1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul@paul-moore.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the GNU General Public License version 2, 23 * as published by the Free Software Foundation. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/kd.h> 28 #include <linux/kernel.h> 29 #include <linux/tracehook.h> 30 #include <linux/errno.h> 31 #include <linux/sched.h> 32 #include <linux/lsm_hooks.h> 33 #include <linux/xattr.h> 34 #include <linux/capability.h> 35 #include <linux/unistd.h> 36 #include <linux/mm.h> 37 #include <linux/mman.h> 38 #include <linux/slab.h> 39 #include <linux/pagemap.h> 40 #include <linux/proc_fs.h> 41 #include <linux/swap.h> 42 #include <linux/spinlock.h> 43 #include <linux/syscalls.h> 44 #include <linux/dcache.h> 45 #include <linux/file.h> 46 #include <linux/fdtable.h> 47 #include <linux/namei.h> 48 #include <linux/mount.h> 49 #include <linux/netfilter_ipv4.h> 50 #include <linux/netfilter_ipv6.h> 51 #include <linux/tty.h> 52 #include <net/icmp.h> 53 #include <net/ip.h> /* for local_port_range[] */ 54 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 55 #include <net/inet_connection_sock.h> 56 #include <net/net_namespace.h> 57 #include <net/netlabel.h> 58 #include <linux/uaccess.h> 59 #include <asm/ioctls.h> 60 #include <linux/atomic.h> 61 #include <linux/bitops.h> 62 #include <linux/interrupt.h> 63 #include <linux/netdevice.h> /* for network interface checks */ 64 #include <net/netlink.h> 65 #include <linux/tcp.h> 66 #include <linux/udp.h> 67 #include <linux/dccp.h> 68 #include <linux/quota.h> 69 #include <linux/un.h> /* for Unix socket types */ 70 #include <net/af_unix.h> /* for Unix socket types */ 71 #include <linux/parser.h> 72 #include <linux/nfs_mount.h> 73 #include <net/ipv6.h> 74 #include <linux/hugetlb.h> 75 #include <linux/personality.h> 76 #include <linux/audit.h> 77 #include <linux/string.h> 78 #include <linux/selinux.h> 79 #include <linux/mutex.h> 80 #include <linux/posix-timers.h> 81 #include <linux/syslog.h> 82 #include <linux/user_namespace.h> 83 #include <linux/export.h> 84 #include <linux/msg.h> 85 #include <linux/shm.h> 86 87 #include "avc.h" 88 #include "objsec.h" 89 #include "netif.h" 90 #include "netnode.h" 91 #include "netport.h" 92 #include "xfrm.h" 93 #include "netlabel.h" 94 #include "audit.h" 95 #include "avc_ss.h" 96 97 /* SECMARK reference count */ 98 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 99 100 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 101 int selinux_enforcing; 102 103 static int __init enforcing_setup(char *str) 104 { 105 unsigned long enforcing; 106 if (!kstrtoul(str, 0, &enforcing)) 107 selinux_enforcing = enforcing ? 1 : 0; 108 return 1; 109 } 110 __setup("enforcing=", enforcing_setup); 111 #endif 112 113 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 114 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 115 116 static int __init selinux_enabled_setup(char *str) 117 { 118 unsigned long enabled; 119 if (!kstrtoul(str, 0, &enabled)) 120 selinux_enabled = enabled ? 1 : 0; 121 return 1; 122 } 123 __setup("selinux=", selinux_enabled_setup); 124 #else 125 int selinux_enabled = 1; 126 #endif 127 128 static struct kmem_cache *sel_inode_cache; 129 130 /** 131 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 132 * 133 * Description: 134 * This function checks the SECMARK reference counter to see if any SECMARK 135 * targets are currently configured, if the reference counter is greater than 136 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 137 * enabled, false (0) if SECMARK is disabled. If the always_check_network 138 * policy capability is enabled, SECMARK is always considered enabled. 139 * 140 */ 141 static int selinux_secmark_enabled(void) 142 { 143 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount)); 144 } 145 146 /** 147 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled 148 * 149 * Description: 150 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true 151 * (1) if any are enabled or false (0) if neither are enabled. If the 152 * always_check_network policy capability is enabled, peer labeling 153 * is always considered enabled. 154 * 155 */ 156 static int selinux_peerlbl_enabled(void) 157 { 158 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled()); 159 } 160 161 static int selinux_netcache_avc_callback(u32 event) 162 { 163 if (event == AVC_CALLBACK_RESET) { 164 sel_netif_flush(); 165 sel_netnode_flush(); 166 sel_netport_flush(); 167 synchronize_net(); 168 } 169 return 0; 170 } 171 172 /* 173 * initialise the security for the init task 174 */ 175 static void cred_init_security(void) 176 { 177 struct cred *cred = (struct cred *) current->real_cred; 178 struct task_security_struct *tsec; 179 180 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 181 if (!tsec) 182 panic("SELinux: Failed to initialize initial task.\n"); 183 184 tsec->osid = tsec->sid = SECINITSID_KERNEL; 185 cred->security = tsec; 186 } 187 188 /* 189 * get the security ID of a set of credentials 190 */ 191 static inline u32 cred_sid(const struct cred *cred) 192 { 193 const struct task_security_struct *tsec; 194 195 tsec = cred->security; 196 return tsec->sid; 197 } 198 199 /* 200 * get the objective security ID of a task 201 */ 202 static inline u32 task_sid(const struct task_struct *task) 203 { 204 u32 sid; 205 206 rcu_read_lock(); 207 sid = cred_sid(__task_cred(task)); 208 rcu_read_unlock(); 209 return sid; 210 } 211 212 /* 213 * get the subjective security ID of the current task 214 */ 215 static inline u32 current_sid(void) 216 { 217 const struct task_security_struct *tsec = current_security(); 218 219 return tsec->sid; 220 } 221 222 /* Allocate and free functions for each kind of security blob. */ 223 224 static int inode_alloc_security(struct inode *inode) 225 { 226 struct inode_security_struct *isec; 227 u32 sid = current_sid(); 228 229 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 230 if (!isec) 231 return -ENOMEM; 232 233 mutex_init(&isec->lock); 234 INIT_LIST_HEAD(&isec->list); 235 isec->inode = inode; 236 isec->sid = SECINITSID_UNLABELED; 237 isec->sclass = SECCLASS_FILE; 238 isec->task_sid = sid; 239 inode->i_security = isec; 240 241 return 0; 242 } 243 244 static void inode_free_rcu(struct rcu_head *head) 245 { 246 struct inode_security_struct *isec; 247 248 isec = container_of(head, struct inode_security_struct, rcu); 249 kmem_cache_free(sel_inode_cache, isec); 250 } 251 252 static void inode_free_security(struct inode *inode) 253 { 254 struct inode_security_struct *isec = inode->i_security; 255 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 256 257 /* 258 * As not all inode security structures are in a list, we check for 259 * empty list outside of the lock to make sure that we won't waste 260 * time taking a lock doing nothing. 261 * 262 * The list_del_init() function can be safely called more than once. 263 * It should not be possible for this function to be called with 264 * concurrent list_add(), but for better safety against future changes 265 * in the code, we use list_empty_careful() here. 266 */ 267 if (!list_empty_careful(&isec->list)) { 268 spin_lock(&sbsec->isec_lock); 269 list_del_init(&isec->list); 270 spin_unlock(&sbsec->isec_lock); 271 } 272 273 /* 274 * The inode may still be referenced in a path walk and 275 * a call to selinux_inode_permission() can be made 276 * after inode_free_security() is called. Ideally, the VFS 277 * wouldn't do this, but fixing that is a much harder 278 * job. For now, simply free the i_security via RCU, and 279 * leave the current inode->i_security pointer intact. 280 * The inode will be freed after the RCU grace period too. 281 */ 282 call_rcu(&isec->rcu, inode_free_rcu); 283 } 284 285 static int file_alloc_security(struct file *file) 286 { 287 struct file_security_struct *fsec; 288 u32 sid = current_sid(); 289 290 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 291 if (!fsec) 292 return -ENOMEM; 293 294 fsec->sid = sid; 295 fsec->fown_sid = sid; 296 file->f_security = fsec; 297 298 return 0; 299 } 300 301 static void file_free_security(struct file *file) 302 { 303 struct file_security_struct *fsec = file->f_security; 304 file->f_security = NULL; 305 kfree(fsec); 306 } 307 308 static int superblock_alloc_security(struct super_block *sb) 309 { 310 struct superblock_security_struct *sbsec; 311 312 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 313 if (!sbsec) 314 return -ENOMEM; 315 316 mutex_init(&sbsec->lock); 317 INIT_LIST_HEAD(&sbsec->isec_head); 318 spin_lock_init(&sbsec->isec_lock); 319 sbsec->sb = sb; 320 sbsec->sid = SECINITSID_UNLABELED; 321 sbsec->def_sid = SECINITSID_FILE; 322 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 323 sb->s_security = sbsec; 324 325 return 0; 326 } 327 328 static void superblock_free_security(struct super_block *sb) 329 { 330 struct superblock_security_struct *sbsec = sb->s_security; 331 sb->s_security = NULL; 332 kfree(sbsec); 333 } 334 335 /* The file system's label must be initialized prior to use. */ 336 337 static const char *labeling_behaviors[7] = { 338 "uses xattr", 339 "uses transition SIDs", 340 "uses task SIDs", 341 "uses genfs_contexts", 342 "not configured for labeling", 343 "uses mountpoint labeling", 344 "uses native labeling", 345 }; 346 347 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 348 349 static inline int inode_doinit(struct inode *inode) 350 { 351 return inode_doinit_with_dentry(inode, NULL); 352 } 353 354 enum { 355 Opt_error = -1, 356 Opt_context = 1, 357 Opt_fscontext = 2, 358 Opt_defcontext = 3, 359 Opt_rootcontext = 4, 360 Opt_labelsupport = 5, 361 Opt_nextmntopt = 6, 362 }; 363 364 #define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1) 365 366 static const match_table_t tokens = { 367 {Opt_context, CONTEXT_STR "%s"}, 368 {Opt_fscontext, FSCONTEXT_STR "%s"}, 369 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 370 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 371 {Opt_labelsupport, LABELSUPP_STR}, 372 {Opt_error, NULL}, 373 }; 374 375 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 376 377 static int may_context_mount_sb_relabel(u32 sid, 378 struct superblock_security_struct *sbsec, 379 const struct cred *cred) 380 { 381 const struct task_security_struct *tsec = cred->security; 382 int rc; 383 384 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 385 FILESYSTEM__RELABELFROM, NULL); 386 if (rc) 387 return rc; 388 389 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 390 FILESYSTEM__RELABELTO, NULL); 391 return rc; 392 } 393 394 static int may_context_mount_inode_relabel(u32 sid, 395 struct superblock_security_struct *sbsec, 396 const struct cred *cred) 397 { 398 const struct task_security_struct *tsec = cred->security; 399 int rc; 400 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 401 FILESYSTEM__RELABELFROM, NULL); 402 if (rc) 403 return rc; 404 405 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 406 FILESYSTEM__ASSOCIATE, NULL); 407 return rc; 408 } 409 410 static int selinux_is_sblabel_mnt(struct super_block *sb) 411 { 412 struct superblock_security_struct *sbsec = sb->s_security; 413 414 return sbsec->behavior == SECURITY_FS_USE_XATTR || 415 sbsec->behavior == SECURITY_FS_USE_TRANS || 416 sbsec->behavior == SECURITY_FS_USE_TASK || 417 sbsec->behavior == SECURITY_FS_USE_NATIVE || 418 /* Special handling. Genfs but also in-core setxattr handler */ 419 !strcmp(sb->s_type->name, "sysfs") || 420 !strcmp(sb->s_type->name, "pstore") || 421 !strcmp(sb->s_type->name, "debugfs") || 422 !strcmp(sb->s_type->name, "rootfs"); 423 } 424 425 static int sb_finish_set_opts(struct super_block *sb) 426 { 427 struct superblock_security_struct *sbsec = sb->s_security; 428 struct dentry *root = sb->s_root; 429 struct inode *root_inode = d_backing_inode(root); 430 int rc = 0; 431 432 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 433 /* Make sure that the xattr handler exists and that no 434 error other than -ENODATA is returned by getxattr on 435 the root directory. -ENODATA is ok, as this may be 436 the first boot of the SELinux kernel before we have 437 assigned xattr values to the filesystem. */ 438 if (!root_inode->i_op->getxattr) { 439 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 440 "xattr support\n", sb->s_id, sb->s_type->name); 441 rc = -EOPNOTSUPP; 442 goto out; 443 } 444 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 445 if (rc < 0 && rc != -ENODATA) { 446 if (rc == -EOPNOTSUPP) 447 printk(KERN_WARNING "SELinux: (dev %s, type " 448 "%s) has no security xattr handler\n", 449 sb->s_id, sb->s_type->name); 450 else 451 printk(KERN_WARNING "SELinux: (dev %s, type " 452 "%s) getxattr errno %d\n", sb->s_id, 453 sb->s_type->name, -rc); 454 goto out; 455 } 456 } 457 458 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 459 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 460 sb->s_id, sb->s_type->name); 461 462 sbsec->flags |= SE_SBINITIALIZED; 463 if (selinux_is_sblabel_mnt(sb)) 464 sbsec->flags |= SBLABEL_MNT; 465 466 /* Initialize the root inode. */ 467 rc = inode_doinit_with_dentry(root_inode, root); 468 469 /* Initialize any other inodes associated with the superblock, e.g. 470 inodes created prior to initial policy load or inodes created 471 during get_sb by a pseudo filesystem that directly 472 populates itself. */ 473 spin_lock(&sbsec->isec_lock); 474 next_inode: 475 if (!list_empty(&sbsec->isec_head)) { 476 struct inode_security_struct *isec = 477 list_entry(sbsec->isec_head.next, 478 struct inode_security_struct, list); 479 struct inode *inode = isec->inode; 480 list_del_init(&isec->list); 481 spin_unlock(&sbsec->isec_lock); 482 inode = igrab(inode); 483 if (inode) { 484 if (!IS_PRIVATE(inode)) 485 inode_doinit(inode); 486 iput(inode); 487 } 488 spin_lock(&sbsec->isec_lock); 489 goto next_inode; 490 } 491 spin_unlock(&sbsec->isec_lock); 492 out: 493 return rc; 494 } 495 496 /* 497 * This function should allow an FS to ask what it's mount security 498 * options were so it can use those later for submounts, displaying 499 * mount options, or whatever. 500 */ 501 static int selinux_get_mnt_opts(const struct super_block *sb, 502 struct security_mnt_opts *opts) 503 { 504 int rc = 0, i; 505 struct superblock_security_struct *sbsec = sb->s_security; 506 char *context = NULL; 507 u32 len; 508 char tmp; 509 510 security_init_mnt_opts(opts); 511 512 if (!(sbsec->flags & SE_SBINITIALIZED)) 513 return -EINVAL; 514 515 if (!ss_initialized) 516 return -EINVAL; 517 518 /* make sure we always check enough bits to cover the mask */ 519 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS)); 520 521 tmp = sbsec->flags & SE_MNTMASK; 522 /* count the number of mount options for this sb */ 523 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) { 524 if (tmp & 0x01) 525 opts->num_mnt_opts++; 526 tmp >>= 1; 527 } 528 /* Check if the Label support flag is set */ 529 if (sbsec->flags & SBLABEL_MNT) 530 opts->num_mnt_opts++; 531 532 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 533 if (!opts->mnt_opts) { 534 rc = -ENOMEM; 535 goto out_free; 536 } 537 538 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 539 if (!opts->mnt_opts_flags) { 540 rc = -ENOMEM; 541 goto out_free; 542 } 543 544 i = 0; 545 if (sbsec->flags & FSCONTEXT_MNT) { 546 rc = security_sid_to_context(sbsec->sid, &context, &len); 547 if (rc) 548 goto out_free; 549 opts->mnt_opts[i] = context; 550 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 551 } 552 if (sbsec->flags & CONTEXT_MNT) { 553 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 554 if (rc) 555 goto out_free; 556 opts->mnt_opts[i] = context; 557 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 558 } 559 if (sbsec->flags & DEFCONTEXT_MNT) { 560 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 561 if (rc) 562 goto out_free; 563 opts->mnt_opts[i] = context; 564 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 565 } 566 if (sbsec->flags & ROOTCONTEXT_MNT) { 567 struct inode *root = d_backing_inode(sbsec->sb->s_root); 568 struct inode_security_struct *isec = root->i_security; 569 570 rc = security_sid_to_context(isec->sid, &context, &len); 571 if (rc) 572 goto out_free; 573 opts->mnt_opts[i] = context; 574 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 575 } 576 if (sbsec->flags & SBLABEL_MNT) { 577 opts->mnt_opts[i] = NULL; 578 opts->mnt_opts_flags[i++] = SBLABEL_MNT; 579 } 580 581 BUG_ON(i != opts->num_mnt_opts); 582 583 return 0; 584 585 out_free: 586 security_free_mnt_opts(opts); 587 return rc; 588 } 589 590 static int bad_option(struct superblock_security_struct *sbsec, char flag, 591 u32 old_sid, u32 new_sid) 592 { 593 char mnt_flags = sbsec->flags & SE_MNTMASK; 594 595 /* check if the old mount command had the same options */ 596 if (sbsec->flags & SE_SBINITIALIZED) 597 if (!(sbsec->flags & flag) || 598 (old_sid != new_sid)) 599 return 1; 600 601 /* check if we were passed the same options twice, 602 * aka someone passed context=a,context=b 603 */ 604 if (!(sbsec->flags & SE_SBINITIALIZED)) 605 if (mnt_flags & flag) 606 return 1; 607 return 0; 608 } 609 610 /* 611 * Allow filesystems with binary mount data to explicitly set mount point 612 * labeling information. 613 */ 614 static int selinux_set_mnt_opts(struct super_block *sb, 615 struct security_mnt_opts *opts, 616 unsigned long kern_flags, 617 unsigned long *set_kern_flags) 618 { 619 const struct cred *cred = current_cred(); 620 int rc = 0, i; 621 struct superblock_security_struct *sbsec = sb->s_security; 622 const char *name = sb->s_type->name; 623 struct inode *inode = d_backing_inode(sbsec->sb->s_root); 624 struct inode_security_struct *root_isec = inode->i_security; 625 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 626 u32 defcontext_sid = 0; 627 char **mount_options = opts->mnt_opts; 628 int *flags = opts->mnt_opts_flags; 629 int num_opts = opts->num_mnt_opts; 630 631 mutex_lock(&sbsec->lock); 632 633 if (!ss_initialized) { 634 if (!num_opts) { 635 /* Defer initialization until selinux_complete_init, 636 after the initial policy is loaded and the security 637 server is ready to handle calls. */ 638 goto out; 639 } 640 rc = -EINVAL; 641 printk(KERN_WARNING "SELinux: Unable to set superblock options " 642 "before the security server is initialized\n"); 643 goto out; 644 } 645 if (kern_flags && !set_kern_flags) { 646 /* Specifying internal flags without providing a place to 647 * place the results is not allowed */ 648 rc = -EINVAL; 649 goto out; 650 } 651 652 /* 653 * Binary mount data FS will come through this function twice. Once 654 * from an explicit call and once from the generic calls from the vfs. 655 * Since the generic VFS calls will not contain any security mount data 656 * we need to skip the double mount verification. 657 * 658 * This does open a hole in which we will not notice if the first 659 * mount using this sb set explict options and a second mount using 660 * this sb does not set any security options. (The first options 661 * will be used for both mounts) 662 */ 663 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 664 && (num_opts == 0)) 665 goto out; 666 667 /* 668 * parse the mount options, check if they are valid sids. 669 * also check if someone is trying to mount the same sb more 670 * than once with different security options. 671 */ 672 for (i = 0; i < num_opts; i++) { 673 u32 sid; 674 675 if (flags[i] == SBLABEL_MNT) 676 continue; 677 rc = security_context_to_sid(mount_options[i], 678 strlen(mount_options[i]), &sid, GFP_KERNEL); 679 if (rc) { 680 printk(KERN_WARNING "SELinux: security_context_to_sid" 681 "(%s) failed for (dev %s, type %s) errno=%d\n", 682 mount_options[i], sb->s_id, name, rc); 683 goto out; 684 } 685 switch (flags[i]) { 686 case FSCONTEXT_MNT: 687 fscontext_sid = sid; 688 689 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 690 fscontext_sid)) 691 goto out_double_mount; 692 693 sbsec->flags |= FSCONTEXT_MNT; 694 break; 695 case CONTEXT_MNT: 696 context_sid = sid; 697 698 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 699 context_sid)) 700 goto out_double_mount; 701 702 sbsec->flags |= CONTEXT_MNT; 703 break; 704 case ROOTCONTEXT_MNT: 705 rootcontext_sid = sid; 706 707 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 708 rootcontext_sid)) 709 goto out_double_mount; 710 711 sbsec->flags |= ROOTCONTEXT_MNT; 712 713 break; 714 case DEFCONTEXT_MNT: 715 defcontext_sid = sid; 716 717 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 718 defcontext_sid)) 719 goto out_double_mount; 720 721 sbsec->flags |= DEFCONTEXT_MNT; 722 723 break; 724 default: 725 rc = -EINVAL; 726 goto out; 727 } 728 } 729 730 if (sbsec->flags & SE_SBINITIALIZED) { 731 /* previously mounted with options, but not on this attempt? */ 732 if ((sbsec->flags & SE_MNTMASK) && !num_opts) 733 goto out_double_mount; 734 rc = 0; 735 goto out; 736 } 737 738 if (strcmp(sb->s_type->name, "proc") == 0) 739 sbsec->flags |= SE_SBPROC | SE_SBGENFS; 740 741 if (!strcmp(sb->s_type->name, "debugfs") || 742 !strcmp(sb->s_type->name, "sysfs") || 743 !strcmp(sb->s_type->name, "pstore")) 744 sbsec->flags |= SE_SBGENFS; 745 746 if (!sbsec->behavior) { 747 /* 748 * Determine the labeling behavior to use for this 749 * filesystem type. 750 */ 751 rc = security_fs_use(sb); 752 if (rc) { 753 printk(KERN_WARNING 754 "%s: security_fs_use(%s) returned %d\n", 755 __func__, sb->s_type->name, rc); 756 goto out; 757 } 758 } 759 /* sets the context of the superblock for the fs being mounted. */ 760 if (fscontext_sid) { 761 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 762 if (rc) 763 goto out; 764 765 sbsec->sid = fscontext_sid; 766 } 767 768 /* 769 * Switch to using mount point labeling behavior. 