = sb_finish_set_opts(sb);
828 out:
829 	mutex_unlock(&sbsec->lock);
830 	return rc;
831 out_double_mount:
832 	rc = -EINVAL;
833 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
834 	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
835 	goto out;
836 }
837 
838 static int selinux_cmp_sb_context(const struct super_block *oldsb,
839 				    const struct super_block *newsb)
840 {
841 	struct superblock_security_struct *old = oldsb->s_security;
842 	struct superblock_security_struct *new = newsb->s_security;
843 	char oldflags = old->flags & SE_MNTMASK;
844 	char newflags = new->flags & SE_MNTMASK;
845 
846 	if (oldflags != newflags)
847 		goto mismatch;
848 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
849 		goto mismatch;
850 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
851 		goto mismatch;
852 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
853 		goto mismatch;
854 	if (oldflags & ROOTCONTEXT_MNT) {
855 		struct inode_security_struct *oldroot = d_backing_inode(oldsb->s_root)->i_security;
856 		struct inode_security_struct *newroot = d_backing_inode(newsb->s_root)->i_security;
857 		if (oldroot->sid != newroot->sid)
858 			goto mismatch;
859 	}
860 	return 0;
861 mismatch:
862 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
863 			    "different security settings for (dev %s, "
864 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
865 	return -EBUSY;
866 }
867 
868 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
869 					struct super_block *newsb)
870 {
871 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
872 	struct superblock_security_struct *newsbsec = newsb->s_security;
873 
874 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
875 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
876 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
877 
878 	/*
879 	 * if the parent was able to be mounted it clearly had no special lsm
880 	 * mount options.  thus we can safely deal with this superblock later
881 	 */
882 	if (!ss_initialized)
883 		return 0;
884 
885 	/* how can we clone if the old one wasn't set up?? */
886 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
887 
888 	/* if fs is reusing a sb, make sure that the contexts match */
889 	if (newsbsec->flags & SE_SBINITIALIZED)
890 		return selinux_cmp_sb_context(oldsb, newsb);
891 
892 	mutex_lock(&newsbsec->lock);
893 
894 	newsbsec->flags = oldsbsec->flags;
895 
896 	newsbsec->sid = oldsbsec->sid;
897 	newsbsec->def_sid = oldsbsec->def_sid;
898 	newsbsec->behavior = oldsbsec->behavior;
899 
900 	if (set_context) {
901 		u32 sid = oldsbsec->mntpoint_sid;
902 
903 		if (!set_fscontext)
904 			newsbsec->sid = sid;
905 		if (!set_rootcontext) {
906 			struct inode *newinode = d_backing_inode(newsb->s_root);
907 			struct inode_security_struct *newisec = newinode->i_security;
908 			newisec->sid = sid;
909 		}
910 		newsbsec->mntpoint_sid = sid;
911 	}
912 	if (set_rootcontext) {
913 		const struct inode *oldinode = d_backing_inode(oldsb->s_root);
914 		const struct inode_security_struct *oldisec = oldinode->i_security;
915 		struct inode *newinode = d_backing_inode(newsb->s_root);
916 		struct inode_security_struct *newisec = newinode->i_security;
917 
918 		newisec->sid = oldisec->sid;
919 	}
920 
921 	sb_finish_set_opts(newsb);
922 	mutex_unlock(&newsbsec->lock);
923 	return 0;
924 }
925 
926 static int selinux_parse_opts_str(char *options,
927 				  struct security_mnt_opts *opts)
928 {
929 	char *p;
930 	char *context = NULL, *defcontext = NULL;
931 	char *fscontext = NULL, *rootcontext = NULL;
932 	int rc, num_mnt_opts = 0;
933 
934 	opts->num_mnt_opts = 0;
935 
936 	/* Standard string-based options. */
937 	while ((p = strsep(&options, "|")) != NULL) {
938 		int token;
939 		substring_t args[MAX_OPT_ARGS];
940 
941 		if (!*p)
942 			continue;
943 
944 		token = match_token(p, tokens, args);
945 
946 		switch (token) {
947 		case Opt_context:
948 			if (context || defcontext) {
949 				rc = -EINVAL;
950 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
951 				goto out_err;
952 			}
953 			context = match_strdup(&args[0]);
954 			if (!context) {
955 				rc = -ENOMEM;
956 				goto out_err;
957 			}
958 			break;
959 
960 		case Opt_fscontext:
961 			if (fscontext) {
962 				rc = -EINVAL;
963 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
964 				goto out_err;
965 			}
966 			fscontext = match_strdup(&args[0]);
967 			if (!fscontext) {
968 				rc = -ENOMEM;
969 				goto out_err;
970 			}
971 			break;
972 
973 		case Opt_rootcontext:
974 			if (rootcontext) {
975 				rc = -EINVAL;
976 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
977 				goto out_err;
978 			}
979 			rootcontext = match_strdup(&args[0]);
980 			if (!rootcontext) {
981 				rc = -ENOMEM;
982 				goto out_err;
983 			}
984 			break;
985 
986 		case Opt_defcontext:
987 			if (context || defcontext) {
988 				rc = -EINVAL;
989 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
990 				goto out_err;
991 			}
992 			defcontext = match_strdup(&args[0]);
993 			if (!defcontext) {
994 				rc = -ENOMEM;
995 				goto out_err;
996 			}
997 			break;
998 		case Opt_labelsupport:
999 			break;
1000 		default:
1001 			rc = -EINVAL;
1002 			printk(KERN_WARNING "SELinux:  unknown mount option\n");
1003 			goto out_err;
1004 
1005 		}
1006 	}
1007 
1008 	rc = -ENOMEM;
1009 	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
1010 	if (!opts->mnt_opts)
1011 		goto out_err;
1012 
1013 	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1014 	if (!opts->mnt_opts_flags) {
1015 		kfree(opts->mnt_opts);
1016 		goto out_err;
1017 	}
1018 
1019 	if (fscontext) {
1020 		opts->mnt_opts[num_mnt_opts] = fscontext;
1021 		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1022 	}
1023 	if (context) {
1024 		opts->mnt_opts[num_mnt_opts] = context;
1025 		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1026 	}
1027 	if (rootcontext) {
1028 		opts->mnt_opts[num_mnt_opts] = rootcontext;
1029 		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1030 	}
1031 	if (defcontext) {
1032 		opts->mnt_opts[num_mnt_opts] = defcontext;
1033 		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1034 	}
1035 
1036 	opts->num_mnt_opts = num_mnt_opts;
1037 	return 0;
1038 
1039 out_err:
1040 	kfree(context);
1041 	kfree(defcontext);
1042 	kfree(fscontext);
1043 	kfree(rootcontext);
1044 	return rc;
1045 }
1046 /*
1047  * string mount options parsing and call set the sbsec
1048  */
1049 static int superblock_doinit(struct super_block *sb, void *data)
1050 {
1051 	int rc = 0;
1052 	char *options = data;
1053 	struct security_mnt_opts opts;
1054 
1055 	security_init_mnt_opts(&opts);
1056 
1057 	if (!data)
1058 		goto out;
1059 
1060 	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1061 
1062 	rc = selinux_parse_opts_str(options, &opts);
1063 	if (rc)
1064 		goto out_err;
1065 
1066 out:
1067 	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1068 
1069 out_err:
1070 	security_free_mnt_opts(&opts);
1071 	return rc;
1072 }
1073 
1074 static void selinux_write_opts(struct seq_file *m,
1075 			       struct security_mnt_opts *opts)
1076 {
1077 	int i;
1078 	char *prefix;
1079 
1080 	for (i = 0; i < opts->num_mnt_opts; i++) {
1081 		char *has_comma;
1082 
1083 		if (opts->mnt_opts[i])
1084 			has_comma = strchr(opts->mnt_opts[i], ',');
1085 		else
1086 			has_comma = NULL;
1087 
1088 		switch (opts->mnt_opts_flags[i]) {
1089 		case CONTEXT_MNT:
1090 			prefix = CONTEXT_STR;
1091 			break;
1092 		case FSCONTEXT_MNT:
1093 			prefix = FSCONTEXT_STR;
1094 			break;
1095 		case ROOTCONTEXT_MNT:
1096 			prefix = ROOTCONTEXT_STR;
1097 			break;
1098 		case DEFCONTEXT_MNT:
1099 			prefix = DEFCONTEXT_STR;
1100 			break;
1101 		case SBLABEL_MNT:
1102 			seq_putc(m, ',');
1103 			seq_puts(m, LABELSUPP_STR);
1104 			continue;
1105 		default:
1106 			BUG();
1107 			return;
1108 		};
1109 		/* we need a comma before each option */
1110 		seq_putc(m, ',');
1111 		seq_puts(m, prefix);
1112 		if (has_comma)
1113 			seq_putc(m, '\"');
1114 		seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1115 		if (has_comma)
1116 			seq_putc(m, '\"');
1117 	}
1118 }
1119 
1120 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1121 {
1122 	struct security_mnt_opts opts;
1123 	int rc;
1124 
1125 	rc = selinux_get_mnt_opts(sb, &opts);
1126 	if (rc) {
1127 		/* before policy load we may get EINVAL, don't show anything */
1128 		if (rc == -EINVAL)
1129 			rc = 0;
1130 		return rc;
1131 	}
1132 
1133 	selinux_write_opts(m, &opts);
1134 
1135 	security_free_mnt_opts(&opts);
1136 
1137 	return rc;
1138 }
1139 
1140 static inline u16 inode_mode_to_security_class(umode_t mode)
1141 {
1142 	switch (mode & S_IFMT) {
1143 	case S_IFSOCK:
1144 		return SECCLASS_SOCK_FILE;
1145 	case S_IFLNK:
1146 		return SECCLASS_LNK_FILE;
1147 	case S_IFREG:
1148 		return SECCLASS_FILE;
1149 	case S_IFBLK:
1150 		return SECCLASS_BLK_FILE;
1151 	case S_IFDIR:
1152 		return SECCLASS_DIR;
1153 	case S_IFCHR:
1154 		return SECCLASS_CHR_FILE;
1155 	case S_IFIFO:
1156 		return SECCLASS_FIFO_FILE;
1157 
1158 	}
1159 
1160 	return SECCLASS_FILE;
1161 }
1162 
1163 static inline int default_protocol_stream(int protocol)
1164 {
1165 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1166 }
1167 
1168 static inline int default_protocol_dgram(int protocol)
1169 {
1170 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1171 }
1172 
1173 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1174 {
1175 	switch (family) {
1176 	case PF_UNIX:
1177 		switch (type) {
1178 		case SOCK_STREAM:
1179 		case SOCK_SEQPACKET:
1180 			return SECCLASS_UNIX_STREAM_SOCKET;
1181 		case SOCK_DGRAM:
1182 			return SECCLASS_UNIX_DGRAM_SOCKET;
1183 		}
1184 		break;
1185 	case PF_INET:
1186 	case PF_INET6:
1187 		switch (type) {
1188 		case SOCK_STREAM:
1189 			if (default_protocol_stream(protocol))
1190 				return SECCLASS_TCP_SOCKET;
1191 			else
1192 				return SECCLASS_RAWIP_SOCKET;
1193 		case SOCK_DGRAM:
1194 			if (default_protocol_dgram(protocol))
1195 				return SECCLASS_UDP_SOCKET;
1196 			else
1197 				return SECCLASS_RAWIP_SOCKET;
1198 		case SOCK_DCCP:
1199 			return SECCLASS_DCCP_SOCKET;
1200 		default:
1201 			return SECCLASS_RAWIP_SOCKET;
1202 		}
1203 		break;
1204 	case PF_NETLINK:
1205 		switch (protocol) {
1206 		case NETLINK_ROUTE:
1207 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1208 		case NETLINK_SOCK_DIAG:
1209 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1210 		case NETLINK_NFLOG:
1211 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1212 		case NETLINK_XFRM:
1213 			return SECCLASS_NETLINK_XFRM_SOCKET;
1214 		case NETLINK_SELINUX:
1215 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1216 		case NETLINK_ISCSI:
1217 			return SECCLASS_NETLINK_ISCSI_SOCKET;
1218 		case NETLINK_AUDIT:
1219 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1220 		case NETLINK_FIB_LOOKUP:
1221 			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1222 		case NETLINK_CONNECTOR:
1223 			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1224 		case NETLINK_NETFILTER:
1225 			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1226 		case NETLINK_DNRTMSG:
1227 			return SECCLASS_NETLINK_DNRT_SOCKET;
1228 		case NETLINK_KOBJECT_UEVENT:
1229 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1230 		case NETLINK_GENERIC:
1231 			return SECCLASS_NETLINK_GENERIC_SOCKET;
1232 		case NETLINK_SCSITRANSPORT:
1233 			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1234 		case NETLINK_RDMA:
1235 			return SECCLASS_NETLINK_RDMA_SOCKET;
1236 		case NETLINK_CRYPTO:
1237 			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1238 		default:
1239 			return SECCLASS_NETLINK_SOCKET;
1240 		}
1241 	case PF_PACKET:
1242 		return SECCLASS_PACKET_SOCKET;
1243 	case PF_KEY:
1244 		return SECCLASS_KEY_SOCKET;
1245 	case PF_APPLETALK:
1246 		return SECCLASS_APPLETALK_SOCKET;
1247 	}
1248 
1249 	return SECCLASS_SOCKET;
1250 }
1251 
1252 static int selinux_genfs_get_sid(struct dentry *dentry,
1253 				 u16 tclass,
1254 				 u16 flags,
1255 				 u32 *sid)
1256 {
1257 	int rc;
1258 	struct super_block *sb = dentry->d_inode->i_sb;
1259 	char *buffer, *path;
1260 
1261 	buffer = (char *)__get_free_page(GFP_KERNEL);
1262 	if (!buffer)
1263 		return -ENOMEM;
1264 
1265 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1266 	if (IS_ERR(path))
1267 		rc = PTR_ERR(path);
1268 	else {
1269 		if (flags & SE_SBPROC) {
1270 			/* each process gets a /proc/PID/ entry. Strip off the
1271 			 * PID part to get a valid selinux labeling.
1272 			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1273 			while (path[1] >= '0' && path[1] <= '9') {
1274 				path[1] = '/';
1275 				path++;
1276 			}
1277 		}
1278 		rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
1279 	}
1280 	free_page((unsigned long)buffer);
1281 	return rc;
1282 }
1283 
1284 /* The inode's security attributes must be initialized before first use. */
1285 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1286 {
1287 	struct superblock_security_struct *sbsec = NULL;
1288 	struct inode_security_struct *isec = inode->i_security;
1289 	u32 sid;
1290 	struct dentry *dentry;
1291 #define INITCONTEXTLEN 255
1292 	char *context = NULL;
1293 	unsigned len = 0;
1294 	int rc = 0;
1295 
1296 	if (isec->initialized)
1297 		goto out;
1298 
1299 	mutex_lock(&isec->lock);
1300 	if (isec->initialized)
1301 		goto out_unlock;
1302 
1303 	sbsec = inode->i_sb->s_security;
1304 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1305 		/* Defer initialization until selinux_complete_init,
1306 		   after the initial policy is loaded and the security
1307 		   server is ready to handle calls. */
1308 		spin_lock(&sbsec->isec_lock);
1309 		if (list_empty(&isec->list))
1310 			list_add(&isec->list, &sbsec->isec_head);
1311 		spin_unlock(&sbsec->isec_lock);
1312 		goto out_unlock;
1313 	}
1314 
1315 	switch (sbsec->behavior) {
1316 	case SECURITY_FS_USE_NATIVE:
1317 		break;
1318 	case SECURITY_FS_USE_XATTR:
1319 		if (!inode->i_op->getxattr) {
1320 			isec->sid = sbsec->def_sid;
1321 			break;
1322 		}
1323 
1324 		/* Need a dentry, since the xattr API requires one.
1325 		   Life would be simpler if we could just pass the inode. */
1326 		if (opt_dentry) {
1327 			/* Called from d_instantiate or d_splice_alias. */
1328 			dentry = dget(opt_dentry);
1329 		} else {
1330 			/* Called from selinux_complete_init, try to find a dentry. */
1331 			dentry = d_find_alias(inode);
1332 		}
1333 		if (!dentry) {
1334 			/*
1335 			 * this is can be hit on boot when a file is accessed
1336 			 * before the policy is loaded.  When we load policy we
1337 			 * may find inodes that have no dentry on the
1338 			 * sbsec->isec_head list.  No reason to complain as these
1339 			 * will get fixed up the next time we go through
1340 			 * inode_doinit with a dentry, before these inodes could
1341 			 * be used again by userspace.
1342 			 */
1343 			goto out_unlock;
1344 		}
1345 
1346 		len = INITCONTEXTLEN;
1347 		context = kmalloc(len+1, GFP_NOFS);
1348 		if (!context) {
1349 			rc = -ENOMEM;
1350 			dput(dentry);
1351 			goto out_unlock;
1352 		}
1353 		context[len] = '\0';
1354 		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1355 					   context, len);
1356 		if (rc == -ERANGE) {
1357 			kfree(context);
1358 
1359 			/* Need a larger buffer.  Query for the right size. */
1360 			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1361 						   NULL, 0);
1362 			if (rc < 0) {
1363 				dput(dentry);
1364 				goto out_unlock;
1365 			}
1366 			len = rc;
1367 			context = kmalloc(len+1, GFP_NOFS);
1368 			if (!context) {
1369 				rc = -ENOMEM;
1370 				dput(dentry);
1371 				goto out_unlock;
1372 			}
1373 			context[len] = '\0';
1374 			rc = inode->i_op->getxattr(dentry,
1375 						   XATTR_NAME_SELINUX,
1376 						   context, len);
1377 		}
1378 		dput(dentry);
1379 		if (rc < 0) {
1380 			if (rc != -ENODATA) {
1381 				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1382 				       "%d for dev=%s ino=%ld\n", __func__,
1383 				       -rc, inode->i_sb->s_id, inode->i_ino);
1384 				kfree(context);
1385 				goto out_unlock;
1386 			}
1387 			/* Map ENODATA to the default file SID */
1388 			sid = sbsec->def_sid;
1389 			rc = 0;
1390 		} else {
1391 			rc = security_context_to_sid_default(context, rc, &sid,
1392 							     sbsec->def_sid,
1393 							     GFP_NOFS);
1394 			if (rc) {
1395 				char *dev = inode->i_sb->s_id;
1396 				unsigned long ino = inode->i_ino;
1397 
1398 				if (rc == -EINVAL) {
1399 					if (printk_ratelimit())
1400 						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1401 							"context=%s.  This indicates you may need to relabel the inode or the "
1402 							"filesystem in question.\n", ino, dev, context);
1403 				} else {
1404 					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1405 					       "returned %d for dev=%s ino=%ld\n",
1406 					       __func__, context, -rc, dev, ino);
1407 				}
1408 				kfree(context);
1409 				/* Leave with the unlabeled SID */
1410 				rc = 0;
1411 				break;
1412 			}
1413 		}
1414 		kfree(context);
1415 		isec->sid = sid;
1416 		break;
1417 	case SECURITY_FS_USE_TASK:
1418 		isec->sid = isec->task_sid;
1419 		break;
1420 	case SECURITY_FS_USE_TRANS:
1421 		/* Default to the fs SID. */
1422 		isec->sid = sbsec->sid;
1423 
1424 		/* Try to obtain a transition SID. */
1425 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1426 		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1427 					     isec->sclass, NULL, &sid);
1428 		if (rc)
1429 			goto out_unlock;
1430 		isec->sid = sid;
1431 		break;
1432 	case SECURITY_FS_USE_MNTPOINT:
1433 		isec->sid = sbsec->mntpoint_sid;
1434 		break;
1435 	default:
1436 		/* Default to the fs superblock SID. */
1437 		isec->sid = sbsec->sid;
1438 
1439 		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1440 			/* We must have a dentry to determine the label on
1441 			 * procfs inodes */
1442 			if (opt_dentry)
1443 				/* Called from d_instantiate or
1444 				 * d_splice_alias. */
1445 				dentry = dget(opt_dentry);
1446 			else
1447 				/* Called from selinux_complete_init, try to
1448 				 * find a dentry. */
1449 				dentry = d_find_alias(inode);
1450 			/*
1451 			 * This can be hit on boot when a file is accessed
1452 			 * before the policy is loaded.  When we load policy we
1453 			 * may find inodes that have no dentry on the
1454 			 * sbsec->isec_head list.  No reason to complain as
1455 			 * these will get fixed up the next time we go through
1456 			 * inode_doinit() with a dentry, before these inodes
1457 			 * could be used again by userspace.
