xref: /linux/security/selinux/hooks.c (revision c4c8f39a57bf5057fc51a848d42b7e348ecfa31d)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
7  *	      Chris Vance, <cvance@nai.com>
8  *	      Wayne Salamon, <wsalamon@nai.com>
9  *	      James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *					   Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *			    <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *	Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *  Copyright (C) 2016 Mellanox Technologies
21  *
22  *	This program is free software; you can redistribute it and/or modify
23  *	it under the terms of the GNU General Public License version 2,
24  *	as published by the Free Software Foundation.
25  */
26 
27 #include <linux/init.h>
28 #include <linux/kd.h>
29 #include <linux/kernel.h>
30 #include <linux/tracehook.h>
31 #include <linux/errno.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/task.h>
34 #include <linux/lsm_hooks.h>
35 #include <linux/xattr.h>
36 #include <linux/capability.h>
37 #include <linux/unistd.h>
38 #include <linux/mm.h>
39 #include <linux/mman.h>
40 #include <linux/slab.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/swap.h>
44 #include <linux/spinlock.h>
45 #include <linux/syscalls.h>
46 #include <linux/dcache.h>
47 #include <linux/file.h>
48 #include <linux/fdtable.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51 #include <linux/netfilter_ipv4.h>
52 #include <linux/netfilter_ipv6.h>
53 #include <linux/tty.h>
54 #include <net/icmp.h>
55 #include <net/ip.h>		/* for local_port_range[] */
56 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
57 #include <net/inet_connection_sock.h>
58 #include <net/net_namespace.h>
59 #include <net/netlabel.h>
60 #include <linux/uaccess.h>
61 #include <asm/ioctls.h>
62 #include <linux/atomic.h>
63 #include <linux/bitops.h>
64 #include <linux/interrupt.h>
65 #include <linux/netdevice.h>	/* for network interface checks */
66 #include <net/netlink.h>
67 #include <linux/tcp.h>
68 #include <linux/udp.h>
69 #include <linux/dccp.h>
70 #include <linux/sctp.h>
71 #include <net/sctp/structs.h>
72 #include <linux/quota.h>
73 #include <linux/un.h>		/* for Unix socket types */
74 #include <net/af_unix.h>	/* for Unix socket types */
75 #include <linux/parser.h>
76 #include <linux/nfs_mount.h>
77 #include <net/ipv6.h>
78 #include <linux/hugetlb.h>
79 #include <linux/personality.h>
80 #include <linux/audit.h>
81 #include <linux/string.h>
82 #include <linux/selinux.h>
83 #include <linux/mutex.h>
84 #include <linux/posix-timers.h>
85 #include <linux/syslog.h>
86 #include <linux/user_namespace.h>
87 #include <linux/export.h>
88 #include <linux/msg.h>
89 #include <linux/shm.h>
90 #include <linux/bpf.h>
91 
92 #include "avc.h"
93 #include "objsec.h"
94 #include "netif.h"
95 #include "netnode.h"
96 #include "netport.h"
97 #include "ibpkey.h"
98 #include "xfrm.h"
99 #include "netlabel.h"
100 #include "audit.h"
101 #include "avc_ss.h"
102 
103 struct selinux_state selinux_state;
104 
105 /* SECMARK reference count */
106 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
107 
108 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
109 static int selinux_enforcing_boot;
110 
111 static int __init enforcing_setup(char *str)
112 {
113 	unsigned long enforcing;
114 	if (!kstrtoul(str, 0, &enforcing))
115 		selinux_enforcing_boot = enforcing ? 1 : 0;
116 	return 1;
117 }
118 __setup("enforcing=", enforcing_setup);
119 #else
120 #define selinux_enforcing_boot 1
121 #endif
122 
123 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
124 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
125 
126 static int __init selinux_enabled_setup(char *str)
127 {
128 	unsigned long enabled;
129 	if (!kstrtoul(str, 0, &enabled))
130 		selinux_enabled = enabled ? 1 : 0;
131 	return 1;
132 }
133 __setup("selinux=", selinux_enabled_setup);
134 #else
135 int selinux_enabled = 1;
136 #endif
137 
138 static unsigned int selinux_checkreqprot_boot =
139 	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
140 
141 static int __init checkreqprot_setup(char *str)
142 {
143 	unsigned long checkreqprot;
144 
145 	if (!kstrtoul(str, 0, &checkreqprot))
146 		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
147 	return 1;
148 }
149 __setup("checkreqprot=", checkreqprot_setup);
150 
151 static struct kmem_cache *sel_inode_cache;
152 static struct kmem_cache *file_security_cache;
153 
154 /**
155  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
156  *
157  * Description:
158  * This function checks the SECMARK reference counter to see if any SECMARK
159  * targets are currently configured, if the reference counter is greater than
160  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
161  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
162  * policy capability is enabled, SECMARK is always considered enabled.
163  *
164  */
165 static int selinux_secmark_enabled(void)
166 {
167 	return (selinux_policycap_alwaysnetwork() ||
168 		atomic_read(&selinux_secmark_refcount));
169 }
170 
171 /**
172  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
173  *
174  * Description:
175  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
176  * (1) if any are enabled or false (0) if neither are enabled.  If the
177  * always_check_network policy capability is enabled, peer labeling
178  * is always considered enabled.
179  *
180  */
181 static int selinux_peerlbl_enabled(void)
182 {
183 	return (selinux_policycap_alwaysnetwork() ||
184 		netlbl_enabled() || selinux_xfrm_enabled());
185 }
186 
187 static int selinux_netcache_avc_callback(u32 event)
188 {
189 	if (event == AVC_CALLBACK_RESET) {
190 		sel_netif_flush();
191 		sel_netnode_flush();
192 		sel_netport_flush();
193 		synchronize_net();
194 	}
195 	return 0;
196 }
197 
198 static int selinux_lsm_notifier_avc_callback(u32 event)
199 {
200 	if (event == AVC_CALLBACK_RESET) {
201 		sel_ib_pkey_flush();
202 		call_lsm_notifier(LSM_POLICY_CHANGE, NULL);
203 	}
204 
205 	return 0;
206 }
207 
208 /*
209  * initialise the security for the init task
210  */
211 static void cred_init_security(void)
212 {
213 	struct cred *cred = (struct cred *) current->real_cred;
214 	struct task_security_struct *tsec;
215 
216 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
217 	if (!tsec)
218 		panic("SELinux:  Failed to initialize initial task.\n");
219 
220 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
221 	cred->security = tsec;
222 }
223 
224 /*
225  * get the security ID of a set of credentials
226  */
227 static inline u32 cred_sid(const struct cred *cred)
228 {
229 	const struct task_security_struct *tsec;
230 
231 	tsec = cred->security;
232 	return tsec->sid;
233 }
234 
235 /*
236  * get the objective security ID of a task
237  */
238 static inline u32 task_sid(const struct task_struct *task)
239 {
240 	u32 sid;
241 
242 	rcu_read_lock();
243 	sid = cred_sid(__task_cred(task));
244 	rcu_read_unlock();
245 	return sid;
246 }
247 
248 /* Allocate and free functions for each kind of security blob. */
249 
250 static int inode_alloc_security(struct inode *inode)
251 {
252 	struct inode_security_struct *isec;
253 	u32 sid = current_sid();
254 
255 	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
256 	if (!isec)
257 		return -ENOMEM;
258 
259 	spin_lock_init(&isec->lock);
260 	INIT_LIST_HEAD(&isec->list);
261 	isec->inode = inode;
262 	isec->sid = SECINITSID_UNLABELED;
263 	isec->sclass = SECCLASS_FILE;
264 	isec->task_sid = sid;
265 	isec->initialized = LABEL_INVALID;
266 	inode->i_security = isec;
267 
268 	return 0;
269 }
270 
271 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
272 
273 /*
274  * Try reloading inode security labels that have been marked as invalid.  The
275  * @may_sleep parameter indicates when sleeping and thus reloading labels is
276  * allowed; when set to false, returns -ECHILD when the label is
277  * invalid.  The @opt_dentry parameter should be set to a dentry of the inode;
278  * when no dentry is available, set it to NULL instead.
279  */
280 static int __inode_security_revalidate(struct inode *inode,
281 				       struct dentry *opt_dentry,
282 				       bool may_sleep)
283 {
284 	struct inode_security_struct *isec = inode->i_security;
285 
286 	might_sleep_if(may_sleep);
287 
288 	if (selinux_state.initialized &&
289 	    isec->initialized != LABEL_INITIALIZED) {
290 		if (!may_sleep)
291 			return -ECHILD;
292 
293 		/*
294 		 * Try reloading the inode security label.  This will fail if
295 		 * @opt_dentry is NULL and no dentry for this inode can be
296 		 * found; in that case, continue using the old label.
297 		 */
298 		inode_doinit_with_dentry(inode, opt_dentry);
299 	}
300 	return 0;
301 }
302 
303 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
304 {
305 	return inode->i_security;
306 }
307 
308 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
309 {
310 	int error;
311 
312 	error = __inode_security_revalidate(inode, NULL, !rcu);
313 	if (error)
314 		return ERR_PTR(error);
315 	return inode->i_security;
316 }
317 
318 /*
319  * Get the security label of an inode.
320  */
321 static struct inode_security_struct *inode_security(struct inode *inode)
322 {
323 	__inode_security_revalidate(inode, NULL, true);
324 	return inode->i_security;
325 }
326 
327 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
328 {
329 	struct inode *inode = d_backing_inode(dentry);
330 
331 	return inode->i_security;
332 }
333 
334 /*
335  * Get the security label of a dentry's backing inode.
336  */
337 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
338 {
339 	struct inode *inode = d_backing_inode(dentry);
340 
341 	__inode_security_revalidate(inode, dentry, true);
342 	return inode->i_security;
343 }
344 
345 static void inode_free_rcu(struct rcu_head *head)
346 {
347 	struct inode_security_struct *isec;
348 
349 	isec = container_of(head, struct inode_security_struct, rcu);
350 	kmem_cache_free(sel_inode_cache, isec);
351 }
352 
353 static void inode_free_security(struct inode *inode)
354 {
355 	struct inode_security_struct *isec = inode->i_security;
356 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
357 
358 	/*
359 	 * As not all inode security structures are in a list, we check for
360 	 * empty list outside of the lock to make sure that we won't waste
361 	 * time taking a lock doing nothing.
362 	 *
363 	 * The list_del_init() function can be safely called more than once.
364 	 * It should not be possible for this function to be called with
365 	 * concurrent list_add(), but for better safety against future changes
366 	 * in the code, we use list_empty_careful() here.
367 	 */
368 	if (!list_empty_careful(&isec->list)) {
369 		spin_lock(&sbsec->isec_lock);
370 		list_del_init(&isec->list);
371 		spin_unlock(&sbsec->isec_lock);
372 	}
373 
374 	/*
375 	 * The inode may still be referenced in a path walk and
376 	 * a call to selinux_inode_permission() can be made
377 	 * after inode_free_security() is called. Ideally, the VFS
378 	 * wouldn't do this, but fixing that is a much harder
379 	 * job. For now, simply free the i_security via RCU, and
380 	 * leave the current inode->i_security pointer intact.
381 	 * The inode will be freed after the RCU grace period too.
382 	 */
383 	call_rcu(&isec->rcu, inode_free_rcu);
384 }
385 
386 static int file_alloc_security(struct file *file)
387 {
388 	struct file_security_struct *fsec;
389 	u32 sid = current_sid();
390 
391 	fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
392 	if (!fsec)
393 		return -ENOMEM;
394 
395 	fsec->sid = sid;
396 	fsec->fown_sid = sid;
397 	file->f_security = fsec;
398 
399 	return 0;
400 }
401 
402 static void file_free_security(struct file *file)
403 {
404 	struct file_security_struct *fsec = file->f_security;
405 	file->f_security = NULL;
406 	kmem_cache_free(file_security_cache, fsec);
407 }
408 
409 static int superblock_alloc_security(struct super_block *sb)
410 {
411 	struct superblock_security_struct *sbsec;
412 
413 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
414 	if (!sbsec)
415 		return -ENOMEM;
416 
417 	mutex_init(&sbsec->lock);
418 	INIT_LIST_HEAD(&sbsec->isec_head);
419 	spin_lock_init(&sbsec->isec_lock);
420 	sbsec->sb = sb;
421 	sbsec->sid = SECINITSID_UNLABELED;
422 	sbsec->def_sid = SECINITSID_FILE;
423 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
424 	sb->s_security = sbsec;
425 
426 	return 0;
427 }
428 
429 static void superblock_free_security(struct super_block *sb)
430 {
431 	struct superblock_security_struct *sbsec = sb->s_security;
432 	sb->s_security = NULL;
433 	kfree(sbsec);
434 }
435 
436 static inline int inode_doinit(struct inode *inode)
437 {
438 	return inode_doinit_with_dentry(inode, NULL);
439 }
440 
441 enum {
442 	Opt_error = -1,
443 	Opt_context = 1,
444 	Opt_fscontext = 2,
445 	Opt_defcontext = 3,
446 	Opt_rootcontext = 4,
447 	Opt_labelsupport = 5,
448 	Opt_nextmntopt = 6,
449 };
450 
451 #define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
452 
453 static const match_table_t tokens = {
454 	{Opt_context, CONTEXT_STR "%s"},
455 	{Opt_fscontext, FSCONTEXT_STR "%s"},
456 	{Opt_defcontext, DEFCONTEXT_STR "%s"},
457 	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
458 	{Opt_labelsupport, LABELSUPP_STR},
459 	{Opt_error, NULL},
460 };
461 
462 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
463 
464 static int may_context_mount_sb_relabel(u32 sid,
465 			struct superblock_security_struct *sbsec,
466 			const struct cred *cred)
467 {
468 	const struct task_security_struct *tsec = cred->security;
469 	int rc;
470 
471 	rc = avc_has_perm(&selinux_state,
472 			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
473 			  FILESYSTEM__RELABELFROM, NULL);
474 	if (rc)
475 		return rc;
476 
477 	rc = avc_has_perm(&selinux_state,
478 			  tsec->sid, sid, SECCLASS_FILESYSTEM,
479 			  FILESYSTEM__RELABELTO, NULL);
480 	return rc;
481 }
482 
483 static int may_context_mount_inode_relabel(u32 sid,
484 			struct superblock_security_struct *sbsec,
485 			const struct cred *cred)
486 {
487 	const struct task_security_struct *tsec = cred->security;
488 	int rc;
489 	rc = avc_has_perm(&selinux_state,
490 			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
491 			  FILESYSTEM__RELABELFROM, NULL);
492 	if (rc)
493 		return rc;
494 
495 	rc = avc_has_perm(&selinux_state,
496 			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
497 			  FILESYSTEM__ASSOCIATE, NULL);
498 	return rc;
499 }
500 
501 static int selinux_is_sblabel_mnt(struct super_block *sb)
502 {
503 	struct superblock_security_struct *sbsec = sb->s_security;
504 
505 	return sbsec->behavior == SECURITY_FS_USE_XATTR ||
506 		sbsec->behavior == SECURITY_FS_USE_TRANS ||
507 		sbsec->behavior == SECURITY_FS_USE_TASK ||
508 		sbsec->behavior == SECURITY_FS_USE_NATIVE ||
509 		/* Special handling. Genfs but also in-core setxattr handler */
510 		!strcmp(sb->s_type->name, "sysfs") ||
511 		!strcmp(sb->s_type->name, "pstore") ||
512 		!strcmp(sb->s_type->name, "debugfs") ||
513 		!strcmp(sb->s_type->name, "tracefs") ||
514 		!strcmp(sb->s_type->name, "rootfs") ||
515 		(selinux_policycap_cgroupseclabel() &&
516 		 (!strcmp(sb->s_type->name, "cgroup") ||
517 		  !strcmp(sb->s_type->name, "cgroup2")));
518 }
519 
520 static int sb_finish_set_opts(struct super_block *sb)
521 {
522 	struct superblock_security_struct *sbsec = sb->s_security;
523 	struct dentry *root = sb->s_root;
524 	struct inode *root_inode = d_backing_inode(root);
525 	int rc = 0;
526 
527 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
528 		/* Make sure that the xattr handler exists and that no
529 		   error other than -ENODATA is returned by getxattr on
530 		   the root directory.  -ENODATA is ok, as this may be
531 		   the first boot of the SELinux kernel before we have
532 		   assigned xattr values to the filesystem. */
533 		if (!(root_inode->i_opflags & IOP_XATTR)) {
534 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
535 			       "xattr support\n", sb->s_id, sb->s_type->name);
536 			rc = -EOPNOTSUPP;
537 			goto out;
538 		}
539 
540 		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
541 		if (rc < 0 && rc != -ENODATA) {
542 			if (rc == -EOPNOTSUPP)
543 				printk(KERN_WARNING "SELinux: (dev %s, type "
544 				       "%s) has no security xattr handler\n",
545 				       sb->s_id, sb->s_type->name);
546 			else
547 				printk(KERN_WARNING "SELinux: (dev %s, type "
548 				       "%s) getxattr errno %d\n", sb->s_id,
549 				       sb->s_type->name, -rc);
550 			goto out;
551 		}
552 	}
553 
554 	sbsec->flags |= SE_SBINITIALIZED;
555 
556 	/*
557 	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
558 	 * leave the flag untouched because sb_clone_mnt_opts might be handing
559 	 * us a superblock that needs the flag to be cleared.
560 	 */
561 	if (selinux_is_sblabel_mnt(sb))
562 		sbsec->flags |= SBLABEL_MNT;
563 	else
564 		sbsec->flags &= ~SBLABEL_MNT;
565 
566 	/* Initialize the root inode. */
567 	rc = inode_doinit_with_dentry(root_inode, root);
568 
569 	/* Initialize any other inodes associated with the superblock, e.g.
570 	   inodes created prior to initial policy load or inodes created
571 	   during get_sb by a pseudo filesystem that directly
572 	   populates itself. */
573 	spin_lock(&sbsec->isec_lock);
574 next_inode:
575 	if (!list_empty(&sbsec->isec_head)) {
576 		struct inode_security_struct *isec =
577 				list_entry(sbsec->isec_head.next,
578 					   struct inode_security_struct, list);
579 		struct inode *inode = isec->inode;
580 		list_del_init(&isec->list);
581 		spin_unlock(&sbsec->isec_lock);
582 		inode = igrab(inode);
583 		if (inode) {
584 			if (!IS_PRIVATE(inode))
585 				inode_doinit(inode);
586 			iput(inode);
587 		}
588 		spin_lock(&sbsec->isec_lock);
589 		goto next_inode;
590 	}
591 	spin_unlock(&sbsec->isec_lock);
592 out:
593 	return rc;
594 }
595 
596 /*
597  * This function should allow an FS to ask what it's mount security
598  * options were so it can use those later for submounts, displaying
599  * mount options, or whatever.
600  */
601 static int selinux_get_mnt_opts(const struct super_block *sb,
602 				struct security_mnt_opts *opts)
603 {
604 	int rc = 0, i;
605 	struct superblock_security_struct *sbsec = sb->s_security;
606 	char *context = NULL;
607 	u32 len;
608 	char tmp;
609 
610 	security_init_mnt_opts(opts);
611 
612 	if (!(sbsec->flags & SE_SBINITIALIZED))
613 		return -EINVAL;
614 
615 	if (!selinux_state.initialized)
616 		return -EINVAL;
617 
618 	/* make sure we always check enough bits to cover the mask */
619 	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
620 
621 	tmp = sbsec->flags & SE_MNTMASK;
622 	/* count the number of mount options for this sb */
623 	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
624 		if (tmp & 0x01)
625 			opts->num_mnt_opts++;
626 		tmp >>= 1;
627 	}
628 	/* Check if the Label support flag is set */
629 	if (sbsec->flags & SBLABEL_MNT)
630 		opts->num_mnt_opts++;
631 
632 	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
633 	if (!opts->mnt_opts) {
634 		rc = -ENOMEM;
635 		goto out_free;
636 	}
637 
638 	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
639 	if (!opts->mnt_opts_flags) {
640 		rc = -ENOMEM;
641 		goto out_free;
642 	}
643 
644 	i = 0;
645 	if (sbsec->flags & FSCONTEXT_MNT) {
646 		rc = security_sid_to_context(&selinux_state, sbsec->sid,
647 					     &context, &len);
648 		if (rc)
649 			goto out_free;
650 		opts->mnt_opts[i] = context;
651 		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
652 	}
653 	if (sbsec->flags & CONTEXT_MNT) {
654 		rc = security_sid_to_context(&selinux_state,
655 					     sbsec->mntpoint_sid,
656 					     &context, &len);
657 		if (rc)
658 			goto out_free;
659 		opts->mnt_opts[i] = context;
660 		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
661 	}
662 	if (sbsec->flags & DEFCONTEXT_MNT) {
663 		rc = security_sid_to_context(&selinux_state, sbsec->def_sid,
664 					     &context, &len);
665 		if (rc)
666 			goto out_free;
667 		opts->mnt_opts[i] = context;
668 		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
669 	}
670 	if (sbsec->flags & ROOTCONTEXT_MNT) {
671 		struct dentry *root = sbsec->sb->s_root;
672 		struct inode_security_struct *isec = backing_inode_security(root);
673 
674 		rc = security_sid_to_context(&selinux_state, isec->sid,
675 					     &context, &len);
676 		if (rc)
677 			goto out_free;
678 		opts->mnt_opts[i] = context;
679 		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
680 	}
681 	if (sbsec->flags & SBLABEL_MNT) {
682 		opts->mnt_opts[i] = NULL;
683 		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
684 	}
685 
686 	BUG_ON(i != opts->num_mnt_opts);
687 
688 	return 0;
689 
690 out_free:
691 	security_free_mnt_opts(opts);
692 	return rc;
693 }
694 
695 static int bad_option(struct superblock_security_struct *sbsec, char flag,
696 		      u32 old_sid, u32 new_sid)
697 {
698 	char mnt_flags = sbsec->flags & SE_MNTMASK;
699 
700 	/* check if the old mount command had the same options */
701 	if (sbsec->flags & SE_SBINITIALIZED)
702 		if (!(sbsec->flags & flag) ||
703 		    (old_sid != new_sid))
704 			return 1;
705 
706 	/* check if we were passed the same options twice,
707 	 * aka someone passed context=a,context=b
708 	 */
709 	if (!(sbsec->flags & SE_SBINITIALIZED))
710 		if (mnt_flags & flag)
711 			return 1;
712 	return 0;
713 }
714 
715 /*
716  * Allow filesystems with binary mount data to explicitly set mount point
717  * labeling information.
718  */
719 static int selinux_set_mnt_opts(struct super_block *sb,
720 				struct security_mnt_opts *opts,
721 				unsigned long kern_flags,
722 				unsigned long *set_kern_flags)
723 {
724 	const struct cred *cred = current_cred();
725 	int rc = 0, i;
726 	struct superblock_security_struct *sbsec = sb->s_security;
727 	const char *name = sb->s_type->name;
728 	struct dentry *root = sbsec->sb->s_root;
729 	struct inode_security_struct *root_isec;
730 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
731 	u32 defcontext_sid = 0;
732 	char **mount_options = opts->mnt_opts;
733 	int *flags = opts->mnt_opts_flags;
734 	int num_opts = opts->num_mnt_opts;
735 
736 	mutex_lock(&sbsec->lock);
737 
738 	if (!selinux_state.initialized) {
739 		if (!num_opts) {
740 			/* Defer initialization until selinux_complete_init,
741 			   after the initial policy is loaded and the security
742 			   server is ready to handle calls. */
743 			goto out;
744 		}
745 		rc = -EINVAL;
746 		printk(KERN_WARNING "SELinux: Unable to set superblock options "
747 			"before the security server is initialized\n");
748 		goto out;
749 	}
750 	if (kern_flags && !set_kern_flags) {
751 		/* Specifying internal flags without providing a place to
752 		 * place the results is not allowed */
753 		rc = -EINVAL;
754 		goto out;
755 	}
756 
757 	/*
758 	 * Binary mount data FS will come through this function twice.  Once
759 	 * from an explicit call and once from the generic calls from the vfs.
760 	 * Since the generic VFS calls will not contain any security mount data
761 	 * we need to skip the double mount verification.
762 	 *
763 	 * This does open a hole in which we will not notice if the first
764 	 * mount using this sb set explict options and a second mount using
765 	 * this sb does not set any security options.  (The first options
766 	 * will be used for both mounts)
767 	 */
768 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
769 	    && (num_opts == 0))
770 		goto out;
771 
772 	root_isec = backing_inode_security_novalidate(root);
773 
774 	/*
775 	 * parse the mount options, check if they are valid sids.
776 	 * also check if someone is trying to mount the same sb more
777 	 * than once with different security options.
778 	 */
779 	for (i = 0; i < num_opts; i++) {
780 		u32 sid;
781 
782 		if (flags[i] == SBLABEL_MNT)
783 			continue;
784 		rc = security_context_str_to_sid(&selinux_state,
785 						 mount_options[i], &sid,
786 						 GFP_KERNEL);
787 		if (rc) {
788 			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
789 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
790 			       mount_options[i], sb->s_id, name, rc);
791 			goto out;
792 		}
793 		switch (flags[i]) {
794 		case FSCONTEXT_MNT:
795 			fscontext_sid = sid;
796 
797 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
798 					fscontext_sid))
799 				goto out_double_mount;
800 
801 			sbsec->flags |= FSCONTEXT_MNT;
802 			break;
803 		case CONTEXT_MNT:
804 			context_sid = sid;
805 
806 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
807 					context_sid))
808 				goto out_double_mount;
809 
810 			sbsec->flags |= CONTEXT_MNT;
811 			break;
812 		case ROOTCONTEXT_MNT:
813 			rootcontext_sid = sid;
814 
815 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
816 					rootcontext_sid))
817 				goto out_double_mount;
818 
819 			sbsec->flags |= ROOTCONTEXT_MNT;
820 
821 			break;
822 		case DEFCONTEXT_MNT:
823 			defcontext_sid = sid;
824 
825 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
826 					defcontext_sid))
827 				goto out_double_mount;
828 
829 			sbsec->flags |= DEFCONTEXT_MNT;
830 
831 			break;
832 		default:
833 			rc = -EINVAL;
834 			goto out;
835 		}
836 	}
837 
838 	if (sbsec->flags & SE_SBINITIALIZED) {
839 		/* previously mounted with options, but not on this attempt? */
840 		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
841 			goto out_double_mount;
842 		rc = 0;
843 		goto out;
844 	}
845 
846 	if (strcmp(sb->s_type->name, "proc") == 0)
847 		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
848 
849 	if (!strcmp(sb->s_type->name, "debugfs") ||
850 	    !strcmp(sb->s_type->name, "tracefs") ||
851 	    !strcmp(sb->s_type->name, "sysfs") ||
852 	    !strcmp(sb->s_type->name, "pstore") ||
853 	    !strcmp(sb->s_type->name, "cgroup") ||
854 	    !strcmp(sb->s_type->name, "cgroup2"))
855 		sbsec->flags |= SE_SBGENFS;
856 
857 	if (!sbsec->behavior) {
858 		/*
859 		 * Determine the labeling behavior to use for this
860 		 * filesystem type.
861 		 */
862 		rc = security_fs_use(&selinux_state, sb);
863 		if (rc) {
864 			printk(KERN_WARNING
865 				"%s: security_fs_use(%s) returned %d\n",
866 					__func__, sb->s_type->name, rc);
867 			goto out;
868 		}
869 	}
870 
871 	/*
872 	 * If this is a user namespace mount and the filesystem type is not
873 	 * explicitly whitelisted, then no contexts are allowed on the command
874 	 * line and security labels must be ignored.
875 	 */
876 	if (sb->s_user_ns != &init_user_ns &&
877 	    strcmp(sb->s_type->name, "tmpfs") &&
878 	    strcmp(sb->s_type->name, "ramfs") &&
879 	    strcmp(sb->s_type->name, "devpts")) {
880 		if (context_sid || fscontext_sid || rootcontext_sid ||
881 		    defcontext_sid) {
882 			rc = -EACCES;
883 			goto out;
884 		}
885 		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
886 			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
887 			rc = security_transition_sid(&selinux_state,
888 						     current_sid(),
889 						     current_sid(),
890 						     SECCLASS_FILE, NULL,
891 						     &sbsec->mntpoint_sid);
892 			if (rc)
893 				goto out;
894 		}
895 		goto out_set_opts;
896 	}
897 
898 	/* sets the context of the superblock for the fs being mounted. */
899 	if (fscontext_sid) {
900 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
901 		if (rc)
902 			goto out;
903 
904 		sbsec->sid = fscontext_sid;
905 	}
906 
907 	/*
908 	 * Switch to using mount point labeling behavior.