770 * sets the label used on all file below the mountpoint, and will set 771 * the superblock context if not already set. 772 */ 773 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { 774 sbsec->behavior = SECURITY_FS_USE_NATIVE; 775 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 776 } 777 778 if (context_sid) { 779 if (!fscontext_sid) { 780 rc = may_context_mount_sb_relabel(context_sid, sbsec, 781 cred); 782 if (rc) 783 goto out; 784 sbsec->sid = context_sid; 785 } else { 786 rc = may_context_mount_inode_relabel(context_sid, sbsec, 787 cred); 788 if (rc) 789 goto out; 790 } 791 if (!rootcontext_sid) 792 rootcontext_sid = context_sid; 793 794 sbsec->mntpoint_sid = context_sid; 795 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 796 } 797 798 if (rootcontext_sid) { 799 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 800 cred); 801 if (rc) 802 goto out; 803 804 root_isec->sid = rootcontext_sid; 805 root_isec->initialized = 1; 806 } 807 808 if (defcontext_sid) { 809 if (sbsec->behavior != SECURITY_FS_USE_XATTR && 810 sbsec->behavior != SECURITY_FS_USE_NATIVE) { 811 rc = -EINVAL; 812 printk(KERN_WARNING "SELinux: defcontext option is " 813 "invalid for this filesystem type\n"); 814 goto out; 815 } 816 817 if (defcontext_sid != sbsec->def_sid) { 818 rc = may_context_mount_inode_relabel(defcontext_sid, 819 sbsec, cred); 820 if (rc) 821 goto out; 822 } 823 824 sbsec->def_sid = defcontext_sid; 825 } 826 827 rc = sb_finish_set_opts(sb); 828 out: 829 mutex_unlock(&sbsec->lock); 830 return rc; 831 out_double_mount: 832 rc = -EINVAL; 833 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 834 "security settings for (dev %s, type %s)\n", sb->s_id, name); 835 goto out; 836 } 837 838 static int selinux_cmp_sb_context(const struct super_block *oldsb, 839 const struct super_block *newsb) 840 { 841 struct superblock_security_struct *old = oldsb->s_security; 842 struct superblock_security_struct *new = newsb->s_security; 843 char oldflags = old->flags & SE_MNTMASK; 844 char newflags = new->flags & SE_MNTMASK; 845 846 if (oldflags != newflags) 847 goto mismatch; 848 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) 849 goto mismatch; 850 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) 851 goto mismatch; 852 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) 853 goto mismatch; 854 if (oldflags & ROOTCONTEXT_MNT) { 855 struct inode_security_struct *oldroot = d_backing_inode(oldsb->s_root)->i_security; 856 struct inode_security_struct *newroot = d_backing_inode(newsb->s_root)->i_security; 857 if (oldroot->sid != newroot->sid) 858 goto mismatch; 859 } 860 return 0; 861 mismatch: 862 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, " 863 "different security settings for (dev %s, " 864 "type %s)\n", newsb->s_id, newsb->s_type->name); 865 return -EBUSY; 866 } 867 868 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 869 struct super_block *newsb) 870 { 871 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 872 struct superblock_security_struct *newsbsec = newsb->s_security; 873 874 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 875 int set_context = (oldsbsec->flags & CONTEXT_MNT); 876 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 877 878 /* 879 * if the parent was able to be mounted it clearly had no special lsm 880 * mount options. thus we can safely deal with this superblock later 881 */ 882 if (!ss_initialized) 883 return 0; 884 885 /* how can we clone if the old one wasn't set up?? */ 886 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 887 888 /* if fs is reusing a sb, make sure that the contexts match */ 889 if (newsbsec->flags & SE_SBINITIALIZED) 890 return selinux_cmp_sb_context(oldsb, newsb); 891 892 mutex_lock(&newsbsec->lock); 893 894 newsbsec->flags = oldsbsec->flags; 895 896 newsbsec->sid = oldsbsec->sid; 897 newsbsec->def_sid = oldsbsec->def_sid; 898 newsbsec->behavior = oldsbsec->behavior; 899 900 if (set_context) { 901 u32 sid = oldsbsec->mntpoint_sid; 902 903 if (!set_fscontext) 904 newsbsec->sid = sid; 905 if (!set_rootcontext) { 906 struct inode *newinode = d_backing_inode(newsb->s_root); 907 struct inode_security_struct *newisec = newinode->i_security; 908 newisec->sid = sid; 909 } 910 newsbsec->mntpoint_sid = sid; 911 } 912 if (set_rootcontext) { 913 const struct inode *oldinode = d_backing_inode(oldsb->s_root); 914 const struct inode_security_struct *oldisec = oldinode->i_security; 915 struct inode *newinode = d_backing_inode(newsb->s_root); 916 struct inode_security_struct *newisec = newinode->i_security; 917 918 newisec->sid = oldisec->sid; 919 } 920 921 sb_finish_set_opts(newsb); 922 mutex_unlock(&newsbsec->lock); 923 return 0; 924 } 925 926 static int selinux_parse_opts_str(char *options, 927 struct security_mnt_opts *opts) 928 { 929 char *p; 930 char *context = NULL, *defcontext = NULL; 931 char *fscontext = NULL, *rootcontext = NULL; 932 int rc, num_mnt_opts = 0; 933 934 opts->num_mnt_opts = 0; 935 936 /* Standard string-based options. */ 937 while ((p = strsep(&options, "|")) != NULL) { 938 int token; 939 substring_t args[MAX_OPT_ARGS]; 940 941 if (!*p) 942 continue; 943 944 token = match_token(p, tokens, args); 945 946 switch (token) { 947 case Opt_context: 948 if (context || defcontext) { 949 rc = -EINVAL; 950 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 951 goto out_err; 952 } 953 context = match_strdup(&args[0]); 954 if (!context) { 955 rc = -ENOMEM; 956 goto out_err; 957 } 958 break; 959 960 case Opt_fscontext: 961 if (fscontext) { 962 rc = -EINVAL; 963 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 964 goto out_err; 965 } 966 fscontext = match_strdup(&args[0]); 967 if (!fscontext) { 968 rc = -ENOMEM; 969 goto out_err; 970 } 971 break; 972 973 case Opt_rootcontext: 974 if (rootcontext) { 975 rc = -EINVAL; 976 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 977 goto out_err; 978 } 979 rootcontext = match_strdup(&args[0]); 980 if (!rootcontext) { 981 rc = -ENOMEM; 982 goto out_err; 983 } 984 break; 985 986 case Opt_defcontext: 987 if (context || defcontext) { 988 rc = -EINVAL; 989 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 990 goto out_err; 991 } 992 defcontext = match_strdup(&args[0]); 993 if (!defcontext) { 994 rc = -ENOMEM; 995 goto out_err; 996 } 997 break; 998 case Opt_labelsupport: 999 break; 1000 default: 1001 rc = -EINVAL; 1002 printk(KERN_WARNING "SELinux: unknown mount option\n"); 1003 goto out_err; 1004 1005 } 1006 } 1007 1008 rc = -ENOMEM; 1009 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC); 1010 if (!opts->mnt_opts) 1011 goto out_err; 1012 1013 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC); 1014 if (!opts->mnt_opts_flags) { 1015 kfree(opts->mnt_opts); 1016 goto out_err; 1017 } 1018 1019 if (fscontext) { 1020 opts->mnt_opts[num_mnt_opts] = fscontext; 1021 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 1022 } 1023 if (context) { 1024 opts->mnt_opts[num_mnt_opts] = context; 1025 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 1026 } 1027 if (rootcontext) { 1028 opts->mnt_opts[num_mnt_opts] = rootcontext; 1029 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 1030 } 1031 if (defcontext) { 1032 opts->mnt_opts[num_mnt_opts] = defcontext; 1033 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 1034 } 1035 1036 opts->num_mnt_opts = num_mnt_opts; 1037 return 0; 1038 1039 out_err: 1040 kfree(context); 1041 kfree(defcontext); 1042 kfree(fscontext); 1043 kfree(rootcontext); 1044 return rc; 1045 } 1046 /* 1047 * string mount options parsing and call set the sbsec 1048 */ 1049 static int superblock_doinit(struct super_block *sb, void *data) 1050 { 1051 int rc = 0; 1052 char *options = data; 1053 struct security_mnt_opts opts; 1054 1055 security_init_mnt_opts(&opts); 1056 1057 if (!data) 1058 goto out; 1059 1060 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 1061 1062 rc = selinux_parse_opts_str(options, &opts); 1063 if (rc) 1064 goto out_err; 1065 1066 out: 1067 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL); 1068 1069 out_err: 1070 security_free_mnt_opts(&opts); 1071 return rc; 1072 } 1073 1074 static void selinux_write_opts(struct seq_file *m, 1075 struct security_mnt_opts *opts) 1076 { 1077 int i; 1078 char *prefix; 1079 1080 for (i = 0; i < opts->num_mnt_opts; i++) { 1081 char *has_comma; 1082 1083 if (opts->mnt_opts[i]) 1084 has_comma = strchr(opts->mnt_opts[i], ','); 1085 else 1086 has_comma = NULL; 1087 1088 switch (opts->mnt_opts_flags[i]) { 1089 case CONTEXT_MNT: 1090 prefix = CONTEXT_STR; 1091 break; 1092 case FSCONTEXT_MNT: 1093 prefix = FSCONTEXT_STR; 1094 break; 1095 case ROOTCONTEXT_MNT: 1096 prefix = ROOTCONTEXT_STR; 1097 break; 1098 case DEFCONTEXT_MNT: 1099 prefix = DEFCONTEXT_STR; 1100 break; 1101 case SBLABEL_MNT: 1102 seq_putc(m, ','); 1103 seq_puts(m, LABELSUPP_STR); 1104 continue; 1105 default: 1106 BUG(); 1107 return; 1108 }; 1109 /* we need a comma before each option */ 1110 seq_putc(m, ','); 1111 seq_puts(m, prefix); 1112 if (has_comma) 1113 seq_putc(m, '\"'); 1114 seq_escape(m, opts->mnt_opts[i], "\"\n\\"); 1115 if (has_comma) 1116 seq_putc(m, '\"'); 1117 } 1118 } 1119 1120 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1121 { 1122 struct security_mnt_opts opts; 1123 int rc; 1124 1125 rc = selinux_get_mnt_opts(sb, &opts); 1126 if (rc) { 1127 /* before policy load we may get EINVAL, don't show anything */ 1128 if (rc == -EINVAL) 1129 rc = 0; 1130 return rc; 1131 } 1132 1133 selinux_write_opts(m, &opts); 1134 1135 security_free_mnt_opts(&opts); 1136 1137 return rc; 1138 } 1139 1140 static inline u16 inode_mode_to_security_class(umode_t mode) 1141 { 1142 switch (mode & S_IFMT) { 1143 case S_IFSOCK: 1144 return SECCLASS_SOCK_FILE; 1145 case S_IFLNK: 1146 return SECCLASS_LNK_FILE; 1147 case S_IFREG: 1148 return SECCLASS_FILE; 1149 case S_IFBLK: 1150 return SECCLASS_BLK_FILE; 1151 case S_IFDIR: 1152 return SECCLASS_DIR; 1153 case S_IFCHR: 1154 return SECCLASS_CHR_FILE; 1155 case S_IFIFO: 1156 return SECCLASS_FIFO_FILE; 1157 1158 } 1159 1160 return SECCLASS_FILE; 1161 } 1162 1163 static inline int default_protocol_stream(int protocol) 1164 { 1165 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1166 } 1167 1168 static inline int default_protocol_dgram(int protocol) 1169 { 1170 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1171 } 1172 1173 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1174 { 1175 switch (family) { 1176 case PF_UNIX: 1177 switch (type) { 1178 case SOCK_STREAM: 1179 case SOCK_SEQPACKET: 1180 return SECCLASS_UNIX_STREAM_SOCKET; 1181 case SOCK_DGRAM: 1182 return SECCLASS_UNIX_DGRAM_SOCKET; 1183 } 1184 break; 1185 case PF_INET: 1186 case PF_INET6: 1187 switch (type) { 1188 case SOCK_STREAM: 1189 if (default_protocol_stream(protocol)) 1190 return SECCLASS_TCP_SOCKET; 1191 else 1192 return SECCLASS_RAWIP_SOCKET; 1193 case SOCK_DGRAM: 1194 if (default_protocol_dgram(protocol)) 1195 return SECCLASS_UDP_SOCKET; 1196 else 1197 return SECCLASS_RAWIP_SOCKET; 1198 case SOCK_DCCP: 1199 return SECCLASS_DCCP_SOCKET; 1200 default: 1201 return SECCLASS_RAWIP_SOCKET; 1202 } 1203 break; 1204 case PF_NETLINK: 1205 switch (protocol) { 1206 case NETLINK_ROUTE: 1207 return SECCLASS_NETLINK_ROUTE_SOCKET; 1208 case NETLINK_SOCK_DIAG: 1209 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1210 case NETLINK_NFLOG: 1211 return SECCLASS_NETLINK_NFLOG_SOCKET; 1212 case NETLINK_XFRM: 1213 return SECCLASS_NETLINK_XFRM_SOCKET; 1214 case NETLINK_SELINUX: 1215 return SECCLASS_NETLINK_SELINUX_SOCKET; 1216 case NETLINK_ISCSI: 1217 return SECCLASS_NETLINK_ISCSI_SOCKET; 1218 case NETLINK_AUDIT: 1219 return SECCLASS_NETLINK_AUDIT_SOCKET; 1220 case NETLINK_FIB_LOOKUP: 1221 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET; 1222 case NETLINK_CONNECTOR: 1223 return SECCLASS_NETLINK_CONNECTOR_SOCKET; 1224 case NETLINK_NETFILTER: 1225 return SECCLASS_NETLINK_NETFILTER_SOCKET; 1226 case NETLINK_DNRTMSG: 1227 return SECCLASS_NETLINK_DNRT_SOCKET; 1228 case NETLINK_KOBJECT_UEVENT: 1229 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1230 case NETLINK_GENERIC: 1231 return SECCLASS_NETLINK_GENERIC_SOCKET; 1232 case NETLINK_SCSITRANSPORT: 1233 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET; 1234 case NETLINK_RDMA: 1235 return SECCLASS_NETLINK_RDMA_SOCKET; 1236 case NETLINK_CRYPTO: 1237 return SECCLASS_NETLINK_CRYPTO_SOCKET; 1238 default: 1239 return SECCLASS_NETLINK_SOCKET; 1240 } 1241 case PF_PACKET: 1242 return SECCLASS_PACKET_SOCKET; 1243 case PF_KEY: 1244 return SECCLASS_KEY_SOCKET; 1245 case PF_APPLETALK: 1246 return SECCLASS_APPLETALK_SOCKET; 1247 } 1248 1249 return SECCLASS_SOCKET; 1250 } 1251 1252 static int selinux_genfs_get_sid(struct dentry *dentry, 1253 u16 tclass, 1254 u16 flags, 1255 u32 *sid) 1256 { 1257 int rc; 1258 struct super_block *sb = dentry->d_inode->i_sb; 1259 char *buffer, *path; 1260 1261 buffer = (char *)__get_free_page(GFP_KERNEL); 1262 if (!buffer) 1263 return -ENOMEM; 1264 1265 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1266 if (IS_ERR(path)) 1267 rc = PTR_ERR(path); 1268 else { 1269 if (flags & SE_SBPROC) { 1270 /* each process gets a /proc/PID/ entry. Strip off the 1271 * PID part to get a valid selinux labeling. 1272 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1273 while (path[1] >= '0' && path[1] <= '9') { 1274 path[1] = '/'; 1275 path++; 1276 } 1277 } 1278 rc = security_genfs_sid(sb->s_type->name, path, tclass, sid); 1279 } 1280 free_page((unsigned long)buffer); 1281 return rc; 1282 } 1283 1284 /* The inode's security attributes must be initialized before first use. */ 1285 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1286 { 1287 struct superblock_security_struct *sbsec = NULL; 1288 struct inode_security_struct *isec = inode->i_security; 1289 u32 sid; 1290 struct dentry *dentry; 1291 #define INITCONTEXTLEN 255 1292 char *context = NULL; 1293 unsigned len = 0; 1294 int rc = 0; 1295 1296 if (isec->initialized) 1297 goto out; 1298 1299 mutex_lock(&isec->lock); 1300 if (isec->initialized) 1301 goto out_unlock; 1302 1303 sbsec = inode->i_sb->s_security; 1304 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1305 /* Defer initialization until selinux_complete_init, 1306 after the initial policy is loaded and the security 1307 server is ready to handle calls. */ 1308 spin_lock(&sbsec->isec_lock); 1309 if (list_empty(&isec->list)) 1310 list_add(&isec->list, &sbsec->isec_head); 1311 spin_unlock(&sbsec->isec_lock); 1312 goto out_unlock; 1313 } 1314 1315 switch (sbsec->behavior) { 1316 case SECURITY_FS_USE_NATIVE: 1317 break; 1318 case SECURITY_FS_USE_XATTR: 1319 if (!inode->i_op->getxattr) { 1320 isec->sid = sbsec->def_sid; 1321 break; 1322 } 1323 1324 /* Need a dentry, since the xattr API requires one. 1325 Life would be simpler if we could just pass the inode. */ 1326 if (opt_dentry) { 1327 /* Called from d_instantiate or d_splice_alias. */ 1328 dentry = dget(opt_dentry); 1329 } else { 1330 /* Called from selinux_complete_init, try to find a dentry. */ 1331 dentry = d_find_alias(inode); 1332 } 1333 if (!dentry) { 1334 /* 1335 * this is can be hit on boot when a file is accessed 1336 * before the policy is loaded. When we load policy we 1337 * may find inodes that have no dentry on the 1338 * sbsec->isec_head list. No reason to complain as these 1339 * will get fixed up the next time we go through 1340 * inode_doinit with a dentry, before these inodes could 1341 * be used again by userspace. 1342 */ 1343 goto out_unlock; 1344 } 1345 1346 len = INITCONTEXTLEN; 1347 context = kmalloc(len+1, GFP_NOFS); 1348 if (!context) { 1349 rc = -ENOMEM; 1350 dput(dentry); 1351 goto out_unlock; 1352 } 1353 context[len] = '\0'; 1354 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1355 context, len); 1356 if (rc == -ERANGE) { 1357 kfree(context); 1358 1359 /* Need a larger buffer. Query for the right size. */ 1360 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1361 NULL, 0); 1362 if (rc < 0) { 1363 dput(dentry); 1364 goto out_unlock; 1365 } 1366 len = rc; 1367 context = kmalloc(len+1, GFP_NOFS); 1368 if (!context) { 1369 rc = -ENOMEM; 1370 dput(dentry); 1371 goto out_unlock; 1372 } 1373 context[len] = '\0'; 1374 rc = inode->i_op->getxattr(dentry, 1375 XATTR_NAME_SELINUX, 1376 context, len); 1377 } 1378 dput(dentry); 1379 if (rc < 0) { 1380 if (rc != -ENODATA) { 1381 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1382 "%d for dev=%s ino=%ld\n", __func__, 1383 -rc, inode->i_sb->s_id, inode->i_ino); 1384 kfree(context); 1385 goto out_unlock; 1386 } 1387 /* Map ENODATA to the default file SID */ 1388 sid = sbsec->def_sid; 1389 rc = 0; 1390 } else { 1391 rc = security_context_to_sid_default(context, rc, &sid, 1392 sbsec->def_sid, 1393 GFP_NOFS); 1394 if (rc) { 1395 char *dev = inode->i_sb->s_id; 1396 unsigned long ino = inode->i_ino; 1397 1398 if (rc == -EINVAL) { 1399 if (printk_ratelimit()) 1400 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid " 1401 "context=%s. This indicates you may need to relabel the inode or the " 1402 "filesystem in question.\n", ino, dev, context); 1403 } else { 1404 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1405 "returned %d for dev=%s ino=%ld\n", 1406 __func__, context, -rc, dev, ino); 1407 } 1408 kfree(context); 1409 /* Leave with the unlabeled SID */ 1410 rc = 0; 1411 break; 1412 } 1413 } 1414 kfree(context); 1415 isec->sid = sid; 1416 break; 1417 case SECURITY_FS_USE_TASK: 1418 isec->sid = isec->task_sid; 1419 break; 1420 case SECURITY_FS_USE_TRANS: 1421 /* Default to the fs SID. */ 1422 isec->sid = sbsec->sid; 1423 1424 /* Try to obtain a transition SID. */ 1425 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1426 rc = security_transition_sid(isec->task_sid, sbsec->sid, 1427 isec->sclass, NULL, &sid); 1428 if (rc) 1429 goto out_unlock; 1430 isec->sid = sid; 1431 break; 1432 case SECURITY_FS_USE_MNTPOINT: 1433 isec->sid = sbsec->mntpoint_sid; 1434 break; 1435 default: 1436 /* Default to the fs superblock SID. */ 1437 isec->sid = sbsec->sid; 1438 1439 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) { 1440 /* We must have a dentry to determine the label on 1441 * procfs inodes */ 1442 if (opt_dentry) 1443 /* Called from d_instantiate or 1444 * d_splice_alias. */ 1445 dentry = dget(opt_dentry); 1446 else 1447 /* Called from selinux_complete_init, try to 1448 * find a dentry. */ 1449 dentry = d_find_alias(inode); 1450 /* 1451 * This can be hit on boot when a file is accessed 1452 * before the policy is loaded. When we load policy we 1453 * may find inodes that have no dentry on the 1454 * sbsec->isec_head list. No reason to complain as 1455 * these will get fixed up the next time we go through 1456 * inode_doinit() with a dentry, before these inodes 1457 * could be used again by userspace. 1458 */ 1459 if (!dentry) 1460 goto out_unlock; 1461 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1462 rc = selinux_genfs_get_sid(dentry, isec->sclass, 1463 sbsec->flags, &sid); 1464 dput(dentry); 1465 if (rc) 1466 goto out_unlock; 1467 isec->sid = sid; 1468 } 1469 break; 1470 } 1471 1472 isec->initialized = 1; 1473 1474 out_unlock: 1475 mutex_unlock(&isec->lock); 1476 out: 1477 if (isec->sclass == SECCLASS_FILE) 1478 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1479 return rc; 1480 } 1481 1482 /* Convert a Linux signal to an access vector. */ 1483 static inline u32 signal_to_av(int sig) 1484 { 1485 u32 perm = 0; 1486 1487 switch (sig) { 1488 case SIGCHLD: 1489 /* Commonly granted from child to parent. */ 1490 perm = PROCESS__SIGCHLD; 1491 break; 1492 case SIGKILL: 1493 /* Cannot be caught or ignored */ 1494 perm = PROCESS__SIGKILL; 1495 break; 1496 case SIGSTOP: 1497 /* Cannot be caught or ignored */ 1498 perm = PROCESS__SIGSTOP; 1499 break; 1500 default: 1501 /* All other signals. */ 1502 perm = PROCESS__SIGNAL; 1503 break; 1504 } 1505 1506 return perm; 1507 } 1508 1509 /* 1510 * Check permission between a pair of credentials 1511 * fork check, ptrace check, etc. 1512 */ 1513 static int cred_has_perm(const struct cred *actor, 1514 const struct cred *target, 1515 u32 perms) 1516 { 1517 u32 asid = cred_sid(actor), tsid = cred_sid(target); 1518 1519 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL); 1520 } 1521 1522 /* 1523 * Check permission between a pair of tasks, e.g. signal checks, 1524 * fork check, ptrace check, etc. 1525 * tsk1 is the actor and tsk2 is the target 1526 * - this uses the default subjective creds of tsk1 1527 */ 1528 static int task_has_perm(const struct task_struct *tsk1, 1529 const struct task_struct *tsk2, 1530 u32 perms) 1531 { 1532 const struct task_security_struct *__tsec1, *__tsec2; 1533 u32 sid1, sid2; 1534 1535 rcu_read_lock(); 1536 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid; 1537 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid; 1538 rcu_read_unlock(); 1539 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL); 1540 } 1541 1542 /* 1543 * Check permission between current and another task, e.g. signal checks, 1544 * fork check, ptrace check, etc. 1545 * current is the actor and tsk2 is the target 1546 * - this uses current's subjective creds 1547 */ 1548 static int current_has_perm(const struct task_struct *tsk, 1549 u32 perms) 1550 { 1551 u32 sid, tsid; 1552 1553 sid = current_sid(); 1554 tsid = task_sid(tsk); 1555 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL); 1556 } 1557 1558 #if CAP_LAST_CAP > 63 1559 #error Fix SELinux to handle capabilities > 63. 1560 #endif 1561 1562 /* Check whether a task is allowed to use a capability. */ 1563 static int cred_has_capability(const struct cred *cred, 1564 int cap, int audit) 1565 { 1566 struct common_audit_data ad; 1567 struct av_decision avd; 1568 u16 sclass; 1569 u32 sid = cred_sid(cred); 1570 u32 av = CAP_TO_MASK(cap); 1571 int rc; 1572 1573 ad.type = LSM_AUDIT_DATA_CAP; 1574 ad.u.cap = cap; 1575 1576 switch (CAP_TO_INDEX(cap)) { 1577 case 0: 1578 sclass = SECCLASS_CAPABILITY; 1579 break; 1580 case 1: 1581 sclass = SECCLASS_CAPABILITY2; 1582 break; 1583 default: 1584 printk(KERN_ERR 1585 "SELinux: out of range capability %d\n", cap); 1586 BUG(); 1587 return -EINVAL; 1588 } 1589 1590 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1591 if (audit == SECURITY_CAP_AUDIT) { 1592 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0); 1593 if (rc2) 1594 return rc2; 1595 } 1596 return rc; 1597 } 1598 1599 /* Check whether a task is allowed to use a system operation. */ 1600 static int task_has_system(struct task_struct *tsk, 1601 u32 perms) 1602 { 1603 u32 sid = task_sid(tsk); 1604 1605 return avc_has_perm(sid, SECINITSID_KERNEL, 1606 SECCLASS_SYSTEM, perms, NULL); 1607 } 1608 1609 /* Check whether a task has a particular permission to an inode. 