1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul@paul-moore.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the GNU General Public License version 2, 23 * as published by the Free Software Foundation. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/kd.h> 28 #include <linux/kernel.h> 29 #include <linux/tracehook.h> 30 #include <linux/errno.h> 31 #include <linux/sched.h> 32 #include <linux/security.h> 33 #include <linux/xattr.h> 34 #include <linux/capability.h> 35 #include <linux/unistd.h> 36 #include <linux/mm.h> 37 #include <linux/mman.h> 38 #include <linux/slab.h> 39 #include <linux/pagemap.h> 40 #include <linux/proc_fs.h> 41 #include <linux/swap.h> 42 #include <linux/spinlock.h> 43 #include <linux/syscalls.h> 44 #include <linux/dcache.h> 45 #include <linux/file.h> 46 #include <linux/fdtable.h> 47 #include <linux/namei.h> 48 #include <linux/mount.h> 49 #include <linux/netfilter_ipv4.h> 50 #include <linux/netfilter_ipv6.h> 51 #include <linux/tty.h> 52 #include <net/icmp.h> 53 #include <net/ip.h> /* for local_port_range[] */ 54 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 55 #include <net/net_namespace.h> 56 #include <net/netlabel.h> 57 #include <linux/uaccess.h> 58 #include <asm/ioctls.h> 59 #include <linux/atomic.h> 60 #include <linux/bitops.h> 61 #include <linux/interrupt.h> 62 #include <linux/netdevice.h> /* for network interface checks */ 63 #include <linux/netlink.h> 64 #include <linux/tcp.h> 65 #include <linux/udp.h> 66 #include <linux/dccp.h> 67 #include <linux/quota.h> 68 #include <linux/un.h> /* for Unix socket types */ 69 #include <net/af_unix.h> /* for Unix socket types */ 70 #include <linux/parser.h> 71 #include <linux/nfs_mount.h> 72 #include <net/ipv6.h> 73 #include <linux/hugetlb.h> 74 #include <linux/personality.h> 75 #include <linux/audit.h> 76 #include <linux/string.h> 77 #include <linux/selinux.h> 78 #include <linux/mutex.h> 79 #include <linux/posix-timers.h> 80 #include <linux/syslog.h> 81 #include <linux/user_namespace.h> 82 #include <linux/export.h> 83 #include <linux/msg.h> 84 #include <linux/shm.h> 85 86 #include "avc.h" 87 #include "objsec.h" 88 #include "netif.h" 89 #include "netnode.h" 90 #include "netport.h" 91 #include "xfrm.h" 92 #include "netlabel.h" 93 #include "audit.h" 94 #include "avc_ss.h" 95 96 #define NUM_SEL_MNT_OPTS 5 97 98 extern struct security_operations *security_ops; 99 100 /* SECMARK reference count */ 101 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 102 103 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 104 int selinux_enforcing; 105 106 static int __init enforcing_setup(char *str) 107 { 108 unsigned long enforcing; 109 if (!strict_strtoul(str, 0, &enforcing)) 110 selinux_enforcing = enforcing ? 1 : 0; 111 return 1; 112 } 113 __setup("enforcing=", enforcing_setup); 114 #endif 115 116 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 117 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 118 119 static int __init selinux_enabled_setup(char *str) 120 { 121 unsigned long enabled; 122 if (!strict_strtoul(str, 0, &enabled)) 123 selinux_enabled = enabled ? 1 : 0; 124 return 1; 125 } 126 __setup("selinux=", selinux_enabled_setup); 127 #else 128 int selinux_enabled = 1; 129 #endif 130 131 static struct kmem_cache *sel_inode_cache; 132 133 /** 134 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 135 * 136 * Description: 137 * This function checks the SECMARK reference counter to see if any SECMARK 138 * targets are currently configured, if the reference counter is greater than 139 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 140 * enabled, false (0) if SECMARK is disabled. 141 * 142 */ 143 static int selinux_secmark_enabled(void) 144 { 145 return (atomic_read(&selinux_secmark_refcount) > 0); 146 } 147 148 /* 149 * initialise the security for the init task 150 */ 151 static void cred_init_security(void) 152 { 153 struct cred *cred = (struct cred *) current->real_cred; 154 struct task_security_struct *tsec; 155 156 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 157 if (!tsec) 158 panic("SELinux: Failed to initialize initial task.\n"); 159 160 tsec->osid = tsec->sid = SECINITSID_KERNEL; 161 cred->security = tsec; 162 } 163 164 /* 165 * get the security ID of a set of credentials 166 */ 167 static inline u32 cred_sid(const struct cred *cred) 168 { 169 const struct task_security_struct *tsec; 170 171 tsec = cred->security; 172 return tsec->sid; 173 } 174 175 /* 176 * get the objective security ID of a task 177 */ 178 static inline u32 task_sid(const struct task_struct *task) 179 { 180 u32 sid; 181 182 rcu_read_lock(); 183 sid = cred_sid(__task_cred(task)); 184 rcu_read_unlock(); 185 return sid; 186 } 187 188 /* 189 * get the subjective security ID of the current task 190 */ 191 static inline u32 current_sid(void) 192 { 193 const struct task_security_struct *tsec = current_security(); 194 195 return tsec->sid; 196 } 197 198 /* Allocate and free functions for each kind of security blob. */ 199 200 static int inode_alloc_security(struct inode *inode) 201 { 202 struct inode_security_struct *isec; 203 u32 sid = current_sid(); 204 205 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 206 if (!isec) 207 return -ENOMEM; 208 209 mutex_init(&isec->lock); 210 INIT_LIST_HEAD(&isec->list); 211 isec->inode = inode; 212 isec->sid = SECINITSID_UNLABELED; 213 isec->sclass = SECCLASS_FILE; 214 isec->task_sid = sid; 215 inode->i_security = isec; 216 217 return 0; 218 } 219 220 static void inode_free_security(struct inode *inode) 221 { 222 struct inode_security_struct *isec = inode->i_security; 223 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 224 225 spin_lock(&sbsec->isec_lock); 226 if (!list_empty(&isec->list)) 227 list_del_init(&isec->list); 228 spin_unlock(&sbsec->isec_lock); 229 230 inode->i_security = NULL; 231 kmem_cache_free(sel_inode_cache, isec); 232 } 233 234 static int file_alloc_security(struct file *file) 235 { 236 struct file_security_struct *fsec; 237 u32 sid = current_sid(); 238 239 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 240 if (!fsec) 241 return -ENOMEM; 242 243 fsec->sid = sid; 244 fsec->fown_sid = sid; 245 file->f_security = fsec; 246 247 return 0; 248 } 249 250 static void file_free_security(struct file *file) 251 { 252 struct file_security_struct *fsec = file->f_security; 253 file->f_security = NULL; 254 kfree(fsec); 255 } 256 257 static int superblock_alloc_security(struct super_block *sb) 258 { 259 struct superblock_security_struct *sbsec; 260 261 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 262 if (!sbsec) 263 return -ENOMEM; 264 265 mutex_init(&sbsec->lock); 266 INIT_LIST_HEAD(&sbsec->isec_head); 267 spin_lock_init(&sbsec->isec_lock); 268 sbsec->sb = sb; 269 sbsec->sid = SECINITSID_UNLABELED; 270 sbsec->def_sid = SECINITSID_FILE; 271 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 272 sb->s_security = sbsec; 273 274 return 0; 275 } 276 277 static void superblock_free_security(struct super_block *sb) 278 { 279 struct superblock_security_struct *sbsec = sb->s_security; 280 sb->s_security = NULL; 281 kfree(sbsec); 282 } 283 284 /* The file system's label must be initialized prior to use. */ 285 286 static const char *labeling_behaviors[6] = { 287 "uses xattr", 288 "uses transition SIDs", 289 "uses task SIDs", 290 "uses genfs_contexts", 291 "not configured for labeling", 292 "uses mountpoint labeling", 293 }; 294 295 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 296 297 static inline int inode_doinit(struct inode *inode) 298 { 299 return inode_doinit_with_dentry(inode, NULL); 300 } 301 302 enum { 303 Opt_error = -1, 304 Opt_context = 1, 305 Opt_fscontext = 2, 306 Opt_defcontext = 3, 307 Opt_rootcontext = 4, 308 Opt_labelsupport = 5, 309 }; 310 311 static const match_table_t tokens = { 312 {Opt_context, CONTEXT_STR "%s"}, 313 {Opt_fscontext, FSCONTEXT_STR "%s"}, 314 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 315 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 316 {Opt_labelsupport, LABELSUPP_STR}, 317 {Opt_error, NULL}, 318 }; 319 320 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 321 322 static int may_context_mount_sb_relabel(u32 sid, 323 struct superblock_security_struct *sbsec, 324 const struct cred *cred) 325 { 326 const struct task_security_struct *tsec = cred->security; 327 int rc; 328 329 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 330 FILESYSTEM__RELABELFROM, NULL); 331 if (rc) 332 return rc; 333 334 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 335 FILESYSTEM__RELABELTO, NULL); 336 return rc; 337 } 338 339 static int may_context_mount_inode_relabel(u32 sid, 340 struct superblock_security_struct *sbsec, 341 const struct cred *cred) 342 { 343 const struct task_security_struct *tsec = cred->security; 344 int rc; 345 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 346 FILESYSTEM__RELABELFROM, NULL); 347 if (rc) 348 return rc; 349 350 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 351 FILESYSTEM__ASSOCIATE, NULL); 352 return rc; 353 } 354 355 static int sb_finish_set_opts(struct super_block *sb) 356 { 357 struct superblock_security_struct *sbsec = sb->s_security; 358 struct dentry *root = sb->s_root; 359 struct inode *root_inode = root->d_inode; 360 int rc = 0; 361 362 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 363 /* Make sure that the xattr handler exists and that no 364 error other than -ENODATA is returned by getxattr on 365 the root directory. -ENODATA is ok, as this may be 366 the first boot of the SELinux kernel before we have 367 assigned xattr values to the filesystem. */ 368 if (!root_inode->i_op->getxattr) { 369 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 370 "xattr support\n", sb->s_id, sb->s_type->name); 371 rc = -EOPNOTSUPP; 372 goto out; 373 } 374 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 375 if (rc < 0 && rc != -ENODATA) { 376 if (rc == -EOPNOTSUPP) 377 printk(KERN_WARNING "SELinux: (dev %s, type " 378 "%s) has no security xattr handler\n", 379 sb->s_id, sb->s_type->name); 380 else 381 printk(KERN_WARNING "SELinux: (dev %s, type " 382 "%s) getxattr errno %d\n", sb->s_id, 383 sb->s_type->name, -rc); 384 goto out; 385 } 386 } 387 388 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP); 389 390 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 391 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 392 sb->s_id, sb->s_type->name); 393 else 394 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n", 395 sb->s_id, sb->s_type->name, 396 labeling_behaviors[sbsec->behavior-1]); 397 398 if (sbsec->behavior == SECURITY_FS_USE_GENFS || 399 sbsec->behavior == SECURITY_FS_USE_MNTPOINT || 400 sbsec->behavior == SECURITY_FS_USE_NONE || 401 sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 402 sbsec->flags &= ~SE_SBLABELSUPP; 403 404 /* Special handling for sysfs. Is genfs but also has setxattr handler*/ 405 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0) 406 sbsec->flags |= SE_SBLABELSUPP; 407 408 /* Initialize the root inode. */ 409 rc = inode_doinit_with_dentry(root_inode, root); 410 411 /* Initialize any other inodes associated with the superblock, e.g. 412 inodes created prior to initial policy load or inodes created 413 during get_sb by a pseudo filesystem that directly 414 populates itself. */ 415 spin_lock(&sbsec->isec_lock); 416 next_inode: 417 if (!list_empty(&sbsec->isec_head)) { 418 struct inode_security_struct *isec = 419 list_entry(sbsec->isec_head.next, 420 struct inode_security_struct, list); 421 struct inode *inode = isec->inode; 422 spin_unlock(&sbsec->isec_lock); 423 inode = igrab(inode); 424 if (inode) { 425 if (!IS_PRIVATE(inode)) 426 inode_doinit(inode); 427 iput(inode); 428 } 429 spin_lock(&sbsec->isec_lock); 430 list_del_init(&isec->list); 431 goto next_inode; 432 } 433 spin_unlock(&sbsec->isec_lock); 434 out: 435 return rc; 436 } 437 438 /* 439 * This function should allow an FS to ask what it's mount security 440 * options were so it can use those later for submounts, displaying 441 * mount options, or whatever. 442 */ 443 static int selinux_get_mnt_opts(const struct super_block *sb, 444 struct security_mnt_opts *opts) 445 { 446 int rc = 0, i; 447 struct superblock_security_struct *sbsec = sb->s_security; 448 char *context = NULL; 449 u32 len; 450 char tmp; 451 452 security_init_mnt_opts(opts); 453 454 if (!(sbsec->flags & SE_SBINITIALIZED)) 455 return -EINVAL; 456 457 if (!ss_initialized) 458 return -EINVAL; 459 460 tmp = sbsec->flags & SE_MNTMASK; 461 /* count the number of mount options for this sb */ 462 for (i = 0; i < 8; i++) { 463 if (tmp & 0x01) 464 opts->num_mnt_opts++; 465 tmp >>= 1; 466 } 467 /* Check if the Label support flag is set */ 468 if (sbsec->flags & SE_SBLABELSUPP) 469 opts->num_mnt_opts++; 470 471 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 472 if (!opts->mnt_opts) { 473 rc = -ENOMEM; 474 goto out_free; 475 } 476 477 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 478 if (!opts->mnt_opts_flags) { 479 rc = -ENOMEM; 480 goto out_free; 481 } 482 483 i = 0; 484 if (sbsec->flags & FSCONTEXT_MNT) { 485 rc = security_sid_to_context(sbsec->sid, &context, &len); 486 if (rc) 487 goto out_free; 488 opts->mnt_opts[i] = context; 489 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 490 } 491 if (sbsec->flags & CONTEXT_MNT) { 492 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 493 if (rc) 494 goto out_free; 495 opts->mnt_opts[i] = context; 496 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 497 } 498 if (sbsec->flags & DEFCONTEXT_MNT) { 499 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 500 if (rc) 501 goto out_free; 502 opts->mnt_opts[i] = context; 503 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 504 } 505 if (sbsec->flags & ROOTCONTEXT_MNT) { 506 struct inode *root = sbsec->sb->s_root->d_inode; 507 struct inode_security_struct *isec = root->i_security; 508 509 rc = security_sid_to_context(isec->sid, &context, &len); 510 if (rc) 511 goto out_free; 512 opts->mnt_opts[i] = context; 513 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 514 } 515 if (sbsec->flags & SE_SBLABELSUPP) { 516 opts->mnt_opts[i] = NULL; 517 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP; 518 } 519 520 BUG_ON(i != opts->num_mnt_opts); 521 522 return 0; 523 524 out_free: 525 security_free_mnt_opts(opts); 526 return rc; 527 } 528 529 static int bad_option(struct superblock_security_struct *sbsec, char flag, 530 u32 old_sid, u32 new_sid) 531 { 532 char mnt_flags = sbsec->flags & SE_MNTMASK; 533 534 /* check if the old mount command had the same options */ 535 if (sbsec->flags & SE_SBINITIALIZED) 536 if (!(sbsec->flags & flag) || 537 (old_sid != new_sid)) 538 return 1; 539 540 /* check if we were passed the same options twice, 541 * aka someone passed context=a,context=b 542 */ 543 if (!(sbsec->flags & SE_SBINITIALIZED)) 544 if (mnt_flags & flag) 545 return 1; 546 return 0; 547 } 548 549 /* 550 * Allow filesystems with binary mount data to explicitly set mount point 551 * labeling information. 552 */ 553 static int selinux_set_mnt_opts(struct super_block *sb, 554 struct security_mnt_opts *opts) 555 { 556 const struct cred *cred = current_cred(); 557 int rc = 0, i; 558 struct superblock_security_struct *sbsec = sb->s_security; 559 const char *name = sb->s_type->name; 560 struct inode *inode = sbsec->sb->s_root->d_inode; 561 struct inode_security_struct *root_isec = inode->i_security; 562 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 563 u32 defcontext_sid = 0; 564 char **mount_options = opts->mnt_opts; 565 int *flags = opts->mnt_opts_flags; 566 int num_opts = opts->num_mnt_opts; 567 568 mutex_lock(&sbsec->lock); 569 570 if (!ss_initialized) { 571 if (!num_opts) { 572 /* Defer initialization until selinux_complete_init, 573 after the initial policy is loaded and the security 574 server is ready to handle calls. */ 575 goto out; 576 } 577 rc = -EINVAL; 578 printk(KERN_WARNING "SELinux: Unable to set superblock options " 579 "before the security server is initialized\n"); 580 goto out; 581 } 582 583 /* 584 * Binary mount data FS will come through this function twice. Once 585 * from an explicit call and once from the generic calls from the vfs. 586 * Since the generic VFS calls will not contain any security mount data 587 * we need to skip the double mount verification. 588 * 589 * This does open a hole in which we will not notice if the first 590 * mount using this sb set explict options and a second mount using 591 * this sb does not set any security options. (The first options 592 * will be used for both mounts) 593 */ 594 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 595 && (num_opts == 0)) 596 goto out; 597 598 /* 599 * parse the mount options, check if they are valid sids. 600 * also check if someone is trying to mount the same sb more 601 * than once with different security options. 602 */ 603 for (i = 0; i < num_opts; i++) { 604 u32 sid; 605 606 if (flags[i] == SE_SBLABELSUPP) 607 continue; 608 rc = security_context_to_sid(mount_options[i], 609 strlen(mount_options[i]), &sid); 610 if (rc) { 611 printk(KERN_WARNING "SELinux: security_context_to_sid" 612 "(%s) failed for (dev %s, type %s) errno=%d\n", 613 mount_options[i], sb->s_id, name, rc); 614 goto out; 615 } 616 switch (flags[i]) { 617 case FSCONTEXT_MNT: 618 fscontext_sid = sid; 619 620 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 621 fscontext_sid)) 622 goto out_double_mount; 623 624 sbsec->flags |= FSCONTEXT_MNT; 625 break; 626 case CONTEXT_MNT: 627 context_sid = sid; 628 629 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 630 context_sid)) 631 goto out_double_mount; 632 633 sbsec->flags |= CONTEXT_MNT; 634 break; 635 case ROOTCONTEXT_MNT: 636 rootcontext_sid = sid; 637 638 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 639 rootcontext_sid)) 640 goto out_double_mount; 641 642 sbsec->flags |= ROOTCONTEXT_MNT; 643 644 break; 645 case DEFCONTEXT_MNT: 646 defcontext_sid = sid; 647 648 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 649 defcontext_sid)) 650 goto out_double_mount; 651 652 sbsec->flags |= DEFCONTEXT_MNT; 653 654 break; 655 default: 656 rc = -EINVAL; 657 goto out; 658 } 659 } 660 661 if (sbsec->flags & SE_SBINITIALIZED) { 662 /* previously mounted with options, but not on this attempt? */ 663 if ((sbsec->flags & SE_MNTMASK) && !num_opts) 664 goto out_double_mount; 665 rc = 0; 666 goto out; 667 } 668 669 if (strcmp(sb->s_type->name, "proc") == 0) 670 sbsec->flags |= SE_SBPROC; 671 672 /* Determine the labeling behavior to use for this filesystem type. */ 673 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid); 674 if (rc) { 675 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n", 676 __func__, sb->s_type->name, rc); 677 goto out; 678 } 679 680 /* sets the context of the superblock for the fs being mounted. */ 681 if (fscontext_sid) { 682 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 683 if (rc) 684 goto out; 685 686 sbsec->sid = fscontext_sid; 687 } 688 689 /* 690 * Switch to using mount point labeling behavior. 