1458 			 */
1459 			if (!dentry)
1460 				goto out_unlock;
1461 			isec->sclass = inode_mode_to_security_class(inode->i_mode);
1462 			rc = selinux_genfs_get_sid(dentry, isec->sclass,
1463 						   sbsec->flags, &sid);
1464 			dput(dentry);
1465 			if (rc)
1466 				goto out_unlock;
1467 			isec->sid = sid;
1468 		}
1469 		break;
1470 	}
1471 
1472 	isec->initialized = 1;
1473 
1474 out_unlock:
1475 	mutex_unlock(&isec->lock);
1476 out:
1477 	if (isec->sclass == SECCLASS_FILE)
1478 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1479 	return rc;
1480 }
1481 
1482 /* Convert a Linux signal to an access vector. */
1483 static inline u32 signal_to_av(int sig)
1484 {
1485 	u32 perm = 0;
1486 
1487 	switch (sig) {
1488 	case SIGCHLD:
1489 		/* Commonly granted from child to parent. */
1490 		perm = PROCESS__SIGCHLD;
1491 		break;
1492 	case SIGKILL:
1493 		/* Cannot be caught or ignored */
1494 		perm = PROCESS__SIGKILL;
1495 		break;
1496 	case SIGSTOP:
1497 		/* Cannot be caught or ignored */
1498 		perm = PROCESS__SIGSTOP;
1499 		break;
1500 	default:
1501 		/* All other signals. */
1502 		perm = PROCESS__SIGNAL;
1503 		break;
1504 	}
1505 
1506 	return perm;
1507 }
1508 
1509 /*
1510  * Check permission between a pair of credentials
1511  * fork check, ptrace check, etc.
1512  */
1513 static int cred_has_perm(const struct cred *actor,
1514 			 const struct cred *target,
1515 			 u32 perms)
1516 {
1517 	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1518 
1519 	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1520 }
1521 
1522 /*
1523  * Check permission between a pair of tasks, e.g. signal checks,
1524  * fork check, ptrace check, etc.
1525  * tsk1 is the actor and tsk2 is the target
1526  * - this uses the default subjective creds of tsk1
1527  */
1528 static int task_has_perm(const struct task_struct *tsk1,
1529 			 const struct task_struct *tsk2,
1530 			 u32 perms)
1531 {
1532 	const struct task_security_struct *__tsec1, *__tsec2;
1533 	u32 sid1, sid2;
1534 
1535 	rcu_read_lock();
1536 	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1537 	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1538 	rcu_read_unlock();
1539 	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1540 }
1541 
1542 /*
1543  * Check permission between current and another task, e.g. signal checks,
1544  * fork check, ptrace check, etc.
1545  * current is the actor and tsk2 is the target
1546  * - this uses current's subjective creds
1547  */
1548 static int current_has_perm(const struct task_struct *tsk,
1549 			    u32 perms)
1550 {
1551 	u32 sid, tsid;
1552 
1553 	sid = current_sid();
1554 	tsid = task_sid(tsk);
1555 	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1556 }
1557 
1558 #if CAP_LAST_CAP > 63
1559 #error Fix SELinux to handle capabilities > 63.
1560 #endif
1561 
1562 /* Check whether a task is allowed to use a capability. */
1563 static int cred_has_capability(const struct cred *cred,
1564 			       int cap, int audit)
1565 {
1566 	struct common_audit_data ad;
1567 	struct av_decision avd;
1568 	u16 sclass;
1569 	u32 sid = cred_sid(cred);
1570 	u32 av = CAP_TO_MASK(cap);
1571 	int rc;
1572 
1573 	ad.type = LSM_AUDIT_DATA_CAP;
1574 	ad.u.cap = cap;
1575 
1576 	switch (CAP_TO_INDEX(cap)) {
1577 	case 0:
1578 		sclass = SECCLASS_CAPABILITY;
1579 		break;
1580 	case 1:
1581 		sclass = SECCLASS_CAPABILITY2;
1582 		break;
1583 	default:
1584 		printk(KERN_ERR
1585 		       "SELinux:  out of range capability %d\n", cap);
1586 		BUG();
1587 		return -EINVAL;
1588 	}
1589 
1590 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1591 	if (audit == SECURITY_CAP_AUDIT) {
1592 		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1593 		if (rc2)
1594 			return rc2;
1595 	}
1596 	return rc;
1597 }
1598 
1599 /* Check whether a task is allowed to use a system operation. */
1600 static int task_has_system(struct task_struct *tsk,
1601 			   u32 perms)
1602 {
1603 	u32 sid = task_sid(tsk);
1604 
1605 	return avc_has_perm(sid, SECINITSID_KERNEL,
1606 			    SECCLASS_SYSTEM, perms, NULL);
1607 }
1608 
1609 /* Check whether a task has a particular permission to an inode.
1610    The 'adp' parameter is optional and allows other audit
1611    data to be passed (e.g. the dentry). */
1612 static int inode_has_perm(const struct cred *cred,
1613 			  struct inode *inode,
1614 			  u32 perms,
1615 			  struct common_audit_data *adp)
1616 {
1617 	struct inode_security_struct *isec;
1618 	u32 sid;
1619 
1620 	validate_creds(cred);
1621 
1622 	if (unlikely(IS_PRIVATE(inode)))
1623 		return 0;
1624 
1625 	sid = cred_sid(cred);
1626 	isec = inode->i_security;
1627 
1628 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1629 }
1630 
1631 /* Same as inode_has_perm, but pass explicit audit data containing
1632    the dentry to help the auditing code to more easily generate the
1633    pathname if needed. */
1634 static inline int dentry_has_perm(const struct cred *cred,
1635 				  struct dentry *dentry,
1636 				  u32 av)
1637 {
1638 	struct inode *inode = d_backing_inode(dentry);
1639 	struct common_audit_data ad;
1640 
1641 	ad.type = LSM_AUDIT_DATA_DENTRY;
1642 	ad.u.dentry = dentry;
1643 	return inode_has_perm(cred, inode, av, &ad);
1644 }
1645 
1646 /* Same as inode_has_perm, but pass explicit audit data containing
1647    the path to help the auditing code to more easily generate the
1648    pathname if needed. */
1649 static inline int path_has_perm(const struct cred *cred,
1650 				const struct path *path,
1651 				u32 av)
1652 {
1653 	struct inode *inode = d_backing_inode(path->dentry);
1654 	struct common_audit_data ad;
1655 
1656 	ad.type = LSM_AUDIT_DATA_PATH;
1657 	ad.u.path = *path;
1658 	return inode_has_perm(cred, inode, av, &ad);
1659 }
1660 
1661 /* Same as path_has_perm, but uses the inode from the file struct. */
1662 static inline int file_path_has_perm(const struct cred *cred,
1663 				     struct file *file,
1664 				     u32 av)
1665 {
1666 	struct common_audit_data ad;
1667 
1668 	ad.type = LSM_AUDIT_DATA_PATH;
1669 	ad.u.path = file->f_path;
1670 	return inode_has_perm(cred, file_inode(file), av, &ad);
1671 }
1672 
1673 /* Check whether a task can use an open file descriptor to
1674    access an inode in a given way.  Check access to the
1675    descriptor itself, and then use dentry_has_perm to
1676    check a particular permission to the file.
1677    Access to the descriptor is implicitly granted if it
1678    has the same SID as the process.  If av is zero, then
1679    access to the file is not checked, e.g. for cases
1680    where only the descriptor is affected like seek. */
1681 static int file_has_perm(const struct cred *cred,
1682 			 struct file *file,
1683 			 u32 av)
1684 {
1685 	struct file_security_struct *fsec = file->f_security;
1686 	struct inode *inode = file_inode(file);
1687 	struct common_audit_data ad;
1688 	u32 sid = cred_sid(cred);
1689 	int rc;
1690 
1691 	ad.type = LSM_AUDIT_DATA_PATH;
1692 	ad.u.path = file->f_path;
1693 
1694 	if (sid != fsec->sid) {
1695 		rc = avc_has_perm(sid, fsec->sid,
1696 				  SECCLASS_FD,
1697 				  FD__USE,
1698 				  &ad);
1699 		if (rc)
1700 			goto out;
1701 	}
1702 
1703 	/* av is zero if only checking access to the descriptor. */
1704 	rc = 0;
1705 	if (av)
1706 		rc = inode_has_perm(cred, inode, av, &ad);
1707 
1708 out:
1709 	return rc;
1710 }
1711 
1712 /*
1713  * Determine the label for an inode that might be unioned.
1714  */
1715 static int selinux_determine_inode_label(const struct inode *dir,
1716 					 const struct qstr *name,
1717 					 u16 tclass,
1718 					 u32 *_new_isid)
1719 {
1720 	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1721 	const struct inode_security_struct *dsec = dir->i_security;
1722 	const struct task_security_struct *tsec = current_security();
1723 
1724 	if ((sbsec->flags & SE_SBINITIALIZED) &&
1725 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1726 		*_new_isid = sbsec->mntpoint_sid;
1727 	} else if ((sbsec->flags & SBLABEL_MNT) &&
1728 		   tsec->create_sid) {
1729 		*_new_isid = tsec->create_sid;
1730 	} else {
1731 		return security_transition_sid(tsec->sid, dsec->sid, tclass,
1732 					       name, _new_isid);
1733 	}
1734 
1735 	return 0;
1736 }
1737 
1738 /* Check whether a task can create a file. */
1739 static int may_create(struct inode *dir,
1740 		      struct dentry *dentry,
1741 		      u16 tclass)
1742 {
1743 	const struct task_security_struct *tsec = current_security();
1744 	struct inode_security_struct *dsec;
1745 	struct superblock_security_struct *sbsec;
1746 	u32 sid, newsid;
1747 	struct common_audit_data ad;
1748 	int rc;
1749 
1750 	dsec = dir->i_security;
1751 	sbsec = dir->i_sb->s_security;
1752 
1753 	sid = tsec->sid;
1754 
1755 	ad.type = LSM_AUDIT_DATA_DENTRY;
1756 	ad.u.dentry = dentry;
1757 
1758 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1759 			  DIR__ADD_NAME | DIR__SEARCH,
1760 			  &ad);
1761 	if (rc)
1762 		return rc;
1763 
1764 	rc = selinux_determine_inode_label(dir, &dentry->d_name, tclass,
1765 					   &newsid);
1766 	if (rc)
1767 		return rc;
1768 
1769 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1770 	if (rc)
1771 		return rc;
1772 
1773 	return avc_has_perm(newsid, sbsec->sid,
1774 			    SECCLASS_FILESYSTEM,
1775 			    FILESYSTEM__ASSOCIATE, &ad);
1776 }
1777 
1778 /* Check whether a task can create a key. */
1779 static int may_create_key(u32 ksid,
1780 			  struct task_struct *ctx)
1781 {
1782 	u32 sid = task_sid(ctx);
1783 
1784 	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1785 }
1786 
1787 #define MAY_LINK	0
1788 #define MAY_UNLINK	1
1789 #define MAY_RMDIR	2
1790 
1791 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1792 static int may_link(struct inode *dir,
1793 		    struct dentry *dentry,
1794 		    int kind)
1795 
1796 {
1797 	struct inode_security_struct *dsec, *isec;
1798 	struct common_audit_data ad;
1799 	u32 sid = current_sid();
1800 	u32 av;
1801 	int rc;
1802 
1803 	dsec = dir->i_security;
1804 	isec = d_backing_inode(dentry)->i_security;
1805 
1806 	ad.type = LSM_AUDIT_DATA_DENTRY;
1807 	ad.u.dentry = dentry;
1808 
1809 	av = DIR__SEARCH;
1810 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1811 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1812 	if (rc)
1813 		return rc;
1814 
1815 	switch (kind) {
1816 	case MAY_LINK:
1817 		av = FILE__LINK;
1818 		break;
1819 	case MAY_UNLINK:
1820 		av = FILE__UNLINK;
1821 		break;
1822 	case MAY_RMDIR:
1823 		av = DIR__RMDIR;
1824 		break;
1825 	default:
1826 		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1827 			__func__, kind);
1828 		return 0;
1829 	}
1830 
1831 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1832 	return rc;
1833 }
1834 
1835 static inline int may_rename(struct inode *old_dir,
1836 			     struct dentry *old_dentry,
1837 			     struct inode *new_dir,
1838 			     struct dentry *new_dentry)
1839 {
1840 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1841 	struct common_audit_data ad;
1842 	u32 sid = current_sid();
1843 	u32 av;
1844 	int old_is_dir, new_is_dir;
1845 	int rc;
1846 
1847 	old_dsec = old_dir->i_security;
1848 	old_isec = d_backing_inode(old_dentry)->i_security;
1849 	old_is_dir = d_is_dir(old_dentry);
1850 	new_dsec = new_dir->i_security;
1851 
1852 	ad.type = LSM_AUDIT_DATA_DENTRY;
1853 
1854 	ad.u.dentry = old_dentry;
1855 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1856 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1857 	if (rc)
1858 		return rc;
1859 	rc = avc_has_perm(sid, old_isec->sid,
1860 			  old_isec->sclass, FILE__RENAME, &ad);
1861 	if (rc)
1862 		return rc;
1863 	if (old_is_dir && new_dir != old_dir) {
1864 		rc = avc_has_perm(sid, old_isec->sid,
1865 				  old_isec->sclass, DIR__REPARENT, &ad);
1866 		if (rc)
1867 			return rc;
1868 	}
1869 
1870 	ad.u.dentry = new_dentry;
1871 	av = DIR__ADD_NAME | DIR__SEARCH;
1872 	if (d_is_positive(new_dentry))
1873 		av |= DIR__REMOVE_NAME;
1874 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1875 	if (rc)
1876 		return rc;
1877 	if (d_is_positive(new_dentry)) {
1878 		new_isec = d_backing_inode(new_dentry)->i_security;
1879 		new_is_dir = d_is_dir(new_dentry);
1880 		rc = avc_has_perm(sid, new_isec->sid,
1881 				  new_isec->sclass,
1882 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1883 		if (rc)
1884 			return rc;
1885 	}
1886 
1887 	return 0;
1888 }
1889 
1890 /* Check whether a task can perform a filesystem operation. */
1891 static int superblock_has_perm(const struct cred *cred,
1892 			       struct super_block *sb,
1893 			       u32 perms,
1894 			       struct common_audit_data *ad)
1895 {
1896 	struct superblock_security_struct *sbsec;
1897 	u32 sid = cred_sid(cred);
1898 
1899 	sbsec = sb->s_security;
1900 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1901 }
1902 
1903 /* Convert a Linux mode and permission mask to an access vector. */
1904 static inline u32 file_mask_to_av(int mode, int mask)
1905 {
1906 	u32 av = 0;
1907 
1908 	if (!S_ISDIR(mode)) {
1909 		if (mask & MAY_EXEC)
1910 			av |= FILE__EXECUTE;
1911 		if (mask & MAY_READ)
1912 			av |= FILE__READ;
1913 
1914 		if (mask & MAY_APPEND)
1915 			av |= FILE__APPEND;
1916 		else if (mask & MAY_WRITE)
1917 			av |= FILE__WRITE;
1918 
1919 	} else {
1920 		if (mask & MAY_EXEC)
1921 			av |= DIR__SEARCH;
1922 		if (mask & MAY_WRITE)
1923 			av |= DIR__WRITE;
1924 		if (mask & MAY_READ)
1925 			av |= DIR__READ;
1926 	}
1927 
1928 	return av;
1929 }
1930 
1931 /* Convert a Linux file to an access vector. */
1932 static inline u32 file_to_av(struct file *file)
1933 {
1934 	u32 av = 0;
1935 
1936 	if (file->f_mode & FMODE_READ)
1937 		av |= FILE__READ;
1938 	if (file->f_mode & FMODE_WRITE) {
1939 		if (file->f_flags & O_APPEND)
1940 			av |= FILE__APPEND;
1941 		else
1942 			av |= FILE__WRITE;
1943 	}
1944 	if (!av) {
1945 		/*
1946 		 * Special file opened with flags 3 for ioctl-only use.
1947 		 */
1948 		av = FILE__IOCTL;
1949 	}
1950 
1951 	return av;
1952 }
1953 
1954 /*
1955  * Convert a file to an access vector and include the correct open
1956  * open permission.
1957  */
1958 static inline u32 open_file_to_av(struct file *file)
1959 {
1960 	u32 av = file_to_av(file);
1961 
1962 	if (selinux_policycap_openperm)
1963 		av |= FILE__OPEN;
1964 
1965 	return av;
1966 }
1967 
1968 /* Hook functions begin here. */
1969 
1970 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
1971 {
1972 	u32 mysid = current_sid();
1973 	u32 mgrsid = task_sid(mgr);
1974 
1975 	return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
1976 			    BINDER__SET_CONTEXT_MGR, NULL);
1977 }
1978 
1979 static int selinux_binder_transaction(struct task_struct *from,
1980 				      struct task_struct *to)
1981 {
1982 	u32 mysid = current_sid();
1983 	u32 fromsid = task_sid(from);
1984 	u32 tosid = task_sid(to);
1985 	int rc;
1986 
1987 	if (mysid != fromsid) {
1988 		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
1989 				  BINDER__IMPERSONATE, NULL);
1990 		if (rc)
1991 			return rc;
1992 	}
1993 
1994 	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
1995 			    NULL);
1996 }
1997 
1998 static int selinux_binder_transfer_binder(struct task_struct *from,
1999 					  struct task_struct *to)
2000 {
2001 	u32 fromsid = task_sid(from);
2002 	u32 tosid = task_sid(to);
2003 
2004 	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2005 			    NULL);
2006 }
2007 
2008 static int selinux_binder_transfer_file(struct task_struct *from,
2009 					struct task_struct *to,
2010 					struct file *file)
2011 {
2012 	u32 sid = task_sid(to);
2013 	struct file_security_struct *fsec = file->f_security;
2014 	struct inode *inode = d_backing_inode(file->f_path.dentry);
2015 	struct inode_security_struct *isec = inode->i_security;
2016 	struct common_audit_data ad;
2017 	int rc;
2018 
2019 	ad.type = LSM_AUDIT_DATA_PATH;
2020 	ad.u.path = file->f_path;
2021 
2022 	if (sid != fsec->sid) {
2023 		rc = avc_has_perm(sid, fsec->sid,
2024 				  SECCLASS_FD,
2025 				  FD__USE,
2026 				  &ad);
2027 		if (rc)
2028 			return rc;
2029 	}
2030 
2031 	if (unlikely(IS_PRIVATE(inode)))
2032 		return 0;
2033 
2034 	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2035 			    &ad);
2036 }
2037 
2038 static int selinux_ptrace_access_check(struct task_struct *child,
2039 				     unsigned int mode)
2040 {
2041 	if (mode & PTRACE_MODE_READ) {
2042 		u32 sid = current_sid();
2043 		u32 csid = task_sid(child);
2044 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2045 	}
2046 
2047 	return current_has_perm(child, PROCESS__PTRACE);
2048 }
2049 
2050 static int selinux_ptrace_traceme(struct task_struct *parent)
2051 {
2052 	return task_has_perm(parent, current, PROCESS__PTRACE);
2053 }
2054 
2055 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2056 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2057 {
2058 	return current_has_perm(target, PROCESS__GETCAP);
2059 }
2060 
2061 static int selinux_capset(struct cred *new, const struct cred *old,
2062 			  const kernel_cap_t *effective,
2063 			  const kernel_cap_t *inheritable,
2064 			  const kernel_cap_t *permitted)
2065 {
2066 	return cred_has_perm(old, new, PROCESS__SETCAP);
2067 }
2068 
2069 /*
2070  * (This comment used to live with the selinux_task_setuid hook,
2071  * which was removed).