909 	 * sets the label used on all file below the mountpoint, and will set
910 	 * the superblock context if not already set.
911 	 */
912 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
913 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
914 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
915 	}
916 
917 	if (context_sid) {
918 		if (!fscontext_sid) {
919 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
920 							  cred);
921 			if (rc)
922 				goto out;
923 			sbsec->sid = context_sid;
924 		} else {
925 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
926 							     cred);
927 			if (rc)
928 				goto out;
929 		}
930 		if (!rootcontext_sid)
931 			rootcontext_sid = context_sid;
932 
933 		sbsec->mntpoint_sid = context_sid;
934 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
935 	}
936 
937 	if (rootcontext_sid) {
938 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
939 						     cred);
940 		if (rc)
941 			goto out;
942 
943 		root_isec->sid = rootcontext_sid;
944 		root_isec->initialized = LABEL_INITIALIZED;
945 	}
946 
947 	if (defcontext_sid) {
948 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
949 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
950 			rc = -EINVAL;
951 			printk(KERN_WARNING "SELinux: defcontext option is "
952 			       "invalid for this filesystem type\n");
953 			goto out;
954 		}
955 
956 		if (defcontext_sid != sbsec->def_sid) {
957 			rc = may_context_mount_inode_relabel(defcontext_sid,
958 							     sbsec, cred);
959 			if (rc)
960 				goto out;
961 		}
962 
963 		sbsec->def_sid = defcontext_sid;
964 	}
965 
966 out_set_opts:
967 	rc = sb_finish_set_opts(sb);
968 out:
969 	mutex_unlock(&sbsec->lock);
970 	return rc;
971 out_double_mount:
972 	rc = -EINVAL;
973 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
974 	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
975 	goto out;
976 }
977 
978 static int selinux_cmp_sb_context(const struct super_block *oldsb,
979 				    const struct super_block *newsb)
980 {
981 	struct superblock_security_struct *old = oldsb->s_security;
982 	struct superblock_security_struct *new = newsb->s_security;
983 	char oldflags = old->flags & SE_MNTMASK;
984 	char newflags = new->flags & SE_MNTMASK;
985 
986 	if (oldflags != newflags)
987 		goto mismatch;
988 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
989 		goto mismatch;
990 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
991 		goto mismatch;
992 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
993 		goto mismatch;
994 	if (oldflags & ROOTCONTEXT_MNT) {
995 		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
996 		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
997 		if (oldroot->sid != newroot->sid)
998 			goto mismatch;
999 	}
1000 	return 0;
1001 mismatch:
1002 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
1003 			    "different security settings for (dev %s, "
1004 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
1005 	return -EBUSY;
1006 }
1007 
1008 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
1009 					struct super_block *newsb,
1010 					unsigned long kern_flags,
1011 					unsigned long *set_kern_flags)
1012 {
1013 	int rc = 0;
1014 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
1015 	struct superblock_security_struct *newsbsec = newsb->s_security;
1016 
1017 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
1018 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
1019 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
1020 
1021 	/*
1022 	 * if the parent was able to be mounted it clearly had no special lsm
1023 	 * mount options.  thus we can safely deal with this superblock later
1024 	 */
1025 	if (!selinux_state.initialized)
1026 		return 0;
1027 
1028 	/*
1029 	 * Specifying internal flags without providing a place to
1030 	 * place the results is not allowed.
1031 	 */
1032 	if (kern_flags && !set_kern_flags)
1033 		return -EINVAL;
1034 
1035 	/* how can we clone if the old one wasn't set up?? */
1036 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
1037 
1038 	/* if fs is reusing a sb, make sure that the contexts match */
1039 	if (newsbsec->flags & SE_SBINITIALIZED)
1040 		return selinux_cmp_sb_context(oldsb, newsb);
1041 
1042 	mutex_lock(&newsbsec->lock);
1043 
1044 	newsbsec->flags = oldsbsec->flags;
1045 
1046 	newsbsec->sid = oldsbsec->sid;
1047 	newsbsec->def_sid = oldsbsec->def_sid;
1048 	newsbsec->behavior = oldsbsec->behavior;
1049 
1050 	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
1051 		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
1052 		rc = security_fs_use(&selinux_state, newsb);
1053 		if (rc)
1054 			goto out;
1055 	}
1056 
1057 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
1058 		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
1059 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
1060 	}
1061 
1062 	if (set_context) {
1063 		u32 sid = oldsbsec->mntpoint_sid;
1064 
1065 		if (!set_fscontext)
1066 			newsbsec->sid = sid;
1067 		if (!set_rootcontext) {
1068 			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1069 			newisec->sid = sid;
1070 		}
1071 		newsbsec->mntpoint_sid = sid;
1072 	}
1073 	if (set_rootcontext) {
1074 		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1075 		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1076 
1077 		newisec->sid = oldisec->sid;
1078 	}
1079 
1080 	sb_finish_set_opts(newsb);
1081 out:
1082 	mutex_unlock(&newsbsec->lock);
1083 	return rc;
1084 }
1085 
1086 static int selinux_parse_opts_str(char *options,
1087 				  struct security_mnt_opts *opts)
1088 {
1089 	char *p;
1090 	char *context = NULL, *defcontext = NULL;
1091 	char *fscontext = NULL, *rootcontext = NULL;
1092 	int rc, num_mnt_opts = 0;
1093 
1094 	opts->num_mnt_opts = 0;
1095 
1096 	/* Standard string-based options. */
1097 	while ((p = strsep(&options, "|")) != NULL) {
1098 		int token;
1099 		substring_t args[MAX_OPT_ARGS];
1100 
1101 		if (!*p)
1102 			continue;
1103 
1104 		token = match_token(p, tokens, args);
1105 
1106 		switch (token) {
1107 		case Opt_context:
1108 			if (context || defcontext) {
1109 				rc = -EINVAL;
1110 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1111 				goto out_err;
1112 			}
1113 			context = match_strdup(&args[0]);
1114 			if (!context) {
1115 				rc = -ENOMEM;
1116 				goto out_err;
1117 			}
1118 			break;
1119 
1120 		case Opt_fscontext:
1121 			if (fscontext) {
1122 				rc = -EINVAL;
1123 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1124 				goto out_err;
1125 			}
1126 			fscontext = match_strdup(&args[0]);
1127 			if (!fscontext) {
1128 				rc = -ENOMEM;
1129 				goto out_err;
1130 			}
1131 			break;
1132 
1133 		case Opt_rootcontext:
1134 			if (rootcontext) {
1135 				rc = -EINVAL;
1136 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1137 				goto out_err;
1138 			}
1139 			rootcontext = match_strdup(&args[0]);
1140 			if (!rootcontext) {
1141 				rc = -ENOMEM;
1142 				goto out_err;
1143 			}
1144 			break;
1145 
1146 		case Opt_defcontext:
1147 			if (context || defcontext) {
1148 				rc = -EINVAL;
1149 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1150 				goto out_err;
1151 			}
1152 			defcontext = match_strdup(&args[0]);
1153 			if (!defcontext) {
1154 				rc = -ENOMEM;
1155 				goto out_err;
1156 			}
1157 			break;
1158 		case Opt_labelsupport:
1159 			break;
1160 		default:
1161 			rc = -EINVAL;
1162 			printk(KERN_WARNING "SELinux:  unknown mount option\n");
1163 			goto out_err;
1164 
1165 		}
1166 	}
1167 
1168 	rc = -ENOMEM;
1169 	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1170 	if (!opts->mnt_opts)
1171 		goto out_err;
1172 
1173 	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1174 				       GFP_KERNEL);
1175 	if (!opts->mnt_opts_flags)
1176 		goto out_err;
1177 
1178 	if (fscontext) {
1179 		opts->mnt_opts[num_mnt_opts] = fscontext;
1180 		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1181 	}
1182 	if (context) {
1183 		opts->mnt_opts[num_mnt_opts] = context;
1184 		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1185 	}
1186 	if (rootcontext) {
1187 		opts->mnt_opts[num_mnt_opts] = rootcontext;
1188 		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1189 	}
1190 	if (defcontext) {
1191 		opts->mnt_opts[num_mnt_opts] = defcontext;
1192 		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1193 	}
1194 
1195 	opts->num_mnt_opts = num_mnt_opts;
1196 	return 0;
1197 
1198 out_err:
1199 	security_free_mnt_opts(opts);
1200 	kfree(context);
1201 	kfree(defcontext);
1202 	kfree(fscontext);
1203 	kfree(rootcontext);
1204 	return rc;
1205 }
1206 /*
1207  * string mount options parsing and call set the sbsec
1208  */
1209 static int superblock_doinit(struct super_block *sb, void *data)
1210 {
1211 	int rc = 0;
1212 	char *options = data;
1213 	struct security_mnt_opts opts;
1214 
1215 	security_init_mnt_opts(&opts);
1216 
1217 	if (!data)
1218 		goto out;
1219 
1220 	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1221 
1222 	rc = selinux_parse_opts_str(options, &opts);
1223 	if (rc)
1224 		goto out_err;
1225 
1226 out:
1227 	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1228 
1229 out_err:
1230 	security_free_mnt_opts(&opts);
1231 	return rc;
1232 }
1233 
1234 static void selinux_write_opts(struct seq_file *m,
1235 			       struct security_mnt_opts *opts)
1236 {
1237 	int i;
1238 	char *prefix;
1239 
1240 	for (i = 0; i < opts->num_mnt_opts; i++) {
1241 		char *has_comma;
1242 
1243 		if (opts->mnt_opts[i])
1244 			has_comma = strchr(opts->mnt_opts[i], ',');
1245 		else
1246 			has_comma = NULL;
1247 
1248 		switch (opts->mnt_opts_flags[i]) {
1249 		case CONTEXT_MNT:
1250 			prefix = CONTEXT_STR;
1251 			break;
1252 		case FSCONTEXT_MNT:
1253 			prefix = FSCONTEXT_STR;
1254 			break;
1255 		case ROOTCONTEXT_MNT:
1256 			prefix = ROOTCONTEXT_STR;
1257 			break;
1258 		case DEFCONTEXT_MNT:
1259 			prefix = DEFCONTEXT_STR;
1260 			break;
1261 		case SBLABEL_MNT:
1262 			seq_putc(m, ',');
1263 			seq_puts(m, LABELSUPP_STR);
1264 			continue;
1265 		default:
1266 			BUG();
1267 			return;
1268 		};
1269 		/* we need a comma before each option */
1270 		seq_putc(m, ',');
1271 		seq_puts(m, prefix);
1272 		if (has_comma)
1273 			seq_putc(m, '\"');
1274 		seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1275 		if (has_comma)
1276 			seq_putc(m, '\"');
1277 	}
1278 }
1279 
1280 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1281 {
1282 	struct security_mnt_opts opts;
1283 	int rc;
1284 
1285 	rc = selinux_get_mnt_opts(sb, &opts);
1286 	if (rc) {
1287 		/* before policy load we may get EINVAL, don't show anything */
1288 		if (rc == -EINVAL)
1289 			rc = 0;
1290 		return rc;
1291 	}
1292 
1293 	selinux_write_opts(m, &opts);
1294 
1295 	security_free_mnt_opts(&opts);
1296 
1297 	return rc;
1298 }
1299 
1300 static inline u16 inode_mode_to_security_class(umode_t mode)
1301 {
1302 	switch (mode & S_IFMT) {
1303 	case S_IFSOCK:
1304 		return SECCLASS_SOCK_FILE;
1305 	case S_IFLNK:
1306 		return SECCLASS_LNK_FILE;
1307 	case S_IFREG:
1308 		return SECCLASS_FILE;
1309 	case S_IFBLK:
1310 		return SECCLASS_BLK_FILE;
1311 	case S_IFDIR:
1312 		return SECCLASS_DIR;
1313 	case S_IFCHR:
1314 		return SECCLASS_CHR_FILE;
1315 	case S_IFIFO:
1316 		return SECCLASS_FIFO_FILE;
1317 
1318 	}
1319 
1320 	return SECCLASS_FILE;
1321 }
1322 
1323 static inline int default_protocol_stream(int protocol)
1324 {
1325 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1326 }
1327 
1328 static inline int default_protocol_dgram(int protocol)
1329 {
1330 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1331 }
1332 
1333 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1334 {
1335 	int extsockclass = selinux_policycap_extsockclass();
1336 
1337 	switch (family) {
1338 	case PF_UNIX:
1339 		switch (type) {
1340 		case SOCK_STREAM:
1341 		case SOCK_SEQPACKET:
1342 			return SECCLASS_UNIX_STREAM_SOCKET;
1343 		case SOCK_DGRAM:
1344 		case SOCK_RAW:
1345 			return SECCLASS_UNIX_DGRAM_SOCKET;
1346 		}
1347 		break;
1348 	case PF_INET:
1349 	case PF_INET6:
1350 		switch (type) {
1351 		case SOCK_STREAM:
1352 		case SOCK_SEQPACKET:
1353 			if (default_protocol_stream(protocol))
1354 				return SECCLASS_TCP_SOCKET;
1355 			else if (extsockclass && protocol == IPPROTO_SCTP)
1356 				return SECCLASS_SCTP_SOCKET;
1357 			else
1358 				return SECCLASS_RAWIP_SOCKET;
1359 		case SOCK_DGRAM:
1360 			if (default_protocol_dgram(protocol))
1361 				return SECCLASS_UDP_SOCKET;
1362 			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1363 						  protocol == IPPROTO_ICMPV6))
1364 				return SECCLASS_ICMP_SOCKET;
1365 			else
1366 				return SECCLASS_RAWIP_SOCKET;
1367 		case SOCK_DCCP:
1368 			return SECCLASS_DCCP_SOCKET;
1369 		default:
1370 			return SECCLASS_RAWIP_SOCKET;
1371 		}
1372 		break;
1373 	case PF_NETLINK:
1374 		switch (protocol) {
1375 		case NETLINK_ROUTE:
1376 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1377 		case NETLINK_SOCK_DIAG:
1378 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1379 		case NETLINK_NFLOG:
1380 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1381 		case NETLINK_XFRM:
1382 			return SECCLASS_NETLINK_XFRM_SOCKET;
1383 		case NETLINK_SELINUX:
1384 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1385 		case NETLINK_ISCSI:
1386 			return SECCLASS_NETLINK_ISCSI_SOCKET;
1387 		case NETLINK_AUDIT:
1388 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1389 		case NETLINK_FIB_LOOKUP:
1390 			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1391 		case NETLINK_CONNECTOR:
1392 			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1393 		case NETLINK_NETFILTER:
1394 			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1395 		case NETLINK_DNRTMSG:
1396 			return SECCLASS_NETLINK_DNRT_SOCKET;
1397 		case NETLINK_KOBJECT_UEVENT:
1398 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1399 		case NETLINK_GENERIC:
1400 			return SECCLASS_NETLINK_GENERIC_SOCKET;
1401 		case NETLINK_SCSITRANSPORT:
1402 			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1403 		case NETLINK_RDMA:
1404 			return SECCLASS_NETLINK_RDMA_SOCKET;
1405 		case NETLINK_CRYPTO:
1406 			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1407 		default:
1408 			return SECCLASS_NETLINK_SOCKET;
1409 		}
1410 	case PF_PACKET:
1411 		return SECCLASS_PACKET_SOCKET;
1412 	case PF_KEY:
1413 		return SECCLASS_KEY_SOCKET;
1414 	case PF_APPLETALK:
1415 		return SECCLASS_APPLETALK_SOCKET;
1416 	}
1417 
1418 	if (extsockclass) {
1419 		switch (family) {
1420 		case PF_AX25:
1421 			return SECCLASS_AX25_SOCKET;
1422 		case PF_IPX:
1423 			return SECCLASS_IPX_SOCKET;
1424 		case PF_NETROM:
1425 			return SECCLASS_NETROM_SOCKET;
1426 		case PF_ATMPVC:
1427 			return SECCLASS_ATMPVC_SOCKET;
1428 		case PF_X25:
1429 			return SECCLASS_X25_SOCKET;
1430 		case PF_ROSE:
1431 			return SECCLASS_ROSE_SOCKET;
1432 		case PF_DECnet:
1433 			return SECCLASS_DECNET_SOCKET;
1434 		case PF_ATMSVC:
1435 			return SECCLASS_ATMSVC_SOCKET;
1436 		case PF_RDS:
1437 			return SECCLASS_RDS_SOCKET;
1438 		case PF_IRDA:
1439 			return SECCLASS_IRDA_SOCKET;
1440 		case PF_PPPOX:
1441 			return SECCLASS_PPPOX_SOCKET;
1442 		case PF_LLC:
1443 			return SECCLASS_LLC_SOCKET;
1444 		case PF_CAN:
1445 			return SECCLASS_CAN_SOCKET;
1446 		case PF_TIPC:
1447 			return SECCLASS_TIPC_SOCKET;
1448 		case PF_BLUETOOTH:
1449 			return SECCLASS_BLUETOOTH_SOCKET;
1450 		case PF_IUCV:
1451 			return SECCLASS_IUCV_SOCKET;
1452 		case PF_RXRPC:
1453 			return SECCLASS_RXRPC_SOCKET;
1454 		case PF_ISDN:
1455 			return SECCLASS_ISDN_SOCKET;
1456 		case PF_PHONET:
1457 			return SECCLASS_PHONET_SOCKET;
1458 		case PF_IEEE802154:
1459 			return SECCLASS_IEEE802154_SOCKET;
1460 		case PF_CAIF:
1461 			return SECCLASS_CAIF_SOCKET;
1462 		case PF_ALG:
1463 			return SECCLASS_ALG_SOCKET;
1464 		case PF_NFC:
1465 			return SECCLASS_NFC_SOCKET;
1466 		case PF_VSOCK:
1467 			return SECCLASS_VSOCK_SOCKET;
1468 		case PF_KCM:
1469 			return SECCLASS_KCM_SOCKET;
1470 		case PF_QIPCRTR:
1471 			return SECCLASS_QIPCRTR_SOCKET;
1472 		case PF_SMC:
1473 			return SECCLASS_SMC_SOCKET;
1474 		case PF_XDP:
1475 			return SECCLASS_XDP_SOCKET;
1476 #if PF_MAX > 45
1477 #error New address family defined, please update this function.
1478 #endif
1479 		}
1480 	}
1481 
1482 	return SECCLASS_SOCKET;
1483 }
1484 
1485 static int selinux_genfs_get_sid(struct dentry *dentry,
1486 				 u16 tclass,
1487 				 u16 flags,
1488 				 u32 *sid)
1489 {
1490 	int rc;
1491 	struct super_block *sb = dentry->d_sb;
1492 	char *buffer, *path;
1493 
1494 	buffer = (char *)__get_free_page(GFP_KERNEL);
1495 	if (!buffer)
1496 		return -ENOMEM;
1497 
1498 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1499 	if (IS_ERR(path))
1500 		rc = PTR_ERR(path);
1501 	else {
1502 		if (flags & SE_SBPROC) {
1503 			/* each process gets a /proc/PID/ entry. Strip off the
1504 			 * PID part to get a valid selinux labeling.
1505 			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1506 			while (path[1] >= '0' && path[1] <= '9') {
1507 				path[1] = '/';
1508 				path++;
1509 			}
1510 		}
1511 		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1512 					path, tclass, sid);
1513 	}
1514 	free_page((unsigned long)buffer);
1515 	return rc;
1516 }
1517 
1518 /* The inode's security attributes must be initialized before first use. */
1519 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1520 {
1521 	struct superblock_security_struct *sbsec = NULL;
1522 	struct inode_security_struct *isec = inode->i_security;
1523 	u32 task_sid, sid = 0;
1524 	u16 sclass;
1525 	struct dentry *dentry;
1526 #define INITCONTEXTLEN 255
1527 	char *context = NULL;
1528 	unsigned len = 0;
1529 	int rc = 0;
1530 
1531 	if (isec->initialized == LABEL_INITIALIZED)
1532 		return 0;
1533 
1534 	spin_lock(&isec->lock);
1535 	if (isec->initialized == LABEL_INITIALIZED)
1536 		goto out_unlock;
1537 
1538 	if (isec->sclass == SECCLASS_FILE)
1539 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1540 
1541 	sbsec = inode->i_sb->s_security;
1542 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1543 		/* Defer initialization until selinux_complete_init,
1544 		   after the initial policy is loaded and the security
1545 		   server is ready to handle calls. */
1546 		spin_lock(&sbsec->isec_lock);
1547 		if (list_empty(&isec->list))
1548 			list_add(&isec->list, &sbsec->isec_head);
1549 		spin_unlock(&sbsec->isec_lock);
1550 		goto out_unlock;
1551 	}
1552 
1553 	sclass = isec->sclass;
1554 	task_sid = isec->task_sid;
1555 	sid = isec->sid;
1556 	isec->initialized = LABEL_PENDING;
1557 	spin_unlock(&isec->lock);
1558 
1559 	switch (sbsec->behavior) {
1560 	case SECURITY_FS_USE_NATIVE:
1561 		break;
1562 	case SECURITY_FS_USE_XATTR:
1563 		if (!(inode->i_opflags & IOP_XATTR)) {
1564 			sid = sbsec->def_sid;
1565 			break;
1566 		}
1567 		/* Need a dentry, since the xattr API requires one.
1568 		   Life would be simpler if we could just pass the inode. */
1569 		if (opt_dentry) {
1570 			/* Called from d_instantiate or d_splice_alias. */
1571 			dentry = dget(opt_dentry);
1572 		} else {
1573 			/* Called from selinux_complete_init, try to find a dentry. */
1574 			dentry = d_find_alias(inode);
1575 		}
1576 		if (!dentry) {
1577 			/*
1578 			 * this is can be hit on boot when a file is accessed
1579 			 * before the policy is loaded.  When we load policy we
1580 			 * may find inodes that have no dentry on the
1581 			 * sbsec->isec_head list.  No reason to complain as these
1582 			 * will get fixed up the next time we go through
1583 			 * inode_doinit with a dentry, before these inodes could
1584 			 * be used again by userspace.
1585 			 */
1586 			goto out;
1587 		}
1588 
1589 		len = INITCONTEXTLEN;
1590 		context = kmalloc(len+1, GFP_NOFS);
1591 		if (!context) {
1592 			rc = -ENOMEM;
1593 			dput(dentry);
1594 			goto out;
1595 		}
1596 		context[len] = '\0';
1597 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1598 		if (rc == -ERANGE) {
1599 			kfree(context);
1600 
1601 			/* Need a larger buffer.  Query for the right size. */
1602 			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1603 			if (rc < 0) {
1604 				dput(dentry);
1605 				goto out;
1606 			}
1607 			len = rc;
1608 			context = kmalloc(len+1, GFP_NOFS);
1609 			if (!context) {
1610 				rc = -ENOMEM;
1611 				dput(dentry);
1612 				goto out;
1613 			}
1614 			context[len] = '\0';
1615 			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1616 		}
1617 		dput(dentry);
1618 		if (rc < 0) {
1619 			if (rc != -ENODATA) {
1620 				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1621 				       "%d for dev=%s ino=%ld\n", __func__,
1622 				       -rc, inode->i_sb->s_id, inode->i_ino);
1623 				kfree(context);
1624 				goto out;
1625 			}
1626 			/* Map ENODATA to the default file SID */
1627 			sid = sbsec->def_sid;
1628 			rc = 0;
1629 		} else {
1630 			rc = security_context_to_sid_default(&selinux_state,
1631 							     context, rc, &sid,
1632 							     sbsec->def_sid,
1633 							     GFP_NOFS);
1634 			if (rc) {
1635 				char *dev = inode->i_sb->s_id;
1636 				unsigned long ino = inode->i_ino;
1637 
1638 				if (rc == -EINVAL) {
1639 					if (printk_ratelimit())
1640 						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1641 							"context=%s.  This indicates you may need to relabel the inode or the "
1642 							"filesystem in question.\n", ino, dev, context);
1643 				} else {
1644 					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1645 					       "returned %d for dev=%s ino=%ld\n",
1646 					       __func__, context, -rc, dev, ino);
1647 				}
1648 				kfree(context);
1649 				/* Leave with the unlabeled SID */
1650 				rc = 0;
1651 				break;
1652 			}
1653 		}
1654 		kfree(context);
1655 		break;
1656 	case SECURITY_FS_USE_TASK:
1657 		sid = task_sid;
1658 		break;
1659 	case SECURITY_FS_USE_TRANS:
1660 		/* Default to the fs SID. */
1661 		sid = sbsec->sid;
1662 
1663 		/* Try to obtain a transition SID. */
1664 		rc = security_transition_sid(&selinux_state, task_sid, sid,
1665 					     sclass, NULL, &sid);
1666 		if (rc)
1667 			goto out;
1668 		break;
1669 	case SECURITY_FS_USE_MNTPOINT:
1670 		sid = sbsec->mntpoint_sid;
1671 		break;
1672 	default:
1673 		/* Default to the fs superblock SID. */
1674 		sid = sbsec->sid;
1675 
1676 		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1677 			/* We must have a dentry to determine the label on
1678 			 * procfs inodes */
1679 			if (opt_dentry)
1680 				/* Called from d_instantiate or
1681 				 * d_splice_alias. */
1682 				dentry = dget(opt_dentry);
1683 			else
1684 				/* Called from selinux_complete_init, try to
1685 				 * find a dentry. */
1686 				dentry = d_find_alias(inode);
1687 			/*
1688 			 * This can be hit on boot when a file is accessed
1689 			 * before the policy is loaded.  When we load policy we
1690 			 * may find inodes that have no dentry on the
1691 			 * sbsec->isec_head list.  No reason to complain as
1692 			 * these will get fixed up the next time we go through
1693 			 * inode_doinit() with a dentry, before these inodes
1694 			 * could be used again by userspace.
1695 			 */
1696 			if (!dentry)
1697 				goto out;
1698 			rc = selinux_genfs_get_sid(dentry, sclass,
1699 						   sbsec->flags, &sid);
1700 			dput(dentry);
1701 			if (rc)
1702 				goto out;
1703 		}
1704 		break;
1705 	}
1706 
1707 out:
1708 	spin_lock(&isec->lock);
1709 	if (isec->initialized == LABEL_PENDING) {
1710 		if (!sid || rc) {
1711 			isec->initialized = LABEL_INVALID;
1712 			goto out_unlock;
1713 		}
1714 
1715 		isec->initialized = LABEL_INITIALIZED;
1716 		isec->sid = sid;
1717 	}
1718 
1719 out_unlock:
1720 	spin_unlock(&isec->lock);
1721 	return rc;
1722 }
1723 
1724 /* Convert a Linux signal to an access vector. */
1725 static inline u32 signal_to_av(int sig)
1726 {
1727 	u32 perm = 0;
1728 
1729 	switch (sig) {
1730 	case SIGCHLD:
1731 		/* Commonly granted from child to parent. */
1732 		perm = PROCESS__SIGCHLD;
1733 		break;
1734 	case SIGKILL:
1735 		/* Cannot be caught or ignored */
1736 		perm = PROCESS__SIGKILL;
1737 		break;
1738 	case SIGSTOP:
1739 		/* Cannot be caught or ignored */
1740 		perm = PROCESS__SIGSTOP;
1741 		break;
1742 	default:
1743 		/* All other signals. */
1744 		perm = PROCESS__SIGNAL;
1745 		break;
1746 	}
1747 
1748 	return perm;
1749 }
1750 
1751 #if CAP_LAST_CAP > 63
1752 #error Fix SELinux to handle capabilities > 63.
