xref: /linux/security/selinux/hooks.c (revision ac6731870ed943c7c6a8d4114b3ccaddfbdf7d58)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Security-Enhanced Linux (SELinux) security module
4  *
5  *  This file contains the SELinux hook function implementations.
6  *
7  *  Authors:  Stephen Smalley, <stephen.smalley.work@gmail.com>
8  *	      Chris Vance, <cvance@nai.com>
9  *	      Wayne Salamon, <wsalamon@nai.com>
10  *	      James Morris <jmorris@redhat.com>
11  *
12  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14  *					   Eric Paris <eparis@redhat.com>
15  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  *			    <dgoeddel@trustedcs.com>
17  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18  *	Paul Moore <paul@paul-moore.com>
19  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
21  *  Copyright (C) 2016 Mellanox Technologies
22  */
23 
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/errno.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/task.h>
31 #include <linux/lsm_hooks.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/swap.h>
41 #include <linux/spinlock.h>
42 #include <linux/syscalls.h>
43 #include <linux/dcache.h>
44 #include <linux/file.h>
45 #include <linux/fdtable.h>
46 #include <linux/namei.h>
47 #include <linux/mount.h>
48 #include <linux/fs_context.h>
49 #include <linux/fs_parser.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>		/* for local_port_range[] */
55 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>	/* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/sctp.h>
70 #include <net/sctp/structs.h>
71 #include <linux/quota.h>
72 #include <linux/un.h>		/* for Unix socket types */
73 #include <net/af_unix.h>	/* for Unix socket types */
74 #include <linux/parser.h>
75 #include <linux/nfs_mount.h>
76 #include <net/ipv6.h>
77 #include <linux/hugetlb.h>
78 #include <linux/personality.h>
79 #include <linux/audit.h>
80 #include <linux/string.h>
81 #include <linux/mutex.h>
82 #include <linux/posix-timers.h>
83 #include <linux/syslog.h>
84 #include <linux/user_namespace.h>
85 #include <linux/export.h>
86 #include <linux/msg.h>
87 #include <linux/shm.h>
88 #include <uapi/linux/shm.h>
89 #include <linux/bpf.h>
90 #include <linux/kernfs.h>
91 #include <linux/stringhash.h>	/* for hashlen_string() */
92 #include <uapi/linux/mount.h>
93 #include <linux/fsnotify.h>
94 #include <linux/fanotify.h>
95 #include <linux/io_uring/cmd.h>
96 #include <uapi/linux/lsm.h>
97 
98 #include "avc.h"
99 #include "objsec.h"
100 #include "netif.h"
101 #include "netnode.h"
102 #include "netport.h"
103 #include "ibpkey.h"
104 #include "xfrm.h"
105 #include "netlabel.h"
106 #include "audit.h"
107 #include "avc_ss.h"
108 
109 #define SELINUX_INODE_INIT_XATTRS 1
110 
111 struct selinux_state selinux_state;
112 
113 /* SECMARK reference count */
114 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
115 
116 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
117 static int selinux_enforcing_boot __initdata;
118 
119 static int __init enforcing_setup(char *str)
120 {
121 	unsigned long enforcing;
122 	if (!kstrtoul(str, 0, &enforcing))
123 		selinux_enforcing_boot = enforcing ? 1 : 0;
124 	return 1;
125 }
126 __setup("enforcing=", enforcing_setup);
127 #else
128 #define selinux_enforcing_boot 1
129 #endif
130 
131 int selinux_enabled_boot __initdata = 1;
132 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
133 static int __init selinux_enabled_setup(char *str)
134 {
135 	unsigned long enabled;
136 	if (!kstrtoul(str, 0, &enabled))
137 		selinux_enabled_boot = enabled ? 1 : 0;
138 	return 1;
139 }
140 __setup("selinux=", selinux_enabled_setup);
141 #endif
142 
143 static int __init checkreqprot_setup(char *str)
144 {
145 	unsigned long checkreqprot;
146 
147 	if (!kstrtoul(str, 0, &checkreqprot)) {
148 		if (checkreqprot)
149 			pr_err("SELinux: checkreqprot set to 1 via kernel parameter.  This is no longer supported.\n");
150 	}
151 	return 1;
152 }
153 __setup("checkreqprot=", checkreqprot_setup);
154 
155 /**
156  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157  *
158  * Description:
159  * This function checks the SECMARK reference counter to see if any SECMARK
160  * targets are currently configured, if the reference counter is greater than
161  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
162  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
163  * policy capability is enabled, SECMARK is always considered enabled.
164  *
165  */
166 static int selinux_secmark_enabled(void)
167 {
168 	return (selinux_policycap_alwaysnetwork() ||
169 		atomic_read(&selinux_secmark_refcount));
170 }
171 
172 /**
173  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174  *
175  * Description:
176  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
177  * (1) if any are enabled or false (0) if neither are enabled.  If the
178  * always_check_network policy capability is enabled, peer labeling
179  * is always considered enabled.
180  *
181  */
182 static int selinux_peerlbl_enabled(void)
183 {
184 	return (selinux_policycap_alwaysnetwork() ||
185 		netlbl_enabled() || selinux_xfrm_enabled());
186 }
187 
188 static int selinux_netcache_avc_callback(u32 event)
189 {
190 	if (event == AVC_CALLBACK_RESET) {
191 		sel_netif_flush();
192 		sel_netnode_flush();
193 		sel_netport_flush();
194 		synchronize_net();
195 	}
196 	return 0;
197 }
198 
199 static int selinux_lsm_notifier_avc_callback(u32 event)
200 {
201 	if (event == AVC_CALLBACK_RESET) {
202 		sel_ib_pkey_flush();
203 		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 	}
205 
206 	return 0;
207 }
208 
209 /*
210  * initialise the security for the init task
211  */
212 static void cred_init_security(void)
213 {
214 	struct task_security_struct *tsec;
215 
216 	tsec = selinux_cred(unrcu_pointer(current->real_cred));
217 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
218 }
219 
220 /*
221  * get the security ID of a set of credentials
222  */
223 static inline u32 cred_sid(const struct cred *cred)
224 {
225 	const struct task_security_struct *tsec;
226 
227 	tsec = selinux_cred(cred);
228 	return tsec->sid;
229 }
230 
231 static void __ad_net_init(struct common_audit_data *ad,
232 			  struct lsm_network_audit *net,
233 			  int ifindex, struct sock *sk, u16 family)
234 {
235 	ad->type = LSM_AUDIT_DATA_NET;
236 	ad->u.net = net;
237 	net->netif = ifindex;
238 	net->sk = sk;
239 	net->family = family;
240 }
241 
242 static void ad_net_init_from_sk(struct common_audit_data *ad,
243 				struct lsm_network_audit *net,
244 				struct sock *sk)
245 {
246 	__ad_net_init(ad, net, 0, sk, 0);
247 }
248 
249 static void ad_net_init_from_iif(struct common_audit_data *ad,
250 				 struct lsm_network_audit *net,
251 				 int ifindex, u16 family)
252 {
253 	__ad_net_init(ad, net, ifindex, NULL, family);
254 }
255 
256 /*
257  * get the objective security ID of a task
258  */
259 static inline u32 task_sid_obj(const struct task_struct *task)
260 {
261 	u32 sid;
262 
263 	rcu_read_lock();
264 	sid = cred_sid(__task_cred(task));
265 	rcu_read_unlock();
266 	return sid;
267 }
268 
269 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
270 
271 /*
272  * Try reloading inode security labels that have been marked as invalid.  The
273  * @may_sleep parameter indicates when sleeping and thus reloading labels is
274  * allowed; when set to false, returns -ECHILD when the label is
275  * invalid.  The @dentry parameter should be set to a dentry of the inode.
276  */
277 static int __inode_security_revalidate(struct inode *inode,
278 				       struct dentry *dentry,
279 				       bool may_sleep)
280 {
281 	struct inode_security_struct *isec = selinux_inode(inode);
282 
283 	might_sleep_if(may_sleep);
284 
285 	if (selinux_initialized() &&
286 	    isec->initialized != LABEL_INITIALIZED) {
287 		if (!may_sleep)
288 			return -ECHILD;
289 
290 		/*
291 		 * Try reloading the inode security label.  This will fail if
292 		 * @opt_dentry is NULL and no dentry for this inode can be
293 		 * found; in that case, continue using the old label.
294 		 */
295 		inode_doinit_with_dentry(inode, dentry);
296 	}
297 	return 0;
298 }
299 
300 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
301 {
302 	return selinux_inode(inode);
303 }
304 
305 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
306 {
307 	int error;
308 
309 	error = __inode_security_revalidate(inode, NULL, !rcu);
310 	if (error)
311 		return ERR_PTR(error);
312 	return selinux_inode(inode);
313 }
314 
315 /*
316  * Get the security label of an inode.
317  */
318 static struct inode_security_struct *inode_security(struct inode *inode)
319 {
320 	__inode_security_revalidate(inode, NULL, true);
321 	return selinux_inode(inode);
322 }
323 
324 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
325 {
326 	struct inode *inode = d_backing_inode(dentry);
327 
328 	return selinux_inode(inode);
329 }
330 
331 /*
332  * Get the security label of a dentry's backing inode.
333  */
334 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
335 {
336 	struct inode *inode = d_backing_inode(dentry);
337 
338 	__inode_security_revalidate(inode, dentry, true);
339 	return selinux_inode(inode);
340 }
341 
342 static void inode_free_security(struct inode *inode)
343 {
344 	struct inode_security_struct *isec = selinux_inode(inode);
345 	struct superblock_security_struct *sbsec;
346 
347 	if (!isec)
348 		return;
349 	sbsec = selinux_superblock(inode->i_sb);
350 	/*
351 	 * As not all inode security structures are in a list, we check for
352 	 * empty list outside of the lock to make sure that we won't waste
353 	 * time taking a lock doing nothing.
354 	 *
355 	 * The list_del_init() function can be safely called more than once.
356 	 * It should not be possible for this function to be called with
357 	 * concurrent list_add(), but for better safety against future changes
358 	 * in the code, we use list_empty_careful() here.
359 	 */
360 	if (!list_empty_careful(&isec->list)) {
361 		spin_lock(&sbsec->isec_lock);
362 		list_del_init(&isec->list);
363 		spin_unlock(&sbsec->isec_lock);
364 	}
365 }
366 
367 struct selinux_mnt_opts {
368 	u32 fscontext_sid;
369 	u32 context_sid;
370 	u32 rootcontext_sid;
371 	u32 defcontext_sid;
372 };
373 
374 static void selinux_free_mnt_opts(void *mnt_opts)
375 {
376 	kfree(mnt_opts);
377 }
378 
379 enum {
380 	Opt_error = -1,
381 	Opt_context = 0,
382 	Opt_defcontext = 1,
383 	Opt_fscontext = 2,
384 	Opt_rootcontext = 3,
385 	Opt_seclabel = 4,
386 };
387 
388 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
389 static const struct {
390 	const char *name;
391 	int len;
392 	int opt;
393 	bool has_arg;
394 } tokens[] = {
395 	A(context, true),
396 	A(fscontext, true),
397 	A(defcontext, true),
398 	A(rootcontext, true),
399 	A(seclabel, false),
400 };
401 #undef A
402 
403 static int match_opt_prefix(char *s, int l, char **arg)
404 {
405 	int i;
406 
407 	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
408 		size_t len = tokens[i].len;
409 		if (len > l || memcmp(s, tokens[i].name, len))
410 			continue;
411 		if (tokens[i].has_arg) {
412 			if (len == l || s[len] != '=')
413 				continue;
414 			*arg = s + len + 1;
415 		} else if (len != l)
416 			continue;
417 		return tokens[i].opt;
418 	}
419 	return Opt_error;
420 }
421 
422 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
423 
424 static int may_context_mount_sb_relabel(u32 sid,
425 			struct superblock_security_struct *sbsec,
426 			const struct cred *cred)
427 {
428 	const struct task_security_struct *tsec = selinux_cred(cred);
429 	int rc;
430 
431 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
432 			  FILESYSTEM__RELABELFROM, NULL);
433 	if (rc)
434 		return rc;
435 
436 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
437 			  FILESYSTEM__RELABELTO, NULL);
438 	return rc;
439 }
440 
441 static int may_context_mount_inode_relabel(u32 sid,
442 			struct superblock_security_struct *sbsec,
443 			const struct cred *cred)
444 {
445 	const struct task_security_struct *tsec = selinux_cred(cred);
446 	int rc;
447 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
448 			  FILESYSTEM__RELABELFROM, NULL);
449 	if (rc)
450 		return rc;
451 
452 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
453 			  FILESYSTEM__ASSOCIATE, NULL);
454 	return rc;
455 }
456 
457 static int selinux_is_genfs_special_handling(struct super_block *sb)
458 {
459 	/* Special handling. Genfs but also in-core setxattr handler */
460 	return	!strcmp(sb->s_type->name, "sysfs") ||
461 		!strcmp(sb->s_type->name, "pstore") ||
462 		!strcmp(sb->s_type->name, "debugfs") ||
463 		!strcmp(sb->s_type->name, "tracefs") ||
464 		!strcmp(sb->s_type->name, "rootfs") ||
465 		(selinux_policycap_cgroupseclabel() &&
466 		 (!strcmp(sb->s_type->name, "cgroup") ||
467 		  !strcmp(sb->s_type->name, "cgroup2")));
468 }
469 
470 static int selinux_is_sblabel_mnt(struct super_block *sb)
471 {
472 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
473 
474 	/*
475 	 * IMPORTANT: Double-check logic in this function when adding a new
476 	 * SECURITY_FS_USE_* definition!
477 	 */
478 	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
479 
480 	switch (sbsec->behavior) {
481 	case SECURITY_FS_USE_XATTR:
482 	case SECURITY_FS_USE_TRANS:
483 	case SECURITY_FS_USE_TASK:
484 	case SECURITY_FS_USE_NATIVE:
485 		return 1;
486 
487 	case SECURITY_FS_USE_GENFS:
488 		return selinux_is_genfs_special_handling(sb);
489 
490 	/* Never allow relabeling on context mounts */
491 	case SECURITY_FS_USE_MNTPOINT:
492 	case SECURITY_FS_USE_NONE:
493 	default:
494 		return 0;
495 	}
496 }
497 
498 static int sb_check_xattr_support(struct super_block *sb)
499 {
500 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
501 	struct dentry *root = sb->s_root;
502 	struct inode *root_inode = d_backing_inode(root);
503 	u32 sid;
504 	int rc;
505 
506 	/*
507 	 * Make sure that the xattr handler exists and that no
508 	 * error other than -ENODATA is returned by getxattr on
509 	 * the root directory.  -ENODATA is ok, as this may be
510 	 * the first boot of the SELinux kernel before we have
511 	 * assigned xattr values to the filesystem.
512 	 */
513 	if (!(root_inode->i_opflags & IOP_XATTR)) {
514 		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
515 			sb->s_id, sb->s_type->name);
516 		goto fallback;
517 	}
518 
519 	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
520 	if (rc < 0 && rc != -ENODATA) {
521 		if (rc == -EOPNOTSUPP) {
522 			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
523 				sb->s_id, sb->s_type->name);
524 			goto fallback;
525 		} else {
526 			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
527 				sb->s_id, sb->s_type->name, -rc);
528 			return rc;
529 		}
530 	}
531 	return 0;
532 
533 fallback:
534 	/* No xattr support - try to fallback to genfs if possible. */
535 	rc = security_genfs_sid(sb->s_type->name, "/",
536 				SECCLASS_DIR, &sid);
537 	if (rc)
538 		return -EOPNOTSUPP;
539 
540 	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
541 		sb->s_id, sb->s_type->name);
542 	sbsec->behavior = SECURITY_FS_USE_GENFS;
543 	sbsec->sid = sid;
544 	return 0;
545 }
546 
547 static int sb_finish_set_opts(struct super_block *sb)
548 {
549 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
550 	struct dentry *root = sb->s_root;
551 	struct inode *root_inode = d_backing_inode(root);
552 	int rc = 0;
553 
554 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
555 		rc = sb_check_xattr_support(sb);
556 		if (rc)
557 			return rc;
558 	}
559 
560 	sbsec->flags |= SE_SBINITIALIZED;
561 
562 	/*
563 	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
564 	 * leave the flag untouched because sb_clone_mnt_opts might be handing
565 	 * us a superblock that needs the flag to be cleared.
566 	 */
567 	if (selinux_is_sblabel_mnt(sb))
568 		sbsec->flags |= SBLABEL_MNT;
569 	else
570 		sbsec->flags &= ~SBLABEL_MNT;
571 
572 	/* Initialize the root inode. */
573 	rc = inode_doinit_with_dentry(root_inode, root);
574 
575 	/* Initialize any other inodes associated with the superblock, e.g.
576 	   inodes created prior to initial policy load or inodes created
577 	   during get_sb by a pseudo filesystem that directly
578 	   populates itself. */
579 	spin_lock(&sbsec->isec_lock);
580 	while (!list_empty(&sbsec->isec_head)) {
581 		struct inode_security_struct *isec =
582 				list_first_entry(&sbsec->isec_head,
583 					   struct inode_security_struct, list);
584 		struct inode *inode = isec->inode;
585 		list_del_init(&isec->list);
586 		spin_unlock(&sbsec->isec_lock);
587 		inode = igrab(inode);
588 		if (inode) {
589 			if (!IS_PRIVATE(inode))
590 				inode_doinit_with_dentry(inode, NULL);
591 			iput(inode);
592 		}
593 		spin_lock(&sbsec->isec_lock);
594 	}
595 	spin_unlock(&sbsec->isec_lock);
596 	return rc;
597 }
598 
599 static int bad_option(struct superblock_security_struct *sbsec, char flag,
600 		      u32 old_sid, u32 new_sid)
601 {
602 	char mnt_flags = sbsec->flags & SE_MNTMASK;
603 
604 	/* check if the old mount command had the same options */
605 	if (sbsec->flags & SE_SBINITIALIZED)
606 		if (!(sbsec->flags & flag) ||
607 		    (old_sid != new_sid))
608 			return 1;
609 
610 	/* check if we were passed the same options twice,
611 	 * aka someone passed context=a,context=b
612 	 */
613 	if (!(sbsec->flags & SE_SBINITIALIZED))
614 		if (mnt_flags & flag)
615 			return 1;
616 	return 0;
617 }
618 
619 /*
620  * Allow filesystems with binary mount data to explicitly set mount point
621  * labeling information.
622  */
623 static int selinux_set_mnt_opts(struct super_block *sb,
624 				void *mnt_opts,
625 				unsigned long kern_flags,
626 				unsigned long *set_kern_flags)
627 {
628 	const struct cred *cred = current_cred();
629 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
630 	struct dentry *root = sb->s_root;
631 	struct selinux_mnt_opts *opts = mnt_opts;
632 	struct inode_security_struct *root_isec;
633 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
634 	u32 defcontext_sid = 0;
635 	int rc = 0;
636 
637 	/*
638 	 * Specifying internal flags without providing a place to
639 	 * place the results is not allowed
640 	 */
641 	if (kern_flags && !set_kern_flags)
642 		return -EINVAL;
643 
644 	mutex_lock(&sbsec->lock);
645 
646 	if (!selinux_initialized()) {
647 		if (!opts) {
648 			/* Defer initialization until selinux_complete_init,
649 			   after the initial policy is loaded and the security
650 			   server is ready to handle calls. */
651 			if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
652 				sbsec->flags |= SE_SBNATIVE;
653 				*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
654 			}
655 			goto out;
656 		}
657 		rc = -EINVAL;
658 		pr_warn("SELinux: Unable to set superblock options "
659 			"before the security server is initialized\n");
660 		goto out;
661 	}
662 
663 	/*
664 	 * Binary mount data FS will come through this function twice.  Once
665 	 * from an explicit call and once from the generic calls from the vfs.