2072  *
2073  * Since setuid only affects the current process, and since the SELinux
2074  * controls are not based on the Linux identity attributes, SELinux does not
2075  * need to control this operation.  However, SELinux does control the use of
2076  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2077  */
2078 
2079 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2080 			   int cap, int audit)
2081 {
2082 	return cred_has_capability(cred, cap, audit);
2083 }
2084 
2085 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2086 {
2087 	const struct cred *cred = current_cred();
2088 	int rc = 0;
2089 
2090 	if (!sb)
2091 		return 0;
2092 
2093 	switch (cmds) {
2094 	case Q_SYNC:
2095 	case Q_QUOTAON:
2096 	case Q_QUOTAOFF:
2097 	case Q_SETINFO:
2098 	case Q_SETQUOTA:
2099 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2100 		break;
2101 	case Q_GETFMT:
2102 	case Q_GETINFO:
2103 	case Q_GETQUOTA:
2104 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2105 		break;
2106 	default:
2107 		rc = 0;  /* let the kernel handle invalid cmds */
2108 		break;
2109 	}
2110 	return rc;
2111 }
2112 
2113 static int selinux_quota_on(struct dentry *dentry)
2114 {
2115 	const struct cred *cred = current_cred();
2116 
2117 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2118 }
2119 
2120 static int selinux_syslog(int type)
2121 {
2122 	int rc;
2123 
2124 	switch (type) {
2125 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2126 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2127 		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2128 		break;
2129 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2130 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2131 	/* Set level of messages printed to console */
2132 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2133 		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2134 		break;
2135 	case SYSLOG_ACTION_CLOSE:	/* Close log */
2136 	case SYSLOG_ACTION_OPEN:	/* Open log */
2137 	case SYSLOG_ACTION_READ:	/* Read from log */
2138 	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
2139 	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
2140 	default:
2141 		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2142 		break;
2143 	}
2144 	return rc;
2145 }
2146 
2147 /*
2148  * Check that a process has enough memory to allocate a new virtual
2149  * mapping. 0 means there is enough memory for the allocation to
2150  * succeed and -ENOMEM implies there is not.
2151  *
2152  * Do not audit the selinux permission check, as this is applied to all
2153  * processes that allocate mappings.
2154  */
2155 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2156 {
2157 	int rc, cap_sys_admin = 0;
2158 
2159 	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2160 					SECURITY_CAP_NOAUDIT);
2161 	if (rc == 0)
2162 		cap_sys_admin = 1;
2163 
2164 	return cap_sys_admin;
2165 }
2166 
2167 /* binprm security operations */
2168 
2169 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2170 			    const struct task_security_struct *old_tsec,
2171 			    const struct task_security_struct *new_tsec)
2172 {
2173 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2174 	int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID);
2175 	int rc;
2176 
2177 	if (!nnp && !nosuid)
2178 		return 0; /* neither NNP nor nosuid */
2179 
2180 	if (new_tsec->sid == old_tsec->sid)
2181 		return 0; /* No change in credentials */
2182 
2183 	/*
2184 	 * The only transitions we permit under NNP or nosuid
2185 	 * are transitions to bounded SIDs, i.e. SIDs that are
2186 	 * guaranteed to only be allowed a subset of the permissions
2187 	 * of the current SID.
2188 	 */
2189 	rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2190 	if (rc) {
2191 		/*
2192 		 * On failure, preserve the errno values for NNP vs nosuid.
2193 		 * NNP:  Operation not permitted for caller.
2194 		 * nosuid:  Permission denied to file.
2195 		 */
2196 		if (nnp)
2197 			return -EPERM;
2198 		else
2199 			return -EACCES;
2200 	}
2201 	return 0;
2202 }
2203 
2204 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2205 {
2206 	const struct task_security_struct *old_tsec;
2207 	struct task_security_struct *new_tsec;
2208 	struct inode_security_struct *isec;
2209 	struct common_audit_data ad;
2210 	struct inode *inode = file_inode(bprm->file);
2211 	int rc;
2212 
2213 	/* SELinux context only depends on initial program or script and not
2214 	 * the script interpreter */
2215 	if (bprm->cred_prepared)
2216 		return 0;
2217 
2218 	old_tsec = current_security();
2219 	new_tsec = bprm->cred->security;
2220 	isec = inode->i_security;
2221 
2222 	/* Default to the current task SID. */
2223 	new_tsec->sid = old_tsec->sid;
2224 	new_tsec->osid = old_tsec->sid;
2225 
2226 	/* Reset fs, key, and sock SIDs on execve. */
2227 	new_tsec->create_sid = 0;
2228 	new_tsec->keycreate_sid = 0;
2229 	new_tsec->sockcreate_sid = 0;
2230 
2231 	if (old_tsec->exec_sid) {
2232 		new_tsec->sid = old_tsec->exec_sid;
2233 		/* Reset exec SID on execve. */
2234 		new_tsec->exec_sid = 0;
2235 
2236 		/* Fail on NNP or nosuid if not an allowed transition. */
2237 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2238 		if (rc)
2239 			return rc;
2240 	} else {
2241 		/* Check for a default transition on this program. */
2242 		rc = security_transition_sid(old_tsec->sid, isec->sid,
2243 					     SECCLASS_PROCESS, NULL,
2244 					     &new_tsec->sid);
2245 		if (rc)
2246 			return rc;
2247 
2248 		/*
2249 		 * Fallback to old SID on NNP or nosuid if not an allowed
2250 		 * transition.
2251 		 */
2252 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2253 		if (rc)
2254 			new_tsec->sid = old_tsec->sid;
2255 	}
2256 
2257 	ad.type = LSM_AUDIT_DATA_PATH;
2258 	ad.u.path = bprm->file->f_path;
2259 
2260 	if (new_tsec->sid == old_tsec->sid) {
2261 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2262 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2263 		if (rc)
2264 			return rc;
2265 	} else {
2266 		/* Check permissions for the transition. */
2267 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2268 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2269 		if (rc)
2270 			return rc;
2271 
2272 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2273 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2274 		if (rc)
2275 			return rc;
2276 
2277 		/* Check for shared state */
2278 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2279 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2280 					  SECCLASS_PROCESS, PROCESS__SHARE,
2281 					  NULL);
2282 			if (rc)
2283 				return -EPERM;
2284 		}
2285 
2286 		/* Make sure that anyone attempting to ptrace over a task that
2287 		 * changes its SID has the appropriate permit */
2288 		if (bprm->unsafe &
2289 		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2290 			struct task_struct *tracer;
2291 			struct task_security_struct *sec;
2292 			u32 ptsid = 0;
2293 
2294 			rcu_read_lock();
2295 			tracer = ptrace_parent(current);
2296 			if (likely(tracer != NULL)) {
2297 				sec = __task_cred(tracer)->security;
2298 				ptsid = sec->sid;
2299 			}
2300 			rcu_read_unlock();
2301 
2302 			if (ptsid != 0) {
2303 				rc = avc_has_perm(ptsid, new_tsec->sid,
2304 						  SECCLASS_PROCESS,
2305 						  PROCESS__PTRACE, NULL);
2306 				if (rc)
2307 					return -EPERM;
2308 			}
2309 		}
2310 
2311 		/* Clear any possibly unsafe personality bits on exec: */
2312 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2313 	}
2314 
2315 	return 0;
2316 }
2317 
2318 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2319 {
2320 	const struct task_security_struct *tsec = current_security();
2321 	u32 sid, osid;
2322 	int atsecure = 0;
2323 
2324 	sid = tsec->sid;
2325 	osid = tsec->osid;
2326 
2327 	if (osid != sid) {
2328 		/* Enable secure mode for SIDs transitions unless
2329 		   the noatsecure permission is granted between
2330 		   the two SIDs, i.e. ahp returns 0. */
2331 		atsecure = avc_has_perm(osid, sid,
2332 					SECCLASS_PROCESS,
2333 					PROCESS__NOATSECURE, NULL);
2334 	}
2335 
2336 	return !!atsecure;
2337 }
2338 
2339 static int match_file(const void *p, struct file *file, unsigned fd)
2340 {
2341 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2342 }
2343 
2344 /* Derived from fs/exec.c:flush_old_files. */
2345 static inline void flush_unauthorized_files(const struct cred *cred,
2346 					    struct files_struct *files)
2347 {
2348 	struct file *file, *devnull = NULL;
2349 	struct tty_struct *tty;
2350 	int drop_tty = 0;
2351 	unsigned n;
2352 
2353 	tty = get_current_tty();
2354 	if (tty) {
2355 		spin_lock(&tty_files_lock);
2356 		if (!list_empty(&tty->tty_files)) {
2357 			struct tty_file_private *file_priv;
2358 
2359 			/* Revalidate access to controlling tty.
2360 			   Use file_path_has_perm on the tty path directly
2361 			   rather than using file_has_perm, as this particular
2362 			   open file may belong to another process and we are
2363 			   only interested in the inode-based check here. */
2364 			file_priv = list_first_entry(&tty->tty_files,
2365 						struct tty_file_private, list);
2366 			file = file_priv->file;
2367 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2368 				drop_tty = 1;
2369 		}
2370 		spin_unlock(&tty_files_lock);
2371 		tty_kref_put(tty);
2372 	}
2373 	/* Reset controlling tty. */
2374 	if (drop_tty)
2375 		no_tty();
2376 
2377 	/* Revalidate access to inherited open files. */
2378 	n = iterate_fd(files, 0, match_file, cred);
2379 	if (!n) /* none found? */
2380 		return;
2381 
2382 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2383 	if (IS_ERR(devnull))
2384 		devnull = NULL;
2385 	/* replace all the matching ones with this */
2386 	do {
2387 		replace_fd(n - 1, devnull, 0);
2388 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2389 	if (devnull)
2390 		fput(devnull);
2391 }
2392 
2393 /*
2394  * Prepare a process for imminent new credential changes due to exec
2395  */
2396 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2397 {
2398 	struct task_security_struct *new_tsec;
2399 	struct rlimit *rlim, *initrlim;
2400 	int rc, i;
2401 
2402 	new_tsec = bprm->cred->security;
2403 	if (new_tsec->sid == new_tsec->osid)
2404 		return;
2405 
2406 	/* Close files for which the new task SID is not authorized. */
2407 	flush_unauthorized_files(bprm->cred, current->files);
2408 
2409 	/* Always clear parent death signal on SID transitions. */
2410 	current->pdeath_signal = 0;
2411 
2412 	/* Check whether the new SID can inherit resource limits from the old
2413 	 * SID.  If not, reset all soft limits to the lower of the current
2414 	 * task's hard limit and the init task's soft limit.
2415 	 *
2416 	 * Note that the setting of hard limits (even to lower them) can be
2417 	 * controlled by the setrlimit check.  The inclusion of the init task's
2418 	 * soft limit into the computation is to avoid resetting soft limits
2419 	 * higher than the default soft limit for cases where the default is
2420 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2421 	 */
2422 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2423 			  PROCESS__RLIMITINH, NULL);
2424 	if (rc) {
2425 		/* protect against do_prlimit() */
2426 		task_lock(current);
2427 		for (i = 0; i < RLIM_NLIMITS; i++) {
2428 			rlim = current->signal->rlim + i;
2429 			initrlim = init_task.signal->rlim + i;
2430 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2431 		}
2432 		task_unlock(current);
2433 		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2434 	}
2435 }
2436 
2437 /*
2438  * Clean up the process immediately after the installation of new credentials
2439  * due to exec
2440  */
2441 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2442 {
2443 	const struct task_security_struct *tsec = current_security();
2444 	struct itimerval itimer;
2445 	u32 osid, sid;
2446 	int rc, i;
2447 
2448 	osid = tsec->osid;
2449 	sid = tsec->sid;
2450 
2451 	if (sid == osid)
2452 		return;
2453 
2454 	/* Check whether the new SID can inherit signal state from the old SID.
2455 	 * If not, clear itimers to avoid subsequent signal generation and
2456 	 * flush and unblock signals.
2457 	 *
2458 	 * This must occur _after_ the task SID has been updated so that any
2459 	 * kill done after the flush will be checked against the new SID.
2460 	 */
2461 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2462 	if (rc) {
2463 		memset(&itimer, 0, sizeof itimer);
2464 		for (i = 0; i < 3; i++)
2465 			do_setitimer(i, &itimer, NULL);
2466 		spin_lock_irq(&current->sighand->siglock);
2467 		if (!fatal_signal_pending(current)) {
2468 			flush_sigqueue(&current->pending);
2469 			flush_sigqueue(&current->signal->shared_pending);
2470 			flush_signal_handlers(current, 1);
2471 			sigemptyset(&current->blocked);
2472 			recalc_sigpending();
2473 		}
2474 		spin_unlock_irq(&current->sighand->siglock);
2475 	}
2476 
2477 	/* Wake up the parent if it is waiting so that it can recheck
2478 	 * wait permission to the new task SID. */
2479 	read_lock(&tasklist_lock);
2480 	__wake_up_parent(current, current->real_parent);
2481 	read_unlock(&tasklist_lock);
2482 }
2483 
2484 /* superblock security operations */
2485 
2486 static int selinux_sb_alloc_security(struct super_block *sb)
2487 {
2488 	return superblock_alloc_security(sb);
2489 }
2490 
2491 static void selinux_sb_free_security(struct super_block *sb)
2492 {
2493 	superblock_free_security(sb);
2494 }
2495 
2496 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2497 {
2498 	if (plen > olen)
2499 		return 0;
2500 
2501 	return !memcmp(prefix, option, plen);
2502 }
2503 
2504 static inline int selinux_option(char *option, int len)
2505 {
2506 	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2507 		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2508 		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2509 		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2510 		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2511 }
2512 
2513 static inline void take_option(char **to, char *from, int *first, int len)
2514 {
2515 	if (!*first) {
2516 		**to = ',';
2517 		*to += 1;
2518 	} else
2519 		*first = 0;
2520 	memcpy(*to, from, len);
2521 	*to += len;
2522 }
2523 
2524 static inline void take_selinux_option(char **to, char *from, int *first,
2525 				       int len)
2526 {
2527 	int current_size = 0;
2528 
2529 	if (!*first) {
2530 		**to = '|';
2531 		*to += 1;
2532 	} else
2533 		*first = 0;
2534 
2535 	while (current_size < len) {
2536 		if (*from != '"') {
2537 			**to = *from;
2538 			*to += 1;
2539 		}
2540 		from += 1;
2541 		current_size += 1;
2542 	}
2543 }
2544 
2545 static int selinux_sb_copy_data(char *orig, char *copy)
2546 {
2547 	int fnosec, fsec, rc = 0;
2548 	char *in_save, *in_curr, *in_end;
2549 	char *sec_curr, *nosec_save, *nosec;
2550 	int open_quote = 0;
2551 
2552 	in_curr = orig;
2553 	sec_curr = copy;
2554 
2555 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2556 	if (!nosec) {
2557 		rc = -ENOMEM;
2558 		goto out;
2559 	}
2560 
2561 	nosec_save = nosec;
2562 	fnosec = fsec = 1;
2563 	in_save = in_end = orig;
2564 
2565 	do {
2566 		if (*in_end == '"')
2567 			open_quote = !open_quote;
2568 		if ((*in_end == ',' && open_quote == 0) ||
2569 				*in_end == '\0') {
2570 			int len = in_end - in_curr;
2571 
2572 			if (selinux_option(in_curr, len))
2573 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2574 			else
2575 				take_option(&nosec, in_curr, &fnosec, len);
2576 
2577 			in_curr = in_end + 1;
2578 		}
2579 	} while (*in_end++);
2580 
2581 	strcpy(in_save, nosec_save);
2582 	free_page((unsigned long)nosec_save);
2583 out:
2584 	return rc;
2585 }
2586 
2587 static int selinux_sb_remount(struct super_block *sb, void *data)
2588 {
2589 	int rc, i, *flags;
2590 	struct security_mnt_opts opts;
2591 	char *secdata, **mount_options;
2592 	struct superblock_security_struct *sbsec = sb->s_security;
2593 
2594 	if (!(sbsec->flags & SE_SBINITIALIZED))
2595 		return 0;
2596 
2597 	if (!data)
2598 		return 0;
2599 
2600 	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2601 		return 0;
2602 
2603 	security_init_mnt_opts(&opts);
2604 	secdata = alloc_secdata();
2605 	if (!secdata)
2606 		return -ENOMEM;
2607 	rc = selinux_sb_copy_data(data, secdata);
2608 	if (rc)
2609 		goto out_free_secdata;
2610 
2611 	rc = selinux_parse_opts_str(secdata, &opts);
2612 	if (rc)
2613 		goto out_free_secdata;
2614 
2615 	mount_options = opts.mnt_opts;
2616 	flags = opts.mnt_opts_flags;
2617 
2618 	for (i = 0; i < opts.num_mnt_opts; i++) {
2619 		u32 sid;
2620 		size_t len;
2621 
2622 		if (flags[i] == SBLABEL_MNT)
2623 			continue;
2624 		len = strlen(mount_options[i]);
2625 		rc = security_context_to_sid(mount_options[i], len, &sid,
2626 					     GFP_KERNEL);
2627 		if (rc) {
2628 			printk(KERN_WARNING "SELinux: security_context_to_sid"
2629 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2630 			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2631 			goto out_free_opts;
2632 		}
2633 		rc = -EINVAL;
2634 		switch (flags[i]) {
2635 		case FSCONTEXT_MNT:
2636 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2637 				goto out_bad_option;
2638 			break;
2639 		case CONTEXT_MNT:
2640 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2641 				goto out_bad_option;
2642 			break;
2643 		case ROOTCONTEXT_MNT: {
2644 			struct inode_security_struct *root_isec;
2645 			root_isec = d_backing_inode(sb->s_root)->i_security;
2646 
2647 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2648 				goto out_bad_option;
2649 			break;
2650 		}
2651 		case DEFCONTEXT_MNT:
2652 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2653 				goto out_bad_option;
2654 			break;
2655 		default:
2656 			goto out_free_opts;
2657 		}
2658 	}
2659 
2660 	rc = 0;
2661 out_free_opts:
2662 	security_free_mnt_opts(&opts);
2663 out_free_secdata:
2664 	free_secdata(secdata);
2665 	return rc;
2666 out_bad_option:
2667 	printk(KERN_WARNING "SELinux: unable to change security options "
2668 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2669 	       sb->s_type->name);
2670 	goto out_free_opts;
2671 }
2672 
2673 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2674 {
2675 	const struct cred *cred = current_cred();
2676 	struct common_audit_data ad;
2677 	int rc;
2678 
2679 	rc = superblock_doinit(sb, data);
2680 	if (rc)
2681 		return rc;
2682 
2683 	/* Allow all mounts performed by the kernel */
2684 	if (flags & MS_KERNMOUNT)
2685 		return 0;
2686 
2687 	ad.type = LSM_AUDIT_DATA_DENTRY;
2688 	ad.u.dentry = sb->s_root;
2689 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2690 }
2691 
2692 static int selinux_sb_statfs(struct dentry *dentry)
2693 {
2694 	const struct cred *cred = current_cred();
2695 	struct common_audit_data ad;
2696 
2697 	ad.type = LSM_AUDIT_DATA_DENTRY;
2698 	ad.u.dentry = dentry->d_sb->s_root;
2699 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2700 }
2701 
2702 static int selinux_mount(const char *dev_name,
2703 			 struct path *path,
2704 			 const char *type,
2705 			 unsigned long flags,
2706 			 void *data)
2707 {
2708 	const struct cred *cred = current_cred();
2709 
2710 	if (flags & MS_REMOUNT)
2711 		return superblock_has_perm(cred, path->dentry->d_sb,
2712 					   FILESYSTEM__REMOUNT, NULL);
2713 	else
2714 		return path_has_perm(cred, path, FILE__MOUNTON);
2715 }
2716 
2717 static int selinux_umount(struct vfsmount *mnt, int flags)
2718 {
2719 	const struct cred *cred = current_cred();
2720 
2721 	return superblock_has_perm(cred, mnt->mnt_sb,
2722 				   FILESYSTEM__UNMOUNT, NULL);
2723 }
2724 
2725 /* inode security operations */
2726 
2727 static int selinux_inode_alloc_security(struct inode *inode)
2728 {
2729 	return inode_alloc_security(inode);
2730 }
2731 
2732 static void selinux_inode_free_security(struct inode *inode)
2733 {
2734 	inode_free_security(inode);
2735 }
2736 
2737 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2738 					struct qstr *name, void **ctx,
2739 					u32 *ctxlen)
2740 {
2741 	u32 newsid;
2742 	int rc;
2743 
2744 	rc = selinux_determine_inode_label(d_inode(dentry->d_parent), name,
2745 					   inode_mode_to_security_class(mode),
2746 					   &newsid);
2747 	if (rc)
2748 		return rc;
2749 
2750 	return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2751 }
2752 
2753 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2754 				       const struct qstr *qstr,
2755 				       const char **name,
2756 				       void **value, size_t *len)
2757 {
2758 	const struct task_security_struct *tsec = current_security();
2759 	struct inode_security_struct *dsec;
2760 	struct superblock_security_struct *sbsec;
2761 	u32 sid, newsid, clen;
2762 	int rc;
2763 	char *context;
2764 
2765 	dsec = dir->i_security;
2766 	sbsec = dir->i_sb->s_security;
2767 
2768 	sid = tsec->sid;
2769 	newsid = tsec->create_sid;
2770 
2771 	rc = selinux_determine_inode_label(
2772 		dir, qstr,
2773 		inode_mode_to_security_class(inode->i_mode),
2774 		&newsid);
2775 	if (rc)
2776 		return rc;
2777 
2778 	/* Possibly defer initialization to selinux_complete_init. */
2779 	if (sbsec->flags & SE_SBINITIALIZED) {
2780 		struct inode_security_struct *isec = inode->i_security;
2781 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2782 		isec->sid = newsid;
2783 		isec->initialized = 1;
2784 	}
2785 
2786 	if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2787 		return -EOPNOTSUPP;
2788 
2789 	if (name)
2790 		*name = XATTR_SELINUX_SUFFIX;
2791 
2792 	if (value && len) {
2793 		rc = security_sid_to_context_force(newsid, &context, &clen);
2794 		if (rc)
2795 			return rc;
2796 		*value = context;
2797 		*len = clen;
2798 	}
2799 
2800 	return 0;
2801 }
2802 
2803 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2804 {
2805 	return may_create(dir, dentry, SECCLASS_FILE);
2806 }
2807 
2808 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2809 {
2810 	return may_link(dir, old_dentry, MAY_LINK);
2811 }
2812 
2813 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2814 {
2815 	return may_link(dir, dentry, MAY_UNLINK);
2816 }
2817 
2818 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2819 {
2820 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2821 }
2822 
2823 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2824 {
2825 	return may_create(dir, dentry, SECCLASS_DIR);
2826 }
2827 
2828 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2829 {
2830 	return may_link(dir, dentry, MAY_RMDIR);
2831 }
2832 
2833 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2834 {
2835 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2836 }
2837 
2838 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2839 				struct inode *new_inode, struct dentry *new_dentry)
2840 {
2841 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2842 }
2843 
2844 static int selinux_inode_readlink(struct dentry *dentry)
2845 {
2846 	const struct cred *cred = current_cred();
2847 
2848 	return dentry_has_perm(cred, dentry, FILE__READ);
2849 }
2850 
2851 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2852 				     bool rcu)
2853 {
2854 	const struct cred *cred = current_cred();
2855 	struct common_audit_data ad;
2856 	struct inode_security_struct *isec;
2857 	u32 sid;
2858 
2859 	validate_creds(cred);
2860 
2861 	ad.type = LSM_AUDIT_DATA_DENTRY;
2862 	ad.u.dentry = dentry;
2863 	sid = cred_sid(cred);
2864 	isec = inode->i_security;
2865 
2866 	return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
2867 				  rcu ? MAY_NOT_BLOCK : 0);
2868 }
2869 
2870 static noinline int audit_inode_permission(struct inode *inode,
2871 					   u32 perms, u32 audited, u32 denied,
2872 					   int result,
2873 					   unsigned flags)
2874 {
2875 	struct common_audit_data ad;
2876 	struct inode_security_struct *isec = inode->i_security;
2877 	int rc;
2878 
2879 	ad.type = LSM_AUDIT_DATA_INODE;
2880 	ad.u.inode = inode;
2881 
2882 	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2883 			    audited, denied, result, &ad, flags);
2884 	if (rc)
2885 		return rc;
2886 	return 0;
2887 }
2888 
2889 static int selinux_inode_permission(struct inode *inode, int mask)
2890 {
2891 	const struct cred *cred = current_cred();
2892 	u32 perms;
2893 	bool from_access;
2894 	unsigned flags = mask & MAY_NOT_BLOCK;
2895 	struct inode_security_struct *isec;
2896 	u32 sid;
2897 	struct av_decision avd;
2898 	int rc, rc2;
2899 	u32 audited, denied;
2900 
2901 	from_access = mask & MAY_ACCESS;
2902 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2903 
2904 	/* No permission to check.  Existence test. */
2905 	if (!mask)
2906 		return 0;
2907 
2908 	validate_creds(cred);
2909 
2910 	if (unlikely(IS_PRIVATE(inode)))
2911 		return 0;
2912 
2913 	perms = file_mask_to_av(inode->i_mode, mask);
2914 
2915 	sid = cred_sid(cred);
2916 	isec = inode->i_security;
2917 
2918 	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2919 	audited = avc_audit_required(perms, &avd, rc,
2920 				     from_access ? FILE__AUDIT_ACCESS : 0,
2921 				     &denied);
2922 	if (likely(!audited))
2923 		return rc;
2924 
2925 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
2926 	if (rc2)
2927 		return rc2;
2928 	return rc;
2929 }
2930 
2931 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2932 {
2933 	const struct cred *cred = current_cred();
2934 	unsigned int ia_valid = iattr->ia_valid;
2935 	__u32 av = FILE__WRITE;
2936 
2937 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2938 	if (ia_valid & ATTR_FORCE) {
2939 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2940 			      ATTR_FORCE);
2941 		if (!ia_valid)
2942 			return 0;
2943 	}
2944 
2945 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2946 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2947 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
2948 
2949 	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2950 		av |= FILE__OPEN;
2951 
2952 	return dentry_has_perm(cred, dentry, av);
2953 }
2954 
2955 static int selinux_inode_getattr(const struct path *path)
2956 {
2957 	return path_has_perm(current_cred(), path, FILE__GETATTR);
2958 }
2959 
2960 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2961 {
2962 	const struct cred *cred = current_cred();
2963 
2964 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2965 		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2966 		if (!strcmp(name, XATTR_NAME_CAPS)) {
2967 			if (!capable(CAP_SETFCAP))
2968 				return -EPERM;
2969 		} else if (!capable(CAP_SYS_ADMIN)) {
2970 			/* A different attribute in the security namespace.