1610 The 'adp' parameter is optional and allows other audit 1611 data to be passed (e.g. the dentry). */ 1612 static int inode_has_perm(const struct cred *cred, 1613 struct inode *inode, 1614 u32 perms, 1615 struct common_audit_data *adp) 1616 { 1617 struct inode_security_struct *isec; 1618 u32 sid; 1619 1620 validate_creds(cred); 1621 1622 if (unlikely(IS_PRIVATE(inode))) 1623 return 0; 1624 1625 sid = cred_sid(cred); 1626 isec = inode->i_security; 1627 1628 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp); 1629 } 1630 1631 /* Same as inode_has_perm, but pass explicit audit data containing 1632 the dentry to help the auditing code to more easily generate the 1633 pathname if needed. */ 1634 static inline int dentry_has_perm(const struct cred *cred, 1635 struct dentry *dentry, 1636 u32 av) 1637 { 1638 struct inode *inode = d_backing_inode(dentry); 1639 struct common_audit_data ad; 1640 1641 ad.type = LSM_AUDIT_DATA_DENTRY; 1642 ad.u.dentry = dentry; 1643 return inode_has_perm(cred, inode, av, &ad); 1644 } 1645 1646 /* Same as inode_has_perm, but pass explicit audit data containing 1647 the path to help the auditing code to more easily generate the 1648 pathname if needed. */ 1649 static inline int path_has_perm(const struct cred *cred, 1650 const struct path *path, 1651 u32 av) 1652 { 1653 struct inode *inode = d_backing_inode(path->dentry); 1654 struct common_audit_data ad; 1655 1656 ad.type = LSM_AUDIT_DATA_PATH; 1657 ad.u.path = *path; 1658 return inode_has_perm(cred, inode, av, &ad); 1659 } 1660 1661 /* Same as path_has_perm, but uses the inode from the file struct. */ 1662 static inline int file_path_has_perm(const struct cred *cred, 1663 struct file *file, 1664 u32 av) 1665 { 1666 struct common_audit_data ad; 1667 1668 ad.type = LSM_AUDIT_DATA_PATH; 1669 ad.u.path = file->f_path; 1670 return inode_has_perm(cred, file_inode(file), av, &ad); 1671 } 1672 1673 /* Check whether a task can use an open file descriptor to 1674 access an inode in a given way. Check access to the 1675 descriptor itself, and then use dentry_has_perm to 1676 check a particular permission to the file. 1677 Access to the descriptor is implicitly granted if it 1678 has the same SID as the process. If av is zero, then 1679 access to the file is not checked, e.g. for cases 1680 where only the descriptor is affected like seek. */ 1681 static int file_has_perm(const struct cred *cred, 1682 struct file *file, 1683 u32 av) 1684 { 1685 struct file_security_struct *fsec = file->f_security; 1686 struct inode *inode = file_inode(file); 1687 struct common_audit_data ad; 1688 u32 sid = cred_sid(cred); 1689 int rc; 1690 1691 ad.type = LSM_AUDIT_DATA_PATH; 1692 ad.u.path = file->f_path; 1693 1694 if (sid != fsec->sid) { 1695 rc = avc_has_perm(sid, fsec->sid, 1696 SECCLASS_FD, 1697 FD__USE, 1698 &ad); 1699 if (rc) 1700 goto out; 1701 } 1702 1703 /* av is zero if only checking access to the descriptor. */ 1704 rc = 0; 1705 if (av) 1706 rc = inode_has_perm(cred, inode, av, &ad); 1707 1708 out: 1709 return rc; 1710 } 1711 1712 /* 1713 * Determine the label for an inode that might be unioned. 1714 */ 1715 static int selinux_determine_inode_label(const struct inode *dir, 1716 const struct qstr *name, 1717 u16 tclass, 1718 u32 *_new_isid) 1719 { 1720 const struct superblock_security_struct *sbsec = dir->i_sb->s_security; 1721 const struct inode_security_struct *dsec = dir->i_security; 1722 const struct task_security_struct *tsec = current_security(); 1723 1724 if ((sbsec->flags & SE_SBINITIALIZED) && 1725 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) { 1726 *_new_isid = sbsec->mntpoint_sid; 1727 } else if ((sbsec->flags & SBLABEL_MNT) && 1728 tsec->create_sid) { 1729 *_new_isid = tsec->create_sid; 1730 } else { 1731 return security_transition_sid(tsec->sid, dsec->sid, tclass, 1732 name, _new_isid); 1733 } 1734 1735 return 0; 1736 } 1737 1738 /* Check whether a task can create a file. */ 1739 static int may_create(struct inode *dir, 1740 struct dentry *dentry, 1741 u16 tclass) 1742 { 1743 const struct task_security_struct *tsec = current_security(); 1744 struct inode_security_struct *dsec; 1745 struct superblock_security_struct *sbsec; 1746 u32 sid, newsid; 1747 struct common_audit_data ad; 1748 int rc; 1749 1750 dsec = dir->i_security; 1751 sbsec = dir->i_sb->s_security; 1752 1753 sid = tsec->sid; 1754 1755 ad.type = LSM_AUDIT_DATA_DENTRY; 1756 ad.u.dentry = dentry; 1757 1758 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1759 DIR__ADD_NAME | DIR__SEARCH, 1760 &ad); 1761 if (rc) 1762 return rc; 1763 1764 rc = selinux_determine_inode_label(dir, &dentry->d_name, tclass, 1765 &newsid); 1766 if (rc) 1767 return rc; 1768 1769 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1770 if (rc) 1771 return rc; 1772 1773 return avc_has_perm(newsid, sbsec->sid, 1774 SECCLASS_FILESYSTEM, 1775 FILESYSTEM__ASSOCIATE, &ad); 1776 } 1777 1778 /* Check whether a task can create a key. */ 1779 static int may_create_key(u32 ksid, 1780 struct task_struct *ctx) 1781 { 1782 u32 sid = task_sid(ctx); 1783 1784 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1785 } 1786 1787 #define MAY_LINK 0 1788 #define MAY_UNLINK 1 1789 #define MAY_RMDIR 2 1790 1791 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1792 static int may_link(struct inode *dir, 1793 struct dentry *dentry, 1794 int kind) 1795 1796 { 1797 struct inode_security_struct *dsec, *isec; 1798 struct common_audit_data ad; 1799 u32 sid = current_sid(); 1800 u32 av; 1801 int rc; 1802 1803 dsec = dir->i_security; 1804 isec = d_backing_inode(dentry)->i_security; 1805 1806 ad.type = LSM_AUDIT_DATA_DENTRY; 1807 ad.u.dentry = dentry; 1808 1809 av = DIR__SEARCH; 1810 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1811 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1812 if (rc) 1813 return rc; 1814 1815 switch (kind) { 1816 case MAY_LINK: 1817 av = FILE__LINK; 1818 break; 1819 case MAY_UNLINK: 1820 av = FILE__UNLINK; 1821 break; 1822 case MAY_RMDIR: 1823 av = DIR__RMDIR; 1824 break; 1825 default: 1826 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1827 __func__, kind); 1828 return 0; 1829 } 1830 1831 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1832 return rc; 1833 } 1834 1835 static inline int may_rename(struct inode *old_dir, 1836 struct dentry *old_dentry, 1837 struct inode *new_dir, 1838 struct dentry *new_dentry) 1839 { 1840 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1841 struct common_audit_data ad; 1842 u32 sid = current_sid(); 1843 u32 av; 1844 int old_is_dir, new_is_dir; 1845 int rc; 1846 1847 old_dsec = old_dir->i_security; 1848 old_isec = d_backing_inode(old_dentry)->i_security; 1849 old_is_dir = d_is_dir(old_dentry); 1850 new_dsec = new_dir->i_security; 1851 1852 ad.type = LSM_AUDIT_DATA_DENTRY; 1853 1854 ad.u.dentry = old_dentry; 1855 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1856 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1857 if (rc) 1858 return rc; 1859 rc = avc_has_perm(sid, old_isec->sid, 1860 old_isec->sclass, FILE__RENAME, &ad); 1861 if (rc) 1862 return rc; 1863 if (old_is_dir && new_dir != old_dir) { 1864 rc = avc_has_perm(sid, old_isec->sid, 1865 old_isec->sclass, DIR__REPARENT, &ad); 1866 if (rc) 1867 return rc; 1868 } 1869 1870 ad.u.dentry = new_dentry; 1871 av = DIR__ADD_NAME | DIR__SEARCH; 1872 if (d_is_positive(new_dentry)) 1873 av |= DIR__REMOVE_NAME; 1874 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1875 if (rc) 1876 return rc; 1877 if (d_is_positive(new_dentry)) { 1878 new_isec = d_backing_inode(new_dentry)->i_security; 1879 new_is_dir = d_is_dir(new_dentry); 1880 rc = avc_has_perm(sid, new_isec->sid, 1881 new_isec->sclass, 1882 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1883 if (rc) 1884 return rc; 1885 } 1886 1887 return 0; 1888 } 1889 1890 /* Check whether a task can perform a filesystem operation. */ 1891 static int superblock_has_perm(const struct cred *cred, 1892 struct super_block *sb, 1893 u32 perms, 1894 struct common_audit_data *ad) 1895 { 1896 struct superblock_security_struct *sbsec; 1897 u32 sid = cred_sid(cred); 1898 1899 sbsec = sb->s_security; 1900 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1901 } 1902 1903 /* Convert a Linux mode and permission mask to an access vector. */ 1904 static inline u32 file_mask_to_av(int mode, int mask) 1905 { 1906 u32 av = 0; 1907 1908 if (!S_ISDIR(mode)) { 1909 if (mask & MAY_EXEC) 1910 av |= FILE__EXECUTE; 1911 if (mask & MAY_READ) 1912 av |= FILE__READ; 1913 1914 if (mask & MAY_APPEND) 1915 av |= FILE__APPEND; 1916 else if (mask & MAY_WRITE) 1917 av |= FILE__WRITE; 1918 1919 } else { 1920 if (mask & MAY_EXEC) 1921 av |= DIR__SEARCH; 1922 if (mask & MAY_WRITE) 1923 av |= DIR__WRITE; 1924 if (mask & MAY_READ) 1925 av |= DIR__READ; 1926 } 1927 1928 return av; 1929 } 1930 1931 /* Convert a Linux file to an access vector. */ 1932 static inline u32 file_to_av(struct file *file) 1933 { 1934 u32 av = 0; 1935 1936 if (file->f_mode & FMODE_READ) 1937 av |= FILE__READ; 1938 if (file->f_mode & FMODE_WRITE) { 1939 if (file->f_flags & O_APPEND) 1940 av |= FILE__APPEND; 1941 else 1942 av |= FILE__WRITE; 1943 } 1944 if (!av) { 1945 /* 1946 * Special file opened with flags 3 for ioctl-only use. 1947 */ 1948 av = FILE__IOCTL; 1949 } 1950 1951 return av; 1952 } 1953 1954 /* 1955 * Convert a file to an access vector and include the correct open 1956 * open permission. 1957 */ 1958 static inline u32 open_file_to_av(struct file *file) 1959 { 1960 u32 av = file_to_av(file); 1961 1962 if (selinux_policycap_openperm) 1963 av |= FILE__OPEN; 1964 1965 return av; 1966 } 1967 1968 /* Hook functions begin here. */ 1969 1970 static int selinux_binder_set_context_mgr(struct task_struct *mgr) 1971 { 1972 u32 mysid = current_sid(); 1973 u32 mgrsid = task_sid(mgr); 1974 1975 return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER, 1976 BINDER__SET_CONTEXT_MGR, NULL); 1977 } 1978 1979 static int selinux_binder_transaction(struct task_struct *from, 1980 struct task_struct *to) 1981 { 1982 u32 mysid = current_sid(); 1983 u32 fromsid = task_sid(from); 1984 u32 tosid = task_sid(to); 1985 int rc; 1986 1987 if (mysid != fromsid) { 1988 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER, 1989 BINDER__IMPERSONATE, NULL); 1990 if (rc) 1991 return rc; 1992 } 1993 1994 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL, 1995 NULL); 1996 } 1997 1998 static int selinux_binder_transfer_binder(struct task_struct *from, 1999 struct task_struct *to) 2000 { 2001 u32 fromsid = task_sid(from); 2002 u32 tosid = task_sid(to); 2003 2004 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER, 2005 NULL); 2006 } 2007 2008 static int selinux_binder_transfer_file(struct task_struct *from, 2009 struct task_struct *to, 2010 struct file *file) 2011 { 2012 u32 sid = task_sid(to); 2013 struct file_security_struct *fsec = file->f_security; 2014 struct inode *inode = d_backing_inode(file->f_path.dentry); 2015 struct inode_security_struct *isec = inode->i_security; 2016 struct common_audit_data ad; 2017 int rc; 2018 2019 ad.type = LSM_AUDIT_DATA_PATH; 2020 ad.u.path = file->f_path; 2021 2022 if (sid != fsec->sid) { 2023 rc = avc_has_perm(sid, fsec->sid, 2024 SECCLASS_FD, 2025 FD__USE, 2026 &ad); 2027 if (rc) 2028 return rc; 2029 } 2030 2031 if (unlikely(IS_PRIVATE(inode))) 2032 return 0; 2033 2034 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file), 2035 &ad); 2036 } 2037 2038 static int selinux_ptrace_access_check(struct task_struct *child, 2039 unsigned int mode) 2040 { 2041 if (mode & PTRACE_MODE_READ) { 2042 u32 sid = current_sid(); 2043 u32 csid = task_sid(child); 2044 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL); 2045 } 2046 2047 return current_has_perm(child, PROCESS__PTRACE); 2048 } 2049 2050 static int selinux_ptrace_traceme(struct task_struct *parent) 2051 { 2052 return task_has_perm(parent, current, PROCESS__PTRACE); 2053 } 2054 2055 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 2056 kernel_cap_t *inheritable, kernel_cap_t *permitted) 2057 { 2058 return current_has_perm(target, PROCESS__GETCAP); 2059 } 2060 2061 static int selinux_capset(struct cred *new, const struct cred *old, 2062 const kernel_cap_t *effective, 2063 const kernel_cap_t *inheritable, 2064 const kernel_cap_t *permitted) 2065 { 2066 return cred_has_perm(old, new, PROCESS__SETCAP); 2067 } 2068 2069 /* 2070 * (This comment used to live with the selinux_task_setuid hook, 2071 * which was removed). 2072 * 2073 * Since setuid only affects the current process, and since the SELinux 2074 * controls are not based on the Linux identity attributes, SELinux does not 2075 * need to control this operation. However, SELinux does control the use of 2076 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 2077 */ 2078 2079 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 2080 int cap, int audit) 2081 { 2082 return cred_has_capability(cred, cap, audit); 2083 } 2084 2085 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 2086 { 2087 const struct cred *cred = current_cred(); 2088 int rc = 0; 2089 2090 if (!sb) 2091 return 0; 2092 2093 switch (cmds) { 2094 case Q_SYNC: 2095 case Q_QUOTAON: 2096 case Q_QUOTAOFF: 2097 case Q_SETINFO: 2098 case Q_SETQUOTA: 2099 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2100 break; 2101 case Q_GETFMT: 2102 case Q_GETINFO: 2103 case Q_GETQUOTA: 2104 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2105 break; 2106 default: 2107 rc = 0; /* let the kernel handle invalid cmds */ 2108 break; 2109 } 2110 return rc; 2111 } 2112 2113 static int selinux_quota_on(struct dentry *dentry) 2114 { 2115 const struct cred *cred = current_cred(); 2116 2117 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 2118 } 2119 2120 static int selinux_syslog(int type) 2121 { 2122 int rc; 2123 2124 switch (type) { 2125 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2126 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2127 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 2128 break; 2129 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2130 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2131 /* Set level of messages printed to console */ 2132 case SYSLOG_ACTION_CONSOLE_LEVEL: 2133 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 2134 break; 2135 case SYSLOG_ACTION_CLOSE: /* Close log */ 2136 case SYSLOG_ACTION_OPEN: /* Open log */ 2137 case SYSLOG_ACTION_READ: /* Read from log */ 2138 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */ 2139 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 2140 default: 2141 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 2142 break; 2143 } 2144 return rc; 2145 } 2146 2147 /* 2148 * Check that a process has enough memory to allocate a new virtual 2149 * mapping. 0 means there is enough memory for the allocation to 2150 * succeed and -ENOMEM implies there is not. 2151 * 2152 * Do not audit the selinux permission check, as this is applied to all 2153 * processes that allocate mappings. 2154 */ 2155 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2156 { 2157 int rc, cap_sys_admin = 0; 2158 2159 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN, 2160 SECURITY_CAP_NOAUDIT); 2161 if (rc == 0) 2162 cap_sys_admin = 1; 2163 2164 return cap_sys_admin; 2165 } 2166 2167 /* binprm security operations */ 2168 2169 static int check_nnp_nosuid(const struct linux_binprm *bprm, 2170 const struct task_security_struct *old_tsec, 2171 const struct task_security_struct *new_tsec) 2172 { 2173 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); 2174 int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID); 2175 int rc; 2176 2177 if (!nnp && !nosuid) 2178 return 0; /* neither NNP nor nosuid */ 2179 2180 if (new_tsec->sid == old_tsec->sid) 2181 return 0; /* No change in credentials */ 2182 2183 /* 2184 * The only transitions we permit under NNP or nosuid 2185 * are transitions to bounded SIDs, i.e. SIDs that are 2186 * guaranteed to only be allowed a subset of the permissions 2187 * of the current SID. 2188 */ 2189 rc = security_bounded_transition(old_tsec->sid, new_tsec->sid); 2190 if (rc) { 2191 /* 2192 * On failure, preserve the errno values for NNP vs nosuid. 2193 * NNP: Operation not permitted for caller. 2194 * nosuid: Permission denied to file. 2195 */ 2196 if (nnp) 2197 return -EPERM; 2198 else 2199 return -EACCES; 2200 } 2201 return 0; 2202 } 2203 2204 static int selinux_bprm_set_creds(struct linux_binprm *bprm) 2205 { 2206 const struct task_security_struct *old_tsec; 2207 struct task_security_struct *new_tsec; 2208 struct inode_security_struct *isec; 2209 struct common_audit_data ad; 2210 struct inode *inode = file_inode(bprm->file); 2211 int rc; 2212 2213 /* SELinux context only depends on initial program or script and not 2214 * the script interpreter */ 2215 if (bprm->cred_prepared) 2216 return 0; 2217 2218 old_tsec = current_security(); 2219 new_tsec = bprm->cred->security; 2220 isec = inode->i_security; 2221 2222 /* Default to the current task SID. */ 2223 new_tsec->sid = old_tsec->sid; 2224 new_tsec->osid = old_tsec->sid; 2225 2226 /* Reset fs, key, and sock SIDs on execve. */ 2227 new_tsec->create_sid = 0; 2228 new_tsec->keycreate_sid = 0; 2229 new_tsec->sockcreate_sid = 0; 2230 2231 if (old_tsec->exec_sid) { 2232 new_tsec->sid = old_tsec->exec_sid; 2233 /* Reset exec SID on execve. */ 2234 new_tsec->exec_sid = 0; 2235 2236 /* Fail on NNP or nosuid if not an allowed transition. */ 2237 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2238 if (rc) 2239 return rc; 2240 } else { 2241 /* Check for a default transition on this program. */ 2242 rc = security_transition_sid(old_tsec->sid, isec->sid, 2243 SECCLASS_PROCESS, NULL, 2244 &new_tsec->sid); 2245 if (rc) 2246 return rc; 2247 2248 /* 2249 * Fallback to old SID on NNP or nosuid if not an allowed 2250 * transition. 2251 */ 2252 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2253 if (rc) 2254 new_tsec->sid = old_tsec->sid; 2255 } 2256 2257 ad.type = LSM_AUDIT_DATA_PATH; 2258 ad.u.path = bprm->file->f_path; 2259 2260 if (new_tsec->sid == old_tsec->sid) { 2261 rc = avc_has_perm(old_tsec->sid, isec->sid, 2262 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2263 if (rc) 2264 return rc; 2265 } else { 2266 /* Check permissions for the transition. */ 2267 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2268 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2269 if (rc) 2270 return rc; 2271 2272 rc = avc_has_perm(new_tsec->sid, isec->sid, 2273 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2274 if (rc) 2275 return rc; 2276 2277 /* Check for shared state */ 2278 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2279 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2280 SECCLASS_PROCESS, PROCESS__SHARE, 2281 NULL); 2282 if (rc) 2283 return -EPERM; 2284 } 2285 2286 /* Make sure that anyone attempting to ptrace over a task that 2287 * changes its SID has the appropriate permit */ 2288 if (bprm->unsafe & 2289 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2290 struct task_struct *tracer; 2291 struct task_security_struct *sec; 2292 u32 ptsid = 0; 2293 2294 rcu_read_lock(); 2295 tracer = ptrace_parent(current); 2296 if (likely(tracer != NULL)) { 2297 sec = __task_cred(tracer)->security; 2298 ptsid = sec->sid; 2299 } 2300 rcu_read_unlock(); 2301 2302 if (ptsid != 0) { 2303 rc = avc_has_perm(ptsid, new_tsec->sid, 2304 SECCLASS_PROCESS, 2305 PROCESS__PTRACE, NULL); 2306 if (rc) 2307 return -EPERM; 2308 } 2309 } 2310 2311 /* Clear any possibly unsafe personality bits on exec: */ 2312 bprm->per_clear |= PER_CLEAR_ON_SETID; 2313 } 2314 2315 return 0; 2316 } 2317 2318 static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2319 { 2320 const struct task_security_struct *tsec = current_security(); 2321 u32 sid, osid; 2322 int atsecure = 0; 2323 2324 sid = tsec->sid; 2325 osid = tsec->osid; 2326 2327 if (osid != sid) { 2328 /* Enable secure mode for SIDs transitions unless 2329 the noatsecure permission is granted between 2330 the two SIDs, i.e. ahp returns 0. */ 2331 atsecure = avc_has_perm(osid, sid, 2332 SECCLASS_PROCESS, 2333 PROCESS__NOATSECURE, NULL); 2334 } 2335 2336 return !!atsecure; 2337 } 2338 2339 static int match_file(const void *p, struct file *file, unsigned fd) 2340 { 2341 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; 2342 } 2343 2344 /* Derived from fs/exec.c:flush_old_files. */ 2345 static inline void flush_unauthorized_files(const struct cred *cred, 2346 struct files_struct *files) 2347 { 2348 struct file *file, *devnull = NULL; 2349 struct tty_struct *tty; 2350 int drop_tty = 0; 2351 unsigned n; 2352 2353 tty = get_current_tty(); 2354 if (tty) { 2355 spin_lock(&tty_files_lock); 2356 if (!list_empty(&tty->tty_files)) { 2357 struct tty_file_private *file_priv; 2358 2359 /* Revalidate access to controlling tty. 2360 Use file_path_has_perm on the tty path directly 2361 rather than using file_has_perm, as this particular 2362 open file may belong to another process and we are 2363 only interested in the inode-based check here. */ 2364 file_priv = list_first_entry(&tty->tty_files, 2365 struct tty_file_private, list); 2366 file = file_priv->file; 2367 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) 2368 drop_tty = 1; 2369 } 2370 spin_unlock(&tty_files_lock); 2371 tty_kref_put(tty); 2372 } 2373 /* Reset controlling tty. */ 2374 if (drop_tty) 2375 no_tty(); 2376 2377 /* Revalidate access to inherited open files. */ 2378 n = iterate_fd(files, 0, match_file, cred); 2379 if (!n) /* none found? */ 2380 return; 2381 2382 devnull = dentry_open(&selinux_null, O_RDWR, cred); 2383 if (IS_ERR(devnull)) 2384 devnull = NULL; 2385 /* replace all the matching ones with this */ 2386 do { 2387 replace_fd(n - 1, devnull, 0); 2388 } while ((n = iterate_fd(files, n, match_file, cred)) != 0); 2389 if (devnull) 2390 fput(devnull); 2391 } 2392 2393 /* 2394 * Prepare a process for imminent new credential changes due to exec 2395 */ 2396 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2397 { 2398 struct task_security_struct *new_tsec; 2399 struct rlimit *rlim, *initrlim; 2400 int rc, i; 2401 2402 new_tsec = bprm->cred->security; 2403 if (new_tsec->sid == new_tsec->osid) 2404 return; 2405 2406 /* Close files for which the new task SID is not authorized. */ 2407 flush_unauthorized_files(bprm->cred, current->files); 2408 2409 /* Always clear parent death signal on SID transitions. */ 2410 current->pdeath_signal = 0; 2411 2412 /* Check whether the new SID can inherit resource limits from the old 2413 * SID. If not, reset all soft limits to the lower of the current 2414 * task's hard limit and the init task's soft limit. 