666 	 * Since the generic VFS calls will not contain any security mount data
667 	 * we need to skip the double mount verification.
668 	 *
669 	 * This does open a hole in which we will not notice if the first
670 	 * mount using this sb set explicit options and a second mount using
671 	 * this sb does not set any security options.  (The first options
672 	 * will be used for both mounts)
673 	 */
674 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
675 	    && !opts)
676 		goto out;
677 
678 	root_isec = backing_inode_security_novalidate(root);
679 
680 	/*
681 	 * parse the mount options, check if they are valid sids.
682 	 * also check if someone is trying to mount the same sb more
683 	 * than once with different security options.
684 	 */
685 	if (opts) {
686 		if (opts->fscontext_sid) {
687 			fscontext_sid = opts->fscontext_sid;
688 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
689 					fscontext_sid))
690 				goto out_double_mount;
691 			sbsec->flags |= FSCONTEXT_MNT;
692 		}
693 		if (opts->context_sid) {
694 			context_sid = opts->context_sid;
695 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
696 					context_sid))
697 				goto out_double_mount;
698 			sbsec->flags |= CONTEXT_MNT;
699 		}
700 		if (opts->rootcontext_sid) {
701 			rootcontext_sid = opts->rootcontext_sid;
702 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
703 					rootcontext_sid))
704 				goto out_double_mount;
705 			sbsec->flags |= ROOTCONTEXT_MNT;
706 		}
707 		if (opts->defcontext_sid) {
708 			defcontext_sid = opts->defcontext_sid;
709 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
710 					defcontext_sid))
711 				goto out_double_mount;
712 			sbsec->flags |= DEFCONTEXT_MNT;
713 		}
714 	}
715 
716 	if (sbsec->flags & SE_SBINITIALIZED) {
717 		/* previously mounted with options, but not on this attempt? */
718 		if ((sbsec->flags & SE_MNTMASK) && !opts)
719 			goto out_double_mount;
720 		rc = 0;
721 		goto out;
722 	}
723 
724 	if (strcmp(sb->s_type->name, "proc") == 0)
725 		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
726 
727 	if (!strcmp(sb->s_type->name, "debugfs") ||
728 	    !strcmp(sb->s_type->name, "tracefs") ||
729 	    !strcmp(sb->s_type->name, "binder") ||
730 	    !strcmp(sb->s_type->name, "bpf") ||
731 	    !strcmp(sb->s_type->name, "pstore") ||
732 	    !strcmp(sb->s_type->name, "securityfs"))
733 		sbsec->flags |= SE_SBGENFS;
734 
735 	if (!strcmp(sb->s_type->name, "sysfs") ||
736 	    !strcmp(sb->s_type->name, "cgroup") ||
737 	    !strcmp(sb->s_type->name, "cgroup2"))
738 		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
739 
740 	if (!sbsec->behavior) {
741 		/*
742 		 * Determine the labeling behavior to use for this
743 		 * filesystem type.
744 		 */
745 		rc = security_fs_use(sb);
746 		if (rc) {
747 			pr_warn("%s: security_fs_use(%s) returned %d\n",
748 					__func__, sb->s_type->name, rc);
749 			goto out;
750 		}
751 	}
752 
753 	/*
754 	 * If this is a user namespace mount and the filesystem type is not
755 	 * explicitly whitelisted, then no contexts are allowed on the command
756 	 * line and security labels must be ignored.
757 	 */
758 	if (sb->s_user_ns != &init_user_ns &&
759 	    strcmp(sb->s_type->name, "tmpfs") &&
760 	    strcmp(sb->s_type->name, "ramfs") &&
761 	    strcmp(sb->s_type->name, "devpts") &&
762 	    strcmp(sb->s_type->name, "overlay")) {
763 		if (context_sid || fscontext_sid || rootcontext_sid ||
764 		    defcontext_sid) {
765 			rc = -EACCES;
766 			goto out;
767 		}
768 		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
769 			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
770 			rc = security_transition_sid(current_sid(),
771 						     current_sid(),
772 						     SECCLASS_FILE, NULL,
773 						     &sbsec->mntpoint_sid);
774 			if (rc)
775 				goto out;
776 		}
777 		goto out_set_opts;
778 	}
779 
780 	/* sets the context of the superblock for the fs being mounted. */
781 	if (fscontext_sid) {
782 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
783 		if (rc)
784 			goto out;
785 
786 		sbsec->sid = fscontext_sid;
787 	}
788 
789 	/*
790 	 * Switch to using mount point labeling behavior.
791 	 * sets the label used on all file below the mountpoint, and will set
792 	 * the superblock context if not already set.
793 	 */
794 	if (sbsec->flags & SE_SBNATIVE) {
795 		/*
796 		 * This means we are initializing a superblock that has been
797 		 * mounted before the SELinux was initialized and the
798 		 * filesystem requested native labeling. We had already
799 		 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags
800 		 * in the original mount attempt, so now we just need to set
801 		 * the SECURITY_FS_USE_NATIVE behavior.
802 		 */
803 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
804 	} else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
805 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
806 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
807 	}
808 
809 	if (context_sid) {
810 		if (!fscontext_sid) {
811 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
812 							  cred);
813 			if (rc)
814 				goto out;
815 			sbsec->sid = context_sid;
816 		} else {
817 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
818 							     cred);
819 			if (rc)
820 				goto out;
821 		}
822 		if (!rootcontext_sid)
823 			rootcontext_sid = context_sid;
824 
825 		sbsec->mntpoint_sid = context_sid;
826 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
827 	}
828 
829 	if (rootcontext_sid) {
830 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
831 						     cred);
832 		if (rc)
833 			goto out;
834 
835 		root_isec->sid = rootcontext_sid;
836 		root_isec->initialized = LABEL_INITIALIZED;
837 	}
838 
839 	if (defcontext_sid) {
840 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
841 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
842 			rc = -EINVAL;
843 			pr_warn("SELinux: defcontext option is "
844 			       "invalid for this filesystem type\n");
845 			goto out;
846 		}
847 
848 		if (defcontext_sid != sbsec->def_sid) {
849 			rc = may_context_mount_inode_relabel(defcontext_sid,
850 							     sbsec, cred);
851 			if (rc)
852 				goto out;
853 		}
854 
855 		sbsec->def_sid = defcontext_sid;
856 	}
857 
858 out_set_opts:
859 	rc = sb_finish_set_opts(sb);
860 out:
861 	mutex_unlock(&sbsec->lock);
862 	return rc;
863 out_double_mount:
864 	rc = -EINVAL;
865 	pr_warn("SELinux: mount invalid.  Same superblock, different "
866 	       "security settings for (dev %s, type %s)\n", sb->s_id,
867 	       sb->s_type->name);
868 	goto out;
869 }
870 
871 static int selinux_cmp_sb_context(const struct super_block *oldsb,
872 				    const struct super_block *newsb)
873 {
874 	struct superblock_security_struct *old = selinux_superblock(oldsb);
875 	struct superblock_security_struct *new = selinux_superblock(newsb);
876 	char oldflags = old->flags & SE_MNTMASK;
877 	char newflags = new->flags & SE_MNTMASK;
878 
879 	if (oldflags != newflags)
880 		goto mismatch;
881 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
882 		goto mismatch;
883 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
884 		goto mismatch;
885 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
886 		goto mismatch;
887 	if (oldflags & ROOTCONTEXT_MNT) {
888 		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
889 		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
890 		if (oldroot->sid != newroot->sid)
891 			goto mismatch;
892 	}
893 	return 0;
894 mismatch:
895 	pr_warn("SELinux: mount invalid.  Same superblock, "
896 			    "different security settings for (dev %s, "
897 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
898 	return -EBUSY;
899 }
900 
901 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
902 					struct super_block *newsb,
903 					unsigned long kern_flags,
904 					unsigned long *set_kern_flags)
905 {
906 	int rc = 0;
907 	const struct superblock_security_struct *oldsbsec =
908 						selinux_superblock(oldsb);
909 	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
910 
911 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
912 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
913 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
914 
915 	/*
916 	 * Specifying internal flags without providing a place to
917 	 * place the results is not allowed.
918 	 */
919 	if (kern_flags && !set_kern_flags)
920 		return -EINVAL;
921 
922 	mutex_lock(&newsbsec->lock);
923 
924 	/*
925 	 * if the parent was able to be mounted it clearly had no special lsm
926 	 * mount options.  thus we can safely deal with this superblock later
927 	 */
928 	if (!selinux_initialized()) {
929 		if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
930 			newsbsec->flags |= SE_SBNATIVE;
931 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
932 		}
933 		goto out;
934 	}
935 
936 	/* how can we clone if the old one wasn't set up?? */
937 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
938 
939 	/* if fs is reusing a sb, make sure that the contexts match */
940 	if (newsbsec->flags & SE_SBINITIALIZED) {
941 		mutex_unlock(&newsbsec->lock);
942 		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
943 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
944 		return selinux_cmp_sb_context(oldsb, newsb);
945 	}
946 
947 	newsbsec->flags = oldsbsec->flags;
948 
949 	newsbsec->sid = oldsbsec->sid;
950 	newsbsec->def_sid = oldsbsec->def_sid;
951 	newsbsec->behavior = oldsbsec->behavior;
952 
953 	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
954 		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
955 		rc = security_fs_use(newsb);
956 		if (rc)
957 			goto out;
958 	}
959 
960 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
961 		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
962 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
963 	}
964 
965 	if (set_context) {
966 		u32 sid = oldsbsec->mntpoint_sid;
967 
968 		if (!set_fscontext)
969 			newsbsec->sid = sid;
970 		if (!set_rootcontext) {
971 			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
972 			newisec->sid = sid;
973 		}
974 		newsbsec->mntpoint_sid = sid;
975 	}
976 	if (set_rootcontext) {
977 		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
978 		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
979 
980 		newisec->sid = oldisec->sid;
981 	}
982 
983 	sb_finish_set_opts(newsb);
984 out:
985 	mutex_unlock(&newsbsec->lock);
986 	return rc;
987 }
988 
989 /*
990  * NOTE: the caller is responsible for freeing the memory even if on error.
991  */
992 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
993 {
994 	struct selinux_mnt_opts *opts = *mnt_opts;
995 	u32 *dst_sid;
996 	int rc;
997 
998 	if (token == Opt_seclabel)
999 		/* eaten and completely ignored */
1000 		return 0;
1001 	if (!s)
1002 		return -EINVAL;
1003 
1004 	if (!selinux_initialized()) {
1005 		pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
1006 		return -EINVAL;
1007 	}
1008 
1009 	if (!opts) {
1010 		opts = kzalloc(sizeof(*opts), GFP_KERNEL);
1011 		if (!opts)
1012 			return -ENOMEM;
1013 		*mnt_opts = opts;
1014 	}
1015 
1016 	switch (token) {
1017 	case Opt_context:
1018 		if (opts->context_sid || opts->defcontext_sid)
1019 			goto err;
1020 		dst_sid = &opts->context_sid;
1021 		break;
1022 	case Opt_fscontext:
1023 		if (opts->fscontext_sid)
1024 			goto err;
1025 		dst_sid = &opts->fscontext_sid;
1026 		break;
1027 	case Opt_rootcontext:
1028 		if (opts->rootcontext_sid)
1029 			goto err;
1030 		dst_sid = &opts->rootcontext_sid;
1031 		break;
1032 	case Opt_defcontext:
1033 		if (opts->context_sid || opts->defcontext_sid)
1034 			goto err;
1035 		dst_sid = &opts->defcontext_sid;
1036 		break;
1037 	default:
1038 		WARN_ON(1);
1039 		return -EINVAL;
1040 	}
1041 	rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL);
1042 	if (rc)
1043 		pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1044 			s, rc);
1045 	return rc;
1046 
1047 err:
1048 	pr_warn(SEL_MOUNT_FAIL_MSG);
1049 	return -EINVAL;
1050 }
1051 
1052 static int show_sid(struct seq_file *m, u32 sid)
1053 {
1054 	char *context = NULL;
1055 	u32 len;
1056 	int rc;
1057 
1058 	rc = security_sid_to_context(sid, &context, &len);
1059 	if (!rc) {
1060 		bool has_comma = strchr(context, ',');
1061 
1062 		seq_putc(m, '=');
1063 		if (has_comma)
1064 			seq_putc(m, '\"');
1065 		seq_escape(m, context, "\"\n\\");
1066 		if (has_comma)
1067 			seq_putc(m, '\"');
1068 	}
1069 	kfree(context);
1070 	return rc;
1071 }
1072 
1073 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1074 {
1075 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1076 	int rc;
1077 
1078 	if (!(sbsec->flags & SE_SBINITIALIZED))
1079 		return 0;
1080 
1081 	if (!selinux_initialized())
1082 		return 0;
1083 
1084 	if (sbsec->flags & FSCONTEXT_MNT) {
1085 		seq_putc(m, ',');
1086 		seq_puts(m, FSCONTEXT_STR);
1087 		rc = show_sid(m, sbsec->sid);
1088 		if (rc)
1089 			return rc;
1090 	}
1091 	if (sbsec->flags & CONTEXT_MNT) {
1092 		seq_putc(m, ',');
1093 		seq_puts(m, CONTEXT_STR);
1094 		rc = show_sid(m, sbsec->mntpoint_sid);
1095 		if (rc)
1096 			return rc;
1097 	}
1098 	if (sbsec->flags & DEFCONTEXT_MNT) {
1099 		seq_putc(m, ',');
1100 		seq_puts(m, DEFCONTEXT_STR);
1101 		rc = show_sid(m, sbsec->def_sid);
1102 		if (rc)
1103 			return rc;
1104 	}
1105 	if (sbsec->flags & ROOTCONTEXT_MNT) {
1106 		struct dentry *root = sb->s_root;
1107 		struct inode_security_struct *isec = backing_inode_security(root);
1108 		seq_putc(m, ',');
1109 		seq_puts(m, ROOTCONTEXT_STR);
1110 		rc = show_sid(m, isec->sid);
1111 		if (rc)
1112 			return rc;
1113 	}
1114 	if (sbsec->flags & SBLABEL_MNT) {
1115 		seq_putc(m, ',');
1116 		seq_puts(m, SECLABEL_STR);
1117 	}
1118 	return 0;
1119 }
1120 
1121 static inline u16 inode_mode_to_security_class(umode_t mode)
1122 {
1123 	switch (mode & S_IFMT) {
1124 	case S_IFSOCK:
1125 		return SECCLASS_SOCK_FILE;
1126 	case S_IFLNK:
1127 		return SECCLASS_LNK_FILE;
1128 	case S_IFREG:
1129 		return SECCLASS_FILE;
1130 	case S_IFBLK:
1131 		return SECCLASS_BLK_FILE;
1132 	case S_IFDIR:
1133 		return SECCLASS_DIR;
1134 	case S_IFCHR:
1135 		return SECCLASS_CHR_FILE;
1136 	case S_IFIFO:
1137 		return SECCLASS_FIFO_FILE;
1138 
1139 	}
1140 
1141 	return SECCLASS_FILE;
1142 }
1143 
1144 static inline int default_protocol_stream(int protocol)
1145 {
1146 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1147 		protocol == IPPROTO_MPTCP);
1148 }
1149 
1150 static inline int default_protocol_dgram(int protocol)
1151 {
1152 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1153 }
1154 
1155 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1156 {
1157 	bool extsockclass = selinux_policycap_extsockclass();
1158 
1159 	switch (family) {
1160 	case PF_UNIX:
1161 		switch (type) {
1162 		case SOCK_STREAM:
1163 		case SOCK_SEQPACKET:
1164 			return SECCLASS_UNIX_STREAM_SOCKET;
1165 		case SOCK_DGRAM:
1166 		case SOCK_RAW:
1167 			return SECCLASS_UNIX_DGRAM_SOCKET;
1168 		}
1169 		break;
1170 	case PF_INET:
1171 	case PF_INET6:
1172 		switch (type) {
1173 		case SOCK_STREAM:
1174 		case SOCK_SEQPACKET:
1175 			if (default_protocol_stream(protocol))
1176 				return SECCLASS_TCP_SOCKET;
1177 			else if (extsockclass && protocol == IPPROTO_SCTP)
1178 				return SECCLASS_SCTP_SOCKET;
1179 			else
1180 				return SECCLASS_RAWIP_SOCKET;
1181 		case SOCK_DGRAM:
1182 			if (default_protocol_dgram(protocol))
1183 				return SECCLASS_UDP_SOCKET;
1184 			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1185 						  protocol == IPPROTO_ICMPV6))
1186 				return SECCLASS_ICMP_SOCKET;
1187 			else
1188 				return SECCLASS_RAWIP_SOCKET;
1189 		case SOCK_DCCP:
1190 			return SECCLASS_DCCP_SOCKET;
1191 		default:
1192 			return SECCLASS_RAWIP_SOCKET;
1193 		}
1194 		break;
1195 	case PF_NETLINK:
1196 		switch (protocol) {
1197 		case NETLINK_ROUTE:
1198 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1199 		case NETLINK_SOCK_DIAG:
1200 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1201 		case NETLINK_NFLOG:
1202 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1203 		case NETLINK_XFRM:
1204 			return SECCLASS_NETLINK_XFRM_SOCKET;
1205 		case NETLINK_SELINUX:
1206 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1207 		case NETLINK_ISCSI:
1208 			return SECCLASS_NETLINK_ISCSI_SOCKET;
1209 		case NETLINK_AUDIT:
1210 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1211 		case NETLINK_FIB_LOOKUP:
1212 			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1213 		case NETLINK_CONNECTOR:
1214 			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1215 		case NETLINK_NETFILTER:
1216 			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1217 		case NETLINK_DNRTMSG:
1218 			return SECCLASS_NETLINK_DNRT_SOCKET;
1219 		case NETLINK_KOBJECT_UEVENT:
1220 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1221 		case NETLINK_GENERIC:
1222 			return SECCLASS_NETLINK_GENERIC_SOCKET;
1223 		case NETLINK_SCSITRANSPORT:
1224 			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1225 		case NETLINK_RDMA:
1226 			return SECCLASS_NETLINK_RDMA_SOCKET;
1227 		case NETLINK_CRYPTO:
1228 			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1229 		default:
1230 			return SECCLASS_NETLINK_SOCKET;
1231 		}
1232 	case PF_PACKET:
1233 		return SECCLASS_PACKET_SOCKET;
1234 	case PF_KEY:
1235 		return SECCLASS_KEY_SOCKET;
1236 	case PF_APPLETALK:
1237 		return SECCLASS_APPLETALK_SOCKET;
1238 	}
1239 
1240 	if (extsockclass) {
1241 		switch (family) {
1242 		case PF_AX25:
1243 			return SECCLASS_AX25_SOCKET;
1244 		case PF_IPX:
1245 			return SECCLASS_IPX_SOCKET;
1246 		case PF_NETROM:
1247 			return SECCLASS_NETROM_SOCKET;
1248 		case PF_ATMPVC:
1249 			return SECCLASS_ATMPVC_SOCKET;
1250 		case PF_X25:
1251 			return SECCLASS_X25_SOCKET;
1252 		case PF_ROSE:
1253 			return SECCLASS_ROSE_SOCKET;
1254 		case PF_DECnet:
1255 			return SECCLASS_DECNET_SOCKET;
1256 		case PF_ATMSVC:
1257 			return SECCLASS_ATMSVC_SOCKET;
1258 		case PF_RDS:
1259 			return SECCLASS_RDS_SOCKET;
1260 		case PF_IRDA:
1261 			return SECCLASS_IRDA_SOCKET;
1262 		case PF_PPPOX:
1263 			return SECCLASS_PPPOX_SOCKET;
1264 		case PF_LLC:
1265 			return SECCLASS_LLC_SOCKET;
1266 		case PF_CAN:
1267 			return SECCLASS_CAN_SOCKET;
1268 		case PF_TIPC:
1269 			return SECCLASS_TIPC_SOCKET;
1270 		case PF_BLUETOOTH:
1271 			return SECCLASS_BLUETOOTH_SOCKET;
1272 		case PF_IUCV:
1273 			return SECCLASS_IUCV_SOCKET;
1274 		case PF_RXRPC:
1275 			return SECCLASS_RXRPC_SOCKET;
1276 		case PF_ISDN:
1277 			return SECCLASS_ISDN_SOCKET;
1278 		case PF_PHONET:
1279 			return SECCLASS_PHONET_SOCKET;
1280 		case PF_IEEE802154:
1281 			return SECCLASS_IEEE802154_SOCKET;
1282 		case PF_CAIF:
1283 			return SECCLASS_CAIF_SOCKET;
1284 		case PF_ALG:
1285 			return SECCLASS_ALG_SOCKET;
1286 		case PF_NFC:
1287 			return SECCLASS_NFC_SOCKET;
1288 		case PF_VSOCK:
1289 			return SECCLASS_VSOCK_SOCKET;
1290 		case PF_KCM:
1291 			return SECCLASS_KCM_SOCKET;
1292 		case PF_QIPCRTR:
1293 			return SECCLASS_QIPCRTR_SOCKET;
1294 		case PF_SMC:
1295 			return SECCLASS_SMC_SOCKET;
1296 		case PF_XDP:
1297 			return SECCLASS_XDP_SOCKET;
1298 		case PF_MCTP:
1299 			return SECCLASS_MCTP_SOCKET;
1300 #if PF_MAX > 46
1301 #error New address family defined, please update this function.