2971 			   Restrict to administrator. */
2972 			return -EPERM;
2973 		}
2974 	}
2975 
2976 	/* Not an attribute we recognize, so just check the
2977 	   ordinary setattr permission. */
2978 	return dentry_has_perm(cred, dentry, FILE__SETATTR);
2979 }
2980 
2981 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2982 				  const void *value, size_t size, int flags)
2983 {
2984 	struct inode *inode = d_backing_inode(dentry);
2985 	struct inode_security_struct *isec = inode->i_security;
2986 	struct superblock_security_struct *sbsec;
2987 	struct common_audit_data ad;
2988 	u32 newsid, sid = current_sid();
2989 	int rc = 0;
2990 
2991 	if (strcmp(name, XATTR_NAME_SELINUX))
2992 		return selinux_inode_setotherxattr(dentry, name);
2993 
2994 	sbsec = inode->i_sb->s_security;
2995 	if (!(sbsec->flags & SBLABEL_MNT))
2996 		return -EOPNOTSUPP;
2997 
2998 	if (!inode_owner_or_capable(inode))
2999 		return -EPERM;
3000 
3001 	ad.type = LSM_AUDIT_DATA_DENTRY;
3002 	ad.u.dentry = dentry;
3003 
3004 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
3005 			  FILE__RELABELFROM, &ad);
3006 	if (rc)
3007 		return rc;
3008 
3009 	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3010 	if (rc == -EINVAL) {
3011 		if (!capable(CAP_MAC_ADMIN)) {
3012 			struct audit_buffer *ab;
3013 			size_t audit_size;
3014 			const char *str;
3015 
3016 			/* We strip a nul only if it is at the end, otherwise the
3017 			 * context contains a nul and we should audit that */
3018 			if (value) {
3019 				str = value;
3020 				if (str[size - 1] == '\0')
3021 					audit_size = size - 1;
3022 				else
3023 					audit_size = size;
3024 			} else {
3025 				str = "";
3026 				audit_size = 0;
3027 			}
3028 			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3029 			audit_log_format(ab, "op=setxattr invalid_context=");
3030 			audit_log_n_untrustedstring(ab, value, audit_size);
3031 			audit_log_end(ab);
3032 
3033 			return rc;
3034 		}
3035 		rc = security_context_to_sid_force(value, size, &newsid);
3036 	}
3037 	if (rc)
3038 		return rc;
3039 
3040 	rc = avc_has_perm(sid, newsid, isec->sclass,
3041 			  FILE__RELABELTO, &ad);
3042 	if (rc)
3043 		return rc;
3044 
3045 	rc = security_validate_transition(isec->sid, newsid, sid,
3046 					  isec->sclass);
3047 	if (rc)
3048 		return rc;
3049 
3050 	return avc_has_perm(newsid,
3051 			    sbsec->sid,
3052 			    SECCLASS_FILESYSTEM,
3053 			    FILESYSTEM__ASSOCIATE,
3054 			    &ad);
3055 }
3056 
3057 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3058 					const void *value, size_t size,
3059 					int flags)
3060 {
3061 	struct inode *inode = d_backing_inode(dentry);
3062 	struct inode_security_struct *isec = inode->i_security;
3063 	u32 newsid;
3064 	int rc;
3065 
3066 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3067 		/* Not an attribute we recognize, so nothing to do. */
3068 		return;
3069 	}
3070 
3071 	rc = security_context_to_sid_force(value, size, &newsid);
3072 	if (rc) {
3073 		printk(KERN_ERR "SELinux:  unable to map context to SID"
3074 		       "for (%s, %lu), rc=%d\n",
3075 		       inode->i_sb->s_id, inode->i_ino, -rc);
3076 		return;
3077 	}
3078 
3079 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3080 	isec->sid = newsid;
3081 	isec->initialized = 1;
3082 
3083 	return;
3084 }
3085 
3086 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3087 {
3088 	const struct cred *cred = current_cred();
3089 
3090 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3091 }
3092 
3093 static int selinux_inode_listxattr(struct dentry *dentry)
3094 {
3095 	const struct cred *cred = current_cred();
3096 
3097 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3098 }
3099 
3100 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3101 {
3102 	if (strcmp(name, XATTR_NAME_SELINUX))
3103 		return selinux_inode_setotherxattr(dentry, name);
3104 
3105 	/* No one is allowed to remove a SELinux security label.
3106 	   You can change the label, but all data must be labeled. */
3107 	return -EACCES;
3108 }
3109 
3110 /*
3111  * Copy the inode security context value to the user.
3112  *
3113  * Permission check is handled by selinux_inode_getxattr hook.
3114  */
3115 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
3116 {
3117 	u32 size;
3118 	int error;
3119 	char *context = NULL;
3120 	struct inode_security_struct *isec = inode->i_security;
3121 
3122 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3123 		return -EOPNOTSUPP;
3124 
3125 	/*
3126 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3127 	 * value even if it is not defined by current policy; otherwise,
3128 	 * use the in-core value under current policy.
3129 	 * Use the non-auditing forms of the permission checks since
3130 	 * getxattr may be called by unprivileged processes commonly
3131 	 * and lack of permission just means that we fall back to the
3132 	 * in-core context value, not a denial.
3133 	 */
3134 	error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3135 			    SECURITY_CAP_NOAUDIT);
3136 	if (!error)
3137 		error = cred_has_capability(current_cred(), CAP_MAC_ADMIN,
3138 					    SECURITY_CAP_NOAUDIT);
3139 	if (!error)
3140 		error = security_sid_to_context_force(isec->sid, &context,
3141 						      &size);
3142 	else
3143 		error = security_sid_to_context(isec->sid, &context, &size);
3144 	if (error)
3145 		return error;
3146 	error = size;
3147 	if (alloc) {
3148 		*buffer = context;
3149 		goto out_nofree;
3150 	}
3151 	kfree(context);
3152 out_nofree:
3153 	return error;
3154 }
3155 
3156 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3157 				     const void *value, size_t size, int flags)
3158 {
3159 	struct inode_security_struct *isec = inode->i_security;
3160 	u32 newsid;
3161 	int rc;
3162 
3163 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3164 		return -EOPNOTSUPP;
3165 
3166 	if (!value || !size)
3167 		return -EACCES;
3168 
3169 	rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL);
3170 	if (rc)
3171 		return rc;
3172 
3173 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3174 	isec->sid = newsid;
3175 	isec->initialized = 1;
3176 	return 0;
3177 }
3178 
3179 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3180 {
3181 	const int len = sizeof(XATTR_NAME_SELINUX);
3182 	if (buffer && len <= buffer_size)
3183 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3184 	return len;
3185 }
3186 
3187 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3188 {
3189 	struct inode_security_struct *isec = inode->i_security;
3190 	*secid = isec->sid;
3191 }
3192 
3193 /* file security operations */
3194 
3195 static int selinux_revalidate_file_permission(struct file *file, int mask)
3196 {
3197 	const struct cred *cred = current_cred();
3198 	struct inode *inode = file_inode(file);
3199 
3200 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3201 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3202 		mask |= MAY_APPEND;
3203 
3204 	return file_has_perm(cred, file,
3205 			     file_mask_to_av(inode->i_mode, mask));
3206 }
3207 
3208 static int selinux_file_permission(struct file *file, int mask)
3209 {
3210 	struct inode *inode = file_inode(file);
3211 	struct file_security_struct *fsec = file->f_security;
3212 	struct inode_security_struct *isec = inode->i_security;
3213 	u32 sid = current_sid();
3214 
3215 	if (!mask)
3216 		/* No permission to check.  Existence test. */
3217 		return 0;
3218 
3219 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3220 	    fsec->pseqno == avc_policy_seqno())
3221 		/* No change since file_open check. */
3222 		return 0;
3223 
3224 	return selinux_revalidate_file_permission(file, mask);
3225 }
3226 
3227 static int selinux_file_alloc_security(struct file *file)
3228 {
3229 	return file_alloc_security(file);
3230 }
3231 
3232 static void selinux_file_free_security(struct file *file)
3233 {
3234 	file_free_security(file);
3235 }
3236 
3237 /*
3238  * Check whether a task has the ioctl permission and cmd
3239  * operation to an inode.
3240  */
3241 int ioctl_has_perm(const struct cred *cred, struct file *file,
3242 		u32 requested, u16 cmd)
3243 {
3244 	struct common_audit_data ad;
3245 	struct file_security_struct *fsec = file->f_security;
3246 	struct inode *inode = file_inode(file);
3247 	struct inode_security_struct *isec = inode->i_security;
3248 	struct lsm_ioctlop_audit ioctl;
3249 	u32 ssid = cred_sid(cred);
3250 	int rc;
3251 	u8 driver = cmd >> 8;
3252 	u8 xperm = cmd & 0xff;
3253 
3254 	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3255 	ad.u.op = &ioctl;
3256 	ad.u.op->cmd = cmd;
3257 	ad.u.op->path = file->f_path;
3258 
3259 	if (ssid != fsec->sid) {
3260 		rc = avc_has_perm(ssid, fsec->sid,
3261 				SECCLASS_FD,
3262 				FD__USE,
3263 				&ad);
3264 		if (rc)
3265 			goto out;
3266 	}
3267 
3268 	if (unlikely(IS_PRIVATE(inode)))
3269 		return 0;
3270 
3271 	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3272 			requested, driver, xperm, &ad);
3273 out:
3274 	return rc;
3275 }
3276 
3277 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3278 			      unsigned long arg)
3279 {
3280 	const struct cred *cred = current_cred();
3281 	int error = 0;
3282 
3283 	switch (cmd) {
3284 	case FIONREAD:
3285 	/* fall through */
3286 	case FIBMAP:
3287 	/* fall through */
3288 	case FIGETBSZ:
3289 	/* fall through */
3290 	case FS_IOC_GETFLAGS:
3291 	/* fall through */
3292 	case FS_IOC_GETVERSION:
3293 		error = file_has_perm(cred, file, FILE__GETATTR);
3294 		break;
3295 
3296 	case FS_IOC_SETFLAGS:
3297 	/* fall through */
3298 	case FS_IOC_SETVERSION:
3299 		error = file_has_perm(cred, file, FILE__SETATTR);
3300 		break;
3301 
3302 	/* sys_ioctl() checks */
3303 	case FIONBIO:
3304 	/* fall through */
3305 	case FIOASYNC:
3306 		error = file_has_perm(cred, file, 0);
3307 		break;
3308 
3309 	case KDSKBENT:
3310 	case KDSKBSENT:
3311 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3312 					    SECURITY_CAP_AUDIT);
3313 		break;
3314 
3315 	/* default case assumes that the command will go
3316 	 * to the file's ioctl() function.
3317 	 */
3318 	default:
3319 		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3320 	}
3321 	return error;
3322 }
3323 
3324 static int default_noexec;
3325 
3326 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3327 {
3328 	const struct cred *cred = current_cred();
3329 	int rc = 0;
3330 
3331 	if (default_noexec &&
3332 	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3333 				   (!shared && (prot & PROT_WRITE)))) {
3334 		/*
3335 		 * We are making executable an anonymous mapping or a
3336 		 * private file mapping that will also be writable.
3337 		 * This has an additional check.
3338 		 */
3339 		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3340 		if (rc)
3341 			goto error;
3342 	}
3343 
3344 	if (file) {
3345 		/* read access is always possible with a mapping */
3346 		u32 av = FILE__READ;
3347 
3348 		/* write access only matters if the mapping is shared */
3349 		if (shared && (prot & PROT_WRITE))
3350 			av |= FILE__WRITE;
3351 
3352 		if (prot & PROT_EXEC)
3353 			av |= FILE__EXECUTE;
3354 
3355 		return file_has_perm(cred, file, av);
3356 	}
3357 
3358 error:
3359 	return rc;
3360 }
3361 
3362 static int selinux_mmap_addr(unsigned long addr)
3363 {
3364 	int rc = 0;
3365 
3366 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3367 		u32 sid = current_sid();
3368 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3369 				  MEMPROTECT__MMAP_ZERO, NULL);
3370 	}
3371 
3372 	return rc;
3373 }
3374 
3375 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3376 			     unsigned long prot, unsigned long flags)
3377 {
3378 	if (selinux_checkreqprot)
3379 		prot = reqprot;
3380 
3381 	return file_map_prot_check(file, prot,
3382 				   (flags & MAP_TYPE) == MAP_SHARED);
3383 }
3384 
3385 static int selinux_file_mprotect(struct vm_area_struct *vma,
3386 				 unsigned long reqprot,
3387 				 unsigned long prot)
3388 {
3389 	const struct cred *cred = current_cred();
3390 
3391 	if (selinux_checkreqprot)
3392 		prot = reqprot;
3393 
3394 	if (default_noexec &&
3395 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3396 		int rc = 0;
3397 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3398 		    vma->vm_end <= vma->vm_mm->brk) {
3399 			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3400 		} else if (!vma->vm_file &&
3401 			   vma->vm_start <= vma->vm_mm->start_stack &&
3402 			   vma->vm_end >= vma->vm_mm->start_stack) {
3403 			rc = current_has_perm(current, PROCESS__EXECSTACK);
3404 		} else if (vma->vm_file && vma->anon_vma) {
3405 			/*
3406 			 * We are making executable a file mapping that has
3407 			 * had some COW done. Since pages might have been
3408 			 * written, check ability to execute the possibly
3409 			 * modified content.  This typically should only
3410 			 * occur for text relocations.