2415 * 2416 * Note that the setting of hard limits (even to lower them) can be 2417 * controlled by the setrlimit check. The inclusion of the init task's 2418 * soft limit into the computation is to avoid resetting soft limits 2419 * higher than the default soft limit for cases where the default is 2420 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2421 */ 2422 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2423 PROCESS__RLIMITINH, NULL); 2424 if (rc) { 2425 /* protect against do_prlimit() */ 2426 task_lock(current); 2427 for (i = 0; i < RLIM_NLIMITS; i++) { 2428 rlim = current->signal->rlim + i; 2429 initrlim = init_task.signal->rlim + i; 2430 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2431 } 2432 task_unlock(current); 2433 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2434 } 2435 } 2436 2437 /* 2438 * Clean up the process immediately after the installation of new credentials 2439 * due to exec 2440 */ 2441 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2442 { 2443 const struct task_security_struct *tsec = current_security(); 2444 struct itimerval itimer; 2445 u32 osid, sid; 2446 int rc, i; 2447 2448 osid = tsec->osid; 2449 sid = tsec->sid; 2450 2451 if (sid == osid) 2452 return; 2453 2454 /* Check whether the new SID can inherit signal state from the old SID. 2455 * If not, clear itimers to avoid subsequent signal generation and 2456 * flush and unblock signals. 2457 * 2458 * This must occur _after_ the task SID has been updated so that any 2459 * kill done after the flush will be checked against the new SID. 2460 */ 2461 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2462 if (rc) { 2463 memset(&itimer, 0, sizeof itimer); 2464 for (i = 0; i < 3; i++) 2465 do_setitimer(i, &itimer, NULL); 2466 spin_lock_irq(¤t->sighand->siglock); 2467 if (!fatal_signal_pending(current)) { 2468 flush_sigqueue(¤t->pending); 2469 flush_sigqueue(¤t->signal->shared_pending); 2470 flush_signal_handlers(current, 1); 2471 sigemptyset(¤t->blocked); 2472 recalc_sigpending(); 2473 } 2474 spin_unlock_irq(¤t->sighand->siglock); 2475 } 2476 2477 /* Wake up the parent if it is waiting so that it can recheck 2478 * wait permission to the new task SID. */ 2479 read_lock(&tasklist_lock); 2480 __wake_up_parent(current, current->real_parent); 2481 read_unlock(&tasklist_lock); 2482 } 2483 2484 /* superblock security operations */ 2485 2486 static int selinux_sb_alloc_security(struct super_block *sb) 2487 { 2488 return superblock_alloc_security(sb); 2489 } 2490 2491 static void selinux_sb_free_security(struct super_block *sb) 2492 { 2493 superblock_free_security(sb); 2494 } 2495 2496 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2497 { 2498 if (plen > olen) 2499 return 0; 2500 2501 return !memcmp(prefix, option, plen); 2502 } 2503 2504 static inline int selinux_option(char *option, int len) 2505 { 2506 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2507 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2508 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2509 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) || 2510 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len)); 2511 } 2512 2513 static inline void take_option(char **to, char *from, int *first, int len) 2514 { 2515 if (!*first) { 2516 **to = ','; 2517 *to += 1; 2518 } else 2519 *first = 0; 2520 memcpy(*to, from, len); 2521 *to += len; 2522 } 2523 2524 static inline void take_selinux_option(char **to, char *from, int *first, 2525 int len) 2526 { 2527 int current_size = 0; 2528 2529 if (!*first) { 2530 **to = '|'; 2531 *to += 1; 2532 } else 2533 *first = 0; 2534 2535 while (current_size < len) { 2536 if (*from != '"') { 2537 **to = *from; 2538 *to += 1; 2539 } 2540 from += 1; 2541 current_size += 1; 2542 } 2543 } 2544 2545 static int selinux_sb_copy_data(char *orig, char *copy) 2546 { 2547 int fnosec, fsec, rc = 0; 2548 char *in_save, *in_curr, *in_end; 2549 char *sec_curr, *nosec_save, *nosec; 2550 int open_quote = 0; 2551 2552 in_curr = orig; 2553 sec_curr = copy; 2554 2555 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2556 if (!nosec) { 2557 rc = -ENOMEM; 2558 goto out; 2559 } 2560 2561 nosec_save = nosec; 2562 fnosec = fsec = 1; 2563 in_save = in_end = orig; 2564 2565 do { 2566 if (*in_end == '"') 2567 open_quote = !open_quote; 2568 if ((*in_end == ',' && open_quote == 0) || 2569 *in_end == '\0') { 2570 int len = in_end - in_curr; 2571 2572 if (selinux_option(in_curr, len)) 2573 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2574 else 2575 take_option(&nosec, in_curr, &fnosec, len); 2576 2577 in_curr = in_end + 1; 2578 } 2579 } while (*in_end++); 2580 2581 strcpy(in_save, nosec_save); 2582 free_page((unsigned long)nosec_save); 2583 out: 2584 return rc; 2585 } 2586 2587 static int selinux_sb_remount(struct super_block *sb, void *data) 2588 { 2589 int rc, i, *flags; 2590 struct security_mnt_opts opts; 2591 char *secdata, **mount_options; 2592 struct superblock_security_struct *sbsec = sb->s_security; 2593 2594 if (!(sbsec->flags & SE_SBINITIALIZED)) 2595 return 0; 2596 2597 if (!data) 2598 return 0; 2599 2600 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 2601 return 0; 2602 2603 security_init_mnt_opts(&opts); 2604 secdata = alloc_secdata(); 2605 if (!secdata) 2606 return -ENOMEM; 2607 rc = selinux_sb_copy_data(data, secdata); 2608 if (rc) 2609 goto out_free_secdata; 2610 2611 rc = selinux_parse_opts_str(secdata, &opts); 2612 if (rc) 2613 goto out_free_secdata; 2614 2615 mount_options = opts.mnt_opts; 2616 flags = opts.mnt_opts_flags; 2617 2618 for (i = 0; i < opts.num_mnt_opts; i++) { 2619 u32 sid; 2620 size_t len; 2621 2622 if (flags[i] == SBLABEL_MNT) 2623 continue; 2624 len = strlen(mount_options[i]); 2625 rc = security_context_to_sid(mount_options[i], len, &sid, 2626 GFP_KERNEL); 2627 if (rc) { 2628 printk(KERN_WARNING "SELinux: security_context_to_sid" 2629 "(%s) failed for (dev %s, type %s) errno=%d\n", 2630 mount_options[i], sb->s_id, sb->s_type->name, rc); 2631 goto out_free_opts; 2632 } 2633 rc = -EINVAL; 2634 switch (flags[i]) { 2635 case FSCONTEXT_MNT: 2636 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid)) 2637 goto out_bad_option; 2638 break; 2639 case CONTEXT_MNT: 2640 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid)) 2641 goto out_bad_option; 2642 break; 2643 case ROOTCONTEXT_MNT: { 2644 struct inode_security_struct *root_isec; 2645 root_isec = d_backing_inode(sb->s_root)->i_security; 2646 2647 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid)) 2648 goto out_bad_option; 2649 break; 2650 } 2651 case DEFCONTEXT_MNT: 2652 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid)) 2653 goto out_bad_option; 2654 break; 2655 default: 2656 goto out_free_opts; 2657 } 2658 } 2659 2660 rc = 0; 2661 out_free_opts: 2662 security_free_mnt_opts(&opts); 2663 out_free_secdata: 2664 free_secdata(secdata); 2665 return rc; 2666 out_bad_option: 2667 printk(KERN_WARNING "SELinux: unable to change security options " 2668 "during remount (dev %s, type=%s)\n", sb->s_id, 2669 sb->s_type->name); 2670 goto out_free_opts; 2671 } 2672 2673 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data) 2674 { 2675 const struct cred *cred = current_cred(); 2676 struct common_audit_data ad; 2677 int rc; 2678 2679 rc = superblock_doinit(sb, data); 2680 if (rc) 2681 return rc; 2682 2683 /* Allow all mounts performed by the kernel */ 2684 if (flags & MS_KERNMOUNT) 2685 return 0; 2686 2687 ad.type = LSM_AUDIT_DATA_DENTRY; 2688 ad.u.dentry = sb->s_root; 2689 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2690 } 2691 2692 static int selinux_sb_statfs(struct dentry *dentry) 2693 { 2694 const struct cred *cred = current_cred(); 2695 struct common_audit_data ad; 2696 2697 ad.type = LSM_AUDIT_DATA_DENTRY; 2698 ad.u.dentry = dentry->d_sb->s_root; 2699 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2700 } 2701 2702 static int selinux_mount(const char *dev_name, 2703 struct path *path, 2704 const char *type, 2705 unsigned long flags, 2706 void *data) 2707 { 2708 const struct cred *cred = current_cred(); 2709 2710 if (flags & MS_REMOUNT) 2711 return superblock_has_perm(cred, path->dentry->d_sb, 2712 FILESYSTEM__REMOUNT, NULL); 2713 else 2714 return path_has_perm(cred, path, FILE__MOUNTON); 2715 } 2716 2717 static int selinux_umount(struct vfsmount *mnt, int flags) 2718 { 2719 const struct cred *cred = current_cred(); 2720 2721 return superblock_has_perm(cred, mnt->mnt_sb, 2722 FILESYSTEM__UNMOUNT, NULL); 2723 } 2724 2725 /* inode security operations */ 2726 2727 static int selinux_inode_alloc_security(struct inode *inode) 2728 { 2729 return inode_alloc_security(inode); 2730 } 2731 2732 static void selinux_inode_free_security(struct inode *inode) 2733 { 2734 inode_free_security(inode); 2735 } 2736 2737 static int selinux_dentry_init_security(struct dentry *dentry, int mode, 2738 struct qstr *name, void **ctx, 2739 u32 *ctxlen) 2740 { 2741 u32 newsid; 2742 int rc; 2743 2744 rc = selinux_determine_inode_label(d_inode(dentry->d_parent), name, 2745 inode_mode_to_security_class(mode), 2746 &newsid); 2747 if (rc) 2748 return rc; 2749 2750 return security_sid_to_context(newsid, (char **)ctx, ctxlen); 2751 } 2752 2753 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2754 const struct qstr *qstr, 2755 const char **name, 2756 void **value, size_t *len) 2757 { 2758 const struct task_security_struct *tsec = current_security(); 2759 struct inode_security_struct *dsec; 2760 struct superblock_security_struct *sbsec; 2761 u32 sid, newsid, clen; 2762 int rc; 2763 char *context; 2764 2765 dsec = dir->i_security; 2766 sbsec = dir->i_sb->s_security; 2767 2768 sid = tsec->sid; 2769 newsid = tsec->create_sid; 2770 2771 rc = selinux_determine_inode_label( 2772 dir, qstr, 2773 inode_mode_to_security_class(inode->i_mode), 2774 &newsid); 2775 if (rc) 2776 return rc; 2777 2778 /* Possibly defer initialization to selinux_complete_init. */ 2779 if (sbsec->flags & SE_SBINITIALIZED) { 2780 struct inode_security_struct *isec = inode->i_security; 2781 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2782 isec->sid = newsid; 2783 isec->initialized = 1; 2784 } 2785 2786 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT)) 2787 return -EOPNOTSUPP; 2788 2789 if (name) 2790 *name = XATTR_SELINUX_SUFFIX; 2791 2792 if (value && len) { 2793 rc = security_sid_to_context_force(newsid, &context, &clen); 2794 if (rc) 2795 return rc; 2796 *value = context; 2797 *len = clen; 2798 } 2799 2800 return 0; 2801 } 2802 2803 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 2804 { 2805 return may_create(dir, dentry, SECCLASS_FILE); 2806 } 2807 2808 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2809 { 2810 return may_link(dir, old_dentry, MAY_LINK); 2811 } 2812 2813 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2814 { 2815 return may_link(dir, dentry, MAY_UNLINK); 2816 } 2817 2818 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2819 { 2820 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2821 } 2822 2823 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 2824 { 2825 return may_create(dir, dentry, SECCLASS_DIR); 2826 } 2827 2828 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2829 { 2830 return may_link(dir, dentry, MAY_RMDIR); 2831 } 2832 2833 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2834 { 2835 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2836 } 2837 2838 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2839 struct inode *new_inode, struct dentry *new_dentry) 2840 { 2841 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2842 } 2843 2844 static int selinux_inode_readlink(struct dentry *dentry) 2845 { 2846 const struct cred *cred = current_cred(); 2847 2848 return dentry_has_perm(cred, dentry, FILE__READ); 2849 } 2850 2851 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode, 2852 bool rcu) 2853 { 2854 const struct cred *cred = current_cred(); 2855 struct common_audit_data ad; 2856 struct inode_security_struct *isec; 2857 u32 sid; 2858 2859 validate_creds(cred); 2860 2861 ad.type = LSM_AUDIT_DATA_DENTRY; 2862 ad.u.dentry = dentry; 2863 sid = cred_sid(cred); 2864 isec = inode->i_security; 2865 2866 return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad, 2867 rcu ? MAY_NOT_BLOCK : 0); 2868 } 2869 2870 static noinline int audit_inode_permission(struct inode *inode, 2871 u32 perms, u32 audited, u32 denied, 2872 int result, 2873 unsigned flags) 2874 { 2875 struct common_audit_data ad; 2876 struct inode_security_struct *isec = inode->i_security; 2877 int rc; 2878 2879 ad.type = LSM_AUDIT_DATA_INODE; 2880 ad.u.inode = inode; 2881 2882 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms, 2883 audited, denied, result, &ad, flags); 2884 if (rc) 2885 return rc; 2886 return 0; 2887 } 2888 2889 static int selinux_inode_permission(struct inode *inode, int mask) 2890 { 2891 const struct cred *cred = current_cred(); 2892 u32 perms; 2893 bool from_access; 2894 unsigned flags = mask & MAY_NOT_BLOCK; 2895 struct inode_security_struct *isec; 2896 u32 sid; 2897 struct av_decision avd; 2898 int rc, rc2; 2899 u32 audited, denied; 2900 2901 from_access = mask & MAY_ACCESS; 2902 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 2903 2904 /* No permission to check. Existence test. */ 2905 if (!mask) 2906 return 0; 2907 2908 validate_creds(cred); 2909 2910 if (unlikely(IS_PRIVATE(inode))) 2911 return 0; 2912 2913 perms = file_mask_to_av(inode->i_mode, mask); 2914 2915 sid = cred_sid(cred); 2916 isec = inode->i_security; 2917 2918 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd); 2919 audited = avc_audit_required(perms, &avd, rc, 2920 from_access ? FILE__AUDIT_ACCESS : 0, 2921 &denied); 2922 if (likely(!audited)) 2923 return rc; 2924 2925 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags); 2926 if (rc2) 2927 return rc2; 2928 return rc; 2929 } 2930 2931 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2932 { 2933 const struct cred *cred = current_cred(); 2934 unsigned int ia_valid = iattr->ia_valid; 2935 __u32 av = FILE__WRITE; 2936 2937 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 2938 if (ia_valid & ATTR_FORCE) { 2939 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 2940 ATTR_FORCE); 2941 if (!ia_valid) 2942 return 0; 2943 } 2944 2945 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2946 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 2947 return dentry_has_perm(cred, dentry, FILE__SETATTR); 2948 2949 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)) 2950 av |= FILE__OPEN; 2951 2952 return dentry_has_perm(cred, dentry, av); 2953 } 2954 2955 static int selinux_inode_getattr(const struct path *path) 2956 { 2957 return path_has_perm(current_cred(), path, FILE__GETATTR); 2958 } 2959 2960 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 2961 { 2962 const struct cred *cred = current_cred(); 2963 2964 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2965 sizeof XATTR_SECURITY_PREFIX - 1)) { 2966 if (!strcmp(name, XATTR_NAME_CAPS)) { 2967 if (!capable(CAP_SETFCAP)) 2968 return -EPERM; 2969 } else if (!capable(CAP_SYS_ADMIN)) { 2970 /* A different attribute in the security namespace. 2971 Restrict to administrator. */ 2972 return -EPERM; 2973 } 2974 } 2975 2976 /* Not an attribute we recognize, so just check the 2977 ordinary setattr permission. */ 2978 return dentry_has_perm(cred, dentry, FILE__SETATTR); 2979 } 2980 2981 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 2982 const void *value, size_t size, int flags) 2983 { 2984 struct inode *inode = d_backing_inode(dentry); 2985 struct inode_security_struct *isec = inode->i_security; 2986 struct superblock_security_struct *sbsec; 2987 struct common_audit_data ad; 2988 u32 newsid, sid = current_sid(); 2989 int rc = 0; 2990 2991 if (strcmp(name, XATTR_NAME_SELINUX)) 2992 return selinux_inode_setotherxattr(dentry, name); 2993 2994 sbsec = inode->i_sb->s_security; 2995 if (!(sbsec->flags & SBLABEL_MNT)) 2996 return -EOPNOTSUPP; 2997 2998 if (!inode_owner_or_capable(inode)) 2999 return -EPERM; 3000 3001 ad.type = LSM_AUDIT_DATA_DENTRY; 3002 ad.u.dentry = dentry; 3003 3004 rc = avc_has_perm(sid, isec->sid, isec->sclass, 3005 FILE__RELABELFROM, &ad); 3006 if (rc) 3007 return rc; 3008 3009 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL); 3010 if (rc == -EINVAL) { 3011 if (!capable(CAP_MAC_ADMIN)) { 3012 struct audit_buffer *ab; 3013 size_t audit_size; 3014 const char *str; 3015 3016 /* We strip a nul only if it is at the end, otherwise the 3017 * context contains a nul and we should audit that */ 3018 if (value) { 3019 str = value; 3020 if (str[size - 1] == '\0') 3021 audit_size = size - 1; 3022 else 3023 audit_size = size; 3024 } else { 3025 str = ""; 3026 audit_size = 0; 3027 } 3028 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR); 3029 audit_log_format(ab, "op=setxattr invalid_context="); 3030 audit_log_n_untrustedstring(ab, value, audit_size); 3031 audit_log_end(ab); 3032 3033 return rc; 3034 } 3035 rc = security_context_to_sid_force(value, size, &newsid); 3036 } 3037 if (rc) 3038 return rc; 3039 3040 rc = avc_has_perm(sid, newsid, isec->sclass, 3041 FILE__RELABELTO, &ad); 3042 if (rc) 3043 return rc; 3044 3045 rc = security_validate_transition(isec->sid, newsid, sid, 3046 isec->sclass); 3047 if (rc) 3048 return rc; 3049 3050 return avc_has_perm(newsid, 3051 sbsec->sid, 3052 SECCLASS_FILESYSTEM, 3053 FILESYSTEM__ASSOCIATE, 3054 &ad); 3055 } 3056 3057 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 3058 const void *value, size_t size, 3059 int flags) 3060 { 3061 struct inode *inode = d_backing_inode(dentry); 3062 struct inode_security_struct *isec = inode->i_security; 3063 u32 newsid; 3064 int rc; 3065 3066 if (strcmp(name, XATTR_NAME_SELINUX)) { 3067 /* Not an attribute we recognize, so nothing to do. */ 3068 return; 3069 } 3070 3071 rc = security_context_to_sid_force(value, size, &newsid); 3072 if (rc) { 3073 printk(KERN_ERR "SELinux: unable to map context to SID" 3074 "for (%s, %lu), rc=%d\n", 3075 inode->i_sb->s_id, inode->i_ino, -rc); 3076 return; 3077 } 3078 3079 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3080 isec->sid = newsid; 3081 isec->initialized = 1; 3082 3083 return; 3084 } 3085 3086 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 3087 { 3088 const struct cred *cred = current_cred(); 3089 3090 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3091 } 3092 3093 static int selinux_inode_listxattr(struct dentry *dentry) 3094 { 3095 const struct cred *cred = current_cred(); 3096 3097 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3098 } 3099 3100 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 3101 { 3102 if (strcmp(name, XATTR_NAME_SELINUX)) 3103 return selinux_inode_setotherxattr(dentry, name); 3104 3105 /* No one is allowed to remove a SELinux security label. 3106 You can change the label, but all data must be labeled. */ 3107 return -EACCES; 3108 } 3109 3110 /* 3111 * Copy the inode security context value to the user. 3112 * 3113 * Permission check is handled by selinux_inode_getxattr hook. 3114 */ 3115 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 3116 { 3117 u32 size; 3118 int error; 3119 char *context = NULL; 3120 struct inode_security_struct *isec = inode->i_security; 3121 3122 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3123 return -EOPNOTSUPP; 3124 3125 /* 3126 * If the caller has CAP_MAC_ADMIN, then get the raw context 3127 * value even if it is not defined by current policy; otherwise, 3128 * use the in-core value under current policy. 3129 * Use the non-auditing forms of the permission checks since 3130 * getxattr may be called by unprivileged processes commonly 3131 * and lack of permission just means that we fall back to the 3132 * in-core context value, not a denial. 