1302 #endif
1303 		}
1304 	}
1305 
1306 	return SECCLASS_SOCKET;
1307 }
1308 
1309 static int selinux_genfs_get_sid(struct dentry *dentry,
1310 				 u16 tclass,
1311 				 u16 flags,
1312 				 u32 *sid)
1313 {
1314 	int rc;
1315 	struct super_block *sb = dentry->d_sb;
1316 	char *buffer, *path;
1317 
1318 	buffer = (char *)__get_free_page(GFP_KERNEL);
1319 	if (!buffer)
1320 		return -ENOMEM;
1321 
1322 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1323 	if (IS_ERR(path))
1324 		rc = PTR_ERR(path);
1325 	else {
1326 		if (flags & SE_SBPROC) {
1327 			/* each process gets a /proc/PID/ entry. Strip off the
1328 			 * PID part to get a valid selinux labeling.
1329 			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1330 			while (path[1] >= '0' && path[1] <= '9') {
1331 				path[1] = '/';
1332 				path++;
1333 			}
1334 		}
1335 		rc = security_genfs_sid(sb->s_type->name,
1336 					path, tclass, sid);
1337 		if (rc == -ENOENT) {
1338 			/* No match in policy, mark as unlabeled. */
1339 			*sid = SECINITSID_UNLABELED;
1340 			rc = 0;
1341 		}
1342 	}
1343 	free_page((unsigned long)buffer);
1344 	return rc;
1345 }
1346 
1347 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1348 				  u32 def_sid, u32 *sid)
1349 {
1350 #define INITCONTEXTLEN 255
1351 	char *context;
1352 	unsigned int len;
1353 	int rc;
1354 
1355 	len = INITCONTEXTLEN;
1356 	context = kmalloc(len + 1, GFP_NOFS);
1357 	if (!context)
1358 		return -ENOMEM;
1359 
1360 	context[len] = '\0';
1361 	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1362 	if (rc == -ERANGE) {
1363 		kfree(context);
1364 
1365 		/* Need a larger buffer.  Query for the right size. */
1366 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1367 		if (rc < 0)
1368 			return rc;
1369 
1370 		len = rc;
1371 		context = kmalloc(len + 1, GFP_NOFS);
1372 		if (!context)
1373 			return -ENOMEM;
1374 
1375 		context[len] = '\0';
1376 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1377 				    context, len);
1378 	}
1379 	if (rc < 0) {
1380 		kfree(context);
1381 		if (rc != -ENODATA) {
1382 			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1383 				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1384 			return rc;
1385 		}
1386 		*sid = def_sid;
1387 		return 0;
1388 	}
1389 
1390 	rc = security_context_to_sid_default(context, rc, sid,
1391 					     def_sid, GFP_NOFS);
1392 	if (rc) {
1393 		char *dev = inode->i_sb->s_id;
1394 		unsigned long ino = inode->i_ino;
1395 
1396 		if (rc == -EINVAL) {
1397 			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1398 					      ino, dev, context);
1399 		} else {
1400 			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1401 				__func__, context, -rc, dev, ino);
1402 		}
1403 	}
1404 	kfree(context);
1405 	return 0;
1406 }
1407 
1408 /* The inode's security attributes must be initialized before first use. */
1409 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1410 {
1411 	struct superblock_security_struct *sbsec = NULL;
1412 	struct inode_security_struct *isec = selinux_inode(inode);
1413 	u32 task_sid, sid = 0;
1414 	u16 sclass;
1415 	struct dentry *dentry;
1416 	int rc = 0;
1417 
1418 	if (isec->initialized == LABEL_INITIALIZED)
1419 		return 0;
1420 
1421 	spin_lock(&isec->lock);
1422 	if (isec->initialized == LABEL_INITIALIZED)
1423 		goto out_unlock;
1424 
1425 	if (isec->sclass == SECCLASS_FILE)
1426 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1427 
1428 	sbsec = selinux_superblock(inode->i_sb);
1429 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1430 		/* Defer initialization until selinux_complete_init,
1431 		   after the initial policy is loaded and the security
1432 		   server is ready to handle calls. */
1433 		spin_lock(&sbsec->isec_lock);
1434 		if (list_empty(&isec->list))
1435 			list_add(&isec->list, &sbsec->isec_head);
1436 		spin_unlock(&sbsec->isec_lock);
1437 		goto out_unlock;
1438 	}
1439 
1440 	sclass = isec->sclass;
1441 	task_sid = isec->task_sid;
1442 	sid = isec->sid;
1443 	isec->initialized = LABEL_PENDING;
1444 	spin_unlock(&isec->lock);
1445 
1446 	switch (sbsec->behavior) {
1447 	/*
1448 	 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels
1449 	 * via xattr when called from delayed_superblock_init().
1450 	 */
1451 	case SECURITY_FS_USE_NATIVE:
1452 	case SECURITY_FS_USE_XATTR:
1453 		if (!(inode->i_opflags & IOP_XATTR)) {
1454 			sid = sbsec->def_sid;
1455 			break;
1456 		}
1457 		/* Need a dentry, since the xattr API requires one.
1458 		   Life would be simpler if we could just pass the inode. */
1459 		if (opt_dentry) {
1460 			/* Called from d_instantiate or d_splice_alias. */
1461 			dentry = dget(opt_dentry);
1462 		} else {
1463 			/*
1464 			 * Called from selinux_complete_init, try to find a dentry.
1465 			 * Some filesystems really want a connected one, so try
1466 			 * that first.  We could split SECURITY_FS_USE_XATTR in
1467 			 * two, depending upon that...
1468 			 */
1469 			dentry = d_find_alias(inode);
1470 			if (!dentry)
1471 				dentry = d_find_any_alias(inode);
1472 		}
1473 		if (!dentry) {
1474 			/*
1475 			 * this is can be hit on boot when a file is accessed
1476 			 * before the policy is loaded.  When we load policy we
1477 			 * may find inodes that have no dentry on the
1478 			 * sbsec->isec_head list.  No reason to complain as these
1479 			 * will get fixed up the next time we go through
1480 			 * inode_doinit with a dentry, before these inodes could
1481 			 * be used again by userspace.
1482 			 */
1483 			goto out_invalid;
1484 		}
1485 
1486 		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1487 					    &sid);
1488 		dput(dentry);
1489 		if (rc)
1490 			goto out;
1491 		break;
1492 	case SECURITY_FS_USE_TASK:
1493 		sid = task_sid;
1494 		break;
1495 	case SECURITY_FS_USE_TRANS:
1496 		/* Default to the fs SID. */
1497 		sid = sbsec->sid;
1498 
1499 		/* Try to obtain a transition SID. */
1500 		rc = security_transition_sid(task_sid, sid,
1501 					     sclass, NULL, &sid);
1502 		if (rc)
1503 			goto out;
1504 		break;
1505 	case SECURITY_FS_USE_MNTPOINT:
1506 		sid = sbsec->mntpoint_sid;
1507 		break;
1508 	default:
1509 		/* Default to the fs superblock SID. */
1510 		sid = sbsec->sid;
1511 
1512 		if ((sbsec->flags & SE_SBGENFS) &&
1513 		     (!S_ISLNK(inode->i_mode) ||
1514 		      selinux_policycap_genfs_seclabel_symlinks())) {
1515 			/* We must have a dentry to determine the label on
1516 			 * procfs inodes */
1517 			if (opt_dentry) {
1518 				/* Called from d_instantiate or
1519 				 * d_splice_alias. */
1520 				dentry = dget(opt_dentry);
1521 			} else {
1522 				/* Called from selinux_complete_init, try to
1523 				 * find a dentry.  Some filesystems really want
1524 				 * a connected one, so try that first.
1525 				 */
1526 				dentry = d_find_alias(inode);
1527 				if (!dentry)
1528 					dentry = d_find_any_alias(inode);
1529 			}
1530 			/*
1531 			 * This can be hit on boot when a file is accessed
1532 			 * before the policy is loaded.  When we load policy we
1533 			 * may find inodes that have no dentry on the
1534 			 * sbsec->isec_head list.  No reason to complain as
1535 			 * these will get fixed up the next time we go through
1536 			 * inode_doinit() with a dentry, before these inodes
1537 			 * could be used again by userspace.
1538 			 */
1539 			if (!dentry)
1540 				goto out_invalid;
1541 			rc = selinux_genfs_get_sid(dentry, sclass,
1542 						   sbsec->flags, &sid);
1543 			if (rc) {
1544 				dput(dentry);
1545 				goto out;
1546 			}
1547 
1548 			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1549 			    (inode->i_opflags & IOP_XATTR)) {
1550 				rc = inode_doinit_use_xattr(inode, dentry,
1551 							    sid, &sid);
1552 				if (rc) {
1553 					dput(dentry);
1554 					goto out;
1555 				}
1556 			}
1557 			dput(dentry);
1558 		}
1559 		break;
1560 	}
1561 
1562 out:
1563 	spin_lock(&isec->lock);
1564 	if (isec->initialized == LABEL_PENDING) {
1565 		if (rc) {
1566 			isec->initialized = LABEL_INVALID;
1567 			goto out_unlock;
1568 		}
1569 		isec->initialized = LABEL_INITIALIZED;
1570 		isec->sid = sid;
1571 	}
1572 
1573 out_unlock:
1574 	spin_unlock(&isec->lock);
1575 	return rc;
1576 
1577 out_invalid:
1578 	spin_lock(&isec->lock);
1579 	if (isec->initialized == LABEL_PENDING) {
1580 		isec->initialized = LABEL_INVALID;
1581 		isec->sid = sid;
1582 	}
1583 	spin_unlock(&isec->lock);
1584 	return 0;
1585 }
1586 
1587 /* Convert a Linux signal to an access vector. */
1588 static inline u32 signal_to_av(int sig)
1589 {
1590 	u32 perm = 0;
1591 
1592 	switch (sig) {
1593 	case SIGCHLD:
1594 		/* Commonly granted from child to parent. */
1595 		perm = PROCESS__SIGCHLD;
1596 		break;
1597 	case SIGKILL:
1598 		/* Cannot be caught or ignored */
1599 		perm = PROCESS__SIGKILL;
1600 		break;
1601 	case SIGSTOP:
1602 		/* Cannot be caught or ignored */
1603 		perm = PROCESS__SIGSTOP;
1604 		break;
1605 	default:
1606 		/* All other signals. */
1607 		perm = PROCESS__SIGNAL;
1608 		break;
1609 	}
1610 
1611 	return perm;
1612 }
1613 
1614 #if CAP_LAST_CAP > 63
1615 #error Fix SELinux to handle capabilities > 63.
1616 #endif
1617 
1618 /* Check whether a task is allowed to use a capability. */
1619 static int cred_has_capability(const struct cred *cred,
1620 			       int cap, unsigned int opts, bool initns)
1621 {
1622 	struct common_audit_data ad;
1623 	struct av_decision avd;
1624 	u16 sclass;
1625 	u32 sid = cred_sid(cred);
1626 	u32 av = CAP_TO_MASK(cap);
1627 	int rc;
1628 
1629 	ad.type = LSM_AUDIT_DATA_CAP;
1630 	ad.u.cap = cap;
1631 
1632 	switch (CAP_TO_INDEX(cap)) {
1633 	case 0:
1634 		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1635 		break;
1636 	case 1:
1637 		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1638 		break;
1639 	default:
1640 		pr_err("SELinux:  out of range capability %d\n", cap);
1641 		BUG();
1642 		return -EINVAL;
1643 	}
1644 
1645 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1646 	if (!(opts & CAP_OPT_NOAUDIT)) {
1647 		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1648 		if (rc2)
1649 			return rc2;
1650 	}
1651 	return rc;
1652 }
1653 
1654 /* Check whether a task has a particular permission to an inode.
1655    The 'adp' parameter is optional and allows other audit
1656    data to be passed (e.g. the dentry). */
1657 static int inode_has_perm(const struct cred *cred,
1658 			  struct inode *inode,
1659 			  u32 perms,
1660 			  struct common_audit_data *adp)
1661 {
1662 	struct inode_security_struct *isec;
1663 	u32 sid;
1664 
1665 	if (unlikely(IS_PRIVATE(inode)))
1666 		return 0;
1667 
1668 	sid = cred_sid(cred);
1669 	isec = selinux_inode(inode);
1670 
1671 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1672 }
1673 
1674 /* Same as inode_has_perm, but pass explicit audit data containing
1675    the dentry to help the auditing code to more easily generate the
1676    pathname if needed. */
1677 static inline int dentry_has_perm(const struct cred *cred,
1678 				  struct dentry *dentry,
1679 				  u32 av)
1680 {
1681 	struct inode *inode = d_backing_inode(dentry);
1682 	struct common_audit_data ad;
1683 
1684 	ad.type = LSM_AUDIT_DATA_DENTRY;
1685 	ad.u.dentry = dentry;
1686 	__inode_security_revalidate(inode, dentry, true);
1687 	return inode_has_perm(cred, inode, av, &ad);
1688 }
1689 
1690 /* Same as inode_has_perm, but pass explicit audit data containing
1691    the path to help the auditing code to more easily generate the
1692    pathname if needed. */
1693 static inline int path_has_perm(const struct cred *cred,
1694 				const struct path *path,
1695 				u32 av)
1696 {
1697 	struct inode *inode = d_backing_inode(path->dentry);
1698 	struct common_audit_data ad;
1699 
1700 	ad.type = LSM_AUDIT_DATA_PATH;
1701 	ad.u.path = *path;
1702 	__inode_security_revalidate(inode, path->dentry, true);
1703 	return inode_has_perm(cred, inode, av, &ad);
1704 }
1705 
1706 /* Same as path_has_perm, but uses the inode from the file struct. */
1707 static inline int file_path_has_perm(const struct cred *cred,
1708 				     struct file *file,
1709 				     u32 av)
1710 {
1711 	struct common_audit_data ad;
1712 
1713 	ad.type = LSM_AUDIT_DATA_FILE;
1714 	ad.u.file = file;
1715 	return inode_has_perm(cred, file_inode(file), av, &ad);
1716 }
1717 
1718 #ifdef CONFIG_BPF_SYSCALL
1719 static int bpf_fd_pass(const struct file *file, u32 sid);
1720 #endif
1721 
1722 /* Check whether a task can use an open file descriptor to
1723    access an inode in a given way.  Check access to the
1724    descriptor itself, and then use dentry_has_perm to
1725    check a particular permission to the file.
1726    Access to the descriptor is implicitly granted if it
1727    has the same SID as the process.  If av is zero, then
1728    access to the file is not checked, e.g. for cases
1729    where only the descriptor is affected like seek. */
1730 static int file_has_perm(const struct cred *cred,
1731 			 struct file *file,
1732 			 u32 av)
1733 {
1734 	struct file_security_struct *fsec = selinux_file(file);
1735 	struct inode *inode = file_inode(file);
1736 	struct common_audit_data ad;
1737 	u32 sid = cred_sid(cred);
1738 	int rc;
1739 
1740 	ad.type = LSM_AUDIT_DATA_FILE;
1741 	ad.u.file = file;
1742 
1743 	if (sid != fsec->sid) {
1744 		rc = avc_has_perm(sid, fsec->sid,
1745 				  SECCLASS_FD,
1746 				  FD__USE,
1747 				  &ad);
1748 		if (rc)
1749 			goto out;
1750 	}
1751 
1752 #ifdef CONFIG_BPF_SYSCALL
1753 	rc = bpf_fd_pass(file, cred_sid(cred));
1754 	if (rc)
1755 		return rc;
1756 #endif
1757 
1758 	/* av is zero if only checking access to the descriptor. */
1759 	rc = 0;
1760 	if (av)
1761 		rc = inode_has_perm(cred, inode, av, &ad);
1762 
1763 out:
1764 	return rc;
1765 }
1766 
1767 /*
1768  * Determine the label for an inode that might be unioned.