3411 			 */
3412 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3413 		}
3414 		if (rc)
3415 			return rc;
3416 	}
3417 
3418 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3419 }
3420 
3421 static int selinux_file_lock(struct file *file, unsigned int cmd)
3422 {
3423 	const struct cred *cred = current_cred();
3424 
3425 	return file_has_perm(cred, file, FILE__LOCK);
3426 }
3427 
3428 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3429 			      unsigned long arg)
3430 {
3431 	const struct cred *cred = current_cred();
3432 	int err = 0;
3433 
3434 	switch (cmd) {
3435 	case F_SETFL:
3436 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3437 			err = file_has_perm(cred, file, FILE__WRITE);
3438 			break;
3439 		}
3440 		/* fall through */
3441 	case F_SETOWN:
3442 	case F_SETSIG:
3443 	case F_GETFL:
3444 	case F_GETOWN:
3445 	case F_GETSIG:
3446 	case F_GETOWNER_UIDS:
3447 		/* Just check FD__USE permission */
3448 		err = file_has_perm(cred, file, 0);
3449 		break;
3450 	case F_GETLK:
3451 	case F_SETLK:
3452 	case F_SETLKW:
3453 	case F_OFD_GETLK:
3454 	case F_OFD_SETLK:
3455 	case F_OFD_SETLKW:
3456 #if BITS_PER_LONG == 32
3457 	case F_GETLK64:
3458 	case F_SETLK64:
3459 	case F_SETLKW64:
3460 #endif
3461 		err = file_has_perm(cred, file, FILE__LOCK);
3462 		break;
3463 	}
3464 
3465 	return err;
3466 }
3467 
3468 static void selinux_file_set_fowner(struct file *file)
3469 {
3470 	struct file_security_struct *fsec;
3471 
3472 	fsec = file->f_security;
3473 	fsec->fown_sid = current_sid();
3474 }
3475 
3476 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3477 				       struct fown_struct *fown, int signum)
3478 {
3479 	struct file *file;
3480 	u32 sid = task_sid(tsk);
3481 	u32 perm;
3482 	struct file_security_struct *fsec;
3483 
3484 	/* struct fown_struct is never outside the context of a struct file */
3485 	file = container_of(fown, struct file, f_owner);
3486 
3487 	fsec = file->f_security;
3488 
3489 	if (!signum)
3490 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3491 	else
3492 		perm = signal_to_av(signum);
3493 
3494 	return avc_has_perm(fsec->fown_sid, sid,
3495 			    SECCLASS_PROCESS, perm, NULL);
3496 }
3497 
3498 static int selinux_file_receive(struct file *file)
3499 {
3500 	const struct cred *cred = current_cred();
3501 
3502 	return file_has_perm(cred, file, file_to_av(file));
3503 }
3504 
3505 static int selinux_file_open(struct file *file, const struct cred *cred)
3506 {
3507 	struct file_security_struct *fsec;
3508 	struct inode_security_struct *isec;
3509 
3510 	fsec = file->f_security;
3511 	isec = file_inode(file)->i_security;
3512 	/*
3513 	 * Save inode label and policy sequence number
3514 	 * at open-time so that selinux_file_permission
3515 	 * can determine whether revalidation is necessary.
3516 	 * Task label is already saved in the file security
3517 	 * struct as its SID.
3518 	 */
3519 	fsec->isid = isec->sid;
3520 	fsec->pseqno = avc_policy_seqno();
3521 	/*
3522 	 * Since the inode label or policy seqno may have changed
3523 	 * between the selinux_inode_permission check and the saving
3524 	 * of state above, recheck that access is still permitted.
3525 	 * Otherwise, access might never be revalidated against the
3526 	 * new inode label or new policy.
3527 	 * This check is not redundant - do not remove.
3528 	 */
3529 	return file_path_has_perm(cred, file, open_file_to_av(file));
3530 }
3531 
3532 /* task security operations */
3533 
3534 static int selinux_task_create(unsigned long clone_flags)
3535 {
3536 	return current_has_perm(current, PROCESS__FORK);
3537 }
3538 
3539 /*
3540  * allocate the SELinux part of blank credentials
3541  */
3542 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3543 {
3544 	struct task_security_struct *tsec;
3545 
3546 	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3547 	if (!tsec)
3548 		return -ENOMEM;
3549 
3550 	cred->security = tsec;
3551 	return 0;
3552 }
3553 
3554 /*
3555  * detach and free the LSM part of a set of credentials
3556  */
3557 static void selinux_cred_free(struct cred *cred)
3558 {
3559 	struct task_security_struct *tsec = cred->security;
3560 
3561 	/*
3562 	 * cred->security == NULL if security_cred_alloc_blank() or
3563 	 * security_prepare_creds() returned an error.
3564 	 */
3565 	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3566 	cred->security = (void *) 0x7UL;
3567 	kfree(tsec);
3568 }
3569 
3570 /*
3571  * prepare a new set of credentials for modification
3572  */
3573 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3574 				gfp_t gfp)
3575 {
3576 	const struct task_security_struct *old_tsec;
3577 	struct task_security_struct *tsec;
3578 
3579 	old_tsec = old->security;
3580 
3581 	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3582 	if (!tsec)
3583 		return -ENOMEM;
3584 
3585 	new->security = tsec;
3586 	return 0;
3587 }
3588 
3589 /*
3590  * transfer the SELinux data to a blank set of creds
3591  */
3592 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3593 {
3594 	const struct task_security_struct *old_tsec = old->security;
3595 	struct task_security_struct *tsec = new->security;
3596 
3597 	*tsec = *old_tsec;
3598 }
3599 
3600 /*
3601  * set the security data for a kernel service
3602  * - all the creation contexts are set to unlabelled
3603  */
3604 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3605 {
3606 	struct task_security_struct *tsec = new->security;
3607 	u32 sid = current_sid();
3608 	int ret;
3609 
3610 	ret = avc_has_perm(sid, secid,
3611 			   SECCLASS_KERNEL_SERVICE,
3612 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3613 			   NULL);
3614 	if (ret == 0) {
3615 		tsec->sid = secid;
3616 		tsec->create_sid = 0;
3617 		tsec->keycreate_sid = 0;
3618 		tsec->sockcreate_sid = 0;
3619 	}
3620 	return ret;
3621 }
3622 
3623 /*
3624  * set the file creation context in a security record to the same as the
3625  * objective context of the specified inode
3626  */
3627 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3628 {
3629 	struct inode_security_struct *isec = inode->i_security;
3630 	struct task_security_struct *tsec = new->security;
3631 	u32 sid = current_sid();
3632 	int ret;
3633 
3634 	ret = avc_has_perm(sid, isec->sid,
3635 			   SECCLASS_KERNEL_SERVICE,
3636 			   KERNEL_SERVICE__CREATE_FILES_AS,
3637 			   NULL);
3638 
3639 	if (ret == 0)
3640 		tsec->create_sid = isec->sid;
3641 	return ret;
3642 }
3643 
3644 static int selinux_kernel_module_request(char *kmod_name)
3645 {
3646 	u32 sid;
3647 	struct common_audit_data ad;
3648 
3649 	sid = task_sid(current);
3650 
3651 	ad.type = LSM_AUDIT_DATA_KMOD;
3652 	ad.u.kmod_name = kmod_name;
3653 
3654 	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3655 			    SYSTEM__MODULE_REQUEST, &ad);
3656 }
3657 
3658 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3659 {
3660 	return current_has_perm(p, PROCESS__SETPGID);
3661 }
3662 
3663 static int selinux_task_getpgid(struct task_struct *p)
3664 {
3665 	return current_has_perm(p, PROCESS__GETPGID);
3666 }
3667 
3668 static int selinux_task_getsid(struct task_struct *p)
3669 {
3670 	return current_has_perm(p, PROCESS__GETSESSION);
3671 }
3672 
3673 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3674 {
3675 	*secid = task_sid(p);
3676 }
3677 
3678 static int selinux_task_setnice(struct task_struct *p, int nice)
3679 {
3680 	return current_has_perm(p, PROCESS__SETSCHED);
3681 }
3682 
3683 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3684 {
3685 	return current_has_perm(p, PROCESS__SETSCHED);
3686 }
3687 
3688 static int selinux_task_getioprio(struct task_struct *p)
3689 {
3690 	return current_has_perm(p, PROCESS__GETSCHED);
3691 }
3692 
3693 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3694 		struct rlimit *new_rlim)
3695 {
3696 	struct rlimit *old_rlim = p->signal->rlim + resource;
3697 
3698 	/* Control the ability to change the hard limit (whether
3699 	   lowering or raising it), so that the hard limit can
3700 	   later be used as a safe reset point for the soft limit
3701 	   upon context transitions.  See selinux_bprm_committing_creds. */
3702 	if (old_rlim->rlim_max != new_rlim->rlim_max)
3703 		return current_has_perm(p, PROCESS__SETRLIMIT);
3704 
3705 	return 0;
3706 }
3707 
3708 static int selinux_task_setscheduler(struct task_struct *p)
3709 {
3710 	return current_has_perm(p, PROCESS__SETSCHED);
3711 }
3712 
3713 static int selinux_task_getscheduler(struct task_struct *p)
3714 {
3715 	return current_has_perm(p, PROCESS__GETSCHED);
3716 }
3717 
3718 static int selinux_task_movememory(struct task_struct *p)
3719 {
3720 	return current_has_perm(p, PROCESS__SETSCHED);
3721 }
3722 
3723 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3724 				int sig, u32 secid)
3725 {
3726 	u32 perm;
3727 	int rc;
3728 
3729 	if (!sig)
3730 		perm = PROCESS__SIGNULL; /* null signal; existence test */
3731 	else
3732 		perm = signal_to_av(sig);
3733 	if (secid)
3734 		rc = avc_has_perm(secid, task_sid(p),
3735 				  SECCLASS_PROCESS, perm, NULL);
3736 	else
3737 		rc = current_has_perm(p, perm);
3738 	return rc;
3739 }
3740 
3741 static int selinux_task_wait(struct task_struct *p)
3742 {
3743 	return task_has_perm(p, current, PROCESS__SIGCHLD);
3744 }
3745 
3746 static void selinux_task_to_inode(struct task_struct *p,
3747 				  struct inode *inode)
3748 {
3749 	struct inode_security_struct *isec = inode->i_security;
3750 	u32 sid = task_sid(p);
3751 
3752 	isec->sid = sid;
3753 	isec->initialized = 1;
3754 }
3755 
3756 /* Returns error only if unable to parse addresses */
3757 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3758 			struct common_audit_data *ad, u8 *proto)
3759 {
3760 	int offset, ihlen, ret = -EINVAL;
3761 	struct iphdr _iph, *ih;
3762 
3763 	offset = skb_network_offset(skb);
3764 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3765 	if (ih == NULL)
3766 		goto out;
3767 
3768 	ihlen = ih->ihl * 4;
3769 	if (ihlen < sizeof(_iph))
3770 		goto out;
3771 
3772 	ad->u.net->v4info.saddr = ih->saddr;
3773 	ad->u.net->v4info.daddr = ih->daddr;
3774 	ret = 0;
3775 
3776 	if (proto)
3777 		*proto = ih->protocol;
3778 
3779 	switch (ih->protocol) {
3780 	case IPPROTO_TCP: {
3781 		struct tcphdr _tcph, *th;
3782 
3783 		if (ntohs(ih->frag_off) & IP_OFFSET)
3784 			break;
3785 
3786 		offset += ihlen;
3787 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3788 		if (th == NULL)
3789 			break;
3790 
3791 		ad->u.net->sport = th->source;
3792 		ad->u.net->dport = th->dest;
3793 		break;
3794 	}
3795 
3796 	case IPPROTO_UDP: {
3797 		struct udphdr _udph, *uh;
3798 
3799 		if (ntohs(ih->frag_off) & IP_OFFSET)
3800 			break;
3801 
3802 		offset += ihlen;
3803 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3804 		if (uh == NULL)
3805 			break;
3806 
3807 		ad->u.net->sport = uh->source;
3808 		ad->u.net->dport = uh->dest;
3809 		break;
3810 	}
3811 
3812 	case IPPROTO_DCCP: {
3813 		struct dccp_hdr _dccph, *dh;
3814 
3815 		if (ntohs(ih->frag_off) & IP_OFFSET)
3816 			break;
3817 
3818 		offset += ihlen;
3819 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3820 		if (dh == NULL)
3821 			break;
3822 
3823 		ad->u.net->sport = dh->dccph_sport;
3824 		ad->u.net->dport = dh->dccph_dport;
3825 		break;
3826 	}
3827 
3828 	default:
3829 		break;
3830 	}
3831 out:
3832 	return ret;
3833 }
3834 
3835 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3836 
3837 /* Returns error only if unable to parse addresses */
3838 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3839 			struct common_audit_data *ad, u8 *proto)
3840 {
3841 	u8 nexthdr;
3842 	int ret = -EINVAL, offset;
3843 	struct ipv6hdr _ipv6h, *ip6;
3844 	__be16 frag_off;
3845 
3846 	offset = skb_network_offset(skb);
3847 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3848 	if (ip6 == NULL)
3849 		goto out;
3850 
3851 	ad->u.net->v6info.saddr = ip6->saddr;
3852 	ad->u.net->v6info.daddr = ip6->daddr;
3853 	ret = 0;
3854 
3855 	nexthdr = ip6->nexthdr;
3856 	offset += sizeof(_ipv6h);
3857 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3858 	if (offset < 0)
3859 		goto out;
3860 
3861 	if (proto)
3862 		*proto = nexthdr;
3863 
3864 	switch (nexthdr) {
3865 	case IPPROTO_TCP: {
3866 		struct tcphdr _tcph, *th;
3867 
3868 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3869 		if (th == NULL)
3870 			break;
3871 
3872 		ad->u.net->sport = th->source;
3873 		ad->u.net->dport = th->dest;
3874 		break;
3875 	}
3876 
3877 	case IPPROTO_UDP: {
3878 		struct udphdr _udph, *uh;
3879 
3880 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3881 		if (uh == NULL)
3882 			break;
3883 
3884 		ad->u.net->sport = uh->source;
3885 		ad->u.net->dport = uh->dest;
3886 		break;
3887 	}
3888 
3889 	case IPPROTO_DCCP: {
3890 		struct dccp_hdr _dccph, *dh;
3891 
3892 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3893 		if (dh == NULL)
3894 			break;
3895 
3896 		ad->u.net->sport = dh->dccph_sport;
3897 		ad->u.net->dport = dh->dccph_dport;
3898 		break;
3899 	}
3900 
3901 	/* includes fragments */
3902 	default:
3903 		break;
3904 	}
3905 out:
3906 	return ret;
3907 }
3908 
3909 #endif /* IPV6 */
3910 
3911 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3912 			     char **_addrp, int src, u8 *proto)
3913 {
3914 	char *addrp;
3915 	int ret;
3916 
3917 	switch (ad->u.net->family) {
3918 	case PF_INET:
3919 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3920 		if (ret)
3921 			goto parse_error;
3922 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3923 				       &ad->u.net->v4info.daddr);
3924 		goto okay;
3925 
3926 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3927 	case PF_INET6:
3928 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3929 		if (ret)
3930 			goto parse_error;
3931 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3932 				       &ad->u.net->v6info.daddr);
3933 		goto okay;
3934 #endif	/* IPV6 */
3935 	default:
3936 		addrp = NULL;
3937 		goto okay;
3938 	}
3939 
3940 parse_error:
3941 	printk(KERN_WARNING
3942 	       "SELinux: failure in selinux_parse_skb(),"
3943 	       " unable to parse packet\n");
3944 	return ret;
3945 
3946 okay:
3947 	if (_addrp)
3948 		*_addrp = addrp;
3949 	return 0;
3950 }
3951 
3952 /**
3953  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3954  * @skb: the packet
3955  * @family: protocol family
3956  * @sid: the packet's peer label SID
3957  *
3958  * Description:
3959  * Check the various different forms of network peer labeling and determine
3960  * the peer label/SID for the packet; most of the magic actually occurs in
3961  * the security server function security_net_peersid_cmp().  The function
3962  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3963  * or -EACCES if @sid is invalid due to inconsistencies with the different
3964  * peer labels.
3965  *
3966  */
3967 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3968 {
3969 	int err;
3970 	u32 xfrm_sid;
3971 	u32 nlbl_sid;
3972 	u32 nlbl_type;
3973 
3974 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
3975 	if (unlikely(err))
3976 		return -EACCES;
3977 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3978 	if (unlikely(err))
3979 		return -EACCES;
3980 
3981 	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3982 	if (unlikely(err)) {
3983 		printk(KERN_WARNING
3984 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3985 		       " unable to determine packet's peer label\n");
3986 		return -EACCES;
3987 	}
3988 
3989 	return 0;
3990 }
3991 
3992 /**
3993  * selinux_conn_sid - Determine the child socket label for a connection
3994  * @sk_sid: the parent socket's SID
3995  * @skb_sid: the packet's SID
3996  * @conn_sid: the resulting connection SID
3997  *
3998  * If @skb_sid is valid then the user:role:type information from @sk_sid is
3999  * combined with the MLS information from @skb_sid in order to create
4000  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4001  * of @sk_sid.  Returns zero on success, negative values on failure.
4002  *
4003  */
4004 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4005 {
4006 	int err = 0;
4007 
4008 	if (skb_sid != SECSID_NULL)
4009 		err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
4010 	else
4011 		*conn_sid = sk_sid;
4012 
4013 	return err;
4014 }
4015 
4016 /* socket security operations */
4017 
4018 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4019 				 u16 secclass, u32 *socksid)
4020 {
4021 	if (tsec->sockcreate_sid > SECSID_NULL) {
4022 		*socksid = tsec->sockcreate_sid;
4023 		return 0;
4024 	}
4025 
4026 	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4027 				       socksid);
4028 }
4029 
4030 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4031 {
4032 	struct sk_security_struct *sksec = sk->sk_security;
4033 	struct common_audit_data ad;
4034 	struct lsm_network_audit net = {0,};
4035 	u32 tsid = task_sid(task);
4036 
4037 	if (sksec->sid == SECINITSID_KERNEL)
4038 		return 0;
4039 
4040 	ad.type = LSM_AUDIT_DATA_NET;
4041 	ad.u.net = &net;
4042 	ad.u.net->sk = sk;
4043 
4044 	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
4045 }
4046 
4047 static int selinux_socket_create(int family, int type,
4048 				 int protocol, int kern)
4049 {
4050 	const struct task_security_struct *tsec = current_security();
4051 	u32 newsid;
4052 	u16 secclass;
4053 	int rc;
4054 
4055 	if (kern)
4056 		return 0;
4057 
4058 	secclass = socket_type_to_security_class(family, type, protocol);
4059 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4060 	if (rc)
4061 		return rc;
4062 
4063 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4064 }
4065 
4066 static int selinux_socket_post_create(struct socket *sock, int family,
4067 				      int type, int protocol, int kern)
4068 {
4069 	const struct task_security_struct *tsec = current_security();
4070 	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4071 	struct sk_security_struct *sksec;
4072 	int err = 0;
4073 
4074 	isec->sclass = socket_type_to_security_class(family, type, protocol);
4075 
4076 	if (kern)
4077 		isec->sid = SECINITSID_KERNEL;
4078 	else {
4079 		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
4080 		if (err)
4081 			return err;
4082 	}
4083 
4084 	isec->initialized = 1;
4085 
4086 	if (sock->sk) {
4087 		sksec = sock->sk->sk_security;
4088 		sksec->sid = isec->sid;
4089 		sksec->sclass = isec->sclass;
4090 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4091 	}
4092 
4093 	return err;
4094 }
4095 
4096 /* Range of port numbers used to automatically bind.
4097    Need to determine whether we should perform a name_bind
4098    permission check between the socket and the port number. */
4099 
4100 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4101 {
4102 	struct sock *sk = sock->sk;
4103 	u16 family;
4104 	int err;
4105 
4106 	err = sock_has_perm(current, sk, SOCKET__BIND);
4107 	if (err)
4108 		goto out;
4109 
4110 	/*
4111 	 * If PF_INET or PF_INET6, check name_bind permission for the port.
4112 	 * Multiple address binding for SCTP is not supported yet: we just
4113 	 * check the first address now.