3133 */ 3134 error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN, 3135 SECURITY_CAP_NOAUDIT); 3136 if (!error) 3137 error = cred_has_capability(current_cred(), CAP_MAC_ADMIN, 3138 SECURITY_CAP_NOAUDIT); 3139 if (!error) 3140 error = security_sid_to_context_force(isec->sid, &context, 3141 &size); 3142 else 3143 error = security_sid_to_context(isec->sid, &context, &size); 3144 if (error) 3145 return error; 3146 error = size; 3147 if (alloc) { 3148 *buffer = context; 3149 goto out_nofree; 3150 } 3151 kfree(context); 3152 out_nofree: 3153 return error; 3154 } 3155 3156 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 3157 const void *value, size_t size, int flags) 3158 { 3159 struct inode_security_struct *isec = inode->i_security; 3160 u32 newsid; 3161 int rc; 3162 3163 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3164 return -EOPNOTSUPP; 3165 3166 if (!value || !size) 3167 return -EACCES; 3168 3169 rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL); 3170 if (rc) 3171 return rc; 3172 3173 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3174 isec->sid = newsid; 3175 isec->initialized = 1; 3176 return 0; 3177 } 3178 3179 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 3180 { 3181 const int len = sizeof(XATTR_NAME_SELINUX); 3182 if (buffer && len <= buffer_size) 3183 memcpy(buffer, XATTR_NAME_SELINUX, len); 3184 return len; 3185 } 3186 3187 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid) 3188 { 3189 struct inode_security_struct *isec = inode->i_security; 3190 *secid = isec->sid; 3191 } 3192 3193 /* file security operations */ 3194 3195 static int selinux_revalidate_file_permission(struct file *file, int mask) 3196 { 3197 const struct cred *cred = current_cred(); 3198 struct inode *inode = file_inode(file); 3199 3200 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 3201 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 3202 mask |= MAY_APPEND; 3203 3204 return file_has_perm(cred, file, 3205 file_mask_to_av(inode->i_mode, mask)); 3206 } 3207 3208 static int selinux_file_permission(struct file *file, int mask) 3209 { 3210 struct inode *inode = file_inode(file); 3211 struct file_security_struct *fsec = file->f_security; 3212 struct inode_security_struct *isec = inode->i_security; 3213 u32 sid = current_sid(); 3214 3215 if (!mask) 3216 /* No permission to check. Existence test. */ 3217 return 0; 3218 3219 if (sid == fsec->sid && fsec->isid == isec->sid && 3220 fsec->pseqno == avc_policy_seqno()) 3221 /* No change since file_open check. */ 3222 return 0; 3223 3224 return selinux_revalidate_file_permission(file, mask); 3225 } 3226 3227 static int selinux_file_alloc_security(struct file *file) 3228 { 3229 return file_alloc_security(file); 3230 } 3231 3232 static void selinux_file_free_security(struct file *file) 3233 { 3234 file_free_security(file); 3235 } 3236 3237 /* 3238 * Check whether a task has the ioctl permission and cmd 3239 * operation to an inode. 3240 */ 3241 int ioctl_has_perm(const struct cred *cred, struct file *file, 3242 u32 requested, u16 cmd) 3243 { 3244 struct common_audit_data ad; 3245 struct file_security_struct *fsec = file->f_security; 3246 struct inode *inode = file_inode(file); 3247 struct inode_security_struct *isec = inode->i_security; 3248 struct lsm_ioctlop_audit ioctl; 3249 u32 ssid = cred_sid(cred); 3250 int rc; 3251 u8 driver = cmd >> 8; 3252 u8 xperm = cmd & 0xff; 3253 3254 ad.type = LSM_AUDIT_DATA_IOCTL_OP; 3255 ad.u.op = &ioctl; 3256 ad.u.op->cmd = cmd; 3257 ad.u.op->path = file->f_path; 3258 3259 if (ssid != fsec->sid) { 3260 rc = avc_has_perm(ssid, fsec->sid, 3261 SECCLASS_FD, 3262 FD__USE, 3263 &ad); 3264 if (rc) 3265 goto out; 3266 } 3267 3268 if (unlikely(IS_PRIVATE(inode))) 3269 return 0; 3270 3271 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass, 3272 requested, driver, xperm, &ad); 3273 out: 3274 return rc; 3275 } 3276 3277 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3278 unsigned long arg) 3279 { 3280 const struct cred *cred = current_cred(); 3281 int error = 0; 3282 3283 switch (cmd) { 3284 case FIONREAD: 3285 /* fall through */ 3286 case FIBMAP: 3287 /* fall through */ 3288 case FIGETBSZ: 3289 /* fall through */ 3290 case FS_IOC_GETFLAGS: 3291 /* fall through */ 3292 case FS_IOC_GETVERSION: 3293 error = file_has_perm(cred, file, FILE__GETATTR); 3294 break; 3295 3296 case FS_IOC_SETFLAGS: 3297 /* fall through */ 3298 case FS_IOC_SETVERSION: 3299 error = file_has_perm(cred, file, FILE__SETATTR); 3300 break; 3301 3302 /* sys_ioctl() checks */ 3303 case FIONBIO: 3304 /* fall through */ 3305 case FIOASYNC: 3306 error = file_has_perm(cred, file, 0); 3307 break; 3308 3309 case KDSKBENT: 3310 case KDSKBSENT: 3311 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3312 SECURITY_CAP_AUDIT); 3313 break; 3314 3315 /* default case assumes that the command will go 3316 * to the file's ioctl() function. 3317 */ 3318 default: 3319 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); 3320 } 3321 return error; 3322 } 3323 3324 static int default_noexec; 3325 3326 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3327 { 3328 const struct cred *cred = current_cred(); 3329 int rc = 0; 3330 3331 if (default_noexec && 3332 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) || 3333 (!shared && (prot & PROT_WRITE)))) { 3334 /* 3335 * We are making executable an anonymous mapping or a 3336 * private file mapping that will also be writable. 3337 * This has an additional check. 3338 */ 3339 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM); 3340 if (rc) 3341 goto error; 3342 } 3343 3344 if (file) { 3345 /* read access is always possible with a mapping */ 3346 u32 av = FILE__READ; 3347 3348 /* write access only matters if the mapping is shared */ 3349 if (shared && (prot & PROT_WRITE)) 3350 av |= FILE__WRITE; 3351 3352 if (prot & PROT_EXEC) 3353 av |= FILE__EXECUTE; 3354 3355 return file_has_perm(cred, file, av); 3356 } 3357 3358 error: 3359 return rc; 3360 } 3361 3362 static int selinux_mmap_addr(unsigned long addr) 3363 { 3364 int rc = 0; 3365 3366 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3367 u32 sid = current_sid(); 3368 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3369 MEMPROTECT__MMAP_ZERO, NULL); 3370 } 3371 3372 return rc; 3373 } 3374 3375 static int selinux_mmap_file(struct file *file, unsigned long reqprot, 3376 unsigned long prot, unsigned long flags) 3377 { 3378 if (selinux_checkreqprot) 3379 prot = reqprot; 3380 3381 return file_map_prot_check(file, prot, 3382 (flags & MAP_TYPE) == MAP_SHARED); 3383 } 3384 3385 static int selinux_file_mprotect(struct vm_area_struct *vma, 3386 unsigned long reqprot, 3387 unsigned long prot) 3388 { 3389 const struct cred *cred = current_cred(); 3390 3391 if (selinux_checkreqprot) 3392 prot = reqprot; 3393 3394 if (default_noexec && 3395 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3396 int rc = 0; 3397 if (vma->vm_start >= vma->vm_mm->start_brk && 3398 vma->vm_end <= vma->vm_mm->brk) { 3399 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP); 3400 } else if (!vma->vm_file && 3401 vma->vm_start <= vma->vm_mm->start_stack && 3402 vma->vm_end >= vma->vm_mm->start_stack) { 3403 rc = current_has_perm(current, PROCESS__EXECSTACK); 3404 } else if (vma->vm_file && vma->anon_vma) { 3405 /* 3406 * We are making executable a file mapping that has 3407 * had some COW done. Since pages might have been 3408 * written, check ability to execute the possibly 3409 * modified content. This typically should only 3410 * occur for text relocations. 3411 */ 3412 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3413 } 3414 if (rc) 3415 return rc; 3416 } 3417 3418 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3419 } 3420 3421 static int selinux_file_lock(struct file *file, unsigned int cmd) 3422 { 3423 const struct cred *cred = current_cred(); 3424 3425 return file_has_perm(cred, file, FILE__LOCK); 3426 } 3427 3428 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3429 unsigned long arg) 3430 { 3431 const struct cred *cred = current_cred(); 3432 int err = 0; 3433 3434 switch (cmd) { 3435 case F_SETFL: 3436 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3437 err = file_has_perm(cred, file, FILE__WRITE); 3438 break; 3439 } 3440 /* fall through */ 3441 case F_SETOWN: 3442 case F_SETSIG: 3443 case F_GETFL: 3444 case F_GETOWN: 3445 case F_GETSIG: 3446 case F_GETOWNER_UIDS: 3447 /* Just check FD__USE permission */ 3448 err = file_has_perm(cred, file, 0); 3449 break; 3450 case F_GETLK: 3451 case F_SETLK: 3452 case F_SETLKW: 3453 case F_OFD_GETLK: 3454 case F_OFD_SETLK: 3455 case F_OFD_SETLKW: 3456 #if BITS_PER_LONG == 32 3457 case F_GETLK64: 3458 case F_SETLK64: 3459 case F_SETLKW64: 3460 #endif 3461 err = file_has_perm(cred, file, FILE__LOCK); 3462 break; 3463 } 3464 3465 return err; 3466 } 3467 3468 static void selinux_file_set_fowner(struct file *file) 3469 { 3470 struct file_security_struct *fsec; 3471 3472 fsec = file->f_security; 3473 fsec->fown_sid = current_sid(); 3474 } 3475 3476 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3477 struct fown_struct *fown, int signum) 3478 { 3479 struct file *file; 3480 u32 sid = task_sid(tsk); 3481 u32 perm; 3482 struct file_security_struct *fsec; 3483 3484 /* struct fown_struct is never outside the context of a struct file */ 3485 file = container_of(fown, struct file, f_owner); 3486 3487 fsec = file->f_security; 3488 3489 if (!signum) 3490 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3491 else 3492 perm = signal_to_av(signum); 3493 3494 return avc_has_perm(fsec->fown_sid, sid, 3495 SECCLASS_PROCESS, perm, NULL); 3496 } 3497 3498 static int selinux_file_receive(struct file *file) 3499 { 3500 const struct cred *cred = current_cred(); 3501 3502 return file_has_perm(cred, file, file_to_av(file)); 3503 } 3504 3505 static int selinux_file_open(struct file *file, const struct cred *cred) 3506 { 3507 struct file_security_struct *fsec; 3508 struct inode_security_struct *isec; 3509 3510 fsec = file->f_security; 3511 isec = file_inode(file)->i_security; 3512 /* 3513 * Save inode label and policy sequence number 3514 * at open-time so that selinux_file_permission 3515 * can determine whether revalidation is necessary. 3516 * Task label is already saved in the file security 3517 * struct as its SID. 3518 */ 3519 fsec->isid = isec->sid; 3520 fsec->pseqno = avc_policy_seqno(); 3521 /* 3522 * Since the inode label or policy seqno may have changed 3523 * between the selinux_inode_permission check and the saving 3524 * of state above, recheck that access is still permitted. 3525 * Otherwise, access might never be revalidated against the 3526 * new inode label or new policy. 3527 * This check is not redundant - do not remove. 3528 */ 3529 return file_path_has_perm(cred, file, open_file_to_av(file)); 3530 } 3531 3532 /* task security operations */ 3533 3534 static int selinux_task_create(unsigned long clone_flags) 3535 { 3536 return current_has_perm(current, PROCESS__FORK); 3537 } 3538 3539 /* 3540 * allocate the SELinux part of blank credentials 3541 */ 3542 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3543 { 3544 struct task_security_struct *tsec; 3545 3546 tsec = kzalloc(sizeof(struct task_security_struct), gfp); 3547 if (!tsec) 3548 return -ENOMEM; 3549 3550 cred->security = tsec; 3551 return 0; 3552 } 3553 3554 /* 3555 * detach and free the LSM part of a set of credentials 3556 */ 3557 static void selinux_cred_free(struct cred *cred) 3558 { 3559 struct task_security_struct *tsec = cred->security; 3560 3561 /* 3562 * cred->security == NULL if security_cred_alloc_blank() or 3563 * security_prepare_creds() returned an error. 3564 */ 3565 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE); 3566 cred->security = (void *) 0x7UL; 3567 kfree(tsec); 3568 } 3569 3570 /* 3571 * prepare a new set of credentials for modification 3572 */ 3573 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3574 gfp_t gfp) 3575 { 3576 const struct task_security_struct *old_tsec; 3577 struct task_security_struct *tsec; 3578 3579 old_tsec = old->security; 3580 3581 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp); 3582 if (!tsec) 3583 return -ENOMEM; 3584 3585 new->security = tsec; 3586 return 0; 3587 } 3588 3589 /* 3590 * transfer the SELinux data to a blank set of creds 3591 */ 3592 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3593 { 3594 const struct task_security_struct *old_tsec = old->security; 3595 struct task_security_struct *tsec = new->security; 3596 3597 *tsec = *old_tsec; 3598 } 3599 3600 /* 3601 * set the security data for a kernel service 3602 * - all the creation contexts are set to unlabelled 3603 */ 3604 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3605 { 3606 struct task_security_struct *tsec = new->security; 3607 u32 sid = current_sid(); 3608 int ret; 3609 3610 ret = avc_has_perm(sid, secid, 3611 SECCLASS_KERNEL_SERVICE, 3612 KERNEL_SERVICE__USE_AS_OVERRIDE, 3613 NULL); 3614 if (ret == 0) { 3615 tsec->sid = secid; 3616 tsec->create_sid = 0; 3617 tsec->keycreate_sid = 0; 3618 tsec->sockcreate_sid = 0; 3619 } 3620 return ret; 3621 } 3622 3623 /* 3624 * set the file creation context in a security record to the same as the 3625 * objective context of the specified inode 3626 */ 3627 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3628 { 3629 struct inode_security_struct *isec = inode->i_security; 3630 struct task_security_struct *tsec = new->security; 3631 u32 sid = current_sid(); 3632 int ret; 3633 3634 ret = avc_has_perm(sid, isec->sid, 3635 SECCLASS_KERNEL_SERVICE, 3636 KERNEL_SERVICE__CREATE_FILES_AS, 3637 NULL); 3638 3639 if (ret == 0) 3640 tsec->create_sid = isec->sid; 3641 return ret; 3642 } 3643 3644 static int selinux_kernel_module_request(char *kmod_name) 3645 { 3646 u32 sid; 3647 struct common_audit_data ad; 3648 3649 sid = task_sid(current); 3650 3651 ad.type = LSM_AUDIT_DATA_KMOD; 3652 ad.u.kmod_name = kmod_name; 3653 3654 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM, 3655 SYSTEM__MODULE_REQUEST, &ad); 3656 } 3657 3658 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3659 { 3660 return current_has_perm(p, PROCESS__SETPGID); 3661 } 3662 3663 static int selinux_task_getpgid(struct task_struct *p) 3664 { 3665 return current_has_perm(p, PROCESS__GETPGID); 3666 } 3667 3668 static int selinux_task_getsid(struct task_struct *p) 3669 { 3670 return current_has_perm(p, PROCESS__GETSESSION); 3671 } 3672 3673 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3674 { 3675 *secid = task_sid(p); 3676 } 3677 3678 static int selinux_task_setnice(struct task_struct *p, int nice) 3679 { 3680 return current_has_perm(p, PROCESS__SETSCHED); 3681 } 3682 3683 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3684 { 3685 return current_has_perm(p, PROCESS__SETSCHED); 3686 } 3687 3688 static int selinux_task_getioprio(struct task_struct *p) 3689 { 3690 return current_has_perm(p, PROCESS__GETSCHED); 3691 } 3692 3693 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 3694 struct rlimit *new_rlim) 3695 { 3696 struct rlimit *old_rlim = p->signal->rlim + resource; 3697 3698 /* Control the ability to change the hard limit (whether 3699 lowering or raising it), so that the hard limit can 3700 later be used as a safe reset point for the soft limit 3701 upon context transitions. See selinux_bprm_committing_creds. */ 3702 if (old_rlim->rlim_max != new_rlim->rlim_max) 3703 return current_has_perm(p, PROCESS__SETRLIMIT); 3704 3705 return 0; 3706 } 3707 3708 static int selinux_task_setscheduler(struct task_struct *p) 3709 { 3710 return current_has_perm(p, PROCESS__SETSCHED); 3711 } 3712 3713 static int selinux_task_getscheduler(struct task_struct *p) 3714 { 3715 return current_has_perm(p, PROCESS__GETSCHED); 3716 } 3717 3718 static int selinux_task_movememory(struct task_struct *p) 3719 { 3720 return current_has_perm(p, PROCESS__SETSCHED); 3721 } 3722 3723 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3724 int sig, u32 secid) 3725 { 3726 u32 perm; 3727 int rc; 3728 3729 if (!sig) 3730 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3731 else 3732 perm = signal_to_av(sig); 3733 if (secid) 3734 rc = avc_has_perm(secid, task_sid(p), 3735 SECCLASS_PROCESS, perm, NULL); 3736 else 3737 rc = current_has_perm(p, perm); 3738 return rc; 3739 } 3740 3741 static int selinux_task_wait(struct task_struct *p) 3742 { 3743 return task_has_perm(p, current, PROCESS__SIGCHLD); 3744 } 3745 3746 static void selinux_task_to_inode(struct task_struct *p, 3747 struct inode *inode) 3748 { 3749 struct inode_security_struct *isec = inode->i_security; 3750 u32 sid = task_sid(p); 3751 3752 isec->sid = sid; 3753 isec->initialized = 1; 3754 } 3755 3756 /* Returns error only if unable to parse addresses */ 3757 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3758 struct common_audit_data *ad, u8 *proto) 3759 { 3760 int offset, ihlen, ret = -EINVAL; 3761 struct iphdr _iph, *ih; 3762 3763 offset = skb_network_offset(skb); 3764 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3765 if (ih == NULL) 3766 goto out; 3767 3768 ihlen = ih->ihl * 4; 3769 if (ihlen < sizeof(_iph)) 3770 goto out; 3771 3772 ad->u.net->v4info.saddr = ih->saddr; 3773 ad->u.net->v4info.daddr = ih->daddr; 3774 ret = 0; 3775 3776 if (proto) 3777 *proto = ih->protocol; 3778 3779 switch (ih->protocol) { 3780 case IPPROTO_TCP: { 3781 struct tcphdr _tcph, *th; 3782 3783 if (ntohs(ih->frag_off) & IP_OFFSET) 3784 break; 3785 3786 offset += ihlen; 3787 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3788 if (th == NULL) 3789 break; 3790 3791 ad->u.net->sport = th->source; 3792 ad->u.net->dport = th->dest; 3793 break; 3794 } 3795 3796 case IPPROTO_UDP: { 3797 struct udphdr _udph, *uh; 3798 3799 if (ntohs(ih->frag_off) & IP_OFFSET) 3800 break; 3801 3802 offset += ihlen; 3803 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3804 if (uh == NULL) 3805 break; 3806 3807 ad->u.net->sport = uh->source; 3808 ad->u.net->dport = uh->dest; 3809 break; 3810 } 3811 3812 case IPPROTO_DCCP: { 3813 struct dccp_hdr _dccph, *dh; 3814 3815 if (ntohs(ih->frag_off) & IP_OFFSET) 3816 break; 3817 3818 offset += ihlen; 3819 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3820 if (dh == NULL) 3821 break; 3822 3823 ad->u.net->sport = dh->dccph_sport; 3824 ad->u.net->dport = dh->dccph_dport; 3825 break; 3826 } 3827 3828 default: 3829 break; 3830 } 3831 out: 3832 return ret; 3833 } 3834 3835 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3836 3837 /* Returns error only if unable to parse addresses */ 3838 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3839 struct common_audit_data *ad, u8 *proto) 3840 { 3841 u8 nexthdr; 3842 int ret = -EINVAL, offset; 3843 struct ipv6hdr _ipv6h, *ip6; 3844 __be16 frag_off; 3845 3846 offset = skb_network_offset(skb); 3847 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3848 if (ip6 == NULL) 3849 goto out; 3850 3851 ad->u.net->v6info.saddr = ip6->saddr; 3852 ad->u.net->v6info.daddr = ip6->daddr; 3853 ret = 0; 3854 3855 nexthdr = ip6->nexthdr; 3856 offset += sizeof(_ipv6h); 3857 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 3858 if (offset < 0) 3859 goto out; 3860 3861 if (proto) 3862 *proto = nexthdr; 3863 3864 switch (nexthdr) { 3865 case IPPROTO_TCP: { 3866 struct tcphdr _tcph, *th; 3867 3868 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3869 if (th == NULL) 3870 break; 3871 3872 ad->u.net->sport = th->source; 3873 ad->u.net->dport = th->dest; 3874 break; 3875 } 3876 3877 case IPPROTO_UDP: { 3878 struct udphdr _udph, *uh; 3879 3880 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3881 if (uh == NULL) 3882 break; 3883 3884 ad->u.net->sport = uh->source; 3885 ad->u.net->dport = uh->dest; 3886 break; 3887 } 3888 3889 case IPPROTO_DCCP: { 3890 struct dccp_hdr _dccph, *dh; 3891 3892 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3893 if (dh == NULL) 3894 break; 3895 3896 ad->u.net->sport = dh->dccph_sport; 3897 ad->u.net->dport = dh->dccph_dport; 3898 break; 3899 } 3900 3901 /* includes fragments */ 3902 default: 3903 break; 3904 } 3905 out: 3906 return ret; 3907 } 3908 3909 #endif /* IPV6 */ 3910 3911 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 3912 char **_addrp, int src, u8 *proto) 3913 { 3914 char *addrp; 3915 int ret; 3916 3917 switch (ad->u.net->family) { 3918 case PF_INET: 3919 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3920 if (ret) 3921 goto parse_error; 3922 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 3923 &ad->u.net->v4info.daddr); 3924 goto okay; 3925 3926 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3927 case PF_INET6: 3928 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3929 if (ret) 3930 goto parse_error; 3931 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 3932 &ad->u.net->v6info.daddr); 3933 goto okay; 3934 #endif /* IPV6 */ 3935 default: 3936 addrp = NULL; 3937 goto okay; 3938 } 3939 3940 parse_error: 3941 printk(KERN_WARNING 3942 "SELinux: failure in selinux_parse_skb()," 3943 " unable to parse packet\n"); 3944 return ret; 3945 3946 okay: 3947 if (_addrp) 3948 *_addrp = addrp; 3949 return 0; 3950 } 3951 3952 /** 3953 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 3954 * @skb: the packet 3955 * @family: protocol family 3956 * @sid: the packet's peer label SID 3957 * 3958 * Description: 3959 * Check the various different forms of network peer labeling and determine 3960 * the peer label/SID for the packet; most of the magic actually occurs in 3961 * the security server function security_net_peersid_cmp(). The function 3962 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 3963 * or -EACCES if @sid is invalid due to inconsistencies with the different 3964 * peer labels. 3965 * 3966 */ 3967 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 3968 { 3969 int err; 3970 u32 xfrm_sid; 3971 u32 nlbl_sid; 3972 u32 nlbl_type; 3973 3974 err = selinux_xfrm_skb_sid(skb, &xfrm_sid); 3975 if (unlikely(err)) 3976 return -EACCES; 3977 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 3978 if (unlikely(err)) 3979 return -EACCES; 3980 3981 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 3982 if (unlikely(err)) { 3983 printk(KERN_WARNING 3984 "SELinux: failure in selinux_skb_peerlbl_sid()," 3985 " unable to determine packet's peer label\n"); 3986 return -EACCES; 3987 } 3988 3989 return 0; 3990 } 3991 3992 /** 3993 * selinux_conn_sid - Determine the child socket label for a connection 3994 * @sk_sid: the parent socket's SID 3995 * @skb_sid: the packet's SID 3996 * @conn_sid: the resulting connection SID 3997 * 3998 * If @skb_sid is valid then the user:role:type information from @sk_sid is 3999 * combined with the MLS information from @skb_sid in order to create 4000 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy 4001 * of @sk_sid. Returns zero on success, negative values on failure. 