1769  */
1770 static int
1771 selinux_determine_inode_label(const struct task_security_struct *tsec,
1772 				 struct inode *dir,
1773 				 const struct qstr *name, u16 tclass,
1774 				 u32 *_new_isid)
1775 {
1776 	const struct superblock_security_struct *sbsec =
1777 						selinux_superblock(dir->i_sb);
1778 
1779 	if ((sbsec->flags & SE_SBINITIALIZED) &&
1780 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1781 		*_new_isid = sbsec->mntpoint_sid;
1782 	} else if ((sbsec->flags & SBLABEL_MNT) &&
1783 		   tsec->create_sid) {
1784 		*_new_isid = tsec->create_sid;
1785 	} else {
1786 		const struct inode_security_struct *dsec = inode_security(dir);
1787 		return security_transition_sid(tsec->sid,
1788 					       dsec->sid, tclass,
1789 					       name, _new_isid);
1790 	}
1791 
1792 	return 0;
1793 }
1794 
1795 /* Check whether a task can create a file. */
1796 static int may_create(struct inode *dir,
1797 		      struct dentry *dentry,
1798 		      u16 tclass)
1799 {
1800 	const struct task_security_struct *tsec = selinux_cred(current_cred());
1801 	struct inode_security_struct *dsec;
1802 	struct superblock_security_struct *sbsec;
1803 	u32 sid, newsid;
1804 	struct common_audit_data ad;
1805 	int rc;
1806 
1807 	dsec = inode_security(dir);
1808 	sbsec = selinux_superblock(dir->i_sb);
1809 
1810 	sid = tsec->sid;
1811 
1812 	ad.type = LSM_AUDIT_DATA_DENTRY;
1813 	ad.u.dentry = dentry;
1814 
1815 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1816 			  DIR__ADD_NAME | DIR__SEARCH,
1817 			  &ad);
1818 	if (rc)
1819 		return rc;
1820 
1821 	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1822 					   &newsid);
1823 	if (rc)
1824 		return rc;
1825 
1826 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1827 	if (rc)
1828 		return rc;
1829 
1830 	return avc_has_perm(newsid, sbsec->sid,
1831 			    SECCLASS_FILESYSTEM,
1832 			    FILESYSTEM__ASSOCIATE, &ad);
1833 }
1834 
1835 #define MAY_LINK	0
1836 #define MAY_UNLINK	1
1837 #define MAY_RMDIR	2
1838 
1839 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1840 static int may_link(struct inode *dir,
1841 		    struct dentry *dentry,
1842 		    int kind)
1843 
1844 {
1845 	struct inode_security_struct *dsec, *isec;
1846 	struct common_audit_data ad;
1847 	u32 sid = current_sid();
1848 	u32 av;
1849 	int rc;
1850 
1851 	dsec = inode_security(dir);
1852 	isec = backing_inode_security(dentry);
1853 
1854 	ad.type = LSM_AUDIT_DATA_DENTRY;
1855 	ad.u.dentry = dentry;
1856 
1857 	av = DIR__SEARCH;
1858 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1859 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1860 	if (rc)
1861 		return rc;
1862 
1863 	switch (kind) {
1864 	case MAY_LINK:
1865 		av = FILE__LINK;
1866 		break;
1867 	case MAY_UNLINK:
1868 		av = FILE__UNLINK;
1869 		break;
1870 	case MAY_RMDIR:
1871 		av = DIR__RMDIR;
1872 		break;
1873 	default:
1874 		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1875 			__func__, kind);
1876 		return 0;
1877 	}
1878 
1879 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1880 	return rc;
1881 }
1882 
1883 static inline int may_rename(struct inode *old_dir,
1884 			     struct dentry *old_dentry,
1885 			     struct inode *new_dir,
1886 			     struct dentry *new_dentry)
1887 {
1888 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1889 	struct common_audit_data ad;
1890 	u32 sid = current_sid();
1891 	u32 av;
1892 	int old_is_dir, new_is_dir;
1893 	int rc;
1894 
1895 	old_dsec = inode_security(old_dir);
1896 	old_isec = backing_inode_security(old_dentry);
1897 	old_is_dir = d_is_dir(old_dentry);
1898 	new_dsec = inode_security(new_dir);
1899 
1900 	ad.type = LSM_AUDIT_DATA_DENTRY;
1901 
1902 	ad.u.dentry = old_dentry;
1903 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1904 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1905 	if (rc)
1906 		return rc;
1907 	rc = avc_has_perm(sid, old_isec->sid,
1908 			  old_isec->sclass, FILE__RENAME, &ad);
1909 	if (rc)
1910 		return rc;
1911 	if (old_is_dir && new_dir != old_dir) {
1912 		rc = avc_has_perm(sid, old_isec->sid,
1913 				  old_isec->sclass, DIR__REPARENT, &ad);
1914 		if (rc)
1915 			return rc;
1916 	}
1917 
1918 	ad.u.dentry = new_dentry;
1919 	av = DIR__ADD_NAME | DIR__SEARCH;
1920 	if (d_is_positive(new_dentry))
1921 		av |= DIR__REMOVE_NAME;
1922 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1923 	if (rc)
1924 		return rc;
1925 	if (d_is_positive(new_dentry)) {
1926 		new_isec = backing_inode_security(new_dentry);
1927 		new_is_dir = d_is_dir(new_dentry);
1928 		rc = avc_has_perm(sid, new_isec->sid,
1929 				  new_isec->sclass,
1930 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1931 		if (rc)
1932 			return rc;
1933 	}
1934 
1935 	return 0;
1936 }
1937 
1938 /* Check whether a task can perform a filesystem operation. */
1939 static int superblock_has_perm(const struct cred *cred,
1940 			       const struct super_block *sb,
1941 			       u32 perms,
1942 			       struct common_audit_data *ad)
1943 {
1944 	struct superblock_security_struct *sbsec;
1945 	u32 sid = cred_sid(cred);
1946 
1947 	sbsec = selinux_superblock(sb);
1948 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1949 }
1950 
1951 /* Convert a Linux mode and permission mask to an access vector. */
1952 static inline u32 file_mask_to_av(int mode, int mask)
1953 {
1954 	u32 av = 0;
1955 
1956 	if (!S_ISDIR(mode)) {
1957 		if (mask & MAY_EXEC)
1958 			av |= FILE__EXECUTE;
1959 		if (mask & MAY_READ)
1960 			av |= FILE__READ;
1961 
1962 		if (mask & MAY_APPEND)
1963 			av |= FILE__APPEND;
1964 		else if (mask & MAY_WRITE)
1965 			av |= FILE__WRITE;
1966 
1967 	} else {
1968 		if (mask & MAY_EXEC)
1969 			av |= DIR__SEARCH;
1970 		if (mask & MAY_WRITE)
1971 			av |= DIR__WRITE;
1972 		if (mask & MAY_READ)
1973 			av |= DIR__READ;
1974 	}
1975 
1976 	return av;
1977 }
1978 
1979 /* Convert a Linux file to an access vector. */
1980 static inline u32 file_to_av(const struct file *file)
1981 {
1982 	u32 av = 0;
1983 
1984 	if (file->f_mode & FMODE_READ)
1985 		av |= FILE__READ;
1986 	if (file->f_mode & FMODE_WRITE) {
1987 		if (file->f_flags & O_APPEND)
1988 			av |= FILE__APPEND;
1989 		else
1990 			av |= FILE__WRITE;
1991 	}
1992 	if (!av) {
1993 		/*
1994 		 * Special file opened with flags 3 for ioctl-only use.
1995 		 */
1996 		av = FILE__IOCTL;
1997 	}
1998 
1999 	return av;
2000 }
2001 
2002 /*
2003  * Convert a file to an access vector and include the correct
2004  * open permission.
2005  */
2006 static inline u32 open_file_to_av(struct file *file)
2007 {
2008 	u32 av = file_to_av(file);
2009 	struct inode *inode = file_inode(file);
2010 
2011 	if (selinux_policycap_openperm() &&
2012 	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2013 		av |= FILE__OPEN;
2014 
2015 	return av;
2016 }
2017 
2018 /* Hook functions begin here. */
2019 
2020 static int selinux_binder_set_context_mgr(const struct cred *mgr)
2021 {
2022 	return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER,
2023 			    BINDER__SET_CONTEXT_MGR, NULL);
2024 }
2025 
2026 static int selinux_binder_transaction(const struct cred *from,
2027 				      const struct cred *to)
2028 {
2029 	u32 mysid = current_sid();
2030 	u32 fromsid = cred_sid(from);
2031 	u32 tosid = cred_sid(to);
2032 	int rc;
2033 
2034 	if (mysid != fromsid) {
2035 		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2036 				  BINDER__IMPERSONATE, NULL);
2037 		if (rc)
2038 			return rc;
2039 	}
2040 
2041 	return avc_has_perm(fromsid, tosid,
2042 			    SECCLASS_BINDER, BINDER__CALL, NULL);
2043 }
2044 
2045 static int selinux_binder_transfer_binder(const struct cred *from,
2046 					  const struct cred *to)
2047 {
2048 	return avc_has_perm(cred_sid(from), cred_sid(to),
2049 			    SECCLASS_BINDER, BINDER__TRANSFER,
2050 			    NULL);
2051 }
2052 
2053 static int selinux_binder_transfer_file(const struct cred *from,
2054 					const struct cred *to,
2055 					const struct file *file)
2056 {
2057 	u32 sid = cred_sid(to);
2058 	struct file_security_struct *fsec = selinux_file(file);
2059 	struct dentry *dentry = file->f_path.dentry;
2060 	struct inode_security_struct *isec;
2061 	struct common_audit_data ad;
2062 	int rc;
2063 
2064 	ad.type = LSM_AUDIT_DATA_PATH;
2065 	ad.u.path = file->f_path;
2066 
2067 	if (sid != fsec->sid) {
2068 		rc = avc_has_perm(sid, fsec->sid,
2069 				  SECCLASS_FD,
2070 				  FD__USE,
2071 				  &ad);
2072 		if (rc)
2073 			return rc;
2074 	}
2075 
2076 #ifdef CONFIG_BPF_SYSCALL
2077 	rc = bpf_fd_pass(file, sid);
2078 	if (rc)
2079 		return rc;
2080 #endif
2081 
2082 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2083 		return 0;
2084 
2085 	isec = backing_inode_security(dentry);
2086 	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2087 			    &ad);
2088 }
2089 
2090 static int selinux_ptrace_access_check(struct task_struct *child,
2091 				       unsigned int mode)
2092 {
2093 	u32 sid = current_sid();
2094 	u32 csid = task_sid_obj(child);
2095 
2096 	if (mode & PTRACE_MODE_READ)
2097 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ,
2098 				NULL);
2099 
2100 	return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE,
2101 			NULL);
2102 }
2103 
2104 static int selinux_ptrace_traceme(struct task_struct *parent)
2105 {
2106 	return avc_has_perm(task_sid_obj(parent), task_sid_obj(current),
2107 			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2108 }
2109 
2110 static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective,
2111 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2112 {
2113 	return avc_has_perm(current_sid(), task_sid_obj(target),
2114 			SECCLASS_PROCESS, PROCESS__GETCAP, NULL);
2115 }
2116 
2117 static int selinux_capset(struct cred *new, const struct cred *old,
2118 			  const kernel_cap_t *effective,
2119 			  const kernel_cap_t *inheritable,
2120 			  const kernel_cap_t *permitted)
2121 {
2122 	return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2123 			    PROCESS__SETCAP, NULL);
2124 }
2125 
2126 /*
2127  * (This comment used to live with the selinux_task_setuid hook,
2128  * which was removed).
2129  *
2130  * Since setuid only affects the current process, and since the SELinux
2131  * controls are not based on the Linux identity attributes, SELinux does not
2132  * need to control this operation.  However, SELinux does control the use of
2133  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2134  */
2135 
2136 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2137 			   int cap, unsigned int opts)
2138 {
2139 	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2140 }
2141 
2142 static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb)
2143 {
2144 	const struct cred *cred = current_cred();
2145 	int rc = 0;
2146 
2147 	if (!sb)
2148 		return 0;
2149 
2150 	switch (cmds) {
2151 	case Q_SYNC:
2152 	case Q_QUOTAON:
2153 	case Q_QUOTAOFF:
2154 	case Q_SETINFO:
2155 	case Q_SETQUOTA:
2156 	case Q_XQUOTAOFF:
2157 	case Q_XQUOTAON:
2158 	case Q_XSETQLIM:
2159 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2160 		break;
2161 	case Q_GETFMT:
2162 	case Q_GETINFO:
2163 	case Q_GETQUOTA:
2164 	case Q_XGETQUOTA:
2165 	case Q_XGETQSTAT:
2166 	case Q_XGETQSTATV:
2167 	case Q_XGETNEXTQUOTA:
2168 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2169 		break;
2170 	default:
2171 		rc = 0;  /* let the kernel handle invalid cmds */
2172 		break;
2173 	}
2174 	return rc;
2175 }
2176 
2177 static int selinux_quota_on(struct dentry *dentry)
2178 {
2179 	const struct cred *cred = current_cred();
2180 
2181 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2182 }
2183 
2184 static int selinux_syslog(int type)
2185 {
2186 	switch (type) {
2187 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2188 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2189 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2190 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2191 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2192 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2193 	/* Set level of messages printed to console */
2194 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2195 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2196 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2197 				    NULL);
2198 	}
2199 	/* All other syslog types */
2200 	return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2201 			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2202 }
2203 
2204 /*
2205  * Check permission for allocating a new virtual mapping. Returns
2206  * 0 if permission is granted, negative error code if not.
2207  *
2208  * Do not audit the selinux permission check, as this is applied to all
2209  * processes that allocate mappings.
2210  */
2211 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2212 {
2213 	return cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2214 				   CAP_OPT_NOAUDIT, true);
2215 }
2216 
2217 /* binprm security operations */
2218 
2219 static u32 ptrace_parent_sid(void)
2220 {
2221 	u32 sid = 0;
2222 	struct task_struct *tracer;
2223 
2224 	rcu_read_lock();
2225 	tracer = ptrace_parent(current);
2226 	if (tracer)
2227 		sid = task_sid_obj(tracer);
2228 	rcu_read_unlock();
2229 
2230 	return sid;
2231 }
2232 
2233 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2234 			    const struct task_security_struct *old_tsec,
2235 			    const struct task_security_struct *new_tsec)
2236 {
2237 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2238 	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2239 	int rc;
2240 	u32 av;
2241 
2242 	if (!nnp && !nosuid)
2243 		return 0; /* neither NNP nor nosuid */
2244 
2245 	if (new_tsec->sid == old_tsec->sid)
2246 		return 0; /* No change in credentials */
2247 
2248 	/*
2249 	 * If the policy enables the nnp_nosuid_transition policy capability,
2250 	 * then we permit transitions under NNP or nosuid if the
2251 	 * policy allows the corresponding permission between
2252 	 * the old and new contexts.
2253 	 */
2254 	if (selinux_policycap_nnp_nosuid_transition()) {
2255 		av = 0;
2256 		if (nnp)
2257 			av |= PROCESS2__NNP_TRANSITION;
2258 		if (nosuid)
2259 			av |= PROCESS2__NOSUID_TRANSITION;
2260 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2261 				  SECCLASS_PROCESS2, av, NULL);
2262 		if (!rc)
2263 			return 0;
2264 	}
2265 
2266 	/*
2267 	 * We also permit NNP or nosuid transitions to bounded SIDs,
2268 	 * i.e. SIDs that are guaranteed to only be allowed a subset
2269 	 * of the permissions of the current SID.
2270 	 */
2271 	rc = security_bounded_transition(old_tsec->sid,
2272 					 new_tsec->sid);
2273 	if (!rc)
2274 		return 0;
2275 
2276 	/*
2277 	 * On failure, preserve the errno values for NNP vs nosuid.
2278 	 * NNP:  Operation not permitted for caller.
2279 	 * nosuid:  Permission denied to file.
2280 	 */
2281 	if (nnp)
2282 		return -EPERM;
2283 	return -EACCES;
2284 }
2285 
2286 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2287 {
2288 	const struct task_security_struct *old_tsec;
2289 	struct task_security_struct *new_tsec;
2290 	struct inode_security_struct *isec;
2291 	struct common_audit_data ad;
2292 	struct inode *inode = file_inode(bprm->file);
2293 	int rc;
2294 
2295 	/* SELinux context only depends on initial program or script and not
2296 	 * the script interpreter */
2297 
2298 	old_tsec = selinux_cred(current_cred());
2299 	new_tsec = selinux_cred(bprm->cred);
2300 	isec = inode_security(inode);
2301 
2302 	/* Default to the current task SID. */
2303 	new_tsec->sid = old_tsec->sid;
2304 	new_tsec->osid = old_tsec->sid;
2305 
2306 	/* Reset fs, key, and sock SIDs on execve. */
2307 	new_tsec->create_sid = 0;
2308 	new_tsec->keycreate_sid = 0;
2309 	new_tsec->sockcreate_sid = 0;
2310 
2311 	/*
2312 	 * Before policy is loaded, label any task outside kernel space
2313 	 * as SECINITSID_INIT, so that any userspace tasks surviving from
2314 	 * early boot end up with a label different from SECINITSID_KERNEL
2315 	 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL).
2316 	 */
2317 	if (!selinux_initialized()) {
2318 		new_tsec->sid = SECINITSID_INIT;
2319 		/* also clear the exec_sid just in case */
2320 		new_tsec->exec_sid = 0;
2321 		return 0;
2322 	}
2323 
2324 	if (old_tsec->exec_sid) {
2325 		new_tsec->sid = old_tsec->exec_sid;
2326 		/* Reset exec SID on execve. */
2327 		new_tsec->exec_sid = 0;
2328 
2329 		/* Fail on NNP or nosuid if not an allowed transition. */
2330 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2331 		if (rc)
2332 			return rc;
2333 	} else {
2334 		/* Check for a default transition on this program. */
2335 		rc = security_transition_sid(old_tsec->sid,
2336 					     isec->sid, SECCLASS_PROCESS, NULL,
2337 					     &new_tsec->sid);
2338 		if (rc)
2339 			return rc;
2340 
2341 		/*
2342 		 * Fallback to old SID on NNP or nosuid if not an allowed
2343 		 * transition.
2344 		 */
2345 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2346 		if (rc)
2347 			new_tsec->sid = old_tsec->sid;
2348 	}
2349 
2350 	ad.type = LSM_AUDIT_DATA_FILE;
2351 	ad.u.file = bprm->file;
2352 
2353 	if (new_tsec->sid == old_tsec->sid) {
2354 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2355 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2356 		if (rc)
2357 			return rc;
2358 	} else {
2359 		/* Check permissions for the transition. */
2360 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2361 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2362 		if (rc)
2363 			return rc;
2364 
2365 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2366 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2367 		if (rc)
2368 			return rc;
2369 
2370 		/* Check for shared state */
2371 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2372 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2373 					  SECCLASS_PROCESS, PROCESS__SHARE,
2374 					  NULL);
2375 			if (rc)
2376 				return -EPERM;
2377 		}
2378 
2379 		/* Make sure that anyone attempting to ptrace over a task that
2380 		 * changes its SID has the appropriate permit */
2381 		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2382 			u32 ptsid = ptrace_parent_sid();
2383 			if (ptsid != 0) {
2384 				rc = avc_has_perm(ptsid, new_tsec->sid,
2385 						  SECCLASS_PROCESS,
2386 						  PROCESS__PTRACE, NULL);
2387 				if (rc)
2388 					return -EPERM;
2389 			}
2390 		}
2391 
2392 		/* Clear any possibly unsafe personality bits on exec: */
2393 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2394 
2395 		/* Enable secure mode for SIDs transitions unless
2396 		   the noatsecure permission is granted between
2397 		   the two SIDs, i.e. ahp returns 0. */
2398 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2399 				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2400 				  NULL);
2401 		bprm->secureexec |= !!rc;
2402 	}
2403 
2404 	return 0;
2405 }
2406 
2407 static int match_file(const void *p, struct file *file, unsigned fd)
2408 {
2409 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2410 }
2411 
2412 /* Derived from fs/exec.c:flush_old_files. */
2413 static inline void flush_unauthorized_files(const struct cred *cred,
2414 					    struct files_struct *files)
2415 {
2416 	struct file *file, *devnull = NULL;
2417 	struct tty_struct *tty;
2418 	int drop_tty = 0;
2419 	unsigned n;
2420 
2421 	tty = get_current_tty();
2422 	if (tty) {
2423 		spin_lock(&tty->files_lock);
2424 		if (!list_empty(&tty->tty_files)) {
2425 			struct tty_file_private *file_priv;
2426 
2427 			/* Revalidate access to controlling tty.
2428 			   Use file_path_has_perm on the tty path directly
2429 			   rather than using file_has_perm, as this particular
2430 			   open file may belong to another process and we are
2431 			   only interested in the inode-based check here. */
2432 			file_priv = list_first_entry(&tty->tty_files,
2433 						struct tty_file_private, list);
2434 			file = file_priv->file;
2435 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2436 				drop_tty = 1;
2437 		}
2438 		spin_unlock(&tty->files_lock);
2439 		tty_kref_put(tty);
2440 	}
2441 	/* Reset controlling tty. */
2442 	if (drop_tty)
2443 		no_tty();
2444 
2445 	/* Revalidate access to inherited open files. */
2446 	n = iterate_fd(files, 0, match_file, cred);
2447 	if (!n) /* none found? */
2448 		return;
2449 
2450 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2451 	if (IS_ERR(devnull))
2452 		devnull = NULL;
2453 	/* replace all the matching ones with this */
2454 	do {
2455 		replace_fd(n - 1, devnull, 0);
2456 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2457 	if (devnull)
2458 		fput(devnull);
2459 }
2460 
2461 /*
2462  * Prepare a process for imminent new credential changes due to exec
2463  */
2464 static void selinux_bprm_committing_creds(const struct linux_binprm *bprm)
2465 {
2466 	struct task_security_struct *new_tsec;
2467 	struct rlimit *rlim, *initrlim;
2468 	int rc, i;
2469 
2470 	new_tsec = selinux_cred(bprm->cred);
2471 	if (new_tsec->sid == new_tsec->osid)
2472 		return;
2473 
2474 	/* Close files for which the new task SID is not authorized. */
2475 	flush_unauthorized_files(bprm->cred, current->files);
2476 
2477 	/* Always clear parent death signal on SID transitions. */
2478 	current->pdeath_signal = 0;
2479 
2480 	/* Check whether the new SID can inherit resource limits from the old
2481 	 * SID.  If not, reset all soft limits to the lower of the current
2482 	 * task's hard limit and the init task's soft limit.