1753 #endif
1754 
1755 /* Check whether a task is allowed to use a capability. */
1756 static int cred_has_capability(const struct cred *cred,
1757 			       int cap, int audit, bool initns)
1758 {
1759 	struct common_audit_data ad;
1760 	struct av_decision avd;
1761 	u16 sclass;
1762 	u32 sid = cred_sid(cred);
1763 	u32 av = CAP_TO_MASK(cap);
1764 	int rc;
1765 
1766 	ad.type = LSM_AUDIT_DATA_CAP;
1767 	ad.u.cap = cap;
1768 
1769 	switch (CAP_TO_INDEX(cap)) {
1770 	case 0:
1771 		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1772 		break;
1773 	case 1:
1774 		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1775 		break;
1776 	default:
1777 		printk(KERN_ERR
1778 		       "SELinux:  out of range capability %d\n", cap);
1779 		BUG();
1780 		return -EINVAL;
1781 	}
1782 
1783 	rc = avc_has_perm_noaudit(&selinux_state,
1784 				  sid, sid, sclass, av, 0, &avd);
1785 	if (audit == SECURITY_CAP_AUDIT) {
1786 		int rc2 = avc_audit(&selinux_state,
1787 				    sid, sid, sclass, av, &avd, rc, &ad, 0);
1788 		if (rc2)
1789 			return rc2;
1790 	}
1791 	return rc;
1792 }
1793 
1794 /* Check whether a task has a particular permission to an inode.
1795    The 'adp' parameter is optional and allows other audit
1796    data to be passed (e.g. the dentry). */
1797 static int inode_has_perm(const struct cred *cred,
1798 			  struct inode *inode,
1799 			  u32 perms,
1800 			  struct common_audit_data *adp)
1801 {
1802 	struct inode_security_struct *isec;
1803 	u32 sid;
1804 
1805 	validate_creds(cred);
1806 
1807 	if (unlikely(IS_PRIVATE(inode)))
1808 		return 0;
1809 
1810 	sid = cred_sid(cred);
1811 	isec = inode->i_security;
1812 
1813 	return avc_has_perm(&selinux_state,
1814 			    sid, isec->sid, isec->sclass, perms, adp);
1815 }
1816 
1817 /* Same as inode_has_perm, but pass explicit audit data containing
1818    the dentry to help the auditing code to more easily generate the
1819    pathname if needed. */
1820 static inline int dentry_has_perm(const struct cred *cred,
1821 				  struct dentry *dentry,
1822 				  u32 av)
1823 {
1824 	struct inode *inode = d_backing_inode(dentry);
1825 	struct common_audit_data ad;
1826 
1827 	ad.type = LSM_AUDIT_DATA_DENTRY;
1828 	ad.u.dentry = dentry;
1829 	__inode_security_revalidate(inode, dentry, true);
1830 	return inode_has_perm(cred, inode, av, &ad);
1831 }
1832 
1833 /* Same as inode_has_perm, but pass explicit audit data containing
1834    the path to help the auditing code to more easily generate the
1835    pathname if needed. */
1836 static inline int path_has_perm(const struct cred *cred,
1837 				const struct path *path,
1838 				u32 av)
1839 {
1840 	struct inode *inode = d_backing_inode(path->dentry);
1841 	struct common_audit_data ad;
1842 
1843 	ad.type = LSM_AUDIT_DATA_PATH;
1844 	ad.u.path = *path;
1845 	__inode_security_revalidate(inode, path->dentry, true);
1846 	return inode_has_perm(cred, inode, av, &ad);
1847 }
1848 
1849 /* Same as path_has_perm, but uses the inode from the file struct. */
1850 static inline int file_path_has_perm(const struct cred *cred,
1851 				     struct file *file,
1852 				     u32 av)
1853 {
1854 	struct common_audit_data ad;
1855 
1856 	ad.type = LSM_AUDIT_DATA_FILE;
1857 	ad.u.file = file;
1858 	return inode_has_perm(cred, file_inode(file), av, &ad);
1859 }
1860 
1861 #ifdef CONFIG_BPF_SYSCALL
1862 static int bpf_fd_pass(struct file *file, u32 sid);
1863 #endif
1864 
1865 /* Check whether a task can use an open file descriptor to
1866    access an inode in a given way.  Check access to the
1867    descriptor itself, and then use dentry_has_perm to
1868    check a particular permission to the file.
1869    Access to the descriptor is implicitly granted if it
1870    has the same SID as the process.  If av is zero, then
1871    access to the file is not checked, e.g. for cases
1872    where only the descriptor is affected like seek. */
1873 static int file_has_perm(const struct cred *cred,
1874 			 struct file *file,
1875 			 u32 av)
1876 {
1877 	struct file_security_struct *fsec = file->f_security;
1878 	struct inode *inode = file_inode(file);
1879 	struct common_audit_data ad;
1880 	u32 sid = cred_sid(cred);
1881 	int rc;
1882 
1883 	ad.type = LSM_AUDIT_DATA_FILE;
1884 	ad.u.file = file;
1885 
1886 	if (sid != fsec->sid) {
1887 		rc = avc_has_perm(&selinux_state,
1888 				  sid, fsec->sid,
1889 				  SECCLASS_FD,
1890 				  FD__USE,
1891 				  &ad);
1892 		if (rc)
1893 			goto out;
1894 	}
1895 
1896 #ifdef CONFIG_BPF_SYSCALL
1897 	rc = bpf_fd_pass(file, cred_sid(cred));
1898 	if (rc)
1899 		return rc;
1900 #endif
1901 
1902 	/* av is zero if only checking access to the descriptor. */
1903 	rc = 0;
1904 	if (av)
1905 		rc = inode_has_perm(cred, inode, av, &ad);
1906 
1907 out:
1908 	return rc;
1909 }
1910 
1911 /*
1912  * Determine the label for an inode that might be unioned.
1913  */
1914 static int
1915 selinux_determine_inode_label(const struct task_security_struct *tsec,
1916 				 struct inode *dir,
1917 				 const struct qstr *name, u16 tclass,
1918 				 u32 *_new_isid)
1919 {
1920 	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1921 
1922 	if ((sbsec->flags & SE_SBINITIALIZED) &&
1923 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1924 		*_new_isid = sbsec->mntpoint_sid;
1925 	} else if ((sbsec->flags & SBLABEL_MNT) &&
1926 		   tsec->create_sid) {
1927 		*_new_isid = tsec->create_sid;
1928 	} else {
1929 		const struct inode_security_struct *dsec = inode_security(dir);
1930 		return security_transition_sid(&selinux_state, tsec->sid,
1931 					       dsec->sid, tclass,
1932 					       name, _new_isid);
1933 	}
1934 
1935 	return 0;
1936 }
1937 
1938 /* Check whether a task can create a file. */
1939 static int may_create(struct inode *dir,
1940 		      struct dentry *dentry,
1941 		      u16 tclass)
1942 {
1943 	const struct task_security_struct *tsec = current_security();
1944 	struct inode_security_struct *dsec;
1945 	struct superblock_security_struct *sbsec;
1946 	u32 sid, newsid;
1947 	struct common_audit_data ad;
1948 	int rc;
1949 
1950 	dsec = inode_security(dir);
1951 	sbsec = dir->i_sb->s_security;
1952 
1953 	sid = tsec->sid;
1954 
1955 	ad.type = LSM_AUDIT_DATA_DENTRY;
1956 	ad.u.dentry = dentry;
1957 
1958 	rc = avc_has_perm(&selinux_state,
1959 			  sid, dsec->sid, SECCLASS_DIR,
1960 			  DIR__ADD_NAME | DIR__SEARCH,
1961 			  &ad);
1962 	if (rc)
1963 		return rc;
1964 
1965 	rc = selinux_determine_inode_label(current_security(), dir,
1966 					   &dentry->d_name, tclass, &newsid);
1967 	if (rc)
1968 		return rc;
1969 
1970 	rc = avc_has_perm(&selinux_state,
1971 			  sid, newsid, tclass, FILE__CREATE, &ad);
1972 	if (rc)
1973 		return rc;
1974 
1975 	return avc_has_perm(&selinux_state,
1976 			    newsid, sbsec->sid,
1977 			    SECCLASS_FILESYSTEM,
1978 			    FILESYSTEM__ASSOCIATE, &ad);
1979 }
1980 
1981 #define MAY_LINK	0
1982 #define MAY_UNLINK	1
1983 #define MAY_RMDIR	2
1984 
1985 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1986 static int may_link(struct inode *dir,
1987 		    struct dentry *dentry,
1988 		    int kind)
1989 
1990 {
1991 	struct inode_security_struct *dsec, *isec;
1992 	struct common_audit_data ad;
1993 	u32 sid = current_sid();
1994 	u32 av;
1995 	int rc;
1996 
1997 	dsec = inode_security(dir);
1998 	isec = backing_inode_security(dentry);
1999 
2000 	ad.type = LSM_AUDIT_DATA_DENTRY;
2001 	ad.u.dentry = dentry;
2002 
2003 	av = DIR__SEARCH;
2004 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
2005 	rc = avc_has_perm(&selinux_state,
2006 			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
2007 	if (rc)
2008 		return rc;
2009 
2010 	switch (kind) {
2011 	case MAY_LINK:
2012 		av = FILE__LINK;
2013 		break;
2014 	case MAY_UNLINK:
2015 		av = FILE__UNLINK;
2016 		break;
2017 	case MAY_RMDIR:
2018 		av = DIR__RMDIR;
2019 		break;
2020 	default:
2021 		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
2022 			__func__, kind);
2023 		return 0;
2024 	}
2025 
2026 	rc = avc_has_perm(&selinux_state,
2027 			  sid, isec->sid, isec->sclass, av, &ad);
2028 	return rc;
2029 }
2030 
2031 static inline int may_rename(struct inode *old_dir,
2032 			     struct dentry *old_dentry,
2033 			     struct inode *new_dir,
2034 			     struct dentry *new_dentry)
2035 {
2036 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
2037 	struct common_audit_data ad;
2038 	u32 sid = current_sid();
2039 	u32 av;
2040 	int old_is_dir, new_is_dir;
2041 	int rc;
2042 
2043 	old_dsec = inode_security(old_dir);
2044 	old_isec = backing_inode_security(old_dentry);
2045 	old_is_dir = d_is_dir(old_dentry);
2046 	new_dsec = inode_security(new_dir);
2047 
2048 	ad.type = LSM_AUDIT_DATA_DENTRY;
2049 
2050 	ad.u.dentry = old_dentry;
2051 	rc = avc_has_perm(&selinux_state,
2052 			  sid, old_dsec->sid, SECCLASS_DIR,
2053 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
2054 	if (rc)
2055 		return rc;
2056 	rc = avc_has_perm(&selinux_state,
2057 			  sid, old_isec->sid,
2058 			  old_isec->sclass, FILE__RENAME, &ad);
2059 	if (rc)
2060 		return rc;
2061 	if (old_is_dir && new_dir != old_dir) {
2062 		rc = avc_has_perm(&selinux_state,
2063 				  sid, old_isec->sid,
2064 				  old_isec->sclass, DIR__REPARENT, &ad);
2065 		if (rc)
2066 			return rc;
2067 	}
2068 
2069 	ad.u.dentry = new_dentry;
2070 	av = DIR__ADD_NAME | DIR__SEARCH;
2071 	if (d_is_positive(new_dentry))
2072 		av |= DIR__REMOVE_NAME;
2073 	rc = avc_has_perm(&selinux_state,
2074 			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
2075 	if (rc)
2076 		return rc;
2077 	if (d_is_positive(new_dentry)) {
2078 		new_isec = backing_inode_security(new_dentry);
2079 		new_is_dir = d_is_dir(new_dentry);
2080 		rc = avc_has_perm(&selinux_state,
2081 				  sid, new_isec->sid,
2082 				  new_isec->sclass,
2083 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
2084 		if (rc)
2085 			return rc;
2086 	}
2087 
2088 	return 0;
2089 }
2090 
2091 /* Check whether a task can perform a filesystem operation. */
2092 static int superblock_has_perm(const struct cred *cred,
2093 			       struct super_block *sb,
2094 			       u32 perms,
2095 			       struct common_audit_data *ad)
2096 {
2097 	struct superblock_security_struct *sbsec;
2098 	u32 sid = cred_sid(cred);
2099 
2100 	sbsec = sb->s_security;
2101 	return avc_has_perm(&selinux_state,
2102 			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
2103 }
2104 
2105 /* Convert a Linux mode and permission mask to an access vector. */
2106 static inline u32 file_mask_to_av(int mode, int mask)
2107 {
2108 	u32 av = 0;
2109 
2110 	if (!S_ISDIR(mode)) {
2111 		if (mask & MAY_EXEC)
2112 			av |= FILE__EXECUTE;
2113 		if (mask & MAY_READ)
2114 			av |= FILE__READ;
2115 
2116 		if (mask & MAY_APPEND)
2117 			av |= FILE__APPEND;
2118 		else if (mask & MAY_WRITE)
2119 			av |= FILE__WRITE;
2120 
2121 	} else {
2122 		if (mask & MAY_EXEC)
2123 			av |= DIR__SEARCH;
2124 		if (mask & MAY_WRITE)
2125 			av |= DIR__WRITE;
2126 		if (mask & MAY_READ)
2127 			av |= DIR__READ;
2128 	}
2129 
2130 	return av;
2131 }
2132 
2133 /* Convert a Linux file to an access vector. */
2134 static inline u32 file_to_av(struct file *file)
2135 {
2136 	u32 av = 0;
2137 
2138 	if (file->f_mode & FMODE_READ)
2139 		av |= FILE__READ;
2140 	if (file->f_mode & FMODE_WRITE) {
2141 		if (file->f_flags & O_APPEND)
2142 			av |= FILE__APPEND;
2143 		else
2144 			av |= FILE__WRITE;
2145 	}
2146 	if (!av) {
2147 		/*
2148 		 * Special file opened with flags 3 for ioctl-only use.
2149 		 */
2150 		av = FILE__IOCTL;
2151 	}
2152 
2153 	return av;
2154 }
2155 
2156 /*
2157  * Convert a file to an access vector and include the correct open
2158  * open permission.
2159  */
2160 static inline u32 open_file_to_av(struct file *file)
2161 {
2162 	u32 av = file_to_av(file);
2163 	struct inode *inode = file_inode(file);
2164 
2165 	if (selinux_policycap_openperm() &&
2166 	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2167 		av |= FILE__OPEN;
2168 
2169 	return av;
2170 }
2171 
2172 /* Hook functions begin here. */
2173 
2174 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2175 {
2176 	u32 mysid = current_sid();
2177 	u32 mgrsid = task_sid(mgr);
2178 
2179 	return avc_has_perm(&selinux_state,
2180 			    mysid, mgrsid, SECCLASS_BINDER,
2181 			    BINDER__SET_CONTEXT_MGR, NULL);
2182 }
2183 
2184 static int selinux_binder_transaction(struct task_struct *from,
2185 				      struct task_struct *to)
2186 {
2187 	u32 mysid = current_sid();
2188 	u32 fromsid = task_sid(from);
2189 	u32 tosid = task_sid(to);
2190 	int rc;
2191 
2192 	if (mysid != fromsid) {
2193 		rc = avc_has_perm(&selinux_state,
2194 				  mysid, fromsid, SECCLASS_BINDER,
2195 				  BINDER__IMPERSONATE, NULL);
2196 		if (rc)
2197 			return rc;
2198 	}
2199 
2200 	return avc_has_perm(&selinux_state,
2201 			    fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2202 			    NULL);
2203 }
2204 
2205 static int selinux_binder_transfer_binder(struct task_struct *from,
2206 					  struct task_struct *to)
2207 {
2208 	u32 fromsid = task_sid(from);
2209 	u32 tosid = task_sid(to);
2210 
2211 	return avc_has_perm(&selinux_state,
2212 			    fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2213 			    NULL);
2214 }
2215 
2216 static int selinux_binder_transfer_file(struct task_struct *from,
2217 					struct task_struct *to,
2218 					struct file *file)
2219 {
2220 	u32 sid = task_sid(to);
2221 	struct file_security_struct *fsec = file->f_security;
2222 	struct dentry *dentry = file->f_path.dentry;
2223 	struct inode_security_struct *isec;
2224 	struct common_audit_data ad;
2225 	int rc;
2226 
2227 	ad.type = LSM_AUDIT_DATA_PATH;
2228 	ad.u.path = file->f_path;
2229 
2230 	if (sid != fsec->sid) {
2231 		rc = avc_has_perm(&selinux_state,
2232 				  sid, fsec->sid,
2233 				  SECCLASS_FD,
2234 				  FD__USE,
2235 				  &ad);
2236 		if (rc)
2237 			return rc;
2238 	}
2239 
2240 #ifdef CONFIG_BPF_SYSCALL
2241 	rc = bpf_fd_pass(file, sid);
2242 	if (rc)
2243 		return rc;
2244 #endif
2245 
2246 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2247 		return 0;
2248 
2249 	isec = backing_inode_security(dentry);
2250 	return avc_has_perm(&selinux_state,
2251 			    sid, isec->sid, isec->sclass, file_to_av(file),
2252 			    &ad);
2253 }
2254 
2255 static int selinux_ptrace_access_check(struct task_struct *child,
2256 				     unsigned int mode)
2257 {
2258 	u32 sid = current_sid();
2259 	u32 csid = task_sid(child);
2260 
2261 	if (mode & PTRACE_MODE_READ)
2262 		return avc_has_perm(&selinux_state,
2263 				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2264 
2265 	return avc_has_perm(&selinux_state,
2266 			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2267 }
2268 
2269 static int selinux_ptrace_traceme(struct task_struct *parent)
2270 {
2271 	return avc_has_perm(&selinux_state,
2272 			    task_sid(parent), current_sid(), SECCLASS_PROCESS,
2273 			    PROCESS__PTRACE, NULL);
2274 }
2275 
2276 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2277 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2278 {
2279 	return avc_has_perm(&selinux_state,
2280 			    current_sid(), task_sid(target), SECCLASS_PROCESS,
2281 			    PROCESS__GETCAP, NULL);
2282 }
2283 
2284 static int selinux_capset(struct cred *new, const struct cred *old,
2285 			  const kernel_cap_t *effective,
2286 			  const kernel_cap_t *inheritable,
2287 			  const kernel_cap_t *permitted)
2288 {
2289 	return avc_has_perm(&selinux_state,
2290 			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2291 			    PROCESS__SETCAP, NULL);
2292 }
2293 
2294 /*
2295  * (This comment used to live with the selinux_task_setuid hook,
2296  * which was removed).
2297  *
2298  * Since setuid only affects the current process, and since the SELinux
2299  * controls are not based on the Linux identity attributes, SELinux does not
2300  * need to control this operation.  However, SELinux does control the use of
2301  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2302  */
2303 
2304 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2305 			   int cap, int audit)
2306 {
2307 	return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2308 }
2309 
2310 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2311 {
2312 	const struct cred *cred = current_cred();
2313 	int rc = 0;
2314 
2315 	if (!sb)
2316 		return 0;
2317 
2318 	switch (cmds) {
2319 	case Q_SYNC:
2320 	case Q_QUOTAON:
2321 	case Q_QUOTAOFF:
2322 	case Q_SETINFO:
2323 	case Q_SETQUOTA:
2324 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2325 		break;
2326 	case Q_GETFMT:
2327 	case Q_GETINFO:
2328 	case Q_GETQUOTA:
2329 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2330 		break;
2331 	default:
2332 		rc = 0;  /* let the kernel handle invalid cmds */
2333 		break;
2334 	}
2335 	return rc;
2336 }
2337 
2338 static int selinux_quota_on(struct dentry *dentry)
2339 {
2340 	const struct cred *cred = current_cred();
2341 
2342 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2343 }
2344 
2345 static int selinux_syslog(int type)
2346 {
2347 	switch (type) {
2348 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2349 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2350 		return avc_has_perm(&selinux_state,
2351 				    current_sid(), SECINITSID_KERNEL,
2352 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2353 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2354 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2355 	/* Set level of messages printed to console */
2356 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2357 		return avc_has_perm(&selinux_state,
2358 				    current_sid(), SECINITSID_KERNEL,
2359 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2360 				    NULL);
2361 	}
2362 	/* All other syslog types */
2363 	return avc_has_perm(&selinux_state,
2364 			    current_sid(), SECINITSID_KERNEL,
2365 			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2366 }
2367 
2368 /*
2369  * Check that a process has enough memory to allocate a new virtual
2370  * mapping. 0 means there is enough memory for the allocation to
2371  * succeed and -ENOMEM implies there is not.
2372  *
2373  * Do not audit the selinux permission check, as this is applied to all
2374  * processes that allocate mappings.
2375  */
2376 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2377 {
2378 	int rc, cap_sys_admin = 0;
2379 
2380 	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2381 				 SECURITY_CAP_NOAUDIT, true);
2382 	if (rc == 0)
2383 		cap_sys_admin = 1;
2384 
2385 	return cap_sys_admin;
2386 }
2387 
2388 /* binprm security operations */
2389 
2390 static u32 ptrace_parent_sid(void)
2391 {
2392 	u32 sid = 0;
2393 	struct task_struct *tracer;
2394 
2395 	rcu_read_lock();
2396 	tracer = ptrace_parent(current);
2397 	if (tracer)
2398 		sid = task_sid(tracer);
2399 	rcu_read_unlock();
2400 
2401 	return sid;
2402 }
2403 
2404 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2405 			    const struct task_security_struct *old_tsec,
2406 			    const struct task_security_struct *new_tsec)
2407 {
2408 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2409 	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2410 	int rc;
2411 	u32 av;
2412 
2413 	if (!nnp && !nosuid)
2414 		return 0; /* neither NNP nor nosuid */
2415 
2416 	if (new_tsec->sid == old_tsec->sid)
2417 		return 0; /* No change in credentials */
2418 
2419 	/*
2420 	 * If the policy enables the nnp_nosuid_transition policy capability,
2421 	 * then we permit transitions under NNP or nosuid if the
2422 	 * policy allows the corresponding permission between
2423 	 * the old and new contexts.
2424 	 */
2425 	if (selinux_policycap_nnp_nosuid_transition()) {
2426 		av = 0;
2427 		if (nnp)
2428 			av |= PROCESS2__NNP_TRANSITION;
2429 		if (nosuid)
2430 			av |= PROCESS2__NOSUID_TRANSITION;
2431 		rc = avc_has_perm(&selinux_state,
2432 				  old_tsec->sid, new_tsec->sid,
2433 				  SECCLASS_PROCESS2, av, NULL);
2434 		if (!rc)
2435 			return 0;
2436 	}
2437 
2438 	/*
2439 	 * We also permit NNP or nosuid transitions to bounded SIDs,
2440 	 * i.e. SIDs that are guaranteed to only be allowed a subset
2441 	 * of the permissions of the current SID.
2442 	 */
2443 	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2444 					 new_tsec->sid);
2445 	if (!rc)
2446 		return 0;
2447 
2448 	/*
2449 	 * On failure, preserve the errno values for NNP vs nosuid.
2450 	 * NNP:  Operation not permitted for caller.
2451 	 * nosuid:  Permission denied to file.
2452 	 */
2453 	if (nnp)
2454 		return -EPERM;
2455 	return -EACCES;
2456 }
2457 
2458 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2459 {
2460 	const struct task_security_struct *old_tsec;
2461 	struct task_security_struct *new_tsec;
2462 	struct inode_security_struct *isec;
2463 	struct common_audit_data ad;
2464 	struct inode *inode = file_inode(bprm->file);
2465 	int rc;
2466 
2467 	/* SELinux context only depends on initial program or script and not
2468 	 * the script interpreter */
2469 	if (bprm->called_set_creds)
2470 		return 0;
2471 
2472 	old_tsec = current_security();
2473 	new_tsec = bprm->cred->security;
2474 	isec = inode_security(inode);
2475 
2476 	/* Default to the current task SID. */
2477 	new_tsec->sid = old_tsec->sid;
2478 	new_tsec->osid = old_tsec->sid;
2479 
2480 	/* Reset fs, key, and sock SIDs on execve. */
2481 	new_tsec->create_sid = 0;
2482 	new_tsec->keycreate_sid = 0;
2483 	new_tsec->sockcreate_sid = 0;
2484 
2485 	if (old_tsec->exec_sid) {
2486 		new_tsec->sid = old_tsec->exec_sid;
2487 		/* Reset exec SID on execve. */
2488 		new_tsec->exec_sid = 0;
2489 
2490 		/* Fail on NNP or nosuid if not an allowed transition. */
2491 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2492 		if (rc)
2493 			return rc;
2494 	} else {
2495 		/* Check for a default transition on this program. */
2496 		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2497 					     isec->sid, SECCLASS_PROCESS, NULL,
2498 					     &new_tsec->sid);
2499 		if (rc)
2500 			return rc;
2501 
2502 		/*
2503 		 * Fallback to old SID on NNP or nosuid if not an allowed
2504 		 * transition.
2505 		 */
2506 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2507 		if (rc)
2508 			new_tsec->sid = old_tsec->sid;
2509 	}
2510 
2511 	ad.type = LSM_AUDIT_DATA_FILE;
2512 	ad.u.file = bprm->file;
2513 
2514 	if (new_tsec->sid == old_tsec->sid) {
2515 		rc = avc_has_perm(&selinux_state,
2516 				  old_tsec->sid, isec->sid,
2517 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2518 		if (rc)
2519 			return rc;
2520 	} else {
2521 		/* Check permissions for the transition. */
2522 		rc = avc_has_perm(&selinux_state,
2523 				  old_tsec->sid, new_tsec->sid,
2524 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2525 		if (rc)
2526 			return rc;
2527 
2528 		rc = avc_has_perm(&selinux_state,
2529 				  new_tsec->sid, isec->sid,
2530 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2531 		if (rc)
2532 			return rc;
2533 
2534 		/* Check for shared state */
2535 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2536 			rc = avc_has_perm(&selinux_state,
2537 					  old_tsec->sid, new_tsec->sid,
2538 					  SECCLASS_PROCESS, PROCESS__SHARE,
2539 					  NULL);
2540 			if (rc)
2541 				return -EPERM;
2542 		}
2543 
2544 		/* Make sure that anyone attempting to ptrace over a task that
2545 		 * changes its SID has the appropriate permit */
2546 		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2547 			u32 ptsid = ptrace_parent_sid();
2548 			if (ptsid != 0) {
2549 				rc = avc_has_perm(&selinux_state,
2550 						  ptsid, new_tsec->sid,
2551 						  SECCLASS_PROCESS,
2552 						  PROCESS__PTRACE, NULL);
2553 				if (rc)
2554 					return -EPERM;
2555 			}
2556 		}
2557 
2558 		/* Clear any possibly unsafe personality bits on exec: */
2559 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2560 
2561 		/* Enable secure mode for SIDs transitions unless
2562 		   the noatsecure permission is granted between
2563 		   the two SIDs, i.e. ahp returns 0. */
2564 		rc = avc_has_perm(&selinux_state,
2565 				  old_tsec->sid, new_tsec->sid,
2566 				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2567 				  NULL);
2568 		bprm->secureexec |= !!rc;
2569 	}
2570 
2571 	return 0;
2572 }
2573 
2574 static int match_file(const void *p, struct file *file, unsigned fd)
2575 {
2576 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2577 }
2578 
2579 /* Derived from fs/exec.c:flush_old_files. */
2580 static inline void flush_unauthorized_files(const struct cred *cred,
2581 					    struct files_struct *files)
2582 {
2583 	struct file *file, *devnull = NULL;
2584 	struct tty_struct *tty;
2585 	int drop_tty = 0;
2586 	unsigned n;
2587 
2588 	tty = get_current_tty();
2589 	if (tty) {
2590 		spin_lock(&tty->files_lock);
2591 		if (!list_empty(&tty->tty_files)) {
2592 			struct tty_file_private *file_priv;
2593 
2594 			/* Revalidate access to controlling tty.