4002 * 4003 */ 4004 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) 4005 { 4006 int err = 0; 4007 4008 if (skb_sid != SECSID_NULL) 4009 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid); 4010 else 4011 *conn_sid = sk_sid; 4012 4013 return err; 4014 } 4015 4016 /* socket security operations */ 4017 4018 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 4019 u16 secclass, u32 *socksid) 4020 { 4021 if (tsec->sockcreate_sid > SECSID_NULL) { 4022 *socksid = tsec->sockcreate_sid; 4023 return 0; 4024 } 4025 4026 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL, 4027 socksid); 4028 } 4029 4030 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms) 4031 { 4032 struct sk_security_struct *sksec = sk->sk_security; 4033 struct common_audit_data ad; 4034 struct lsm_network_audit net = {0,}; 4035 u32 tsid = task_sid(task); 4036 4037 if (sksec->sid == SECINITSID_KERNEL) 4038 return 0; 4039 4040 ad.type = LSM_AUDIT_DATA_NET; 4041 ad.u.net = &net; 4042 ad.u.net->sk = sk; 4043 4044 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad); 4045 } 4046 4047 static int selinux_socket_create(int family, int type, 4048 int protocol, int kern) 4049 { 4050 const struct task_security_struct *tsec = current_security(); 4051 u32 newsid; 4052 u16 secclass; 4053 int rc; 4054 4055 if (kern) 4056 return 0; 4057 4058 secclass = socket_type_to_security_class(family, type, protocol); 4059 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 4060 if (rc) 4061 return rc; 4062 4063 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 4064 } 4065 4066 static int selinux_socket_post_create(struct socket *sock, int family, 4067 int type, int protocol, int kern) 4068 { 4069 const struct task_security_struct *tsec = current_security(); 4070 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 4071 struct sk_security_struct *sksec; 4072 int err = 0; 4073 4074 isec->sclass = socket_type_to_security_class(family, type, protocol); 4075 4076 if (kern) 4077 isec->sid = SECINITSID_KERNEL; 4078 else { 4079 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid)); 4080 if (err) 4081 return err; 4082 } 4083 4084 isec->initialized = 1; 4085 4086 if (sock->sk) { 4087 sksec = sock->sk->sk_security; 4088 sksec->sid = isec->sid; 4089 sksec->sclass = isec->sclass; 4090 err = selinux_netlbl_socket_post_create(sock->sk, family); 4091 } 4092 4093 return err; 4094 } 4095 4096 /* Range of port numbers used to automatically bind. 4097 Need to determine whether we should perform a name_bind 4098 permission check between the socket and the port number. */ 4099 4100 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 4101 { 4102 struct sock *sk = sock->sk; 4103 u16 family; 4104 int err; 4105 4106 err = sock_has_perm(current, sk, SOCKET__BIND); 4107 if (err) 4108 goto out; 4109 4110 /* 4111 * If PF_INET or PF_INET6, check name_bind permission for the port. 4112 * Multiple address binding for SCTP is not supported yet: we just 4113 * check the first address now. 4114 */ 4115 family = sk->sk_family; 4116 if (family == PF_INET || family == PF_INET6) { 4117 char *addrp; 4118 struct sk_security_struct *sksec = sk->sk_security; 4119 struct common_audit_data ad; 4120 struct lsm_network_audit net = {0,}; 4121 struct sockaddr_in *addr4 = NULL; 4122 struct sockaddr_in6 *addr6 = NULL; 4123 unsigned short snum; 4124 u32 sid, node_perm; 4125 4126 if (family == PF_INET) { 4127 addr4 = (struct sockaddr_in *)address; 4128 snum = ntohs(addr4->sin_port); 4129 addrp = (char *)&addr4->sin_addr.s_addr; 4130 } else { 4131 addr6 = (struct sockaddr_in6 *)address; 4132 snum = ntohs(addr6->sin6_port); 4133 addrp = (char *)&addr6->sin6_addr.s6_addr; 4134 } 4135 4136 if (snum) { 4137 int low, high; 4138 4139 inet_get_local_port_range(sock_net(sk), &low, &high); 4140 4141 if (snum < max(PROT_SOCK, low) || snum > high) { 4142 err = sel_netport_sid(sk->sk_protocol, 4143 snum, &sid); 4144 if (err) 4145 goto out; 4146 ad.type = LSM_AUDIT_DATA_NET; 4147 ad.u.net = &net; 4148 ad.u.net->sport = htons(snum); 4149 ad.u.net->family = family; 4150 err = avc_has_perm(sksec->sid, sid, 4151 sksec->sclass, 4152 SOCKET__NAME_BIND, &ad); 4153 if (err) 4154 goto out; 4155 } 4156 } 4157 4158 switch (sksec->sclass) { 4159 case SECCLASS_TCP_SOCKET: 4160 node_perm = TCP_SOCKET__NODE_BIND; 4161 break; 4162 4163 case SECCLASS_UDP_SOCKET: 4164 node_perm = UDP_SOCKET__NODE_BIND; 4165 break; 4166 4167 case SECCLASS_DCCP_SOCKET: 4168 node_perm = DCCP_SOCKET__NODE_BIND; 4169 break; 4170 4171 default: 4172 node_perm = RAWIP_SOCKET__NODE_BIND; 4173 break; 4174 } 4175 4176 err = sel_netnode_sid(addrp, family, &sid); 4177 if (err) 4178 goto out; 4179 4180 ad.type = LSM_AUDIT_DATA_NET; 4181 ad.u.net = &net; 4182 ad.u.net->sport = htons(snum); 4183 ad.u.net->family = family; 4184 4185 if (family == PF_INET) 4186 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 4187 else 4188 ad.u.net->v6info.saddr = addr6->sin6_addr; 4189 4190 err = avc_has_perm(sksec->sid, sid, 4191 sksec->sclass, node_perm, &ad); 4192 if (err) 4193 goto out; 4194 } 4195 out: 4196 return err; 4197 } 4198 4199 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 4200 { 4201 struct sock *sk = sock->sk; 4202 struct sk_security_struct *sksec = sk->sk_security; 4203 int err; 4204 4205 err = sock_has_perm(current, sk, SOCKET__CONNECT); 4206 if (err) 4207 return err; 4208 4209 /* 4210 * If a TCP or DCCP socket, check name_connect permission for the port. 4211 */ 4212 if (sksec->sclass == SECCLASS_TCP_SOCKET || 4213 sksec->sclass == SECCLASS_DCCP_SOCKET) { 4214 struct common_audit_data ad; 4215 struct lsm_network_audit net = {0,}; 4216 struct sockaddr_in *addr4 = NULL; 4217 struct sockaddr_in6 *addr6 = NULL; 4218 unsigned short snum; 4219 u32 sid, perm; 4220 4221 if (sk->sk_family == PF_INET) { 4222 addr4 = (struct sockaddr_in *)address; 4223 if (addrlen < sizeof(struct sockaddr_in)) 4224 return -EINVAL; 4225 snum = ntohs(addr4->sin_port); 4226 } else { 4227 addr6 = (struct sockaddr_in6 *)address; 4228 if (addrlen < SIN6_LEN_RFC2133) 4229 return -EINVAL; 4230 snum = ntohs(addr6->sin6_port); 4231 } 4232 4233 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 4234 if (err) 4235 goto out; 4236 4237 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ? 4238 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 4239 4240 ad.type = LSM_AUDIT_DATA_NET; 4241 ad.u.net = &net; 4242 ad.u.net->dport = htons(snum); 4243 ad.u.net->family = sk->sk_family; 4244 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad); 4245 if (err) 4246 goto out; 4247 } 4248 4249 err = selinux_netlbl_socket_connect(sk, address); 4250 4251 out: 4252 return err; 4253 } 4254 4255 static int selinux_socket_listen(struct socket *sock, int backlog) 4256 { 4257 return sock_has_perm(current, sock->sk, SOCKET__LISTEN); 4258 } 4259 4260 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 4261 { 4262 int err; 4263 struct inode_security_struct *isec; 4264 struct inode_security_struct *newisec; 4265 4266 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT); 4267 if (err) 4268 return err; 4269 4270 newisec = SOCK_INODE(newsock)->i_security; 4271 4272 isec = SOCK_INODE(sock)->i_security; 4273 newisec->sclass = isec->sclass; 4274 newisec->sid = isec->sid; 4275 newisec->initialized = 1; 4276 4277 return 0; 4278 } 4279 4280 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4281 int size) 4282 { 4283 return sock_has_perm(current, sock->sk, SOCKET__WRITE); 4284 } 4285 4286 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4287 int size, int flags) 4288 { 4289 return sock_has_perm(current, sock->sk, SOCKET__READ); 4290 } 4291 4292 static int selinux_socket_getsockname(struct socket *sock) 4293 { 4294 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 4295 } 4296 4297 static int selinux_socket_getpeername(struct socket *sock) 4298 { 4299 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 4300 } 4301 4302 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 4303 { 4304 int err; 4305 4306 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT); 4307 if (err) 4308 return err; 4309 4310 return selinux_netlbl_socket_setsockopt(sock, level, optname); 4311 } 4312 4313 static int selinux_socket_getsockopt(struct socket *sock, int level, 4314 int optname) 4315 { 4316 return sock_has_perm(current, sock->sk, SOCKET__GETOPT); 4317 } 4318 4319 static int selinux_socket_shutdown(struct socket *sock, int how) 4320 { 4321 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN); 4322 } 4323 4324 static int selinux_socket_unix_stream_connect(struct sock *sock, 4325 struct sock *other, 4326 struct sock *newsk) 4327 { 4328 struct sk_security_struct *sksec_sock = sock->sk_security; 4329 struct sk_security_struct *sksec_other = other->sk_security; 4330 struct sk_security_struct *sksec_new = newsk->sk_security; 4331 struct common_audit_data ad; 4332 struct lsm_network_audit net = {0,}; 4333 int err; 4334 4335 ad.type = LSM_AUDIT_DATA_NET; 4336 ad.u.net = &net; 4337 ad.u.net->sk = other; 4338 4339 err = avc_has_perm(sksec_sock->sid, sksec_other->sid, 4340 sksec_other->sclass, 4341 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 4342 if (err) 4343 return err; 4344 4345 /* server child socket */ 4346 sksec_new->peer_sid = sksec_sock->sid; 4347 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid, 4348 &sksec_new->sid); 4349 if (err) 4350 return err; 4351 4352 /* connecting socket */ 4353 sksec_sock->peer_sid = sksec_new->sid; 4354 4355 return 0; 4356 } 4357 4358 static int selinux_socket_unix_may_send(struct socket *sock, 4359 struct socket *other) 4360 { 4361 struct sk_security_struct *ssec = sock->sk->sk_security; 4362 struct sk_security_struct *osec = other->sk->sk_security; 4363 struct common_audit_data ad; 4364 struct lsm_network_audit net = {0,}; 4365 4366 ad.type = LSM_AUDIT_DATA_NET; 4367 ad.u.net = &net; 4368 ad.u.net->sk = other->sk; 4369 4370 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 4371 &ad); 4372 } 4373 4374 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, 4375 char *addrp, u16 family, u32 peer_sid, 4376 struct common_audit_data *ad) 4377 { 4378 int err; 4379 u32 if_sid; 4380 u32 node_sid; 4381 4382 err = sel_netif_sid(ns, ifindex, &if_sid); 4383 if (err) 4384 return err; 4385 err = avc_has_perm(peer_sid, if_sid, 4386 SECCLASS_NETIF, NETIF__INGRESS, ad); 4387 if (err) 4388 return err; 4389 4390 err = sel_netnode_sid(addrp, family, &node_sid); 4391 if (err) 4392 return err; 4393 return avc_has_perm(peer_sid, node_sid, 4394 SECCLASS_NODE, NODE__RECVFROM, ad); 4395 } 4396 4397 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4398 u16 family) 4399 { 4400 int err = 0; 4401 struct sk_security_struct *sksec = sk->sk_security; 4402 u32 sk_sid = sksec->sid; 4403 struct common_audit_data ad; 4404 struct lsm_network_audit net = {0,}; 4405 char *addrp; 4406 4407 ad.type = LSM_AUDIT_DATA_NET; 4408 ad.u.net = &net; 4409 ad.u.net->netif = skb->skb_iif; 4410 ad.u.net->family = family; 4411 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4412 if (err) 4413 return err; 4414 4415 if (selinux_secmark_enabled()) { 4416 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4417 PACKET__RECV, &ad); 4418 if (err) 4419 return err; 4420 } 4421 4422 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4423 if (err) 4424 return err; 4425 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4426 4427 return err; 4428 } 4429 4430 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4431 { 4432 int err; 4433 struct sk_security_struct *sksec = sk->sk_security; 4434 u16 family = sk->sk_family; 4435 u32 sk_sid = sksec->sid; 4436 struct common_audit_data ad; 4437 struct lsm_network_audit net = {0,}; 4438 char *addrp; 4439 u8 secmark_active; 4440 u8 peerlbl_active; 4441 4442 if (family != PF_INET && family != PF_INET6) 4443 return 0; 4444 4445 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4446 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4447 family = PF_INET; 4448 4449 /* If any sort of compatibility mode is enabled then handoff processing 4450 * to the selinux_sock_rcv_skb_compat() function to deal with the 4451 * special handling. We do this in an attempt to keep this function 4452 * as fast and as clean as possible. */ 4453 if (!selinux_policycap_netpeer) 4454 return selinux_sock_rcv_skb_compat(sk, skb, family); 4455 4456 secmark_active = selinux_secmark_enabled(); 4457 peerlbl_active = selinux_peerlbl_enabled(); 4458 if (!secmark_active && !peerlbl_active) 4459 return 0; 4460 4461 ad.type = LSM_AUDIT_DATA_NET; 4462 ad.u.net = &net; 4463 ad.u.net->netif = skb->skb_iif; 4464 ad.u.net->family = family; 4465 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4466 if (err) 4467 return err; 4468 4469 if (peerlbl_active) { 4470 u32 peer_sid; 4471 4472 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4473 if (err) 4474 return err; 4475 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, 4476 addrp, family, peer_sid, &ad); 4477 if (err) { 4478 selinux_netlbl_err(skb, err, 0); 4479 return err; 4480 } 4481 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4482 PEER__RECV, &ad); 4483 if (err) { 4484 selinux_netlbl_err(skb, err, 0); 4485 return err; 4486 } 4487 } 4488 4489 if (secmark_active) { 4490 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4491 PACKET__RECV, &ad); 4492 if (err) 4493 return err; 4494 } 4495 4496 return err; 4497 } 4498 4499 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4500 int __user *optlen, unsigned len) 4501 { 4502 int err = 0; 4503 char *scontext; 4504 u32 scontext_len; 4505 struct sk_security_struct *sksec = sock->sk->sk_security; 4506 u32 peer_sid = SECSID_NULL; 4507 4508 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4509 sksec->sclass == SECCLASS_TCP_SOCKET) 4510 peer_sid = sksec->peer_sid; 4511 if (peer_sid == SECSID_NULL) 4512 return -ENOPROTOOPT; 4513 4514 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4515 if (err) 4516 return err; 4517 4518 if (scontext_len > len) { 4519 err = -ERANGE; 4520 goto out_len; 4521 } 4522 4523 if (copy_to_user(optval, scontext, scontext_len)) 4524 err = -EFAULT; 4525 4526 out_len: 4527 if (put_user(scontext_len, optlen)) 4528 err = -EFAULT; 4529 kfree(scontext); 4530 return err; 4531 } 4532 4533 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4534 { 4535 u32 peer_secid = SECSID_NULL; 4536 u16 family; 4537 4538 if (skb && skb->protocol == htons(ETH_P_IP)) 4539 family = PF_INET; 4540 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 4541 family = PF_INET6; 4542 else if (sock) 4543 family = sock->sk->sk_family; 4544 else 4545 goto out; 4546 4547 if (sock && family == PF_UNIX) 4548 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid); 4549 else if (skb) 4550 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4551 4552 out: 4553 *secid = peer_secid; 4554 if (peer_secid == SECSID_NULL) 4555 return -EINVAL; 4556 return 0; 4557 } 4558 4559 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4560 { 4561 struct sk_security_struct *sksec; 4562 4563 sksec = kzalloc(sizeof(*sksec), priority); 4564 if (!sksec) 4565 return -ENOMEM; 4566 4567 sksec->peer_sid = SECINITSID_UNLABELED; 4568 sksec->sid = SECINITSID_UNLABELED; 4569 sksec->sclass = SECCLASS_SOCKET; 4570 selinux_netlbl_sk_security_reset(sksec); 4571 sk->sk_security = sksec; 4572 4573 return 0; 4574 } 4575 4576 static void selinux_sk_free_security(struct sock *sk) 4577 { 4578 struct sk_security_struct *sksec = sk->sk_security; 4579 4580 sk->sk_security = NULL; 4581 selinux_netlbl_sk_security_free(sksec); 4582 kfree(sksec); 4583 } 4584 4585 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4586 { 4587 struct sk_security_struct *sksec = sk->sk_security; 4588 struct sk_security_struct *newsksec = newsk->sk_security; 4589 4590 newsksec->sid = sksec->sid; 4591 newsksec->peer_sid = sksec->peer_sid; 4592 newsksec->sclass = sksec->sclass; 4593 4594 selinux_netlbl_sk_security_reset(newsksec); 4595 } 4596 4597 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4598 { 4599 if (!sk) 4600 *secid = SECINITSID_ANY_SOCKET; 4601 else { 4602 struct sk_security_struct *sksec = sk->sk_security; 4603 4604 *secid = sksec->sid; 4605 } 4606 } 4607 4608 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4609 { 4610 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 4611 struct sk_security_struct *sksec = sk->sk_security; 4612 4613 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4614 sk->sk_family == PF_UNIX) 4615 isec->sid = sksec->sid; 4616 sksec->sclass = isec->sclass; 4617 } 4618 4619 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4620 struct request_sock *req) 4621 { 4622 struct sk_security_struct *sksec = sk->sk_security; 4623 int err; 4624 u16 family = req->rsk_ops->family; 4625 u32 connsid; 4626 u32 peersid; 4627 4628 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 4629 if (err) 4630 return err; 4631 err = selinux_conn_sid(sksec->sid, peersid, &connsid); 4632 if (err) 4633 return err; 4634 req->secid = connsid; 4635 req->peer_secid = peersid; 4636 4637 return selinux_netlbl_inet_conn_request(req, family); 4638 } 4639 4640 static void selinux_inet_csk_clone(struct sock *newsk, 4641 const struct request_sock *req) 4642 { 4643 struct sk_security_struct *newsksec = newsk->sk_security; 4644 4645 newsksec->sid = req->secid; 4646 newsksec->peer_sid = req->peer_secid; 4647 /* NOTE: Ideally, we should also get the isec->sid for the 4648 new socket in sync, but we don't have the isec available yet. 4649 So we will wait until sock_graft to do it, by which 4650 time it will have been created and available. */ 4651 4652 /* We don't need to take any sort of lock here as we are the only 4653 * thread with access to newsksec */ 4654 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 4655 } 4656 4657 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 4658 { 4659 u16 family = sk->sk_family; 4660 struct sk_security_struct *sksec = sk->sk_security; 4661 4662 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4663 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4664 family = PF_INET; 4665 4666 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 4667 } 4668 4669 static int selinux_secmark_relabel_packet(u32 sid) 4670 { 4671 const struct task_security_struct *__tsec; 4672 u32 tsid; 4673 4674 __tsec = current_security(); 4675 tsid = __tsec->sid; 4676 4677 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL); 4678 } 4679 4680 static void selinux_secmark_refcount_inc(void) 4681 { 4682 atomic_inc(&selinux_secmark_refcount); 4683 } 4684 4685 static void selinux_secmark_refcount_dec(void) 4686 { 4687 atomic_dec(&selinux_secmark_refcount); 4688 } 4689 4690 static void selinux_req_classify_flow(const struct request_sock *req, 4691 struct flowi *fl) 4692 { 4693 fl->flowi_secid = req->secid; 4694 } 4695 4696 static int selinux_tun_dev_alloc_security(void **security) 4697 { 4698 struct tun_security_struct *tunsec; 4699 4700 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); 4701 if (!tunsec) 4702 return -ENOMEM; 4703 tunsec->sid = current_sid(); 4704 4705 *security = tunsec; 4706 return 0; 4707 } 4708 4709 static void selinux_tun_dev_free_security(void *security) 4710 { 4711 kfree(security); 4712 } 4713 4714 static int selinux_tun_dev_create(void) 4715 { 4716 u32 sid = current_sid(); 4717 4718 /* we aren't taking into account the "sockcreate" SID since the socket 4719 * that is being created here is not a socket in the traditional sense, 4720 * instead it is a private sock, accessible only to the kernel, and 4721 * representing a wide range of network traffic spanning multiple 4722 * connections unlike traditional sockets - check the TUN driver to 4723 * get a better understanding of why this socket is special */ 4724 4725 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 4726 NULL); 4727 } 4728 4729 static int selinux_tun_dev_attach_queue(void *security) 4730 { 4731 struct tun_security_struct *tunsec = security; 4732 4733 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, 4734 TUN_SOCKET__ATTACH_QUEUE, NULL); 4735 } 4736 4737 static int selinux_tun_dev_attach(struct sock *sk, void *security) 4738 { 4739 struct tun_security_struct *tunsec = security; 4740 struct sk_security_struct *sksec = sk->sk_security; 4741 4742 /* we don't currently perform any NetLabel based labeling here and it 4743 * isn't clear that we would want to do so anyway; while we could apply 4744 * labeling without the support of the TUN user the resulting labeled 4745 * traffic from the other end of the connection would almost certainly 4746 * cause confusion to the TUN user that had no idea network labeling 4747 * protocols were being used */ 4748 4749 sksec->sid = tunsec->sid; 4750 sksec->sclass = SECCLASS_TUN_SOCKET; 4751 4752 return 0; 4753 } 4754 4755 static int selinux_tun_dev_open(void *security) 4756 { 4757 struct tun_security_struct *tunsec = security; 4758 u32 sid = current_sid(); 4759 int err; 4760 4761 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET, 4762 TUN_SOCKET__RELABELFROM, NULL); 4763 if (err) 4764 return err; 4765 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, 4766 TUN_SOCKET__RELABELTO, NULL); 4767 if (err) 4768 return err; 4769 tunsec->sid = sid; 4770 4771 return 0; 4772 } 4773 4774 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 4775 { 4776 int err = 0; 4777 u32 perm; 4778 struct nlmsghdr *nlh; 4779 struct sk_security_struct *sksec = sk->sk_security; 4780 4781 if (skb->len < NLMSG_HDRLEN) { 4782 err = -EINVAL; 4783 goto out; 4784 } 4785 nlh = nlmsg_hdr(skb); 4786 4787 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm); 4788 if (err) { 4789 if (err == -EINVAL) { 4790 printk(KERN_WARNING 4791 "SELinux: unrecognized netlink message:" 4792 " protocol=%hu nlmsg_type=%hu sclass=%s\n", 4793 sk->sk_protocol, nlh->nlmsg_type, 4794 secclass_map[sksec->sclass - 1].name); 4795 if (!selinux_enforcing || security_get_allow_unknown()) 4796 err = 0; 4797 } 4798 4799 /* Ignore */ 4800 if (err == -ENOENT) 4801 err = 0; 4802 goto out; 4803 } 4804 4805 err = sock_has_perm(current, sk, perm); 4806 out: 4807 return err; 4808 } 4809 4810 #ifdef CONFIG_NETFILTER 4811 4812 static unsigned int selinux_ip_forward(struct sk_buff *skb, 4813 const struct net_device *indev, 4814 u16 family) 4815 { 4816 int err; 4817 char *addrp; 4818 u32 peer_sid; 4819 struct common_audit_data ad; 4820 struct lsm_network_audit net = {0,}; 4821 u8 secmark_active; 4822 u8 netlbl_active; 4823 u8 