2483 	 *
2484 	 * Note that the setting of hard limits (even to lower them) can be
2485 	 * controlled by the setrlimit check.  The inclusion of the init task's
2486 	 * soft limit into the computation is to avoid resetting soft limits
2487 	 * higher than the default soft limit for cases where the default is
2488 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2489 	 */
2490 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2491 			  PROCESS__RLIMITINH, NULL);
2492 	if (rc) {
2493 		/* protect against do_prlimit() */
2494 		task_lock(current);
2495 		for (i = 0; i < RLIM_NLIMITS; i++) {
2496 			rlim = current->signal->rlim + i;
2497 			initrlim = init_task.signal->rlim + i;
2498 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2499 		}
2500 		task_unlock(current);
2501 		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2502 			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2503 	}
2504 }
2505 
2506 /*
2507  * Clean up the process immediately after the installation of new credentials
2508  * due to exec
2509  */
2510 static void selinux_bprm_committed_creds(const struct linux_binprm *bprm)
2511 {
2512 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2513 	u32 osid, sid;
2514 	int rc;
2515 
2516 	osid = tsec->osid;
2517 	sid = tsec->sid;
2518 
2519 	if (sid == osid)
2520 		return;
2521 
2522 	/* Check whether the new SID can inherit signal state from the old SID.
2523 	 * If not, clear itimers to avoid subsequent signal generation and
2524 	 * flush and unblock signals.
2525 	 *
2526 	 * This must occur _after_ the task SID has been updated so that any
2527 	 * kill done after the flush will be checked against the new SID.
2528 	 */
2529 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2530 	if (rc) {
2531 		clear_itimer();
2532 
2533 		spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2534 		if (!fatal_signal_pending(current)) {
2535 			flush_sigqueue(&current->pending);
2536 			flush_sigqueue(&current->signal->shared_pending);
2537 			flush_signal_handlers(current, 1);
2538 			sigemptyset(&current->blocked);
2539 			recalc_sigpending();
2540 		}
2541 		spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2542 	}
2543 
2544 	/* Wake up the parent if it is waiting so that it can recheck
2545 	 * wait permission to the new task SID. */
2546 	read_lock(&tasklist_lock);
2547 	__wake_up_parent(current, unrcu_pointer(current->real_parent));
2548 	read_unlock(&tasklist_lock);
2549 }
2550 
2551 /* superblock security operations */
2552 
2553 static int selinux_sb_alloc_security(struct super_block *sb)
2554 {
2555 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2556 
2557 	mutex_init(&sbsec->lock);
2558 	INIT_LIST_HEAD(&sbsec->isec_head);
2559 	spin_lock_init(&sbsec->isec_lock);
2560 	sbsec->sid = SECINITSID_UNLABELED;
2561 	sbsec->def_sid = SECINITSID_FILE;
2562 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2563 
2564 	return 0;
2565 }
2566 
2567 static inline int opt_len(const char *s)
2568 {
2569 	bool open_quote = false;
2570 	int len;
2571 	char c;
2572 
2573 	for (len = 0; (c = s[len]) != '\0'; len++) {
2574 		if (c == '"')
2575 			open_quote = !open_quote;
2576 		if (c == ',' && !open_quote)
2577 			break;
2578 	}
2579 	return len;
2580 }
2581 
2582 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2583 {
2584 	char *from = options;
2585 	char *to = options;
2586 	bool first = true;
2587 	int rc;
2588 
2589 	while (1) {
2590 		int len = opt_len(from);
2591 		int token;
2592 		char *arg = NULL;
2593 
2594 		token = match_opt_prefix(from, len, &arg);
2595 
2596 		if (token != Opt_error) {
2597 			char *p, *q;
2598 
2599 			/* strip quotes */
2600 			if (arg) {
2601 				for (p = q = arg; p < from + len; p++) {
2602 					char c = *p;
2603 					if (c != '"')
2604 						*q++ = c;
2605 				}
2606 				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2607 				if (!arg) {
2608 					rc = -ENOMEM;
2609 					goto free_opt;
2610 				}
2611 			}
2612 			rc = selinux_add_opt(token, arg, mnt_opts);
2613 			kfree(arg);
2614 			arg = NULL;
2615 			if (unlikely(rc)) {
2616 				goto free_opt;
2617 			}
2618 		} else {
2619 			if (!first) {	// copy with preceding comma
2620 				from--;
2621 				len++;
2622 			}
2623 			if (to != from)
2624 				memmove(to, from, len);
2625 			to += len;
2626 			first = false;
2627 		}
2628 		if (!from[len])
2629 			break;
2630 		from += len + 1;
2631 	}
2632 	*to = '\0';
2633 	return 0;
2634 
2635 free_opt:
2636 	if (*mnt_opts) {
2637 		selinux_free_mnt_opts(*mnt_opts);
2638 		*mnt_opts = NULL;
2639 	}
2640 	return rc;
2641 }
2642 
2643 static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2644 {
2645 	struct selinux_mnt_opts *opts = mnt_opts;
2646 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2647 
2648 	/*
2649 	 * Superblock not initialized (i.e. no options) - reject if any
2650 	 * options specified, otherwise accept.
2651 	 */
2652 	if (!(sbsec->flags & SE_SBINITIALIZED))
2653 		return opts ? 1 : 0;
2654 
2655 	/*
2656 	 * Superblock initialized and no options specified - reject if
2657 	 * superblock has any options set, otherwise accept.
2658 	 */
2659 	if (!opts)
2660 		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2661 
2662 	if (opts->fscontext_sid) {
2663 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2664 			       opts->fscontext_sid))
2665 			return 1;
2666 	}
2667 	if (opts->context_sid) {
2668 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2669 			       opts->context_sid))
2670 			return 1;
2671 	}
2672 	if (opts->rootcontext_sid) {
2673 		struct inode_security_struct *root_isec;
2674 
2675 		root_isec = backing_inode_security(sb->s_root);
2676 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2677 			       opts->rootcontext_sid))
2678 			return 1;
2679 	}
2680 	if (opts->defcontext_sid) {
2681 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2682 			       opts->defcontext_sid))
2683 			return 1;
2684 	}
2685 	return 0;
2686 }
2687 
2688 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2689 {
2690 	struct selinux_mnt_opts *opts = mnt_opts;
2691 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2692 
2693 	if (!(sbsec->flags & SE_SBINITIALIZED))
2694 		return 0;
2695 
2696 	if (!opts)
2697 		return 0;
2698 
2699 	if (opts->fscontext_sid) {
2700 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2701 			       opts->fscontext_sid))
2702 			goto out_bad_option;
2703 	}
2704 	if (opts->context_sid) {
2705 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2706 			       opts->context_sid))
2707 			goto out_bad_option;
2708 	}
2709 	if (opts->rootcontext_sid) {
2710 		struct inode_security_struct *root_isec;
2711 		root_isec = backing_inode_security(sb->s_root);
2712 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2713 			       opts->rootcontext_sid))
2714 			goto out_bad_option;
2715 	}
2716 	if (opts->defcontext_sid) {
2717 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2718 			       opts->defcontext_sid))
2719 			goto out_bad_option;
2720 	}
2721 	return 0;
2722 
2723 out_bad_option:
2724 	pr_warn("SELinux: unable to change security options "
2725 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2726 	       sb->s_type->name);
2727 	return -EINVAL;
2728 }
2729 
2730 static int selinux_sb_kern_mount(const struct super_block *sb)
2731 {
2732 	const struct cred *cred = current_cred();
2733 	struct common_audit_data ad;
2734 
2735 	ad.type = LSM_AUDIT_DATA_DENTRY;
2736 	ad.u.dentry = sb->s_root;
2737 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2738 }
2739 
2740 static int selinux_sb_statfs(struct dentry *dentry)
2741 {
2742 	const struct cred *cred = current_cred();
2743 	struct common_audit_data ad;
2744 
2745 	ad.type = LSM_AUDIT_DATA_DENTRY;
2746 	ad.u.dentry = dentry->d_sb->s_root;
2747 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2748 }
2749 
2750 static int selinux_mount(const char *dev_name,
2751 			 const struct path *path,
2752 			 const char *type,
2753 			 unsigned long flags,
2754 			 void *data)
2755 {
2756 	const struct cred *cred = current_cred();
2757 
2758 	if (flags & MS_REMOUNT)
2759 		return superblock_has_perm(cred, path->dentry->d_sb,
2760 					   FILESYSTEM__REMOUNT, NULL);
2761 	else
2762 		return path_has_perm(cred, path, FILE__MOUNTON);
2763 }
2764 
2765 static int selinux_move_mount(const struct path *from_path,
2766 			      const struct path *to_path)
2767 {
2768 	const struct cred *cred = current_cred();
2769 
2770 	return path_has_perm(cred, to_path, FILE__MOUNTON);
2771 }
2772 
2773 static int selinux_umount(struct vfsmount *mnt, int flags)
2774 {
2775 	const struct cred *cred = current_cred();
2776 
2777 	return superblock_has_perm(cred, mnt->mnt_sb,
2778 				   FILESYSTEM__UNMOUNT, NULL);
2779 }
2780 
2781 static int selinux_fs_context_submount(struct fs_context *fc,
2782 				   struct super_block *reference)
2783 {
2784 	const struct superblock_security_struct *sbsec = selinux_superblock(reference);
2785 	struct selinux_mnt_opts *opts;
2786 
2787 	/*
2788 	 * Ensure that fc->security remains NULL when no options are set
2789 	 * as expected by selinux_set_mnt_opts().
2790 	 */
2791 	if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT)))
2792 		return 0;
2793 
2794 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
2795 	if (!opts)
2796 		return -ENOMEM;
2797 
2798 	if (sbsec->flags & FSCONTEXT_MNT)
2799 		opts->fscontext_sid = sbsec->sid;
2800 	if (sbsec->flags & CONTEXT_MNT)
2801 		opts->context_sid = sbsec->mntpoint_sid;
2802 	if (sbsec->flags & DEFCONTEXT_MNT)
2803 		opts->defcontext_sid = sbsec->def_sid;
2804 	fc->security = opts;
2805 	return 0;
2806 }
2807 
2808 static int selinux_fs_context_dup(struct fs_context *fc,
2809 				  struct fs_context *src_fc)
2810 {
2811 	const struct selinux_mnt_opts *src = src_fc->security;
2812 
2813 	if (!src)
2814 		return 0;
2815 
2816 	fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2817 	return fc->security ? 0 : -ENOMEM;
2818 }
2819 
2820 static const struct fs_parameter_spec selinux_fs_parameters[] = {
2821 	fsparam_string(CONTEXT_STR,	Opt_context),
2822 	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2823 	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2824 	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2825 	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2826 	{}
2827 };
2828 
2829 static int selinux_fs_context_parse_param(struct fs_context *fc,
2830 					  struct fs_parameter *param)
2831 {
2832 	struct fs_parse_result result;
2833 	int opt;
2834 
2835 	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2836 	if (opt < 0)
2837 		return opt;
2838 
2839 	return selinux_add_opt(opt, param->string, &fc->security);
2840 }
2841 
2842 /* inode security operations */
2843 
2844 static int selinux_inode_alloc_security(struct inode *inode)
2845 {
2846 	struct inode_security_struct *isec = selinux_inode(inode);
2847 	u32 sid = current_sid();
2848 
2849 	spin_lock_init(&isec->lock);
2850 	INIT_LIST_HEAD(&isec->list);
2851 	isec->inode = inode;
2852 	isec->sid = SECINITSID_UNLABELED;
2853 	isec->sclass = SECCLASS_FILE;
2854 	isec->task_sid = sid;
2855 	isec->initialized = LABEL_INVALID;
2856 
2857 	return 0;
2858 }
2859 
2860 static void selinux_inode_free_security(struct inode *inode)
2861 {
2862 	inode_free_security(inode);
2863 }
2864 
2865 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2866 					const struct qstr *name,
2867 					const char **xattr_name, void **ctx,
2868 					u32 *ctxlen)
2869 {
2870 	u32 newsid;
2871 	int rc;
2872 
2873 	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2874 					   d_inode(dentry->d_parent), name,
2875 					   inode_mode_to_security_class(mode),
2876 					   &newsid);
2877 	if (rc)
2878 		return rc;
2879 
2880 	if (xattr_name)
2881 		*xattr_name = XATTR_NAME_SELINUX;
2882 
2883 	return security_sid_to_context(newsid, (char **)ctx,
2884 				       ctxlen);
2885 }
2886 
2887 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2888 					  struct qstr *name,
2889 					  const struct cred *old,
2890 					  struct cred *new)
2891 {
2892 	u32 newsid;
2893 	int rc;
2894 	struct task_security_struct *tsec;
2895 
2896 	rc = selinux_determine_inode_label(selinux_cred(old),
2897 					   d_inode(dentry->d_parent), name,
2898 					   inode_mode_to_security_class(mode),
2899 					   &newsid);
2900 	if (rc)
2901 		return rc;
2902 
2903 	tsec = selinux_cred(new);
2904 	tsec->create_sid = newsid;
2905 	return 0;
2906 }
2907 
2908 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2909 				       const struct qstr *qstr,
2910 				       struct xattr *xattrs, int *xattr_count)
2911 {
2912 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2913 	struct superblock_security_struct *sbsec;
2914 	struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count);
2915 	u32 newsid, clen;
2916 	u16 newsclass;
2917 	int rc;
2918 	char *context;
2919 
2920 	sbsec = selinux_superblock(dir->i_sb);
2921 
2922 	newsid = tsec->create_sid;
2923 	newsclass = inode_mode_to_security_class(inode->i_mode);
2924 	rc = selinux_determine_inode_label(tsec, dir, qstr, newsclass, &newsid);
2925 	if (rc)
2926 		return rc;
2927 
2928 	/* Possibly defer initialization to selinux_complete_init. */
2929 	if (sbsec->flags & SE_SBINITIALIZED) {
2930 		struct inode_security_struct *isec = selinux_inode(inode);
2931 		isec->sclass = newsclass;
2932 		isec->sid = newsid;
2933 		isec->initialized = LABEL_INITIALIZED;
2934 	}
2935 
2936 	if (!selinux_initialized() ||
2937 	    !(sbsec->flags & SBLABEL_MNT))
2938 		return -EOPNOTSUPP;
2939 
2940 	if (xattr) {
2941 		rc = security_sid_to_context_force(newsid,
2942 						   &context, &clen);
2943 		if (rc)
2944 			return rc;
2945 		xattr->value = context;
2946 		xattr->value_len = clen;
2947 		xattr->name = XATTR_SELINUX_SUFFIX;
2948 	}
2949 
2950 	return 0;
2951 }
2952 
2953 static int selinux_inode_init_security_anon(struct inode *inode,
2954 					    const struct qstr *name,
2955 					    const struct inode *context_inode)
2956 {
2957 	u32 sid = current_sid();
2958 	struct common_audit_data ad;
2959 	struct inode_security_struct *isec;
2960 	int rc;
2961 
2962 	if (unlikely(!selinux_initialized()))
2963 		return 0;
2964 
2965 	isec = selinux_inode(inode);
2966 
2967 	/*
2968 	 * We only get here once per ephemeral inode.  The inode has
2969 	 * been initialized via inode_alloc_security but is otherwise
2970 	 * untouched.
2971 	 */
2972 
2973 	if (context_inode) {
2974 		struct inode_security_struct *context_isec =
2975 			selinux_inode(context_inode);
2976 		if (context_isec->initialized != LABEL_INITIALIZED) {
2977 			pr_err("SELinux:  context_inode is not initialized\n");
2978 			return -EACCES;
2979 		}
2980 
2981 		isec->sclass = context_isec->sclass;
2982 		isec->sid = context_isec->sid;
2983 	} else {
2984 		isec->sclass = SECCLASS_ANON_INODE;
2985 		rc = security_transition_sid(
2986 			sid, sid,
2987 			isec->sclass, name, &isec->sid);
2988 		if (rc)
2989 			return rc;
2990 	}
2991 
2992 	isec->initialized = LABEL_INITIALIZED;
2993 	/*
2994 	 * Now that we've initialized security, check whether we're
2995 	 * allowed to actually create this type of anonymous inode.
2996 	 */
2997 
2998 	ad.type = LSM_AUDIT_DATA_ANONINODE;
2999 	ad.u.anonclass = name ? (const char *)name->name : "?";
3000 
3001 	return avc_has_perm(sid,
3002 			    isec->sid,
3003 			    isec->sclass,
3004 			    FILE__CREATE,
3005 			    &ad);
3006 }
3007 
3008 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3009 {
3010 	return may_create(dir, dentry, SECCLASS_FILE);
3011 }
3012 
3013 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3014 {
3015 	return may_link(dir, old_dentry, MAY_LINK);
3016 }
3017 
3018 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3019 {
3020 	return may_link(dir, dentry, MAY_UNLINK);
3021 }
3022 
3023 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3024 {
3025 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3026 }
3027 
3028 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3029 {
3030 	return may_create(dir, dentry, SECCLASS_DIR);
3031 }
3032 
3033 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3034 {
3035 	return may_link(dir, dentry, MAY_RMDIR);
3036 }
3037 
3038 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3039 {
3040 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3041 }
3042 
3043 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3044 				struct inode *new_inode, struct dentry *new_dentry)
3045 {
3046 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3047 }
3048 
3049 static int selinux_inode_readlink(struct dentry *dentry)
3050 {
3051 	const struct cred *cred = current_cred();
3052 
3053 	return dentry_has_perm(cred, dentry, FILE__READ);
3054 }
3055 
3056 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3057 				     bool rcu)
3058 {
3059 	struct common_audit_data ad;
3060 	struct inode_security_struct *isec;
3061 	u32 sid = current_sid();
3062 
3063 	ad.type = LSM_AUDIT_DATA_DENTRY;
3064 	ad.u.dentry = dentry;
3065 	isec = inode_security_rcu(inode, rcu);
3066 	if (IS_ERR(isec))
3067 		return PTR_ERR(isec);
3068 
3069 	return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad);
3070 }
3071 
3072 static noinline int audit_inode_permission(struct inode *inode,
3073 					   u32 perms, u32 audited, u32 denied,
3074 					   int result)
3075 {
3076 	struct common_audit_data ad;
3077 	struct inode_security_struct *isec = selinux_inode(inode);
3078 
3079 	ad.type = LSM_AUDIT_DATA_INODE;
3080 	ad.u.inode = inode;
3081 
3082 	return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3083 			    audited, denied, result, &ad);
3084 }
3085 
3086 static int selinux_inode_permission(struct inode *inode, int mask)
3087 {
3088 	u32 perms;
3089 	bool from_access;
3090 	bool no_block = mask & MAY_NOT_BLOCK;
3091 	struct inode_security_struct *isec;
3092 	u32 sid = current_sid();
3093 	struct av_decision avd;
3094 	int rc, rc2;
3095 	u32 audited, denied;
3096 
3097 	from_access = mask & MAY_ACCESS;
3098 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3099 
3100 	/* No permission to check.  Existence test. */
3101 	if (!mask)
3102 		return 0;
3103 
3104 	if (unlikely(IS_PRIVATE(inode)))
3105 		return 0;
3106 
3107 	perms = file_mask_to_av(inode->i_mode, mask);
3108 
3109 	isec = inode_security_rcu(inode, no_block);
3110 	if (IS_ERR(isec))
3111 		return PTR_ERR(isec);
3112 
3113 	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0,
3114 				  &avd);
3115 	audited = avc_audit_required(perms, &avd, rc,
3116 				     from_access ? FILE__AUDIT_ACCESS : 0,
3117 				     &denied);
3118 	if (likely(!audited))
3119 		return rc;
3120 
3121 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3122 	if (rc2)
3123 		return rc2;
3124 	return rc;
3125 }
3126 
3127 static int selinux_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3128 				 struct iattr *iattr)
3129 {
3130 	const struct cred *cred = current_cred();
3131 	struct inode *inode = d_backing_inode(dentry);
3132 	unsigned int ia_valid = iattr->ia_valid;
3133 	__u32 av = FILE__WRITE;
3134 
3135 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3136 	if (ia_valid & ATTR_FORCE) {
3137 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3138 			      ATTR_FORCE);
3139 		if (!ia_valid)
3140 			return 0;
3141 	}
3142 
3143 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3144 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3145 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3146 
3147 	if (selinux_policycap_openperm() &&
3148 	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3149 	    (ia_valid & ATTR_SIZE) &&
3150 	    !(ia_valid & ATTR_FILE))
3151 		av |= FILE__OPEN;
3152 
3153 	return dentry_has_perm(cred, dentry, av);
3154 }
3155 
3156 static int selinux_inode_getattr(const struct path *path)
3157 {
3158 	return path_has_perm(current_cred(), path, FILE__GETATTR);
3159 }
3160 
3161 static bool has_cap_mac_admin(bool audit)
3162 {
3163 	const struct cred *cred = current_cred();
3164 	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3165 
3166 	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3167 		return false;
3168 	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3169 		return false;
3170 	return true;
3171 }
3172 
3173 /**
3174  * selinux_inode_xattr_skipcap - Skip the xattr capability checks?