2595 			   Use file_path_has_perm on the tty path directly
2596 			   rather than using file_has_perm, as this particular
2597 			   open file may belong to another process and we are
2598 			   only interested in the inode-based check here. */
2599 			file_priv = list_first_entry(&tty->tty_files,
2600 						struct tty_file_private, list);
2601 			file = file_priv->file;
2602 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2603 				drop_tty = 1;
2604 		}
2605 		spin_unlock(&tty->files_lock);
2606 		tty_kref_put(tty);
2607 	}
2608 	/* Reset controlling tty. */
2609 	if (drop_tty)
2610 		no_tty();
2611 
2612 	/* Revalidate access to inherited open files. */
2613 	n = iterate_fd(files, 0, match_file, cred);
2614 	if (!n) /* none found? */
2615 		return;
2616 
2617 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2618 	if (IS_ERR(devnull))
2619 		devnull = NULL;
2620 	/* replace all the matching ones with this */
2621 	do {
2622 		replace_fd(n - 1, devnull, 0);
2623 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2624 	if (devnull)
2625 		fput(devnull);
2626 }
2627 
2628 /*
2629  * Prepare a process for imminent new credential changes due to exec
2630  */
2631 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2632 {
2633 	struct task_security_struct *new_tsec;
2634 	struct rlimit *rlim, *initrlim;
2635 	int rc, i;
2636 
2637 	new_tsec = bprm->cred->security;
2638 	if (new_tsec->sid == new_tsec->osid)
2639 		return;
2640 
2641 	/* Close files for which the new task SID is not authorized. */
2642 	flush_unauthorized_files(bprm->cred, current->files);
2643 
2644 	/* Always clear parent death signal on SID transitions. */
2645 	current->pdeath_signal = 0;
2646 
2647 	/* Check whether the new SID can inherit resource limits from the old
2648 	 * SID.  If not, reset all soft limits to the lower of the current
2649 	 * task's hard limit and the init task's soft limit.
2650 	 *
2651 	 * Note that the setting of hard limits (even to lower them) can be
2652 	 * controlled by the setrlimit check.  The inclusion of the init task's
2653 	 * soft limit into the computation is to avoid resetting soft limits
2654 	 * higher than the default soft limit for cases where the default is
2655 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2656 	 */
2657 	rc = avc_has_perm(&selinux_state,
2658 			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2659 			  PROCESS__RLIMITINH, NULL);
2660 	if (rc) {
2661 		/* protect against do_prlimit() */
2662 		task_lock(current);
2663 		for (i = 0; i < RLIM_NLIMITS; i++) {
2664 			rlim = current->signal->rlim + i;
2665 			initrlim = init_task.signal->rlim + i;
2666 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2667 		}
2668 		task_unlock(current);
2669 		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2670 			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2671 	}
2672 }
2673 
2674 /*
2675  * Clean up the process immediately after the installation of new credentials
2676  * due to exec
2677  */
2678 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2679 {
2680 	const struct task_security_struct *tsec = current_security();
2681 	struct itimerval itimer;
2682 	u32 osid, sid;
2683 	int rc, i;
2684 
2685 	osid = tsec->osid;
2686 	sid = tsec->sid;
2687 
2688 	if (sid == osid)
2689 		return;
2690 
2691 	/* Check whether the new SID can inherit signal state from the old SID.
2692 	 * If not, clear itimers to avoid subsequent signal generation and
2693 	 * flush and unblock signals.
2694 	 *
2695 	 * This must occur _after_ the task SID has been updated so that any
2696 	 * kill done after the flush will be checked against the new SID.
2697 	 */
2698 	rc = avc_has_perm(&selinux_state,
2699 			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2700 	if (rc) {
2701 		if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2702 			memset(&itimer, 0, sizeof itimer);
2703 			for (i = 0; i < 3; i++)
2704 				do_setitimer(i, &itimer, NULL);
2705 		}
2706 		spin_lock_irq(&current->sighand->siglock);
2707 		if (!fatal_signal_pending(current)) {
2708 			flush_sigqueue(&current->pending);
2709 			flush_sigqueue(&current->signal->shared_pending);
2710 			flush_signal_handlers(current, 1);
2711 			sigemptyset(&current->blocked);
2712 			recalc_sigpending();
2713 		}
2714 		spin_unlock_irq(&current->sighand->siglock);
2715 	}
2716 
2717 	/* Wake up the parent if it is waiting so that it can recheck
2718 	 * wait permission to the new task SID. */
2719 	read_lock(&tasklist_lock);
2720 	__wake_up_parent(current, current->real_parent);
2721 	read_unlock(&tasklist_lock);
2722 }
2723 
2724 /* superblock security operations */
2725 
2726 static int selinux_sb_alloc_security(struct super_block *sb)
2727 {
2728 	return superblock_alloc_security(sb);
2729 }
2730 
2731 static void selinux_sb_free_security(struct super_block *sb)
2732 {
2733 	superblock_free_security(sb);
2734 }
2735 
2736 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2737 {
2738 	if (plen > olen)
2739 		return 0;
2740 
2741 	return !memcmp(prefix, option, plen);
2742 }
2743 
2744 static inline int selinux_option(char *option, int len)
2745 {
2746 	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2747 		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2748 		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2749 		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2750 		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2751 }
2752 
2753 static inline void take_option(char **to, char *from, int *first, int len)
2754 {
2755 	if (!*first) {
2756 		**to = ',';
2757 		*to += 1;
2758 	} else
2759 		*first = 0;
2760 	memcpy(*to, from, len);
2761 	*to += len;
2762 }
2763 
2764 static inline void take_selinux_option(char **to, char *from, int *first,
2765 				       int len)
2766 {
2767 	int current_size = 0;
2768 
2769 	if (!*first) {
2770 		**to = '|';
2771 		*to += 1;
2772 	} else
2773 		*first = 0;
2774 
2775 	while (current_size < len) {
2776 		if (*from != '"') {
2777 			**to = *from;
2778 			*to += 1;
2779 		}
2780 		from += 1;
2781 		current_size += 1;
2782 	}
2783 }
2784 
2785 static int selinux_sb_copy_data(char *orig, char *copy)
2786 {
2787 	int fnosec, fsec, rc = 0;
2788 	char *in_save, *in_curr, *in_end;
2789 	char *sec_curr, *nosec_save, *nosec;
2790 	int open_quote = 0;
2791 
2792 	in_curr = orig;
2793 	sec_curr = copy;
2794 
2795 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2796 	if (!nosec) {
2797 		rc = -ENOMEM;
2798 		goto out;
2799 	}
2800 
2801 	nosec_save = nosec;
2802 	fnosec = fsec = 1;
2803 	in_save = in_end = orig;
2804 
2805 	do {
2806 		if (*in_end == '"')
2807 			open_quote = !open_quote;
2808 		if ((*in_end == ',' && open_quote == 0) ||
2809 				*in_end == '\0') {
2810 			int len = in_end - in_curr;
2811 
2812 			if (selinux_option(in_curr, len))
2813 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2814 			else
2815 				take_option(&nosec, in_curr, &fnosec, len);
2816 
2817 			in_curr = in_end + 1;
2818 		}
2819 	} while (*in_end++);
2820 
2821 	strcpy(in_save, nosec_save);
2822 	free_page((unsigned long)nosec_save);
2823 out:
2824 	return rc;
2825 }
2826 
2827 static int selinux_sb_remount(struct super_block *sb, void *data)
2828 {
2829 	int rc, i, *flags;
2830 	struct security_mnt_opts opts;
2831 	char *secdata, **mount_options;
2832 	struct superblock_security_struct *sbsec = sb->s_security;
2833 
2834 	if (!(sbsec->flags & SE_SBINITIALIZED))
2835 		return 0;
2836 
2837 	if (!data)
2838 		return 0;
2839 
2840 	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2841 		return 0;
2842 
2843 	security_init_mnt_opts(&opts);
2844 	secdata = alloc_secdata();
2845 	if (!secdata)
2846 		return -ENOMEM;
2847 	rc = selinux_sb_copy_data(data, secdata);
2848 	if (rc)
2849 		goto out_free_secdata;
2850 
2851 	rc = selinux_parse_opts_str(secdata, &opts);
2852 	if (rc)
2853 		goto out_free_secdata;
2854 
2855 	mount_options = opts.mnt_opts;
2856 	flags = opts.mnt_opts_flags;
2857 
2858 	for (i = 0; i < opts.num_mnt_opts; i++) {
2859 		u32 sid;
2860 
2861 		if (flags[i] == SBLABEL_MNT)
2862 			continue;
2863 		rc = security_context_str_to_sid(&selinux_state,
2864 						 mount_options[i], &sid,
2865 						 GFP_KERNEL);
2866 		if (rc) {
2867 			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2868 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2869 			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2870 			goto out_free_opts;
2871 		}
2872 		rc = -EINVAL;
2873 		switch (flags[i]) {
2874 		case FSCONTEXT_MNT:
2875 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2876 				goto out_bad_option;
2877 			break;
2878 		case CONTEXT_MNT:
2879 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2880 				goto out_bad_option;
2881 			break;
2882 		case ROOTCONTEXT_MNT: {
2883 			struct inode_security_struct *root_isec;
2884 			root_isec = backing_inode_security(sb->s_root);
2885 
2886 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2887 				goto out_bad_option;
2888 			break;
2889 		}
2890 		case DEFCONTEXT_MNT:
2891 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2892 				goto out_bad_option;
2893 			break;
2894 		default:
2895 			goto out_free_opts;
2896 		}
2897 	}
2898 
2899 	rc = 0;
2900 out_free_opts:
2901 	security_free_mnt_opts(&opts);
2902 out_free_secdata:
2903 	free_secdata(secdata);
2904 	return rc;
2905 out_bad_option:
2906 	printk(KERN_WARNING "SELinux: unable to change security options "
2907 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2908 	       sb->s_type->name);
2909 	goto out_free_opts;
2910 }
2911 
2912 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2913 {
2914 	const struct cred *cred = current_cred();
2915 	struct common_audit_data ad;
2916 	int rc;
2917 
2918 	rc = superblock_doinit(sb, data);
2919 	if (rc)
2920 		return rc;
2921 
2922 	/* Allow all mounts performed by the kernel */
2923 	if (flags & MS_KERNMOUNT)
2924 		return 0;
2925 
2926 	ad.type = LSM_AUDIT_DATA_DENTRY;
2927 	ad.u.dentry = sb->s_root;
2928 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2929 }
2930 
2931 static int selinux_sb_statfs(struct dentry *dentry)
2932 {
2933 	const struct cred *cred = current_cred();
2934 	struct common_audit_data ad;
2935 
2936 	ad.type = LSM_AUDIT_DATA_DENTRY;
2937 	ad.u.dentry = dentry->d_sb->s_root;
2938 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2939 }
2940 
2941 static int selinux_mount(const char *dev_name,
2942 			 const struct path *path,
2943 			 const char *type,
2944 			 unsigned long flags,
2945 			 void *data)
2946 {
2947 	const struct cred *cred = current_cred();
2948 
2949 	if (flags & MS_REMOUNT)
2950 		return superblock_has_perm(cred, path->dentry->d_sb,
2951 					   FILESYSTEM__REMOUNT, NULL);
2952 	else
2953 		return path_has_perm(cred, path, FILE__MOUNTON);
2954 }
2955 
2956 static int selinux_umount(struct vfsmount *mnt, int flags)
2957 {
2958 	const struct cred *cred = current_cred();
2959 
2960 	return superblock_has_perm(cred, mnt->mnt_sb,
2961 				   FILESYSTEM__UNMOUNT, NULL);
2962 }
2963 
2964 /* inode security operations */
2965 
2966 static int selinux_inode_alloc_security(struct inode *inode)
2967 {
2968 	return inode_alloc_security(inode);
2969 }
2970 
2971 static void selinux_inode_free_security(struct inode *inode)
2972 {
2973 	inode_free_security(inode);
2974 }
2975 
2976 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2977 					const struct qstr *name, void **ctx,
2978 					u32 *ctxlen)
2979 {
2980 	u32 newsid;
2981 	int rc;
2982 
2983 	rc = selinux_determine_inode_label(current_security(),
2984 					   d_inode(dentry->d_parent), name,
2985 					   inode_mode_to_security_class(mode),
2986 					   &newsid);
2987 	if (rc)
2988 		return rc;
2989 
2990 	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2991 				       ctxlen);
2992 }
2993 
2994 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2995 					  struct qstr *name,
2996 					  const struct cred *old,
2997 					  struct cred *new)
2998 {
2999 	u32 newsid;
3000 	int rc;
3001 	struct task_security_struct *tsec;
3002 
3003 	rc = selinux_determine_inode_label(old->security,
3004 					   d_inode(dentry->d_parent), name,
3005 					   inode_mode_to_security_class(mode),
3006 					   &newsid);
3007 	if (rc)
3008 		return rc;
3009 
3010 	tsec = new->security;
3011 	tsec->create_sid = newsid;
3012 	return 0;
3013 }
3014 
3015 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
3016 				       const struct qstr *qstr,
3017 				       const char **name,
3018 				       void **value, size_t *len)
3019 {
3020 	const struct task_security_struct *tsec = current_security();
3021 	struct superblock_security_struct *sbsec;
3022 	u32 newsid, clen;
3023 	int rc;
3024 	char *context;
3025 
3026 	sbsec = dir->i_sb->s_security;
3027 
3028 	newsid = tsec->create_sid;
3029 
3030 	rc = selinux_determine_inode_label(current_security(),
3031 		dir, qstr,
3032 		inode_mode_to_security_class(inode->i_mode),
3033 		&newsid);
3034 	if (rc)
3035 		return rc;
3036 
3037 	/* Possibly defer initialization to selinux_complete_init. */
3038 	if (sbsec->flags & SE_SBINITIALIZED) {
3039 		struct inode_security_struct *isec = inode->i_security;
3040 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
3041 		isec->sid = newsid;
3042 		isec->initialized = LABEL_INITIALIZED;
3043 	}
3044 
3045 	if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
3046 		return -EOPNOTSUPP;
3047 
3048 	if (name)
3049 		*name = XATTR_SELINUX_SUFFIX;
3050 
3051 	if (value && len) {
3052 		rc = security_sid_to_context_force(&selinux_state, newsid,
3053 						   &context, &clen);
3054 		if (rc)
3055 			return rc;
3056 		*value = context;
3057 		*len = clen;
3058 	}
3059 
3060 	return 0;
3061 }
3062 
3063 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3064 {
3065 	return may_create(dir, dentry, SECCLASS_FILE);
3066 }
3067 
3068 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3069 {
3070 	return may_link(dir, old_dentry, MAY_LINK);
3071 }
3072 
3073 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3074 {
3075 	return may_link(dir, dentry, MAY_UNLINK);
3076 }
3077 
3078 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3079 {
3080 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3081 }
3082 
3083 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3084 {
3085 	return may_create(dir, dentry, SECCLASS_DIR);
3086 }
3087 
3088 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3089 {
3090 	return may_link(dir, dentry, MAY_RMDIR);
3091 }
3092 
3093 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3094 {
3095 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3096 }
3097 
3098 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3099 				struct inode *new_inode, struct dentry *new_dentry)
3100 {
3101 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3102 }
3103 
3104 static int selinux_inode_readlink(struct dentry *dentry)
3105 {
3106 	const struct cred *cred = current_cred();
3107 
3108 	return dentry_has_perm(cred, dentry, FILE__READ);
3109 }
3110 
3111 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3112 				     bool rcu)
3113 {
3114 	const struct cred *cred = current_cred();
3115 	struct common_audit_data ad;
3116 	struct inode_security_struct *isec;
3117 	u32 sid;
3118 
3119 	validate_creds(cred);
3120 
3121 	ad.type = LSM_AUDIT_DATA_DENTRY;
3122 	ad.u.dentry = dentry;
3123 	sid = cred_sid(cred);
3124 	isec = inode_security_rcu(inode, rcu);
3125 	if (IS_ERR(isec))
3126 		return PTR_ERR(isec);
3127 
3128 	return avc_has_perm_flags(&selinux_state,
3129 				  sid, isec->sid, isec->sclass, FILE__READ, &ad,
3130 				  rcu ? MAY_NOT_BLOCK : 0);
3131 }
3132 
3133 static noinline int audit_inode_permission(struct inode *inode,
3134 					   u32 perms, u32 audited, u32 denied,
3135 					   int result,
3136 					   unsigned flags)
3137 {
3138 	struct common_audit_data ad;
3139 	struct inode_security_struct *isec = inode->i_security;
3140 	int rc;
3141 
3142 	ad.type = LSM_AUDIT_DATA_INODE;
3143 	ad.u.inode = inode;
3144 
3145 	rc = slow_avc_audit(&selinux_state,
3146 			    current_sid(), isec->sid, isec->sclass, perms,
3147 			    audited, denied, result, &ad, flags);
3148 	if (rc)
3149 		return rc;
3150 	return 0;
3151 }
3152 
3153 static int selinux_inode_permission(struct inode *inode, int mask)
3154 {
3155 	const struct cred *cred = current_cred();
3156 	u32 perms;
3157 	bool from_access;
3158 	unsigned flags = mask & MAY_NOT_BLOCK;
3159 	struct inode_security_struct *isec;
3160 	u32 sid;
3161 	struct av_decision avd;
3162 	int rc, rc2;
3163 	u32 audited, denied;
3164 
3165 	from_access = mask & MAY_ACCESS;
3166 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3167 
3168 	/* No permission to check.  Existence test. */
3169 	if (!mask)
3170 		return 0;
3171 
3172 	validate_creds(cred);
3173 
3174 	if (unlikely(IS_PRIVATE(inode)))
3175 		return 0;
3176 
3177 	perms = file_mask_to_av(inode->i_mode, mask);
3178 
3179 	sid = cred_sid(cred);
3180 	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3181 	if (IS_ERR(isec))
3182 		return PTR_ERR(isec);
3183 
3184 	rc = avc_has_perm_noaudit(&selinux_state,
3185 				  sid, isec->sid, isec->sclass, perms, 0, &avd);
3186 	audited = avc_audit_required(perms, &avd, rc,
3187 				     from_access ? FILE__AUDIT_ACCESS : 0,
3188 				     &denied);
3189 	if (likely(!audited))
3190 		return rc;
3191 
3192 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3193 	if (rc2)
3194 		return rc2;
3195 	return rc;
3196 }
3197 
3198 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3199 {
3200 	const struct cred *cred = current_cred();
3201 	struct inode *inode = d_backing_inode(dentry);
3202 	unsigned int ia_valid = iattr->ia_valid;
3203 	__u32 av = FILE__WRITE;
3204 
3205 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3206 	if (ia_valid & ATTR_FORCE) {
3207 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3208 			      ATTR_FORCE);
3209 		if (!ia_valid)
3210 			return 0;
3211 	}
3212 
3213 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3214 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3215 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3216 
3217 	if (selinux_policycap_openperm() &&
3218 	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3219 	    (ia_valid & ATTR_SIZE) &&
3220 	    !(ia_valid & ATTR_FILE))
3221 		av |= FILE__OPEN;
3222 
3223 	return dentry_has_perm(cred, dentry, av);
3224 }
3225 
3226 static int selinux_inode_getattr(const struct path *path)
3227 {
3228 	return path_has_perm(current_cred(), path, FILE__GETATTR);
3229 }
3230 
3231 static bool has_cap_mac_admin(bool audit)
3232 {
3233 	const struct cred *cred = current_cred();
3234 	int cap_audit = audit ? SECURITY_CAP_AUDIT : SECURITY_CAP_NOAUDIT;
3235 
3236 	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, cap_audit))
3237 		return false;
3238 	if (cred_has_capability(cred, CAP_MAC_ADMIN, cap_audit, true))
3239 		return false;
3240 	return true;
3241 }
3242 
3243 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3244 				  const void *value, size_t size, int flags)
3245 {
3246 	struct inode *inode = d_backing_inode(dentry);
3247 	struct inode_security_struct *isec;
3248 	struct superblock_security_struct *sbsec;
3249 	struct common_audit_data ad;
3250 	u32 newsid, sid = current_sid();
3251 	int rc = 0;
3252 
3253 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3254 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3255 		if (rc)
3256 			return rc;
3257 
3258 		/* Not an attribute we recognize, so just check the
3259 		   ordinary setattr permission. */
3260 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3261 	}
3262 
3263 	sbsec = inode->i_sb->s_security;
3264 	if (!(sbsec->flags & SBLABEL_MNT))
3265 		return -EOPNOTSUPP;
3266 
3267 	if (!inode_owner_or_capable(inode))
3268 		return -EPERM;
3269 
3270 	ad.type = LSM_AUDIT_DATA_DENTRY;
3271 	ad.u.dentry = dentry;
3272 
3273 	isec = backing_inode_security(dentry);
3274 	rc = avc_has_perm(&selinux_state,
3275 			  sid, isec->sid, isec->sclass,
3276 			  FILE__RELABELFROM, &ad);
3277 	if (rc)
3278 		return rc;
3279 
3280 	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3281 				     GFP_KERNEL);
3282 	if (rc == -EINVAL) {
3283 		if (!has_cap_mac_admin(true)) {
3284 			struct audit_buffer *ab;
3285 			size_t audit_size;
3286 
3287 			/* We strip a nul only if it is at the end, otherwise the
3288 			 * context contains a nul and we should audit that */
3289 			if (value) {
3290 				const char *str = value;
3291 
3292 				if (str[size - 1] == '\0')
3293 					audit_size = size - 1;
3294 				else
3295 					audit_size = size;
3296 			} else {
3297 				audit_size = 0;
3298 			}
3299 			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3300 			audit_log_format(ab, "op=setxattr invalid_context=");
3301 			audit_log_n_untrustedstring(ab, value, audit_size);
3302 			audit_log_end(ab);
3303 
3304 			return rc;
3305 		}
3306 		rc = security_context_to_sid_force(&selinux_state, value,
3307 						   size, &newsid);
3308 	}
3309 	if (rc)
3310 		return rc;
3311 
3312 	rc = avc_has_perm(&selinux_state,
3313 			  sid, newsid, isec->sclass,
3314 			  FILE__RELABELTO, &ad);
3315 	if (rc)
3316 		return rc;
3317 
3318 	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3319 					  sid, isec->sclass);
3320 	if (rc)
3321 		return rc;
3322 
3323 	return avc_has_perm(&selinux_state,
3324 			    newsid,
3325 			    sbsec->sid,
3326 			    SECCLASS_FILESYSTEM,
3327 			    FILESYSTEM__ASSOCIATE,
3328 			    &ad);
3329 }
3330 
3331 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3332 					const void *value, size_t size,
3333 					int flags)
3334 {
3335 	struct inode *inode = d_backing_inode(dentry);
3336 	struct inode_security_struct *isec;
3337 	u32 newsid;
3338 	int rc;
3339 
3340 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3341 		/* Not an attribute we recognize, so nothing to do. */
3342 		return;
3343 	}
3344 
3345 	rc = security_context_to_sid_force(&selinux_state, value, size,
3346 					   &newsid);
3347 	if (rc) {
3348 		printk(KERN_ERR "SELinux:  unable to map context to SID"
3349 		       "for (%s, %lu), rc=%d\n",
3350 		       inode->i_sb->s_id, inode->i_ino, -rc);
3351 		return;
3352 	}
3353 
3354 	isec = backing_inode_security(dentry);
3355 	spin_lock(&isec->lock);
3356 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3357 	isec->sid = newsid;
3358 	isec->initialized = LABEL_INITIALIZED;
3359 	spin_unlock(&isec->lock);
3360 
3361 	return;
3362 }
3363 
3364 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3365 {
3366 	const struct cred *cred = current_cred();
3367 
3368 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3369 }
3370 
3371 static int selinux_inode_listxattr(struct dentry *dentry)
3372 {
3373 	const struct cred *cred = current_cred();
3374 
3375 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3376 }
3377 
3378 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3379 {
3380 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3381 		int rc = cap_inode_removexattr(dentry, name);
3382 		if (rc)
3383 			return rc;
3384 
3385 		/* Not an attribute we recognize, so just check the
3386 		   ordinary setattr permission. */
3387 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3388 	}
3389 
3390 	/* No one is allowed to remove a SELinux security label.
3391 	   You can change the label, but all data must be labeled. */
3392 	return -EACCES;
3393 }
3394 
3395 /*
3396  * Copy the inode security context value to the user.
3397  *
3398  * Permission check is handled by selinux_inode_getxattr hook.
3399  */
3400 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3401 {
3402 	u32 size;
3403 	int error;
3404 	char *context = NULL;
3405 	struct inode_security_struct *isec;
3406 
3407 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3408 		return -EOPNOTSUPP;
3409 
3410 	/*
3411 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3412 	 * value even if it is not defined by current policy; otherwise,
3413 	 * use the in-core value under current policy.
3414 	 * Use the non-auditing forms of the permission checks since
3415 	 * getxattr may be called by unprivileged processes commonly
3416 	 * and lack of permission just means that we fall back to the
3417 	 * in-core context value, not a denial.
3418 	 */
3419 	isec = inode_security(inode);
3420 	if (has_cap_mac_admin(false))
3421 		error = security_sid_to_context_force(&selinux_state,
3422 						      isec->sid, &context,
3423 						      &size);
3424 	else
3425 		error = security_sid_to_context(&selinux_state, isec->sid,
3426 						&context, &size);
3427 	if (error)
3428 		return error;
3429 	error = size;
3430 	if (alloc) {
3431 		*buffer = context;
3432 		goto out_nofree;
3433 	}
3434 	kfree(context);
3435 out_nofree:
3436 	return error;
3437 }
3438 
3439 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3440 				     const void *value, size_t size, int flags)
3441 {
3442 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3443 	u32 newsid;
3444 	int rc;
3445 
3446 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3447 		return -EOPNOTSUPP;
3448 
3449 	if (!value || !size)
3450 		return -EACCES;
3451 
3452 	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3453 				     GFP_KERNEL);
3454 	if (rc)
3455 		return rc;
3456 
3457 	spin_lock(&isec->lock);
3458 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3459 	isec->sid = newsid;
3460 	isec->initialized = LABEL_INITIALIZED;
3461 	spin_unlock(&isec->lock);
3462 	return 0;
3463 }
3464 
3465 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3466 {
3467 	const int len = sizeof(XATTR_NAME_SELINUX);
3468 	if (buffer && len <= buffer_size)
3469 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3470 	return len;
3471 }
3472 
3473 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3474 {
3475 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3476 	*secid = isec->sid;
3477 }
3478 
3479 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3480 {
3481 	u32 sid;
3482 	struct task_security_struct *tsec;
3483 	struct cred *new_creds = *new;
3484 
3485 	if (new_creds == NULL) {
3486 		new_creds = prepare_creds();
3487 		if (!new_creds)
3488 			return -ENOMEM;
3489 	}
3490 
3491 	tsec = new_creds->security;
3492 	/* Get label from overlay inode and set it in create_sid */
3493 	selinux_inode_getsecid(d_inode(src), &sid);
3494 	tsec->create_sid = sid;
3495 	*new = new_creds;
3496 	return 0;
3497 }
3498 
3499 static int selinux_inode_copy_up_xattr(const char *name)
3500 {
3501 	/* The copy_up hook above sets the initial context on an inode, but we
3502 	 * don't then want to overwrite it by blindly copying all the lower
3503 	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3504 	 */
3505 	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3506 		return 1; /* Discard */
3507 	/*
3508 	 * Any other attribute apart from SELINUX is not claimed, supported
3509 	 * by selinux.
3510 	 */
3511 	return -EOPNOTSUPP;
3512 }
3513 
3514 /* file security operations */
3515 
3516 static int selinux_revalidate_file_permission(struct file *file, int mask)
3517 {
3518 	const struct cred *cred = current_cred();
3519 	struct inode *inode = file_inode(file);
3520 
3521 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3522 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3523 		mask |= MAY_APPEND;
3524 
3525 	return file_has_perm(cred, file,
3526 			     file_mask_to_av(inode->i_mode, mask));
3527 }
3528 
3529 static int selinux_file_permission(struct file *file, int mask)
3530 {
3531 	struct inode *inode = file_inode(file);
3532 	struct file_security_struct *fsec = file->f_security;
3533 	struct inode_security_struct *isec;
3534 	u32 sid = current_sid();
3535 
3536 	if (!mask)
3537 		/* No permission to check.  Existence test. */
3538 		return 0;
3539 
3540 	isec = inode_security(inode);
3541 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3542 	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3543 		/* No change since file_open check. */
3544 		return 0;
3545 
3546 	return selinux_revalidate_file_permission(file, mask);
3547 }
3548 
3549 static int selinux_file_alloc_security(struct file *file)
3550 {
3551 	return file_alloc_security(file);
3552 }
3553 
3554 static void selinux_file_free_security(struct file *file)
3555 {
3556 	file_free_security(file);
3557 }
3558 
3559 /*
3560  * Check whether a task has the ioctl permission and cmd
3561  * operation to an inode.