4114 	 */
4115 	family = sk->sk_family;
4116 	if (family == PF_INET || family == PF_INET6) {
4117 		char *addrp;
4118 		struct sk_security_struct *sksec = sk->sk_security;
4119 		struct common_audit_data ad;
4120 		struct lsm_network_audit net = {0,};
4121 		struct sockaddr_in *addr4 = NULL;
4122 		struct sockaddr_in6 *addr6 = NULL;
4123 		unsigned short snum;
4124 		u32 sid, node_perm;
4125 
4126 		if (family == PF_INET) {
4127 			addr4 = (struct sockaddr_in *)address;
4128 			snum = ntohs(addr4->sin_port);
4129 			addrp = (char *)&addr4->sin_addr.s_addr;
4130 		} else {
4131 			addr6 = (struct sockaddr_in6 *)address;
4132 			snum = ntohs(addr6->sin6_port);
4133 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4134 		}
4135 
4136 		if (snum) {
4137 			int low, high;
4138 
4139 			inet_get_local_port_range(sock_net(sk), &low, &high);
4140 
4141 			if (snum < max(PROT_SOCK, low) || snum > high) {
4142 				err = sel_netport_sid(sk->sk_protocol,
4143 						      snum, &sid);
4144 				if (err)
4145 					goto out;
4146 				ad.type = LSM_AUDIT_DATA_NET;
4147 				ad.u.net = &net;
4148 				ad.u.net->sport = htons(snum);
4149 				ad.u.net->family = family;
4150 				err = avc_has_perm(sksec->sid, sid,
4151 						   sksec->sclass,
4152 						   SOCKET__NAME_BIND, &ad);
4153 				if (err)
4154 					goto out;
4155 			}
4156 		}
4157 
4158 		switch (sksec->sclass) {
4159 		case SECCLASS_TCP_SOCKET:
4160 			node_perm = TCP_SOCKET__NODE_BIND;
4161 			break;
4162 
4163 		case SECCLASS_UDP_SOCKET:
4164 			node_perm = UDP_SOCKET__NODE_BIND;
4165 			break;
4166 
4167 		case SECCLASS_DCCP_SOCKET:
4168 			node_perm = DCCP_SOCKET__NODE_BIND;
4169 			break;
4170 
4171 		default:
4172 			node_perm = RAWIP_SOCKET__NODE_BIND;
4173 			break;
4174 		}
4175 
4176 		err = sel_netnode_sid(addrp, family, &sid);
4177 		if (err)
4178 			goto out;
4179 
4180 		ad.type = LSM_AUDIT_DATA_NET;
4181 		ad.u.net = &net;
4182 		ad.u.net->sport = htons(snum);
4183 		ad.u.net->family = family;
4184 
4185 		if (family == PF_INET)
4186 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4187 		else
4188 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4189 
4190 		err = avc_has_perm(sksec->sid, sid,
4191 				   sksec->sclass, node_perm, &ad);
4192 		if (err)
4193 			goto out;
4194 	}
4195 out:
4196 	return err;
4197 }
4198 
4199 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4200 {
4201 	struct sock *sk = sock->sk;
4202 	struct sk_security_struct *sksec = sk->sk_security;
4203 	int err;
4204 
4205 	err = sock_has_perm(current, sk, SOCKET__CONNECT);
4206 	if (err)
4207 		return err;
4208 
4209 	/*
4210 	 * If a TCP or DCCP socket, check name_connect permission for the port.
4211 	 */
4212 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4213 	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
4214 		struct common_audit_data ad;
4215 		struct lsm_network_audit net = {0,};
4216 		struct sockaddr_in *addr4 = NULL;
4217 		struct sockaddr_in6 *addr6 = NULL;
4218 		unsigned short snum;
4219 		u32 sid, perm;
4220 
4221 		if (sk->sk_family == PF_INET) {
4222 			addr4 = (struct sockaddr_in *)address;
4223 			if (addrlen < sizeof(struct sockaddr_in))
4224 				return -EINVAL;
4225 			snum = ntohs(addr4->sin_port);
4226 		} else {
4227 			addr6 = (struct sockaddr_in6 *)address;
4228 			if (addrlen < SIN6_LEN_RFC2133)
4229 				return -EINVAL;
4230 			snum = ntohs(addr6->sin6_port);
4231 		}
4232 
4233 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4234 		if (err)
4235 			goto out;
4236 
4237 		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4238 		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4239 
4240 		ad.type = LSM_AUDIT_DATA_NET;
4241 		ad.u.net = &net;
4242 		ad.u.net->dport = htons(snum);
4243 		ad.u.net->family = sk->sk_family;
4244 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4245 		if (err)
4246 			goto out;
4247 	}
4248 
4249 	err = selinux_netlbl_socket_connect(sk, address);
4250 
4251 out:
4252 	return err;
4253 }
4254 
4255 static int selinux_socket_listen(struct socket *sock, int backlog)
4256 {
4257 	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4258 }
4259 
4260 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4261 {
4262 	int err;
4263 	struct inode_security_struct *isec;
4264 	struct inode_security_struct *newisec;
4265 
4266 	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4267 	if (err)
4268 		return err;
4269 
4270 	newisec = SOCK_INODE(newsock)->i_security;
4271 
4272 	isec = SOCK_INODE(sock)->i_security;
4273 	newisec->sclass = isec->sclass;
4274 	newisec->sid = isec->sid;
4275 	newisec->initialized = 1;
4276 
4277 	return 0;
4278 }
4279 
4280 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4281 				  int size)
4282 {
4283 	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4284 }
4285 
4286 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4287 				  int size, int flags)
4288 {
4289 	return sock_has_perm(current, sock->sk, SOCKET__READ);
4290 }
4291 
4292 static int selinux_socket_getsockname(struct socket *sock)
4293 {
4294 	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4295 }
4296 
4297 static int selinux_socket_getpeername(struct socket *sock)
4298 {
4299 	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4300 }
4301 
4302 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4303 {
4304 	int err;
4305 
4306 	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4307 	if (err)
4308 		return err;
4309 
4310 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4311 }
4312 
4313 static int selinux_socket_getsockopt(struct socket *sock, int level,
4314 				     int optname)
4315 {
4316 	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4317 }
4318 
4319 static int selinux_socket_shutdown(struct socket *sock, int how)
4320 {
4321 	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4322 }
4323 
4324 static int selinux_socket_unix_stream_connect(struct sock *sock,
4325 					      struct sock *other,
4326 					      struct sock *newsk)
4327 {
4328 	struct sk_security_struct *sksec_sock = sock->sk_security;
4329 	struct sk_security_struct *sksec_other = other->sk_security;
4330 	struct sk_security_struct *sksec_new = newsk->sk_security;
4331 	struct common_audit_data ad;
4332 	struct lsm_network_audit net = {0,};
4333 	int err;
4334 
4335 	ad.type = LSM_AUDIT_DATA_NET;
4336 	ad.u.net = &net;
4337 	ad.u.net->sk = other;
4338 
4339 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4340 			   sksec_other->sclass,
4341 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4342 	if (err)
4343 		return err;
4344 
4345 	/* server child socket */
4346 	sksec_new->peer_sid = sksec_sock->sid;
4347 	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4348 				    &sksec_new->sid);
4349 	if (err)
4350 		return err;
4351 
4352 	/* connecting socket */
4353 	sksec_sock->peer_sid = sksec_new->sid;
4354 
4355 	return 0;
4356 }
4357 
4358 static int selinux_socket_unix_may_send(struct socket *sock,
4359 					struct socket *other)
4360 {
4361 	struct sk_security_struct *ssec = sock->sk->sk_security;
4362 	struct sk_security_struct *osec = other->sk->sk_security;
4363 	struct common_audit_data ad;
4364 	struct lsm_network_audit net = {0,};
4365 
4366 	ad.type = LSM_AUDIT_DATA_NET;
4367 	ad.u.net = &net;
4368 	ad.u.net->sk = other->sk;
4369 
4370 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4371 			    &ad);
4372 }
4373 
4374 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4375 				    char *addrp, u16 family, u32 peer_sid,
4376 				    struct common_audit_data *ad)
4377 {
4378 	int err;
4379 	u32 if_sid;
4380 	u32 node_sid;
4381 
4382 	err = sel_netif_sid(ns, ifindex, &if_sid);
4383 	if (err)
4384 		return err;
4385 	err = avc_has_perm(peer_sid, if_sid,
4386 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4387 	if (err)
4388 		return err;
4389 
4390 	err = sel_netnode_sid(addrp, family, &node_sid);
4391 	if (err)
4392 		return err;
4393 	return avc_has_perm(peer_sid, node_sid,
4394 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4395 }
4396 
4397 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4398 				       u16 family)
4399 {
4400 	int err = 0;
4401 	struct sk_security_struct *sksec = sk->sk_security;
4402 	u32 sk_sid = sksec->sid;
4403 	struct common_audit_data ad;
4404 	struct lsm_network_audit net = {0,};
4405 	char *addrp;
4406 
4407 	ad.type = LSM_AUDIT_DATA_NET;
4408 	ad.u.net = &net;
4409 	ad.u.net->netif = skb->skb_iif;
4410 	ad.u.net->family = family;
4411 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4412 	if (err)
4413 		return err;
4414 
4415 	if (selinux_secmark_enabled()) {
4416 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4417 				   PACKET__RECV, &ad);
4418 		if (err)
4419 			return err;
4420 	}
4421 
4422 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4423 	if (err)
4424 		return err;
4425 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4426 
4427 	return err;
4428 }
4429 
4430 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4431 {
4432 	int err;
4433 	struct sk_security_struct *sksec = sk->sk_security;
4434 	u16 family = sk->sk_family;
4435 	u32 sk_sid = sksec->sid;
4436 	struct common_audit_data ad;
4437 	struct lsm_network_audit net = {0,};
4438 	char *addrp;
4439 	u8 secmark_active;
4440 	u8 peerlbl_active;
4441 
4442 	if (family != PF_INET && family != PF_INET6)
4443 		return 0;
4444 
4445 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4446 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4447 		family = PF_INET;
4448 
4449 	/* If any sort of compatibility mode is enabled then handoff processing
4450 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4451 	 * special handling.  We do this in an attempt to keep this function
4452 	 * as fast and as clean as possible. */
4453 	if (!selinux_policycap_netpeer)
4454 		return selinux_sock_rcv_skb_compat(sk, skb, family);
4455 
4456 	secmark_active = selinux_secmark_enabled();
4457 	peerlbl_active = selinux_peerlbl_enabled();
4458 	if (!secmark_active && !peerlbl_active)
4459 		return 0;
4460 
4461 	ad.type = LSM_AUDIT_DATA_NET;
4462 	ad.u.net = &net;
4463 	ad.u.net->netif = skb->skb_iif;
4464 	ad.u.net->family = family;
4465 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4466 	if (err)
4467 		return err;
4468 
4469 	if (peerlbl_active) {
4470 		u32 peer_sid;
4471 
4472 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4473 		if (err)
4474 			return err;
4475 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4476 					       addrp, family, peer_sid, &ad);
4477 		if (err) {
4478 			selinux_netlbl_err(skb, err, 0);
4479 			return err;
4480 		}
4481 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4482 				   PEER__RECV, &ad);
4483 		if (err) {
4484 			selinux_netlbl_err(skb, err, 0);
4485 			return err;
4486 		}
4487 	}
4488 
4489 	if (secmark_active) {
4490 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4491 				   PACKET__RECV, &ad);
4492 		if (err)
4493 			return err;
4494 	}
4495 
4496 	return err;
4497 }
4498 
4499 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4500 					    int __user *optlen, unsigned len)
4501 {
4502 	int err = 0;
4503 	char *scontext;
4504 	u32 scontext_len;
4505 	struct sk_security_struct *sksec = sock->sk->sk_security;
4506 	u32 peer_sid = SECSID_NULL;
4507 
4508 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4509 	    sksec->sclass == SECCLASS_TCP_SOCKET)
4510 		peer_sid = sksec->peer_sid;
4511 	if (peer_sid == SECSID_NULL)
4512 		return -ENOPROTOOPT;
4513 
4514 	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4515 	if (err)
4516 		return err;
4517 
4518 	if (scontext_len > len) {
4519 		err = -ERANGE;
4520 		goto out_len;
4521 	}
4522 
4523 	if (copy_to_user(optval, scontext, scontext_len))
4524 		err = -EFAULT;
4525 
4526 out_len:
4527 	if (put_user(scontext_len, optlen))
4528 		err = -EFAULT;
4529 	kfree(scontext);
4530 	return err;
4531 }
4532 
4533 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4534 {
4535 	u32 peer_secid = SECSID_NULL;
4536 	u16 family;
4537 
4538 	if (skb && skb->protocol == htons(ETH_P_IP))
4539 		family = PF_INET;
4540 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4541 		family = PF_INET6;
4542 	else if (sock)
4543 		family = sock->sk->sk_family;
4544 	else
4545 		goto out;
4546 
4547 	if (sock && family == PF_UNIX)
4548 		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4549 	else if (skb)
4550 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4551 
4552 out:
4553 	*secid = peer_secid;
4554 	if (peer_secid == SECSID_NULL)
4555 		return -EINVAL;
4556 	return 0;
4557 }
4558 
4559 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4560 {
4561 	struct sk_security_struct *sksec;
4562 
4563 	sksec = kzalloc(sizeof(*sksec), priority);
4564 	if (!sksec)
4565 		return -ENOMEM;
4566 
4567 	sksec->peer_sid = SECINITSID_UNLABELED;
4568 	sksec->sid = SECINITSID_UNLABELED;
4569 	sksec->sclass = SECCLASS_SOCKET;
4570 	selinux_netlbl_sk_security_reset(sksec);
4571 	sk->sk_security = sksec;
4572 
4573 	return 0;
4574 }
4575 
4576 static void selinux_sk_free_security(struct sock *sk)
4577 {
4578 	struct sk_security_struct *sksec = sk->sk_security;
4579 
4580 	sk->sk_security = NULL;
4581 	selinux_netlbl_sk_security_free(sksec);
4582 	kfree(sksec);
4583 }
4584 
4585 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4586 {
4587 	struct sk_security_struct *sksec = sk->sk_security;
4588 	struct sk_security_struct *newsksec = newsk->sk_security;
4589 
4590 	newsksec->sid = sksec->sid;
4591 	newsksec->peer_sid = sksec->peer_sid;
4592 	newsksec->sclass = sksec->sclass;
4593 
4594 	selinux_netlbl_sk_security_reset(newsksec);
4595 }
4596 
4597 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4598 {
4599 	if (!sk)
4600 		*secid = SECINITSID_ANY_SOCKET;
4601 	else {
4602 		struct sk_security_struct *sksec = sk->sk_security;
4603 
4604 		*secid = sksec->sid;
4605 	}
4606 }
4607 
4608 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4609 {
4610 	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4611 	struct sk_security_struct *sksec = sk->sk_security;
4612 
4613 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4614 	    sk->sk_family == PF_UNIX)
4615 		isec->sid = sksec->sid;
4616 	sksec->sclass = isec->sclass;
4617 }
4618 
4619 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4620 				     struct request_sock *req)
4621 {
4622 	struct sk_security_struct *sksec = sk->sk_security;
4623 	int err;
4624 	u16 family = req->rsk_ops->family;
4625 	u32 connsid;
4626 	u32 peersid;
4627 
4628 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4629 	if (err)
4630 		return err;
4631 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4632 	if (err)
4633 		return err;
4634 	req->secid = connsid;
4635 	req->peer_secid = peersid;
4636 
4637 	return selinux_netlbl_inet_conn_request(req, family);
4638 }
4639 
4640 static void selinux_inet_csk_clone(struct sock *newsk,
4641 				   const struct request_sock *req)
4642 {
4643 	struct sk_security_struct *newsksec = newsk->sk_security;
4644 
4645 	newsksec->sid = req->secid;
4646 	newsksec->peer_sid = req->peer_secid;
4647 	/* NOTE: Ideally, we should also get the isec->sid for the
4648 	   new socket in sync, but we don't have the isec available yet.
4649 	   So we will wait until sock_graft to do it, by which
4650 	   time it will have been created and available. */
4651 
4652 	/* We don't need to take any sort of lock here as we are the only
4653 	 * thread with access to newsksec */
4654 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4655 }
4656 
4657 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4658 {
4659 	u16 family = sk->sk_family;
4660 	struct sk_security_struct *sksec = sk->sk_security;
4661 
4662 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4663 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4664 		family = PF_INET;
4665 
4666 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4667 }
4668 
4669 static int selinux_secmark_relabel_packet(u32 sid)
4670 {
4671 	const struct task_security_struct *__tsec;
4672 	u32 tsid;
4673 
4674 	__tsec = current_security();
4675 	tsid = __tsec->sid;
4676 
4677 	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4678 }
4679 
4680 static void selinux_secmark_refcount_inc(void)
4681 {
4682 	atomic_inc(&selinux_secmark_refcount);
4683 }
4684 
4685 static void selinux_secmark_refcount_dec(void)
4686 {
4687 	atomic_dec(&selinux_secmark_refcount);
4688 }
4689 
4690 static void selinux_req_classify_flow(const struct request_sock *req,
4691 				      struct flowi *fl)
4692 {
4693 	fl->flowi_secid = req->secid;
4694 }
4695 
4696 static int selinux_tun_dev_alloc_security(void **security)
4697 {
4698 	struct tun_security_struct *tunsec;
4699 
4700 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4701 	if (!tunsec)
4702 		return -ENOMEM;
4703 	tunsec->sid = current_sid();
4704 
4705 	*security = tunsec;
4706 	return 0;
4707 }
4708 
4709 static void selinux_tun_dev_free_security(void *security)
4710 {
4711 	kfree(security);
4712 }
4713 
4714 static int selinux_tun_dev_create(void)
4715 {
4716 	u32 sid = current_sid();
4717 
4718 	/* we aren't taking into account the "sockcreate" SID since the socket
4719 	 * that is being created here is not a socket in the traditional sense,
4720 	 * instead it is a private sock, accessible only to the kernel, and
4721 	 * representing a wide range of network traffic spanning multiple
4722 	 * connections unlike traditional sockets - check the TUN driver to
4723 	 * get a better understanding of why this socket is special */
4724 
4725 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4726 			    NULL);
4727 }
4728 
4729 static int selinux_tun_dev_attach_queue(void *security)
4730 {
4731 	struct tun_security_struct *tunsec = security;
4732 
4733 	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4734 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
4735 }
4736 
4737 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4738 {
4739 	struct tun_security_struct *tunsec = security;
4740 	struct sk_security_struct *sksec = sk->sk_security;
4741 
4742 	/* we don't currently perform any NetLabel based labeling here and it
4743 	 * isn't clear that we would want to do so anyway; while we could apply
4744 	 * labeling without the support of the TUN user the resulting labeled
4745 	 * traffic from the other end of the connection would almost certainly
4746 	 * cause confusion to the TUN user that had no idea network labeling
4747 	 * protocols were being used */
4748 
4749 	sksec->sid = tunsec->sid;
4750 	sksec->sclass = SECCLASS_TUN_SOCKET;
4751 
4752 	return 0;
4753 }
4754 
4755 static int selinux_tun_dev_open(void *security)
4756 {
4757 	struct tun_security_struct *tunsec = security;
4758 	u32 sid = current_sid();
4759 	int err;
4760 
4761 	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4762 			   TUN_SOCKET__RELABELFROM, NULL);
4763 	if (err)
4764 		return err;
4765 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4766 			   TUN_SOCKET__RELABELTO, NULL);
4767 	if (err)
4768 		return err;
4769 	tunsec->sid = sid;
4770 
4771 	return 0;
4772 }
4773 
4774 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4775 {
4776 	int err = 0;
4777 	u32 perm;
4778 	struct nlmsghdr *nlh;
4779 	struct sk_security_struct *sksec = sk->sk_security;
4780 
4781 	if (skb->len < NLMSG_HDRLEN) {
4782 		err = -EINVAL;
4783 		goto out;
4784 	}
4785 	nlh = nlmsg_hdr(skb);
4786 
4787 	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4788 	if (err) {
4789 		if (err == -EINVAL) {
4790 			printk(KERN_WARNING
4791 			       "SELinux: unrecognized netlink message:"
4792 			       " protocol=%hu nlmsg_type=%hu sclass=%s\n",
4793 			       sk->sk_protocol, nlh->nlmsg_type,
4794 			       secclass_map[sksec->sclass - 1].name);
4795 			if (!selinux_enforcing || security_get_allow_unknown())
4796 				err = 0;
4797 		}
4798 
4799 		/* Ignore */
4800 		if (err == -ENOENT)
4801 			err = 0;
4802 		goto out;
4803 	}
4804 
4805 	err = sock_has_perm(current, sk, perm);
4806 out:
4807 	return err;
4808 }
4809 
4810 #ifdef CONFIG_NETFILTER
4811 
4812 static unsigned int selinux_ip_forward(struct sk_buff *skb,
4813 				       const struct net_device *indev,
4814 				       u16 family)
4815 {
4816 	int err;
4817 	char *addrp;
4818 	u32 peer_sid;
4819 	struct common_audit_data ad;
4820 	struct lsm_network_audit net = {0,};
4821 	u8 secmark_active;
4822 	u8 netlbl_active;
4823 	u8 peerlbl_active;
4824 
4825 	if (!selinux_policycap_netpeer)
4826 		return NF_ACCEPT;
4827 
4828 	secmark_active = selinux_secmark_enabled();
4829 	netlbl_active = netlbl_enabled();
4830 	peerlbl_active = selinux_peerlbl_enabled();
4831 	if (!secmark_active && !peerlbl_active)
4832 		return NF_ACCEPT;
4833 
4834 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4835 		return NF_DROP;
4836 
4837 	ad.type = LSM_AUDIT_DATA_NET;
4838 	ad.u.net = &net;
4839 	ad.u.net->netif = indev->ifindex;
4840 	ad.u.net->family = family;
4841 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4842 		return NF_DROP;
4843 
4844 	if (peerlbl_active) {
4845 		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
4846 					       addrp, family, peer_sid, &ad);
4847 		if (err) {
4848 			selinux_netlbl_err(skb, err, 1);
4849 			return NF_DROP;
4850 		}
4851 	}
4852 
4853 	if (secmark_active)
4854 		if (avc_has_perm(peer_sid, skb->secmark,
4855 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4856 			return NF_DROP;
4857 
4858 	if (netlbl_active)
4859 		/* we do this in the FORWARD path and not the POST_ROUTING
4860 		 * path because we want to make sure we apply the necessary
4861 		 * labeling before IPsec is applied so we can leverage AH
4862 		 * protection */
4863 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4864 			return NF_DROP;
4865 
4866 	return NF_ACCEPT;
4867 }
4868 
4869 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops,
4870 					 struct sk_buff *skb,
4871 					 const struct nf_hook_state *state)
4872 {
4873 	return selinux_ip_forward(skb, state->in, PF_INET);
4874 }
4875 
4876 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4877 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops,
4878 					 struct sk_buff *skb,
4879 					 const struct nf_hook_state *state)
4880 {
4881 	return selinux_ip_forward(skb, state->in, PF_INET6);
4882 }
4883 #endif	/* IPV6 */
4884 
4885 static unsigned int selinux_ip_output(struct sk_buff *skb,
4886 				      u16 family)
4887 {
4888 	struct sock *sk;
4889 	u32 sid;
4890 
4891 	if (!netlbl_enabled())
4892 		return NF_ACCEPT;
4893 
4894 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4895 	 * because we want to make sure we apply the necessary labeling
4896 	 * before IPsec is applied so we can leverage AH protection */
4897 	sk = skb->sk;
4898 	if (sk) {
4899 		struct sk_security_struct *sksec;
4900 
4901 		if (sk->sk_state == TCP_LISTEN)
4902 			/* if the socket is the listening state then this
4903 			 * packet is a SYN-ACK packet which means it needs to
4904 			 * be labeled based on the connection/request_sock and
4905 			 * not the parent socket.  unfortunately, we can't
4906 			 * lookup the request_sock yet as it isn't queued on
4907 			 * the parent socket until after the SYN-ACK is sent.