3175  * @name: name of the xattr
3176  *
3177  * Returns 1 to indicate that SELinux "owns" the access control rights to xattrs
3178  * named @name; the LSM layer should avoid enforcing any traditional
3179  * capability based access controls on this xattr.  Returns 0 to indicate that
3180  * SELinux does not "own" the access control rights to xattrs named @name and is
3181  * deferring to the LSM layer for further access controls, including capability
3182  * based controls.
3183  */
3184 static int selinux_inode_xattr_skipcap(const char *name)
3185 {
3186 	/* require capability check if not a selinux xattr */
3187 	return !strcmp(name, XATTR_NAME_SELINUX);
3188 }
3189 
3190 static int selinux_inode_setxattr(struct mnt_idmap *idmap,
3191 				  struct dentry *dentry, const char *name,
3192 				  const void *value, size_t size, int flags)
3193 {
3194 	struct inode *inode = d_backing_inode(dentry);
3195 	struct inode_security_struct *isec;
3196 	struct superblock_security_struct *sbsec;
3197 	struct common_audit_data ad;
3198 	u32 newsid, sid = current_sid();
3199 	int rc = 0;
3200 
3201 	/* if not a selinux xattr, only check the ordinary setattr perm */
3202 	if (strcmp(name, XATTR_NAME_SELINUX))
3203 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3204 
3205 	if (!selinux_initialized())
3206 		return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM);
3207 
3208 	sbsec = selinux_superblock(inode->i_sb);
3209 	if (!(sbsec->flags & SBLABEL_MNT))
3210 		return -EOPNOTSUPP;
3211 
3212 	if (!inode_owner_or_capable(idmap, inode))
3213 		return -EPERM;
3214 
3215 	ad.type = LSM_AUDIT_DATA_DENTRY;
3216 	ad.u.dentry = dentry;
3217 
3218 	isec = backing_inode_security(dentry);
3219 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
3220 			  FILE__RELABELFROM, &ad);
3221 	if (rc)
3222 		return rc;
3223 
3224 	rc = security_context_to_sid(value, size, &newsid,
3225 				     GFP_KERNEL);
3226 	if (rc == -EINVAL) {
3227 		if (!has_cap_mac_admin(true)) {
3228 			struct audit_buffer *ab;
3229 			size_t audit_size;
3230 
3231 			/* We strip a nul only if it is at the end, otherwise the
3232 			 * context contains a nul and we should audit that */
3233 			if (value) {
3234 				const char *str = value;
3235 
3236 				if (str[size - 1] == '\0')
3237 					audit_size = size - 1;
3238 				else
3239 					audit_size = size;
3240 			} else {
3241 				audit_size = 0;
3242 			}
3243 			ab = audit_log_start(audit_context(),
3244 					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3245 			if (!ab)
3246 				return rc;
3247 			audit_log_format(ab, "op=setxattr invalid_context=");
3248 			audit_log_n_untrustedstring(ab, value, audit_size);
3249 			audit_log_end(ab);
3250 
3251 			return rc;
3252 		}
3253 		rc = security_context_to_sid_force(value,
3254 						   size, &newsid);
3255 	}
3256 	if (rc)
3257 		return rc;
3258 
3259 	rc = avc_has_perm(sid, newsid, isec->sclass,
3260 			  FILE__RELABELTO, &ad);
3261 	if (rc)
3262 		return rc;
3263 
3264 	rc = security_validate_transition(isec->sid, newsid,
3265 					  sid, isec->sclass);
3266 	if (rc)
3267 		return rc;
3268 
3269 	return avc_has_perm(newsid,
3270 			    sbsec->sid,
3271 			    SECCLASS_FILESYSTEM,
3272 			    FILESYSTEM__ASSOCIATE,
3273 			    &ad);
3274 }
3275 
3276 static int selinux_inode_set_acl(struct mnt_idmap *idmap,
3277 				 struct dentry *dentry, const char *acl_name,
3278 				 struct posix_acl *kacl)
3279 {
3280 	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3281 }
3282 
3283 static int selinux_inode_get_acl(struct mnt_idmap *idmap,
3284 				 struct dentry *dentry, const char *acl_name)
3285 {
3286 	return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3287 }
3288 
3289 static int selinux_inode_remove_acl(struct mnt_idmap *idmap,
3290 				    struct dentry *dentry, const char *acl_name)
3291 {
3292 	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3293 }
3294 
3295 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3296 					const void *value, size_t size,
3297 					int flags)
3298 {
3299 	struct inode *inode = d_backing_inode(dentry);
3300 	struct inode_security_struct *isec;
3301 	u32 newsid;
3302 	int rc;
3303 
3304 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3305 		/* Not an attribute we recognize, so nothing to do. */
3306 		return;
3307 	}
3308 
3309 	if (!selinux_initialized()) {
3310 		/* If we haven't even been initialized, then we can't validate
3311 		 * against a policy, so leave the label as invalid. It may
3312 		 * resolve to a valid label on the next revalidation try if
3313 		 * we've since initialized.
3314 		 */
3315 		return;
3316 	}
3317 
3318 	rc = security_context_to_sid_force(value, size,
3319 					   &newsid);
3320 	if (rc) {
3321 		pr_err("SELinux:  unable to map context to SID"
3322 		       "for (%s, %lu), rc=%d\n",
3323 		       inode->i_sb->s_id, inode->i_ino, -rc);
3324 		return;
3325 	}
3326 
3327 	isec = backing_inode_security(dentry);
3328 	spin_lock(&isec->lock);
3329 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3330 	isec->sid = newsid;
3331 	isec->initialized = LABEL_INITIALIZED;
3332 	spin_unlock(&isec->lock);
3333 }
3334 
3335 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3336 {
3337 	const struct cred *cred = current_cred();
3338 
3339 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3340 }
3341 
3342 static int selinux_inode_listxattr(struct dentry *dentry)
3343 {
3344 	const struct cred *cred = current_cred();
3345 
3346 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3347 }
3348 
3349 static int selinux_inode_removexattr(struct mnt_idmap *idmap,
3350 				     struct dentry *dentry, const char *name)
3351 {
3352 	/* if not a selinux xattr, only check the ordinary setattr perm */
3353 	if (strcmp(name, XATTR_NAME_SELINUX))
3354 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3355 
3356 	if (!selinux_initialized())
3357 		return 0;
3358 
3359 	/* No one is allowed to remove a SELinux security label.
3360 	   You can change the label, but all data must be labeled. */
3361 	return -EACCES;
3362 }
3363 
3364 static int selinux_path_notify(const struct path *path, u64 mask,
3365 						unsigned int obj_type)
3366 {
3367 	int ret;
3368 	u32 perm;
3369 
3370 	struct common_audit_data ad;
3371 
3372 	ad.type = LSM_AUDIT_DATA_PATH;
3373 	ad.u.path = *path;
3374 
3375 	/*
3376 	 * Set permission needed based on the type of mark being set.
3377 	 * Performs an additional check for sb watches.
3378 	 */
3379 	switch (obj_type) {
3380 	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3381 		perm = FILE__WATCH_MOUNT;
3382 		break;
3383 	case FSNOTIFY_OBJ_TYPE_SB:
3384 		perm = FILE__WATCH_SB;
3385 		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3386 						FILESYSTEM__WATCH, &ad);
3387 		if (ret)
3388 			return ret;
3389 		break;
3390 	case FSNOTIFY_OBJ_TYPE_INODE:
3391 		perm = FILE__WATCH;
3392 		break;
3393 	default:
3394 		return -EINVAL;
3395 	}
3396 
3397 	/* blocking watches require the file:watch_with_perm permission */
3398 	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3399 		perm |= FILE__WATCH_WITH_PERM;
3400 
3401 	/* watches on read-like events need the file:watch_reads permission */
3402 	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3403 		perm |= FILE__WATCH_READS;
3404 
3405 	return path_has_perm(current_cred(), path, perm);
3406 }
3407 
3408 /*
3409  * Copy the inode security context value to the user.
3410  *
3411  * Permission check is handled by selinux_inode_getxattr hook.
3412  */
3413 static int selinux_inode_getsecurity(struct mnt_idmap *idmap,
3414 				     struct inode *inode, const char *name,
3415 				     void **buffer, bool alloc)
3416 {
3417 	u32 size;
3418 	int error;
3419 	char *context = NULL;
3420 	struct inode_security_struct *isec;
3421 
3422 	/*
3423 	 * If we're not initialized yet, then we can't validate contexts, so
3424 	 * just let vfs_getxattr fall back to using the on-disk xattr.
3425 	 */
3426 	if (!selinux_initialized() ||
3427 	    strcmp(name, XATTR_SELINUX_SUFFIX))
3428 		return -EOPNOTSUPP;
3429 
3430 	/*
3431 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3432 	 * value even if it is not defined by current policy; otherwise,
3433 	 * use the in-core value under current policy.
3434 	 * Use the non-auditing forms of the permission checks since
3435 	 * getxattr may be called by unprivileged processes commonly
3436 	 * and lack of permission just means that we fall back to the
3437 	 * in-core context value, not a denial.
3438 	 */
3439 	isec = inode_security(inode);
3440 	if (has_cap_mac_admin(false))
3441 		error = security_sid_to_context_force(isec->sid, &context,
3442 						      &size);
3443 	else
3444 		error = security_sid_to_context(isec->sid,
3445 						&context, &size);
3446 	if (error)
3447 		return error;
3448 	error = size;
3449 	if (alloc) {
3450 		*buffer = context;
3451 		goto out_nofree;
3452 	}
3453 	kfree(context);
3454 out_nofree:
3455 	return error;
3456 }
3457 
3458 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3459 				     const void *value, size_t size, int flags)
3460 {
3461 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3462 	struct superblock_security_struct *sbsec;
3463 	u32 newsid;
3464 	int rc;
3465 
3466 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3467 		return -EOPNOTSUPP;
3468 
3469 	sbsec = selinux_superblock(inode->i_sb);
3470 	if (!(sbsec->flags & SBLABEL_MNT))
3471 		return -EOPNOTSUPP;
3472 
3473 	if (!value || !size)
3474 		return -EACCES;
3475 
3476 	rc = security_context_to_sid(value, size, &newsid,
3477 				     GFP_KERNEL);
3478 	if (rc)
3479 		return rc;
3480 
3481 	spin_lock(&isec->lock);
3482 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3483 	isec->sid = newsid;
3484 	isec->initialized = LABEL_INITIALIZED;
3485 	spin_unlock(&isec->lock);
3486 	return 0;
3487 }
3488 
3489 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3490 {
3491 	const int len = sizeof(XATTR_NAME_SELINUX);
3492 
3493 	if (!selinux_initialized())
3494 		return 0;
3495 
3496 	if (buffer && len <= buffer_size)
3497 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3498 	return len;
3499 }
3500 
3501 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3502 {
3503 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3504 	*secid = isec->sid;
3505 }
3506 
3507 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3508 {
3509 	u32 sid;
3510 	struct task_security_struct *tsec;
3511 	struct cred *new_creds = *new;
3512 
3513 	if (new_creds == NULL) {
3514 		new_creds = prepare_creds();
3515 		if (!new_creds)
3516 			return -ENOMEM;
3517 	}
3518 
3519 	tsec = selinux_cred(new_creds);
3520 	/* Get label from overlay inode and set it in create_sid */
3521 	selinux_inode_getsecid(d_inode(src), &sid);
3522 	tsec->create_sid = sid;
3523 	*new = new_creds;
3524 	return 0;
3525 }
3526 
3527 static int selinux_inode_copy_up_xattr(struct dentry *dentry, const char *name)
3528 {
3529 	/* The copy_up hook above sets the initial context on an inode, but we
3530 	 * don't then want to overwrite it by blindly copying all the lower
3531 	 * xattrs up.  Instead, filter out SELinux-related xattrs following
3532 	 * policy load.
3533 	 */
3534 	if (selinux_initialized() && !strcmp(name, XATTR_NAME_SELINUX))
3535 		return -ECANCELED; /* Discard */
3536 	/*
3537 	 * Any other attribute apart from SELINUX is not claimed, supported
3538 	 * by selinux.
3539 	 */
3540 	return -EOPNOTSUPP;
3541 }
3542 
3543 /* kernfs node operations */
3544 
3545 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3546 					struct kernfs_node *kn)
3547 {
3548 	const struct task_security_struct *tsec = selinux_cred(current_cred());
3549 	u32 parent_sid, newsid, clen;
3550 	int rc;
3551 	char *context;
3552 
3553 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3554 	if (rc == -ENODATA)
3555 		return 0;
3556 	else if (rc < 0)
3557 		return rc;
3558 
3559 	clen = (u32)rc;
3560 	context = kmalloc(clen, GFP_KERNEL);
3561 	if (!context)
3562 		return -ENOMEM;
3563 
3564 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3565 	if (rc < 0) {
3566 		kfree(context);
3567 		return rc;
3568 	}
3569 
3570 	rc = security_context_to_sid(context, clen, &parent_sid,
3571 				     GFP_KERNEL);
3572 	kfree(context);
3573 	if (rc)
3574 		return rc;
3575 
3576 	if (tsec->create_sid) {
3577 		newsid = tsec->create_sid;
3578 	} else {
3579 		u16 secclass = inode_mode_to_security_class(kn->mode);
3580 		struct qstr q;
3581 
3582 		q.name = kn->name;
3583 		q.hash_len = hashlen_string(kn_dir, kn->name);
3584 
3585 		rc = security_transition_sid(tsec->sid,
3586 					     parent_sid, secclass, &q,
3587 					     &newsid);
3588 		if (rc)
3589 			return rc;
3590 	}
3591 
3592 	rc = security_sid_to_context_force(newsid,
3593 					   &context, &clen);
3594 	if (rc)
3595 		return rc;
3596 
3597 	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3598 			      XATTR_CREATE);
3599 	kfree(context);
3600 	return rc;
3601 }
3602 
3603 
3604 /* file security operations */
3605 
3606 static int selinux_revalidate_file_permission(struct file *file, int mask)
3607 {
3608 	const struct cred *cred = current_cred();
3609 	struct inode *inode = file_inode(file);
3610 
3611 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3612 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3613 		mask |= MAY_APPEND;
3614 
3615 	return file_has_perm(cred, file,
3616 			     file_mask_to_av(inode->i_mode, mask));
3617 }
3618 
3619 static int selinux_file_permission(struct file *file, int mask)
3620 {
3621 	struct inode *inode = file_inode(file);
3622 	struct file_security_struct *fsec = selinux_file(file);
3623 	struct inode_security_struct *isec;
3624 	u32 sid = current_sid();
3625 
3626 	if (!mask)
3627 		/* No permission to check.  Existence test. */
3628 		return 0;
3629 
3630 	isec = inode_security(inode);
3631 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3632 	    fsec->pseqno == avc_policy_seqno())
3633 		/* No change since file_open check. */
3634 		return 0;
3635 
3636 	return selinux_revalidate_file_permission(file, mask);
3637 }
3638 
3639 static int selinux_file_alloc_security(struct file *file)
3640 {
3641 	struct file_security_struct *fsec = selinux_file(file);
3642 	u32 sid = current_sid();
3643 
3644 	fsec->sid = sid;
3645 	fsec->fown_sid = sid;
3646 
3647 	return 0;
3648 }
3649 
3650 /*
3651  * Check whether a task has the ioctl permission and cmd
3652  * operation to an inode.
3653  */
3654 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3655 		u32 requested, u16 cmd)
3656 {
3657 	struct common_audit_data ad;
3658 	struct file_security_struct *fsec = selinux_file(file);
3659 	struct inode *inode = file_inode(file);
3660 	struct inode_security_struct *isec;
3661 	struct lsm_ioctlop_audit ioctl;
3662 	u32 ssid = cred_sid(cred);
3663 	int rc;
3664 	u8 driver = cmd >> 8;
3665 	u8 xperm = cmd & 0xff;
3666 
3667 	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3668 	ad.u.op = &ioctl;
3669 	ad.u.op->cmd = cmd;
3670 	ad.u.op->path = file->f_path;
3671 
3672 	if (ssid != fsec->sid) {
3673 		rc = avc_has_perm(ssid, fsec->sid,
3674 				SECCLASS_FD,
3675 				FD__USE,
3676 				&ad);
3677 		if (rc)
3678 			goto out;
3679 	}
3680 
3681 	if (unlikely(IS_PRIVATE(inode)))
3682 		return 0;
3683 
3684 	isec = inode_security(inode);
3685 	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3686 				    requested, driver, xperm, &ad);
3687 out:
3688 	return rc;
3689 }
3690 
3691 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3692 			      unsigned long arg)
3693 {
3694 	const struct cred *cred = current_cred();
3695 	int error = 0;
3696 
3697 	switch (cmd) {
3698 	case FIONREAD:
3699 	case FIBMAP:
3700 	case FIGETBSZ:
3701 	case FS_IOC_GETFLAGS:
3702 	case FS_IOC_GETVERSION:
3703 		error = file_has_perm(cred, file, FILE__GETATTR);
3704 		break;
3705 
3706 	case FS_IOC_SETFLAGS:
3707 	case FS_IOC_SETVERSION:
3708 		error = file_has_perm(cred, file, FILE__SETATTR);
3709 		break;
3710 
3711 	/* sys_ioctl() checks */
3712 	case FIONBIO:
3713 	case FIOASYNC:
3714 		error = file_has_perm(cred, file, 0);
3715 		break;
3716 
3717 	case KDSKBENT:
3718 	case KDSKBSENT:
3719 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3720 					    CAP_OPT_NONE, true);
3721 		break;
3722 
3723 	case FIOCLEX:
3724 	case FIONCLEX:
3725 		if (!selinux_policycap_ioctl_skip_cloexec())
3726 			error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3727 		break;
3728 
3729 	/* default case assumes that the command will go
3730 	 * to the file's ioctl() function.
3731 	 */
3732 	default:
3733 		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3734 	}
3735 	return error;
3736 }
3737 
3738 static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd,
3739 			      unsigned long arg)
3740 {
3741 	/*
3742 	 * If we are in a 64-bit kernel running 32-bit userspace, we need to
3743 	 * make sure we don't compare 32-bit flags to 64-bit flags.