3562  */
3563 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3564 		u32 requested, u16 cmd)
3565 {
3566 	struct common_audit_data ad;
3567 	struct file_security_struct *fsec = file->f_security;
3568 	struct inode *inode = file_inode(file);
3569 	struct inode_security_struct *isec;
3570 	struct lsm_ioctlop_audit ioctl;
3571 	u32 ssid = cred_sid(cred);
3572 	int rc;
3573 	u8 driver = cmd >> 8;
3574 	u8 xperm = cmd & 0xff;
3575 
3576 	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3577 	ad.u.op = &ioctl;
3578 	ad.u.op->cmd = cmd;
3579 	ad.u.op->path = file->f_path;
3580 
3581 	if (ssid != fsec->sid) {
3582 		rc = avc_has_perm(&selinux_state,
3583 				  ssid, fsec->sid,
3584 				SECCLASS_FD,
3585 				FD__USE,
3586 				&ad);
3587 		if (rc)
3588 			goto out;
3589 	}
3590 
3591 	if (unlikely(IS_PRIVATE(inode)))
3592 		return 0;
3593 
3594 	isec = inode_security(inode);
3595 	rc = avc_has_extended_perms(&selinux_state,
3596 				    ssid, isec->sid, isec->sclass,
3597 				    requested, driver, xperm, &ad);
3598 out:
3599 	return rc;
3600 }
3601 
3602 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3603 			      unsigned long arg)
3604 {
3605 	const struct cred *cred = current_cred();
3606 	int error = 0;
3607 
3608 	switch (cmd) {
3609 	case FIONREAD:
3610 	/* fall through */
3611 	case FIBMAP:
3612 	/* fall through */
3613 	case FIGETBSZ:
3614 	/* fall through */
3615 	case FS_IOC_GETFLAGS:
3616 	/* fall through */
3617 	case FS_IOC_GETVERSION:
3618 		error = file_has_perm(cred, file, FILE__GETATTR);
3619 		break;
3620 
3621 	case FS_IOC_SETFLAGS:
3622 	/* fall through */
3623 	case FS_IOC_SETVERSION:
3624 		error = file_has_perm(cred, file, FILE__SETATTR);
3625 		break;
3626 
3627 	/* sys_ioctl() checks */
3628 	case FIONBIO:
3629 	/* fall through */
3630 	case FIOASYNC:
3631 		error = file_has_perm(cred, file, 0);
3632 		break;
3633 
3634 	case KDSKBENT:
3635 	case KDSKBSENT:
3636 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3637 					    SECURITY_CAP_AUDIT, true);
3638 		break;
3639 
3640 	/* default case assumes that the command will go
3641 	 * to the file's ioctl() function.
3642 	 */
3643 	default:
3644 		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3645 	}
3646 	return error;
3647 }
3648 
3649 static int default_noexec;
3650 
3651 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3652 {
3653 	const struct cred *cred = current_cred();
3654 	u32 sid = cred_sid(cred);
3655 	int rc = 0;
3656 
3657 	if (default_noexec &&
3658 	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3659 				   (!shared && (prot & PROT_WRITE)))) {
3660 		/*
3661 		 * We are making executable an anonymous mapping or a
3662 		 * private file mapping that will also be writable.
3663 		 * This has an additional check.
3664 		 */
3665 		rc = avc_has_perm(&selinux_state,
3666 				  sid, sid, SECCLASS_PROCESS,
3667 				  PROCESS__EXECMEM, NULL);
3668 		if (rc)
3669 			goto error;
3670 	}
3671 
3672 	if (file) {
3673 		/* read access is always possible with a mapping */
3674 		u32 av = FILE__READ;
3675 
3676 		/* write access only matters if the mapping is shared */
3677 		if (shared && (prot & PROT_WRITE))
3678 			av |= FILE__WRITE;
3679 
3680 		if (prot & PROT_EXEC)
3681 			av |= FILE__EXECUTE;
3682 
3683 		return file_has_perm(cred, file, av);
3684 	}
3685 
3686 error:
3687 	return rc;
3688 }
3689 
3690 static int selinux_mmap_addr(unsigned long addr)
3691 {
3692 	int rc = 0;
3693 
3694 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3695 		u32 sid = current_sid();
3696 		rc = avc_has_perm(&selinux_state,
3697 				  sid, sid, SECCLASS_MEMPROTECT,
3698 				  MEMPROTECT__MMAP_ZERO, NULL);
3699 	}
3700 
3701 	return rc;
3702 }
3703 
3704 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3705 			     unsigned long prot, unsigned long flags)
3706 {
3707 	struct common_audit_data ad;
3708 	int rc;
3709 
3710 	if (file) {
3711 		ad.type = LSM_AUDIT_DATA_FILE;
3712 		ad.u.file = file;
3713 		rc = inode_has_perm(current_cred(), file_inode(file),
3714 				    FILE__MAP, &ad);
3715 		if (rc)
3716 			return rc;
3717 	}
3718 
3719 	if (selinux_state.checkreqprot)
3720 		prot = reqprot;
3721 
3722 	return file_map_prot_check(file, prot,
3723 				   (flags & MAP_TYPE) == MAP_SHARED);
3724 }
3725 
3726 static int selinux_file_mprotect(struct vm_area_struct *vma,
3727 				 unsigned long reqprot,
3728 				 unsigned long prot)
3729 {
3730 	const struct cred *cred = current_cred();
3731 	u32 sid = cred_sid(cred);
3732 
3733 	if (selinux_state.checkreqprot)
3734 		prot = reqprot;
3735 
3736 	if (default_noexec &&
3737 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3738 		int rc = 0;
3739 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3740 		    vma->vm_end <= vma->vm_mm->brk) {
3741 			rc = avc_has_perm(&selinux_state,
3742 					  sid, sid, SECCLASS_PROCESS,
3743 					  PROCESS__EXECHEAP, NULL);
3744 		} else if (!vma->vm_file &&
3745 			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3746 			     vma->vm_end >= vma->vm_mm->start_stack) ||
3747 			    vma_is_stack_for_current(vma))) {
3748 			rc = avc_has_perm(&selinux_state,
3749 					  sid, sid, SECCLASS_PROCESS,
3750 					  PROCESS__EXECSTACK, NULL);
3751 		} else if (vma->vm_file && vma->anon_vma) {
3752 			/*
3753 			 * We are making executable a file mapping that has
3754 			 * had some COW done. Since pages might have been
3755 			 * written, check ability to execute the possibly
3756 			 * modified content.  This typically should only
3757 			 * occur for text relocations.
3758 			 */
3759 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3760 		}
3761 		if (rc)
3762 			return rc;
3763 	}
3764 
3765 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3766 }
3767 
3768 static int selinux_file_lock(struct file *file, unsigned int cmd)
3769 {
3770 	const struct cred *cred = current_cred();
3771 
3772 	return file_has_perm(cred, file, FILE__LOCK);
3773 }
3774 
3775 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3776 			      unsigned long arg)
3777 {
3778 	const struct cred *cred = current_cred();
3779 	int err = 0;
3780 
3781 	switch (cmd) {
3782 	case F_SETFL:
3783 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3784 			err = file_has_perm(cred, file, FILE__WRITE);
3785 			break;
3786 		}
3787 		/* fall through */
3788 	case F_SETOWN:
3789 	case F_SETSIG:
3790 	case F_GETFL:
3791 	case F_GETOWN:
3792 	case F_GETSIG:
3793 	case F_GETOWNER_UIDS:
3794 		/* Just check FD__USE permission */
3795 		err = file_has_perm(cred, file, 0);
3796 		break;
3797 	case F_GETLK:
3798 	case F_SETLK:
3799 	case F_SETLKW:
3800 	case F_OFD_GETLK:
3801 	case F_OFD_SETLK:
3802 	case F_OFD_SETLKW:
3803 #if BITS_PER_LONG == 32
3804 	case F_GETLK64:
3805 	case F_SETLK64:
3806 	case F_SETLKW64:
3807 #endif
3808 		err = file_has_perm(cred, file, FILE__LOCK);
3809 		break;
3810 	}
3811 
3812 	return err;
3813 }
3814 
3815 static void selinux_file_set_fowner(struct file *file)
3816 {
3817 	struct file_security_struct *fsec;
3818 
3819 	fsec = file->f_security;
3820 	fsec->fown_sid = current_sid();
3821 }
3822 
3823 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3824 				       struct fown_struct *fown, int signum)
3825 {
3826 	struct file *file;
3827 	u32 sid = task_sid(tsk);
3828 	u32 perm;
3829 	struct file_security_struct *fsec;
3830 
3831 	/* struct fown_struct is never outside the context of a struct file */
3832 	file = container_of(fown, struct file, f_owner);
3833 
3834 	fsec = file->f_security;
3835 
3836 	if (!signum)
3837 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3838 	else
3839 		perm = signal_to_av(signum);
3840 
3841 	return avc_has_perm(&selinux_state,
3842 			    fsec->fown_sid, sid,
3843 			    SECCLASS_PROCESS, perm, NULL);
3844 }
3845 
3846 static int selinux_file_receive(struct file *file)
3847 {
3848 	const struct cred *cred = current_cred();
3849 
3850 	return file_has_perm(cred, file, file_to_av(file));
3851 }
3852 
3853 static int selinux_file_open(struct file *file, const struct cred *cred)
3854 {
3855 	struct file_security_struct *fsec;
3856 	struct inode_security_struct *isec;
3857 
3858 	fsec = file->f_security;
3859 	isec = inode_security(file_inode(file));
3860 	/*
3861 	 * Save inode label and policy sequence number
3862 	 * at open-time so that selinux_file_permission
3863 	 * can determine whether revalidation is necessary.
3864 	 * Task label is already saved in the file security
3865 	 * struct as its SID.
3866 	 */
3867 	fsec->isid = isec->sid;
3868 	fsec->pseqno = avc_policy_seqno(&selinux_state);
3869 	/*
3870 	 * Since the inode label or policy seqno may have changed
3871 	 * between the selinux_inode_permission check and the saving
3872 	 * of state above, recheck that access is still permitted.
3873 	 * Otherwise, access might never be revalidated against the
3874 	 * new inode label or new policy.
3875 	 * This check is not redundant - do not remove.
3876 	 */
3877 	return file_path_has_perm(cred, file, open_file_to_av(file));
3878 }
3879 
3880 /* task security operations */
3881 
3882 static int selinux_task_alloc(struct task_struct *task,
3883 			      unsigned long clone_flags)
3884 {
3885 	u32 sid = current_sid();
3886 
3887 	return avc_has_perm(&selinux_state,
3888 			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3889 }
3890 
3891 /*
3892  * allocate the SELinux part of blank credentials
3893  */
3894 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3895 {
3896 	struct task_security_struct *tsec;
3897 
3898 	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3899 	if (!tsec)
3900 		return -ENOMEM;
3901 
3902 	cred->security = tsec;
3903 	return 0;
3904 }
3905 
3906 /*
3907  * detach and free the LSM part of a set of credentials
3908  */
3909 static void selinux_cred_free(struct cred *cred)
3910 {
3911 	struct task_security_struct *tsec = cred->security;
3912 
3913 	/*
3914 	 * cred->security == NULL if security_cred_alloc_blank() or
3915 	 * security_prepare_creds() returned an error.
3916 	 */
3917 	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3918 	cred->security = (void *) 0x7UL;
3919 	kfree(tsec);
3920 }
3921 
3922 /*
3923  * prepare a new set of credentials for modification
3924  */
3925 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3926 				gfp_t gfp)
3927 {
3928 	const struct task_security_struct *old_tsec;
3929 	struct task_security_struct *tsec;
3930 
3931 	old_tsec = old->security;
3932 
3933 	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3934 	if (!tsec)
3935 		return -ENOMEM;
3936 
3937 	new->security = tsec;
3938 	return 0;
3939 }
3940 
3941 /*
3942  * transfer the SELinux data to a blank set of creds
3943  */
3944 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3945 {
3946 	const struct task_security_struct *old_tsec = old->security;
3947 	struct task_security_struct *tsec = new->security;
3948 
3949 	*tsec = *old_tsec;
3950 }
3951 
3952 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3953 {
3954 	*secid = cred_sid(c);
3955 }
3956 
3957 /*
3958  * set the security data for a kernel service
3959  * - all the creation contexts are set to unlabelled
3960  */
3961 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3962 {
3963 	struct task_security_struct *tsec = new->security;
3964 	u32 sid = current_sid();
3965 	int ret;
3966 
3967 	ret = avc_has_perm(&selinux_state,
3968 			   sid, secid,
3969 			   SECCLASS_KERNEL_SERVICE,
3970 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3971 			   NULL);
3972 	if (ret == 0) {
3973 		tsec->sid = secid;
3974 		tsec->create_sid = 0;
3975 		tsec->keycreate_sid = 0;
3976 		tsec->sockcreate_sid = 0;
3977 	}
3978 	return ret;
3979 }
3980 
3981 /*
3982  * set the file creation context in a security record to the same as the
3983  * objective context of the specified inode
3984  */
3985 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3986 {
3987 	struct inode_security_struct *isec = inode_security(inode);
3988 	struct task_security_struct *tsec = new->security;
3989 	u32 sid = current_sid();
3990 	int ret;
3991 
3992 	ret = avc_has_perm(&selinux_state,
3993 			   sid, isec->sid,
3994 			   SECCLASS_KERNEL_SERVICE,
3995 			   KERNEL_SERVICE__CREATE_FILES_AS,
3996 			   NULL);
3997 
3998 	if (ret == 0)
3999 		tsec->create_sid = isec->sid;
4000 	return ret;
4001 }
4002 
4003 static int selinux_kernel_module_request(char *kmod_name)
4004 {
4005 	struct common_audit_data ad;
4006 
4007 	ad.type = LSM_AUDIT_DATA_KMOD;
4008 	ad.u.kmod_name = kmod_name;
4009 
4010 	return avc_has_perm(&selinux_state,
4011 			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4012 			    SYSTEM__MODULE_REQUEST, &ad);
4013 }
4014 
4015 static int selinux_kernel_module_from_file(struct file *file)
4016 {
4017 	struct common_audit_data ad;
4018 	struct inode_security_struct *isec;
4019 	struct file_security_struct *fsec;
4020 	u32 sid = current_sid();
4021 	int rc;
4022 
4023 	/* init_module */
4024 	if (file == NULL)
4025 		return avc_has_perm(&selinux_state,
4026 				    sid, sid, SECCLASS_SYSTEM,
4027 					SYSTEM__MODULE_LOAD, NULL);
4028 
4029 	/* finit_module */
4030 
4031 	ad.type = LSM_AUDIT_DATA_FILE;
4032 	ad.u.file = file;
4033 
4034 	fsec = file->f_security;
4035 	if (sid != fsec->sid) {
4036 		rc = avc_has_perm(&selinux_state,
4037 				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4038 		if (rc)
4039 			return rc;
4040 	}
4041 
4042 	isec = inode_security(file_inode(file));
4043 	return avc_has_perm(&selinux_state,
4044 			    sid, isec->sid, SECCLASS_SYSTEM,
4045 				SYSTEM__MODULE_LOAD, &ad);
4046 }
4047 
4048 static int selinux_kernel_read_file(struct file *file,
4049 				    enum kernel_read_file_id id)
4050 {
4051 	int rc = 0;
4052 
4053 	switch (id) {
4054 	case READING_MODULE:
4055 		rc = selinux_kernel_module_from_file(file);
4056 		break;
4057 	default:
4058 		break;
4059 	}
4060 
4061 	return rc;
4062 }
4063 
4064 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4065 {
4066 	return avc_has_perm(&selinux_state,
4067 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4068 			    PROCESS__SETPGID, NULL);
4069 }
4070 
4071 static int selinux_task_getpgid(struct task_struct *p)
4072 {
4073 	return avc_has_perm(&selinux_state,
4074 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4075 			    PROCESS__GETPGID, NULL);
4076 }
4077 
4078 static int selinux_task_getsid(struct task_struct *p)
4079 {
4080 	return avc_has_perm(&selinux_state,
4081 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4082 			    PROCESS__GETSESSION, NULL);
4083 }
4084 
4085 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4086 {
4087 	*secid = task_sid(p);
4088 }
4089 
4090 static int selinux_task_setnice(struct task_struct *p, int nice)
4091 {
4092 	return avc_has_perm(&selinux_state,
4093 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4094 			    PROCESS__SETSCHED, NULL);
4095 }
4096 
4097 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4098 {
4099 	return avc_has_perm(&selinux_state,
4100 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4101 			    PROCESS__SETSCHED, NULL);
4102 }
4103 
4104 static int selinux_task_getioprio(struct task_struct *p)
4105 {
4106 	return avc_has_perm(&selinux_state,
4107 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4108 			    PROCESS__GETSCHED, NULL);
4109 }
4110 
4111 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4112 				unsigned int flags)
4113 {
4114 	u32 av = 0;
4115 
4116 	if (!flags)
4117 		return 0;
4118 	if (flags & LSM_PRLIMIT_WRITE)
4119 		av |= PROCESS__SETRLIMIT;
4120 	if (flags & LSM_PRLIMIT_READ)
4121 		av |= PROCESS__GETRLIMIT;
4122 	return avc_has_perm(&selinux_state,
4123 			    cred_sid(cred), cred_sid(tcred),
4124 			    SECCLASS_PROCESS, av, NULL);
4125 }
4126 
4127 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4128 		struct rlimit *new_rlim)
4129 {
4130 	struct rlimit *old_rlim = p->signal->rlim + resource;
4131 
4132 	/* Control the ability to change the hard limit (whether
4133 	   lowering or raising it), so that the hard limit can
4134 	   later be used as a safe reset point for the soft limit
4135 	   upon context transitions.  See selinux_bprm_committing_creds. */
4136 	if (old_rlim->rlim_max != new_rlim->rlim_max)
4137 		return avc_has_perm(&selinux_state,
4138 				    current_sid(), task_sid(p),
4139 				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4140 
4141 	return 0;
4142 }
4143 
4144 static int selinux_task_setscheduler(struct task_struct *p)
4145 {
4146 	return avc_has_perm(&selinux_state,
4147 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4148 			    PROCESS__SETSCHED, NULL);
4149 }
4150 
4151 static int selinux_task_getscheduler(struct task_struct *p)
4152 {
4153 	return avc_has_perm(&selinux_state,
4154 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4155 			    PROCESS__GETSCHED, NULL);
4156 }
4157 
4158 static int selinux_task_movememory(struct task_struct *p)
4159 {
4160 	return avc_has_perm(&selinux_state,
4161 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4162 			    PROCESS__SETSCHED, NULL);
4163 }
4164 
4165 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
4166 				int sig, const struct cred *cred)
4167 {
4168 	u32 secid;
4169 	u32 perm;
4170 
4171 	if (!sig)
4172 		perm = PROCESS__SIGNULL; /* null signal; existence test */
4173 	else
4174 		perm = signal_to_av(sig);
4175 	if (!cred)
4176 		secid = current_sid();
4177 	else
4178 		secid = cred_sid(cred);
4179 	return avc_has_perm(&selinux_state,
4180 			    secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4181 }
4182 
4183 static void selinux_task_to_inode(struct task_struct *p,
4184 				  struct inode *inode)
4185 {
4186 	struct inode_security_struct *isec = inode->i_security;
4187 	u32 sid = task_sid(p);
4188 
4189 	spin_lock(&isec->lock);
4190 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4191 	isec->sid = sid;
4192 	isec->initialized = LABEL_INITIALIZED;
4193 	spin_unlock(&isec->lock);
4194 }
4195 
4196 /* Returns error only if unable to parse addresses */
4197 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4198 			struct common_audit_data *ad, u8 *proto)
4199 {
4200 	int offset, ihlen, ret = -EINVAL;
4201 	struct iphdr _iph, *ih;
4202 
4203 	offset = skb_network_offset(skb);
4204 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4205 	if (ih == NULL)
4206 		goto out;
4207 
4208 	ihlen = ih->ihl * 4;
4209 	if (ihlen < sizeof(_iph))
4210 		goto out;
4211 
4212 	ad->u.net->v4info.saddr = ih->saddr;
4213 	ad->u.net->v4info.daddr = ih->daddr;
4214 	ret = 0;
4215 
4216 	if (proto)
4217 		*proto = ih->protocol;
4218 
4219 	switch (ih->protocol) {
4220 	case IPPROTO_TCP: {
4221 		struct tcphdr _tcph, *th;
4222 
4223 		if (ntohs(ih->frag_off) & IP_OFFSET)
4224 			break;
4225 
4226 		offset += ihlen;
4227 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4228 		if (th == NULL)
4229 			break;
4230 
4231 		ad->u.net->sport = th->source;
4232 		ad->u.net->dport = th->dest;
4233 		break;
4234 	}
4235 
4236 	case IPPROTO_UDP: {
4237 		struct udphdr _udph, *uh;
4238 
4239 		if (ntohs(ih->frag_off) & IP_OFFSET)
4240 			break;
4241 
4242 		offset += ihlen;
4243 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4244 		if (uh == NULL)
4245 			break;
4246 
4247 		ad->u.net->sport = uh->source;
4248 		ad->u.net->dport = uh->dest;
4249 		break;
4250 	}
4251 
4252 	case IPPROTO_DCCP: {
4253 		struct dccp_hdr _dccph, *dh;
4254 
4255 		if (ntohs(ih->frag_off) & IP_OFFSET)
4256 			break;
4257 
4258 		offset += ihlen;
4259 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4260 		if (dh == NULL)
4261 			break;
4262 
4263 		ad->u.net->sport = dh->dccph_sport;
4264 		ad->u.net->dport = dh->dccph_dport;
4265 		break;
4266 	}
4267 
4268 #if IS_ENABLED(CONFIG_IP_SCTP)
4269 	case IPPROTO_SCTP: {
4270 		struct sctphdr _sctph, *sh;
4271 
4272 		if (ntohs(ih->frag_off) & IP_OFFSET)
4273 			break;
4274 
4275 		offset += ihlen;
4276 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4277 		if (sh == NULL)
4278 			break;
4279 
4280 		ad->u.net->sport = sh->source;
4281 		ad->u.net->dport = sh->dest;
4282 		break;
4283 	}
4284 #endif
4285 	default:
4286 		break;
4287 	}
4288 out:
4289 	return ret;
4290 }
4291 
4292 #if IS_ENABLED(CONFIG_IPV6)
4293 
4294 /* Returns error only if unable to parse addresses */
4295 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4296 			struct common_audit_data *ad, u8 *proto)
4297 {
4298 	u8 nexthdr;
4299 	int ret = -EINVAL, offset;
4300 	struct ipv6hdr _ipv6h, *ip6;
4301 	__be16 frag_off;
4302 
4303 	offset = skb_network_offset(skb);
4304 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4305 	if (ip6 == NULL)
4306 		goto out;
4307 
4308 	ad->u.net->v6info.saddr = ip6->saddr;
4309 	ad->u.net->v6info.daddr = ip6->daddr;
4310 	ret = 0;
4311 
4312 	nexthdr = ip6->nexthdr;
4313 	offset += sizeof(_ipv6h);
4314 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4315 	if (offset < 0)
4316 		goto out;
4317 
4318 	if (proto)
4319 		*proto = nexthdr;
4320 
4321 	switch (nexthdr) {
4322 	case IPPROTO_TCP: {
4323 		struct tcphdr _tcph, *th;
4324 
4325 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4326 		if (th == NULL)
4327 			break;
4328 
4329 		ad->u.net->sport = th->source;
4330 		ad->u.net->dport = th->dest;
4331 		break;
4332 	}
4333 
4334 	case IPPROTO_UDP: {
4335 		struct udphdr _udph, *uh;
4336 
4337 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4338 		if (uh == NULL)
4339 			break;
4340 
4341 		ad->u.net->sport = uh->source;
4342 		ad->u.net->dport = uh->dest;
4343 		break;
4344 	}
4345 
4346 	case IPPROTO_DCCP: {
4347 		struct dccp_hdr _dccph, *dh;
4348 
4349 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4350 		if (dh == NULL)
4351 			break;
4352 
4353 		ad->u.net->sport = dh->dccph_sport;
4354 		ad->u.net->dport = dh->dccph_dport;
4355 		break;
4356 	}
4357 
4358 #if IS_ENABLED(CONFIG_IP_SCTP)
4359 	case IPPROTO_SCTP: {
4360 		struct sctphdr _sctph, *sh;
4361 
4362 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4363 		if (sh == NULL)
4364 			break;
4365 
4366 		ad->u.net->sport = sh->source;
4367 		ad->u.net->dport = sh->dest;
4368 		break;
4369 	}
4370 #endif
4371 	/* includes fragments */
4372 	default:
4373 		break;
4374 	}
4375 out:
4376 	return ret;
4377 }
4378 
4379 #endif /* IPV6 */
4380 
4381 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4382 			     char **_addrp, int src, u8 *proto)
4383 {
4384 	char *addrp;
4385 	int ret;
4386 
4387 	switch (ad->u.net->family) {
4388 	case PF_INET:
4389 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4390 		if (ret)
4391 			goto parse_error;
4392 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4393 				       &ad->u.net->v4info.daddr);
4394 		goto okay;
4395 
4396 #if IS_ENABLED(CONFIG_IPV6)
4397 	case PF_INET6:
4398 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4399 		if (ret)
4400 			goto parse_error;
4401 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4402 				       &ad->u.net->v6info.daddr);
4403 		goto okay;
4404 #endif	/* IPV6 */
4405 	default:
4406 		addrp = NULL;
4407 		goto okay;
4408 	}
4409 
4410 parse_error:
4411 	printk(KERN_WARNING
4412 	       "SELinux: failure in selinux_parse_skb(),"
4413 	       " unable to parse packet\n");
4414 	return ret;
4415 
4416 okay:
4417 	if (_addrp)
4418 		*_addrp = addrp;
4419 	return 0;
4420 }
4421 
4422 /**
4423  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4424  * @skb: the packet
4425  * @family: protocol family
4426  * @sid: the packet's peer label SID
4427  *
4428  * Description:
4429  * Check the various different forms of network peer labeling and determine
4430  * the peer label/SID for the packet; most of the magic actually occurs in
4431  * the security server function security_net_peersid_cmp().  The function
4432  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4433  * or -EACCES if @sid is invalid due to inconsistencies with the different
4434  * peer labels.
4435  *
4436  */
4437 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4438 {
4439 	int err;
4440 	u32 xfrm_sid;
4441 	u32 nlbl_sid;
4442 	u32 nlbl_type;
4443 
4444 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4445 	if (unlikely(err))
4446 		return -EACCES;
4447 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4448 	if (unlikely(err))
4449 		return -EACCES;
4450 
4451 	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4452 					   nlbl_type, xfrm_sid, sid);
4453 	if (unlikely(err)) {
4454 		printk(KERN_WARNING
4455 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4456 		       " unable to determine packet's peer label\n");
4457 		return -EACCES;
4458 	}
4459 
4460 	return 0;
4461 }
4462 
4463 /**
4464  * selinux_conn_sid - Determine the child socket label for a connection
4465  * @sk_sid: the parent socket's SID
4466  * @skb_sid: the packet's SID
4467  * @conn_sid: the resulting connection SID
4468  *
4469  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4470  * combined with the MLS information from @skb_sid in order to create
4471  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4472  * of @sk_sid.  Returns zero on success, negative values on failure.