691 * sets the label used on all file below the mountpoint, and will set 692 * the superblock context if not already set. 693 */ 694 if (context_sid) { 695 if (!fscontext_sid) { 696 rc = may_context_mount_sb_relabel(context_sid, sbsec, 697 cred); 698 if (rc) 699 goto out; 700 sbsec->sid = context_sid; 701 } else { 702 rc = may_context_mount_inode_relabel(context_sid, sbsec, 703 cred); 704 if (rc) 705 goto out; 706 } 707 if (!rootcontext_sid) 708 rootcontext_sid = context_sid; 709 710 sbsec->mntpoint_sid = context_sid; 711 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 712 } 713 714 if (rootcontext_sid) { 715 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 716 cred); 717 if (rc) 718 goto out; 719 720 root_isec->sid = rootcontext_sid; 721 root_isec->initialized = 1; 722 } 723 724 if (defcontext_sid) { 725 if (sbsec->behavior != SECURITY_FS_USE_XATTR) { 726 rc = -EINVAL; 727 printk(KERN_WARNING "SELinux: defcontext option is " 728 "invalid for this filesystem type\n"); 729 goto out; 730 } 731 732 if (defcontext_sid != sbsec->def_sid) { 733 rc = may_context_mount_inode_relabel(defcontext_sid, 734 sbsec, cred); 735 if (rc) 736 goto out; 737 } 738 739 sbsec->def_sid = defcontext_sid; 740 } 741 742 rc = sb_finish_set_opts(sb); 743 out: 744 mutex_unlock(&sbsec->lock); 745 return rc; 746 out_double_mount: 747 rc = -EINVAL; 748 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 749 "security settings for (dev %s, type %s)\n", sb->s_id, name); 750 goto out; 751 } 752 753 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 754 struct super_block *newsb) 755 { 756 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 757 struct superblock_security_struct *newsbsec = newsb->s_security; 758 759 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 760 int set_context = (oldsbsec->flags & CONTEXT_MNT); 761 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 762 763 /* 764 * if the parent was able to be mounted it clearly had no special lsm 765 * mount options. thus we can safely deal with this superblock later 766 */ 767 if (!ss_initialized) 768 return; 769 770 /* how can we clone if the old one wasn't set up?? */ 771 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 772 773 /* if fs is reusing a sb, just let its options stand... */ 774 if (newsbsec->flags & SE_SBINITIALIZED) 775 return; 776 777 mutex_lock(&newsbsec->lock); 778 779 newsbsec->flags = oldsbsec->flags; 780 781 newsbsec->sid = oldsbsec->sid; 782 newsbsec->def_sid = oldsbsec->def_sid; 783 newsbsec->behavior = oldsbsec->behavior; 784 785 if (set_context) { 786 u32 sid = oldsbsec->mntpoint_sid; 787 788 if (!set_fscontext) 789 newsbsec->sid = sid; 790 if (!set_rootcontext) { 791 struct inode *newinode = newsb->s_root->d_inode; 792 struct inode_security_struct *newisec = newinode->i_security; 793 newisec->sid = sid; 794 } 795 newsbsec->mntpoint_sid = sid; 796 } 797 if (set_rootcontext) { 798 const struct inode *oldinode = oldsb->s_root->d_inode; 799 const struct inode_security_struct *oldisec = oldinode->i_security; 800 struct inode *newinode = newsb->s_root->d_inode; 801 struct inode_security_struct *newisec = newinode->i_security; 802 803 newisec->sid = oldisec->sid; 804 } 805 806 sb_finish_set_opts(newsb); 807 mutex_unlock(&newsbsec->lock); 808 } 809 810 static int selinux_parse_opts_str(char *options, 811 struct security_mnt_opts *opts) 812 { 813 char *p; 814 char *context = NULL, *defcontext = NULL; 815 char *fscontext = NULL, *rootcontext = NULL; 816 int rc, num_mnt_opts = 0; 817 818 opts->num_mnt_opts = 0; 819 820 /* Standard string-based options. */ 821 while ((p = strsep(&options, "|")) != NULL) { 822 int token; 823 substring_t args[MAX_OPT_ARGS]; 824 825 if (!*p) 826 continue; 827 828 token = match_token(p, tokens, args); 829 830 switch (token) { 831 case Opt_context: 832 if (context || defcontext) { 833 rc = -EINVAL; 834 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 835 goto out_err; 836 } 837 context = match_strdup(&args[0]); 838 if (!context) { 839 rc = -ENOMEM; 840 goto out_err; 841 } 842 break; 843 844 case Opt_fscontext: 845 if (fscontext) { 846 rc = -EINVAL; 847 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 848 goto out_err; 849 } 850 fscontext = match_strdup(&args[0]); 851 if (!fscontext) { 852 rc = -ENOMEM; 853 goto out_err; 854 } 855 break; 856 857 case Opt_rootcontext: 858 if (rootcontext) { 859 rc = -EINVAL; 860 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 861 goto out_err; 862 } 863 rootcontext = match_strdup(&args[0]); 864 if (!rootcontext) { 865 rc = -ENOMEM; 866 goto out_err; 867 } 868 break; 869 870 case Opt_defcontext: 871 if (context || defcontext) { 872 rc = -EINVAL; 873 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 874 goto out_err; 875 } 876 defcontext = match_strdup(&args[0]); 877 if (!defcontext) { 878 rc = -ENOMEM; 879 goto out_err; 880 } 881 break; 882 case Opt_labelsupport: 883 break; 884 default: 885 rc = -EINVAL; 886 printk(KERN_WARNING "SELinux: unknown mount option\n"); 887 goto out_err; 888 889 } 890 } 891 892 rc = -ENOMEM; 893 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC); 894 if (!opts->mnt_opts) 895 goto out_err; 896 897 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC); 898 if (!opts->mnt_opts_flags) { 899 kfree(opts->mnt_opts); 900 goto out_err; 901 } 902 903 if (fscontext) { 904 opts->mnt_opts[num_mnt_opts] = fscontext; 905 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 906 } 907 if (context) { 908 opts->mnt_opts[num_mnt_opts] = context; 909 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 910 } 911 if (rootcontext) { 912 opts->mnt_opts[num_mnt_opts] = rootcontext; 913 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 914 } 915 if (defcontext) { 916 opts->mnt_opts[num_mnt_opts] = defcontext; 917 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 918 } 919 920 opts->num_mnt_opts = num_mnt_opts; 921 return 0; 922 923 out_err: 924 kfree(context); 925 kfree(defcontext); 926 kfree(fscontext); 927 kfree(rootcontext); 928 return rc; 929 } 930 /* 931 * string mount options parsing and call set the sbsec 932 */ 933 static int superblock_doinit(struct super_block *sb, void *data) 934 { 935 int rc = 0; 936 char *options = data; 937 struct security_mnt_opts opts; 938 939 security_init_mnt_opts(&opts); 940 941 if (!data) 942 goto out; 943 944 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 945 946 rc = selinux_parse_opts_str(options, &opts); 947 if (rc) 948 goto out_err; 949 950 out: 951 rc = selinux_set_mnt_opts(sb, &opts); 952 953 out_err: 954 security_free_mnt_opts(&opts); 955 return rc; 956 } 957 958 static void selinux_write_opts(struct seq_file *m, 959 struct security_mnt_opts *opts) 960 { 961 int i; 962 char *prefix; 963 964 for (i = 0; i < opts->num_mnt_opts; i++) { 965 char *has_comma; 966 967 if (opts->mnt_opts[i]) 968 has_comma = strchr(opts->mnt_opts[i], ','); 969 else 970 has_comma = NULL; 971 972 switch (opts->mnt_opts_flags[i]) { 973 case CONTEXT_MNT: 974 prefix = CONTEXT_STR; 975 break; 976 case FSCONTEXT_MNT: 977 prefix = FSCONTEXT_STR; 978 break; 979 case ROOTCONTEXT_MNT: 980 prefix = ROOTCONTEXT_STR; 981 break; 982 case DEFCONTEXT_MNT: 983 prefix = DEFCONTEXT_STR; 984 break; 985 case SE_SBLABELSUPP: 986 seq_putc(m, ','); 987 seq_puts(m, LABELSUPP_STR); 988 continue; 989 default: 990 BUG(); 991 return; 992 }; 993 /* we need a comma before each option */ 994 seq_putc(m, ','); 995 seq_puts(m, prefix); 996 if (has_comma) 997 seq_putc(m, '\"'); 998 seq_puts(m, opts->mnt_opts[i]); 999 if (has_comma) 1000 seq_putc(m, '\"'); 1001 } 1002 } 1003 1004 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1005 { 1006 struct security_mnt_opts opts; 1007 int rc; 1008 1009 rc = selinux_get_mnt_opts(sb, &opts); 1010 if (rc) { 1011 /* before policy load we may get EINVAL, don't show anything */ 1012 if (rc == -EINVAL) 1013 rc = 0; 1014 return rc; 1015 } 1016 1017 selinux_write_opts(m, &opts); 1018 1019 security_free_mnt_opts(&opts); 1020 1021 return rc; 1022 } 1023 1024 static inline u16 inode_mode_to_security_class(umode_t mode) 1025 { 1026 switch (mode & S_IFMT) { 1027 case S_IFSOCK: 1028 return SECCLASS_SOCK_FILE; 1029 case S_IFLNK: 1030 return SECCLASS_LNK_FILE; 1031 case S_IFREG: 1032 return SECCLASS_FILE; 1033 case S_IFBLK: 1034 return SECCLASS_BLK_FILE; 1035 case S_IFDIR: 1036 return SECCLASS_DIR; 1037 case S_IFCHR: 1038 return SECCLASS_CHR_FILE; 1039 case S_IFIFO: 1040 return SECCLASS_FIFO_FILE; 1041 1042 } 1043 1044 return SECCLASS_FILE; 1045 } 1046 1047 static inline int default_protocol_stream(int protocol) 1048 { 1049 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1050 } 1051 1052 static inline int default_protocol_dgram(int protocol) 1053 { 1054 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1055 } 1056 1057 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1058 { 1059 switch (family) { 1060 case PF_UNIX: 1061 switch (type) { 1062 case SOCK_STREAM: 1063 case SOCK_SEQPACKET: 1064 return SECCLASS_UNIX_STREAM_SOCKET; 1065 case SOCK_DGRAM: 1066 return SECCLASS_UNIX_DGRAM_SOCKET; 1067 } 1068 break; 1069 case PF_INET: 1070 case PF_INET6: 1071 switch (type) { 1072 case SOCK_STREAM: 1073 if (default_protocol_stream(protocol)) 1074 return SECCLASS_TCP_SOCKET; 1075 else 1076 return SECCLASS_RAWIP_SOCKET; 1077 case SOCK_DGRAM: 1078 if (default_protocol_dgram(protocol)) 1079 return SECCLASS_UDP_SOCKET; 1080 else 1081 return SECCLASS_RAWIP_SOCKET; 1082 case SOCK_DCCP: 1083 return SECCLASS_DCCP_SOCKET; 1084 default: 1085 return SECCLASS_RAWIP_SOCKET; 1086 } 1087 break; 1088 case PF_NETLINK: 1089 switch (protocol) { 1090 case NETLINK_ROUTE: 1091 return SECCLASS_NETLINK_ROUTE_SOCKET; 1092 case NETLINK_FIREWALL: 1093 return SECCLASS_NETLINK_FIREWALL_SOCKET; 1094 case NETLINK_SOCK_DIAG: 1095 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1096 case NETLINK_NFLOG: 1097 return SECCLASS_NETLINK_NFLOG_SOCKET; 1098 case NETLINK_XFRM: 1099 return SECCLASS_NETLINK_XFRM_SOCKET; 1100 case NETLINK_SELINUX: 1101 return SECCLASS_NETLINK_SELINUX_SOCKET; 1102 case NETLINK_AUDIT: 1103 return SECCLASS_NETLINK_AUDIT_SOCKET; 1104 case NETLINK_IP6_FW: 1105 return SECCLASS_NETLINK_IP6FW_SOCKET; 1106 case NETLINK_DNRTMSG: 1107 return SECCLASS_NETLINK_DNRT_SOCKET; 1108 case NETLINK_KOBJECT_UEVENT: 1109 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1110 default: 1111 return SECCLASS_NETLINK_SOCKET; 1112 } 1113 case PF_PACKET: 1114 return SECCLASS_PACKET_SOCKET; 1115 case PF_KEY: 1116 return SECCLASS_KEY_SOCKET; 1117 case PF_APPLETALK: 1118 return SECCLASS_APPLETALK_SOCKET; 1119 } 1120 1121 return SECCLASS_SOCKET; 1122 } 1123 1124 #ifdef CONFIG_PROC_FS 1125 static int selinux_proc_get_sid(struct dentry *dentry, 1126 u16 tclass, 1127 u32 *sid) 1128 { 1129 int rc; 1130 char *buffer, *path; 1131 1132 buffer = (char *)__get_free_page(GFP_KERNEL); 1133 if (!buffer) 1134 return -ENOMEM; 1135 1136 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1137 if (IS_ERR(path)) 1138 rc = PTR_ERR(path); 1139 else { 1140 /* each process gets a /proc/PID/ entry. Strip off the 1141 * PID part to get a valid selinux labeling. 1142 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1143 while (path[1] >= '0' && path[1] <= '9') { 1144 path[1] = '/'; 1145 path++; 1146 } 1147 rc = security_genfs_sid("proc", path, tclass, sid); 1148 } 1149 free_page((unsigned long)buffer); 1150 return rc; 1151 } 1152 #else 1153 static int selinux_proc_get_sid(struct dentry *dentry, 1154 u16 tclass, 1155 u32 *sid) 1156 { 1157 return -EINVAL; 1158 } 1159 #endif 1160 1161 /* The inode's security attributes must be initialized before first use. */ 1162 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1163 { 1164 struct superblock_security_struct *sbsec = NULL; 1165 struct inode_security_struct *isec = inode->i_security; 1166 u32 sid; 1167 struct dentry *dentry; 1168 #define INITCONTEXTLEN 255 1169 char *context = NULL; 1170 unsigned len = 0; 1171 int rc = 0; 1172 1173 if (isec->initialized) 1174 goto out; 1175 1176 mutex_lock(&isec->lock); 1177 if (isec->initialized) 1178 goto out_unlock; 1179 1180 sbsec = inode->i_sb->s_security; 1181 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1182 /* Defer initialization until selinux_complete_init, 1183 after the initial policy is loaded and the security 1184 server is ready to handle calls. */ 1185 spin_lock(&sbsec->isec_lock); 1186 if (list_empty(&isec->list)) 1187 list_add(&isec->list, &sbsec->isec_head); 1188 spin_unlock(&sbsec->isec_lock); 1189 goto out_unlock; 1190 } 1191 1192 switch (sbsec->behavior) { 1193 case SECURITY_FS_USE_XATTR: 1194 if (!inode->i_op->getxattr) { 1195 isec->sid = sbsec->def_sid; 1196 break; 1197 } 1198 1199 /* Need a dentry, since the xattr API requires one. 1200 Life would be simpler if we could just pass the inode. */ 1201 if (opt_dentry) { 1202 /* Called from d_instantiate or d_splice_alias. */ 1203 dentry = dget(opt_dentry); 1204 } else { 1205 /* Called from selinux_complete_init, try to find a dentry. */ 1206 dentry = d_find_alias(inode); 1207 } 1208 if (!dentry) { 1209 /* 1210 * this is can be hit on boot when a file is accessed 1211 * before the policy is loaded. When we load policy we 1212 * may find inodes that have no dentry on the 1213 * sbsec->isec_head list. No reason to complain as these 1214 * will get fixed up the next time we go through 1215 * inode_doinit with a dentry, before these inodes could 1216 * be used again by userspace. 1217 */ 1218 goto out_unlock; 1219 } 1220 1221 len = INITCONTEXTLEN; 1222 context = kmalloc(len+1, GFP_NOFS); 1223 if (!context) { 1224 rc = -ENOMEM; 1225 dput(dentry); 1226 goto out_unlock; 1227 } 1228 context[len] = '\0'; 1229 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1230 context, len); 1231 if (rc == -ERANGE) { 1232 kfree(context); 1233 1234 /* Need a larger buffer. Query for the right size. */ 1235 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1236 NULL, 0); 1237 if (rc < 0) { 1238 dput(dentry); 1239 goto out_unlock; 1240 } 1241 len = rc; 1242 context = kmalloc(len+1, GFP_NOFS); 1243 if (!context) { 1244 rc = -ENOMEM; 1245 dput(dentry); 1246 goto out_unlock; 1247 } 1248 context[len] = '\0'; 1249 rc = inode->i_op->getxattr(dentry, 1250 XATTR_NAME_SELINUX, 1251 context, len); 1252 } 1253 dput(dentry); 1254 if (rc < 0) { 1255 if (rc != -ENODATA) { 1256 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1257 "%d for dev=%s ino=%ld\n", __func__, 1258 -rc, inode->i_sb->s_id, inode->i_ino); 1259 kfree(context); 1260 goto out_unlock; 1261 } 1262 /* Map ENODATA to the default file SID */ 1263 sid = sbsec->def_sid; 1264 rc = 0; 1265 } else { 1266 rc = security_context_to_sid_default(context, rc, &sid, 1267 sbsec->def_sid, 1268 GFP_NOFS); 1269 if (rc) { 1270 char *dev = inode->i_sb->s_id; 1271 unsigned long ino = inode->i_ino; 1272 1273 if (rc == -EINVAL) { 1274 if (printk_ratelimit()) 1275 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid " 1276 "context=%s. This indicates you may need to relabel the inode or the " 1277 "filesystem in question.\n", ino, dev, context); 1278 } else { 1279 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1280 "returned %d for dev=%s ino=%ld\n", 1281 __func__, context, -rc, dev, ino); 1282 } 1283 kfree(context); 1284 /* Leave with the unlabeled SID */ 1285 rc = 0; 1286 break; 1287 } 1288 } 1289 kfree(context); 1290 isec->sid = sid; 1291 break; 1292 case SECURITY_FS_USE_TASK: 1293 isec->sid = isec->task_sid; 1294 break; 1295 case SECURITY_FS_USE_TRANS: 1296 /* Default to the fs SID. */ 1297 isec->sid = sbsec->sid; 1298 1299 /* Try to obtain a transition SID. */ 1300 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1301 rc = security_transition_sid(isec->task_sid, sbsec->sid, 1302 isec->sclass, NULL, &sid); 1303 if (rc) 1304 goto out_unlock; 1305 isec->sid = sid; 1306 break; 1307 case SECURITY_FS_USE_MNTPOINT: 1308 isec->sid = sbsec->mntpoint_sid; 1309 break; 1310 default: 1311 /* Default to the fs superblock SID. */ 1312 isec->sid = sbsec->sid; 1313 1314 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) { 1315 if (opt_dentry) { 1316 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1317 rc = selinux_proc_get_sid(opt_dentry, 1318 isec->sclass, 1319 &sid); 1320 if (rc) 1321 goto out_unlock; 1322 isec->sid = sid; 1323 } 1324 } 1325 break; 1326 } 1327 1328 isec->initialized = 1; 1329 1330 out_unlock: 1331 mutex_unlock(&isec->lock); 1332 out: 1333 if (isec->sclass == SECCLASS_FILE) 1334 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1335 return rc; 1336 } 1337 1338 /* Convert a Linux signal to an access vector. */ 1339 static inline u32 signal_to_av(int sig) 1340 { 1341 u32 perm = 0; 1342 1343 switch (sig) { 1344 case SIGCHLD: 1345 /* Commonly granted from child to parent. */ 1346 perm = PROCESS__SIGCHLD; 1347 break; 1348 case SIGKILL: 1349 /* Cannot be caught or ignored */ 1350 perm = PROCESS__SIGKILL; 1351 break; 1352 case SIGSTOP: 1353 /* Cannot be caught or ignored */ 1354 perm = PROCESS__SIGSTOP; 1355 break; 1356 default: 1357 /* All other signals. */ 1358 perm = PROCESS__SIGNAL; 1359 break; 1360 } 1361 1362 return perm; 1363 } 1364 1365 /* 1366 * Check permission between a pair of credentials 1367 * fork check, ptrace check, etc. 1368 */ 1369 static int cred_has_perm(const struct cred *actor, 1370 const struct cred *target, 1371 u32 perms) 1372 { 1373 u32 asid = cred_sid(actor), tsid = cred_sid(target); 1374 1375 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL); 1376 } 1377 1378 /* 1379 * Check permission between a pair of tasks, e.g. signal checks, 1380 * fork check, ptrace check, etc. 1381 * tsk1 is the actor and tsk2 is the target 1382 * - this uses the default subjective creds of tsk1 1383 */ 1384 static int task_has_perm(const struct task_struct *tsk1, 1385 const struct task_struct *tsk2, 1386 u32 perms) 1387 { 1388 const struct task_security_struct *__tsec1, *__tsec2; 1389 u32 sid1, sid2; 1390 1391 rcu_read_lock(); 1392 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid; 1393 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid; 1394 rcu_read_unlock(); 1395 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL); 1396 } 1397 1398 /* 1399 * Check permission between current and another task, e.g. signal checks, 1400 * fork check, ptrace check, etc. 1401 * current is the actor and tsk2 is the target 1402 * - this uses current's subjective creds 1403 */ 1404 static int current_has_perm(const struct task_struct *tsk, 1405 u32 perms) 1406 { 1407 u32 sid, tsid; 1408 1409 sid = current_sid(); 1410 tsid = task_sid(tsk); 1411 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL); 1412 } 1413 1414 #if CAP_LAST_CAP > 63 1415 #error Fix SELinux to handle capabilities > 63. 1416 #endif 1417 1418 /* Check whether a task is allowed to use a capability. */ 1419 static int cred_has_capability(const struct cred *cred, 1420 int cap, int audit) 1421 { 1422 struct common_audit_data ad; 1423 struct av_decision avd; 1424 u16 sclass; 1425 u32 sid = cred_sid(cred); 1426 u32 av = CAP_TO_MASK(cap); 1427 int rc; 1428 1429 ad.type = LSM_AUDIT_DATA_CAP; 1430 ad.u.cap = cap; 1431 1432 switch (CAP_TO_INDEX(cap)) { 1433 case 0: 1434 sclass = SECCLASS_CAPABILITY; 1435 break; 1436 case 1: 1437 sclass = SECCLASS_CAPABILITY2; 1438 break; 1439 default: 1440 printk(KERN_ERR 1441 "SELinux: out of range capability %d\n", cap); 1442 BUG(); 1443 return -EINVAL; 1444 } 1445 1446 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1447 if (audit == SECURITY_CAP_AUDIT) { 1448 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0); 1449 if (rc2) 1450 return rc2; 1451 } 1452 return rc; 1453 } 1454 1455 /* Check whether a task is allowed to use a system operation. */ 1456 static int task_has_system(struct task_struct *tsk, 1457 u32 perms) 1458 { 1459 u32 sid = task_sid(tsk); 1460 1461 return avc_has_perm(sid, SECINITSID_KERNEL, 1462 SECCLASS_SYSTEM, perms, NULL); 1463 } 1464 1465 /* Check whether a task has a particular permission to an inode. 