peerlbl_active; 4824 4825 if (!selinux_policycap_netpeer) 4826 return NF_ACCEPT; 4827 4828 secmark_active = selinux_secmark_enabled(); 4829 netlbl_active = netlbl_enabled(); 4830 peerlbl_active = selinux_peerlbl_enabled(); 4831 if (!secmark_active && !peerlbl_active) 4832 return NF_ACCEPT; 4833 4834 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 4835 return NF_DROP; 4836 4837 ad.type = LSM_AUDIT_DATA_NET; 4838 ad.u.net = &net; 4839 ad.u.net->netif = indev->ifindex; 4840 ad.u.net->family = family; 4841 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 4842 return NF_DROP; 4843 4844 if (peerlbl_active) { 4845 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex, 4846 addrp, family, peer_sid, &ad); 4847 if (err) { 4848 selinux_netlbl_err(skb, err, 1); 4849 return NF_DROP; 4850 } 4851 } 4852 4853 if (secmark_active) 4854 if (avc_has_perm(peer_sid, skb->secmark, 4855 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 4856 return NF_DROP; 4857 4858 if (netlbl_active) 4859 /* we do this in the FORWARD path and not the POST_ROUTING 4860 * path because we want to make sure we apply the necessary 4861 * labeling before IPsec is applied so we can leverage AH 4862 * protection */ 4863 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 4864 return NF_DROP; 4865 4866 return NF_ACCEPT; 4867 } 4868 4869 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops, 4870 struct sk_buff *skb, 4871 const struct nf_hook_state *state) 4872 { 4873 return selinux_ip_forward(skb, state->in, PF_INET); 4874 } 4875 4876 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4877 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops, 4878 struct sk_buff *skb, 4879 const struct nf_hook_state *state) 4880 { 4881 return selinux_ip_forward(skb, state->in, PF_INET6); 4882 } 4883 #endif /* IPV6 */ 4884 4885 static unsigned int selinux_ip_output(struct sk_buff *skb, 4886 u16 family) 4887 { 4888 struct sock *sk; 4889 u32 sid; 4890 4891 if (!netlbl_enabled()) 4892 return NF_ACCEPT; 4893 4894 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 4895 * because we want to make sure we apply the necessary labeling 4896 * before IPsec is applied so we can leverage AH protection */ 4897 sk = skb->sk; 4898 if (sk) { 4899 struct sk_security_struct *sksec; 4900 4901 if (sk->sk_state == TCP_LISTEN) 4902 /* if the socket is the listening state then this 4903 * packet is a SYN-ACK packet which means it needs to 4904 * be labeled based on the connection/request_sock and 4905 * not the parent socket. unfortunately, we can't 4906 * lookup the request_sock yet as it isn't queued on 4907 * the parent socket until after the SYN-ACK is sent. 4908 * the "solution" is to simply pass the packet as-is 4909 * as any IP option based labeling should be copied 4910 * from the initial connection request (in the IP 4911 * layer). it is far from ideal, but until we get a 4912 * security label in the packet itself this is the 4913 * best we can do. */ 4914 return NF_ACCEPT; 4915 4916 /* standard practice, label using the parent socket */ 4917 sksec = sk->sk_security; 4918 sid = sksec->sid; 4919 } else 4920 sid = SECINITSID_KERNEL; 4921 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 4922 return NF_DROP; 4923 4924 return NF_ACCEPT; 4925 } 4926 4927 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops, 4928 struct sk_buff *skb, 4929 const struct nf_hook_state *state) 4930 { 4931 return selinux_ip_output(skb, PF_INET); 4932 } 4933 4934 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 4935 int ifindex, 4936 u16 family) 4937 { 4938 struct sock *sk = skb->sk; 4939 struct sk_security_struct *sksec; 4940 struct common_audit_data ad; 4941 struct lsm_network_audit net = {0,}; 4942 char *addrp; 4943 u8 proto; 4944 4945 if (sk == NULL) 4946 return NF_ACCEPT; 4947 sksec = sk->sk_security; 4948 4949 ad.type = LSM_AUDIT_DATA_NET; 4950 ad.u.net = &net; 4951 ad.u.net->netif = ifindex; 4952 ad.u.net->family = family; 4953 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 4954 return NF_DROP; 4955 4956 if (selinux_secmark_enabled()) 4957 if (avc_has_perm(sksec->sid, skb->secmark, 4958 SECCLASS_PACKET, PACKET__SEND, &ad)) 4959 return NF_DROP_ERR(-ECONNREFUSED); 4960 4961 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 4962 return NF_DROP_ERR(-ECONNREFUSED); 4963 4964 return NF_ACCEPT; 4965 } 4966 4967 static unsigned int selinux_ip_postroute(struct sk_buff *skb, 4968 const struct net_device *outdev, 4969 u16 family) 4970 { 4971 u32 secmark_perm; 4972 u32 peer_sid; 4973 int ifindex = outdev->ifindex; 4974 struct sock *sk; 4975 struct common_audit_data ad; 4976 struct lsm_network_audit net = {0,}; 4977 char *addrp; 4978 u8 secmark_active; 4979 u8 peerlbl_active; 4980 4981 /* If any sort of compatibility mode is enabled then handoff processing 4982 * to the selinux_ip_postroute_compat() function to deal with the 4983 * special handling. We do this in an attempt to keep this function 4984 * as fast and as clean as possible. */ 4985 if (!selinux_policycap_netpeer) 4986 return selinux_ip_postroute_compat(skb, ifindex, family); 4987 4988 secmark_active = selinux_secmark_enabled(); 4989 peerlbl_active = selinux_peerlbl_enabled(); 4990 if (!secmark_active && !peerlbl_active) 4991 return NF_ACCEPT; 4992 4993 sk = skb->sk; 4994 4995 #ifdef CONFIG_XFRM 4996 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 4997 * packet transformation so allow the packet to pass without any checks 4998 * since we'll have another chance to perform access control checks 4999 * when the packet is on it's final way out. 5000 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 5001 * is NULL, in this case go ahead and apply access control. 5002 * NOTE: if this is a local socket (skb->sk != NULL) that is in the 5003 * TCP listening state we cannot wait until the XFRM processing 5004 * is done as we will miss out on the SA label if we do; 5005 * unfortunately, this means more work, but it is only once per 5006 * connection. */ 5007 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && 5008 !(sk != NULL && sk->sk_state == TCP_LISTEN)) 5009 return NF_ACCEPT; 5010 #endif 5011 5012 if (sk == NULL) { 5013 /* Without an associated socket the packet is either coming 5014 * from the kernel or it is being forwarded; check the packet 5015 * to determine which and if the packet is being forwarded 5016 * query the packet directly to determine the security label. */ 5017 if (skb->skb_iif) { 5018 secmark_perm = PACKET__FORWARD_OUT; 5019 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 5020 return NF_DROP; 5021 } else { 5022 secmark_perm = PACKET__SEND; 5023 peer_sid = SECINITSID_KERNEL; 5024 } 5025 } else if (sk->sk_state == TCP_LISTEN) { 5026 /* Locally generated packet but the associated socket is in the 5027 * listening state which means this is a SYN-ACK packet. In 5028 * this particular case the correct security label is assigned 5029 * to the connection/request_sock but unfortunately we can't 5030 * query the request_sock as it isn't queued on the parent 5031 * socket until after the SYN-ACK packet is sent; the only 5032 * viable choice is to regenerate the label like we do in 5033 * selinux_inet_conn_request(). See also selinux_ip_output() 5034 * for similar problems. */ 5035 u32 skb_sid; 5036 struct sk_security_struct *sksec = sk->sk_security; 5037 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) 5038 return NF_DROP; 5039 /* At this point, if the returned skb peerlbl is SECSID_NULL 5040 * and the packet has been through at least one XFRM 5041 * transformation then we must be dealing with the "final" 5042 * form of labeled IPsec packet; since we've already applied 5043 * all of our access controls on this packet we can safely 5044 * pass the packet. */ 5045 if (skb_sid == SECSID_NULL) { 5046 switch (family) { 5047 case PF_INET: 5048 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 5049 return NF_ACCEPT; 5050 break; 5051 case PF_INET6: 5052 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 5053 return NF_ACCEPT; 5054 break; 5055 default: 5056 return NF_DROP_ERR(-ECONNREFUSED); 5057 } 5058 } 5059 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) 5060 return NF_DROP; 5061 secmark_perm = PACKET__SEND; 5062 } else { 5063 /* Locally generated packet, fetch the security label from the 5064 * associated socket. */ 5065 struct sk_security_struct *sksec = sk->sk_security; 5066 peer_sid = sksec->sid; 5067 secmark_perm = PACKET__SEND; 5068 } 5069 5070 ad.type = LSM_AUDIT_DATA_NET; 5071 ad.u.net = &net; 5072 ad.u.net->netif = ifindex; 5073 ad.u.net->family = family; 5074 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 5075 return NF_DROP; 5076 5077 if (secmark_active) 5078 if (avc_has_perm(peer_sid, skb->secmark, 5079 SECCLASS_PACKET, secmark_perm, &ad)) 5080 return NF_DROP_ERR(-ECONNREFUSED); 5081 5082 if (peerlbl_active) { 5083 u32 if_sid; 5084 u32 node_sid; 5085 5086 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid)) 5087 return NF_DROP; 5088 if (avc_has_perm(peer_sid, if_sid, 5089 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 5090 return NF_DROP_ERR(-ECONNREFUSED); 5091 5092 if (sel_netnode_sid(addrp, family, &node_sid)) 5093 return NF_DROP; 5094 if (avc_has_perm(peer_sid, node_sid, 5095 SECCLASS_NODE, NODE__SENDTO, &ad)) 5096 return NF_DROP_ERR(-ECONNREFUSED); 5097 } 5098 5099 return NF_ACCEPT; 5100 } 5101 5102 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops, 5103 struct sk_buff *skb, 5104 const struct nf_hook_state *state) 5105 { 5106 return selinux_ip_postroute(skb, state->out, PF_INET); 5107 } 5108 5109 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5110 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops, 5111 struct sk_buff *skb, 5112 const struct nf_hook_state *state) 5113 { 5114 return selinux_ip_postroute(skb, state->out, PF_INET6); 5115 } 5116 #endif /* IPV6 */ 5117 5118 #endif /* CONFIG_NETFILTER */ 5119 5120 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 5121 { 5122 return selinux_nlmsg_perm(sk, skb); 5123 } 5124 5125 static int ipc_alloc_security(struct task_struct *task, 5126 struct kern_ipc_perm *perm, 5127 u16 sclass) 5128 { 5129 struct ipc_security_struct *isec; 5130 u32 sid; 5131 5132 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 5133 if (!isec) 5134 return -ENOMEM; 5135 5136 sid = task_sid(task); 5137 isec->sclass = sclass; 5138 isec->sid = sid; 5139 perm->security = isec; 5140 5141 return 0; 5142 } 5143 5144 static void ipc_free_security(struct kern_ipc_perm *perm) 5145 { 5146 struct ipc_security_struct *isec = perm->security; 5147 perm->security = NULL; 5148 kfree(isec); 5149 } 5150 5151 static int msg_msg_alloc_security(struct msg_msg *msg) 5152 { 5153 struct msg_security_struct *msec; 5154 5155 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 5156 if (!msec) 5157 return -ENOMEM; 5158 5159 msec->sid = SECINITSID_UNLABELED; 5160 msg->security = msec; 5161 5162 return 0; 5163 } 5164 5165 static void msg_msg_free_security(struct msg_msg *msg) 5166 { 5167 struct msg_security_struct *msec = msg->security; 5168 5169 msg->security = NULL; 5170 kfree(msec); 5171 } 5172 5173 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 5174 u32 perms) 5175 { 5176 struct ipc_security_struct *isec; 5177 struct common_audit_data ad; 5178 u32 sid = current_sid(); 5179 5180 isec = ipc_perms->security; 5181 5182 ad.type = LSM_AUDIT_DATA_IPC; 5183 ad.u.ipc_id = ipc_perms->key; 5184 5185 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 5186 } 5187 5188 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 5189 { 5190 return msg_msg_alloc_security(msg); 5191 } 5192 5193 static void selinux_msg_msg_free_security(struct msg_msg *msg) 5194 { 5195 msg_msg_free_security(msg); 5196 } 5197 5198 /* message queue security operations */ 5199 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 5200 { 5201 struct ipc_security_struct *isec; 5202 struct common_audit_data ad; 5203 u32 sid = current_sid(); 5204 int rc; 5205 5206 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 5207 if (rc) 5208 return rc; 5209 5210 isec = msq->q_perm.security; 5211 5212 ad.type = LSM_AUDIT_DATA_IPC; 5213 ad.u.ipc_id = msq->q_perm.key; 5214 5215 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5216 MSGQ__CREATE, &ad); 5217 if (rc) { 5218 ipc_free_security(&msq->q_perm); 5219 return rc; 5220 } 5221 return 0; 5222 } 5223 5224 static void selinux_msg_queue_free_security(struct msg_queue *msq) 5225 { 5226 ipc_free_security(&msq->q_perm); 5227 } 5228 5229 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 5230 { 5231 struct ipc_security_struct *isec; 5232 struct common_audit_data ad; 5233 u32 sid = current_sid(); 5234 5235 isec = msq->q_perm.security; 5236 5237 ad.type = LSM_AUDIT_DATA_IPC; 5238 ad.u.ipc_id = msq->q_perm.key; 5239 5240 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5241 MSGQ__ASSOCIATE, &ad); 5242 } 5243 5244 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 5245 { 5246 int err; 5247 int perms; 5248 5249 switch (cmd) { 5250 case IPC_INFO: 5251 case MSG_INFO: 5252 /* No specific object, just general system-wide information. */ 5253 return task_has_system(current, SYSTEM__IPC_INFO); 5254 case IPC_STAT: 5255 case MSG_STAT: 5256 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 5257 break; 5258 case IPC_SET: 5259 perms = MSGQ__SETATTR; 5260 break; 5261 case IPC_RMID: 5262 perms = MSGQ__DESTROY; 5263 break; 5264 default: 5265 return 0; 5266 } 5267 5268 err = ipc_has_perm(&msq->q_perm, perms); 5269 return err; 5270 } 5271 5272 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 5273 { 5274 struct ipc_security_struct *isec; 5275 struct msg_security_struct *msec; 5276 struct common_audit_data ad; 5277 u32 sid = current_sid(); 5278 int rc; 5279 5280 isec = msq->q_perm.security; 5281 msec = msg->security; 5282 5283 /* 5284 * First time through, need to assign label to the message 5285 */ 5286 if (msec->sid == SECINITSID_UNLABELED) { 5287 /* 5288 * Compute new sid based on current process and 5289 * message queue this message will be stored in 5290 */ 5291 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG, 5292 NULL, &msec->sid); 5293 if (rc) 5294 return rc; 5295 } 5296 5297 ad.type = LSM_AUDIT_DATA_IPC; 5298 ad.u.ipc_id = msq->q_perm.key; 5299 5300 /* Can this process write to the queue? */ 5301 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5302 MSGQ__WRITE, &ad); 5303 if (!rc) 5304 /* Can this process send the message */ 5305 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 5306 MSG__SEND, &ad); 5307 if (!rc) 5308 /* Can the message be put in the queue? */ 5309 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 5310 MSGQ__ENQUEUE, &ad); 5311 5312 return rc; 5313 } 5314 5315 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 5316 struct task_struct *target, 5317 long type, int mode) 5318 { 5319 struct ipc_security_struct *isec; 5320 struct msg_security_struct *msec; 5321 struct common_audit_data ad; 5322 u32 sid = task_sid(target); 5323 int rc; 5324 5325 isec = msq->q_perm.security; 5326 msec = msg->security; 5327 5328 ad.type = LSM_AUDIT_DATA_IPC; 5329 ad.u.ipc_id = msq->q_perm.key; 5330 5331 rc = avc_has_perm(sid, isec->sid, 5332 SECCLASS_MSGQ, MSGQ__READ, &ad); 5333 if (!rc) 5334 rc = avc_has_perm(sid, msec->sid, 5335 SECCLASS_MSG, MSG__RECEIVE, &ad); 5336 return rc; 5337 } 5338 5339 /* Shared Memory security operations */ 5340 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 5341 { 5342 struct ipc_security_struct *isec; 5343 struct common_audit_data ad; 5344 u32 sid = current_sid(); 5345 int rc; 5346 5347 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 5348 if (rc) 5349 return rc; 5350 5351 isec = shp->shm_perm.security; 5352 5353 ad.type = LSM_AUDIT_DATA_IPC; 5354 ad.u.ipc_id = shp->shm_perm.key; 5355 5356 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5357 SHM__CREATE, &ad); 5358 if (rc) { 5359 ipc_free_security(&shp->shm_perm); 5360 return rc; 5361 } 5362 return 0; 5363 } 5364 5365 static void selinux_shm_free_security(struct shmid_kernel *shp) 5366 { 5367 ipc_free_security(&shp->shm_perm); 5368 } 5369 5370 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 5371 { 5372 struct ipc_security_struct *isec; 5373 struct common_audit_data ad; 5374 u32 sid = current_sid(); 5375 5376 isec = shp->shm_perm.security; 5377 5378 ad.type = LSM_AUDIT_DATA_IPC; 5379 ad.u.ipc_id = shp->shm_perm.key; 5380 5381 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5382 SHM__ASSOCIATE, &ad); 5383 } 5384 5385 /* Note, at this point, shp is locked down */ 5386 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 5387 { 5388 int perms; 5389 int err; 5390 5391 switch (cmd) { 5392 case IPC_INFO: 5393 case SHM_INFO: 5394 /* No specific object, just general system-wide information. */ 5395 return task_has_system(current, SYSTEM__IPC_INFO); 5396 case IPC_STAT: 5397 case SHM_STAT: 5398 perms = SHM__GETATTR | SHM__ASSOCIATE; 5399 break; 5400 case IPC_SET: 5401 perms = SHM__SETATTR; 5402 break; 5403 case SHM_LOCK: 5404 case SHM_UNLOCK: 5405 perms = SHM__LOCK; 5406 break; 5407 case IPC_RMID: 5408 perms = SHM__DESTROY; 5409 break; 5410 default: 5411 return 0; 5412 } 5413 5414 err = ipc_has_perm(&shp->shm_perm, perms); 5415 return err; 5416 } 5417 5418 static int selinux_shm_shmat(struct shmid_kernel *shp, 5419 char __user *shmaddr, int shmflg) 5420 { 5421 u32 perms; 5422 5423 if (shmflg & SHM_RDONLY) 5424 perms = SHM__READ; 5425 else 5426 perms = SHM__READ | SHM__WRITE; 5427 5428 return ipc_has_perm(&shp->shm_perm, perms); 5429 } 5430 5431 /* Semaphore security operations */ 5432 static int selinux_sem_alloc_security(struct sem_array *sma) 5433 { 5434 struct ipc_security_struct *isec; 5435 struct common_audit_data ad; 5436 u32 sid = current_sid(); 5437 int rc; 5438 5439 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 5440 if (rc) 5441 return rc; 5442 5443 isec = sma->sem_perm.security; 5444 5445 ad.type = LSM_AUDIT_DATA_IPC; 5446 ad.u.ipc_id = sma->sem_perm.key; 5447 5448 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5449 SEM__CREATE, &ad); 5450 if (rc) { 5451 ipc_free_security(&sma->sem_perm); 5452 return rc; 5453 } 5454 return 0; 5455 } 5456 5457 static void selinux_sem_free_security(struct sem_array *sma) 5458 { 5459 ipc_free_security(&sma->sem_perm); 5460 } 5461 5462 static int selinux_sem_associate(struct sem_array *sma, int semflg) 5463 { 5464 struct ipc_security_struct *isec; 5465 struct common_audit_data ad; 5466 u32 sid = current_sid(); 5467 5468 isec = sma->sem_perm.security; 5469 5470 ad.type = LSM_AUDIT_DATA_IPC; 5471 ad.u.ipc_id = sma->sem_perm.key; 5472 5473 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5474 SEM__ASSOCIATE, &ad); 5475 } 5476 5477 /* Note, at this point, sma is locked down */ 5478 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 5479 { 5480 int err; 5481 u32 perms; 5482 5483 switch (cmd) { 5484 case IPC_INFO: 5485 case SEM_INFO: 5486 /* No specific object, just general system-wide information. */ 5487 return task_has_system(current, SYSTEM__IPC_INFO); 5488 case GETPID: 5489 case GETNCNT: 5490 case GETZCNT: 5491 perms = SEM__GETATTR; 5492 break; 5493 case GETVAL: 5494 case GETALL: 5495 perms = SEM__READ; 5496 break; 5497 case SETVAL: 5498 case SETALL: 5499 perms = SEM__WRITE; 5500 break; 5501 case IPC_RMID: 5502 perms = SEM__DESTROY; 5503 break; 5504 case IPC_SET: 5505 perms = SEM__SETATTR; 5506 break; 5507 case IPC_STAT: 5508 case SEM_STAT: 5509 perms = SEM__GETATTR | SEM__ASSOCIATE; 5510 break; 5511 default: 5512 return 0; 5513 } 5514 5515 err = ipc_has_perm(&sma->sem_perm, perms); 5516 return err; 5517 } 5518 5519 static int selinux_sem_semop(struct sem_array *sma, 5520 struct sembuf *sops, unsigned nsops, int alter) 5521 { 5522 u32 perms; 5523 5524 if (alter) 5525 perms = SEM__READ | SEM__WRITE; 5526 else 5527 perms = SEM__READ; 5528 5529 return ipc_has_perm(&sma->sem_perm, perms); 5530 } 5531 5532 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5533 { 5534 u32 av = 0; 5535 5536 av = 0; 5537 if (flag & S_IRUGO) 5538 av |= IPC__UNIX_READ; 5539 if (flag & S_IWUGO) 5540 av |= IPC__UNIX_WRITE; 5541 5542 if (av == 0) 5543 return 0; 5544 5545 return ipc_has_perm(ipcp, av); 5546 } 5547 5548 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5549 { 5550 struct ipc_security_struct *isec = ipcp->security; 5551 *secid = isec->sid; 5552 } 5553 5554 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5555 { 5556 if (inode) 5557 inode_doinit_with_dentry(inode, dentry); 5558 } 5559 5560 static int selinux_getprocattr(struct task_struct *p, 5561 char *name, char **value) 5562 { 5563 const struct task_security_struct *__tsec; 5564 u32 sid; 5565 int error; 5566 unsigned len; 5567 5568 if (current != p) { 5569 error = current_has_perm(p, PROCESS__GETATTR); 5570 if (error) 5571 return error; 5572 } 5573 5574 rcu_read_lock(); 5575 __tsec = __task_cred(p)->security; 5576 5577 if (!strcmp(name, "current")) 5578 sid = __tsec->sid; 5579 else if (!strcmp(name, "prev")) 5580 sid = __tsec->osid; 5581 else if (!strcmp(name, "exec")) 5582 sid = __tsec->exec_sid; 5583 else if (!strcmp(name, "fscreate")) 5584 sid = __tsec->create_sid; 5585 else if (!strcmp(name, "keycreate")) 5586 sid = __tsec->keycreate_sid; 5587 else if (!strcmp(name, "sockcreate")) 5588 sid = __tsec->sockcreate_sid; 5589 else 5590 goto invalid; 5591 rcu_read_unlock(); 5592 5593 if (!sid) 5594 return 0; 5595 5596 error = security_sid_to_context(sid, value, &len); 5597 if (error) 5598 return error; 5599 return len; 5600 5601 invalid: 5602 rcu_read_unlock(); 5603 return -EINVAL; 5604 } 5605 5606 static int selinux_setprocattr(struct task_struct *p, 5607 char *name, void *value, size_t size) 5608 { 5609 struct task_security_struct *tsec; 5610 struct task_struct *tracer; 5611 struct cred *new; 5612 u32 sid = 0, ptsid; 5613 int error; 5614 char *str = value; 5615 5616 if (current != p) { 5617 /* SELinux only allows a process to change its own 5618 security attributes. */ 5619 return -EACCES; 5620 } 5621 5622 /* 5623 * Basic control over ability to set these attributes at all. 5624 * current == p, but we'll pass them separately in case the 5625 * above restriction is ever removed. 