4473  *
4474  */
4475 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4476 {
4477 	int err = 0;
4478 
4479 	if (skb_sid != SECSID_NULL)
4480 		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4481 					    conn_sid);
4482 	else
4483 		*conn_sid = sk_sid;
4484 
4485 	return err;
4486 }
4487 
4488 /* socket security operations */
4489 
4490 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4491 				 u16 secclass, u32 *socksid)
4492 {
4493 	if (tsec->sockcreate_sid > SECSID_NULL) {
4494 		*socksid = tsec->sockcreate_sid;
4495 		return 0;
4496 	}
4497 
4498 	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4499 				       secclass, NULL, socksid);
4500 }
4501 
4502 static int sock_has_perm(struct sock *sk, u32 perms)
4503 {
4504 	struct sk_security_struct *sksec = sk->sk_security;
4505 	struct common_audit_data ad;
4506 	struct lsm_network_audit net = {0,};
4507 
4508 	if (sksec->sid == SECINITSID_KERNEL)
4509 		return 0;
4510 
4511 	ad.type = LSM_AUDIT_DATA_NET;
4512 	ad.u.net = &net;
4513 	ad.u.net->sk = sk;
4514 
4515 	return avc_has_perm(&selinux_state,
4516 			    current_sid(), sksec->sid, sksec->sclass, perms,
4517 			    &ad);
4518 }
4519 
4520 static int selinux_socket_create(int family, int type,
4521 				 int protocol, int kern)
4522 {
4523 	const struct task_security_struct *tsec = current_security();
4524 	u32 newsid;
4525 	u16 secclass;
4526 	int rc;
4527 
4528 	if (kern)
4529 		return 0;
4530 
4531 	secclass = socket_type_to_security_class(family, type, protocol);
4532 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4533 	if (rc)
4534 		return rc;
4535 
4536 	return avc_has_perm(&selinux_state,
4537 			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4538 }
4539 
4540 static int selinux_socket_post_create(struct socket *sock, int family,
4541 				      int type, int protocol, int kern)
4542 {
4543 	const struct task_security_struct *tsec = current_security();
4544 	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4545 	struct sk_security_struct *sksec;
4546 	u16 sclass = socket_type_to_security_class(family, type, protocol);
4547 	u32 sid = SECINITSID_KERNEL;
4548 	int err = 0;
4549 
4550 	if (!kern) {
4551 		err = socket_sockcreate_sid(tsec, sclass, &sid);
4552 		if (err)
4553 			return err;
4554 	}
4555 
4556 	isec->sclass = sclass;
4557 	isec->sid = sid;
4558 	isec->initialized = LABEL_INITIALIZED;
4559 
4560 	if (sock->sk) {
4561 		sksec = sock->sk->sk_security;
4562 		sksec->sclass = sclass;
4563 		sksec->sid = sid;
4564 		/* Allows detection of the first association on this socket */
4565 		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4566 			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4567 
4568 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4569 	}
4570 
4571 	return err;
4572 }
4573 
4574 /* Range of port numbers used to automatically bind.
4575    Need to determine whether we should perform a name_bind
4576    permission check between the socket and the port number. */
4577 
4578 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4579 {
4580 	struct sock *sk = sock->sk;
4581 	struct sk_security_struct *sksec = sk->sk_security;
4582 	u16 family;
4583 	int err;
4584 
4585 	err = sock_has_perm(sk, SOCKET__BIND);
4586 	if (err)
4587 		goto out;
4588 
4589 	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4590 	family = sk->sk_family;
4591 	if (family == PF_INET || family == PF_INET6) {
4592 		char *addrp;
4593 		struct common_audit_data ad;
4594 		struct lsm_network_audit net = {0,};
4595 		struct sockaddr_in *addr4 = NULL;
4596 		struct sockaddr_in6 *addr6 = NULL;
4597 		u16 family_sa = address->sa_family;
4598 		unsigned short snum;
4599 		u32 sid, node_perm;
4600 
4601 		/*
4602 		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4603 		 * that validates multiple binding addresses. Because of this
4604 		 * need to check address->sa_family as it is possible to have
4605 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4606 		 */
4607 		switch (family_sa) {
4608 		case AF_UNSPEC:
4609 		case AF_INET:
4610 			if (addrlen < sizeof(struct sockaddr_in))
4611 				return -EINVAL;
4612 			addr4 = (struct sockaddr_in *)address;
4613 			if (family_sa == AF_UNSPEC) {
4614 				/* see __inet_bind(), we only want to allow
4615 				 * AF_UNSPEC if the address is INADDR_ANY
4616 				 */
4617 				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4618 					goto err_af;
4619 				family_sa = AF_INET;
4620 			}
4621 			snum = ntohs(addr4->sin_port);
4622 			addrp = (char *)&addr4->sin_addr.s_addr;
4623 			break;
4624 		case AF_INET6:
4625 			if (addrlen < SIN6_LEN_RFC2133)
4626 				return -EINVAL;
4627 			addr6 = (struct sockaddr_in6 *)address;
4628 			snum = ntohs(addr6->sin6_port);
4629 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4630 			break;
4631 		default:
4632 			goto err_af;
4633 		}
4634 
4635 		ad.type = LSM_AUDIT_DATA_NET;
4636 		ad.u.net = &net;
4637 		ad.u.net->sport = htons(snum);
4638 		ad.u.net->family = family_sa;
4639 
4640 		if (snum) {
4641 			int low, high;
4642 
4643 			inet_get_local_port_range(sock_net(sk), &low, &high);
4644 
4645 			if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4646 			    snum > high) {
4647 				err = sel_netport_sid(sk->sk_protocol,
4648 						      snum, &sid);
4649 				if (err)
4650 					goto out;
4651 				err = avc_has_perm(&selinux_state,
4652 						   sksec->sid, sid,
4653 						   sksec->sclass,
4654 						   SOCKET__NAME_BIND, &ad);
4655 				if (err)
4656 					goto out;
4657 			}
4658 		}
4659 
4660 		switch (sksec->sclass) {
4661 		case SECCLASS_TCP_SOCKET:
4662 			node_perm = TCP_SOCKET__NODE_BIND;
4663 			break;
4664 
4665 		case SECCLASS_UDP_SOCKET:
4666 			node_perm = UDP_SOCKET__NODE_BIND;
4667 			break;
4668 
4669 		case SECCLASS_DCCP_SOCKET:
4670 			node_perm = DCCP_SOCKET__NODE_BIND;
4671 			break;
4672 
4673 		case SECCLASS_SCTP_SOCKET:
4674 			node_perm = SCTP_SOCKET__NODE_BIND;
4675 			break;
4676 
4677 		default:
4678 			node_perm = RAWIP_SOCKET__NODE_BIND;
4679 			break;
4680 		}
4681 
4682 		err = sel_netnode_sid(addrp, family_sa, &sid);
4683 		if (err)
4684 			goto out;
4685 
4686 		if (family_sa == AF_INET)
4687 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4688 		else
4689 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4690 
4691 		err = avc_has_perm(&selinux_state,
4692 				   sksec->sid, sid,
4693 				   sksec->sclass, node_perm, &ad);
4694 		if (err)
4695 			goto out;
4696 	}
4697 out:
4698 	return err;
4699 err_af:
4700 	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4701 	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4702 		return -EINVAL;
4703 	return -EAFNOSUPPORT;
4704 }
4705 
4706 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4707  * and sctp_sendmsg(3) as described in Documentation/security/LSM-sctp.txt
4708  */
4709 static int selinux_socket_connect_helper(struct socket *sock,
4710 					 struct sockaddr *address, int addrlen)
4711 {
4712 	struct sock *sk = sock->sk;
4713 	struct sk_security_struct *sksec = sk->sk_security;
4714 	int err;
4715 
4716 	err = sock_has_perm(sk, SOCKET__CONNECT);
4717 	if (err)
4718 		return err;
4719 
4720 	/*
4721 	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4722 	 * for the port.
4723 	 */
4724 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4725 	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4726 	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4727 		struct common_audit_data ad;
4728 		struct lsm_network_audit net = {0,};
4729 		struct sockaddr_in *addr4 = NULL;
4730 		struct sockaddr_in6 *addr6 = NULL;
4731 		unsigned short snum;
4732 		u32 sid, perm;
4733 
4734 		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4735 		 * that validates multiple connect addresses. Because of this
4736 		 * need to check address->sa_family as it is possible to have
4737 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4738 		 */
4739 		switch (address->sa_family) {
4740 		case AF_INET:
4741 			addr4 = (struct sockaddr_in *)address;
4742 			if (addrlen < sizeof(struct sockaddr_in))
4743 				return -EINVAL;
4744 			snum = ntohs(addr4->sin_port);
4745 			break;
4746 		case AF_INET6:
4747 			addr6 = (struct sockaddr_in6 *)address;
4748 			if (addrlen < SIN6_LEN_RFC2133)
4749 				return -EINVAL;
4750 			snum = ntohs(addr6->sin6_port);
4751 			break;
4752 		default:
4753 			/* Note that SCTP services expect -EINVAL, whereas
4754 			 * others expect -EAFNOSUPPORT.
4755 			 */
4756 			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4757 				return -EINVAL;
4758 			else
4759 				return -EAFNOSUPPORT;
4760 		}
4761 
4762 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4763 		if (err)
4764 			return err;
4765 
4766 		switch (sksec->sclass) {
4767 		case SECCLASS_TCP_SOCKET:
4768 			perm = TCP_SOCKET__NAME_CONNECT;
4769 			break;
4770 		case SECCLASS_DCCP_SOCKET:
4771 			perm = DCCP_SOCKET__NAME_CONNECT;
4772 			break;
4773 		case SECCLASS_SCTP_SOCKET:
4774 			perm = SCTP_SOCKET__NAME_CONNECT;
4775 			break;
4776 		}
4777 
4778 		ad.type = LSM_AUDIT_DATA_NET;
4779 		ad.u.net = &net;
4780 		ad.u.net->dport = htons(snum);
4781 		ad.u.net->family = address->sa_family;
4782 		err = avc_has_perm(&selinux_state,
4783 				   sksec->sid, sid, sksec->sclass, perm, &ad);
4784 		if (err)
4785 			return err;
4786 	}
4787 
4788 	return 0;
4789 }
4790 
4791 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4792 static int selinux_socket_connect(struct socket *sock,
4793 				  struct sockaddr *address, int addrlen)
4794 {
4795 	int err;
4796 	struct sock *sk = sock->sk;
4797 
4798 	err = selinux_socket_connect_helper(sock, address, addrlen);
4799 	if (err)
4800 		return err;
4801 
4802 	return selinux_netlbl_socket_connect(sk, address);
4803 }
4804 
4805 static int selinux_socket_listen(struct socket *sock, int backlog)
4806 {
4807 	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4808 }
4809 
4810 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4811 {
4812 	int err;
4813 	struct inode_security_struct *isec;
4814 	struct inode_security_struct *newisec;
4815 	u16 sclass;
4816 	u32 sid;
4817 
4818 	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4819 	if (err)
4820 		return err;
4821 
4822 	isec = inode_security_novalidate(SOCK_INODE(sock));
4823 	spin_lock(&isec->lock);
4824 	sclass = isec->sclass;
4825 	sid = isec->sid;
4826 	spin_unlock(&isec->lock);
4827 
4828 	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4829 	newisec->sclass = sclass;
4830 	newisec->sid = sid;
4831 	newisec->initialized = LABEL_INITIALIZED;
4832 
4833 	return 0;
4834 }
4835 
4836 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4837 				  int size)
4838 {
4839 	return sock_has_perm(sock->sk, SOCKET__WRITE);
4840 }
4841 
4842 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4843 				  int size, int flags)
4844 {
4845 	return sock_has_perm(sock->sk, SOCKET__READ);
4846 }
4847 
4848 static int selinux_socket_getsockname(struct socket *sock)
4849 {
4850 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4851 }
4852 
4853 static int selinux_socket_getpeername(struct socket *sock)
4854 {
4855 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4856 }
4857 
4858 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4859 {
4860 	int err;
4861 
4862 	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4863 	if (err)
4864 		return err;
4865 
4866 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4867 }
4868 
4869 static int selinux_socket_getsockopt(struct socket *sock, int level,
4870 				     int optname)
4871 {
4872 	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4873 }
4874 
4875 static int selinux_socket_shutdown(struct socket *sock, int how)
4876 {
4877 	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4878 }
4879 
4880 static int selinux_socket_unix_stream_connect(struct sock *sock,
4881 					      struct sock *other,
4882 					      struct sock *newsk)
4883 {
4884 	struct sk_security_struct *sksec_sock = sock->sk_security;
4885 	struct sk_security_struct *sksec_other = other->sk_security;
4886 	struct sk_security_struct *sksec_new = newsk->sk_security;
4887 	struct common_audit_data ad;
4888 	struct lsm_network_audit net = {0,};
4889 	int err;
4890 
4891 	ad.type = LSM_AUDIT_DATA_NET;
4892 	ad.u.net = &net;
4893 	ad.u.net->sk = other;
4894 
4895 	err = avc_has_perm(&selinux_state,
4896 			   sksec_sock->sid, sksec_other->sid,
4897 			   sksec_other->sclass,
4898 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4899 	if (err)
4900 		return err;
4901 
4902 	/* server child socket */
4903 	sksec_new->peer_sid = sksec_sock->sid;
4904 	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4905 				    sksec_sock->sid, &sksec_new->sid);
4906 	if (err)
4907 		return err;
4908 
4909 	/* connecting socket */
4910 	sksec_sock->peer_sid = sksec_new->sid;
4911 
4912 	return 0;
4913 }
4914 
4915 static int selinux_socket_unix_may_send(struct socket *sock,
4916 					struct socket *other)
4917 {
4918 	struct sk_security_struct *ssec = sock->sk->sk_security;
4919 	struct sk_security_struct *osec = other->sk->sk_security;
4920 	struct common_audit_data ad;
4921 	struct lsm_network_audit net = {0,};
4922 
4923 	ad.type = LSM_AUDIT_DATA_NET;
4924 	ad.u.net = &net;
4925 	ad.u.net->sk = other->sk;
4926 
4927 	return avc_has_perm(&selinux_state,
4928 			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4929 			    &ad);
4930 }
4931 
4932 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4933 				    char *addrp, u16 family, u32 peer_sid,
4934 				    struct common_audit_data *ad)
4935 {
4936 	int err;
4937 	u32 if_sid;
4938 	u32 node_sid;
4939 
4940 	err = sel_netif_sid(ns, ifindex, &if_sid);
4941 	if (err)
4942 		return err;
4943 	err = avc_has_perm(&selinux_state,
4944 			   peer_sid, if_sid,
4945 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4946 	if (err)
4947 		return err;
4948 
4949 	err = sel_netnode_sid(addrp, family, &node_sid);
4950 	if (err)
4951 		return err;
4952 	return avc_has_perm(&selinux_state,
4953 			    peer_sid, node_sid,
4954 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4955 }
4956 
4957 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4958 				       u16 family)
4959 {
4960 	int err = 0;
4961 	struct sk_security_struct *sksec = sk->sk_security;
4962 	u32 sk_sid = sksec->sid;
4963 	struct common_audit_data ad;
4964 	struct lsm_network_audit net = {0,};
4965 	char *addrp;
4966 
4967 	ad.type = LSM_AUDIT_DATA_NET;
4968 	ad.u.net = &net;
4969 	ad.u.net->netif = skb->skb_iif;
4970 	ad.u.net->family = family;
4971 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4972 	if (err)
4973 		return err;
4974 
4975 	if (selinux_secmark_enabled()) {
4976 		err = avc_has_perm(&selinux_state,
4977 				   sk_sid, skb->secmark, SECCLASS_PACKET,
4978 				   PACKET__RECV, &ad);
4979 		if (err)
4980 			return err;
4981 	}
4982 
4983 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4984 	if (err)
4985 		return err;
4986 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4987 
4988 	return err;
4989 }
4990 
4991 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4992 {
4993 	int err;
4994 	struct sk_security_struct *sksec = sk->sk_security;
4995 	u16 family = sk->sk_family;
4996 	u32 sk_sid = sksec->sid;
4997 	struct common_audit_data ad;
4998 	struct lsm_network_audit net = {0,};
4999 	char *addrp;
5000 	u8 secmark_active;
5001 	u8 peerlbl_active;
5002 
5003 	if (family != PF_INET && family != PF_INET6)
5004 		return 0;
5005 
5006 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5007 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5008 		family = PF_INET;
5009 
5010 	/* If any sort of compatibility mode is enabled then handoff processing
5011 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5012 	 * special handling.  We do this in an attempt to keep this function
5013 	 * as fast and as clean as possible. */
5014 	if (!selinux_policycap_netpeer())
5015 		return selinux_sock_rcv_skb_compat(sk, skb, family);
5016 
5017 	secmark_active = selinux_secmark_enabled();
5018 	peerlbl_active = selinux_peerlbl_enabled();
5019 	if (!secmark_active && !peerlbl_active)
5020 		return 0;
5021 
5022 	ad.type = LSM_AUDIT_DATA_NET;
5023 	ad.u.net = &net;
5024 	ad.u.net->netif = skb->skb_iif;
5025 	ad.u.net->family = family;
5026 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5027 	if (err)
5028 		return err;
5029 
5030 	if (peerlbl_active) {
5031 		u32 peer_sid;
5032 
5033 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5034 		if (err)
5035 			return err;
5036 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5037 					       addrp, family, peer_sid, &ad);
5038 		if (err) {
5039 			selinux_netlbl_err(skb, family, err, 0);
5040 			return err;
5041 		}
5042 		err = avc_has_perm(&selinux_state,
5043 				   sk_sid, peer_sid, SECCLASS_PEER,
5044 				   PEER__RECV, &ad);
5045 		if (err) {
5046 			selinux_netlbl_err(skb, family, err, 0);
5047 			return err;
5048 		}
5049 	}
5050 
5051 	if (secmark_active) {
5052 		err = avc_has_perm(&selinux_state,
5053 				   sk_sid, skb->secmark, SECCLASS_PACKET,
5054 				   PACKET__RECV, &ad);
5055 		if (err)
5056 			return err;
5057 	}
5058 
5059 	return err;
5060 }
5061 
5062 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5063 					    int __user *optlen, unsigned len)
5064 {
5065 	int err = 0;
5066 	char *scontext;
5067 	u32 scontext_len;
5068 	struct sk_security_struct *sksec = sock->sk->sk_security;
5069 	u32 peer_sid = SECSID_NULL;
5070 
5071 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5072 	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5073 	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5074 		peer_sid = sksec->peer_sid;
5075 	if (peer_sid == SECSID_NULL)
5076 		return -ENOPROTOOPT;
5077 
5078 	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5079 				      &scontext_len);
5080 	if (err)
5081 		return err;
5082 
5083 	if (scontext_len > len) {
5084 		err = -ERANGE;
5085 		goto out_len;
5086 	}
5087 
5088 	if (copy_to_user(optval, scontext, scontext_len))
5089 		err = -EFAULT;
5090 
5091 out_len:
5092 	if (put_user(scontext_len, optlen))
5093 		err = -EFAULT;
5094 	kfree(scontext);
5095 	return err;
5096 }
5097 
5098 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5099 {
5100 	u32 peer_secid = SECSID_NULL;
5101 	u16 family;
5102 	struct inode_security_struct *isec;
5103 
5104 	if (skb && skb->protocol == htons(ETH_P_IP))
5105 		family = PF_INET;
5106 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5107 		family = PF_INET6;
5108 	else if (sock)
5109 		family = sock->sk->sk_family;
5110 	else
5111 		goto out;
5112 
5113 	if (sock && family == PF_UNIX) {
5114 		isec = inode_security_novalidate(SOCK_INODE(sock));
5115 		peer_secid = isec->sid;
5116 	} else if (skb)
5117 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5118 
5119 out:
5120 	*secid = peer_secid;
5121 	if (peer_secid == SECSID_NULL)
5122 		return -EINVAL;
5123 	return 0;
5124 }
5125 
5126 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5127 {
5128 	struct sk_security_struct *sksec;
5129 
5130 	sksec = kzalloc(sizeof(*sksec), priority);
5131 	if (!sksec)
5132 		return -ENOMEM;
5133 
5134 	sksec->peer_sid = SECINITSID_UNLABELED;
5135 	sksec->sid = SECINITSID_UNLABELED;
5136 	sksec->sclass = SECCLASS_SOCKET;
5137 	selinux_netlbl_sk_security_reset(sksec);
5138 	sk->sk_security = sksec;
5139 
5140 	return 0;
5141 }
5142 
5143 static void selinux_sk_free_security(struct sock *sk)
5144 {
5145 	struct sk_security_struct *sksec = sk->sk_security;
5146 
5147 	sk->sk_security = NULL;
5148 	selinux_netlbl_sk_security_free(sksec);
5149 	kfree(sksec);
5150 }
5151 
5152 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5153 {
5154 	struct sk_security_struct *sksec = sk->sk_security;
5155 	struct sk_security_struct *newsksec = newsk->sk_security;
5156 
5157 	newsksec->sid = sksec->sid;
5158 	newsksec->peer_sid = sksec->peer_sid;
5159 	newsksec->sclass = sksec->sclass;
5160 
5161 	selinux_netlbl_sk_security_reset(newsksec);
5162 }
5163 
5164 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5165 {
5166 	if (!sk)
5167 		*secid = SECINITSID_ANY_SOCKET;
5168 	else {
5169 		struct sk_security_struct *sksec = sk->sk_security;
5170 
5171 		*secid = sksec->sid;
5172 	}
5173 }
5174 
5175 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5176 {
5177 	struct inode_security_struct *isec =
5178 		inode_security_novalidate(SOCK_INODE(parent));
5179 	struct sk_security_struct *sksec = sk->sk_security;
5180 
5181 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5182 	    sk->sk_family == PF_UNIX)
5183 		isec->sid = sksec->sid;
5184 	sksec->sclass = isec->sclass;
5185 }
5186 
5187 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5188  * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5189  * already present).
5190  */
5191 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5192 				      struct sk_buff *skb)
5193 {
5194 	struct sk_security_struct *sksec = ep->base.sk->sk_security;
5195 	struct common_audit_data ad;
5196 	struct lsm_network_audit net = {0,};
5197 	u8 peerlbl_active;
5198 	u32 peer_sid = SECINITSID_UNLABELED;
5199 	u32 conn_sid;
5200 	int err = 0;
5201 
5202 	if (!selinux_policycap_extsockclass())
5203 		return 0;
5204 
5205 	peerlbl_active = selinux_peerlbl_enabled();
5206 
5207 	if (peerlbl_active) {
5208 		/* This will return peer_sid = SECSID_NULL if there are
5209 		 * no peer labels, see security_net_peersid_resolve().
5210 		 */
5211 		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5212 					      &peer_sid);
5213 		if (err)
5214 			return err;
5215 
5216 		if (peer_sid == SECSID_NULL)
5217 			peer_sid = SECINITSID_UNLABELED;
5218 	}
5219 
5220 	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5221 		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5222 
5223 		/* Here as first association on socket. As the peer SID
5224 		 * was allowed by peer recv (and the netif/node checks),
5225 		 * then it is approved by policy and used as the primary
5226 		 * peer SID for getpeercon(3).
5227 		 */
5228 		sksec->peer_sid = peer_sid;
5229 	} else if  (sksec->peer_sid != peer_sid) {
5230 		/* Other association peer SIDs are checked to enforce
5231 		 * consistency among the peer SIDs.
5232 		 */
5233 		ad.type = LSM_AUDIT_DATA_NET;
5234 		ad.u.net = &net;
5235 		ad.u.net->sk = ep->base.sk;
5236 		err = avc_has_perm(&selinux_state,
5237 				   sksec->peer_sid, peer_sid, sksec->sclass,
5238 				   SCTP_SOCKET__ASSOCIATION, &ad);
5239 		if (err)
5240 			return err;
5241 	}
5242 
5243 	/* Compute the MLS component for the connection and store
5244 	 * the information in ep. This will be used by SCTP TCP type
5245 	 * sockets and peeled off connections as they cause a new
5246 	 * socket to be generated. selinux_sctp_sk_clone() will then
5247 	 * plug this into the new socket.
5248 	 */
5249 	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5250 	if (err)
5251 		return err;
5252 
5253 	ep->secid = conn_sid;
5254 	ep->peer_secid = peer_sid;
5255 
5256 	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5257 	return selinux_netlbl_sctp_assoc_request(ep, skb);
5258 }
5259 
5260 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5261  * based on their @optname.
5262  */
5263 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5264 				     struct sockaddr *address,
5265 				     int addrlen)
5266 {
5267 	int len, err = 0, walk_size = 0;
5268 	void *addr_buf;
5269 	struct sockaddr *addr;
5270 	struct socket *sock;
5271 
5272 	if (!selinux_policycap_extsockclass())
5273 		return 0;
5274 
5275 	/* Process one or more addresses that may be IPv4 or IPv6 */
5276 	sock = sk->sk_socket;
5277 	addr_buf = address;
5278 
5279 	while (walk_size < addrlen) {
5280 		addr = addr_buf;
5281 		switch (addr->sa_family) {
5282 		case AF_UNSPEC:
5283 		case AF_INET:
5284 			len = sizeof(struct sockaddr_in);
5285 			break;
5286 		case AF_INET6:
5287 			len = sizeof(struct sockaddr_in6);
5288 			break;
5289 		default:
5290 			return -EINVAL;
5291 		}
5292 
5293 		err = -EINVAL;
5294 		switch (optname) {
5295 		/* Bind checks */
5296 		case SCTP_PRIMARY_ADDR:
5297 		case SCTP_SET_PEER_PRIMARY_ADDR:
5298 		case SCTP_SOCKOPT_BINDX_ADD:
5299 			err = selinux_socket_bind(sock, addr, len);
5300 			break;
5301 		/* Connect checks */
5302 		case SCTP_SOCKOPT_CONNECTX:
5303 		case SCTP_PARAM_SET_PRIMARY:
5304 		case SCTP_PARAM_ADD_IP:
5305 		case SCTP_SENDMSG_CONNECT:
5306 			err = selinux_socket_connect_helper(sock, addr, len);
5307 			if (err)
5308 				return err;
5309 
5310 			/* As selinux_sctp_bind_connect() is called by the
5311 			 * SCTP protocol layer, the socket is already locked,
5312 			 * therefore selinux_netlbl_socket_connect_locked() is
5313 			 * is called here. The situations handled are:
5314 			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5315 			 * whenever a new IP address is added or when a new
5316 			 * primary address is selected.
5317 			 * Note that an SCTP connect(2) call happens before
5318 			 * the SCTP protocol layer and is handled via
5319 			 * selinux_socket_connect().
5320 			 */
5321 			err = selinux_netlbl_socket_connect_locked(sk, addr);
5322 			break;
5323 		}
5324 
5325 		if (err)
5326 			return err;
5327 
5328 		addr_buf += len;
5329 		walk_size += len;
5330 	}
5331 
5332 	return 0;
5333 }
5334 
5335 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5336 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5337 				  struct sock *newsk)
5338 {
5339 	struct sk_security_struct *sksec = sk->sk_security;
5340 	struct sk_security_struct *newsksec = newsk->sk_security;
5341 
5342 	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5343 	 * the non-sctp clone version.
5344 	 */
5345 	if (!selinux_policycap_extsockclass())
5346 		return selinux_sk_clone_security(sk, newsk);
5347 
5348 	newsksec->sid = ep->secid;
5349 	newsksec->peer_sid = ep->peer_secid;
5350 	newsksec->sclass = sksec->sclass;
5351 	selinux_netlbl_sctp_sk_clone(sk, newsk);
5352 }
5353 
5354 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5355 				     struct request_sock *req)
5356 {
5357 	struct sk_security_struct *sksec = sk->sk_security;
5358 	int err;
5359 	u16 family = req->rsk_ops->family;
5360 	u32 connsid;
5361 	u32 peersid;
5362 
5363 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5364 	if (err)
5365 		return err;
5366 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5367 	if (err)
5368 		return err;
5369 	req->secid = connsid;
5370 	req->peer_secid = peersid;
5371 
5372 	return selinux_netlbl_inet_conn_request(req, family);
5373 }
5374 
5375 static void selinux_inet_csk_clone(struct sock *newsk,
5376 				   const struct request_sock *req)
5377 {
5378 	struct sk_security_struct *newsksec = newsk->sk_security;
5379 
5380 	newsksec->sid = req->secid;
5381 	newsksec->peer_sid = req->peer_secid;
5382 	/* NOTE: Ideally, we should also get the isec->sid for the
5383 	   new socket in sync, but we don't have the isec available yet.