1466 The 'adp' parameter is optional and allows other audit 1467 data to be passed (e.g. the dentry). */ 1468 static int inode_has_perm(const struct cred *cred, 1469 struct inode *inode, 1470 u32 perms, 1471 struct common_audit_data *adp, 1472 unsigned flags) 1473 { 1474 struct inode_security_struct *isec; 1475 u32 sid; 1476 1477 validate_creds(cred); 1478 1479 if (unlikely(IS_PRIVATE(inode))) 1480 return 0; 1481 1482 sid = cred_sid(cred); 1483 isec = inode->i_security; 1484 1485 return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags); 1486 } 1487 1488 /* Same as inode_has_perm, but pass explicit audit data containing 1489 the dentry to help the auditing code to more easily generate the 1490 pathname if needed. */ 1491 static inline int dentry_has_perm(const struct cred *cred, 1492 struct dentry *dentry, 1493 u32 av) 1494 { 1495 struct inode *inode = dentry->d_inode; 1496 struct common_audit_data ad; 1497 1498 ad.type = LSM_AUDIT_DATA_DENTRY; 1499 ad.u.dentry = dentry; 1500 return inode_has_perm(cred, inode, av, &ad, 0); 1501 } 1502 1503 /* Same as inode_has_perm, but pass explicit audit data containing 1504 the path to help the auditing code to more easily generate the 1505 pathname if needed. */ 1506 static inline int path_has_perm(const struct cred *cred, 1507 struct path *path, 1508 u32 av) 1509 { 1510 struct inode *inode = path->dentry->d_inode; 1511 struct common_audit_data ad; 1512 1513 ad.type = LSM_AUDIT_DATA_PATH; 1514 ad.u.path = *path; 1515 return inode_has_perm(cred, inode, av, &ad, 0); 1516 } 1517 1518 /* Check whether a task can use an open file descriptor to 1519 access an inode in a given way. Check access to the 1520 descriptor itself, and then use dentry_has_perm to 1521 check a particular permission to the file. 1522 Access to the descriptor is implicitly granted if it 1523 has the same SID as the process. If av is zero, then 1524 access to the file is not checked, e.g. for cases 1525 where only the descriptor is affected like seek. */ 1526 static int file_has_perm(const struct cred *cred, 1527 struct file *file, 1528 u32 av) 1529 { 1530 struct file_security_struct *fsec = file->f_security; 1531 struct inode *inode = file->f_path.dentry->d_inode; 1532 struct common_audit_data ad; 1533 u32 sid = cred_sid(cred); 1534 int rc; 1535 1536 ad.type = LSM_AUDIT_DATA_PATH; 1537 ad.u.path = file->f_path; 1538 1539 if (sid != fsec->sid) { 1540 rc = avc_has_perm(sid, fsec->sid, 1541 SECCLASS_FD, 1542 FD__USE, 1543 &ad); 1544 if (rc) 1545 goto out; 1546 } 1547 1548 /* av is zero if only checking access to the descriptor. */ 1549 rc = 0; 1550 if (av) 1551 rc = inode_has_perm(cred, inode, av, &ad, 0); 1552 1553 out: 1554 return rc; 1555 } 1556 1557 /* Check whether a task can create a file. */ 1558 static int may_create(struct inode *dir, 1559 struct dentry *dentry, 1560 u16 tclass) 1561 { 1562 const struct task_security_struct *tsec = current_security(); 1563 struct inode_security_struct *dsec; 1564 struct superblock_security_struct *sbsec; 1565 u32 sid, newsid; 1566 struct common_audit_data ad; 1567 int rc; 1568 1569 dsec = dir->i_security; 1570 sbsec = dir->i_sb->s_security; 1571 1572 sid = tsec->sid; 1573 newsid = tsec->create_sid; 1574 1575 ad.type = LSM_AUDIT_DATA_DENTRY; 1576 ad.u.dentry = dentry; 1577 1578 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1579 DIR__ADD_NAME | DIR__SEARCH, 1580 &ad); 1581 if (rc) 1582 return rc; 1583 1584 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) { 1585 rc = security_transition_sid(sid, dsec->sid, tclass, 1586 &dentry->d_name, &newsid); 1587 if (rc) 1588 return rc; 1589 } 1590 1591 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1592 if (rc) 1593 return rc; 1594 1595 return avc_has_perm(newsid, sbsec->sid, 1596 SECCLASS_FILESYSTEM, 1597 FILESYSTEM__ASSOCIATE, &ad); 1598 } 1599 1600 /* Check whether a task can create a key. */ 1601 static int may_create_key(u32 ksid, 1602 struct task_struct *ctx) 1603 { 1604 u32 sid = task_sid(ctx); 1605 1606 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1607 } 1608 1609 #define MAY_LINK 0 1610 #define MAY_UNLINK 1 1611 #define MAY_RMDIR 2 1612 1613 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1614 static int may_link(struct inode *dir, 1615 struct dentry *dentry, 1616 int kind) 1617 1618 { 1619 struct inode_security_struct *dsec, *isec; 1620 struct common_audit_data ad; 1621 u32 sid = current_sid(); 1622 u32 av; 1623 int rc; 1624 1625 dsec = dir->i_security; 1626 isec = dentry->d_inode->i_security; 1627 1628 ad.type = LSM_AUDIT_DATA_DENTRY; 1629 ad.u.dentry = dentry; 1630 1631 av = DIR__SEARCH; 1632 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1633 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1634 if (rc) 1635 return rc; 1636 1637 switch (kind) { 1638 case MAY_LINK: 1639 av = FILE__LINK; 1640 break; 1641 case MAY_UNLINK: 1642 av = FILE__UNLINK; 1643 break; 1644 case MAY_RMDIR: 1645 av = DIR__RMDIR; 1646 break; 1647 default: 1648 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1649 __func__, kind); 1650 return 0; 1651 } 1652 1653 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1654 return rc; 1655 } 1656 1657 static inline int may_rename(struct inode *old_dir, 1658 struct dentry *old_dentry, 1659 struct inode *new_dir, 1660 struct dentry *new_dentry) 1661 { 1662 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1663 struct common_audit_data ad; 1664 u32 sid = current_sid(); 1665 u32 av; 1666 int old_is_dir, new_is_dir; 1667 int rc; 1668 1669 old_dsec = old_dir->i_security; 1670 old_isec = old_dentry->d_inode->i_security; 1671 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 1672 new_dsec = new_dir->i_security; 1673 1674 ad.type = LSM_AUDIT_DATA_DENTRY; 1675 1676 ad.u.dentry = old_dentry; 1677 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1678 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1679 if (rc) 1680 return rc; 1681 rc = avc_has_perm(sid, old_isec->sid, 1682 old_isec->sclass, FILE__RENAME, &ad); 1683 if (rc) 1684 return rc; 1685 if (old_is_dir && new_dir != old_dir) { 1686 rc = avc_has_perm(sid, old_isec->sid, 1687 old_isec->sclass, DIR__REPARENT, &ad); 1688 if (rc) 1689 return rc; 1690 } 1691 1692 ad.u.dentry = new_dentry; 1693 av = DIR__ADD_NAME | DIR__SEARCH; 1694 if (new_dentry->d_inode) 1695 av |= DIR__REMOVE_NAME; 1696 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1697 if (rc) 1698 return rc; 1699 if (new_dentry->d_inode) { 1700 new_isec = new_dentry->d_inode->i_security; 1701 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode); 1702 rc = avc_has_perm(sid, new_isec->sid, 1703 new_isec->sclass, 1704 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1705 if (rc) 1706 return rc; 1707 } 1708 1709 return 0; 1710 } 1711 1712 /* Check whether a task can perform a filesystem operation. */ 1713 static int superblock_has_perm(const struct cred *cred, 1714 struct super_block *sb, 1715 u32 perms, 1716 struct common_audit_data *ad) 1717 { 1718 struct superblock_security_struct *sbsec; 1719 u32 sid = cred_sid(cred); 1720 1721 sbsec = sb->s_security; 1722 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1723 } 1724 1725 /* Convert a Linux mode and permission mask to an access vector. */ 1726 static inline u32 file_mask_to_av(int mode, int mask) 1727 { 1728 u32 av = 0; 1729 1730 if (!S_ISDIR(mode)) { 1731 if (mask & MAY_EXEC) 1732 av |= FILE__EXECUTE; 1733 if (mask & MAY_READ) 1734 av |= FILE__READ; 1735 1736 if (mask & MAY_APPEND) 1737 av |= FILE__APPEND; 1738 else if (mask & MAY_WRITE) 1739 av |= FILE__WRITE; 1740 1741 } else { 1742 if (mask & MAY_EXEC) 1743 av |= DIR__SEARCH; 1744 if (mask & MAY_WRITE) 1745 av |= DIR__WRITE; 1746 if (mask & MAY_READ) 1747 av |= DIR__READ; 1748 } 1749 1750 return av; 1751 } 1752 1753 /* Convert a Linux file to an access vector. */ 1754 static inline u32 file_to_av(struct file *file) 1755 { 1756 u32 av = 0; 1757 1758 if (file->f_mode & FMODE_READ) 1759 av |= FILE__READ; 1760 if (file->f_mode & FMODE_WRITE) { 1761 if (file->f_flags & O_APPEND) 1762 av |= FILE__APPEND; 1763 else 1764 av |= FILE__WRITE; 1765 } 1766 if (!av) { 1767 /* 1768 * Special file opened with flags 3 for ioctl-only use. 1769 */ 1770 av = FILE__IOCTL; 1771 } 1772 1773 return av; 1774 } 1775 1776 /* 1777 * Convert a file to an access vector and include the correct open 1778 * open permission. 1779 */ 1780 static inline u32 open_file_to_av(struct file *file) 1781 { 1782 u32 av = file_to_av(file); 1783 1784 if (selinux_policycap_openperm) 1785 av |= FILE__OPEN; 1786 1787 return av; 1788 } 1789 1790 /* Hook functions begin here. */ 1791 1792 static int selinux_ptrace_access_check(struct task_struct *child, 1793 unsigned int mode) 1794 { 1795 int rc; 1796 1797 rc = cap_ptrace_access_check(child, mode); 1798 if (rc) 1799 return rc; 1800 1801 if (mode & PTRACE_MODE_READ) { 1802 u32 sid = current_sid(); 1803 u32 csid = task_sid(child); 1804 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL); 1805 } 1806 1807 return current_has_perm(child, PROCESS__PTRACE); 1808 } 1809 1810 static int selinux_ptrace_traceme(struct task_struct *parent) 1811 { 1812 int rc; 1813 1814 rc = cap_ptrace_traceme(parent); 1815 if (rc) 1816 return rc; 1817 1818 return task_has_perm(parent, current, PROCESS__PTRACE); 1819 } 1820 1821 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 1822 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1823 { 1824 int error; 1825 1826 error = current_has_perm(target, PROCESS__GETCAP); 1827 if (error) 1828 return error; 1829 1830 return cap_capget(target, effective, inheritable, permitted); 1831 } 1832 1833 static int selinux_capset(struct cred *new, const struct cred *old, 1834 const kernel_cap_t *effective, 1835 const kernel_cap_t *inheritable, 1836 const kernel_cap_t *permitted) 1837 { 1838 int error; 1839 1840 error = cap_capset(new, old, 1841 effective, inheritable, permitted); 1842 if (error) 1843 return error; 1844 1845 return cred_has_perm(old, new, PROCESS__SETCAP); 1846 } 1847 1848 /* 1849 * (This comment used to live with the selinux_task_setuid hook, 1850 * which was removed). 1851 * 1852 * Since setuid only affects the current process, and since the SELinux 1853 * controls are not based on the Linux identity attributes, SELinux does not 1854 * need to control this operation. However, SELinux does control the use of 1855 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 1856 */ 1857 1858 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 1859 int cap, int audit) 1860 { 1861 int rc; 1862 1863 rc = cap_capable(cred, ns, cap, audit); 1864 if (rc) 1865 return rc; 1866 1867 return cred_has_capability(cred, cap, audit); 1868 } 1869 1870 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 1871 { 1872 const struct cred *cred = current_cred(); 1873 int rc = 0; 1874 1875 if (!sb) 1876 return 0; 1877 1878 switch (cmds) { 1879 case Q_SYNC: 1880 case Q_QUOTAON: 1881 case Q_QUOTAOFF: 1882 case Q_SETINFO: 1883 case Q_SETQUOTA: 1884 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 1885 break; 1886 case Q_GETFMT: 1887 case Q_GETINFO: 1888 case Q_GETQUOTA: 1889 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 1890 break; 1891 default: 1892 rc = 0; /* let the kernel handle invalid cmds */ 1893 break; 1894 } 1895 return rc; 1896 } 1897 1898 static int selinux_quota_on(struct dentry *dentry) 1899 { 1900 const struct cred *cred = current_cred(); 1901 1902 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 1903 } 1904 1905 static int selinux_syslog(int type) 1906 { 1907 int rc; 1908 1909 switch (type) { 1910 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 1911 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 1912 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 1913 break; 1914 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 1915 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 1916 /* Set level of messages printed to console */ 1917 case SYSLOG_ACTION_CONSOLE_LEVEL: 1918 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 1919 break; 1920 case SYSLOG_ACTION_CLOSE: /* Close log */ 1921 case SYSLOG_ACTION_OPEN: /* Open log */ 1922 case SYSLOG_ACTION_READ: /* Read from log */ 1923 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */ 1924 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 1925 default: 1926 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 1927 break; 1928 } 1929 return rc; 1930 } 1931 1932 /* 1933 * Check that a process has enough memory to allocate a new virtual 1934 * mapping. 0 means there is enough memory for the allocation to 1935 * succeed and -ENOMEM implies there is not. 1936 * 1937 * Do not audit the selinux permission check, as this is applied to all 1938 * processes that allocate mappings. 1939 */ 1940 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 1941 { 1942 int rc, cap_sys_admin = 0; 1943 1944 rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN, 1945 SECURITY_CAP_NOAUDIT); 1946 if (rc == 0) 1947 cap_sys_admin = 1; 1948 1949 return __vm_enough_memory(mm, pages, cap_sys_admin); 1950 } 1951 1952 /* binprm security operations */ 1953 1954 static int selinux_bprm_set_creds(struct linux_binprm *bprm) 1955 { 1956 const struct task_security_struct *old_tsec; 1957 struct task_security_struct *new_tsec; 1958 struct inode_security_struct *isec; 1959 struct common_audit_data ad; 1960 struct inode *inode = bprm->file->f_path.dentry->d_inode; 1961 int rc; 1962 1963 rc = cap_bprm_set_creds(bprm); 1964 if (rc) 1965 return rc; 1966 1967 /* SELinux context only depends on initial program or script and not 1968 * the script interpreter */ 1969 if (bprm->cred_prepared) 1970 return 0; 1971 1972 old_tsec = current_security(); 1973 new_tsec = bprm->cred->security; 1974 isec = inode->i_security; 1975 1976 /* Default to the current task SID. */ 1977 new_tsec->sid = old_tsec->sid; 1978 new_tsec->osid = old_tsec->sid; 1979 1980 /* Reset fs, key, and sock SIDs on execve. */ 1981 new_tsec->create_sid = 0; 1982 new_tsec->keycreate_sid = 0; 1983 new_tsec->sockcreate_sid = 0; 1984 1985 if (old_tsec->exec_sid) { 1986 new_tsec->sid = old_tsec->exec_sid; 1987 /* Reset exec SID on execve. */ 1988 new_tsec->exec_sid = 0; 1989 1990 /* 1991 * Minimize confusion: if no_new_privs and a transition is 1992 * explicitly requested, then fail the exec. 1993 */ 1994 if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS) 1995 return -EPERM; 1996 } else { 1997 /* Check for a default transition on this program. */ 1998 rc = security_transition_sid(old_tsec->sid, isec->sid, 1999 SECCLASS_PROCESS, NULL, 2000 &new_tsec->sid); 2001 if (rc) 2002 return rc; 2003 } 2004 2005 ad.type = LSM_AUDIT_DATA_PATH; 2006 ad.u.path = bprm->file->f_path; 2007 2008 if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) || 2009 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) 2010 new_tsec->sid = old_tsec->sid; 2011 2012 if (new_tsec->sid == old_tsec->sid) { 2013 rc = avc_has_perm(old_tsec->sid, isec->sid, 2014 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2015 if (rc) 2016 return rc; 2017 } else { 2018 /* Check permissions for the transition. */ 2019 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2020 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2021 if (rc) 2022 return rc; 2023 2024 rc = avc_has_perm(new_tsec->sid, isec->sid, 2025 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2026 if (rc) 2027 return rc; 2028 2029 /* Check for shared state */ 2030 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2031 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2032 SECCLASS_PROCESS, PROCESS__SHARE, 2033 NULL); 2034 if (rc) 2035 return -EPERM; 2036 } 2037 2038 /* Make sure that anyone attempting to ptrace over a task that 2039 * changes its SID has the appropriate permit */ 2040 if (bprm->unsafe & 2041 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2042 struct task_struct *tracer; 2043 struct task_security_struct *sec; 2044 u32 ptsid = 0; 2045 2046 rcu_read_lock(); 2047 tracer = ptrace_parent(current); 2048 if (likely(tracer != NULL)) { 2049 sec = __task_cred(tracer)->security; 2050 ptsid = sec->sid; 2051 } 2052 rcu_read_unlock(); 2053 2054 if (ptsid != 0) { 2055 rc = avc_has_perm(ptsid, new_tsec->sid, 2056 SECCLASS_PROCESS, 2057 PROCESS__PTRACE, NULL); 2058 if (rc) 2059 return -EPERM; 2060 } 2061 } 2062 2063 /* Clear any possibly unsafe personality bits on exec: */ 2064 bprm->per_clear |= PER_CLEAR_ON_SETID; 2065 } 2066 2067 return 0; 2068 } 2069 2070 static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2071 { 2072 const struct task_security_struct *tsec = current_security(); 2073 u32 sid, osid; 2074 int atsecure = 0; 2075 2076 sid = tsec->sid; 2077 osid = tsec->osid; 2078 2079 if (osid != sid) { 2080 /* Enable secure mode for SIDs transitions unless 2081 the noatsecure permission is granted between 2082 the two SIDs, i.e. ahp returns 0. */ 2083 atsecure = avc_has_perm(osid, sid, 2084 SECCLASS_PROCESS, 2085 PROCESS__NOATSECURE, NULL); 2086 } 2087 2088 return (atsecure || cap_bprm_secureexec(bprm)); 2089 } 2090 2091 /* Derived from fs/exec.c:flush_old_files. */ 2092 static inline void flush_unauthorized_files(const struct cred *cred, 2093 struct files_struct *files) 2094 { 2095 struct file *file, *devnull = NULL; 2096 struct tty_struct *tty; 2097 struct fdtable *fdt; 2098 long j = -1; 2099 int drop_tty = 0; 2100 2101 tty = get_current_tty(); 2102 if (tty) { 2103 spin_lock(&tty_files_lock); 2104 if (!list_empty(&tty->tty_files)) { 2105 struct tty_file_private *file_priv; 2106 2107 /* Revalidate access to controlling tty. 2108 Use path_has_perm on the tty path directly rather 2109 than using file_has_perm, as this particular open 2110 file may belong to another process and we are only 2111 interested in the inode-based check here. */ 2112 file_priv = list_first_entry(&tty->tty_files, 2113 struct tty_file_private, list); 2114 file = file_priv->file; 2115 if (path_has_perm(cred, &file->f_path, FILE__READ | FILE__WRITE)) 2116 drop_tty = 1; 2117 } 2118 spin_unlock(&tty_files_lock); 2119 tty_kref_put(tty); 2120 } 2121 /* Reset controlling tty. */ 2122 if (drop_tty) 2123 no_tty(); 2124 2125 /* Revalidate access to inherited open files. */ 2126 spin_lock(&files->file_lock); 2127 for (;;) { 2128 unsigned long set, i; 2129 int fd; 2130 2131 j++; 2132 i = j * __NFDBITS; 2133 fdt = files_fdtable(files); 2134 if (i >= fdt->max_fds) 2135 break; 2136 set = fdt->open_fds[j]; 2137 if (!set) 2138 continue; 2139 spin_unlock(&files->file_lock); 2140 for ( ; set ; i++, set >>= 1) { 2141 if (set & 1) { 2142 file = fget(i); 2143 if (!file) 2144 continue; 2145 if (file_has_perm(cred, 2146 file, 2147 file_to_av(file))) { 2148 sys_close(i); 2149 fd = get_unused_fd(); 2150 if (fd != i) { 2151 if (fd >= 0) 2152 put_unused_fd(fd); 2153 fput(file); 2154 continue; 2155 } 2156 if (devnull) { 2157 get_file(devnull); 2158 } else { 2159 devnull = dentry_open( 2160 &selinux_null, 2161 O_RDWR, cred); 2162 if (IS_ERR(devnull)) { 2163 devnull = NULL; 2164 put_unused_fd(fd); 2165 fput(file); 2166 continue; 2167 } 2168 } 2169 fd_install(fd, devnull); 2170 } 2171 fput(file); 2172 } 2173 } 2174 spin_lock(&files->file_lock); 2175 2176 } 2177 spin_unlock(&files->file_lock); 2178 } 2179 2180 /* 2181 * Prepare a process for imminent new credential changes due to exec 2182 */ 2183 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2184 { 2185 struct task_security_struct *new_tsec; 2186 struct rlimit *rlim, *initrlim; 2187 int rc, i; 2188 2189 new_tsec = bprm->cred->security; 2190 if (new_tsec->sid == new_tsec->osid) 2191 return; 2192 2193 /* Close files for which the new task SID is not authorized. */ 2194 flush_unauthorized_files(bprm->cred, current->files); 2195 2196 /* Always clear parent death signal on SID transitions. */ 2197 current->pdeath_signal = 0; 2198 2199 /* Check whether the new SID can inherit resource limits from the old 2200 * SID. If not, reset all soft limits to the lower of the current 2201 * task's hard limit and the init task's soft limit. 2202 * 2203 * Note that the setting of hard limits (even to lower them) can be 2204 * controlled by the setrlimit check. The inclusion of the init task's 2205 * soft limit into the computation is to avoid resetting soft limits 2206 * higher than the default soft limit for cases where the default is 2207 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2208 */ 2209 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2210 PROCESS__RLIMITINH, NULL); 2211 if (rc) { 2212 /* protect against do_prlimit() */ 2213 task_lock(current); 2214 for (i = 0; i < RLIM_NLIMITS; i++) { 2215 rlim = current->signal->rlim + i; 2216 initrlim = init_task.signal->rlim + i; 2217 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2218 } 2219 task_unlock(current); 2220 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2221 } 2222 } 2223 2224 /* 2225 * Clean up the process immediately after the installation of new credentials 2226 * due to exec 2227 */ 2228 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2229 { 2230 const struct task_security_struct *tsec = current_security(); 2231 struct itimerval itimer; 2232 u32 osid, sid; 2233 int rc, i; 2234 2235 osid = tsec->osid; 2236 sid = tsec->sid; 2237 2238 if (sid == osid) 2239 return; 2240 2241 /* Check whether the new SID can inherit signal state from the old SID. 2242 * If not, clear itimers to avoid subsequent signal generation and 2243 * flush and unblock signals. 