4908 			 * the "solution" is to simply pass the packet as-is
4909 			 * as any IP option based labeling should be copied
4910 			 * from the initial connection request (in the IP
4911 			 * layer).  it is far from ideal, but until we get a
4912 			 * security label in the packet itself this is the
4913 			 * best we can do. */
4914 			return NF_ACCEPT;
4915 
4916 		/* standard practice, label using the parent socket */
4917 		sksec = sk->sk_security;
4918 		sid = sksec->sid;
4919 	} else
4920 		sid = SECINITSID_KERNEL;
4921 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4922 		return NF_DROP;
4923 
4924 	return NF_ACCEPT;
4925 }
4926 
4927 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops,
4928 					struct sk_buff *skb,
4929 					const struct nf_hook_state *state)
4930 {
4931 	return selinux_ip_output(skb, PF_INET);
4932 }
4933 
4934 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4935 						int ifindex,
4936 						u16 family)
4937 {
4938 	struct sock *sk = skb->sk;
4939 	struct sk_security_struct *sksec;
4940 	struct common_audit_data ad;
4941 	struct lsm_network_audit net = {0,};
4942 	char *addrp;
4943 	u8 proto;
4944 
4945 	if (sk == NULL)
4946 		return NF_ACCEPT;
4947 	sksec = sk->sk_security;
4948 
4949 	ad.type = LSM_AUDIT_DATA_NET;
4950 	ad.u.net = &net;
4951 	ad.u.net->netif = ifindex;
4952 	ad.u.net->family = family;
4953 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4954 		return NF_DROP;
4955 
4956 	if (selinux_secmark_enabled())
4957 		if (avc_has_perm(sksec->sid, skb->secmark,
4958 				 SECCLASS_PACKET, PACKET__SEND, &ad))
4959 			return NF_DROP_ERR(-ECONNREFUSED);
4960 
4961 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4962 		return NF_DROP_ERR(-ECONNREFUSED);
4963 
4964 	return NF_ACCEPT;
4965 }
4966 
4967 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
4968 					 const struct net_device *outdev,
4969 					 u16 family)
4970 {
4971 	u32 secmark_perm;
4972 	u32 peer_sid;
4973 	int ifindex = outdev->ifindex;
4974 	struct sock *sk;
4975 	struct common_audit_data ad;
4976 	struct lsm_network_audit net = {0,};
4977 	char *addrp;
4978 	u8 secmark_active;
4979 	u8 peerlbl_active;
4980 
4981 	/* If any sort of compatibility mode is enabled then handoff processing
4982 	 * to the selinux_ip_postroute_compat() function to deal with the
4983 	 * special handling.  We do this in an attempt to keep this function
4984 	 * as fast and as clean as possible. */
4985 	if (!selinux_policycap_netpeer)
4986 		return selinux_ip_postroute_compat(skb, ifindex, family);
4987 
4988 	secmark_active = selinux_secmark_enabled();
4989 	peerlbl_active = selinux_peerlbl_enabled();
4990 	if (!secmark_active && !peerlbl_active)
4991 		return NF_ACCEPT;
4992 
4993 	sk = skb->sk;
4994 
4995 #ifdef CONFIG_XFRM
4996 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4997 	 * packet transformation so allow the packet to pass without any checks
4998 	 * since we'll have another chance to perform access control checks
4999 	 * when the packet is on it's final way out.
5000 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5001 	 *       is NULL, in this case go ahead and apply access control.
5002 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5003 	 *       TCP listening state we cannot wait until the XFRM processing
5004 	 *       is done as we will miss out on the SA label if we do;
5005 	 *       unfortunately, this means more work, but it is only once per
5006 	 *       connection. */
5007 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5008 	    !(sk != NULL && sk->sk_state == TCP_LISTEN))
5009 		return NF_ACCEPT;
5010 #endif
5011 
5012 	if (sk == NULL) {
5013 		/* Without an associated socket the packet is either coming
5014 		 * from the kernel or it is being forwarded; check the packet
5015 		 * to determine which and if the packet is being forwarded
5016 		 * query the packet directly to determine the security label. */
5017 		if (skb->skb_iif) {
5018 			secmark_perm = PACKET__FORWARD_OUT;
5019 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5020 				return NF_DROP;
5021 		} else {
5022 			secmark_perm = PACKET__SEND;
5023 			peer_sid = SECINITSID_KERNEL;
5024 		}
5025 	} else if (sk->sk_state == TCP_LISTEN) {
5026 		/* Locally generated packet but the associated socket is in the
5027 		 * listening state which means this is a SYN-ACK packet.  In
5028 		 * this particular case the correct security label is assigned
5029 		 * to the connection/request_sock but unfortunately we can't
5030 		 * query the request_sock as it isn't queued on the parent
5031 		 * socket until after the SYN-ACK packet is sent; the only
5032 		 * viable choice is to regenerate the label like we do in
5033 		 * selinux_inet_conn_request().  See also selinux_ip_output()
5034 		 * for similar problems. */
5035 		u32 skb_sid;
5036 		struct sk_security_struct *sksec = sk->sk_security;
5037 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5038 			return NF_DROP;
5039 		/* At this point, if the returned skb peerlbl is SECSID_NULL
5040 		 * and the packet has been through at least one XFRM
5041 		 * transformation then we must be dealing with the "final"
5042 		 * form of labeled IPsec packet; since we've already applied
5043 		 * all of our access controls on this packet we can safely
5044 		 * pass the packet. */
5045 		if (skb_sid == SECSID_NULL) {
5046 			switch (family) {
5047 			case PF_INET:
5048 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5049 					return NF_ACCEPT;
5050 				break;
5051 			case PF_INET6:
5052 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5053 					return NF_ACCEPT;
5054 				break;
5055 			default:
5056 				return NF_DROP_ERR(-ECONNREFUSED);
5057 			}
5058 		}
5059 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5060 			return NF_DROP;
5061 		secmark_perm = PACKET__SEND;
5062 	} else {
5063 		/* Locally generated packet, fetch the security label from the
5064 		 * associated socket. */
5065 		struct sk_security_struct *sksec = sk->sk_security;
5066 		peer_sid = sksec->sid;
5067 		secmark_perm = PACKET__SEND;
5068 	}
5069 
5070 	ad.type = LSM_AUDIT_DATA_NET;
5071 	ad.u.net = &net;
5072 	ad.u.net->netif = ifindex;
5073 	ad.u.net->family = family;
5074 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5075 		return NF_DROP;
5076 
5077 	if (secmark_active)
5078 		if (avc_has_perm(peer_sid, skb->secmark,
5079 				 SECCLASS_PACKET, secmark_perm, &ad))
5080 			return NF_DROP_ERR(-ECONNREFUSED);
5081 
5082 	if (peerlbl_active) {
5083 		u32 if_sid;
5084 		u32 node_sid;
5085 
5086 		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5087 			return NF_DROP;
5088 		if (avc_has_perm(peer_sid, if_sid,
5089 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5090 			return NF_DROP_ERR(-ECONNREFUSED);
5091 
5092 		if (sel_netnode_sid(addrp, family, &node_sid))
5093 			return NF_DROP;
5094 		if (avc_has_perm(peer_sid, node_sid,
5095 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5096 			return NF_DROP_ERR(-ECONNREFUSED);
5097 	}
5098 
5099 	return NF_ACCEPT;
5100 }
5101 
5102 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops,
5103 					   struct sk_buff *skb,
5104 					   const struct nf_hook_state *state)
5105 {
5106 	return selinux_ip_postroute(skb, state->out, PF_INET);
5107 }
5108 
5109 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5110 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops,
5111 					   struct sk_buff *skb,
5112 					   const struct nf_hook_state *state)
5113 {
5114 	return selinux_ip_postroute(skb, state->out, PF_INET6);
5115 }
5116 #endif	/* IPV6 */
5117 
5118 #endif	/* CONFIG_NETFILTER */
5119 
5120 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5121 {
5122 	return selinux_nlmsg_perm(sk, skb);
5123 }
5124 
5125 static int ipc_alloc_security(struct task_struct *task,
5126 			      struct kern_ipc_perm *perm,
5127 			      u16 sclass)
5128 {
5129 	struct ipc_security_struct *isec;
5130 	u32 sid;
5131 
5132 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5133 	if (!isec)
5134 		return -ENOMEM;
5135 
5136 	sid = task_sid(task);
5137 	isec->sclass = sclass;
5138 	isec->sid = sid;
5139 	perm->security = isec;
5140 
5141 	return 0;
5142 }
5143 
5144 static void ipc_free_security(struct kern_ipc_perm *perm)
5145 {
5146 	struct ipc_security_struct *isec = perm->security;
5147 	perm->security = NULL;
5148 	kfree(isec);
5149 }
5150 
5151 static int msg_msg_alloc_security(struct msg_msg *msg)
5152 {
5153 	struct msg_security_struct *msec;
5154 
5155 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5156 	if (!msec)
5157 		return -ENOMEM;
5158 
5159 	msec->sid = SECINITSID_UNLABELED;
5160 	msg->security = msec;
5161 
5162 	return 0;
5163 }
5164 
5165 static void msg_msg_free_security(struct msg_msg *msg)
5166 {
5167 	struct msg_security_struct *msec = msg->security;
5168 
5169 	msg->security = NULL;
5170 	kfree(msec);
5171 }
5172 
5173 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5174 			u32 perms)
5175 {
5176 	struct ipc_security_struct *isec;
5177 	struct common_audit_data ad;
5178 	u32 sid = current_sid();
5179 
5180 	isec = ipc_perms->security;
5181 
5182 	ad.type = LSM_AUDIT_DATA_IPC;
5183 	ad.u.ipc_id = ipc_perms->key;
5184 
5185 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5186 }
5187 
5188 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5189 {
5190 	return msg_msg_alloc_security(msg);
5191 }
5192 
5193 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5194 {
5195 	msg_msg_free_security(msg);
5196 }
5197 
5198 /* message queue security operations */
5199 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5200 {
5201 	struct ipc_security_struct *isec;
5202 	struct common_audit_data ad;
5203 	u32 sid = current_sid();
5204 	int rc;
5205 
5206 	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5207 	if (rc)
5208 		return rc;
5209 
5210 	isec = msq->q_perm.security;
5211 
5212 	ad.type = LSM_AUDIT_DATA_IPC;
5213 	ad.u.ipc_id = msq->q_perm.key;
5214 
5215 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5216 			  MSGQ__CREATE, &ad);
5217 	if (rc) {
5218 		ipc_free_security(&msq->q_perm);
5219 		return rc;
5220 	}
5221 	return 0;
5222 }
5223 
5224 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5225 {
5226 	ipc_free_security(&msq->q_perm);
5227 }
5228 
5229 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5230 {
5231 	struct ipc_security_struct *isec;
5232 	struct common_audit_data ad;
5233 	u32 sid = current_sid();
5234 
5235 	isec = msq->q_perm.security;
5236 
5237 	ad.type = LSM_AUDIT_DATA_IPC;
5238 	ad.u.ipc_id = msq->q_perm.key;
5239 
5240 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5241 			    MSGQ__ASSOCIATE, &ad);
5242 }
5243 
5244 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5245 {
5246 	int err;
5247 	int perms;
5248 
5249 	switch (cmd) {
5250 	case IPC_INFO:
5251 	case MSG_INFO:
5252 		/* No specific object, just general system-wide information. */
5253 		return task_has_system(current, SYSTEM__IPC_INFO);
5254 	case IPC_STAT:
5255 	case MSG_STAT:
5256 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5257 		break;
5258 	case IPC_SET:
5259 		perms = MSGQ__SETATTR;
5260 		break;
5261 	case IPC_RMID:
5262 		perms = MSGQ__DESTROY;
5263 		break;
5264 	default:
5265 		return 0;
5266 	}
5267 
5268 	err = ipc_has_perm(&msq->q_perm, perms);
5269 	return err;
5270 }
5271 
5272 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5273 {
5274 	struct ipc_security_struct *isec;
5275 	struct msg_security_struct *msec;
5276 	struct common_audit_data ad;
5277 	u32 sid = current_sid();
5278 	int rc;
5279 
5280 	isec = msq->q_perm.security;
5281 	msec = msg->security;
5282 
5283 	/*
5284 	 * First time through, need to assign label to the message
5285 	 */
5286 	if (msec->sid == SECINITSID_UNLABELED) {
5287 		/*
5288 		 * Compute new sid based on current process and
5289 		 * message queue this message will be stored in
5290 		 */
5291 		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5292 					     NULL, &msec->sid);
5293 		if (rc)
5294 			return rc;
5295 	}
5296 
5297 	ad.type = LSM_AUDIT_DATA_IPC;
5298 	ad.u.ipc_id = msq->q_perm.key;
5299 
5300 	/* Can this process write to the queue? */
5301 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5302 			  MSGQ__WRITE, &ad);
5303 	if (!rc)
5304 		/* Can this process send the message */
5305 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5306 				  MSG__SEND, &ad);
5307 	if (!rc)
5308 		/* Can the message be put in the queue? */
5309 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5310 				  MSGQ__ENQUEUE, &ad);
5311 
5312 	return rc;
5313 }
5314 
5315 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5316 				    struct task_struct *target,
5317 				    long type, int mode)
5318 {
5319 	struct ipc_security_struct *isec;
5320 	struct msg_security_struct *msec;
5321 	struct common_audit_data ad;
5322 	u32 sid = task_sid(target);
5323 	int rc;
5324 
5325 	isec = msq->q_perm.security;
5326 	msec = msg->security;
5327 
5328 	ad.type = LSM_AUDIT_DATA_IPC;
5329 	ad.u.ipc_id = msq->q_perm.key;
5330 
5331 	rc = avc_has_perm(sid, isec->sid,
5332 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
5333 	if (!rc)
5334 		rc = avc_has_perm(sid, msec->sid,
5335 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
5336 	return rc;
5337 }
5338 
5339 /* Shared Memory security operations */
5340 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5341 {
5342 	struct ipc_security_struct *isec;
5343 	struct common_audit_data ad;
5344 	u32 sid = current_sid();
5345 	int rc;
5346 
5347 	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5348 	if (rc)
5349 		return rc;
5350 
5351 	isec = shp->shm_perm.security;
5352 
5353 	ad.type = LSM_AUDIT_DATA_IPC;
5354 	ad.u.ipc_id = shp->shm_perm.key;
5355 
5356 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5357 			  SHM__CREATE, &ad);
5358 	if (rc) {
5359 		ipc_free_security(&shp->shm_perm);
5360 		return rc;
5361 	}
5362 	return 0;
5363 }
5364 
5365 static void selinux_shm_free_security(struct shmid_kernel *shp)
5366 {
5367 	ipc_free_security(&shp->shm_perm);
5368 }
5369 
5370 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5371 {
5372 	struct ipc_security_struct *isec;
5373 	struct common_audit_data ad;
5374 	u32 sid = current_sid();
5375 
5376 	isec = shp->shm_perm.security;
5377 
5378 	ad.type = LSM_AUDIT_DATA_IPC;
5379 	ad.u.ipc_id = shp->shm_perm.key;
5380 
5381 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5382 			    SHM__ASSOCIATE, &ad);
5383 }
5384 
5385 /* Note, at this point, shp is locked down */
5386 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5387 {
5388 	int perms;
5389 	int err;
5390 
5391 	switch (cmd) {
5392 	case IPC_INFO:
5393 	case SHM_INFO:
5394 		/* No specific object, just general system-wide information. */
5395 		return task_has_system(current, SYSTEM__IPC_INFO);
5396 	case IPC_STAT:
5397 	case SHM_STAT:
5398 		perms = SHM__GETATTR | SHM__ASSOCIATE;
5399 		break;
5400 	case IPC_SET:
5401 		perms = SHM__SETATTR;
5402 		break;
5403 	case SHM_LOCK:
5404 	case SHM_UNLOCK:
5405 		perms = SHM__LOCK;
5406 		break;
5407 	case IPC_RMID:
5408 		perms = SHM__DESTROY;
5409 		break;
5410 	default:
5411 		return 0;
5412 	}
5413 
5414 	err = ipc_has_perm(&shp->shm_perm, perms);
5415 	return err;
5416 }
5417 
5418 static int selinux_shm_shmat(struct shmid_kernel *shp,
5419 			     char __user *shmaddr, int shmflg)
5420 {
5421 	u32 perms;
5422 
5423 	if (shmflg & SHM_RDONLY)
5424 		perms = SHM__READ;
5425 	else
5426 		perms = SHM__READ | SHM__WRITE;
5427 
5428 	return ipc_has_perm(&shp->shm_perm, perms);
5429 }
5430 
5431 /* Semaphore security operations */
5432 static int selinux_sem_alloc_security(struct sem_array *sma)
5433 {
5434 	struct ipc_security_struct *isec;
5435 	struct common_audit_data ad;
5436 	u32 sid = current_sid();
5437 	int rc;
5438 
5439 	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5440 	if (rc)
5441 		return rc;
5442 
5443 	isec = sma->sem_perm.security;
5444 
5445 	ad.type = LSM_AUDIT_DATA_IPC;
5446 	ad.u.ipc_id = sma->sem_perm.key;
5447 
5448 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5449 			  SEM__CREATE, &ad);
5450 	if (rc) {
5451 		ipc_free_security(&sma->sem_perm);
5452 		return rc;
5453 	}
5454 	return 0;
5455 }
5456 
5457 static void selinux_sem_free_security(struct sem_array *sma)
5458 {
5459 	ipc_free_security(&sma->sem_perm);
5460 }
5461 
5462 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5463 {
5464 	struct ipc_security_struct *isec;
5465 	struct common_audit_data ad;
5466 	u32 sid = current_sid();
5467 
5468 	isec = sma->sem_perm.security;
5469 
5470 	ad.type = LSM_AUDIT_DATA_IPC;
5471 	ad.u.ipc_id = sma->sem_perm.key;
5472 
5473 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5474 			    SEM__ASSOCIATE, &ad);
5475 }
5476 
5477 /* Note, at this point, sma is locked down */
5478 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5479 {
5480 	int err;
5481 	u32 perms;
5482 
5483 	switch (cmd) {
5484 	case IPC_INFO:
5485 	case SEM_INFO:
5486 		/* No specific object, just general system-wide information. */
5487 		return task_has_system(current, SYSTEM__IPC_INFO);
5488 	case GETPID:
5489 	case GETNCNT:
5490 	case GETZCNT:
5491 		perms = SEM__GETATTR;
5492 		break;
5493 	case GETVAL:
5494 	case GETALL:
5495 		perms = SEM__READ;
5496 		break;
5497 	case SETVAL:
5498 	case SETALL:
5499 		perms = SEM__WRITE;
5500 		break;
5501 	case IPC_RMID:
5502 		perms = SEM__DESTROY;
5503 		break;
5504 	case IPC_SET:
5505 		perms = SEM__SETATTR;
5506 		break;
5507 	case IPC_STAT:
5508 	case SEM_STAT:
5509 		perms = SEM__GETATTR | SEM__ASSOCIATE;
5510 		break;
5511 	default:
5512 		return 0;
5513 	}
5514 
5515 	err = ipc_has_perm(&sma->sem_perm, perms);
5516 	return err;
5517 }
5518 
5519 static int selinux_sem_semop(struct sem_array *sma,
5520 			     struct sembuf *sops, unsigned nsops, int alter)
5521 {
5522 	u32 perms;
5523 
5524 	if (alter)
5525 		perms = SEM__READ | SEM__WRITE;
5526 	else
5527 		perms = SEM__READ;
5528 
5529 	return ipc_has_perm(&sma->sem_perm, perms);
5530 }
5531 
5532 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5533 {
5534 	u32 av = 0;
5535 
5536 	av = 0;
5537 	if (flag & S_IRUGO)
5538 		av |= IPC__UNIX_READ;
5539 	if (flag & S_IWUGO)
5540 		av |= IPC__UNIX_WRITE;
5541 
5542 	if (av == 0)
5543 		return 0;
5544 
5545 	return ipc_has_perm(ipcp, av);
5546 }
5547 
5548 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5549 {
5550 	struct ipc_security_struct *isec = ipcp->security;
5551 	*secid = isec->sid;
5552 }
5553 
5554 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5555 {
5556 	if (inode)
5557 		inode_doinit_with_dentry(inode, dentry);
5558 }
5559 
5560 static int selinux_getprocattr(struct task_struct *p,
5561 			       char *name, char **value)
5562 {
5563 	const struct task_security_struct *__tsec;
5564 	u32 sid;
5565 	int error;
5566 	unsigned len;
5567 
5568 	if (current != p) {
5569 		error = current_has_perm(p, PROCESS__GETATTR);
5570 		if (error)
5571 			return error;
5572 	}
5573 
5574 	rcu_read_lock();
5575 	__tsec = __task_cred(p)->security;
5576 
5577 	if (!strcmp(name, "current"))
5578 		sid = __tsec->sid;
5579 	else if (!strcmp(name, "prev"))
5580 		sid = __tsec->osid;
5581 	else if (!strcmp(name, "exec"))
5582 		sid = __tsec->exec_sid;
5583 	else if (!strcmp(name, "fscreate"))
5584 		sid = __tsec->create_sid;
5585 	else if (!strcmp(name, "keycreate"))
5586 		sid = __tsec->keycreate_sid;
5587 	else if (!strcmp(name, "sockcreate"))
5588 		sid = __tsec->sockcreate_sid;
5589 	else
5590 		goto invalid;
5591 	rcu_read_unlock();
5592 
5593 	if (!sid)
5594 		return 0;
5595 
5596 	error = security_sid_to_context(sid, value, &len);
5597 	if (error)
5598 		return error;
5599 	return len;
5600 
5601 invalid:
5602 	rcu_read_unlock();
5603 	return -EINVAL;
5604 }
5605 
5606 static int selinux_setprocattr(struct task_struct *p,
5607 			       char *name, void *value, size_t size)
5608 {
5609 	struct task_security_struct *tsec;
5610 	struct task_struct *tracer;
5611 	struct cred *new;
5612 	u32 sid = 0, ptsid;
5613 	int error;
5614 	char *str = value;
5615 
5616 	if (current != p) {
5617 		/* SELinux only allows a process to change its own
5618 		   security attributes. */
5619 		return -EACCES;
5620 	}
5621 
5622 	/*
5623 	 * Basic control over ability to set these attributes at all.