5384 	   So we will wait until sock_graft to do it, by which
5385 	   time it will have been created and available. */
5386 
5387 	/* We don't need to take any sort of lock here as we are the only
5388 	 * thread with access to newsksec */
5389 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5390 }
5391 
5392 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5393 {
5394 	u16 family = sk->sk_family;
5395 	struct sk_security_struct *sksec = sk->sk_security;
5396 
5397 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5398 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5399 		family = PF_INET;
5400 
5401 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5402 }
5403 
5404 static int selinux_secmark_relabel_packet(u32 sid)
5405 {
5406 	const struct task_security_struct *__tsec;
5407 	u32 tsid;
5408 
5409 	__tsec = current_security();
5410 	tsid = __tsec->sid;
5411 
5412 	return avc_has_perm(&selinux_state,
5413 			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5414 			    NULL);
5415 }
5416 
5417 static void selinux_secmark_refcount_inc(void)
5418 {
5419 	atomic_inc(&selinux_secmark_refcount);
5420 }
5421 
5422 static void selinux_secmark_refcount_dec(void)
5423 {
5424 	atomic_dec(&selinux_secmark_refcount);
5425 }
5426 
5427 static void selinux_req_classify_flow(const struct request_sock *req,
5428 				      struct flowi *fl)
5429 {
5430 	fl->flowi_secid = req->secid;
5431 }
5432 
5433 static int selinux_tun_dev_alloc_security(void **security)
5434 {
5435 	struct tun_security_struct *tunsec;
5436 
5437 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5438 	if (!tunsec)
5439 		return -ENOMEM;
5440 	tunsec->sid = current_sid();
5441 
5442 	*security = tunsec;
5443 	return 0;
5444 }
5445 
5446 static void selinux_tun_dev_free_security(void *security)
5447 {
5448 	kfree(security);
5449 }
5450 
5451 static int selinux_tun_dev_create(void)
5452 {
5453 	u32 sid = current_sid();
5454 
5455 	/* we aren't taking into account the "sockcreate" SID since the socket
5456 	 * that is being created here is not a socket in the traditional sense,
5457 	 * instead it is a private sock, accessible only to the kernel, and
5458 	 * representing a wide range of network traffic spanning multiple
5459 	 * connections unlike traditional sockets - check the TUN driver to
5460 	 * get a better understanding of why this socket is special */
5461 
5462 	return avc_has_perm(&selinux_state,
5463 			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5464 			    NULL);
5465 }
5466 
5467 static int selinux_tun_dev_attach_queue(void *security)
5468 {
5469 	struct tun_security_struct *tunsec = security;
5470 
5471 	return avc_has_perm(&selinux_state,
5472 			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5473 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5474 }
5475 
5476 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5477 {
5478 	struct tun_security_struct *tunsec = security;
5479 	struct sk_security_struct *sksec = sk->sk_security;
5480 
5481 	/* we don't currently perform any NetLabel based labeling here and it
5482 	 * isn't clear that we would want to do so anyway; while we could apply
5483 	 * labeling without the support of the TUN user the resulting labeled
5484 	 * traffic from the other end of the connection would almost certainly
5485 	 * cause confusion to the TUN user that had no idea network labeling
5486 	 * protocols were being used */
5487 
5488 	sksec->sid = tunsec->sid;
5489 	sksec->sclass = SECCLASS_TUN_SOCKET;
5490 
5491 	return 0;
5492 }
5493 
5494 static int selinux_tun_dev_open(void *security)
5495 {
5496 	struct tun_security_struct *tunsec = security;
5497 	u32 sid = current_sid();
5498 	int err;
5499 
5500 	err = avc_has_perm(&selinux_state,
5501 			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5502 			   TUN_SOCKET__RELABELFROM, NULL);
5503 	if (err)
5504 		return err;
5505 	err = avc_has_perm(&selinux_state,
5506 			   sid, sid, SECCLASS_TUN_SOCKET,
5507 			   TUN_SOCKET__RELABELTO, NULL);
5508 	if (err)
5509 		return err;
5510 	tunsec->sid = sid;
5511 
5512 	return 0;
5513 }
5514 
5515 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5516 {
5517 	int err = 0;
5518 	u32 perm;
5519 	struct nlmsghdr *nlh;
5520 	struct sk_security_struct *sksec = sk->sk_security;
5521 
5522 	if (skb->len < NLMSG_HDRLEN) {
5523 		err = -EINVAL;
5524 		goto out;
5525 	}
5526 	nlh = nlmsg_hdr(skb);
5527 
5528 	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5529 	if (err) {
5530 		if (err == -EINVAL) {
5531 			pr_warn_ratelimited("SELinux: unrecognized netlink"
5532 			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5533 			       " pig=%d comm=%s\n",
5534 			       sk->sk_protocol, nlh->nlmsg_type,
5535 			       secclass_map[sksec->sclass - 1].name,
5536 			       task_pid_nr(current), current->comm);
5537 			if (!enforcing_enabled(&selinux_state) ||
5538 			    security_get_allow_unknown(&selinux_state))
5539 				err = 0;
5540 		}
5541 
5542 		/* Ignore */
5543 		if (err == -ENOENT)
5544 			err = 0;
5545 		goto out;
5546 	}
5547 
5548 	err = sock_has_perm(sk, perm);
5549 out:
5550 	return err;
5551 }
5552 
5553 #ifdef CONFIG_NETFILTER
5554 
5555 static unsigned int selinux_ip_forward(struct sk_buff *skb,
5556 				       const struct net_device *indev,
5557 				       u16 family)
5558 {
5559 	int err;
5560 	char *addrp;
5561 	u32 peer_sid;
5562 	struct common_audit_data ad;
5563 	struct lsm_network_audit net = {0,};
5564 	u8 secmark_active;
5565 	u8 netlbl_active;
5566 	u8 peerlbl_active;
5567 
5568 	if (!selinux_policycap_netpeer())
5569 		return NF_ACCEPT;
5570 
5571 	secmark_active = selinux_secmark_enabled();
5572 	netlbl_active = netlbl_enabled();
5573 	peerlbl_active = selinux_peerlbl_enabled();
5574 	if (!secmark_active && !peerlbl_active)
5575 		return NF_ACCEPT;
5576 
5577 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5578 		return NF_DROP;
5579 
5580 	ad.type = LSM_AUDIT_DATA_NET;
5581 	ad.u.net = &net;
5582 	ad.u.net->netif = indev->ifindex;
5583 	ad.u.net->family = family;
5584 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5585 		return NF_DROP;
5586 
5587 	if (peerlbl_active) {
5588 		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5589 					       addrp, family, peer_sid, &ad);
5590 		if (err) {
5591 			selinux_netlbl_err(skb, family, err, 1);
5592 			return NF_DROP;
5593 		}
5594 	}
5595 
5596 	if (secmark_active)
5597 		if (avc_has_perm(&selinux_state,
5598 				 peer_sid, skb->secmark,
5599 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5600 			return NF_DROP;
5601 
5602 	if (netlbl_active)
5603 		/* we do this in the FORWARD path and not the POST_ROUTING
5604 		 * path because we want to make sure we apply the necessary
5605 		 * labeling before IPsec is applied so we can leverage AH
5606 		 * protection */
5607 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5608 			return NF_DROP;
5609 
5610 	return NF_ACCEPT;
5611 }
5612 
5613 static unsigned int selinux_ipv4_forward(void *priv,
5614 					 struct sk_buff *skb,
5615 					 const struct nf_hook_state *state)
5616 {
5617 	return selinux_ip_forward(skb, state->in, PF_INET);
5618 }
5619 
5620 #if IS_ENABLED(CONFIG_IPV6)
5621 static unsigned int selinux_ipv6_forward(void *priv,
5622 					 struct sk_buff *skb,
5623 					 const struct nf_hook_state *state)
5624 {
5625 	return selinux_ip_forward(skb, state->in, PF_INET6);
5626 }
5627 #endif	/* IPV6 */
5628 
5629 static unsigned int selinux_ip_output(struct sk_buff *skb,
5630 				      u16 family)
5631 {
5632 	struct sock *sk;
5633 	u32 sid;
5634 
5635 	if (!netlbl_enabled())
5636 		return NF_ACCEPT;
5637 
5638 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5639 	 * because we want to make sure we apply the necessary labeling
5640 	 * before IPsec is applied so we can leverage AH protection */
5641 	sk = skb->sk;
5642 	if (sk) {
5643 		struct sk_security_struct *sksec;
5644 
5645 		if (sk_listener(sk))
5646 			/* if the socket is the listening state then this
5647 			 * packet is a SYN-ACK packet which means it needs to
5648 			 * be labeled based on the connection/request_sock and
5649 			 * not the parent socket.  unfortunately, we can't
5650 			 * lookup the request_sock yet as it isn't queued on
5651 			 * the parent socket until after the SYN-ACK is sent.
5652 			 * the "solution" is to simply pass the packet as-is
5653 			 * as any IP option based labeling should be copied
5654 			 * from the initial connection request (in the IP
5655 			 * layer).  it is far from ideal, but until we get a
5656 			 * security label in the packet itself this is the
5657 			 * best we can do. */
5658 			return NF_ACCEPT;
5659 
5660 		/* standard practice, label using the parent socket */
5661 		sksec = sk->sk_security;
5662 		sid = sksec->sid;
5663 	} else
5664 		sid = SECINITSID_KERNEL;
5665 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5666 		return NF_DROP;
5667 
5668 	return NF_ACCEPT;
5669 }
5670 
5671 static unsigned int selinux_ipv4_output(void *priv,
5672 					struct sk_buff *skb,
5673 					const struct nf_hook_state *state)
5674 {
5675 	return selinux_ip_output(skb, PF_INET);
5676 }
5677 
5678 #if IS_ENABLED(CONFIG_IPV6)
5679 static unsigned int selinux_ipv6_output(void *priv,
5680 					struct sk_buff *skb,
5681 					const struct nf_hook_state *state)
5682 {
5683 	return selinux_ip_output(skb, PF_INET6);
5684 }
5685 #endif	/* IPV6 */
5686 
5687 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5688 						int ifindex,
5689 						u16 family)
5690 {
5691 	struct sock *sk = skb_to_full_sk(skb);
5692 	struct sk_security_struct *sksec;
5693 	struct common_audit_data ad;
5694 	struct lsm_network_audit net = {0,};
5695 	char *addrp;
5696 	u8 proto;
5697 
5698 	if (sk == NULL)
5699 		return NF_ACCEPT;
5700 	sksec = sk->sk_security;
5701 
5702 	ad.type = LSM_AUDIT_DATA_NET;
5703 	ad.u.net = &net;
5704 	ad.u.net->netif = ifindex;
5705 	ad.u.net->family = family;
5706 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5707 		return NF_DROP;
5708 
5709 	if (selinux_secmark_enabled())
5710 		if (avc_has_perm(&selinux_state,
5711 				 sksec->sid, skb->secmark,
5712 				 SECCLASS_PACKET, PACKET__SEND, &ad))
5713 			return NF_DROP_ERR(-ECONNREFUSED);
5714 
5715 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5716 		return NF_DROP_ERR(-ECONNREFUSED);
5717 
5718 	return NF_ACCEPT;
5719 }
5720 
5721 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5722 					 const struct net_device *outdev,
5723 					 u16 family)
5724 {
5725 	u32 secmark_perm;
5726 	u32 peer_sid;
5727 	int ifindex = outdev->ifindex;
5728 	struct sock *sk;
5729 	struct common_audit_data ad;
5730 	struct lsm_network_audit net = {0,};
5731 	char *addrp;
5732 	u8 secmark_active;
5733 	u8 peerlbl_active;
5734 
5735 	/* If any sort of compatibility mode is enabled then handoff processing
5736 	 * to the selinux_ip_postroute_compat() function to deal with the
5737 	 * special handling.  We do this in an attempt to keep this function
5738 	 * as fast and as clean as possible. */
5739 	if (!selinux_policycap_netpeer())
5740 		return selinux_ip_postroute_compat(skb, ifindex, family);
5741 
5742 	secmark_active = selinux_secmark_enabled();
5743 	peerlbl_active = selinux_peerlbl_enabled();
5744 	if (!secmark_active && !peerlbl_active)
5745 		return NF_ACCEPT;
5746 
5747 	sk = skb_to_full_sk(skb);
5748 
5749 #ifdef CONFIG_XFRM
5750 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5751 	 * packet transformation so allow the packet to pass without any checks
5752 	 * since we'll have another chance to perform access control checks
5753 	 * when the packet is on it's final way out.
5754 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5755 	 *       is NULL, in this case go ahead and apply access control.
5756 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5757 	 *       TCP listening state we cannot wait until the XFRM processing
5758 	 *       is done as we will miss out on the SA label if we do;
5759 	 *       unfortunately, this means more work, but it is only once per
5760 	 *       connection. */
5761 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5762 	    !(sk && sk_listener(sk)))
5763 		return NF_ACCEPT;
5764 #endif
5765 
5766 	if (sk == NULL) {
5767 		/* Without an associated socket the packet is either coming
5768 		 * from the kernel or it is being forwarded; check the packet
5769 		 * to determine which and if the packet is being forwarded
5770 		 * query the packet directly to determine the security label. */
5771 		if (skb->skb_iif) {
5772 			secmark_perm = PACKET__FORWARD_OUT;
5773 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5774 				return NF_DROP;
5775 		} else {
5776 			secmark_perm = PACKET__SEND;
5777 			peer_sid = SECINITSID_KERNEL;
5778 		}
5779 	} else if (sk_listener(sk)) {
5780 		/* Locally generated packet but the associated socket is in the
5781 		 * listening state which means this is a SYN-ACK packet.  In
5782 		 * this particular case the correct security label is assigned
5783 		 * to the connection/request_sock but unfortunately we can't
5784 		 * query the request_sock as it isn't queued on the parent
5785 		 * socket until after the SYN-ACK packet is sent; the only
5786 		 * viable choice is to regenerate the label like we do in
5787 		 * selinux_inet_conn_request().  See also selinux_ip_output()
5788 		 * for similar problems. */
5789 		u32 skb_sid;
5790 		struct sk_security_struct *sksec;
5791 
5792 		sksec = sk->sk_security;
5793 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5794 			return NF_DROP;
5795 		/* At this point, if the returned skb peerlbl is SECSID_NULL
5796 		 * and the packet has been through at least one XFRM
5797 		 * transformation then we must be dealing with the "final"
5798 		 * form of labeled IPsec packet; since we've already applied
5799 		 * all of our access controls on this packet we can safely
5800 		 * pass the packet. */
5801 		if (skb_sid == SECSID_NULL) {
5802 			switch (family) {
5803 			case PF_INET:
5804 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5805 					return NF_ACCEPT;
5806 				break;
5807 			case PF_INET6:
5808 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5809 					return NF_ACCEPT;
5810 				break;
5811 			default:
5812 				return NF_DROP_ERR(-ECONNREFUSED);
5813 			}
5814 		}
5815 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5816 			return NF_DROP;
5817 		secmark_perm = PACKET__SEND;
5818 	} else {
5819 		/* Locally generated packet, fetch the security label from the
5820 		 * associated socket. */
5821 		struct sk_security_struct *sksec = sk->sk_security;
5822 		peer_sid = sksec->sid;
5823 		secmark_perm = PACKET__SEND;
5824 	}
5825 
5826 	ad.type = LSM_AUDIT_DATA_NET;
5827 	ad.u.net = &net;
5828 	ad.u.net->netif = ifindex;
5829 	ad.u.net->family = family;
5830 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5831 		return NF_DROP;
5832 
5833 	if (secmark_active)
5834 		if (avc_has_perm(&selinux_state,
5835 				 peer_sid, skb->secmark,
5836 				 SECCLASS_PACKET, secmark_perm, &ad))
5837 			return NF_DROP_ERR(-ECONNREFUSED);
5838 
5839 	if (peerlbl_active) {
5840 		u32 if_sid;
5841 		u32 node_sid;
5842 
5843 		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5844 			return NF_DROP;
5845 		if (avc_has_perm(&selinux_state,
5846 				 peer_sid, if_sid,
5847 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5848 			return NF_DROP_ERR(-ECONNREFUSED);
5849 
5850 		if (sel_netnode_sid(addrp, family, &node_sid))
5851 			return NF_DROP;
5852 		if (avc_has_perm(&selinux_state,
5853 				 peer_sid, node_sid,
5854 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5855 			return NF_DROP_ERR(-ECONNREFUSED);
5856 	}
5857 
5858 	return NF_ACCEPT;
5859 }
5860 
5861 static unsigned int selinux_ipv4_postroute(void *priv,
5862 					   struct sk_buff *skb,
5863 					   const struct nf_hook_state *state)
5864 {
5865 	return selinux_ip_postroute(skb, state->out, PF_INET);
5866 }
5867 
5868 #if IS_ENABLED(CONFIG_IPV6)
5869 static unsigned int selinux_ipv6_postroute(void *priv,
5870 					   struct sk_buff *skb,
5871 					   const struct nf_hook_state *state)
5872 {
5873 	return selinux_ip_postroute(skb, state->out, PF_INET6);
5874 }
5875 #endif	/* IPV6 */
5876 
5877 #endif	/* CONFIG_NETFILTER */
5878 
5879 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5880 {
5881 	return selinux_nlmsg_perm(sk, skb);
5882 }
5883 
5884 static int ipc_alloc_security(struct kern_ipc_perm *perm,
5885 			      u16 sclass)
5886 {
5887 	struct ipc_security_struct *isec;
5888 
5889 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5890 	if (!isec)
5891 		return -ENOMEM;
5892 
5893 	isec->sclass = sclass;
5894 	isec->sid = current_sid();
5895 	perm->security = isec;
5896 
5897 	return 0;
5898 }
5899 
5900 static void ipc_free_security(struct kern_ipc_perm *perm)
5901 {
5902 	struct ipc_security_struct *isec = perm->security;
5903 	perm->security = NULL;
5904 	kfree(isec);
5905 }
5906 
5907 static int msg_msg_alloc_security(struct msg_msg *msg)
5908 {
5909 	struct msg_security_struct *msec;
5910 
5911 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5912 	if (!msec)
5913 		return -ENOMEM;
5914 
5915 	msec->sid = SECINITSID_UNLABELED;
5916 	msg->security = msec;
5917 
5918 	return 0;
5919 }
5920 
5921 static void msg_msg_free_security(struct msg_msg *msg)
5922 {
5923 	struct msg_security_struct *msec = msg->security;
5924 
5925 	msg->security = NULL;
5926 	kfree(msec);
5927 }
5928 
5929 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5930 			u32 perms)
5931 {
5932 	struct ipc_security_struct *isec;
5933 	struct common_audit_data ad;
5934 	u32 sid = current_sid();
5935 
5936 	isec = ipc_perms->security;
5937 
5938 	ad.type = LSM_AUDIT_DATA_IPC;
5939 	ad.u.ipc_id = ipc_perms->key;
5940 
5941 	return avc_has_perm(&selinux_state,
5942 			    sid, isec->sid, isec->sclass, perms, &ad);
5943 }
5944 
5945 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5946 {
5947 	return msg_msg_alloc_security(msg);
5948 }
5949 
5950 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5951 {
5952 	msg_msg_free_security(msg);
5953 }
5954 
5955 /* message queue security operations */
5956 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5957 {
5958 	struct ipc_security_struct *isec;
5959 	struct common_audit_data ad;
5960 	u32 sid = current_sid();
5961 	int rc;
5962 
5963 	rc = ipc_alloc_security(msq, SECCLASS_MSGQ);
5964 	if (rc)
5965 		return rc;
5966 
5967 	isec = msq->security;
5968 
5969 	ad.type = LSM_AUDIT_DATA_IPC;
5970 	ad.u.ipc_id = msq->key;
5971 
5972 	rc = avc_has_perm(&selinux_state,
5973 			  sid, isec->sid, SECCLASS_MSGQ,
5974 			  MSGQ__CREATE, &ad);
5975 	if (rc) {
5976 		ipc_free_security(msq);
5977 		return rc;
5978 	}
5979 	return 0;
5980 }
5981 
5982 static void selinux_msg_queue_free_security(struct kern_ipc_perm *msq)
5983 {
5984 	ipc_free_security(msq);
5985 }
5986 
5987 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5988 {
5989 	struct ipc_security_struct *isec;
5990 	struct common_audit_data ad;
5991 	u32 sid = current_sid();
5992 
5993 	isec = msq->security;
5994 
5995 	ad.type = LSM_AUDIT_DATA_IPC;
5996 	ad.u.ipc_id = msq->key;
5997 
5998 	return avc_has_perm(&selinux_state,
5999 			    sid, isec->sid, SECCLASS_MSGQ,
6000 			    MSGQ__ASSOCIATE, &ad);
6001 }
6002 
6003 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6004 {
6005 	int err;
6006 	int perms;
6007 
6008 	switch (cmd) {
6009 	case IPC_INFO:
6010 	case MSG_INFO:
6011 		/* No specific object, just general system-wide information. */
6012 		return avc_has_perm(&selinux_state,
6013 				    current_sid(), SECINITSID_KERNEL,
6014 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6015 	case IPC_STAT:
6016 	case MSG_STAT:
6017 	case MSG_STAT_ANY:
6018 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6019 		break;
6020 	case IPC_SET:
6021 		perms = MSGQ__SETATTR;
6022 		break;
6023 	case IPC_RMID:
6024 		perms = MSGQ__DESTROY;
6025 		break;
6026 	default:
6027 		return 0;
6028 	}
6029 
6030 	err = ipc_has_perm(msq, perms);
6031 	return err;
6032 }
6033 
6034 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6035 {
6036 	struct ipc_security_struct *isec;
6037 	struct msg_security_struct *msec;
6038 	struct common_audit_data ad;
6039 	u32 sid = current_sid();
6040 	int rc;
6041 
6042 	isec = msq->security;
6043 	msec = msg->security;
6044 
6045 	/*
6046 	 * First time through, need to assign label to the message
6047 	 */
6048 	if (msec->sid == SECINITSID_UNLABELED) {
6049 		/*
6050 		 * Compute new sid based on current process and
6051 		 * message queue this message will be stored in
6052 		 */
6053 		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6054 					     SECCLASS_MSG, NULL, &msec->sid);
6055 		if (rc)
6056 			return rc;
6057 	}
6058 
6059 	ad.type = LSM_AUDIT_DATA_IPC;
6060 	ad.u.ipc_id = msq->key;
6061 
6062 	/* Can this process write to the queue? */
6063 	rc = avc_has_perm(&selinux_state,
6064 			  sid, isec->sid, SECCLASS_MSGQ,
6065 			  MSGQ__WRITE, &ad);
6066 	if (!rc)
6067 		/* Can this process send the message */
6068 		rc = avc_has_perm(&selinux_state,
6069 				  sid, msec->sid, SECCLASS_MSG,
6070 				  MSG__SEND, &ad);
6071 	if (!rc)
6072 		/* Can the message be put in the queue? */
6073 		rc = avc_has_perm(&selinux_state,
6074 				  msec->sid, isec->sid, SECCLASS_MSGQ,
6075 				  MSGQ__ENQUEUE, &ad);
6076 
6077 	return rc;
6078 }
6079 
6080 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6081 				    struct task_struct *target,
6082 				    long type, int mode)
6083 {
6084 	struct ipc_security_struct *isec;
6085 	struct msg_security_struct *msec;
6086 	struct common_audit_data ad;
6087 	u32 sid = task_sid(target);
6088 	int rc;
6089 
6090 	isec = msq->security;
6091 	msec = msg->security;
6092 
6093 	ad.type = LSM_AUDIT_DATA_IPC;
6094 	ad.u.ipc_id = msq->key;
6095 
6096 	rc = avc_has_perm(&selinux_state,
6097 			  sid, isec->sid,
6098 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6099 	if (!rc)
6100 		rc = avc_has_perm(&selinux_state,
6101 				  sid, msec->sid,
6102 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6103 	return rc;
6104 }
6105 
6106 /* Shared Memory security operations */
6107 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6108 {
6109 	struct ipc_security_struct *isec;
6110 	struct common_audit_data ad;
6111 	u32 sid = current_sid();
6112 	int rc;
6113 
6114 	rc = ipc_alloc_security(shp, SECCLASS_SHM);
6115 	if (rc)
6116 		return rc;
6117 
6118 	isec = shp->security;
6119 
6120 	ad.type = LSM_AUDIT_DATA_IPC;
6121 	ad.u.ipc_id = shp->key;
6122 
6123 	rc = avc_has_perm(&selinux_state,
6124 			  sid, isec->sid, SECCLASS_SHM,
6125 			  SHM__CREATE, &ad);
6126 	if (rc) {
6127 		ipc_free_security(shp);
6128 		return rc;
6129 	}
6130 	return 0;
6131 }
6132 
6133 static void selinux_shm_free_security(struct kern_ipc_perm *shp)
6134 {
6135 	ipc_free_security(shp);
6136 }
6137 
6138 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6139 {
6140 	struct ipc_security_struct *isec;
6141 	struct common_audit_data ad;
6142 	u32 sid = current_sid();
6143 
6144 	isec = shp->security;
6145 
6146 	ad.type = LSM_AUDIT_DATA_IPC;
6147 	ad.u.ipc_id = shp->key;
6148 
6149 	return avc_has_perm(&selinux_state,
6150 			    sid, isec->sid, SECCLASS_SHM,
6151 			    SHM__ASSOCIATE, &ad);
6152 }
6153 
6154 /* Note, at this point, shp is locked down */
6155 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6156 {
6157 	int perms;
6158 	int err;
6159 
6160 	switch (cmd) {
6161 	case IPC_INFO:
6162 	case SHM_INFO:
6163 		/* No specific object, just general system-wide information. */
6164 		return avc_has_perm(&selinux_state,
6165 				    current_sid(), SECINITSID_KERNEL,
6166 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6167 	case IPC_STAT:
6168 	case SHM_STAT:
6169 	case SHM_STAT_ANY:
6170 		perms = SHM__GETATTR | SHM__ASSOCIATE;
6171 		break;
6172 	case IPC_SET:
6173 		perms = SHM__SETATTR;
6174 		break;
6175 	case SHM_LOCK:
6176 	case SHM_UNLOCK:
6177 		perms = SHM__LOCK;
6178 		break;
6179 	case IPC_RMID:
6180 		perms = SHM__DESTROY;
6181 		break;
6182 	default:
6183 		return 0;
6184 	}
6185 
6186 	err = ipc_has_perm(shp, perms);
6187 	return err;
6188 }
6189 
6190 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6191 			     char __user *shmaddr, int shmflg)
6192 {
6193 	u32 perms;
6194 
6195 	if (shmflg & SHM_RDONLY)
6196 		perms = SHM__READ;
6197 	else
6198 		perms = SHM__READ | SHM__WRITE;
6199 
6200 	return ipc_has_perm(shp, perms);
6201 }
6202 
6203 /* Semaphore security operations */
6204 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6205 {
6206 	struct ipc_security_struct *isec;
6207 	struct common_audit_data ad;
6208 	u32 sid = current_sid();
6209 	int rc;
6210 
6211 	rc = ipc_alloc_security(sma, SECCLASS_SEM);
6212 	if (rc)
6213 		return rc;
6214 
6215 	isec = sma->security;
6216 
6217 	ad.type = LSM_AUDIT_DATA_IPC;
6218 	ad.u.ipc_id = sma->key;
6219 
6220 	rc = avc_has_perm(&selinux_state,
6221 			  sid, isec->sid, SECCLASS_SEM,
6222 			  SEM__CREATE, &ad);
6223 	if (rc) {
6224 		ipc_free_security(sma);
6225 		return rc;
6226 	}
6227 	return 0;
6228 }
6229 
6230 static void selinux_sem_free_security(struct kern_ipc_perm *sma)
6231 {
6232 	ipc_free_security(sma);
6233 }
6234 
6235 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6236 {
6237 	struct ipc_security_struct *isec;
6238 	struct common_audit_data ad;
6239 	u32 sid = current_sid();
6240 
6241 	isec = sma->security;
6242 
6243 	ad.type = LSM_AUDIT_DATA_IPC;
6244 	ad.u.ipc_id = sma->key;
6245 
6246 	return avc_has_perm(&selinux_state,
6247 			    sid, isec->sid, SECCLASS_SEM,
6248 			    SEM__ASSOCIATE, &ad);
6249 }
6250 
6251 /* Note, at this point, sma is locked down */
6252 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6253 {
6254 	int err;
6255 	u32 perms;
6256 
6257 	switch (cmd) {
6258 	case IPC_INFO:
6259 	case SEM_INFO:
6260 		/* No specific object, just general system-wide information. */
6261 		return avc_has_perm(&selinux_state,
6262 				    current_sid(), SECINITSID_KERNEL,
6263 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6264 	case GETPID:
6265 	case GETNCNT:
6266 	case GETZCNT:
6267 		perms = SEM__GETATTR;
6268 		break;
6269 	case GETVAL:
6270 	case GETALL:
6271 		perms = SEM__READ;
6272 		break;
6273 	case SETVAL:
6274 	case SETALL:
6275 		perms = SEM__WRITE;
6276 		break;
6277 	case IPC_RMID:
6278 		perms = SEM__DESTROY;
6279 		break;
6280 	case IPC_SET:
6281 		perms = SEM__SETATTR;
6282 		break;
6283 	case IPC_STAT:
6284 	case SEM_STAT:
6285 	case SEM_STAT_ANY:
6286 		perms = SEM__GETATTR | SEM__ASSOCIATE;
6287 		break;
6288 	default:
6289 		return 0;
6290 	}
6291 
6292 	err = ipc_has_perm(sma, perms);
6293 	return err;
6294 }
6295 
6296 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6297 			     struct sembuf *sops, unsigned nsops, int alter)
6298 {
6299 	u32 perms;
6300 
6301 	if (alter)
6302 		perms = SEM__READ | SEM__WRITE;
6303 	else
6304 		perms = SEM__READ;
6305 
6306 	return ipc_has_perm(sma, perms);
6307 }
6308 
6309 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6310 {
6311 	u32 av = 0;
6312 
6313 	av = 0;
6314 	if (flag & S_IRUGO)
6315 		av |= IPC__UNIX_READ;
6316 	if (flag & S_IWUGO)
6317 		av |= IPC__UNIX_WRITE;
6318 
6319 	if (av == 0)
6320 		return 0;
6321 
6322 	return ipc_has_perm(ipcp, av);
6323 }
6324 
6325 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6326 {
6327 	struct ipc_security_struct *isec = ipcp->security;
6328 	*secid = isec->sid;
6329 }
6330 
6331 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6332 {
6333 	if (inode)
6334 		inode_doinit_with_dentry(inode, dentry);
6335 }
6336 
6337 static int selinux_getprocattr(struct task_struct *p,
6338 			       char *name, char **value)
6339 {
6340 	const struct task_security_struct *__tsec;
6341 	u32 sid;
6342 	int error;
6343 	unsigned len;
6344 
6345 	rcu_read_lock();
6346 	__tsec = __task_cred(p)->security;
6347 
6348 	if (current != p) {
6349 		error = avc_has_perm(&selinux_state,
6350 				     current_sid(), __tsec->sid,
6351 				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6352 		if (error)
6353 			goto bad;
6354 	}
6355 
6356 	if (!strcmp(name, "current"))
6357 		sid = __tsec->sid;
6358 	else if (!strcmp(name, "prev"))
6359 		sid = __tsec->osid;
6360 	else if (!strcmp(name, "exec"))
6361 		sid = __tsec->exec_sid;
6362 	else if (!strcmp(name, "fscreate"))
6363 		sid = __tsec->create_sid;
6364 	else if (!strcmp(name, "keycreate"))
6365 		sid = __tsec->keycreate_sid;
6366 	else if (!strcmp(name, "sockcreate"))
6367 		sid = __tsec->sockcreate_sid;
6368 	else {
6369 		error = -EINVAL;
6370 		goto bad;
6371 	}
6372 	rcu_read_unlock();
6373 
6374 	if (!sid)
6375 		return 0;
6376 
6377 	error = security_sid_to_context(&selinux_state, sid, value, &len);
6378 	if (error)
6379 		return error;
6380 	return len;
6381 
6382 bad:
6383 	rcu_read_unlock();
6384 	return error;
6385 }
6386 
6387 static int selinux_setprocattr(const char *name, void *value, size_t size)
6388 {
6389 	struct task_security_struct *tsec;
6390 	struct cred *new;
6391 	u32 mysid = current_sid(), sid = 0, ptsid;
6392 	int error;
6393 	char *str = value;
6394 
6395 	/*
6396 	 * Basic control over ability to set these attributes at all.