2244 * 2245 * This must occur _after_ the task SID has been updated so that any 2246 * kill done after the flush will be checked against the new SID. 2247 */ 2248 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2249 if (rc) { 2250 memset(&itimer, 0, sizeof itimer); 2251 for (i = 0; i < 3; i++) 2252 do_setitimer(i, &itimer, NULL); 2253 spin_lock_irq(¤t->sighand->siglock); 2254 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) { 2255 __flush_signals(current); 2256 flush_signal_handlers(current, 1); 2257 sigemptyset(¤t->blocked); 2258 } 2259 spin_unlock_irq(¤t->sighand->siglock); 2260 } 2261 2262 /* Wake up the parent if it is waiting so that it can recheck 2263 * wait permission to the new task SID. */ 2264 read_lock(&tasklist_lock); 2265 __wake_up_parent(current, current->real_parent); 2266 read_unlock(&tasklist_lock); 2267 } 2268 2269 /* superblock security operations */ 2270 2271 static int selinux_sb_alloc_security(struct super_block *sb) 2272 { 2273 return superblock_alloc_security(sb); 2274 } 2275 2276 static void selinux_sb_free_security(struct super_block *sb) 2277 { 2278 superblock_free_security(sb); 2279 } 2280 2281 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2282 { 2283 if (plen > olen) 2284 return 0; 2285 2286 return !memcmp(prefix, option, plen); 2287 } 2288 2289 static inline int selinux_option(char *option, int len) 2290 { 2291 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2292 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2293 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2294 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) || 2295 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len)); 2296 } 2297 2298 static inline void take_option(char **to, char *from, int *first, int len) 2299 { 2300 if (!*first) { 2301 **to = ','; 2302 *to += 1; 2303 } else 2304 *first = 0; 2305 memcpy(*to, from, len); 2306 *to += len; 2307 } 2308 2309 static inline void take_selinux_option(char **to, char *from, int *first, 2310 int len) 2311 { 2312 int current_size = 0; 2313 2314 if (!*first) { 2315 **to = '|'; 2316 *to += 1; 2317 } else 2318 *first = 0; 2319 2320 while (current_size < len) { 2321 if (*from != '"') { 2322 **to = *from; 2323 *to += 1; 2324 } 2325 from += 1; 2326 current_size += 1; 2327 } 2328 } 2329 2330 static int selinux_sb_copy_data(char *orig, char *copy) 2331 { 2332 int fnosec, fsec, rc = 0; 2333 char *in_save, *in_curr, *in_end; 2334 char *sec_curr, *nosec_save, *nosec; 2335 int open_quote = 0; 2336 2337 in_curr = orig; 2338 sec_curr = copy; 2339 2340 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2341 if (!nosec) { 2342 rc = -ENOMEM; 2343 goto out; 2344 } 2345 2346 nosec_save = nosec; 2347 fnosec = fsec = 1; 2348 in_save = in_end = orig; 2349 2350 do { 2351 if (*in_end == '"') 2352 open_quote = !open_quote; 2353 if ((*in_end == ',' && open_quote == 0) || 2354 *in_end == '\0') { 2355 int len = in_end - in_curr; 2356 2357 if (selinux_option(in_curr, len)) 2358 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2359 else 2360 take_option(&nosec, in_curr, &fnosec, len); 2361 2362 in_curr = in_end + 1; 2363 } 2364 } while (*in_end++); 2365 2366 strcpy(in_save, nosec_save); 2367 free_page((unsigned long)nosec_save); 2368 out: 2369 return rc; 2370 } 2371 2372 static int selinux_sb_remount(struct super_block *sb, void *data) 2373 { 2374 int rc, i, *flags; 2375 struct security_mnt_opts opts; 2376 char *secdata, **mount_options; 2377 struct superblock_security_struct *sbsec = sb->s_security; 2378 2379 if (!(sbsec->flags & SE_SBINITIALIZED)) 2380 return 0; 2381 2382 if (!data) 2383 return 0; 2384 2385 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 2386 return 0; 2387 2388 security_init_mnt_opts(&opts); 2389 secdata = alloc_secdata(); 2390 if (!secdata) 2391 return -ENOMEM; 2392 rc = selinux_sb_copy_data(data, secdata); 2393 if (rc) 2394 goto out_free_secdata; 2395 2396 rc = selinux_parse_opts_str(secdata, &opts); 2397 if (rc) 2398 goto out_free_secdata; 2399 2400 mount_options = opts.mnt_opts; 2401 flags = opts.mnt_opts_flags; 2402 2403 for (i = 0; i < opts.num_mnt_opts; i++) { 2404 u32 sid; 2405 size_t len; 2406 2407 if (flags[i] == SE_SBLABELSUPP) 2408 continue; 2409 len = strlen(mount_options[i]); 2410 rc = security_context_to_sid(mount_options[i], len, &sid); 2411 if (rc) { 2412 printk(KERN_WARNING "SELinux: security_context_to_sid" 2413 "(%s) failed for (dev %s, type %s) errno=%d\n", 2414 mount_options[i], sb->s_id, sb->s_type->name, rc); 2415 goto out_free_opts; 2416 } 2417 rc = -EINVAL; 2418 switch (flags[i]) { 2419 case FSCONTEXT_MNT: 2420 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid)) 2421 goto out_bad_option; 2422 break; 2423 case CONTEXT_MNT: 2424 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid)) 2425 goto out_bad_option; 2426 break; 2427 case ROOTCONTEXT_MNT: { 2428 struct inode_security_struct *root_isec; 2429 root_isec = sb->s_root->d_inode->i_security; 2430 2431 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid)) 2432 goto out_bad_option; 2433 break; 2434 } 2435 case DEFCONTEXT_MNT: 2436 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid)) 2437 goto out_bad_option; 2438 break; 2439 default: 2440 goto out_free_opts; 2441 } 2442 } 2443 2444 rc = 0; 2445 out_free_opts: 2446 security_free_mnt_opts(&opts); 2447 out_free_secdata: 2448 free_secdata(secdata); 2449 return rc; 2450 out_bad_option: 2451 printk(KERN_WARNING "SELinux: unable to change security options " 2452 "during remount (dev %s, type=%s)\n", sb->s_id, 2453 sb->s_type->name); 2454 goto out_free_opts; 2455 } 2456 2457 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data) 2458 { 2459 const struct cred *cred = current_cred(); 2460 struct common_audit_data ad; 2461 int rc; 2462 2463 rc = superblock_doinit(sb, data); 2464 if (rc) 2465 return rc; 2466 2467 /* Allow all mounts performed by the kernel */ 2468 if (flags & MS_KERNMOUNT) 2469 return 0; 2470 2471 ad.type = LSM_AUDIT_DATA_DENTRY; 2472 ad.u.dentry = sb->s_root; 2473 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2474 } 2475 2476 static int selinux_sb_statfs(struct dentry *dentry) 2477 { 2478 const struct cred *cred = current_cred(); 2479 struct common_audit_data ad; 2480 2481 ad.type = LSM_AUDIT_DATA_DENTRY; 2482 ad.u.dentry = dentry->d_sb->s_root; 2483 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2484 } 2485 2486 static int selinux_mount(char *dev_name, 2487 struct path *path, 2488 char *type, 2489 unsigned long flags, 2490 void *data) 2491 { 2492 const struct cred *cred = current_cred(); 2493 2494 if (flags & MS_REMOUNT) 2495 return superblock_has_perm(cred, path->dentry->d_sb, 2496 FILESYSTEM__REMOUNT, NULL); 2497 else 2498 return path_has_perm(cred, path, FILE__MOUNTON); 2499 } 2500 2501 static int selinux_umount(struct vfsmount *mnt, int flags) 2502 { 2503 const struct cred *cred = current_cred(); 2504 2505 return superblock_has_perm(cred, mnt->mnt_sb, 2506 FILESYSTEM__UNMOUNT, NULL); 2507 } 2508 2509 /* inode security operations */ 2510 2511 static int selinux_inode_alloc_security(struct inode *inode) 2512 { 2513 return inode_alloc_security(inode); 2514 } 2515 2516 static void selinux_inode_free_security(struct inode *inode) 2517 { 2518 inode_free_security(inode); 2519 } 2520 2521 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2522 const struct qstr *qstr, char **name, 2523 void **value, size_t *len) 2524 { 2525 const struct task_security_struct *tsec = current_security(); 2526 struct inode_security_struct *dsec; 2527 struct superblock_security_struct *sbsec; 2528 u32 sid, newsid, clen; 2529 int rc; 2530 char *namep = NULL, *context; 2531 2532 dsec = dir->i_security; 2533 sbsec = dir->i_sb->s_security; 2534 2535 sid = tsec->sid; 2536 newsid = tsec->create_sid; 2537 2538 if ((sbsec->flags & SE_SBINITIALIZED) && 2539 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) 2540 newsid = sbsec->mntpoint_sid; 2541 else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) { 2542 rc = security_transition_sid(sid, dsec->sid, 2543 inode_mode_to_security_class(inode->i_mode), 2544 qstr, &newsid); 2545 if (rc) { 2546 printk(KERN_WARNING "%s: " 2547 "security_transition_sid failed, rc=%d (dev=%s " 2548 "ino=%ld)\n", 2549 __func__, 2550 -rc, inode->i_sb->s_id, inode->i_ino); 2551 return rc; 2552 } 2553 } 2554 2555 /* Possibly defer initialization to selinux_complete_init. */ 2556 if (sbsec->flags & SE_SBINITIALIZED) { 2557 struct inode_security_struct *isec = inode->i_security; 2558 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2559 isec->sid = newsid; 2560 isec->initialized = 1; 2561 } 2562 2563 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP)) 2564 return -EOPNOTSUPP; 2565 2566 if (name) { 2567 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS); 2568 if (!namep) 2569 return -ENOMEM; 2570 *name = namep; 2571 } 2572 2573 if (value && len) { 2574 rc = security_sid_to_context_force(newsid, &context, &clen); 2575 if (rc) { 2576 kfree(namep); 2577 return rc; 2578 } 2579 *value = context; 2580 *len = clen; 2581 } 2582 2583 return 0; 2584 } 2585 2586 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 2587 { 2588 return may_create(dir, dentry, SECCLASS_FILE); 2589 } 2590 2591 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2592 { 2593 return may_link(dir, old_dentry, MAY_LINK); 2594 } 2595 2596 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2597 { 2598 return may_link(dir, dentry, MAY_UNLINK); 2599 } 2600 2601 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2602 { 2603 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2604 } 2605 2606 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 2607 { 2608 return may_create(dir, dentry, SECCLASS_DIR); 2609 } 2610 2611 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2612 { 2613 return may_link(dir, dentry, MAY_RMDIR); 2614 } 2615 2616 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2617 { 2618 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2619 } 2620 2621 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2622 struct inode *new_inode, struct dentry *new_dentry) 2623 { 2624 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2625 } 2626 2627 static int selinux_inode_readlink(struct dentry *dentry) 2628 { 2629 const struct cred *cred = current_cred(); 2630 2631 return dentry_has_perm(cred, dentry, FILE__READ); 2632 } 2633 2634 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2635 { 2636 const struct cred *cred = current_cred(); 2637 2638 return dentry_has_perm(cred, dentry, FILE__READ); 2639 } 2640 2641 static noinline int audit_inode_permission(struct inode *inode, 2642 u32 perms, u32 audited, u32 denied, 2643 unsigned flags) 2644 { 2645 struct common_audit_data ad; 2646 struct inode_security_struct *isec = inode->i_security; 2647 int rc; 2648 2649 ad.type = LSM_AUDIT_DATA_INODE; 2650 ad.u.inode = inode; 2651 2652 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms, 2653 audited, denied, &ad, flags); 2654 if (rc) 2655 return rc; 2656 return 0; 2657 } 2658 2659 static int selinux_inode_permission(struct inode *inode, int mask) 2660 { 2661 const struct cred *cred = current_cred(); 2662 u32 perms; 2663 bool from_access; 2664 unsigned flags = mask & MAY_NOT_BLOCK; 2665 struct inode_security_struct *isec; 2666 u32 sid; 2667 struct av_decision avd; 2668 int rc, rc2; 2669 u32 audited, denied; 2670 2671 from_access = mask & MAY_ACCESS; 2672 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 2673 2674 /* No permission to check. Existence test. */ 2675 if (!mask) 2676 return 0; 2677 2678 validate_creds(cred); 2679 2680 if (unlikely(IS_PRIVATE(inode))) 2681 return 0; 2682 2683 perms = file_mask_to_av(inode->i_mode, mask); 2684 2685 sid = cred_sid(cred); 2686 isec = inode->i_security; 2687 2688 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd); 2689 audited = avc_audit_required(perms, &avd, rc, 2690 from_access ? FILE__AUDIT_ACCESS : 0, 2691 &denied); 2692 if (likely(!audited)) 2693 return rc; 2694 2695 rc2 = audit_inode_permission(inode, perms, audited, denied, flags); 2696 if (rc2) 2697 return rc2; 2698 return rc; 2699 } 2700 2701 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2702 { 2703 const struct cred *cred = current_cred(); 2704 unsigned int ia_valid = iattr->ia_valid; 2705 __u32 av = FILE__WRITE; 2706 2707 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 2708 if (ia_valid & ATTR_FORCE) { 2709 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 2710 ATTR_FORCE); 2711 if (!ia_valid) 2712 return 0; 2713 } 2714 2715 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2716 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 2717 return dentry_has_perm(cred, dentry, FILE__SETATTR); 2718 2719 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)) 2720 av |= FILE__OPEN; 2721 2722 return dentry_has_perm(cred, dentry, av); 2723 } 2724 2725 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 2726 { 2727 const struct cred *cred = current_cred(); 2728 struct path path; 2729 2730 path.dentry = dentry; 2731 path.mnt = mnt; 2732 2733 return path_has_perm(cred, &path, FILE__GETATTR); 2734 } 2735 2736 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 2737 { 2738 const struct cred *cred = current_cred(); 2739 2740 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2741 sizeof XATTR_SECURITY_PREFIX - 1)) { 2742 if (!strcmp(name, XATTR_NAME_CAPS)) { 2743 if (!capable(CAP_SETFCAP)) 2744 return -EPERM; 2745 } else if (!capable(CAP_SYS_ADMIN)) { 2746 /* A different attribute in the security namespace. 2747 Restrict to administrator. */ 2748 return -EPERM; 2749 } 2750 } 2751 2752 /* Not an attribute we recognize, so just check the 2753 ordinary setattr permission. */ 2754 return dentry_has_perm(cred, dentry, FILE__SETATTR); 2755 } 2756 2757 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 2758 const void *value, size_t size, int flags) 2759 { 2760 struct inode *inode = dentry->d_inode; 2761 struct inode_security_struct *isec = inode->i_security; 2762 struct superblock_security_struct *sbsec; 2763 struct common_audit_data ad; 2764 u32 newsid, sid = current_sid(); 2765 int rc = 0; 2766 2767 if (strcmp(name, XATTR_NAME_SELINUX)) 2768 return selinux_inode_setotherxattr(dentry, name); 2769 2770 sbsec = inode->i_sb->s_security; 2771 if (!(sbsec->flags & SE_SBLABELSUPP)) 2772 return -EOPNOTSUPP; 2773 2774 if (!inode_owner_or_capable(inode)) 2775 return -EPERM; 2776 2777 ad.type = LSM_AUDIT_DATA_DENTRY; 2778 ad.u.dentry = dentry; 2779 2780 rc = avc_has_perm(sid, isec->sid, isec->sclass, 2781 FILE__RELABELFROM, &ad); 2782 if (rc) 2783 return rc; 2784 2785 rc = security_context_to_sid(value, size, &newsid); 2786 if (rc == -EINVAL) { 2787 if (!capable(CAP_MAC_ADMIN)) { 2788 struct audit_buffer *ab; 2789 size_t audit_size; 2790 const char *str; 2791 2792 /* We strip a nul only if it is at the end, otherwise the 2793 * context contains a nul and we should audit that */ 2794 str = value; 2795 if (str[size - 1] == '\0') 2796 audit_size = size - 1; 2797 else 2798 audit_size = size; 2799 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR); 2800 audit_log_format(ab, "op=setxattr invalid_context="); 2801 audit_log_n_untrustedstring(ab, value, audit_size); 2802 audit_log_end(ab); 2803 2804 return rc; 2805 } 2806 rc = security_context_to_sid_force(value, size, &newsid); 2807 } 2808 if (rc) 2809 return rc; 2810 2811 rc = avc_has_perm(sid, newsid, isec->sclass, 2812 FILE__RELABELTO, &ad); 2813 if (rc) 2814 return rc; 2815 2816 rc = security_validate_transition(isec->sid, newsid, sid, 2817 isec->sclass); 2818 if (rc) 2819 return rc; 2820 2821 return avc_has_perm(newsid, 2822 sbsec->sid, 2823 SECCLASS_FILESYSTEM, 2824 FILESYSTEM__ASSOCIATE, 2825 &ad); 2826 } 2827 2828 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 2829 const void *value, size_t size, 2830 int flags) 2831 { 2832 struct inode *inode = dentry->d_inode; 2833 struct inode_security_struct *isec = inode->i_security; 2834 u32 newsid; 2835 int rc; 2836 2837 if (strcmp(name, XATTR_NAME_SELINUX)) { 2838 /* Not an attribute we recognize, so nothing to do. */ 2839 return; 2840 } 2841 2842 rc = security_context_to_sid_force(value, size, &newsid); 2843 if (rc) { 2844 printk(KERN_ERR "SELinux: unable to map context to SID" 2845 "for (%s, %lu), rc=%d\n", 2846 inode->i_sb->s_id, inode->i_ino, -rc); 2847 return; 2848 } 2849 2850 isec->sid = newsid; 2851 return; 2852 } 2853 2854 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 2855 { 2856 const struct cred *cred = current_cred(); 2857 2858 return dentry_has_perm(cred, dentry, FILE__GETATTR); 2859 } 2860 2861 static int selinux_inode_listxattr(struct dentry *dentry) 2862 { 2863 const struct cred *cred = current_cred(); 2864 2865 return dentry_has_perm(cred, dentry, FILE__GETATTR); 2866 } 2867 2868 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 2869 { 2870 if (strcmp(name, XATTR_NAME_SELINUX)) 2871 return selinux_inode_setotherxattr(dentry, name); 2872 2873 /* No one is allowed to remove a SELinux security label. 2874 You can change the label, but all data must be labeled. */ 2875 return -EACCES; 2876 } 2877 2878 /* 2879 * Copy the inode security context value to the user. 2880 * 2881 * Permission check is handled by selinux_inode_getxattr hook. 2882 */ 2883 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 2884 { 2885 u32 size; 2886 int error; 2887 char *context = NULL; 2888 struct inode_security_struct *isec = inode->i_security; 2889 2890 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2891 return -EOPNOTSUPP; 2892 2893 /* 2894 * If the caller has CAP_MAC_ADMIN, then get the raw context 2895 * value even if it is not defined by current policy; otherwise, 2896 * use the in-core value under current policy. 2897 * Use the non-auditing forms of the permission checks since 2898 * getxattr may be called by unprivileged processes commonly 2899 * and lack of permission just means that we fall back to the 2900 * in-core context value, not a denial. 2901 */ 2902 error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN, 2903 SECURITY_CAP_NOAUDIT); 2904 if (!error) 2905 error = security_sid_to_context_force(isec->sid, &context, 2906 &size); 2907 else 2908 error = security_sid_to_context(isec->sid, &context, &size); 2909 if (error) 2910 return error; 2911 error = size; 2912 if (alloc) { 2913 *buffer = context; 2914 goto out_nofree; 2915 } 2916 kfree(context); 2917 out_nofree: 2918 return error; 2919 } 2920 2921 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 2922 const void *value, size_t size, int flags) 2923 { 2924 struct inode_security_struct *isec = inode->i_security; 2925 u32 newsid; 2926 int rc; 2927 2928 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2929 return -EOPNOTSUPP; 2930 2931 if (!value || !size) 2932 return -EACCES; 2933 2934 rc = security_context_to_sid((void *)value, size, &newsid); 2935 if (rc) 2936 return rc; 2937 2938 isec->sid = newsid; 2939 isec->initialized = 1; 2940 return 0; 2941 } 2942 2943 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2944 { 2945 const int len = sizeof(XATTR_NAME_SELINUX); 2946 if (buffer && len <= buffer_size) 2947 memcpy(buffer, XATTR_NAME_SELINUX, len); 2948 return len; 2949 } 2950 2951 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid) 2952 { 2953 struct inode_security_struct *isec = inode->i_security; 2954 *secid = isec->sid; 2955 } 2956 2957 /* file security operations */ 2958 2959 static int selinux_revalidate_file_permission(struct file *file, int mask) 2960 { 2961 const struct cred *cred = current_cred(); 2962 struct inode *inode = file->f_path.dentry->d_inode; 2963 2964 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 2965 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 2966 mask |= MAY_APPEND; 2967 2968 return file_has_perm(cred, file, 2969 file_mask_to_av(inode->i_mode, mask)); 2970 } 2971 2972 static int selinux_file_permission(struct file *file, int mask) 2973 { 2974 struct inode *inode = file->f_path.dentry->d_inode; 2975 struct file_security_struct *fsec = file->f_security; 2976 struct inode_security_struct *isec = inode->i_security; 2977 u32 sid = current_sid(); 2978 2979 if (!mask) 2980 /* No permission to check. Existence test. */ 2981 return 0; 2982 2983 if (sid == fsec->sid && fsec->isid == isec->sid && 2984 fsec->pseqno == avc_policy_seqno()) 2985 /* No change since file_open check. */ 2986 return 0; 2987 2988 return selinux_revalidate_file_permission(file, mask); 2989 } 2990 2991 static int selinux_file_alloc_security(struct file *file) 2992 { 2993 return file_alloc_security(file); 2994 } 2995 2996 static void selinux_file_free_security(struct file *file) 2997 { 2998 file_free_security(file); 2999 } 3000 3001 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3002 unsigned long arg) 3003 { 3004 const struct cred *cred = current_cred(); 3005 int error = 0; 3006 3007 switch (cmd) { 3008 case FIONREAD: 3009 /* fall through */ 3010 case FIBMAP: 3011 /* fall through */ 3012 case FIGETBSZ: 3013 /* fall through */ 3014 case FS_IOC_GETFLAGS: 3015 /* fall through */ 3016 case FS_IOC_GETVERSION: 3017 error = file_has_perm(cred, file, FILE__GETATTR); 3018 break; 3019 3020 case FS_IOC_SETFLAGS: 3021 /* fall through */ 3022 case FS_IOC_SETVERSION: 3023 error = file_has_perm(cred, file, FILE__SETATTR); 3024 break; 3025 3026 /* sys_ioctl() checks */ 3027 case FIONBIO: 3028 /* fall through */ 3029 case FIOASYNC: 3030 error = file_has_perm(cred, file, 0); 3031 break; 3032 3033 case KDSKBENT: 3034 case KDSKBSENT: 3035 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3036 SECURITY_CAP_AUDIT); 3037 break; 3038 3039 /* default case assumes that the command will go 3040 * to the file's ioctl() function. 