3744 	 */
3745 	switch (cmd) {
3746 	case FS_IOC32_GETFLAGS:
3747 		cmd = FS_IOC_GETFLAGS;
3748 		break;
3749 	case FS_IOC32_SETFLAGS:
3750 		cmd = FS_IOC_SETFLAGS;
3751 		break;
3752 	case FS_IOC32_GETVERSION:
3753 		cmd = FS_IOC_GETVERSION;
3754 		break;
3755 	case FS_IOC32_SETVERSION:
3756 		cmd = FS_IOC_SETVERSION;
3757 		break;
3758 	default:
3759 		break;
3760 	}
3761 
3762 	return selinux_file_ioctl(file, cmd, arg);
3763 }
3764 
3765 static int default_noexec __ro_after_init;
3766 
3767 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3768 {
3769 	const struct cred *cred = current_cred();
3770 	u32 sid = cred_sid(cred);
3771 	int rc = 0;
3772 
3773 	if (default_noexec &&
3774 	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3775 				   (!shared && (prot & PROT_WRITE)))) {
3776 		/*
3777 		 * We are making executable an anonymous mapping or a
3778 		 * private file mapping that will also be writable.
3779 		 * This has an additional check.
3780 		 */
3781 		rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3782 				  PROCESS__EXECMEM, NULL);
3783 		if (rc)
3784 			goto error;
3785 	}
3786 
3787 	if (file) {
3788 		/* read access is always possible with a mapping */
3789 		u32 av = FILE__READ;
3790 
3791 		/* write access only matters if the mapping is shared */
3792 		if (shared && (prot & PROT_WRITE))
3793 			av |= FILE__WRITE;
3794 
3795 		if (prot & PROT_EXEC)
3796 			av |= FILE__EXECUTE;
3797 
3798 		return file_has_perm(cred, file, av);
3799 	}
3800 
3801 error:
3802 	return rc;
3803 }
3804 
3805 static int selinux_mmap_addr(unsigned long addr)
3806 {
3807 	int rc = 0;
3808 
3809 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3810 		u32 sid = current_sid();
3811 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3812 				  MEMPROTECT__MMAP_ZERO, NULL);
3813 	}
3814 
3815 	return rc;
3816 }
3817 
3818 static int selinux_mmap_file(struct file *file,
3819 			     unsigned long reqprot __always_unused,
3820 			     unsigned long prot, unsigned long flags)
3821 {
3822 	struct common_audit_data ad;
3823 	int rc;
3824 
3825 	if (file) {
3826 		ad.type = LSM_AUDIT_DATA_FILE;
3827 		ad.u.file = file;
3828 		rc = inode_has_perm(current_cred(), file_inode(file),
3829 				    FILE__MAP, &ad);
3830 		if (rc)
3831 			return rc;
3832 	}
3833 
3834 	return file_map_prot_check(file, prot,
3835 				   (flags & MAP_TYPE) == MAP_SHARED);
3836 }
3837 
3838 static int selinux_file_mprotect(struct vm_area_struct *vma,
3839 				 unsigned long reqprot __always_unused,
3840 				 unsigned long prot)
3841 {
3842 	const struct cred *cred = current_cred();
3843 	u32 sid = cred_sid(cred);
3844 
3845 	if (default_noexec &&
3846 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3847 		int rc = 0;
3848 		if (vma_is_initial_heap(vma)) {
3849 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3850 					  PROCESS__EXECHEAP, NULL);
3851 		} else if (!vma->vm_file && (vma_is_initial_stack(vma) ||
3852 			    vma_is_stack_for_current(vma))) {
3853 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3854 					  PROCESS__EXECSTACK, NULL);
3855 		} else if (vma->vm_file && vma->anon_vma) {
3856 			/*
3857 			 * We are making executable a file mapping that has
3858 			 * had some COW done. Since pages might have been
3859 			 * written, check ability to execute the possibly
3860 			 * modified content.  This typically should only
3861 			 * occur for text relocations.
3862 			 */
3863 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3864 		}
3865 		if (rc)
3866 			return rc;
3867 	}
3868 
3869 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3870 }
3871 
3872 static int selinux_file_lock(struct file *file, unsigned int cmd)
3873 {
3874 	const struct cred *cred = current_cred();
3875 
3876 	return file_has_perm(cred, file, FILE__LOCK);
3877 }
3878 
3879 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3880 			      unsigned long arg)
3881 {
3882 	const struct cred *cred = current_cred();
3883 	int err = 0;
3884 
3885 	switch (cmd) {
3886 	case F_SETFL:
3887 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3888 			err = file_has_perm(cred, file, FILE__WRITE);
3889 			break;
3890 		}
3891 		fallthrough;
3892 	case F_SETOWN:
3893 	case F_SETSIG:
3894 	case F_GETFL:
3895 	case F_GETOWN:
3896 	case F_GETSIG:
3897 	case F_GETOWNER_UIDS:
3898 		/* Just check FD__USE permission */
3899 		err = file_has_perm(cred, file, 0);
3900 		break;
3901 	case F_GETLK:
3902 	case F_SETLK:
3903 	case F_SETLKW:
3904 	case F_OFD_GETLK:
3905 	case F_OFD_SETLK:
3906 	case F_OFD_SETLKW:
3907 #if BITS_PER_LONG == 32
3908 	case F_GETLK64:
3909 	case F_SETLK64:
3910 	case F_SETLKW64:
3911 #endif
3912 		err = file_has_perm(cred, file, FILE__LOCK);
3913 		break;
3914 	}
3915 
3916 	return err;
3917 }
3918 
3919 static void selinux_file_set_fowner(struct file *file)
3920 {
3921 	struct file_security_struct *fsec;
3922 
3923 	fsec = selinux_file(file);
3924 	fsec->fown_sid = current_sid();
3925 }
3926 
3927 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3928 				       struct fown_struct *fown, int signum)
3929 {
3930 	struct file *file;
3931 	u32 sid = task_sid_obj(tsk);
3932 	u32 perm;
3933 	struct file_security_struct *fsec;
3934 
3935 	/* struct fown_struct is never outside the context of a struct file */
3936 	file = container_of(fown, struct file, f_owner);
3937 
3938 	fsec = selinux_file(file);
3939 
3940 	if (!signum)
3941 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3942 	else
3943 		perm = signal_to_av(signum);
3944 
3945 	return avc_has_perm(fsec->fown_sid, sid,
3946 			    SECCLASS_PROCESS, perm, NULL);
3947 }
3948 
3949 static int selinux_file_receive(struct file *file)
3950 {
3951 	const struct cred *cred = current_cred();
3952 
3953 	return file_has_perm(cred, file, file_to_av(file));
3954 }
3955 
3956 static int selinux_file_open(struct file *file)
3957 {
3958 	struct file_security_struct *fsec;
3959 	struct inode_security_struct *isec;
3960 
3961 	fsec = selinux_file(file);
3962 	isec = inode_security(file_inode(file));
3963 	/*
3964 	 * Save inode label and policy sequence number
3965 	 * at open-time so that selinux_file_permission
3966 	 * can determine whether revalidation is necessary.
3967 	 * Task label is already saved in the file security
3968 	 * struct as its SID.
3969 	 */
3970 	fsec->isid = isec->sid;
3971 	fsec->pseqno = avc_policy_seqno();
3972 	/*
3973 	 * Since the inode label or policy seqno may have changed
3974 	 * between the selinux_inode_permission check and the saving
3975 	 * of state above, recheck that access is still permitted.
3976 	 * Otherwise, access might never be revalidated against the
3977 	 * new inode label or new policy.
3978 	 * This check is not redundant - do not remove.
3979 	 */
3980 	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3981 }
3982 
3983 /* task security operations */
3984 
3985 static int selinux_task_alloc(struct task_struct *task,
3986 			      unsigned long clone_flags)
3987 {
3988 	u32 sid = current_sid();
3989 
3990 	return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3991 }
3992 
3993 /*
3994  * prepare a new set of credentials for modification
3995  */
3996 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3997 				gfp_t gfp)
3998 {
3999 	const struct task_security_struct *old_tsec = selinux_cred(old);
4000 	struct task_security_struct *tsec = selinux_cred(new);
4001 
4002 	*tsec = *old_tsec;
4003 	return 0;
4004 }
4005 
4006 /*
4007  * transfer the SELinux data to a blank set of creds
4008  */
4009 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4010 {
4011 	const struct task_security_struct *old_tsec = selinux_cred(old);
4012 	struct task_security_struct *tsec = selinux_cred(new);
4013 
4014 	*tsec = *old_tsec;
4015 }
4016 
4017 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4018 {
4019 	*secid = cred_sid(c);
4020 }
4021 
4022 /*
4023  * set the security data for a kernel service
4024  * - all the creation contexts are set to unlabelled
4025  */
4026 static int selinux_kernel_act_as(struct cred *new, u32 secid)
4027 {
4028 	struct task_security_struct *tsec = selinux_cred(new);
4029 	u32 sid = current_sid();
4030 	int ret;
4031 
4032 	ret = avc_has_perm(sid, secid,
4033 			   SECCLASS_KERNEL_SERVICE,
4034 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
4035 			   NULL);
4036 	if (ret == 0) {
4037 		tsec->sid = secid;
4038 		tsec->create_sid = 0;
4039 		tsec->keycreate_sid = 0;
4040 		tsec->sockcreate_sid = 0;
4041 	}
4042 	return ret;
4043 }
4044 
4045 /*
4046  * set the file creation context in a security record to the same as the
4047  * objective context of the specified inode
4048  */
4049 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4050 {
4051 	struct inode_security_struct *isec = inode_security(inode);
4052 	struct task_security_struct *tsec = selinux_cred(new);
4053 	u32 sid = current_sid();
4054 	int ret;
4055 
4056 	ret = avc_has_perm(sid, isec->sid,
4057 			   SECCLASS_KERNEL_SERVICE,
4058 			   KERNEL_SERVICE__CREATE_FILES_AS,
4059 			   NULL);
4060 
4061 	if (ret == 0)
4062 		tsec->create_sid = isec->sid;
4063 	return ret;
4064 }
4065 
4066 static int selinux_kernel_module_request(char *kmod_name)
4067 {
4068 	struct common_audit_data ad;
4069 
4070 	ad.type = LSM_AUDIT_DATA_KMOD;
4071 	ad.u.kmod_name = kmod_name;
4072 
4073 	return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4074 			    SYSTEM__MODULE_REQUEST, &ad);
4075 }
4076 
4077 static int selinux_kernel_module_from_file(struct file *file)
4078 {
4079 	struct common_audit_data ad;
4080 	struct inode_security_struct *isec;
4081 	struct file_security_struct *fsec;
4082 	u32 sid = current_sid();
4083 	int rc;
4084 
4085 	/* init_module */
4086 	if (file == NULL)
4087 		return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
4088 					SYSTEM__MODULE_LOAD, NULL);
4089 
4090 	/* finit_module */
4091 
4092 	ad.type = LSM_AUDIT_DATA_FILE;
4093 	ad.u.file = file;
4094 
4095 	fsec = selinux_file(file);
4096 	if (sid != fsec->sid) {
4097 		rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4098 		if (rc)
4099 			return rc;
4100 	}
4101 
4102 	isec = inode_security(file_inode(file));
4103 	return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
4104 				SYSTEM__MODULE_LOAD, &ad);
4105 }
4106 
4107 static int selinux_kernel_read_file(struct file *file,
4108 				    enum kernel_read_file_id id,
4109 				    bool contents)
4110 {
4111 	int rc = 0;
4112 
4113 	switch (id) {
4114 	case READING_MODULE:
4115 		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4116 		break;
4117 	default:
4118 		break;
4119 	}
4120 
4121 	return rc;
4122 }
4123 
4124 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4125 {
4126 	int rc = 0;
4127 
4128 	switch (id) {
4129 	case LOADING_MODULE:
4130 		rc = selinux_kernel_module_from_file(NULL);
4131 		break;
4132 	default:
4133 		break;
4134 	}
4135 
4136 	return rc;
4137 }
4138 
4139 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4140 {
4141 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4142 			    PROCESS__SETPGID, NULL);
4143 }
4144 
4145 static int selinux_task_getpgid(struct task_struct *p)
4146 {
4147 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4148 			    PROCESS__GETPGID, NULL);
4149 }
4150 
4151 static int selinux_task_getsid(struct task_struct *p)
4152 {
4153 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4154 			    PROCESS__GETSESSION, NULL);
4155 }
4156 
4157 static void selinux_current_getsecid_subj(u32 *secid)
4158 {
4159 	*secid = current_sid();
4160 }
4161 
4162 static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4163 {
4164 	*secid = task_sid_obj(p);
4165 }
4166 
4167 static int selinux_task_setnice(struct task_struct *p, int nice)
4168 {
4169 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4170 			    PROCESS__SETSCHED, NULL);
4171 }
4172 
4173 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4174 {
4175 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4176 			    PROCESS__SETSCHED, NULL);
4177 }
4178 
4179 static int selinux_task_getioprio(struct task_struct *p)
4180 {
4181 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4182 			    PROCESS__GETSCHED, NULL);
4183 }
4184 
4185 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4186 				unsigned int flags)
4187 {
4188 	u32 av = 0;
4189 
4190 	if (!flags)
4191 		return 0;
4192 	if (flags & LSM_PRLIMIT_WRITE)
4193 		av |= PROCESS__SETRLIMIT;
4194 	if (flags & LSM_PRLIMIT_READ)
4195 		av |= PROCESS__GETRLIMIT;
4196 	return avc_has_perm(cred_sid(cred), cred_sid(tcred),
4197 			    SECCLASS_PROCESS, av, NULL);
4198 }
4199 
4200 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4201 		struct rlimit *new_rlim)
4202 {
4203 	struct rlimit *old_rlim = p->signal->rlim + resource;
4204 
4205 	/* Control the ability to change the hard limit (whether
4206 	   lowering or raising it), so that the hard limit can
4207 	   later be used as a safe reset point for the soft limit
4208 	   upon context transitions.  See selinux_bprm_committing_creds. */
4209 	if (old_rlim->rlim_max != new_rlim->rlim_max)
4210 		return avc_has_perm(current_sid(), task_sid_obj(p),
4211 				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4212 
4213 	return 0;
4214 }
4215 
4216 static int selinux_task_setscheduler(struct task_struct *p)
4217 {
4218 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4219 			    PROCESS__SETSCHED, NULL);
4220 }
4221 
4222 static int selinux_task_getscheduler(struct task_struct *p)
4223 {
4224 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4225 			    PROCESS__GETSCHED, NULL);
4226 }
4227 
4228 static int selinux_task_movememory(struct task_struct *p)
4229 {
4230 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4231 			    PROCESS__SETSCHED, NULL);
4232 }
4233 
4234 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4235 				int sig, const struct cred *cred)
4236 {
4237 	u32 secid;
4238 	u32 perm;
4239 
4240 	if (!sig)
4241 		perm = PROCESS__SIGNULL; /* null signal; existence test */
4242 	else
4243 		perm = signal_to_av(sig);
4244 	if (!cred)
4245 		secid = current_sid();
4246 	else
4247 		secid = cred_sid(cred);
4248 	return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4249 }
4250 
4251 static void selinux_task_to_inode(struct task_struct *p,
4252 				  struct inode *inode)
4253 {
4254 	struct inode_security_struct *isec = selinux_inode(inode);
4255 	u32 sid = task_sid_obj(p);
4256 
4257 	spin_lock(&isec->lock);
4258 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4259 	isec->sid = sid;
4260 	isec->initialized = LABEL_INITIALIZED;
4261 	spin_unlock(&isec->lock);
4262 }
4263 
4264 static int selinux_userns_create(const struct cred *cred)
4265 {
4266 	u32 sid = current_sid();
4267 
4268 	return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE,
4269 			USER_NAMESPACE__CREATE, NULL);
4270 }
4271 
4272 /* Returns error only if unable to parse addresses */
4273 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4274 			struct common_audit_data *ad, u8 *proto)
4275 {
4276 	int offset, ihlen, ret = -EINVAL;
4277 	struct iphdr _iph, *ih;
4278 
4279 	offset = skb_network_offset(skb);
4280 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4281 	if (ih == NULL)
4282 		goto out;
4283 
4284 	ihlen = ih->ihl * 4;
4285 	if (ihlen < sizeof(_iph))
4286 		goto out;
4287 
4288 	ad->u.net->v4info.saddr = ih->saddr;
4289 	ad->u.net->v4info.daddr = ih->daddr;
4290 	ret = 0;
4291 
4292 	if (proto)
4293 		*proto = ih->protocol;
4294 
4295 	switch (ih->protocol) {
4296 	case IPPROTO_TCP: {
4297 		struct tcphdr _tcph, *th;
4298 
4299 		if (ntohs(ih->frag_off) & IP_OFFSET)
4300 			break;
4301 
4302 		offset += ihlen;
4303 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4304 		if (th == NULL)
4305 			break;
4306 
4307 		ad->u.net->sport = th->source;
4308 		ad->u.net->dport = th->dest;
4309 		break;
4310 	}
4311 
4312 	case IPPROTO_UDP: {
4313 		struct udphdr _udph, *uh;
4314 
4315 		if (ntohs(ih->frag_off) & IP_OFFSET)
4316 			break;
4317 
4318 		offset += ihlen;
4319 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4320 		if (uh == NULL)
4321 			break;
4322 
4323 		ad->u.net->sport = uh->source;
4324 		ad->u.net->dport = uh->dest;
4325 		break;
4326 	}
4327 
4328 	case IPPROTO_DCCP: {
4329 		struct dccp_hdr _dccph, *dh;
4330 
4331 		if (ntohs(ih->frag_off) & IP_OFFSET)
4332 			break;
4333 
4334 		offset += ihlen;
4335 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4336 		if (dh == NULL)
4337 			break;
4338 
4339 		ad->u.net->sport = dh->dccph_sport;
4340 		ad->u.net->dport = dh->dccph_dport;
4341 		break;
4342 	}
4343 
4344 #if IS_ENABLED(CONFIG_IP_SCTP)
4345 	case IPPROTO_SCTP: {
4346 		struct sctphdr _sctph, *sh;
4347 
4348 		if (ntohs(ih->frag_off) & IP_OFFSET)
4349 			break;
4350 
4351 		offset += ihlen;
4352 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4353 		if (sh == NULL)
4354 			break;
4355 
4356 		ad->u.net->sport = sh->source;
4357 		ad->u.net->dport = sh->dest;
4358 		break;
4359 	}
4360 #endif
4361 	default:
4362 		break;
4363 	}
4364 out:
4365 	return ret;
4366 }
4367 
4368 #if IS_ENABLED(CONFIG_IPV6)
4369 
4370 /* Returns error only if unable to parse addresses */
4371 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4372 			struct common_audit_data *ad, u8 *proto)
4373 {
4374 	u8 nexthdr;
4375 	int ret = -EINVAL, offset;
4376 	struct ipv6hdr _ipv6h, *ip6;
4377 	__be16 frag_off;
4378 
4379 	offset = skb_network_offset(skb);
4380 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4381 	if (ip6 == NULL)
4382 		goto out;
4383 
4384 	ad->u.net->v6info.saddr = ip6->saddr;
4385 	ad->u.net->v6info.daddr = ip6->daddr;
4386 	ret = 0;
4387 
4388 	nexthdr = ip6->nexthdr;
4389 	offset += sizeof(_ipv6h);
4390 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4391 	if (offset < 0)
4392 		goto out;
4393 
4394 	if (proto)
4395 		*proto = nexthdr;
4396 
4397 	switch (nexthdr) {
4398 	case IPPROTO_TCP: {
4399 		struct tcphdr _tcph, *th;
4400 
4401 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4402 		if (th == NULL)
4403 			break;
4404 
4405 		ad->u.net->sport = th->source;
4406 		ad->u.net->dport = th->dest;
4407 		break;
4408 	}
4409 
4410 	case IPPROTO_UDP: {
4411 		struct udphdr _udph, *uh;
4412 
4413 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4414 		if (uh == NULL)
4415 			break;
4416 
4417 		ad->u.net->sport = uh->source;
4418 		ad->u.net->dport = uh->dest;
4419 		break;
4420 	}
4421 
4422 	case IPPROTO_DCCP: {
4423 		struct dccp_hdr _dccph, *dh;
4424 
4425 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4426 		if (dh == NULL)
4427 			break;
4428 
4429 		ad->u.net->sport = dh->dccph_sport;
4430 		ad->u.net->dport = dh->dccph_dport;
4431 		break;
4432 	}
4433 
4434 #if IS_ENABLED(CONFIG_IP_SCTP)
4435 	case IPPROTO_SCTP: {
4436 		struct sctphdr _sctph, *sh;
4437 
4438 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4439 		if (sh == NULL)
4440 			break;
4441 
4442 		ad->u.net->sport = sh->source;
4443 		ad->u.net->dport = sh->dest;
4444 		break;
4445 	}
4446 #endif
4447 	/* includes fragments */
4448 	default:
4449 		break;
4450 	}
4451 out:
4452 	return ret;
4453 }
4454 
4455 #endif /* IPV6 */
4456 
4457 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4458 			     char **_addrp, int src, u8 *proto)
4459 {
4460 	char *addrp;
4461 	int ret;
4462 
4463 	switch (ad->u.net->family) {
4464 	case PF_INET:
4465 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4466 		if (ret)
4467 			goto parse_error;
4468 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4469 				       &ad->u.net->v4info.daddr);
4470 		goto okay;
4471 
4472 #if IS_ENABLED(CONFIG_IPV6)
4473 	case PF_INET6:
4474 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4475 		if (ret)
4476 			goto parse_error;
4477 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4478 				       &ad->u.net->v6info.daddr);
4479 		goto okay;
4480 #endif	/* IPV6 */
4481 	default:
4482 		addrp = NULL;
4483 		goto okay;
4484 	}
4485 
4486 parse_error:
4487 	pr_warn(
4488 	       "SELinux: failure in selinux_parse_skb(),"
4489 	       " unable to parse packet\n");
4490 	return ret;
4491 
4492 okay:
4493 	if (_addrp)
4494 		*_addrp = addrp;
4495 	return 0;
4496 }
4497 
4498 /**
4499  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4500  * @skb: the packet
4501  * @family: protocol family
4502  * @sid: the packet's peer label SID
4503  *
4504  * Description:
4505  * Check the various different forms of network peer labeling and determine
4506  * the peer label/SID for the packet; most of the magic actually occurs in
4507  * the security server function security_net_peersid_cmp().  The function
4508  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4509  * or -EACCES if @sid is invalid due to inconsistencies with the different
4510  * peer labels.