6397 	 */
6398 	if (!strcmp(name, "exec"))
6399 		error = avc_has_perm(&selinux_state,
6400 				     mysid, mysid, SECCLASS_PROCESS,
6401 				     PROCESS__SETEXEC, NULL);
6402 	else if (!strcmp(name, "fscreate"))
6403 		error = avc_has_perm(&selinux_state,
6404 				     mysid, mysid, SECCLASS_PROCESS,
6405 				     PROCESS__SETFSCREATE, NULL);
6406 	else if (!strcmp(name, "keycreate"))
6407 		error = avc_has_perm(&selinux_state,
6408 				     mysid, mysid, SECCLASS_PROCESS,
6409 				     PROCESS__SETKEYCREATE, NULL);
6410 	else if (!strcmp(name, "sockcreate"))
6411 		error = avc_has_perm(&selinux_state,
6412 				     mysid, mysid, SECCLASS_PROCESS,
6413 				     PROCESS__SETSOCKCREATE, NULL);
6414 	else if (!strcmp(name, "current"))
6415 		error = avc_has_perm(&selinux_state,
6416 				     mysid, mysid, SECCLASS_PROCESS,
6417 				     PROCESS__SETCURRENT, NULL);
6418 	else
6419 		error = -EINVAL;
6420 	if (error)
6421 		return error;
6422 
6423 	/* Obtain a SID for the context, if one was specified. */
6424 	if (size && str[0] && str[0] != '\n') {
6425 		if (str[size-1] == '\n') {
6426 			str[size-1] = 0;
6427 			size--;
6428 		}
6429 		error = security_context_to_sid(&selinux_state, value, size,
6430 						&sid, GFP_KERNEL);
6431 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6432 			if (!has_cap_mac_admin(true)) {
6433 				struct audit_buffer *ab;
6434 				size_t audit_size;
6435 
6436 				/* We strip a nul only if it is at the end, otherwise the
6437 				 * context contains a nul and we should audit that */
6438 				if (str[size - 1] == '\0')
6439 					audit_size = size - 1;
6440 				else
6441 					audit_size = size;
6442 				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
6443 				audit_log_format(ab, "op=fscreate invalid_context=");
6444 				audit_log_n_untrustedstring(ab, value, audit_size);
6445 				audit_log_end(ab);
6446 
6447 				return error;
6448 			}
6449 			error = security_context_to_sid_force(
6450 						      &selinux_state,
6451 						      value, size, &sid);
6452 		}
6453 		if (error)
6454 			return error;
6455 	}
6456 
6457 	new = prepare_creds();
6458 	if (!new)
6459 		return -ENOMEM;
6460 
6461 	/* Permission checking based on the specified context is
6462 	   performed during the actual operation (execve,
6463 	   open/mkdir/...), when we know the full context of the
6464 	   operation.  See selinux_bprm_set_creds for the execve
6465 	   checks and may_create for the file creation checks. The
6466 	   operation will then fail if the context is not permitted. */
6467 	tsec = new->security;
6468 	if (!strcmp(name, "exec")) {
6469 		tsec->exec_sid = sid;
6470 	} else if (!strcmp(name, "fscreate")) {
6471 		tsec->create_sid = sid;
6472 	} else if (!strcmp(name, "keycreate")) {
6473 		error = avc_has_perm(&selinux_state,
6474 				     mysid, sid, SECCLASS_KEY, KEY__CREATE,
6475 				     NULL);
6476 		if (error)
6477 			goto abort_change;
6478 		tsec->keycreate_sid = sid;
6479 	} else if (!strcmp(name, "sockcreate")) {
6480 		tsec->sockcreate_sid = sid;
6481 	} else if (!strcmp(name, "current")) {
6482 		error = -EINVAL;
6483 		if (sid == 0)
6484 			goto abort_change;
6485 
6486 		/* Only allow single threaded processes to change context */
6487 		error = -EPERM;
6488 		if (!current_is_single_threaded()) {
6489 			error = security_bounded_transition(&selinux_state,
6490 							    tsec->sid, sid);
6491 			if (error)
6492 				goto abort_change;
6493 		}
6494 
6495 		/* Check permissions for the transition. */
6496 		error = avc_has_perm(&selinux_state,
6497 				     tsec->sid, sid, SECCLASS_PROCESS,
6498 				     PROCESS__DYNTRANSITION, NULL);
6499 		if (error)
6500 			goto abort_change;
6501 
6502 		/* Check for ptracing, and update the task SID if ok.
6503 		   Otherwise, leave SID unchanged and fail. */
6504 		ptsid = ptrace_parent_sid();
6505 		if (ptsid != 0) {
6506 			error = avc_has_perm(&selinux_state,
6507 					     ptsid, sid, SECCLASS_PROCESS,
6508 					     PROCESS__PTRACE, NULL);
6509 			if (error)
6510 				goto abort_change;
6511 		}
6512 
6513 		tsec->sid = sid;
6514 	} else {
6515 		error = -EINVAL;
6516 		goto abort_change;
6517 	}
6518 
6519 	commit_creds(new);
6520 	return size;
6521 
6522 abort_change:
6523 	abort_creds(new);
6524 	return error;
6525 }
6526 
6527 static int selinux_ismaclabel(const char *name)
6528 {
6529 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6530 }
6531 
6532 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6533 {
6534 	return security_sid_to_context(&selinux_state, secid,
6535 				       secdata, seclen);
6536 }
6537 
6538 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6539 {
6540 	return security_context_to_sid(&selinux_state, secdata, seclen,
6541 				       secid, GFP_KERNEL);
6542 }
6543 
6544 static void selinux_release_secctx(char *secdata, u32 seclen)
6545 {
6546 	kfree(secdata);
6547 }
6548 
6549 static void selinux_inode_invalidate_secctx(struct inode *inode)
6550 {
6551 	struct inode_security_struct *isec = inode->i_security;
6552 
6553 	spin_lock(&isec->lock);
6554 	isec->initialized = LABEL_INVALID;
6555 	spin_unlock(&isec->lock);
6556 }
6557 
6558 /*
6559  *	called with inode->i_mutex locked
6560  */
6561 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6562 {
6563 	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
6564 }
6565 
6566 /*
6567  *	called with inode->i_mutex locked
6568  */
6569 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6570 {
6571 	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6572 }
6573 
6574 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6575 {
6576 	int len = 0;
6577 	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6578 						ctx, true);
6579 	if (len < 0)
6580 		return len;
6581 	*ctxlen = len;
6582 	return 0;
6583 }
6584 #ifdef CONFIG_KEYS
6585 
6586 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6587 			     unsigned long flags)
6588 {
6589 	const struct task_security_struct *tsec;
6590 	struct key_security_struct *ksec;
6591 
6592 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6593 	if (!ksec)
6594 		return -ENOMEM;
6595 
6596 	tsec = cred->security;
6597 	if (tsec->keycreate_sid)
6598 		ksec->sid = tsec->keycreate_sid;
6599 	else
6600 		ksec->sid = tsec->sid;
6601 
6602 	k->security = ksec;
6603 	return 0;
6604 }
6605 
6606 static void selinux_key_free(struct key *k)
6607 {
6608 	struct key_security_struct *ksec = k->security;
6609 
6610 	k->security = NULL;
6611 	kfree(ksec);
6612 }
6613 
6614 static int selinux_key_permission(key_ref_t key_ref,
6615 				  const struct cred *cred,
6616 				  unsigned perm)
6617 {
6618 	struct key *key;
6619 	struct key_security_struct *ksec;
6620 	u32 sid;
6621 
6622 	/* if no specific permissions are requested, we skip the
6623 	   permission check. No serious, additional covert channels
6624 	   appear to be created. */
6625 	if (perm == 0)
6626 		return 0;
6627 
6628 	sid = cred_sid(cred);
6629 
6630 	key = key_ref_to_ptr(key_ref);
6631 	ksec = key->security;
6632 
6633 	return avc_has_perm(&selinux_state,
6634 			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6635 }
6636 
6637 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6638 {
6639 	struct key_security_struct *ksec = key->security;
6640 	char *context = NULL;
6641 	unsigned len;
6642 	int rc;
6643 
6644 	rc = security_sid_to_context(&selinux_state, ksec->sid,
6645 				     &context, &len);
6646 	if (!rc)
6647 		rc = len;
6648 	*_buffer = context;
6649 	return rc;
6650 }
6651 #endif
6652 
6653 #ifdef CONFIG_SECURITY_INFINIBAND
6654 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6655 {
6656 	struct common_audit_data ad;
6657 	int err;
6658 	u32 sid = 0;
6659 	struct ib_security_struct *sec = ib_sec;
6660 	struct lsm_ibpkey_audit ibpkey;
6661 
6662 	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6663 	if (err)
6664 		return err;
6665 
6666 	ad.type = LSM_AUDIT_DATA_IBPKEY;
6667 	ibpkey.subnet_prefix = subnet_prefix;
6668 	ibpkey.pkey = pkey_val;
6669 	ad.u.ibpkey = &ibpkey;
6670 	return avc_has_perm(&selinux_state,
6671 			    sec->sid, sid,
6672 			    SECCLASS_INFINIBAND_PKEY,
6673 			    INFINIBAND_PKEY__ACCESS, &ad);
6674 }
6675 
6676 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6677 					    u8 port_num)
6678 {
6679 	struct common_audit_data ad;
6680 	int err;
6681 	u32 sid = 0;
6682 	struct ib_security_struct *sec = ib_sec;
6683 	struct lsm_ibendport_audit ibendport;
6684 
6685 	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6686 				      &sid);
6687 
6688 	if (err)
6689 		return err;
6690 
6691 	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6692 	strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6693 	ibendport.port = port_num;
6694 	ad.u.ibendport = &ibendport;
6695 	return avc_has_perm(&selinux_state,
6696 			    sec->sid, sid,
6697 			    SECCLASS_INFINIBAND_ENDPORT,
6698 			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6699 }
6700 
6701 static int selinux_ib_alloc_security(void **ib_sec)
6702 {
6703 	struct ib_security_struct *sec;
6704 
6705 	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6706 	if (!sec)
6707 		return -ENOMEM;
6708 	sec->sid = current_sid();
6709 
6710 	*ib_sec = sec;
6711 	return 0;
6712 }
6713 
6714 static void selinux_ib_free_security(void *ib_sec)
6715 {
6716 	kfree(ib_sec);
6717 }
6718 #endif
6719 
6720 #ifdef CONFIG_BPF_SYSCALL
6721 static int selinux_bpf(int cmd, union bpf_attr *attr,
6722 				     unsigned int size)
6723 {
6724 	u32 sid = current_sid();
6725 	int ret;
6726 
6727 	switch (cmd) {
6728 	case BPF_MAP_CREATE:
6729 		ret = avc_has_perm(&selinux_state,
6730 				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6731 				   NULL);
6732 		break;
6733 	case BPF_PROG_LOAD:
6734 		ret = avc_has_perm(&selinux_state,
6735 				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6736 				   NULL);
6737 		break;
6738 	default:
6739 		ret = 0;
6740 		break;
6741 	}
6742 
6743 	return ret;
6744 }
6745 
6746 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6747 {
6748 	u32 av = 0;
6749 
6750 	if (fmode & FMODE_READ)
6751 		av |= BPF__MAP_READ;
6752 	if (fmode & FMODE_WRITE)
6753 		av |= BPF__MAP_WRITE;
6754 	return av;
6755 }
6756 
6757 /* This function will check the file pass through unix socket or binder to see
6758  * if it is a bpf related object. And apply correspinding checks on the bpf
6759  * object based on the type. The bpf maps and programs, not like other files and
6760  * socket, are using a shared anonymous inode inside the kernel as their inode.
6761  * So checking that inode cannot identify if the process have privilege to
6762  * access the bpf object and that's why we have to add this additional check in
6763  * selinux_file_receive and selinux_binder_transfer_files.
6764  */
6765 static int bpf_fd_pass(struct file *file, u32 sid)
6766 {
6767 	struct bpf_security_struct *bpfsec;
6768 	struct bpf_prog *prog;
6769 	struct bpf_map *map;
6770 	int ret;
6771 
6772 	if (file->f_op == &bpf_map_fops) {
6773 		map = file->private_data;
6774 		bpfsec = map->security;
6775 		ret = avc_has_perm(&selinux_state,
6776 				   sid, bpfsec->sid, SECCLASS_BPF,
6777 				   bpf_map_fmode_to_av(file->f_mode), NULL);
6778 		if (ret)
6779 			return ret;
6780 	} else if (file->f_op == &bpf_prog_fops) {
6781 		prog = file->private_data;
6782 		bpfsec = prog->aux->security;
6783 		ret = avc_has_perm(&selinux_state,
6784 				   sid, bpfsec->sid, SECCLASS_BPF,
6785 				   BPF__PROG_RUN, NULL);
6786 		if (ret)
6787 			return ret;
6788 	}
6789 	return 0;
6790 }
6791 
6792 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6793 {
6794 	u32 sid = current_sid();
6795 	struct bpf_security_struct *bpfsec;
6796 
6797 	bpfsec = map->security;
6798 	return avc_has_perm(&selinux_state,
6799 			    sid, bpfsec->sid, SECCLASS_BPF,
6800 			    bpf_map_fmode_to_av(fmode), NULL);
6801 }
6802 
6803 static int selinux_bpf_prog(struct bpf_prog *prog)
6804 {
6805 	u32 sid = current_sid();
6806 	struct bpf_security_struct *bpfsec;
6807 
6808 	bpfsec = prog->aux->security;
6809 	return avc_has_perm(&selinux_state,
6810 			    sid, bpfsec->sid, SECCLASS_BPF,
6811 			    BPF__PROG_RUN, NULL);
6812 }
6813 
6814 static int selinux_bpf_map_alloc(struct bpf_map *map)
6815 {
6816 	struct bpf_security_struct *bpfsec;
6817 
6818 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6819 	if (!bpfsec)
6820 		return -ENOMEM;
6821 
6822 	bpfsec->sid = current_sid();
6823 	map->security = bpfsec;
6824 
6825 	return 0;
6826 }
6827 
6828 static void selinux_bpf_map_free(struct bpf_map *map)
6829 {
6830 	struct bpf_security_struct *bpfsec = map->security;
6831 
6832 	map->security = NULL;
6833 	kfree(bpfsec);
6834 }
6835 
6836 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6837 {
6838 	struct bpf_security_struct *bpfsec;
6839 
6840 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6841 	if (!bpfsec)
6842 		return -ENOMEM;
6843 
6844 	bpfsec->sid = current_sid();
6845 	aux->security = bpfsec;
6846 
6847 	return 0;
6848 }
6849 
6850 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6851 {
6852 	struct bpf_security_struct *bpfsec = aux->security;
6853 
6854 	aux->security = NULL;
6855 	kfree(bpfsec);
6856 }
6857 #endif
6858 
6859 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6860 	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6861 	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6862 	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6863 	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6864 
6865 	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6866 	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6867 	LSM_HOOK_INIT(capget, selinux_capget),
6868 	LSM_HOOK_INIT(capset, selinux_capset),
6869 	LSM_HOOK_INIT(capable, selinux_capable),
6870 	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6871 	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6872 	LSM_HOOK_INIT(syslog, selinux_syslog),
6873 	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6874 
6875 	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6876 
6877 	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6878 	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6879 	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6880 
6881 	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6882 	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6883 	LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6884 	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6885 	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6886 	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6887 	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6888 	LSM_HOOK_INIT(sb_mount, selinux_mount),
6889 	LSM_HOOK_INIT(sb_umount, selinux_umount),
6890 	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6891 	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6892 	LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
6893 
6894 	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6895 	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6896 
6897 	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6898 	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6899 	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6900 	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6901 	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6902 	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6903 	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6904 	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6905 	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6906 	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6907 	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6908 	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6909 	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6910 	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6911 	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6912 	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6913 	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6914 	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6915 	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6916 	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6917 	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6918 	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6919 	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6920 	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6921 	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6922 	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6923 	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6924 
6925 	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6926 	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6927 	LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6928 	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6929 	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6930 	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6931 	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6932 	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6933 	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6934 	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6935 	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6936 	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6937 
6938 	LSM_HOOK_INIT(file_open, selinux_file_open),
6939 
6940 	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6941 	LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6942 	LSM_HOOK_INIT(cred_free, selinux_cred_free),
6943 	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6944 	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6945 	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
6946 	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6947 	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6948 	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6949 	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6950 	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6951 	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6952 	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6953 	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6954 	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6955 	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6956 	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6957 	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6958 	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6959 	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6960 	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6961 	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6962 	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6963 	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6964 
6965 	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6966 	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6967 
6968 	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6969 	LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6970 
6971 	LSM_HOOK_INIT(msg_queue_alloc_security,
6972 			selinux_msg_queue_alloc_security),
6973 	LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6974 	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6975 	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6976 	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6977 	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6978 
6979 	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6980 	LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6981 	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6982 	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6983 	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6984 
6985 	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6986 	LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6987 	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6988 	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6989 	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6990 
6991 	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6992 
6993 	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6994 	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6995 
6996 	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6997 	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6998 	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6999 	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7000 	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7001 	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7002 	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7003 	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7004 
7005 	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7006 	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7007 
7008 	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7009 	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7010 	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7011 	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7012 	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7013 	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7014 	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7015 	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7016 	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7017 	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7018 	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7019 	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7020 	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7021 	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7022 	LSM_HOOK_INIT(socket_getpeersec_stream,
7023 			selinux_socket_getpeersec_stream),
7024 	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7025 	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7026 	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7027 	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7028 	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7029 	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7030 	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7031 	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7032 	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7033 	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7034 	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7035 	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7036 	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7037 	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7038 	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7039 	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7040 	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7041 	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7042 	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7043 	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7044 	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7045 	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7046 #ifdef CONFIG_SECURITY_INFINIBAND
7047 	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7048 	LSM_HOOK_INIT(ib_endport_manage_subnet,
7049 		      selinux_ib_endport_manage_subnet),
7050 	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7051 	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7052 #endif
7053 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7054 	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7055 	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7056 	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7057 	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7058 	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7059 	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7060 			selinux_xfrm_state_alloc_acquire),
7061 	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7062 	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7063 	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7064 	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7065 			selinux_xfrm_state_pol_flow_match),
7066 	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7067 #endif
7068 
7069 #ifdef CONFIG_KEYS
7070 	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7071 	LSM_HOOK_INIT(key_free, selinux_key_free),
7072 	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7073 	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7074 #endif
7075 
7076 #ifdef CONFIG_AUDIT
7077 	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7078 	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7079 	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7080 	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7081 #endif
7082 
7083 #ifdef CONFIG_BPF_SYSCALL
7084 	LSM_HOOK_INIT(bpf, selinux_bpf),
7085 	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7086 	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7087 	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7088 	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7089 	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7090 	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7091 #endif
7092 };
7093 
7094 static __init int selinux_init(void)
7095 {
7096 	if (!security_module_enable("selinux")) {
7097 		selinux_enabled = 0;
7098 		return 0;
7099 	}
7100 
7101 	if (!selinux_enabled) {
7102 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
7103 		return 0;
7104 	}
7105 
7106 	printk(KERN_INFO "SELinux:  Initializing.\n");
7107 
7108 	memset(&selinux_state, 0, sizeof(selinux_state));
7109 	enforcing_set(&selinux_state, selinux_enforcing_boot);
7110 	selinux_state.checkreqprot = selinux_checkreqprot_boot;
7111 	selinux_ss_init(&selinux_state.ss);
7112 	selinux_avc_init(&selinux_state.avc);
7113 
7114 	/* Set the security state for the initial task. */
7115 	cred_init_security();
7116 
7117 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7118 
7119 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
7120 					    sizeof(struct inode_security_struct),
7121 					    0, SLAB_PANIC, NULL);
7122 	file_security_cache = kmem_cache_create("selinux_file_security",
7123 					    sizeof(struct file_security_struct),
7124 					    0, SLAB_PANIC, NULL);
7125 	avc_init();
7126 
7127 	avtab_cache_init();
7128 
7129 	ebitmap_cache_init();
7130 
7131 	hashtab_cache_init();
7132 
7133 	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7134 
7135 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7136 		panic("SELinux: Unable to register AVC netcache callback\n");
7137 
7138 	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7139 		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7140 
7141 	if (selinux_enforcing_boot)
7142 		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
7143 	else
7144 		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
7145 
7146 	return 0;
7147 }
7148 
7149 static void delayed_superblock_init(struct super_block *sb, void *unused)
7150 {
7151 	superblock_doinit(sb, NULL);
7152 }
7153 
7154 void selinux_complete_init(void)
7155 {
7156 	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
7157 
7158 	/* Set up any superblocks initialized prior to the policy load. */
7159 	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
7160 	iterate_supers(delayed_superblock_init, NULL);
7161 }
7162 
7163 /* SELinux requires early initialization in order to label
7164    all processes and objects when they are created. */
7165 security_initcall(selinux_init);
7166 
7167 #if defined(CONFIG_NETFILTER)
7168 
7169 static const struct nf_hook_ops selinux_nf_ops[] = {
7170 	{
7171 		.hook =		selinux_ipv4_postroute,
7172 		.pf =		NFPROTO_IPV4,
7173 		.hooknum =	NF_INET_POST_ROUTING,
7174 		.priority =	NF_IP_PRI_SELINUX_LAST,
7175 	},
7176 	{
7177 		.hook =		selinux_ipv4_forward,
7178 		.pf =		NFPROTO_IPV4,
7179 		.hooknum =	NF_INET_FORWARD,
7180 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7181 	},
7182 	{
7183 		.hook =		selinux_ipv4_output,
7184 		.pf =		NFPROTO_IPV4,
7185 		.hooknum =	NF_INET_LOCAL_OUT,
7186 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7187 	},
7188 #if IS_ENABLED(CONFIG_IPV6)
7189 	{
7190 		.hook =		selinux_ipv6_postroute,
7191 		.pf =		NFPROTO_IPV6,
7192 		.hooknum =	NF_INET_POST_ROUTING,
7193 		.priority =	NF_IP6_PRI_SELINUX_LAST,
7194 	},
7195 	{
7196 		.hook =		selinux_ipv6_forward,
7197 		.pf =		NFPROTO_IPV6,
7198 		.hooknum =	NF_INET_FORWARD,
7199 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7200 	},
7201 	{
7202 		.hook =		selinux_ipv6_output,
7203 		.pf =		NFPROTO_IPV6,
7204 		.hooknum =	NF_INET_LOCAL_OUT,
7205 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7206 	},
7207 #endif	/* IPV6 */
7208 };
7209 
7210 static int __net_init selinux_nf_register(struct net *net)
7211 {
7212 	return nf_register_net_hooks(net, selinux_nf_ops,
7213 				     ARRAY_SIZE(selinux_nf_ops));
7214 }
7215 
7216 static void __net_exit selinux_nf_unregister(struct net *net)
7217 {
7218 	nf_unregister_net_hooks(net, selinux_nf_ops,
7219 				ARRAY_SIZE(selinux_nf_ops));
7220 }
7221 
7222 static struct pernet_operations selinux_net_ops = {
7223 	.init = selinux_nf_register,
7224 	.exit = selinux_nf_unregister,
7225 };
7226 
7227 static int __init selinux_nf_ip_init(void)
7228 {
7229 	int err;
7230 
7231 	if (!selinux_enabled)
7232 		return 0;
7233 
7234 	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
7235 
7236 	err = register_pernet_subsys(&selinux_net_ops);
7237 	if (err)
7238 		panic("SELinux: register_pernet_subsys: error %d\n", err);
7239 
7240 	return 0;
7241 }
7242 __initcall(selinux_nf_ip_init);
7243 
7244 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7245 static void selinux_nf_ip_exit(void)
7246 {
7247 	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
7248 
7249 	unregister_pernet_subsys(&selinux_net_ops);
7250 }
7251 #endif
7252 
7253 #else /* CONFIG_NETFILTER */
7254 
7255 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7256 #define selinux_nf_ip_exit()
7257 #endif
7258 
7259 #endif /* CONFIG_NETFILTER */
7260 
7261 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7262 int selinux_disable(struct selinux_state *state)
7263 {
7264 	if (state->initialized) {
7265 		/* Not permitted after initial policy load. */
7266 		return -EINVAL;
7267 	}
7268 
7269 	if (state->disabled) {
7270 		/* Only do this once. */
7271 		return -EINVAL;
7272 	}
7273 
7274 	state->disabled = 1;
7275 
7276 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
7277 
7278 	selinux_enabled = 0;
7279 
7280 	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7281 
7282 	/* Try to destroy the avc node cache */
7283 	avc_disable();
7284 
7285 	/* Unregister netfilter hooks. */
7286 	selinux_nf_ip_exit();
7287 
7288 	/* Unregister selinuxfs. */
7289 	exit_sel_fs();
7290 
7291 	return 0;
7292 }
7293 #endif
7294