3041 */ 3042 default: 3043 error = file_has_perm(cred, file, FILE__IOCTL); 3044 } 3045 return error; 3046 } 3047 3048 static int default_noexec; 3049 3050 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3051 { 3052 const struct cred *cred = current_cred(); 3053 int rc = 0; 3054 3055 if (default_noexec && 3056 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 3057 /* 3058 * We are making executable an anonymous mapping or a 3059 * private file mapping that will also be writable. 3060 * This has an additional check. 3061 */ 3062 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM); 3063 if (rc) 3064 goto error; 3065 } 3066 3067 if (file) { 3068 /* read access is always possible with a mapping */ 3069 u32 av = FILE__READ; 3070 3071 /* write access only matters if the mapping is shared */ 3072 if (shared && (prot & PROT_WRITE)) 3073 av |= FILE__WRITE; 3074 3075 if (prot & PROT_EXEC) 3076 av |= FILE__EXECUTE; 3077 3078 return file_has_perm(cred, file, av); 3079 } 3080 3081 error: 3082 return rc; 3083 } 3084 3085 static int selinux_mmap_addr(unsigned long addr) 3086 { 3087 int rc = 0; 3088 u32 sid = current_sid(); 3089 3090 /* 3091 * notice that we are intentionally putting the SELinux check before 3092 * the secondary cap_file_mmap check. This is such a likely attempt 3093 * at bad behaviour/exploit that we always want to get the AVC, even 3094 * if DAC would have also denied the operation. 3095 */ 3096 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3097 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3098 MEMPROTECT__MMAP_ZERO, NULL); 3099 if (rc) 3100 return rc; 3101 } 3102 3103 /* do DAC check on address space usage */ 3104 return cap_mmap_addr(addr); 3105 } 3106 3107 static int selinux_mmap_file(struct file *file, unsigned long reqprot, 3108 unsigned long prot, unsigned long flags) 3109 { 3110 if (selinux_checkreqprot) 3111 prot = reqprot; 3112 3113 return file_map_prot_check(file, prot, 3114 (flags & MAP_TYPE) == MAP_SHARED); 3115 } 3116 3117 static int selinux_file_mprotect(struct vm_area_struct *vma, 3118 unsigned long reqprot, 3119 unsigned long prot) 3120 { 3121 const struct cred *cred = current_cred(); 3122 3123 if (selinux_checkreqprot) 3124 prot = reqprot; 3125 3126 if (default_noexec && 3127 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3128 int rc = 0; 3129 if (vma->vm_start >= vma->vm_mm->start_brk && 3130 vma->vm_end <= vma->vm_mm->brk) { 3131 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP); 3132 } else if (!vma->vm_file && 3133 vma->vm_start <= vma->vm_mm->start_stack && 3134 vma->vm_end >= vma->vm_mm->start_stack) { 3135 rc = current_has_perm(current, PROCESS__EXECSTACK); 3136 } else if (vma->vm_file && vma->anon_vma) { 3137 /* 3138 * We are making executable a file mapping that has 3139 * had some COW done. Since pages might have been 3140 * written, check ability to execute the possibly 3141 * modified content. This typically should only 3142 * occur for text relocations. 3143 */ 3144 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3145 } 3146 if (rc) 3147 return rc; 3148 } 3149 3150 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3151 } 3152 3153 static int selinux_file_lock(struct file *file, unsigned int cmd) 3154 { 3155 const struct cred *cred = current_cred(); 3156 3157 return file_has_perm(cred, file, FILE__LOCK); 3158 } 3159 3160 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3161 unsigned long arg) 3162 { 3163 const struct cred *cred = current_cred(); 3164 int err = 0; 3165 3166 switch (cmd) { 3167 case F_SETFL: 3168 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3169 err = -EINVAL; 3170 break; 3171 } 3172 3173 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3174 err = file_has_perm(cred, file, FILE__WRITE); 3175 break; 3176 } 3177 /* fall through */ 3178 case F_SETOWN: 3179 case F_SETSIG: 3180 case F_GETFL: 3181 case F_GETOWN: 3182 case F_GETSIG: 3183 /* Just check FD__USE permission */ 3184 err = file_has_perm(cred, file, 0); 3185 break; 3186 case F_GETLK: 3187 case F_SETLK: 3188 case F_SETLKW: 3189 #if BITS_PER_LONG == 32 3190 case F_GETLK64: 3191 case F_SETLK64: 3192 case F_SETLKW64: 3193 #endif 3194 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3195 err = -EINVAL; 3196 break; 3197 } 3198 err = file_has_perm(cred, file, FILE__LOCK); 3199 break; 3200 } 3201 3202 return err; 3203 } 3204 3205 static int selinux_file_set_fowner(struct file *file) 3206 { 3207 struct file_security_struct *fsec; 3208 3209 fsec = file->f_security; 3210 fsec->fown_sid = current_sid(); 3211 3212 return 0; 3213 } 3214 3215 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3216 struct fown_struct *fown, int signum) 3217 { 3218 struct file *file; 3219 u32 sid = task_sid(tsk); 3220 u32 perm; 3221 struct file_security_struct *fsec; 3222 3223 /* struct fown_struct is never outside the context of a struct file */ 3224 file = container_of(fown, struct file, f_owner); 3225 3226 fsec = file->f_security; 3227 3228 if (!signum) 3229 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3230 else 3231 perm = signal_to_av(signum); 3232 3233 return avc_has_perm(fsec->fown_sid, sid, 3234 SECCLASS_PROCESS, perm, NULL); 3235 } 3236 3237 static int selinux_file_receive(struct file *file) 3238 { 3239 const struct cred *cred = current_cred(); 3240 3241 return file_has_perm(cred, file, file_to_av(file)); 3242 } 3243 3244 static int selinux_file_open(struct file *file, const struct cred *cred) 3245 { 3246 struct file_security_struct *fsec; 3247 struct inode_security_struct *isec; 3248 3249 fsec = file->f_security; 3250 isec = file->f_path.dentry->d_inode->i_security; 3251 /* 3252 * Save inode label and policy sequence number 3253 * at open-time so that selinux_file_permission 3254 * can determine whether revalidation is necessary. 3255 * Task label is already saved in the file security 3256 * struct as its SID. 3257 */ 3258 fsec->isid = isec->sid; 3259 fsec->pseqno = avc_policy_seqno(); 3260 /* 3261 * Since the inode label or policy seqno may have changed 3262 * between the selinux_inode_permission check and the saving 3263 * of state above, recheck that access is still permitted. 3264 * Otherwise, access might never be revalidated against the 3265 * new inode label or new policy. 3266 * This check is not redundant - do not remove. 3267 */ 3268 return path_has_perm(cred, &file->f_path, open_file_to_av(file)); 3269 } 3270 3271 /* task security operations */ 3272 3273 static int selinux_task_create(unsigned long clone_flags) 3274 { 3275 return current_has_perm(current, PROCESS__FORK); 3276 } 3277 3278 /* 3279 * allocate the SELinux part of blank credentials 3280 */ 3281 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3282 { 3283 struct task_security_struct *tsec; 3284 3285 tsec = kzalloc(sizeof(struct task_security_struct), gfp); 3286 if (!tsec) 3287 return -ENOMEM; 3288 3289 cred->security = tsec; 3290 return 0; 3291 } 3292 3293 /* 3294 * detach and free the LSM part of a set of credentials 3295 */ 3296 static void selinux_cred_free(struct cred *cred) 3297 { 3298 struct task_security_struct *tsec = cred->security; 3299 3300 /* 3301 * cred->security == NULL if security_cred_alloc_blank() or 3302 * security_prepare_creds() returned an error. 3303 */ 3304 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE); 3305 cred->security = (void *) 0x7UL; 3306 kfree(tsec); 3307 } 3308 3309 /* 3310 * prepare a new set of credentials for modification 3311 */ 3312 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3313 gfp_t gfp) 3314 { 3315 const struct task_security_struct *old_tsec; 3316 struct task_security_struct *tsec; 3317 3318 old_tsec = old->security; 3319 3320 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp); 3321 if (!tsec) 3322 return -ENOMEM; 3323 3324 new->security = tsec; 3325 return 0; 3326 } 3327 3328 /* 3329 * transfer the SELinux data to a blank set of creds 3330 */ 3331 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3332 { 3333 const struct task_security_struct *old_tsec = old->security; 3334 struct task_security_struct *tsec = new->security; 3335 3336 *tsec = *old_tsec; 3337 } 3338 3339 /* 3340 * set the security data for a kernel service 3341 * - all the creation contexts are set to unlabelled 3342 */ 3343 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3344 { 3345 struct task_security_struct *tsec = new->security; 3346 u32 sid = current_sid(); 3347 int ret; 3348 3349 ret = avc_has_perm(sid, secid, 3350 SECCLASS_KERNEL_SERVICE, 3351 KERNEL_SERVICE__USE_AS_OVERRIDE, 3352 NULL); 3353 if (ret == 0) { 3354 tsec->sid = secid; 3355 tsec->create_sid = 0; 3356 tsec->keycreate_sid = 0; 3357 tsec->sockcreate_sid = 0; 3358 } 3359 return ret; 3360 } 3361 3362 /* 3363 * set the file creation context in a security record to the same as the 3364 * objective context of the specified inode 3365 */ 3366 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3367 { 3368 struct inode_security_struct *isec = inode->i_security; 3369 struct task_security_struct *tsec = new->security; 3370 u32 sid = current_sid(); 3371 int ret; 3372 3373 ret = avc_has_perm(sid, isec->sid, 3374 SECCLASS_KERNEL_SERVICE, 3375 KERNEL_SERVICE__CREATE_FILES_AS, 3376 NULL); 3377 3378 if (ret == 0) 3379 tsec->create_sid = isec->sid; 3380 return ret; 3381 } 3382 3383 static int selinux_kernel_module_request(char *kmod_name) 3384 { 3385 u32 sid; 3386 struct common_audit_data ad; 3387 3388 sid = task_sid(current); 3389 3390 ad.type = LSM_AUDIT_DATA_KMOD; 3391 ad.u.kmod_name = kmod_name; 3392 3393 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM, 3394 SYSTEM__MODULE_REQUEST, &ad); 3395 } 3396 3397 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3398 { 3399 return current_has_perm(p, PROCESS__SETPGID); 3400 } 3401 3402 static int selinux_task_getpgid(struct task_struct *p) 3403 { 3404 return current_has_perm(p, PROCESS__GETPGID); 3405 } 3406 3407 static int selinux_task_getsid(struct task_struct *p) 3408 { 3409 return current_has_perm(p, PROCESS__GETSESSION); 3410 } 3411 3412 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3413 { 3414 *secid = task_sid(p); 3415 } 3416 3417 static int selinux_task_setnice(struct task_struct *p, int nice) 3418 { 3419 int rc; 3420 3421 rc = cap_task_setnice(p, nice); 3422 if (rc) 3423 return rc; 3424 3425 return current_has_perm(p, PROCESS__SETSCHED); 3426 } 3427 3428 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3429 { 3430 int rc; 3431 3432 rc = cap_task_setioprio(p, ioprio); 3433 if (rc) 3434 return rc; 3435 3436 return current_has_perm(p, PROCESS__SETSCHED); 3437 } 3438 3439 static int selinux_task_getioprio(struct task_struct *p) 3440 { 3441 return current_has_perm(p, PROCESS__GETSCHED); 3442 } 3443 3444 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 3445 struct rlimit *new_rlim) 3446 { 3447 struct rlimit *old_rlim = p->signal->rlim + resource; 3448 3449 /* Control the ability to change the hard limit (whether 3450 lowering or raising it), so that the hard limit can 3451 later be used as a safe reset point for the soft limit 3452 upon context transitions. See selinux_bprm_committing_creds. */ 3453 if (old_rlim->rlim_max != new_rlim->rlim_max) 3454 return current_has_perm(p, PROCESS__SETRLIMIT); 3455 3456 return 0; 3457 } 3458 3459 static int selinux_task_setscheduler(struct task_struct *p) 3460 { 3461 int rc; 3462 3463 rc = cap_task_setscheduler(p); 3464 if (rc) 3465 return rc; 3466 3467 return current_has_perm(p, PROCESS__SETSCHED); 3468 } 3469 3470 static int selinux_task_getscheduler(struct task_struct *p) 3471 { 3472 return current_has_perm(p, PROCESS__GETSCHED); 3473 } 3474 3475 static int selinux_task_movememory(struct task_struct *p) 3476 { 3477 return current_has_perm(p, PROCESS__SETSCHED); 3478 } 3479 3480 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3481 int sig, u32 secid) 3482 { 3483 u32 perm; 3484 int rc; 3485 3486 if (!sig) 3487 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3488 else 3489 perm = signal_to_av(sig); 3490 if (secid) 3491 rc = avc_has_perm(secid, task_sid(p), 3492 SECCLASS_PROCESS, perm, NULL); 3493 else 3494 rc = current_has_perm(p, perm); 3495 return rc; 3496 } 3497 3498 static int selinux_task_wait(struct task_struct *p) 3499 { 3500 return task_has_perm(p, current, PROCESS__SIGCHLD); 3501 } 3502 3503 static void selinux_task_to_inode(struct task_struct *p, 3504 struct inode *inode) 3505 { 3506 struct inode_security_struct *isec = inode->i_security; 3507 u32 sid = task_sid(p); 3508 3509 isec->sid = sid; 3510 isec->initialized = 1; 3511 } 3512 3513 /* Returns error only if unable to parse addresses */ 3514 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3515 struct common_audit_data *ad, u8 *proto) 3516 { 3517 int offset, ihlen, ret = -EINVAL; 3518 struct iphdr _iph, *ih; 3519 3520 offset = skb_network_offset(skb); 3521 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3522 if (ih == NULL) 3523 goto out; 3524 3525 ihlen = ih->ihl * 4; 3526 if (ihlen < sizeof(_iph)) 3527 goto out; 3528 3529 ad->u.net->v4info.saddr = ih->saddr; 3530 ad->u.net->v4info.daddr = ih->daddr; 3531 ret = 0; 3532 3533 if (proto) 3534 *proto = ih->protocol; 3535 3536 switch (ih->protocol) { 3537 case IPPROTO_TCP: { 3538 struct tcphdr _tcph, *th; 3539 3540 if (ntohs(ih->frag_off) & IP_OFFSET) 3541 break; 3542 3543 offset += ihlen; 3544 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3545 if (th == NULL) 3546 break; 3547 3548 ad->u.net->sport = th->source; 3549 ad->u.net->dport = th->dest; 3550 break; 3551 } 3552 3553 case IPPROTO_UDP: { 3554 struct udphdr _udph, *uh; 3555 3556 if (ntohs(ih->frag_off) & IP_OFFSET) 3557 break; 3558 3559 offset += ihlen; 3560 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3561 if (uh == NULL) 3562 break; 3563 3564 ad->u.net->sport = uh->source; 3565 ad->u.net->dport = uh->dest; 3566 break; 3567 } 3568 3569 case IPPROTO_DCCP: { 3570 struct dccp_hdr _dccph, *dh; 3571 3572 if (ntohs(ih->frag_off) & IP_OFFSET) 3573 break; 3574 3575 offset += ihlen; 3576 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3577 if (dh == NULL) 3578 break; 3579 3580 ad->u.net->sport = dh->dccph_sport; 3581 ad->u.net->dport = dh->dccph_dport; 3582 break; 3583 } 3584 3585 default: 3586 break; 3587 } 3588 out: 3589 return ret; 3590 } 3591 3592 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3593 3594 /* Returns error only if unable to parse addresses */ 3595 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3596 struct common_audit_data *ad, u8 *proto) 3597 { 3598 u8 nexthdr; 3599 int ret = -EINVAL, offset; 3600 struct ipv6hdr _ipv6h, *ip6; 3601 __be16 frag_off; 3602 3603 offset = skb_network_offset(skb); 3604 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3605 if (ip6 == NULL) 3606 goto out; 3607 3608 ad->u.net->v6info.saddr = ip6->saddr; 3609 ad->u.net->v6info.daddr = ip6->daddr; 3610 ret = 0; 3611 3612 nexthdr = ip6->nexthdr; 3613 offset += sizeof(_ipv6h); 3614 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 3615 if (offset < 0) 3616 goto out; 3617 3618 if (proto) 3619 *proto = nexthdr; 3620 3621 switch (nexthdr) { 3622 case IPPROTO_TCP: { 3623 struct tcphdr _tcph, *th; 3624 3625 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3626 if (th == NULL) 3627 break; 3628 3629 ad->u.net->sport = th->source; 3630 ad->u.net->dport = th->dest; 3631 break; 3632 } 3633 3634 case IPPROTO_UDP: { 3635 struct udphdr _udph, *uh; 3636 3637 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3638 if (uh == NULL) 3639 break; 3640 3641 ad->u.net->sport = uh->source; 3642 ad->u.net->dport = uh->dest; 3643 break; 3644 } 3645 3646 case IPPROTO_DCCP: { 3647 struct dccp_hdr _dccph, *dh; 3648 3649 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3650 if (dh == NULL) 3651 break; 3652 3653 ad->u.net->sport = dh->dccph_sport; 3654 ad->u.net->dport = dh->dccph_dport; 3655 break; 3656 } 3657 3658 /* includes fragments */ 3659 default: 3660 break; 3661 } 3662 out: 3663 return ret; 3664 } 3665 3666 #endif /* IPV6 */ 3667 3668 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 3669 char **_addrp, int src, u8 *proto) 3670 { 3671 char *addrp; 3672 int ret; 3673 3674 switch (ad->u.net->family) { 3675 case PF_INET: 3676 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3677 if (ret) 3678 goto parse_error; 3679 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 3680 &ad->u.net->v4info.daddr); 3681 goto okay; 3682 3683 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3684 case PF_INET6: 3685 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3686 if (ret) 3687 goto parse_error; 3688 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 3689 &ad->u.net->v6info.daddr); 3690 goto okay; 3691 #endif /* IPV6 */ 3692 default: 3693 addrp = NULL; 3694 goto okay; 3695 } 3696 3697 parse_error: 3698 printk(KERN_WARNING 3699 "SELinux: failure in selinux_parse_skb()," 3700 " unable to parse packet\n"); 3701 return ret; 3702 3703 okay: 3704 if (_addrp) 3705 *_addrp = addrp; 3706 return 0; 3707 } 3708 3709 /** 3710 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 3711 * @skb: the packet 3712 * @family: protocol family 3713 * @sid: the packet's peer label SID 3714 * 3715 * Description: 3716 * Check the various different forms of network peer labeling and determine 3717 * the peer label/SID for the packet; most of the magic actually occurs in 3718 * the security server function security_net_peersid_cmp(). The function 3719 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 3720 * or -EACCES if @sid is invalid due to inconsistencies with the different 3721 * peer labels. 