5626 */ 5627 if (!strcmp(name, "exec")) 5628 error = current_has_perm(p, PROCESS__SETEXEC); 5629 else if (!strcmp(name, "fscreate")) 5630 error = current_has_perm(p, PROCESS__SETFSCREATE); 5631 else if (!strcmp(name, "keycreate")) 5632 error = current_has_perm(p, PROCESS__SETKEYCREATE); 5633 else if (!strcmp(name, "sockcreate")) 5634 error = current_has_perm(p, PROCESS__SETSOCKCREATE); 5635 else if (!strcmp(name, "current")) 5636 error = current_has_perm(p, PROCESS__SETCURRENT); 5637 else 5638 error = -EINVAL; 5639 if (error) 5640 return error; 5641 5642 /* Obtain a SID for the context, if one was specified. */ 5643 if (size && str[1] && str[1] != '\n') { 5644 if (str[size-1] == '\n') { 5645 str[size-1] = 0; 5646 size--; 5647 } 5648 error = security_context_to_sid(value, size, &sid, GFP_KERNEL); 5649 if (error == -EINVAL && !strcmp(name, "fscreate")) { 5650 if (!capable(CAP_MAC_ADMIN)) { 5651 struct audit_buffer *ab; 5652 size_t audit_size; 5653 5654 /* We strip a nul only if it is at the end, otherwise the 5655 * context contains a nul and we should audit that */ 5656 if (str[size - 1] == '\0') 5657 audit_size = size - 1; 5658 else 5659 audit_size = size; 5660 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR); 5661 audit_log_format(ab, "op=fscreate invalid_context="); 5662 audit_log_n_untrustedstring(ab, value, audit_size); 5663 audit_log_end(ab); 5664 5665 return error; 5666 } 5667 error = security_context_to_sid_force(value, size, 5668 &sid); 5669 } 5670 if (error) 5671 return error; 5672 } 5673 5674 new = prepare_creds(); 5675 if (!new) 5676 return -ENOMEM; 5677 5678 /* Permission checking based on the specified context is 5679 performed during the actual operation (execve, 5680 open/mkdir/...), when we know the full context of the 5681 operation. See selinux_bprm_set_creds for the execve 5682 checks and may_create for the file creation checks. The 5683 operation will then fail if the context is not permitted. */ 5684 tsec = new->security; 5685 if (!strcmp(name, "exec")) { 5686 tsec->exec_sid = sid; 5687 } else if (!strcmp(name, "fscreate")) { 5688 tsec->create_sid = sid; 5689 } else if (!strcmp(name, "keycreate")) { 5690 error = may_create_key(sid, p); 5691 if (error) 5692 goto abort_change; 5693 tsec->keycreate_sid = sid; 5694 } else if (!strcmp(name, "sockcreate")) { 5695 tsec->sockcreate_sid = sid; 5696 } else if (!strcmp(name, "current")) { 5697 error = -EINVAL; 5698 if (sid == 0) 5699 goto abort_change; 5700 5701 /* Only allow single threaded processes to change context */ 5702 error = -EPERM; 5703 if (!current_is_single_threaded()) { 5704 error = security_bounded_transition(tsec->sid, sid); 5705 if (error) 5706 goto abort_change; 5707 } 5708 5709 /* Check permissions for the transition. */ 5710 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5711 PROCESS__DYNTRANSITION, NULL); 5712 if (error) 5713 goto abort_change; 5714 5715 /* Check for ptracing, and update the task SID if ok. 5716 Otherwise, leave SID unchanged and fail. */ 5717 ptsid = 0; 5718 rcu_read_lock(); 5719 tracer = ptrace_parent(p); 5720 if (tracer) 5721 ptsid = task_sid(tracer); 5722 rcu_read_unlock(); 5723 5724 if (tracer) { 5725 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 5726 PROCESS__PTRACE, NULL); 5727 if (error) 5728 goto abort_change; 5729 } 5730 5731 tsec->sid = sid; 5732 } else { 5733 error = -EINVAL; 5734 goto abort_change; 5735 } 5736 5737 commit_creds(new); 5738 return size; 5739 5740 abort_change: 5741 abort_creds(new); 5742 return error; 5743 } 5744 5745 static int selinux_ismaclabel(const char *name) 5746 { 5747 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); 5748 } 5749 5750 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5751 { 5752 return security_sid_to_context(secid, secdata, seclen); 5753 } 5754 5755 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 5756 { 5757 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL); 5758 } 5759 5760 static void selinux_release_secctx(char *secdata, u32 seclen) 5761 { 5762 kfree(secdata); 5763 } 5764 5765 /* 5766 * called with inode->i_mutex locked 5767 */ 5768 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 5769 { 5770 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0); 5771 } 5772 5773 /* 5774 * called with inode->i_mutex locked 5775 */ 5776 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 5777 { 5778 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); 5779 } 5780 5781 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 5782 { 5783 int len = 0; 5784 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, 5785 ctx, true); 5786 if (len < 0) 5787 return len; 5788 *ctxlen = len; 5789 return 0; 5790 } 5791 #ifdef CONFIG_KEYS 5792 5793 static int selinux_key_alloc(struct key *k, const struct cred *cred, 5794 unsigned long flags) 5795 { 5796 const struct task_security_struct *tsec; 5797 struct key_security_struct *ksec; 5798 5799 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 5800 if (!ksec) 5801 return -ENOMEM; 5802 5803 tsec = cred->security; 5804 if (tsec->keycreate_sid) 5805 ksec->sid = tsec->keycreate_sid; 5806 else 5807 ksec->sid = tsec->sid; 5808 5809 k->security = ksec; 5810 return 0; 5811 } 5812 5813 static void selinux_key_free(struct key *k) 5814 { 5815 struct key_security_struct *ksec = k->security; 5816 5817 k->security = NULL; 5818 kfree(ksec); 5819 } 5820 5821 static int selinux_key_permission(key_ref_t key_ref, 5822 const struct cred *cred, 5823 unsigned perm) 5824 { 5825 struct key *key; 5826 struct key_security_struct *ksec; 5827 u32 sid; 5828 5829 /* if no specific permissions are requested, we skip the 5830 permission check. No serious, additional covert channels 5831 appear to be created. */ 5832 if (perm == 0) 5833 return 0; 5834 5835 sid = cred_sid(cred); 5836 5837 key = key_ref_to_ptr(key_ref); 5838 ksec = key->security; 5839 5840 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 5841 } 5842 5843 static int selinux_key_getsecurity(struct key *key, char **_buffer) 5844 { 5845 struct key_security_struct *ksec = key->security; 5846 char *context = NULL; 5847 unsigned len; 5848 int rc; 5849 5850 rc = security_sid_to_context(ksec->sid, &context, &len); 5851 if (!rc) 5852 rc = len; 5853 *_buffer = context; 5854 return rc; 5855 } 5856 5857 #endif 5858 5859 static struct security_hook_list selinux_hooks[] = { 5860 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr), 5861 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction), 5862 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder), 5863 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file), 5864 5865 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check), 5866 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme), 5867 LSM_HOOK_INIT(capget, selinux_capget), 5868 LSM_HOOK_INIT(capset, selinux_capset), 5869 LSM_HOOK_INIT(capable, selinux_capable), 5870 LSM_HOOK_INIT(quotactl, selinux_quotactl), 5871 LSM_HOOK_INIT(quota_on, selinux_quota_on), 5872 LSM_HOOK_INIT(syslog, selinux_syslog), 5873 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory), 5874 5875 LSM_HOOK_INIT(netlink_send, selinux_netlink_send), 5876 5877 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds), 5878 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds), 5879 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds), 5880 LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec), 5881 5882 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security), 5883 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security), 5884 LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data), 5885 LSM_HOOK_INIT(sb_remount, selinux_sb_remount), 5886 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount), 5887 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options), 5888 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs), 5889 LSM_HOOK_INIT(sb_mount, selinux_mount), 5890 LSM_HOOK_INIT(sb_umount, selinux_umount), 5891 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts), 5892 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts), 5893 LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str), 5894 5895 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security), 5896 5897 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security), 5898 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security), 5899 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security), 5900 LSM_HOOK_INIT(inode_create, selinux_inode_create), 5901 LSM_HOOK_INIT(inode_link, selinux_inode_link), 5902 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink), 5903 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink), 5904 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir), 5905 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir), 5906 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod), 5907 LSM_HOOK_INIT(inode_rename, selinux_inode_rename), 5908 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink), 5909 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link), 5910 LSM_HOOK_INIT(inode_permission, selinux_inode_permission), 5911 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr), 5912 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr), 5913 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr), 5914 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr), 5915 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr), 5916 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr), 5917 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr), 5918 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity), 5919 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity), 5920 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity), 5921 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid), 5922 5923 LSM_HOOK_INIT(file_permission, selinux_file_permission), 5924 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security), 5925 LSM_HOOK_INIT(file_free_security, selinux_file_free_security), 5926 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl), 5927 LSM_HOOK_INIT(mmap_file, selinux_mmap_file), 5928 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr), 5929 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect), 5930 LSM_HOOK_INIT(file_lock, selinux_file_lock), 5931 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl), 5932 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner), 5933 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask), 5934 LSM_HOOK_INIT(file_receive, selinux_file_receive), 5935 5936 LSM_HOOK_INIT(file_open, selinux_file_open), 5937 5938 LSM_HOOK_INIT(task_create, selinux_task_create), 5939 LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank), 5940 LSM_HOOK_INIT(cred_free, selinux_cred_free), 5941 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare), 5942 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer), 5943 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as), 5944 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as), 5945 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request), 5946 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid), 5947 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid), 5948 LSM_HOOK_INIT(task_getsid, selinux_task_getsid), 5949 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid), 5950 LSM_HOOK_INIT(task_setnice, selinux_task_setnice), 5951 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio), 5952 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio), 5953 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit), 5954 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler), 5955 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler), 5956 LSM_HOOK_INIT(task_movememory, selinux_task_movememory), 5957 LSM_HOOK_INIT(task_kill, selinux_task_kill), 5958 LSM_HOOK_INIT(task_wait, selinux_task_wait), 5959 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode), 5960 5961 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission), 5962 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid), 5963 5964 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security), 5965 LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security), 5966 5967 LSM_HOOK_INIT(msg_queue_alloc_security, 5968 selinux_msg_queue_alloc_security), 5969 LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security), 5970 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate), 5971 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl), 5972 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd), 5973 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv), 5974 5975 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security), 5976 LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security), 5977 LSM_HOOK_INIT(shm_associate, selinux_shm_associate), 5978 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl), 5979 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat), 5980 5981 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security), 5982 LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security), 5983 LSM_HOOK_INIT(sem_associate, selinux_sem_associate), 5984 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl), 5985 LSM_HOOK_INIT(sem_semop, selinux_sem_semop), 5986 5987 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate), 5988 5989 LSM_HOOK_INIT(getprocattr, selinux_getprocattr), 5990 LSM_HOOK_INIT(setprocattr, selinux_setprocattr), 5991 5992 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel), 5993 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx), 5994 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid), 5995 LSM_HOOK_INIT(release_secctx, selinux_release_secctx), 5996 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx), 5997 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx), 5998 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx), 5999 6000 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect), 6001 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send), 6002 6003 LSM_HOOK_INIT(socket_create, selinux_socket_create), 6004 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create), 6005 LSM_HOOK_INIT(socket_bind, selinux_socket_bind), 6006 LSM_HOOK_INIT(socket_connect, selinux_socket_connect), 6007 LSM_HOOK_INIT(socket_listen, selinux_socket_listen), 6008 LSM_HOOK_INIT(socket_accept, selinux_socket_accept), 6009 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg), 6010 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg), 6011 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname), 6012 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername), 6013 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt), 6014 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt), 6015 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown), 6016 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb), 6017 LSM_HOOK_INIT(socket_getpeersec_stream, 6018 selinux_socket_getpeersec_stream), 6019 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram), 6020 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security), 6021 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security), 6022 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security), 6023 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid), 6024 LSM_HOOK_INIT(sock_graft, selinux_sock_graft), 6025 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request), 6026 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone), 6027 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established), 6028 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet), 6029 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc), 6030 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec), 6031 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow), 6032 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security), 6033 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security), 6034 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create), 6035 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue), 6036 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach), 6037 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open), 6038 6039 #ifdef CONFIG_SECURITY_NETWORK_XFRM 6040 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc), 6041 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone), 6042 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free), 6043 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete), 6044 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc), 6045 LSM_HOOK_INIT(xfrm_state_alloc_acquire, 6046 selinux_xfrm_state_alloc_acquire), 6047 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free), 6048 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete), 6049 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup), 6050 LSM_HOOK_INIT(xfrm_state_pol_flow_match, 6051 selinux_xfrm_state_pol_flow_match), 6052 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session), 6053 #endif 6054 6055 #ifdef CONFIG_KEYS 6056 LSM_HOOK_INIT(key_alloc, selinux_key_alloc), 6057 LSM_HOOK_INIT(key_free, selinux_key_free), 6058 LSM_HOOK_INIT(key_permission, selinux_key_permission), 6059 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity), 6060 #endif 6061 6062 #ifdef CONFIG_AUDIT 6063 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init), 6064 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known), 6065 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match), 6066 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free), 6067 #endif 6068 }; 6069 6070 static __init int selinux_init(void) 6071 { 6072 if (!security_module_enable("selinux")) { 6073 selinux_enabled = 0; 6074 return 0; 6075 } 6076 6077 if (!selinux_enabled) { 6078 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 6079 return 0; 6080 } 6081 6082 printk(KERN_INFO "SELinux: Initializing.\n"); 6083 6084 /* Set the security state for the initial task. */ 6085 cred_init_security(); 6086 6087 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 6088 6089 sel_inode_cache = kmem_cache_create("selinux_inode_security", 6090 sizeof(struct inode_security_struct), 6091 0, SLAB_PANIC, NULL); 6092 avc_init(); 6093 6094 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks)); 6095 6096 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) 6097 panic("SELinux: Unable to register AVC netcache callback\n"); 6098 6099 if (selinux_enforcing) 6100 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 6101 else 6102 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 6103 6104 return 0; 6105 } 6106 6107 static void delayed_superblock_init(struct super_block *sb, void *unused) 6108 { 6109 superblock_doinit(sb, NULL); 6110 } 6111 6112 void selinux_complete_init(void) 6113 { 6114 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 6115 6116 /* Set up any superblocks initialized prior to the policy load. */ 6117 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 6118 iterate_supers(delayed_superblock_init, NULL); 6119 } 6120 6121 /* SELinux requires early initialization in order to label 6122 all processes and objects when they are created. */ 6123 security_initcall(selinux_init); 6124 6125 #if defined(CONFIG_NETFILTER) 6126 6127 static struct nf_hook_ops selinux_nf_ops[] = { 6128 { 6129 .hook = selinux_ipv4_postroute, 6130 .owner = THIS_MODULE, 6131 .pf = NFPROTO_IPV4, 6132 .hooknum = NF_INET_POST_ROUTING, 6133 .priority = NF_IP_PRI_SELINUX_LAST, 6134 }, 6135 { 6136 .hook = selinux_ipv4_forward, 6137 .owner = THIS_MODULE, 6138 .pf = NFPROTO_IPV4, 6139 .hooknum = NF_INET_FORWARD, 6140 .priority = NF_IP_PRI_SELINUX_FIRST, 6141 }, 6142 { 6143 .hook = selinux_ipv4_output, 6144 .owner = THIS_MODULE, 6145 .pf = NFPROTO_IPV4, 6146 .hooknum = NF_INET_LOCAL_OUT, 6147 .priority = NF_IP_PRI_SELINUX_FIRST, 6148 }, 6149 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6150 { 6151 .hook = selinux_ipv6_postroute, 6152 .owner = THIS_MODULE, 6153 .pf = NFPROTO_IPV6, 6154 .hooknum = NF_INET_POST_ROUTING, 6155 .priority = NF_IP6_PRI_SELINUX_LAST, 6156 }, 6157 { 6158 .hook = selinux_ipv6_forward, 6159 .owner = THIS_MODULE, 6160 .pf = NFPROTO_IPV6, 6161 .hooknum = NF_INET_FORWARD, 6162 .priority = NF_IP6_PRI_SELINUX_FIRST, 6163 }, 6164 #endif /* IPV6 */ 6165 }; 6166 6167 static int __init selinux_nf_ip_init(void) 6168 { 6169 int err; 6170 6171 if (!selinux_enabled) 6172 return 0; 6173 6174 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 6175 6176 err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops)); 6177 if (err) 6178 panic("SELinux: nf_register_hooks: error %d\n", err); 6179 6180 return 0; 6181 } 6182 6183 __initcall(selinux_nf_ip_init); 6184 6185 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6186 static void selinux_nf_ip_exit(void) 6187 { 6188 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 6189 6190 nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops)); 6191 } 6192 #endif 6193 6194 #else /* CONFIG_NETFILTER */ 6195 6196 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6197 #define selinux_nf_ip_exit() 6198 #endif 6199 6200 #endif /* CONFIG_NETFILTER */ 6201 6202 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6203 static int selinux_disabled; 6204 6205 int selinux_disable(void) 6206 { 6207 if (ss_initialized) { 6208 /* Not permitted after initial policy load. */ 6209 return -EINVAL; 6210 } 6211 6212 if (selinux_disabled) { 6213 /* Only do this once. */ 6214 return -EINVAL; 6215 } 6216 6217 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 6218 6219 selinux_disabled = 1; 6220 selinux_enabled = 0; 6221 6222 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks)); 6223 6224 /* Try to destroy the avc node cache */ 6225 avc_disable(); 6226 6227 /* Unregister netfilter hooks. */ 6228 selinux_nf_ip_exit(); 6229 6230 /* Unregister selinuxfs. */ 6231 exit_sel_fs(); 6232 6233 return 0; 6234 } 6235 #endif 6236