5624 	 * current == p, but we'll pass them separately in case the
5625 	 * above restriction is ever removed.
5626 	 */
5627 	if (!strcmp(name, "exec"))
5628 		error = current_has_perm(p, PROCESS__SETEXEC);
5629 	else if (!strcmp(name, "fscreate"))
5630 		error = current_has_perm(p, PROCESS__SETFSCREATE);
5631 	else if (!strcmp(name, "keycreate"))
5632 		error = current_has_perm(p, PROCESS__SETKEYCREATE);
5633 	else if (!strcmp(name, "sockcreate"))
5634 		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5635 	else if (!strcmp(name, "current"))
5636 		error = current_has_perm(p, PROCESS__SETCURRENT);
5637 	else
5638 		error = -EINVAL;
5639 	if (error)
5640 		return error;
5641 
5642 	/* Obtain a SID for the context, if one was specified. */
5643 	if (size && str[1] && str[1] != '\n') {
5644 		if (str[size-1] == '\n') {
5645 			str[size-1] = 0;
5646 			size--;
5647 		}
5648 		error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5649 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5650 			if (!capable(CAP_MAC_ADMIN)) {
5651 				struct audit_buffer *ab;
5652 				size_t audit_size;
5653 
5654 				/* We strip a nul only if it is at the end, otherwise the
5655 				 * context contains a nul and we should audit that */
5656 				if (str[size - 1] == '\0')
5657 					audit_size = size - 1;
5658 				else
5659 					audit_size = size;
5660 				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5661 				audit_log_format(ab, "op=fscreate invalid_context=");
5662 				audit_log_n_untrustedstring(ab, value, audit_size);
5663 				audit_log_end(ab);
5664 
5665 				return error;
5666 			}
5667 			error = security_context_to_sid_force(value, size,
5668 							      &sid);
5669 		}
5670 		if (error)
5671 			return error;
5672 	}
5673 
5674 	new = prepare_creds();
5675 	if (!new)
5676 		return -ENOMEM;
5677 
5678 	/* Permission checking based on the specified context is
5679 	   performed during the actual operation (execve,
5680 	   open/mkdir/...), when we know the full context of the
5681 	   operation.  See selinux_bprm_set_creds for the execve
5682 	   checks and may_create for the file creation checks. The
5683 	   operation will then fail if the context is not permitted. */
5684 	tsec = new->security;
5685 	if (!strcmp(name, "exec")) {
5686 		tsec->exec_sid = sid;
5687 	} else if (!strcmp(name, "fscreate")) {
5688 		tsec->create_sid = sid;
5689 	} else if (!strcmp(name, "keycreate")) {
5690 		error = may_create_key(sid, p);
5691 		if (error)
5692 			goto abort_change;
5693 		tsec->keycreate_sid = sid;
5694 	} else if (!strcmp(name, "sockcreate")) {
5695 		tsec->sockcreate_sid = sid;
5696 	} else if (!strcmp(name, "current")) {
5697 		error = -EINVAL;
5698 		if (sid == 0)
5699 			goto abort_change;
5700 
5701 		/* Only allow single threaded processes to change context */
5702 		error = -EPERM;
5703 		if (!current_is_single_threaded()) {
5704 			error = security_bounded_transition(tsec->sid, sid);
5705 			if (error)
5706 				goto abort_change;
5707 		}
5708 
5709 		/* Check permissions for the transition. */
5710 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5711 				     PROCESS__DYNTRANSITION, NULL);
5712 		if (error)
5713 			goto abort_change;
5714 
5715 		/* Check for ptracing, and update the task SID if ok.
5716 		   Otherwise, leave SID unchanged and fail. */
5717 		ptsid = 0;
5718 		rcu_read_lock();
5719 		tracer = ptrace_parent(p);
5720 		if (tracer)
5721 			ptsid = task_sid(tracer);
5722 		rcu_read_unlock();
5723 
5724 		if (tracer) {
5725 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5726 					     PROCESS__PTRACE, NULL);
5727 			if (error)
5728 				goto abort_change;
5729 		}
5730 
5731 		tsec->sid = sid;
5732 	} else {
5733 		error = -EINVAL;
5734 		goto abort_change;
5735 	}
5736 
5737 	commit_creds(new);
5738 	return size;
5739 
5740 abort_change:
5741 	abort_creds(new);
5742 	return error;
5743 }
5744 
5745 static int selinux_ismaclabel(const char *name)
5746 {
5747 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5748 }
5749 
5750 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5751 {
5752 	return security_sid_to_context(secid, secdata, seclen);
5753 }
5754 
5755 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5756 {
5757 	return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5758 }
5759 
5760 static void selinux_release_secctx(char *secdata, u32 seclen)
5761 {
5762 	kfree(secdata);
5763 }
5764 
5765 /*
5766  *	called with inode->i_mutex locked
5767  */
5768 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5769 {
5770 	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5771 }
5772 
5773 /*
5774  *	called with inode->i_mutex locked
5775  */
5776 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5777 {
5778 	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5779 }
5780 
5781 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5782 {
5783 	int len = 0;
5784 	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5785 						ctx, true);
5786 	if (len < 0)
5787 		return len;
5788 	*ctxlen = len;
5789 	return 0;
5790 }
5791 #ifdef CONFIG_KEYS
5792 
5793 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5794 			     unsigned long flags)
5795 {
5796 	const struct task_security_struct *tsec;
5797 	struct key_security_struct *ksec;
5798 
5799 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5800 	if (!ksec)
5801 		return -ENOMEM;
5802 
5803 	tsec = cred->security;
5804 	if (tsec->keycreate_sid)
5805 		ksec->sid = tsec->keycreate_sid;
5806 	else
5807 		ksec->sid = tsec->sid;
5808 
5809 	k->security = ksec;
5810 	return 0;
5811 }
5812 
5813 static void selinux_key_free(struct key *k)
5814 {
5815 	struct key_security_struct *ksec = k->security;
5816 
5817 	k->security = NULL;
5818 	kfree(ksec);
5819 }
5820 
5821 static int selinux_key_permission(key_ref_t key_ref,
5822 				  const struct cred *cred,
5823 				  unsigned perm)
5824 {
5825 	struct key *key;
5826 	struct key_security_struct *ksec;
5827 	u32 sid;
5828 
5829 	/* if no specific permissions are requested, we skip the
5830 	   permission check. No serious, additional covert channels
5831 	   appear to be created. */
5832 	if (perm == 0)
5833 		return 0;
5834 
5835 	sid = cred_sid(cred);
5836 
5837 	key = key_ref_to_ptr(key_ref);
5838 	ksec = key->security;
5839 
5840 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5841 }
5842 
5843 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5844 {
5845 	struct key_security_struct *ksec = key->security;
5846 	char *context = NULL;
5847 	unsigned len;
5848 	int rc;
5849 
5850 	rc = security_sid_to_context(ksec->sid, &context, &len);
5851 	if (!rc)
5852 		rc = len;
5853 	*_buffer = context;
5854 	return rc;
5855 }
5856 
5857 #endif
5858 
5859 static struct security_hook_list selinux_hooks[] = {
5860 	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
5861 	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
5862 	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
5863 	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
5864 
5865 	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
5866 	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
5867 	LSM_HOOK_INIT(capget, selinux_capget),
5868 	LSM_HOOK_INIT(capset, selinux_capset),
5869 	LSM_HOOK_INIT(capable, selinux_capable),
5870 	LSM_HOOK_INIT(quotactl, selinux_quotactl),
5871 	LSM_HOOK_INIT(quota_on, selinux_quota_on),
5872 	LSM_HOOK_INIT(syslog, selinux_syslog),
5873 	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
5874 
5875 	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
5876 
5877 	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
5878 	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
5879 	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
5880 	LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec),
5881 
5882 	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
5883 	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
5884 	LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
5885 	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
5886 	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
5887 	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
5888 	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
5889 	LSM_HOOK_INIT(sb_mount, selinux_mount),
5890 	LSM_HOOK_INIT(sb_umount, selinux_umount),
5891 	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
5892 	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
5893 	LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
5894 
5895 	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
5896 
5897 	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
5898 	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
5899 	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
5900 	LSM_HOOK_INIT(inode_create, selinux_inode_create),
5901 	LSM_HOOK_INIT(inode_link, selinux_inode_link),
5902 	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
5903 	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
5904 	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
5905 	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
5906 	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
5907 	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
5908 	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
5909 	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
5910 	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
5911 	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
5912 	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
5913 	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
5914 	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
5915 	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
5916 	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
5917 	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
5918 	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
5919 	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
5920 	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
5921 	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
5922 
5923 	LSM_HOOK_INIT(file_permission, selinux_file_permission),
5924 	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
5925 	LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
5926 	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
5927 	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
5928 	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
5929 	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
5930 	LSM_HOOK_INIT(file_lock, selinux_file_lock),
5931 	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
5932 	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
5933 	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
5934 	LSM_HOOK_INIT(file_receive, selinux_file_receive),
5935 
5936 	LSM_HOOK_INIT(file_open, selinux_file_open),
5937 
5938 	LSM_HOOK_INIT(task_create, selinux_task_create),
5939 	LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
5940 	LSM_HOOK_INIT(cred_free, selinux_cred_free),
5941 	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
5942 	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
5943 	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
5944 	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
5945 	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
5946 	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
5947 	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
5948 	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
5949 	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
5950 	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
5951 	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
5952 	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
5953 	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
5954 	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
5955 	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
5956 	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
5957 	LSM_HOOK_INIT(task_kill, selinux_task_kill),
5958 	LSM_HOOK_INIT(task_wait, selinux_task_wait),
5959 	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
5960 
5961 	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
5962 	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
5963 
5964 	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
5965 	LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
5966 
5967 	LSM_HOOK_INIT(msg_queue_alloc_security,
5968 			selinux_msg_queue_alloc_security),
5969 	LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
5970 	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
5971 	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
5972 	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
5973 	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
5974 
5975 	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
5976 	LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
5977 	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
5978 	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
5979 	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
5980 
5981 	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
5982 	LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
5983 	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
5984 	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
5985 	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
5986 
5987 	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
5988 
5989 	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
5990 	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
5991 
5992 	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
5993 	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
5994 	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
5995 	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
5996 	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
5997 	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
5998 	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
5999 
6000 	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6001 	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6002 
6003 	LSM_HOOK_INIT(socket_create, selinux_socket_create),
6004 	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6005 	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6006 	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6007 	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6008 	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6009 	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6010 	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6011 	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6012 	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6013 	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6014 	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6015 	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6016 	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6017 	LSM_HOOK_INIT(socket_getpeersec_stream,
6018 			selinux_socket_getpeersec_stream),
6019 	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6020 	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6021 	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6022 	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6023 	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6024 	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6025 	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6026 	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6027 	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6028 	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6029 	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6030 	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6031 	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6032 	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6033 	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6034 	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6035 	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6036 	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6037 	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6038 
6039 #ifdef CONFIG_SECURITY_NETWORK_XFRM
6040 	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6041 	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6042 	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6043 	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6044 	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
6045 	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
6046 			selinux_xfrm_state_alloc_acquire),
6047 	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6048 	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6049 	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6050 	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6051 			selinux_xfrm_state_pol_flow_match),
6052 	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6053 #endif
6054 
6055 #ifdef CONFIG_KEYS
6056 	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6057 	LSM_HOOK_INIT(key_free, selinux_key_free),
6058 	LSM_HOOK_INIT(key_permission, selinux_key_permission),
6059 	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
6060 #endif
6061 
6062 #ifdef CONFIG_AUDIT
6063 	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6064 	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6065 	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6066 	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6067 #endif
6068 };
6069 
6070 static __init int selinux_init(void)
6071 {
6072 	if (!security_module_enable("selinux")) {
6073 		selinux_enabled = 0;
6074 		return 0;
6075 	}
6076 
6077 	if (!selinux_enabled) {
6078 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
6079 		return 0;
6080 	}
6081 
6082 	printk(KERN_INFO "SELinux:  Initializing.\n");
6083 
6084 	/* Set the security state for the initial task. */
6085 	cred_init_security();
6086 
6087 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6088 
6089 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
6090 					    sizeof(struct inode_security_struct),
6091 					    0, SLAB_PANIC, NULL);
6092 	avc_init();
6093 
6094 	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6095 
6096 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6097 		panic("SELinux: Unable to register AVC netcache callback\n");
6098 
6099 	if (selinux_enforcing)
6100 		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
6101 	else
6102 		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
6103 
6104 	return 0;
6105 }
6106 
6107 static void delayed_superblock_init(struct super_block *sb, void *unused)
6108 {
6109 	superblock_doinit(sb, NULL);
6110 }
6111 
6112 void selinux_complete_init(void)
6113 {
6114 	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
6115 
6116 	/* Set up any superblocks initialized prior to the policy load. */
6117 	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
6118 	iterate_supers(delayed_superblock_init, NULL);
6119 }
6120 
6121 /* SELinux requires early initialization in order to label
6122    all processes and objects when they are created. */
6123 security_initcall(selinux_init);
6124 
6125 #if defined(CONFIG_NETFILTER)
6126 
6127 static struct nf_hook_ops selinux_nf_ops[] = {
6128 	{
6129 		.hook =		selinux_ipv4_postroute,
6130 		.owner =	THIS_MODULE,
6131 		.pf =		NFPROTO_IPV4,
6132 		.hooknum =	NF_INET_POST_ROUTING,
6133 		.priority =	NF_IP_PRI_SELINUX_LAST,
6134 	},
6135 	{
6136 		.hook =		selinux_ipv4_forward,
6137 		.owner =	THIS_MODULE,
6138 		.pf =		NFPROTO_IPV4,
6139 		.hooknum =	NF_INET_FORWARD,
6140 		.priority =	NF_IP_PRI_SELINUX_FIRST,
6141 	},
6142 	{
6143 		.hook =		selinux_ipv4_output,
6144 		.owner =	THIS_MODULE,
6145 		.pf =		NFPROTO_IPV4,
6146 		.hooknum =	NF_INET_LOCAL_OUT,
6147 		.priority =	NF_IP_PRI_SELINUX_FIRST,
6148 	},
6149 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6150 	{
6151 		.hook =		selinux_ipv6_postroute,
6152 		.owner =	THIS_MODULE,
6153 		.pf =		NFPROTO_IPV6,
6154 		.hooknum =	NF_INET_POST_ROUTING,
6155 		.priority =	NF_IP6_PRI_SELINUX_LAST,
6156 	},
6157 	{
6158 		.hook =		selinux_ipv6_forward,
6159 		.owner =	THIS_MODULE,
6160 		.pf =		NFPROTO_IPV6,
6161 		.hooknum =	NF_INET_FORWARD,
6162 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6163 	},
6164 #endif	/* IPV6 */
6165 };
6166 
6167 static int __init selinux_nf_ip_init(void)
6168 {
6169 	int err;
6170 
6171 	if (!selinux_enabled)
6172 		return 0;
6173 
6174 	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
6175 
6176 	err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6177 	if (err)
6178 		panic("SELinux: nf_register_hooks: error %d\n", err);
6179 
6180 	return 0;
6181 }
6182 
6183 __initcall(selinux_nf_ip_init);
6184 
6185 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6186 static void selinux_nf_ip_exit(void)
6187 {
6188 	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
6189 
6190 	nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6191 }
6192 #endif
6193 
6194 #else /* CONFIG_NETFILTER */
6195 
6196 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6197 #define selinux_nf_ip_exit()
6198 #endif
6199 
6200 #endif /* CONFIG_NETFILTER */
6201 
6202 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6203 static int selinux_disabled;
6204 
6205 int selinux_disable(void)
6206 {
6207 	if (ss_initialized) {
6208 		/* Not permitted after initial policy load. */
6209 		return -EINVAL;
6210 	}
6211 
6212 	if (selinux_disabled) {
6213 		/* Only do this once. */
6214 		return -EINVAL;
6215 	}
6216 
6217 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
6218 
6219 	selinux_disabled = 1;
6220 	selinux_enabled = 0;
6221 
6222 	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6223 
6224 	/* Try to destroy the avc node cache */
6225 	avc_disable();
6226 
6227 	/* Unregister netfilter hooks. */
6228 	selinux_nf_ip_exit();
6229 
6230 	/* Unregister selinuxfs. */
6231 	exit_sel_fs();
6232 
6233 	return 0;
6234 }
6235 #endif
6236