3722 * 3723 */ 3724 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 3725 { 3726 int err; 3727 u32 xfrm_sid; 3728 u32 nlbl_sid; 3729 u32 nlbl_type; 3730 3731 selinux_skb_xfrm_sid(skb, &xfrm_sid); 3732 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 3733 3734 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 3735 if (unlikely(err)) { 3736 printk(KERN_WARNING 3737 "SELinux: failure in selinux_skb_peerlbl_sid()," 3738 " unable to determine packet's peer label\n"); 3739 return -EACCES; 3740 } 3741 3742 return 0; 3743 } 3744 3745 /* socket security operations */ 3746 3747 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 3748 u16 secclass, u32 *socksid) 3749 { 3750 if (tsec->sockcreate_sid > SECSID_NULL) { 3751 *socksid = tsec->sockcreate_sid; 3752 return 0; 3753 } 3754 3755 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL, 3756 socksid); 3757 } 3758 3759 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms) 3760 { 3761 struct sk_security_struct *sksec = sk->sk_security; 3762 struct common_audit_data ad; 3763 struct lsm_network_audit net = {0,}; 3764 u32 tsid = task_sid(task); 3765 3766 if (sksec->sid == SECINITSID_KERNEL) 3767 return 0; 3768 3769 ad.type = LSM_AUDIT_DATA_NET; 3770 ad.u.net = &net; 3771 ad.u.net->sk = sk; 3772 3773 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad); 3774 } 3775 3776 static int selinux_socket_create(int family, int type, 3777 int protocol, int kern) 3778 { 3779 const struct task_security_struct *tsec = current_security(); 3780 u32 newsid; 3781 u16 secclass; 3782 int rc; 3783 3784 if (kern) 3785 return 0; 3786 3787 secclass = socket_type_to_security_class(family, type, protocol); 3788 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 3789 if (rc) 3790 return rc; 3791 3792 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 3793 } 3794 3795 static int selinux_socket_post_create(struct socket *sock, int family, 3796 int type, int protocol, int kern) 3797 { 3798 const struct task_security_struct *tsec = current_security(); 3799 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 3800 struct sk_security_struct *sksec; 3801 int err = 0; 3802 3803 isec->sclass = socket_type_to_security_class(family, type, protocol); 3804 3805 if (kern) 3806 isec->sid = SECINITSID_KERNEL; 3807 else { 3808 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid)); 3809 if (err) 3810 return err; 3811 } 3812 3813 isec->initialized = 1; 3814 3815 if (sock->sk) { 3816 sksec = sock->sk->sk_security; 3817 sksec->sid = isec->sid; 3818 sksec->sclass = isec->sclass; 3819 err = selinux_netlbl_socket_post_create(sock->sk, family); 3820 } 3821 3822 return err; 3823 } 3824 3825 /* Range of port numbers used to automatically bind. 3826 Need to determine whether we should perform a name_bind 3827 permission check between the socket and the port number. */ 3828 3829 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 3830 { 3831 struct sock *sk = sock->sk; 3832 u16 family; 3833 int err; 3834 3835 err = sock_has_perm(current, sk, SOCKET__BIND); 3836 if (err) 3837 goto out; 3838 3839 /* 3840 * If PF_INET or PF_INET6, check name_bind permission for the port. 3841 * Multiple address binding for SCTP is not supported yet: we just 3842 * check the first address now. 3843 */ 3844 family = sk->sk_family; 3845 if (family == PF_INET || family == PF_INET6) { 3846 char *addrp; 3847 struct sk_security_struct *sksec = sk->sk_security; 3848 struct common_audit_data ad; 3849 struct lsm_network_audit net = {0,}; 3850 struct sockaddr_in *addr4 = NULL; 3851 struct sockaddr_in6 *addr6 = NULL; 3852 unsigned short snum; 3853 u32 sid, node_perm; 3854 3855 if (family == PF_INET) { 3856 addr4 = (struct sockaddr_in *)address; 3857 snum = ntohs(addr4->sin_port); 3858 addrp = (char *)&addr4->sin_addr.s_addr; 3859 } else { 3860 addr6 = (struct sockaddr_in6 *)address; 3861 snum = ntohs(addr6->sin6_port); 3862 addrp = (char *)&addr6->sin6_addr.s6_addr; 3863 } 3864 3865 if (snum) { 3866 int low, high; 3867 3868 inet_get_local_port_range(&low, &high); 3869 3870 if (snum < max(PROT_SOCK, low) || snum > high) { 3871 err = sel_netport_sid(sk->sk_protocol, 3872 snum, &sid); 3873 if (err) 3874 goto out; 3875 ad.type = LSM_AUDIT_DATA_NET; 3876 ad.u.net = &net; 3877 ad.u.net->sport = htons(snum); 3878 ad.u.net->family = family; 3879 err = avc_has_perm(sksec->sid, sid, 3880 sksec->sclass, 3881 SOCKET__NAME_BIND, &ad); 3882 if (err) 3883 goto out; 3884 } 3885 } 3886 3887 switch (sksec->sclass) { 3888 case SECCLASS_TCP_SOCKET: 3889 node_perm = TCP_SOCKET__NODE_BIND; 3890 break; 3891 3892 case SECCLASS_UDP_SOCKET: 3893 node_perm = UDP_SOCKET__NODE_BIND; 3894 break; 3895 3896 case SECCLASS_DCCP_SOCKET: 3897 node_perm = DCCP_SOCKET__NODE_BIND; 3898 break; 3899 3900 default: 3901 node_perm = RAWIP_SOCKET__NODE_BIND; 3902 break; 3903 } 3904 3905 err = sel_netnode_sid(addrp, family, &sid); 3906 if (err) 3907 goto out; 3908 3909 ad.type = LSM_AUDIT_DATA_NET; 3910 ad.u.net = &net; 3911 ad.u.net->sport = htons(snum); 3912 ad.u.net->family = family; 3913 3914 if (family == PF_INET) 3915 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 3916 else 3917 ad.u.net->v6info.saddr = addr6->sin6_addr; 3918 3919 err = avc_has_perm(sksec->sid, sid, 3920 sksec->sclass, node_perm, &ad); 3921 if (err) 3922 goto out; 3923 } 3924 out: 3925 return err; 3926 } 3927 3928 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 3929 { 3930 struct sock *sk = sock->sk; 3931 struct sk_security_struct *sksec = sk->sk_security; 3932 int err; 3933 3934 err = sock_has_perm(current, sk, SOCKET__CONNECT); 3935 if (err) 3936 return err; 3937 3938 /* 3939 * If a TCP or DCCP socket, check name_connect permission for the port. 3940 */ 3941 if (sksec->sclass == SECCLASS_TCP_SOCKET || 3942 sksec->sclass == SECCLASS_DCCP_SOCKET) { 3943 struct common_audit_data ad; 3944 struct lsm_network_audit net = {0,}; 3945 struct sockaddr_in *addr4 = NULL; 3946 struct sockaddr_in6 *addr6 = NULL; 3947 unsigned short snum; 3948 u32 sid, perm; 3949 3950 if (sk->sk_family == PF_INET) { 3951 addr4 = (struct sockaddr_in *)address; 3952 if (addrlen < sizeof(struct sockaddr_in)) 3953 return -EINVAL; 3954 snum = ntohs(addr4->sin_port); 3955 } else { 3956 addr6 = (struct sockaddr_in6 *)address; 3957 if (addrlen < SIN6_LEN_RFC2133) 3958 return -EINVAL; 3959 snum = ntohs(addr6->sin6_port); 3960 } 3961 3962 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 3963 if (err) 3964 goto out; 3965 3966 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ? 3967 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 3968 3969 ad.type = LSM_AUDIT_DATA_NET; 3970 ad.u.net = &net; 3971 ad.u.net->dport = htons(snum); 3972 ad.u.net->family = sk->sk_family; 3973 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad); 3974 if (err) 3975 goto out; 3976 } 3977 3978 err = selinux_netlbl_socket_connect(sk, address); 3979 3980 out: 3981 return err; 3982 } 3983 3984 static int selinux_socket_listen(struct socket *sock, int backlog) 3985 { 3986 return sock_has_perm(current, sock->sk, SOCKET__LISTEN); 3987 } 3988 3989 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 3990 { 3991 int err; 3992 struct inode_security_struct *isec; 3993 struct inode_security_struct *newisec; 3994 3995 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT); 3996 if (err) 3997 return err; 3998 3999 newisec = SOCK_INODE(newsock)->i_security; 4000 4001 isec = SOCK_INODE(sock)->i_security; 4002 newisec->sclass = isec->sclass; 4003 newisec->sid = isec->sid; 4004 newisec->initialized = 1; 4005 4006 return 0; 4007 } 4008 4009 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4010 int size) 4011 { 4012 return sock_has_perm(current, sock->sk, SOCKET__WRITE); 4013 } 4014 4015 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4016 int size, int flags) 4017 { 4018 return sock_has_perm(current, sock->sk, SOCKET__READ); 4019 } 4020 4021 static int selinux_socket_getsockname(struct socket *sock) 4022 { 4023 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 4024 } 4025 4026 static int selinux_socket_getpeername(struct socket *sock) 4027 { 4028 return sock_has_perm(current, sock->sk, SOCKET__GETATTR); 4029 } 4030 4031 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 4032 { 4033 int err; 4034 4035 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT); 4036 if (err) 4037 return err; 4038 4039 return selinux_netlbl_socket_setsockopt(sock, level, optname); 4040 } 4041 4042 static int selinux_socket_getsockopt(struct socket *sock, int level, 4043 int optname) 4044 { 4045 return sock_has_perm(current, sock->sk, SOCKET__GETOPT); 4046 } 4047 4048 static int selinux_socket_shutdown(struct socket *sock, int how) 4049 { 4050 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN); 4051 } 4052 4053 static int selinux_socket_unix_stream_connect(struct sock *sock, 4054 struct sock *other, 4055 struct sock *newsk) 4056 { 4057 struct sk_security_struct *sksec_sock = sock->sk_security; 4058 struct sk_security_struct *sksec_other = other->sk_security; 4059 struct sk_security_struct *sksec_new = newsk->sk_security; 4060 struct common_audit_data ad; 4061 struct lsm_network_audit net = {0,}; 4062 int err; 4063 4064 ad.type = LSM_AUDIT_DATA_NET; 4065 ad.u.net = &net; 4066 ad.u.net->sk = other; 4067 4068 err = avc_has_perm(sksec_sock->sid, sksec_other->sid, 4069 sksec_other->sclass, 4070 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 4071 if (err) 4072 return err; 4073 4074 /* server child socket */ 4075 sksec_new->peer_sid = sksec_sock->sid; 4076 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid, 4077 &sksec_new->sid); 4078 if (err) 4079 return err; 4080 4081 /* connecting socket */ 4082 sksec_sock->peer_sid = sksec_new->sid; 4083 4084 return 0; 4085 } 4086 4087 static int selinux_socket_unix_may_send(struct socket *sock, 4088 struct socket *other) 4089 { 4090 struct sk_security_struct *ssec = sock->sk->sk_security; 4091 struct sk_security_struct *osec = other->sk->sk_security; 4092 struct common_audit_data ad; 4093 struct lsm_network_audit net = {0,}; 4094 4095 ad.type = LSM_AUDIT_DATA_NET; 4096 ad.u.net = &net; 4097 ad.u.net->sk = other->sk; 4098 4099 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 4100 &ad); 4101 } 4102 4103 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family, 4104 u32 peer_sid, 4105 struct common_audit_data *ad) 4106 { 4107 int err; 4108 u32 if_sid; 4109 u32 node_sid; 4110 4111 err = sel_netif_sid(ifindex, &if_sid); 4112 if (err) 4113 return err; 4114 err = avc_has_perm(peer_sid, if_sid, 4115 SECCLASS_NETIF, NETIF__INGRESS, ad); 4116 if (err) 4117 return err; 4118 4119 err = sel_netnode_sid(addrp, family, &node_sid); 4120 if (err) 4121 return err; 4122 return avc_has_perm(peer_sid, node_sid, 4123 SECCLASS_NODE, NODE__RECVFROM, ad); 4124 } 4125 4126 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4127 u16 family) 4128 { 4129 int err = 0; 4130 struct sk_security_struct *sksec = sk->sk_security; 4131 u32 sk_sid = sksec->sid; 4132 struct common_audit_data ad; 4133 struct lsm_network_audit net = {0,}; 4134 char *addrp; 4135 4136 ad.type = LSM_AUDIT_DATA_NET; 4137 ad.u.net = &net; 4138 ad.u.net->netif = skb->skb_iif; 4139 ad.u.net->family = family; 4140 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4141 if (err) 4142 return err; 4143 4144 if (selinux_secmark_enabled()) { 4145 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4146 PACKET__RECV, &ad); 4147 if (err) 4148 return err; 4149 } 4150 4151 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4152 if (err) 4153 return err; 4154 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4155 4156 return err; 4157 } 4158 4159 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4160 { 4161 int err; 4162 struct sk_security_struct *sksec = sk->sk_security; 4163 u16 family = sk->sk_family; 4164 u32 sk_sid = sksec->sid; 4165 struct common_audit_data ad; 4166 struct lsm_network_audit net = {0,}; 4167 char *addrp; 4168 u8 secmark_active; 4169 u8 peerlbl_active; 4170 4171 if (family != PF_INET && family != PF_INET6) 4172 return 0; 4173 4174 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4175 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4176 family = PF_INET; 4177 4178 /* If any sort of compatibility mode is enabled then handoff processing 4179 * to the selinux_sock_rcv_skb_compat() function to deal with the 4180 * special handling. We do this in an attempt to keep this function 4181 * as fast and as clean as possible. */ 4182 if (!selinux_policycap_netpeer) 4183 return selinux_sock_rcv_skb_compat(sk, skb, family); 4184 4185 secmark_active = selinux_secmark_enabled(); 4186 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4187 if (!secmark_active && !peerlbl_active) 4188 return 0; 4189 4190 ad.type = LSM_AUDIT_DATA_NET; 4191 ad.u.net = &net; 4192 ad.u.net->netif = skb->skb_iif; 4193 ad.u.net->family = family; 4194 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4195 if (err) 4196 return err; 4197 4198 if (peerlbl_active) { 4199 u32 peer_sid; 4200 4201 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4202 if (err) 4203 return err; 4204 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family, 4205 peer_sid, &ad); 4206 if (err) { 4207 selinux_netlbl_err(skb, err, 0); 4208 return err; 4209 } 4210 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4211 PEER__RECV, &ad); 4212 if (err) 4213 selinux_netlbl_err(skb, err, 0); 4214 } 4215 4216 if (secmark_active) { 4217 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4218 PACKET__RECV, &ad); 4219 if (err) 4220 return err; 4221 } 4222 4223 return err; 4224 } 4225 4226 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4227 int __user *optlen, unsigned len) 4228 { 4229 int err = 0; 4230 char *scontext; 4231 u32 scontext_len; 4232 struct sk_security_struct *sksec = sock->sk->sk_security; 4233 u32 peer_sid = SECSID_NULL; 4234 4235 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4236 sksec->sclass == SECCLASS_TCP_SOCKET) 4237 peer_sid = sksec->peer_sid; 4238 if (peer_sid == SECSID_NULL) 4239 return -ENOPROTOOPT; 4240 4241 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4242 if (err) 4243 return err; 4244 4245 if (scontext_len > len) { 4246 err = -ERANGE; 4247 goto out_len; 4248 } 4249 4250 if (copy_to_user(optval, scontext, scontext_len)) 4251 err = -EFAULT; 4252 4253 out_len: 4254 if (put_user(scontext_len, optlen)) 4255 err = -EFAULT; 4256 kfree(scontext); 4257 return err; 4258 } 4259 4260 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4261 { 4262 u32 peer_secid = SECSID_NULL; 4263 u16 family; 4264 4265 if (skb && skb->protocol == htons(ETH_P_IP)) 4266 family = PF_INET; 4267 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 4268 family = PF_INET6; 4269 else if (sock) 4270 family = sock->sk->sk_family; 4271 else 4272 goto out; 4273 4274 if (sock && family == PF_UNIX) 4275 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid); 4276 else if (skb) 4277 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4278 4279 out: 4280 *secid = peer_secid; 4281 if (peer_secid == SECSID_NULL) 4282 return -EINVAL; 4283 return 0; 4284 } 4285 4286 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4287 { 4288 struct sk_security_struct *sksec; 4289 4290 sksec = kzalloc(sizeof(*sksec), priority); 4291 if (!sksec) 4292 return -ENOMEM; 4293 4294 sksec->peer_sid = SECINITSID_UNLABELED; 4295 sksec->sid = SECINITSID_UNLABELED; 4296 selinux_netlbl_sk_security_reset(sksec); 4297 sk->sk_security = sksec; 4298 4299 return 0; 4300 } 4301 4302 static void selinux_sk_free_security(struct sock *sk) 4303 { 4304 struct sk_security_struct *sksec = sk->sk_security; 4305 4306 sk->sk_security = NULL; 4307 selinux_netlbl_sk_security_free(sksec); 4308 kfree(sksec); 4309 } 4310 4311 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4312 { 4313 struct sk_security_struct *sksec = sk->sk_security; 4314 struct sk_security_struct *newsksec = newsk->sk_security; 4315 4316 newsksec->sid = sksec->sid; 4317 newsksec->peer_sid = sksec->peer_sid; 4318 newsksec->sclass = sksec->sclass; 4319 4320 selinux_netlbl_sk_security_reset(newsksec); 4321 } 4322 4323 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4324 { 4325 if (!sk) 4326 *secid = SECINITSID_ANY_SOCKET; 4327 else { 4328 struct sk_security_struct *sksec = sk->sk_security; 4329 4330 *secid = sksec->sid; 4331 } 4332 } 4333 4334 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4335 { 4336 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 4337 struct sk_security_struct *sksec = sk->sk_security; 4338 4339 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4340 sk->sk_family == PF_UNIX) 4341 isec->sid = sksec->sid; 4342 sksec->sclass = isec->sclass; 4343 } 4344 4345 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4346 struct request_sock *req) 4347 { 4348 struct sk_security_struct *sksec = sk->sk_security; 4349 int err; 4350 u16 family = sk->sk_family; 4351 u32 newsid; 4352 u32 peersid; 4353 4354 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4355 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4356 family = PF_INET; 4357 4358 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 4359 if (err) 4360 return err; 4361 if (peersid == SECSID_NULL) { 4362 req->secid = sksec->sid; 4363 req->peer_secid = SECSID_NULL; 4364 } else { 4365 err = security_sid_mls_copy(sksec->sid, peersid, &newsid); 4366 if (err) 4367 return err; 4368 req->secid = newsid; 4369 req->peer_secid = peersid; 4370 } 4371 4372 return selinux_netlbl_inet_conn_request(req, family); 4373 } 4374 4375 static void selinux_inet_csk_clone(struct sock *newsk, 4376 const struct request_sock *req) 4377 { 4378 struct sk_security_struct *newsksec = newsk->sk_security; 4379 4380 newsksec->sid = req->secid; 4381 newsksec->peer_sid = req->peer_secid; 4382 /* NOTE: Ideally, we should also get the isec->sid for the 4383 new socket in sync, but we don't have the isec available yet. 4384 So we will wait until sock_graft to do it, by which 4385 time it will have been created and available. */ 4386 4387 /* We don't need to take any sort of lock here as we are the only 4388 * thread with access to newsksec */ 4389 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 4390 } 4391 4392 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 4393 { 4394 u16 family = sk->sk_family; 4395 struct sk_security_struct *sksec = sk->sk_security; 4396 4397 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4398 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4399 family = PF_INET; 4400 4401 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 4402 } 4403 4404 static int selinux_secmark_relabel_packet(u32 sid) 4405 { 4406 const struct task_security_struct *__tsec; 4407 u32 tsid; 4408 4409 __tsec = current_security(); 4410 tsid = __tsec->sid; 4411 4412 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL); 4413 } 4414 4415 static void selinux_secmark_refcount_inc(void) 4416 { 4417 atomic_inc(&selinux_secmark_refcount); 4418 } 4419 4420 static void selinux_secmark_refcount_dec(void) 4421 { 4422 atomic_dec(&selinux_secmark_refcount); 4423 } 4424 4425 static void selinux_req_classify_flow(const struct request_sock *req, 4426 struct flowi *fl) 4427 { 4428 fl->flowi_secid = req->secid; 4429 } 4430 4431 static int selinux_tun_dev_create(void) 4432 { 4433 u32 sid = current_sid(); 4434 4435 /* we aren't taking into account the "sockcreate" SID since the socket 4436 * that is being created here is not a socket in the traditional sense, 4437 * instead it is a private sock, accessible only to the kernel, and 4438 * representing a wide range of network traffic spanning multiple 4439 * connections unlike traditional sockets - check the TUN driver to 4440 * get a better understanding of why this socket is special */ 4441 4442 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 4443 NULL); 4444 } 4445 4446 static void selinux_tun_dev_post_create(struct sock *sk) 4447 { 4448 struct sk_security_struct *sksec = sk->sk_security; 4449 4450 /* we don't currently perform any NetLabel based labeling here and it 4451 * isn't clear that we would want to do so anyway; while we could apply 4452 * labeling without the support of the TUN user the resulting labeled 4453 * traffic from the other end of the connection would almost certainly 4454 * cause confusion to the TUN user that had no idea network labeling 4455 * protocols were being used */ 4456 4457 /* see the comments in selinux_tun_dev_create() about why we don't use 4458 * the sockcreate SID here */ 4459 4460 sksec->sid = current_sid(); 4461 sksec->sclass = SECCLASS_TUN_SOCKET; 4462 } 4463 4464 static int selinux_tun_dev_attach(struct sock *sk) 4465 { 4466 struct sk_security_struct *sksec = sk->sk_security; 4467 u32 sid = current_sid(); 4468 int err; 4469 4470 err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET, 4471 TUN_SOCKET__RELABELFROM, NULL); 4472 if (err) 4473 return err; 4474 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, 4475 TUN_SOCKET__RELABELTO, NULL); 4476 if (err) 4477 return err; 4478 4479 sksec->sid = sid; 4480 4481 return 0; 4482 } 4483 4484 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 4485 { 4486 int err = 0; 4487 u32 perm; 4488 struct nlmsghdr *nlh; 4489 struct sk_security_struct *sksec = sk->sk_security; 4490 4491 if (skb->len < NLMSG_SPACE(0)) { 4492 err = -EINVAL; 4493 goto out; 4494 } 4495 nlh = nlmsg_hdr(skb); 4496 4497 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm); 4498 if (err) { 4499 if (err == -EINVAL) { 4500 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR, 4501 "SELinux: unrecognized netlink message" 4502 " type=%hu for sclass=%hu\n", 4503 nlh->nlmsg_type, sksec->sclass); 4504 if (!selinux_enforcing || security_get_allow_unknown()) 4505 err = 0; 4506 } 4507 4508 /* Ignore */ 4509 if (err == -ENOENT) 4510 err = 0; 4511 goto out; 4512 } 4513 4514 err = sock_has_perm(current, sk, perm); 4515 out: 4516 return err; 4517 } 4518 4519 #ifdef CONFIG_NETFILTER 4520 4521 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex, 4522 u16 family) 4523 { 4524 int err; 4525 char *addrp; 4526 u32 peer_sid; 4527 struct common_audit_data ad; 4528 struct lsm_network_audit net = {0,}; 4529 u8 secmark_active; 4530 u8 netlbl_active; 4531 u8 peerlbl_active; 4532 4533 if (!selinux_policycap_netpeer) 4534 return NF_ACCEPT; 4535 4536 secmark_active = selinux_secmark_enabled(); 4537 netlbl_active = netlbl_enabled(); 4538 peerlbl_active = netlbl_active || selinux_xfrm_enabled(); 4539 if (!secmark_active && !peerlbl_active) 4540 return NF_ACCEPT; 4541 4542 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 4543 return NF_DROP; 4544 4545 ad.type = LSM_AUDIT_DATA_NET; 4546 ad.u.net = &net; 4547 ad.u.net->netif = ifindex; 4548 ad.u.net->family = family; 4549 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 4550 return NF_DROP; 4551 4552 if (peerlbl_active) { 4553 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family, 4554 peer_sid, &ad); 4555 if (err) { 4556 selinux_netlbl_err(skb, err, 1); 4557 return NF_DROP; 4558 } 4559 } 4560 4561 if (secmark_active) 4562 if (avc_has_perm(peer_sid, skb->secmark, 4563 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 4564 return NF_DROP; 4565 4566 if (netlbl_active) 4567 /* we do this in the FORWARD path and not the POST_ROUTING 4568 * path because we want to make sure we apply the necessary 4569 * labeling before IPsec is applied so we can leverage AH 4570 * protection */ 4571 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 4572 return NF_DROP; 4573 4574 return NF_ACCEPT; 4575 } 4576 4577 static unsigned int selinux_ipv4_forward(unsigned int hooknum, 4578 struct sk_buff *skb, 4579 const struct net_device *in, 4580 const struct net_device *out, 4581 int (*okfn)(struct sk_buff *)) 4582 { 4583 return selinux_ip_forward(skb, in->ifindex, PF_INET); 4584 } 4585 4586 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4587 static unsigned int selinux_ipv6_forward(unsigned int hooknum, 4588 struct sk_buff *skb, 4589 const struct net_device *in, 4590 const struct net_device *out, 4591 int (*okfn)(struct sk_buff *)) 4592 { 4593 return selinux_ip_forward(skb, in->ifindex, PF_INET6); 4594 } 4595 #endif /* IPV6 */ 4596 4597 static unsigned int selinux_ip_output(struct sk_buff *skb, 4598 u16 family) 4599 { 4600 u32 sid; 4601 4602 if (!netlbl_enabled()) 4603 return NF_ACCEPT; 4604 4605 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 4606 * because we want to make sure we apply the necessary labeling 4607 * before IPsec is applied so we can leverage AH protection */ 4608 if (skb->sk) { 4609 struct sk_security_struct *sksec = skb->sk->sk_security; 4610 sid = sksec->sid; 4611 } else 4612 sid = SECINITSID_KERNEL; 4613 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 4614 return NF_DROP; 4615 4616 return NF_ACCEPT; 4617 } 4618 4619 static unsigned int selinux_ipv4_output(unsigned int hooknum, 4620 struct sk_buff *skb, 4621 const struct net_device *in, 4622 const struct net_device *out, 4623 int (*okfn)(struct sk_buff *)) 4624 { 4625 return selinux_ip_output(skb, PF_INET); 4626 } 4627 4628 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 4629 int ifindex, 4630 u16 family) 4631 { 4632 struct sock *sk = skb->sk; 4633 struct sk_security_struct *sksec; 4634 struct common_audit_data ad; 4635 struct lsm_network_audit net = {0,}; 4636 char *addrp; 4637 u8 proto; 4638 4639 if (sk == NULL) 4640 return NF_ACCEPT; 4641 sksec = sk->sk_security; 4642 4643 ad.type = LSM_AUDIT_DATA_NET; 4644 ad.u.net = &net; 4645 ad.u.net->netif = ifindex; 4646 ad.u.net->family = family; 4647 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 4648 return NF_DROP; 4649 4650 if (selinux_secmark_enabled()) 4651 if (avc_has_perm(sksec->sid, skb->secmark, 4652 SECCLASS_PACKET, PACKET__SEND, &ad)) 4653 return NF_DROP_ERR(-ECONNREFUSED); 4654 4655 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 4656 return NF_DROP_ERR(-ECONNREFUSED); 4657 4658 return NF_ACCEPT; 4659 } 4660 4661 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex, 4662 u16 family) 4663 { 4664 u32 secmark_perm; 4665 u32 peer_sid; 4666 struct sock *sk; 4667 struct common_audit_data ad; 4668 struct lsm_network_audit net = {0,}; 4669 char *addrp; 4670 u8 secmark_active; 4671 u8 peerlbl_active; 4672 4673 /* If any sort of compatibility mode is enabled then handoff processing 4674 * to the selinux_ip_postroute_compat() function to deal with the 4675 * special handling. We do this in an attempt to keep this function 4676 * as fast and as clean as possible. */ 4677 if (!selinux_policycap_netpeer) 4678 return selinux_ip_postroute_compat(skb, ifindex, family); 4679 #ifdef CONFIG_XFRM 4680 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 4681 * packet transformation so allow the packet to pass without any checks 4682 * since we'll have another chance to perform access control checks 4683 * when the packet is on it's final way out. 4684 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 4685 * is NULL, in this case go ahead and apply access control. */ 4686 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL) 4687 return NF_ACCEPT; 4688 #endif 4689 secmark_active = selinux_secmark_enabled(); 4690 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4691 if (!secmark_active && !peerlbl_active) 4692 return NF_ACCEPT; 4693 4694 /* if the packet is being forwarded then get the peer label from the 4695 * packet itself; otherwise check to see if it is from a local 4696 * application or the kernel, if from an application get the peer label 4697 * from the sending socket, otherwise use the kernel's sid */ 4698 sk = skb->sk; 4699 if (sk == NULL) { 4700 if (skb->skb_iif) { 4701 secmark_perm = PACKET__FORWARD_OUT; 4702 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 4703 return NF_DROP; 4704 } else { 4705 secmark_perm = PACKET__SEND; 4706 peer_sid = SECINITSID_KERNEL; 4707 } 4708 } else { 4709 struct sk_security_struct *sksec = sk->sk_security; 4710 peer_sid = sksec->sid; 4711 secmark_perm = PACKET__SEND; 4712 } 4713 4714 ad.type = LSM_AUDIT_DATA_NET; 4715 ad.u.net = &net; 4716 ad.u.net->netif = ifindex; 4717 ad.u.net->family = family; 4718 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 4719 return NF_DROP; 4720 4721 if (secmark_active) 4722 if (avc_has_perm(peer_sid, skb->secmark, 4723 SECCLASS_PACKET, secmark_perm, &ad)) 4724 return NF_DROP_ERR(-ECONNREFUSED); 4725 4726 if (peerlbl_active) { 4727 u32 if_sid; 4728 u32 node_sid; 4729 4730 if (sel_netif_sid(ifindex, &if_sid)) 4731 return NF_DROP; 4732 if (avc_has_perm(peer_sid, if_sid, 4733 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 4734 return NF_DROP_ERR(-ECONNREFUSED); 4735 4736 if (sel_netnode_sid(addrp, family, &node_sid)) 4737 return NF_DROP; 4738 if (avc_has_perm(peer_sid, node_sid, 4739 SECCLASS_NODE, NODE__SENDTO, &ad)) 4740 return NF_DROP_ERR(-ECONNREFUSED); 4741 } 4742 4743 return NF_ACCEPT; 4744 } 4745 4746 static unsigned int selinux_ipv4_postroute(unsigned int hooknum, 4747 struct sk_buff *skb, 4748 const struct net_device *in, 4749 const struct net_device *out, 4750 int (*okfn)(struct sk_buff *)) 4751 { 4752 return selinux_ip_postroute(skb, out->ifindex, PF_INET); 4753 } 4754 4755 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4756 static unsigned int selinux_ipv6_postroute(unsigned int hooknum, 4757 struct sk_buff *skb, 4758 const struct net_device *in, 4759 const struct net_device *out, 4760 int (*okfn)(struct sk_buff *)) 4761 { 4762 return selinux_ip_postroute(skb, out->ifindex, PF_INET6); 4763 } 4764 #endif /* IPV6 */ 4765 4766 #endif /* CONFIG_NETFILTER */ 4767 4768 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 4769 { 4770 int err; 4771 4772 err = cap_netlink_send(sk, skb); 4773 if (err) 4774 return err; 4775 4776 return selinux_nlmsg_perm(sk, skb); 4777 } 4778 4779 static int ipc_alloc_security(struct task_struct *task, 4780 struct kern_ipc_perm *perm, 4781 u16 sclass) 4782 { 4783 struct ipc_security_struct *isec; 4784 u32 sid; 4785 4786 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 4787 if (!isec) 4788 return -ENOMEM; 4789 4790 sid = task_sid(task); 4791 isec->sclass = sclass; 4792 isec->sid = sid; 4793 perm->security = isec; 4794 4795 return 0; 4796 } 4797 4798 static void ipc_free_security(struct kern_ipc_perm *perm) 4799 { 4800 struct ipc_security_struct *isec = perm->security; 4801 perm->security = NULL; 4802 kfree(isec); 4803 } 4804 4805 static int msg_msg_alloc_security(struct msg_msg *msg) 4806 { 4807 struct msg_security_struct *msec; 4808 4809 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 4810 if (!msec) 4811 return -ENOMEM; 4812 4813 msec->sid = SECINITSID_UNLABELED; 4814 msg->security = msec; 4815 4816 return 0; 4817 } 4818 4819 static void msg_msg_free_security(struct msg_msg *msg) 4820 { 4821 struct msg_security_struct *msec = msg->security; 4822 4823 msg->security = NULL; 4824 kfree(msec); 4825 } 4826 4827 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 4828 u32 perms) 4829 { 4830 struct ipc_security_struct *isec; 4831 struct common_audit_data ad; 4832 u32 sid = current_sid(); 4833 4834 isec = ipc_perms->security; 4835 4836 ad.type = LSM_AUDIT_DATA_IPC; 4837 ad.u.ipc_id = ipc_perms->key; 4838 4839 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 4840 } 4841 4842 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 4843 { 4844 return msg_msg_alloc_security(msg); 4845 } 4846 4847 static void selinux_msg_msg_free_security(struct msg_msg *msg) 4848 { 4849 msg_msg_free_security(msg); 4850 } 4851 4852 /* message queue security operations */ 4853 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 4854 { 4855 struct ipc_security_struct *isec; 4856 struct common_audit_data ad; 4857 u32 sid = current_sid(); 4858 int rc; 4859 4860 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 4861 if (rc) 4862 return rc; 4863 4864 isec = msq->q_perm.security; 4865 4866 ad.type = LSM_AUDIT_DATA_IPC; 4867 ad.u.ipc_id = msq->q_perm.key; 4868 4869 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4870 MSGQ__CREATE, &ad); 4871 if (rc) { 4872 ipc_free_security(&msq->q_perm); 4873 return rc; 4874 } 4875 return 0; 4876 } 4877 4878 static void selinux_msg_queue_free_security(struct msg_queue *msq) 4879 { 4880 ipc_free_security(&msq->q_perm); 4881 } 4882 4883 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 4884 { 4885 struct ipc_security_struct *isec; 4886 struct common_audit_data ad; 4887 u32 sid = current_sid(); 4888 4889 isec = msq->q_perm.security; 4890 4891 ad.type = LSM_AUDIT_DATA_IPC; 4892 ad.u.ipc_id = msq->q_perm.key; 4893 4894 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4895 MSGQ__ASSOCIATE, &ad); 4896 } 4897 4898 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 4899 { 4900 int err; 4901 int perms; 4902 4903 switch (cmd) { 4904 case IPC_INFO: 4905 case MSG_INFO: 4906 /* No specific object, just general system-wide information. */ 4907 return task_has_system(current, SYSTEM__IPC_INFO); 4908 case IPC_STAT: 4909 case MSG_STAT: 4910 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 4911 break; 4912 case IPC_SET: 4913 perms = MSGQ__SETATTR; 4914 break; 4915 case IPC_RMID: 4916 perms = MSGQ__DESTROY; 4917 break; 4918 default: 4919 return 0; 4920 } 4921 4922 err = ipc_has_perm(&msq->q_perm, perms); 4923 return err; 4924 } 4925 4926 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 4927 { 4928 struct ipc_security_struct *isec; 4929 struct msg_security_struct *msec; 4930 struct common_audit_data ad; 4931 u32 sid = current_sid(); 4932 int rc; 4933 4934 isec = msq->q_perm.security; 4935 msec = msg->security; 4936 4937 /* 4938 * First time through, need to assign label to the message 4939 */ 4940 if (msec->sid == SECINITSID_UNLABELED) { 4941 /* 4942 * Compute new sid based on current process and 4943 * message queue this message will be stored in 4944 */ 4945 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG, 4946 NULL, &msec->sid); 4947 if (rc) 4948 return rc; 4949 } 4950 4951 ad.type = LSM_AUDIT_DATA_IPC; 4952 ad.u.ipc_id = msq->q_perm.key; 4953 4954 /* Can this process write to the queue? */ 4955 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4956 MSGQ__WRITE, &ad); 4957 if (!rc) 4958 /* Can this process send the message */ 4959 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 4960 MSG__SEND, &ad); 4961 if (!rc) 4962 /* Can the message be put in the queue? */ 4963 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 4964 MSGQ__ENQUEUE, &ad); 4965 4966 return rc; 4967 } 4968 4969 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 4970 struct task_struct *target, 4971 long type, int mode) 4972 { 4973 struct ipc_security_struct *isec; 4974 struct msg_security_struct *msec; 4975 struct common_audit_data ad; 4976 u32 sid = task_sid(target); 4977 int rc; 4978 4979 isec = msq->q_perm.security; 4980 msec = msg->security; 4981 4982 ad.type = LSM_AUDIT_DATA_IPC; 4983 ad.u.ipc_id = msq->q_perm.key; 4984 4985 rc = avc_has_perm(sid, isec->sid, 4986 SECCLASS_MSGQ, MSGQ__READ, &ad); 4987 if (!rc) 4988 rc = avc_has_perm(sid, msec->sid, 4989 SECCLASS_MSG, MSG__RECEIVE, &ad); 4990 return rc; 4991 } 4992 4993 /* Shared Memory security operations */ 4994 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 4995 { 4996 struct ipc_security_struct *isec; 4997 struct common_audit_data ad; 4998 u32 sid = current_sid(); 4999 int rc; 5000 5001 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 5002 if (rc) 5003 return rc; 5004 5005 isec = shp->shm_perm.security; 5006 5007 ad.type = LSM_AUDIT_DATA_IPC; 5008 ad.u.ipc_id = shp->shm_perm.key; 5009 5010 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5011 SHM__CREATE, &ad); 5012 if (rc) { 5013 ipc_free_security(&shp->shm_perm); 5014 return rc; 5015 } 5016 return 0; 5017 } 5018 5019 static void selinux_shm_free_security(struct shmid_kernel *shp) 5020 { 5021 ipc_free_security(&shp->shm_perm); 5022 } 5023 5024 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 5025 { 5026 struct ipc_security_struct *isec; 5027 struct common_audit_data ad; 5028 u32 sid = current_sid(); 5029 5030 isec = shp->shm_perm.security; 5031 5032 ad.type = LSM_AUDIT_DATA_IPC; 5033 ad.u.ipc_id = shp->shm_perm.key; 5034 5035 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5036 SHM__ASSOCIATE, &ad); 5037 } 5038 5039 /* Note, at this point, shp is locked down */ 5040 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 5041 { 5042 int perms; 5043 int err; 5044 5045 switch (cmd) { 5046 case IPC_INFO: 5047 case SHM_INFO: 5048 /* No specific object, just general system-wide information. */ 5049 return task_has_system(current, SYSTEM__IPC_INFO); 5050 case IPC_STAT: 5051 case SHM_STAT: 5052 perms = SHM__GETATTR | SHM__ASSOCIATE; 5053 break; 5054 case IPC_SET: 5055 perms = SHM__SETATTR; 5056 break; 5057 case SHM_LOCK: 5058 case SHM_UNLOCK: 5059 perms = SHM__LOCK; 5060 break; 5061 case IPC_RMID: 5062 perms = SHM__DESTROY; 5063 break; 5064 default: 5065 return 0; 5066 } 5067 5068 err = ipc_has_perm(&shp->shm_perm, perms); 5069 return err; 5070 } 5071 5072 static int selinux_shm_shmat(struct shmid_kernel *shp, 5073 char __user *shmaddr, int shmflg) 5074 { 5075 u32 perms; 5076 5077 if (shmflg & SHM_RDONLY) 5078 perms = SHM__READ; 5079 else 5080 perms = SHM__READ | SHM__WRITE; 5081 5082 return ipc_has_perm(&shp->shm_perm, perms); 5083 } 5084 5085 /* Semaphore security operations */ 5086 static int selinux_sem_alloc_security(struct sem_array *sma) 5087 { 5088 struct ipc_security_struct *isec; 5089 struct common_audit_data ad; 5090 u32 sid = current_sid(); 5091 int rc; 5092 5093 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 5094 if (rc) 5095 return rc; 5096 5097 isec = sma->sem_perm.security; 5098 5099 ad.type = LSM_AUDIT_DATA_IPC; 5100 ad.u.ipc_id = sma->sem_perm.key; 5101 5102 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5103 SEM__CREATE, &ad); 5104 if (rc) { 5105 ipc_free_security(&sma->sem_perm); 5106 return rc; 5107 } 5108 return 0; 5109 } 5110 5111 static void selinux_sem_free_security(struct sem_array *sma) 5112 { 5113 ipc_free_security(&sma->sem_perm); 5114 } 5115 5116 static int selinux_sem_associate(struct sem_array *sma, int semflg) 5117 { 5118 struct ipc_security_struct *isec; 5119 struct common_audit_data ad; 5120 u32 sid = current_sid(); 5121 5122 isec = sma->sem_perm.security; 5123 5124 ad.type = LSM_AUDIT_DATA_IPC; 5125 ad.u.ipc_id = sma->sem_perm.key; 5126 5127 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5128 SEM__ASSOCIATE, &ad); 5129 } 5130 5131 /* Note, at this point, sma is locked down */ 5132 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 5133 { 5134 int err; 5135 u32 perms; 5136 5137 switch (cmd) { 5138 case IPC_INFO: 5139 case SEM_INFO: 5140 /* No specific object, just general system-wide information. */ 5141 return task_has_system(current, SYSTEM__IPC_INFO); 5142 case GETPID: 5143 case GETNCNT: 5144 case GETZCNT: 5145 perms = SEM__GETATTR; 5146 break; 5147 case GETVAL: 5148 case GETALL: 5149 perms = SEM__READ; 5150 break; 5151 case SETVAL: 5152 case SETALL: 5153 perms = SEM__WRITE; 5154 break; 5155 case IPC_RMID: 5156 perms = SEM__DESTROY; 5157 break; 5158 case IPC_SET: 5159 perms = SEM__SETATTR; 5160 break; 5161 case IPC_STAT: 5162 case SEM_STAT: 5163 perms = SEM__GETATTR | SEM__ASSOCIATE; 5164 break; 5165 default: 5166 return 0; 5167 } 5168 5169 err = ipc_has_perm(&sma->sem_perm, perms); 5170 return err; 5171 } 5172 5173 static int selinux_sem_semop(struct sem_array *sma, 5174 struct sembuf *sops, unsigned nsops, int alter) 5175 { 5176 u32 perms; 5177 5178 if (alter) 5179 perms = SEM__READ | SEM__WRITE; 5180 else 5181 perms = SEM__READ; 5182 5183 return ipc_has_perm(&sma->sem_perm, perms); 5184 } 5185 5186 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5187 { 5188 u32 av = 0; 5189 5190 av = 0; 5191 if (flag & S_IRUGO) 5192 av |= IPC__UNIX_READ; 5193 if (flag & S_IWUGO) 5194 av |= IPC__UNIX_WRITE; 5195 5196 if (av == 0) 5197 return 0; 5198 5199 return ipc_has_perm(ipcp, av); 5200 } 5201 5202 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5203 { 5204 struct ipc_security_struct *isec = ipcp->security; 5205 *secid = isec->sid; 5206 } 5207 5208 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5209 { 5210 if (inode) 5211 inode_doinit_with_dentry(inode, dentry); 5212 } 5213 5214 static int selinux_getprocattr(struct task_struct *p, 5215 char *name, char **value) 5216 { 5217 const struct task_security_struct *__tsec; 5218 u32 sid; 5219 int error; 5220 unsigned len; 5221 5222 if (current != p) { 5223 error = current_has_perm(p, PROCESS__GETATTR); 5224 if (error) 5225 return error; 5226 } 5227 5228 rcu_read_lock(); 5229 __tsec = __task_cred(p)->security; 5230 5231 if (!strcmp(name, "current")) 5232 sid = __tsec->sid; 5233 else if (!strcmp(name, "prev")) 5234 sid = __tsec->osid; 5235 else if (!strcmp(name, "exec")) 5236 sid = __tsec->exec_sid; 5237 else if (!strcmp(name, "fscreate")) 5238 sid = __tsec->create_sid; 5239 else if (!strcmp(name, "keycreate")) 5240 sid = __tsec->keycreate_sid; 5241 else if (!strcmp(name, "sockcreate")) 5242 sid = __tsec->sockcreate_sid; 5243 else 5244 goto invalid; 5245 rcu_read_unlock(); 5246 5247 if (!sid) 5248 return 0; 5249 5250 error = security_sid_to_context(sid, value, &len); 5251 if (error) 5252 return error; 5253 return len; 5254 5255 invalid: 5256 rcu_read_unlock(); 5257 return -EINVAL; 5258 } 5259 5260 static int selinux_setprocattr(struct task_struct *p, 5261 char *name, void *value, size_t size) 5262 { 5263 struct task_security_struct *tsec; 5264 struct task_struct *tracer; 5265 struct cred *new; 5266 u32 sid = 0, ptsid; 5267 int error; 5268 char *str = value; 5269 5270 if (current != p) { 5271 /* SELinux only allows a process to change its own 5272 security attributes. */ 5273 return -EACCES; 5274 } 5275 5276 /* 5277 * Basic control over ability to set these attributes at all. 5278 * current == p, but we'll pass them separately in case the 5279 * above restriction is ever removed. 5280 */ 5281 if (!strcmp(name, "exec")) 5282 error = current_has_perm(p, PROCESS__SETEXEC); 5283 else if (!strcmp(name, "fscreate")) 5284 error = current_has_perm(p, PROCESS__SETFSCREATE); 5285 else if (!strcmp(name, "keycreate")) 5286 error = current_has_perm(p, PROCESS__SETKEYCREATE); 5287 else if (!strcmp(name, "sockcreate")) 5288 error = current_has_perm(p, PROCESS__SETSOCKCREATE); 5289 else if (!strcmp(name, "current")) 5290 error = current_has_perm(p, PROCESS__SETCURRENT); 5291 else 5292 error = -EINVAL; 5293 if (error) 5294 return error; 5295 5296 /* Obtain a SID for the context, if one was specified. */ 5297 if (size && str[1] && str[1] != '\n') { 5298 if (str[size-1] == '\n') { 5299 str[size-1] = 0; 5300 size--; 5301 } 5302 error = security_context_to_sid(value, size, &sid); 5303 if (error == -EINVAL && !strcmp(name, "fscreate")) { 5304 if (!capable(CAP_MAC_ADMIN)) { 5305 struct audit_buffer *ab; 5306 size_t audit_size; 5307 5308 /* We strip a nul only if it is at the end, otherwise the 5309 * context contains a nul and we should audit that */ 5310 if (str[size - 1] == '\0') 5311 audit_size = size - 1; 5312 else 5313 audit_size = size; 5314 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR); 5315 audit_log_format(ab, "op=fscreate invalid_context="); 5316 audit_log_n_untrustedstring(ab, value, audit_size); 5317 audit_log_end(ab); 5318 5319 return error; 5320 } 5321 error = security_context_to_sid_force(value, size, 5322 &sid); 5323 } 5324 if (error) 5325 return error; 5326 } 5327 5328 new = prepare_creds(); 5329 if (!new) 5330 return -ENOMEM; 5331 5332 /* Permission checking based on the specified context is 5333 performed during the actual operation (execve, 5334 open/mkdir/...), when we know the full context of the 5335 operation. See selinux_bprm_set_creds for the execve 5336 checks and may_create for the file creation checks. The 5337 operation will then fail if the context is not permitted. */ 5338 tsec = new->security; 5339 if (!strcmp(name, "exec")) { 5340 tsec->exec_sid = sid; 5341 } else if (!strcmp(name, "fscreate")) { 5342 tsec->create_sid = sid; 5343 } else if (!strcmp(name, "keycreate")) { 5344 error = may_create_key(sid, p); 5345 if (error) 5346 goto abort_change; 5347 tsec->keycreate_sid = sid; 5348 } else if (!strcmp(name, "sockcreate")) { 5349 tsec->sockcreate_sid = sid; 5350 } else if (!strcmp(name, "current")) { 5351 error = -EINVAL; 5352 if (sid == 0) 5353 goto abort_change; 5354 5355 /* Only allow single threaded processes to change context */ 5356 error = -EPERM; 5357 if (!current_is_single_threaded()) { 5358 error = security_bounded_transition(tsec->sid, sid); 5359 if (error) 5360 goto abort_change; 5361 } 5362 5363 /* Check permissions for the transition. */ 5364 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5365 PROCESS__DYNTRANSITION, NULL); 5366 if (error) 5367 goto abort_change; 5368 5369 /* Check for ptracing, and update the task SID if ok. 5370 Otherwise, leave SID unchanged and fail. */ 5371 ptsid = 0; 5372 task_lock(p); 5373 tracer = ptrace_parent(p); 5374 if (tracer) 5375 ptsid = task_sid(tracer); 5376 task_unlock(p); 5377 5378 if (tracer) { 5379 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 5380 PROCESS__PTRACE, NULL); 5381 if (error) 5382 goto abort_change; 5383 } 5384 5385 tsec->sid = sid; 5386 } else { 5387 error = -EINVAL; 5388 goto abort_change; 5389 } 5390 5391 commit_creds(new); 5392 return size; 5393 5394 abort_change: 5395 abort_creds(new); 5396 return error; 5397 } 5398 5399 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5400 { 5401 return security_sid_to_context(secid, secdata, seclen); 5402 } 5403 5404 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 5405 { 5406 return security_context_to_sid(secdata, seclen, secid); 5407 } 5408 5409 static void selinux_release_secctx(char *secdata, u32 seclen) 5410 { 5411 kfree(secdata); 5412 } 5413 5414 /* 5415 * called with inode->i_mutex locked 5416 */ 5417 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 5418 { 5419 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0); 5420 } 5421 5422 /* 5423 * called with inode->i_mutex locked 5424 */ 5425 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 5426 { 5427 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); 5428 } 5429 5430 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 5431 { 5432 int len = 0; 5433 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, 5434 ctx, true); 5435 if (len < 0) 5436 return len; 5437 *ctxlen = len; 5438 return 0; 5439 } 5440 #ifdef CONFIG_KEYS 5441 5442 static int selinux_key_alloc(struct key *k, const struct cred *cred, 5443 unsigned long flags) 5444 { 5445 const struct task_security_struct *tsec; 5446 struct key_security_struct *ksec; 5447 5448 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 5449 if (!ksec) 5450 return -ENOMEM; 5451 5452 tsec = cred->security; 5453 if (tsec->keycreate_sid) 5454 ksec->sid = tsec->keycreate_sid; 5455 else 5456 ksec->sid = tsec->sid; 5457 5458 k->security = ksec; 5459 return 0; 5460 } 5461 5462 static void selinux_key_free(struct key *k) 5463 { 5464 struct key_security_struct *ksec = k->security; 5465 5466 k->security = NULL; 5467 kfree(ksec); 5468 } 5469 5470 static int selinux_key_permission(key_ref_t key_ref, 5471 const struct cred *cred, 5472 key_perm_t perm) 5473 { 5474 struct key *key; 5475 struct key_security_struct *ksec; 5476 u32 sid; 5477 5478 /* if no specific permissions are requested, we skip the 5479 permission check. No serious, additional covert channels 5480 appear to be created. */ 5481 if (perm == 0) 5482 return 0; 5483 5484 sid = cred_sid(cred); 5485 5486 key = key_ref_to_ptr(key_ref); 5487 ksec = key->security; 5488 5489 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 5490 } 5491 5492 static int selinux_key_getsecurity(struct key *key, char **_buffer) 5493 { 5494 struct key_security_struct *ksec = key->security; 5495 char *context = NULL; 5496 unsigned len; 5497 int rc; 5498 5499 rc = security_sid_to_context(ksec->sid, &context, &len); 5500 if (!rc) 5501 rc = len; 5502 *_buffer = context; 5503 return rc; 5504 } 5505 5506 #endif 5507 5508 static struct security_operations selinux_ops = { 5509 .name = "selinux", 5510 5511 .ptrace_access_check = selinux_ptrace_access_check, 5512 .ptrace_traceme = selinux_ptrace_traceme, 5513 .capget = selinux_capget, 5514 .capset = selinux_capset, 5515 .capable = selinux_capable, 5516 .quotactl = selinux_quotactl, 5517 .quota_on = selinux_quota_on, 5518 .syslog = selinux_syslog, 5519 .vm_enough_memory = selinux_vm_enough_memory, 5520 5521 .netlink_send = selinux_netlink_send, 5522 5523 .bprm_set_creds = selinux_bprm_set_creds, 5524 .bprm_committing_creds = selinux_bprm_committing_creds, 5525 .bprm_committed_creds = selinux_bprm_committed_creds, 5526 .bprm_secureexec = selinux_bprm_secureexec, 5527 5528 .sb_alloc_security = selinux_sb_alloc_security, 5529 .sb_free_security = selinux_sb_free_security, 5530 .sb_copy_data = selinux_sb_copy_data, 5531 .sb_remount = selinux_sb_remount, 5532 .sb_kern_mount = selinux_sb_kern_mount, 5533 .sb_show_options = selinux_sb_show_options, 5534 .sb_statfs = selinux_sb_statfs, 5535 .sb_mount = selinux_mount, 5536 .sb_umount = selinux_umount, 5537 .sb_set_mnt_opts = selinux_set_mnt_opts, 5538 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts, 5539 .sb_parse_opts_str = selinux_parse_opts_str, 5540 5541 5542 .inode_alloc_security = selinux_inode_alloc_security, 5543 .inode_free_security = selinux_inode_free_security, 5544 .inode_init_security = selinux_inode_init_security, 5545 .inode_create = selinux_inode_create, 5546 .inode_link = selinux_inode_link, 5547 .inode_unlink = selinux_inode_unlink, 5548 .inode_symlink = selinux_inode_symlink, 5549 .inode_mkdir = selinux_inode_mkdir, 5550 .inode_rmdir = selinux_inode_rmdir, 5551 .inode_mknod = selinux_inode_mknod, 5552 .inode_rename = selinux_inode_rename, 5553 .inode_readlink = selinux_inode_readlink, 5554 .inode_follow_link = selinux_inode_follow_link, 5555 .inode_permission = selinux_inode_permission, 5556 .inode_setattr = selinux_inode_setattr, 5557 .inode_getattr = selinux_inode_getattr, 5558 .inode_setxattr = selinux_inode_setxattr, 5559 .inode_post_setxattr = selinux_inode_post_setxattr, 5560 .inode_getxattr = selinux_inode_getxattr, 5561 .inode_listxattr = selinux_inode_listxattr, 5562 .inode_removexattr = selinux_inode_removexattr, 5563 .inode_getsecurity = selinux_inode_getsecurity, 5564 .inode_setsecurity = selinux_inode_setsecurity, 5565 .inode_listsecurity = selinux_inode_listsecurity, 5566 .inode_getsecid = selinux_inode_getsecid, 5567 5568 .file_permission = selinux_file_permission, 5569 .file_alloc_security = selinux_file_alloc_security, 5570 .file_free_security = selinux_file_free_security, 5571 .file_ioctl = selinux_file_ioctl, 5572 .mmap_file = selinux_mmap_file, 5573 .mmap_addr = selinux_mmap_addr, 5574 .file_mprotect = selinux_file_mprotect, 5575 .file_lock = selinux_file_lock, 5576 .file_fcntl = selinux_file_fcntl, 5577 .file_set_fowner = selinux_file_set_fowner, 5578 .file_send_sigiotask = selinux_file_send_sigiotask, 5579 .file_receive = selinux_file_receive, 5580 5581 .file_open = selinux_file_open, 5582 5583 .task_create = selinux_task_create, 5584 .cred_alloc_blank = selinux_cred_alloc_blank, 5585 .cred_free = selinux_cred_free, 5586 .cred_prepare = selinux_cred_prepare, 5587 .cred_transfer = selinux_cred_transfer, 5588 .kernel_act_as = selinux_kernel_act_as, 5589 .kernel_create_files_as = selinux_kernel_create_files_as, 5590 .kernel_module_request = selinux_kernel_module_request, 5591 .task_setpgid = selinux_task_setpgid, 5592 .task_getpgid = selinux_task_getpgid, 5593 .task_getsid = selinux_task_getsid, 5594 .task_getsecid = selinux_task_getsecid, 5595 .task_setnice = selinux_task_setnice, 5596 .task_setioprio = selinux_task_setioprio, 5597 .task_getioprio = selinux_task_getioprio, 5598 .task_setrlimit = selinux_task_setrlimit, 5599 .task_setscheduler = selinux_task_setscheduler, 5600 .task_getscheduler = selinux_task_getscheduler, 5601 .task_movememory = selinux_task_movememory, 5602 .task_kill = selinux_task_kill, 5603 .task_wait = selinux_task_wait, 5604 .task_to_inode = selinux_task_to_inode, 5605 5606 .ipc_permission = selinux_ipc_permission, 5607 .ipc_getsecid = selinux_ipc_getsecid, 5608 5609 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 5610 .msg_msg_free_security = selinux_msg_msg_free_security, 5611 5612 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 5613 .msg_queue_free_security = selinux_msg_queue_free_security, 5614 .msg_queue_associate = selinux_msg_queue_associate, 5615 .msg_queue_msgctl = selinux_msg_queue_msgctl, 5616 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 5617 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 5618 5619 .shm_alloc_security = selinux_shm_alloc_security, 5620 .shm_free_security = selinux_shm_free_security, 5621 .shm_associate = selinux_shm_associate, 5622 .shm_shmctl = selinux_shm_shmctl, 5623 .shm_shmat = selinux_shm_shmat, 5624 5625 .sem_alloc_security = selinux_sem_alloc_security, 5626 .sem_free_security = selinux_sem_free_security, 5627 .sem_associate = selinux_sem_associate, 5628 .sem_semctl = selinux_sem_semctl, 5629 .sem_semop = selinux_sem_semop, 5630 5631 .d_instantiate = selinux_d_instantiate, 5632 5633 .getprocattr = selinux_getprocattr, 5634 .setprocattr = selinux_setprocattr, 5635 5636 .secid_to_secctx = selinux_secid_to_secctx, 5637 .secctx_to_secid = selinux_secctx_to_secid, 5638 .release_secctx = selinux_release_secctx, 5639 .inode_notifysecctx = selinux_inode_notifysecctx, 5640 .inode_setsecctx = selinux_inode_setsecctx, 5641 .inode_getsecctx = selinux_inode_getsecctx, 5642 5643 .unix_stream_connect = selinux_socket_unix_stream_connect, 5644 .unix_may_send = selinux_socket_unix_may_send, 5645 5646 .socket_create = selinux_socket_create, 5647 .socket_post_create = selinux_socket_post_create, 5648 .socket_bind = selinux_socket_bind, 5649 .socket_connect = selinux_socket_connect, 5650 .socket_listen = selinux_socket_listen, 5651 .socket_accept = selinux_socket_accept, 5652 .socket_sendmsg = selinux_socket_sendmsg, 5653 .socket_recvmsg = selinux_socket_recvmsg, 5654 .socket_getsockname = selinux_socket_getsockname, 5655 .socket_getpeername = selinux_socket_getpeername, 5656 .socket_getsockopt = selinux_socket_getsockopt, 5657 .socket_setsockopt = selinux_socket_setsockopt, 5658 .socket_shutdown = selinux_socket_shutdown, 5659 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 5660 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 5661 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 5662 .sk_alloc_security = selinux_sk_alloc_security, 5663 .sk_free_security = selinux_sk_free_security, 5664 .sk_clone_security = selinux_sk_clone_security, 5665 .sk_getsecid = selinux_sk_getsecid, 5666 .sock_graft = selinux_sock_graft, 5667 .inet_conn_request = selinux_inet_conn_request, 5668 .inet_csk_clone = selinux_inet_csk_clone, 5669 .inet_conn_established = selinux_inet_conn_established, 5670 .secmark_relabel_packet = selinux_secmark_relabel_packet, 5671 .secmark_refcount_inc = selinux_secmark_refcount_inc, 5672 .secmark_refcount_dec = selinux_secmark_refcount_dec, 5673 .req_classify_flow = selinux_req_classify_flow, 5674 .tun_dev_create = selinux_tun_dev_create, 5675 .tun_dev_post_create = selinux_tun_dev_post_create, 5676 .tun_dev_attach = selinux_tun_dev_attach, 5677 5678 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5679 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 5680 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 5681 .xfrm_policy_free_security = selinux_xfrm_policy_free, 5682 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 5683 .xfrm_state_alloc_security = selinux_xfrm_state_alloc, 5684 .xfrm_state_free_security = selinux_xfrm_state_free, 5685 .xfrm_state_delete_security = selinux_xfrm_state_delete, 5686 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 5687 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 5688 .xfrm_decode_session = selinux_xfrm_decode_session, 5689 #endif 5690 5691 #ifdef CONFIG_KEYS 5692 .key_alloc = selinux_key_alloc, 5693 .key_free = selinux_key_free, 5694 .key_permission = selinux_key_permission, 5695 .key_getsecurity = selinux_key_getsecurity, 5696 #endif 5697 5698 #ifdef CONFIG_AUDIT 5699 .audit_rule_init = selinux_audit_rule_init, 5700 .audit_rule_known = selinux_audit_rule_known, 5701 .audit_rule_match = selinux_audit_rule_match, 5702 .audit_rule_free = selinux_audit_rule_free, 5703 #endif 5704 }; 5705 5706 static __init int selinux_init(void) 5707 { 5708 if (!security_module_enable(&selinux_ops)) { 5709 selinux_enabled = 0; 5710 return 0; 5711 } 5712 5713 if (!selinux_enabled) { 5714 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 5715 return 0; 5716 } 5717 5718 printk(KERN_INFO "SELinux: Initializing.\n"); 5719 5720 /* Set the security state for the initial task. */ 5721 cred_init_security(); 5722 5723 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 5724 5725 sel_inode_cache = kmem_cache_create("selinux_inode_security", 5726 sizeof(struct inode_security_struct), 5727 0, SLAB_PANIC, NULL); 5728 avc_init(); 5729 5730 if (register_security(&selinux_ops)) 5731 panic("SELinux: Unable to register with kernel.\n"); 5732 5733 if (selinux_enforcing) 5734 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 5735 else 5736 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 5737 5738 return 0; 5739 } 5740 5741 static void delayed_superblock_init(struct super_block *sb, void *unused) 5742 { 5743 superblock_doinit(sb, NULL); 5744 } 5745 5746 void selinux_complete_init(void) 5747 { 5748 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 5749 5750 /* Set up any superblocks initialized prior to the policy load. */ 5751 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 5752 iterate_supers(delayed_superblock_init, NULL); 5753 } 5754 5755 /* SELinux requires early initialization in order to label 5756 all processes and objects when they are created. */ 5757 security_initcall(selinux_init); 5758 5759 #if defined(CONFIG_NETFILTER) 5760 5761 static struct nf_hook_ops selinux_ipv4_ops[] = { 5762 { 5763 .hook = selinux_ipv4_postroute, 5764 .owner = THIS_MODULE, 5765 .pf = NFPROTO_IPV4, 5766 .hooknum = NF_INET_POST_ROUTING, 5767 .priority = NF_IP_PRI_SELINUX_LAST, 5768 }, 5769 { 5770 .hook = selinux_ipv4_forward, 5771 .owner = THIS_MODULE, 5772 .pf = NFPROTO_IPV4, 5773 .hooknum = NF_INET_FORWARD, 5774 .priority = NF_IP_PRI_SELINUX_FIRST, 5775 }, 5776 { 5777 .hook = selinux_ipv4_output, 5778 .owner = THIS_MODULE, 5779 .pf = NFPROTO_IPV4, 5780 .hooknum = NF_INET_LOCAL_OUT, 5781 .priority = NF_IP_PRI_SELINUX_FIRST, 5782 } 5783 }; 5784 5785 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5786 5787 static struct nf_hook_ops selinux_ipv6_ops[] = { 5788 { 5789 .hook = selinux_ipv6_postroute, 5790 .owner = THIS_MODULE, 5791 .pf = NFPROTO_IPV6, 5792 .hooknum = NF_INET_POST_ROUTING, 5793 .priority = NF_IP6_PRI_SELINUX_LAST, 5794 }, 5795 { 5796 .hook = selinux_ipv6_forward, 5797 .owner = THIS_MODULE, 5798 .pf = NFPROTO_IPV6, 5799 .hooknum = NF_INET_FORWARD, 5800 .priority = NF_IP6_PRI_SELINUX_FIRST, 5801 } 5802 }; 5803 5804 #endif /* IPV6 */ 5805 5806 static int __init selinux_nf_ip_init(void) 5807 { 5808 int err = 0; 5809 5810 if (!selinux_enabled) 5811 goto out; 5812 5813 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 5814 5815 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5816 if (err) 5817 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err); 5818 5819 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5820 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5821 if (err) 5822 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err); 5823 #endif /* IPV6 */ 5824 5825 out: 5826 return err; 5827 } 5828 5829 __initcall(selinux_nf_ip_init); 5830 5831 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5832 static void selinux_nf_ip_exit(void) 5833 { 5834 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 5835 5836 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5837 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5838 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5839 #endif /* IPV6 */ 5840 } 5841 #endif 5842 5843 #else /* CONFIG_NETFILTER */ 5844 5845 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5846 #define selinux_nf_ip_exit() 5847 #endif 5848 5849 #endif /* CONFIG_NETFILTER */ 5850 5851 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5852 static int selinux_disabled; 5853 5854 int selinux_disable(void) 5855 { 5856 if (ss_initialized) { 5857 /* Not permitted after initial policy load. */ 5858 return -EINVAL; 5859 } 5860 5861 if (selinux_disabled) { 5862 /* Only do this once. */ 5863 return -EINVAL; 5864 } 5865 5866 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 5867 5868 selinux_disabled = 1; 5869 selinux_enabled = 0; 5870 5871 reset_security_ops(); 5872 5873 /* Try to destroy the avc node cache */ 5874 avc_disable(); 5875 5876 /* Unregister netfilter hooks. */ 5877 selinux_nf_ip_exit(); 5878 5879 /* Unregister selinuxfs. */ 5880 exit_sel_fs(); 5881 5882 return 0; 5883 } 5884 #endif 5885