4511  *
4512  */
4513 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4514 {
4515 	int err;
4516 	u32 xfrm_sid;
4517 	u32 nlbl_sid;
4518 	u32 nlbl_type;
4519 
4520 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4521 	if (unlikely(err))
4522 		return -EACCES;
4523 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4524 	if (unlikely(err))
4525 		return -EACCES;
4526 
4527 	err = security_net_peersid_resolve(nlbl_sid,
4528 					   nlbl_type, xfrm_sid, sid);
4529 	if (unlikely(err)) {
4530 		pr_warn(
4531 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4532 		       " unable to determine packet's peer label\n");
4533 		return -EACCES;
4534 	}
4535 
4536 	return 0;
4537 }
4538 
4539 /**
4540  * selinux_conn_sid - Determine the child socket label for a connection
4541  * @sk_sid: the parent socket's SID
4542  * @skb_sid: the packet's SID
4543  * @conn_sid: the resulting connection SID
4544  *
4545  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4546  * combined with the MLS information from @skb_sid in order to create
4547  * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4548  * of @sk_sid.  Returns zero on success, negative values on failure.
4549  *
4550  */
4551 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4552 {
4553 	int err = 0;
4554 
4555 	if (skb_sid != SECSID_NULL)
4556 		err = security_sid_mls_copy(sk_sid, skb_sid,
4557 					    conn_sid);
4558 	else
4559 		*conn_sid = sk_sid;
4560 
4561 	return err;
4562 }
4563 
4564 /* socket security operations */
4565 
4566 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4567 				 u16 secclass, u32 *socksid)
4568 {
4569 	if (tsec->sockcreate_sid > SECSID_NULL) {
4570 		*socksid = tsec->sockcreate_sid;
4571 		return 0;
4572 	}
4573 
4574 	return security_transition_sid(tsec->sid, tsec->sid,
4575 				       secclass, NULL, socksid);
4576 }
4577 
4578 static int sock_has_perm(struct sock *sk, u32 perms)
4579 {
4580 	struct sk_security_struct *sksec = selinux_sock(sk);
4581 	struct common_audit_data ad;
4582 	struct lsm_network_audit net;
4583 
4584 	if (sksec->sid == SECINITSID_KERNEL)
4585 		return 0;
4586 
4587 	/*
4588 	 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that
4589 	 * inherited the kernel context from early boot used to be skipped
4590 	 * here, so preserve that behavior unless the capability is set.
4591 	 *
4592 	 * By setting the capability the policy signals that it is ready
4593 	 * for this quirk to be fixed. Note that sockets created by a kernel
4594 	 * thread or a usermode helper executed without a transition will
4595 	 * still be skipped in this check regardless of the policycap
4596 	 * setting.
4597 	 */
4598 	if (!selinux_policycap_userspace_initial_context() &&
4599 	    sksec->sid == SECINITSID_INIT)
4600 		return 0;
4601 
4602 	ad_net_init_from_sk(&ad, &net, sk);
4603 
4604 	return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
4605 			    &ad);
4606 }
4607 
4608 static int selinux_socket_create(int family, int type,
4609 				 int protocol, int kern)
4610 {
4611 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4612 	u32 newsid;
4613 	u16 secclass;
4614 	int rc;
4615 
4616 	if (kern)
4617 		return 0;
4618 
4619 	secclass = socket_type_to_security_class(family, type, protocol);
4620 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4621 	if (rc)
4622 		return rc;
4623 
4624 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4625 }
4626 
4627 static int selinux_socket_post_create(struct socket *sock, int family,
4628 				      int type, int protocol, int kern)
4629 {
4630 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4631 	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4632 	struct sk_security_struct *sksec;
4633 	u16 sclass = socket_type_to_security_class(family, type, protocol);
4634 	u32 sid = SECINITSID_KERNEL;
4635 	int err = 0;
4636 
4637 	if (!kern) {
4638 		err = socket_sockcreate_sid(tsec, sclass, &sid);
4639 		if (err)
4640 			return err;
4641 	}
4642 
4643 	isec->sclass = sclass;
4644 	isec->sid = sid;
4645 	isec->initialized = LABEL_INITIALIZED;
4646 
4647 	if (sock->sk) {
4648 		sksec = selinux_sock(sock->sk);
4649 		sksec->sclass = sclass;
4650 		sksec->sid = sid;
4651 		/* Allows detection of the first association on this socket */
4652 		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4653 			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4654 
4655 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4656 	}
4657 
4658 	return err;
4659 }
4660 
4661 static int selinux_socket_socketpair(struct socket *socka,
4662 				     struct socket *sockb)
4663 {
4664 	struct sk_security_struct *sksec_a = selinux_sock(socka->sk);
4665 	struct sk_security_struct *sksec_b = selinux_sock(sockb->sk);
4666 
4667 	sksec_a->peer_sid = sksec_b->sid;
4668 	sksec_b->peer_sid = sksec_a->sid;
4669 
4670 	return 0;
4671 }
4672 
4673 /* Range of port numbers used to automatically bind.
4674    Need to determine whether we should perform a name_bind
4675    permission check between the socket and the port number. */
4676 
4677 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4678 {
4679 	struct sock *sk = sock->sk;
4680 	struct sk_security_struct *sksec = selinux_sock(sk);
4681 	u16 family;
4682 	int err;
4683 
4684 	err = sock_has_perm(sk, SOCKET__BIND);
4685 	if (err)
4686 		goto out;
4687 
4688 	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4689 	family = sk->sk_family;
4690 	if (family == PF_INET || family == PF_INET6) {
4691 		char *addrp;
4692 		struct common_audit_data ad;
4693 		struct lsm_network_audit net = {0,};
4694 		struct sockaddr_in *addr4 = NULL;
4695 		struct sockaddr_in6 *addr6 = NULL;
4696 		u16 family_sa;
4697 		unsigned short snum;
4698 		u32 sid, node_perm;
4699 
4700 		/*
4701 		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4702 		 * that validates multiple binding addresses. Because of this
4703 		 * need to check address->sa_family as it is possible to have
4704 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4705 		 */
4706 		if (addrlen < offsetofend(struct sockaddr, sa_family))
4707 			return -EINVAL;
4708 		family_sa = address->sa_family;
4709 		switch (family_sa) {
4710 		case AF_UNSPEC:
4711 		case AF_INET:
4712 			if (addrlen < sizeof(struct sockaddr_in))
4713 				return -EINVAL;
4714 			addr4 = (struct sockaddr_in *)address;
4715 			if (family_sa == AF_UNSPEC) {
4716 				if (family == PF_INET6) {
4717 					/* Length check from inet6_bind_sk() */
4718 					if (addrlen < SIN6_LEN_RFC2133)
4719 						return -EINVAL;
4720 					/* Family check from __inet6_bind() */
4721 					goto err_af;
4722 				}
4723 				/* see __inet_bind(), we only want to allow
4724 				 * AF_UNSPEC if the address is INADDR_ANY
4725 				 */
4726 				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4727 					goto err_af;
4728 				family_sa = AF_INET;
4729 			}
4730 			snum = ntohs(addr4->sin_port);
4731 			addrp = (char *)&addr4->sin_addr.s_addr;
4732 			break;
4733 		case AF_INET6:
4734 			if (addrlen < SIN6_LEN_RFC2133)
4735 				return -EINVAL;
4736 			addr6 = (struct sockaddr_in6 *)address;
4737 			snum = ntohs(addr6->sin6_port);
4738 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4739 			break;
4740 		default:
4741 			goto err_af;
4742 		}
4743 
4744 		ad.type = LSM_AUDIT_DATA_NET;
4745 		ad.u.net = &net;
4746 		ad.u.net->sport = htons(snum);
4747 		ad.u.net->family = family_sa;
4748 
4749 		if (snum) {
4750 			int low, high;
4751 
4752 			inet_get_local_port_range(sock_net(sk), &low, &high);
4753 
4754 			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4755 			    snum < low || snum > high) {
4756 				err = sel_netport_sid(sk->sk_protocol,
4757 						      snum, &sid);
4758 				if (err)
4759 					goto out;
4760 				err = avc_has_perm(sksec->sid, sid,
4761 						   sksec->sclass,
4762 						   SOCKET__NAME_BIND, &ad);
4763 				if (err)
4764 					goto out;
4765 			}
4766 		}
4767 
4768 		switch (sksec->sclass) {
4769 		case SECCLASS_TCP_SOCKET:
4770 			node_perm = TCP_SOCKET__NODE_BIND;
4771 			break;
4772 
4773 		case SECCLASS_UDP_SOCKET:
4774 			node_perm = UDP_SOCKET__NODE_BIND;
4775 			break;
4776 
4777 		case SECCLASS_DCCP_SOCKET:
4778 			node_perm = DCCP_SOCKET__NODE_BIND;
4779 			break;
4780 
4781 		case SECCLASS_SCTP_SOCKET:
4782 			node_perm = SCTP_SOCKET__NODE_BIND;
4783 			break;
4784 
4785 		default:
4786 			node_perm = RAWIP_SOCKET__NODE_BIND;
4787 			break;
4788 		}
4789 
4790 		err = sel_netnode_sid(addrp, family_sa, &sid);
4791 		if (err)
4792 			goto out;
4793 
4794 		if (family_sa == AF_INET)
4795 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4796 		else
4797 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4798 
4799 		err = avc_has_perm(sksec->sid, sid,
4800 				   sksec->sclass, node_perm, &ad);
4801 		if (err)
4802 			goto out;
4803 	}
4804 out:
4805 	return err;
4806 err_af:
4807 	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4808 	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4809 		return -EINVAL;
4810 	return -EAFNOSUPPORT;
4811 }
4812 
4813 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4814  * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4815  */
4816 static int selinux_socket_connect_helper(struct socket *sock,
4817 					 struct sockaddr *address, int addrlen)
4818 {
4819 	struct sock *sk = sock->sk;
4820 	struct sk_security_struct *sksec = selinux_sock(sk);
4821 	int err;
4822 
4823 	err = sock_has_perm(sk, SOCKET__CONNECT);
4824 	if (err)
4825 		return err;
4826 	if (addrlen < offsetofend(struct sockaddr, sa_family))
4827 		return -EINVAL;
4828 
4829 	/* connect(AF_UNSPEC) has special handling, as it is a documented
4830 	 * way to disconnect the socket
4831 	 */
4832 	if (address->sa_family == AF_UNSPEC)
4833 		return 0;
4834 
4835 	/*
4836 	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4837 	 * for the port.
4838 	 */
4839 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4840 	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4841 	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4842 		struct common_audit_data ad;
4843 		struct lsm_network_audit net = {0,};
4844 		struct sockaddr_in *addr4 = NULL;
4845 		struct sockaddr_in6 *addr6 = NULL;
4846 		unsigned short snum;
4847 		u32 sid, perm;
4848 
4849 		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4850 		 * that validates multiple connect addresses. Because of this
4851 		 * need to check address->sa_family as it is possible to have
4852 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4853 		 */
4854 		switch (address->sa_family) {
4855 		case AF_INET:
4856 			addr4 = (struct sockaddr_in *)address;
4857 			if (addrlen < sizeof(struct sockaddr_in))
4858 				return -EINVAL;
4859 			snum = ntohs(addr4->sin_port);
4860 			break;
4861 		case AF_INET6:
4862 			addr6 = (struct sockaddr_in6 *)address;
4863 			if (addrlen < SIN6_LEN_RFC2133)
4864 				return -EINVAL;
4865 			snum = ntohs(addr6->sin6_port);
4866 			break;
4867 		default:
4868 			/* Note that SCTP services expect -EINVAL, whereas
4869 			 * others expect -EAFNOSUPPORT.
4870 			 */
4871 			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4872 				return -EINVAL;
4873 			else
4874 				return -EAFNOSUPPORT;
4875 		}
4876 
4877 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4878 		if (err)
4879 			return err;
4880 
4881 		switch (sksec->sclass) {
4882 		case SECCLASS_TCP_SOCKET:
4883 			perm = TCP_SOCKET__NAME_CONNECT;
4884 			break;
4885 		case SECCLASS_DCCP_SOCKET:
4886 			perm = DCCP_SOCKET__NAME_CONNECT;
4887 			break;
4888 		case SECCLASS_SCTP_SOCKET:
4889 			perm = SCTP_SOCKET__NAME_CONNECT;
4890 			break;
4891 		}
4892 
4893 		ad.type = LSM_AUDIT_DATA_NET;
4894 		ad.u.net = &net;
4895 		ad.u.net->dport = htons(snum);
4896 		ad.u.net->family = address->sa_family;
4897 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4898 		if (err)
4899 			return err;
4900 	}
4901 
4902 	return 0;
4903 }
4904 
4905 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4906 static int selinux_socket_connect(struct socket *sock,
4907 				  struct sockaddr *address, int addrlen)
4908 {
4909 	int err;
4910 	struct sock *sk = sock->sk;
4911 
4912 	err = selinux_socket_connect_helper(sock, address, addrlen);
4913 	if (err)
4914 		return err;
4915 
4916 	return selinux_netlbl_socket_connect(sk, address);
4917 }
4918 
4919 static int selinux_socket_listen(struct socket *sock, int backlog)
4920 {
4921 	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4922 }
4923 
4924 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4925 {
4926 	int err;
4927 	struct inode_security_struct *isec;
4928 	struct inode_security_struct *newisec;
4929 	u16 sclass;
4930 	u32 sid;
4931 
4932 	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4933 	if (err)
4934 		return err;
4935 
4936 	isec = inode_security_novalidate(SOCK_INODE(sock));
4937 	spin_lock(&isec->lock);
4938 	sclass = isec->sclass;
4939 	sid = isec->sid;
4940 	spin_unlock(&isec->lock);
4941 
4942 	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4943 	newisec->sclass = sclass;
4944 	newisec->sid = sid;
4945 	newisec->initialized = LABEL_INITIALIZED;
4946 
4947 	return 0;
4948 }
4949 
4950 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4951 				  int size)
4952 {
4953 	return sock_has_perm(sock->sk, SOCKET__WRITE);
4954 }
4955 
4956 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4957 				  int size, int flags)
4958 {
4959 	return sock_has_perm(sock->sk, SOCKET__READ);
4960 }
4961 
4962 static int selinux_socket_getsockname(struct socket *sock)
4963 {
4964 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4965 }
4966 
4967 static int selinux_socket_getpeername(struct socket *sock)
4968 {
4969 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4970 }
4971 
4972 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4973 {
4974 	int err;
4975 
4976 	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4977 	if (err)
4978 		return err;
4979 
4980 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4981 }
4982 
4983 static int selinux_socket_getsockopt(struct socket *sock, int level,
4984 				     int optname)
4985 {
4986 	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4987 }
4988 
4989 static int selinux_socket_shutdown(struct socket *sock, int how)
4990 {
4991 	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4992 }
4993 
4994 static int selinux_socket_unix_stream_connect(struct sock *sock,
4995 					      struct sock *other,
4996 					      struct sock *newsk)
4997 {
4998 	struct sk_security_struct *sksec_sock = selinux_sock(sock);
4999 	struct sk_security_struct *sksec_other = selinux_sock(other);
5000 	struct sk_security_struct *sksec_new = selinux_sock(newsk);
5001 	struct common_audit_data ad;
5002 	struct lsm_network_audit net;
5003 	int err;
5004 
5005 	ad_net_init_from_sk(&ad, &net, other);
5006 
5007 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
5008 			   sksec_other->sclass,
5009 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5010 	if (err)
5011 		return err;
5012 
5013 	/* server child socket */
5014 	sksec_new->peer_sid = sksec_sock->sid;
5015 	err = security_sid_mls_copy(sksec_other->sid,
5016 				    sksec_sock->sid, &sksec_new->sid);
5017 	if (err)
5018 		return err;
5019 
5020 	/* connecting socket */
5021 	sksec_sock->peer_sid = sksec_new->sid;
5022 
5023 	return 0;
5024 }
5025 
5026 static int selinux_socket_unix_may_send(struct socket *sock,
5027 					struct socket *other)
5028 {
5029 	struct sk_security_struct *ssec = selinux_sock(sock->sk);
5030 	struct sk_security_struct *osec = selinux_sock(other->sk);
5031 	struct common_audit_data ad;
5032 	struct lsm_network_audit net;
5033 
5034 	ad_net_init_from_sk(&ad, &net, other->sk);
5035 
5036 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5037 			    &ad);
5038 }
5039 
5040 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5041 				    char *addrp, u16 family, u32 peer_sid,
5042 				    struct common_audit_data *ad)
5043 {
5044 	int err;
5045 	u32 if_sid;
5046 	u32 node_sid;
5047 
5048 	err = sel_netif_sid(ns, ifindex, &if_sid);
5049 	if (err)
5050 		return err;
5051 	err = avc_has_perm(peer_sid, if_sid,
5052 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5053 	if (err)
5054 		return err;
5055 
5056 	err = sel_netnode_sid(addrp, family, &node_sid);
5057 	if (err)
5058 		return err;
5059 	return avc_has_perm(peer_sid, node_sid,
5060 			    SECCLASS_NODE, NODE__RECVFROM, ad);
5061 }
5062 
5063 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5064 				       u16 family)
5065 {
5066 	int err = 0;
5067 	struct sk_security_struct *sksec = selinux_sock(sk);
5068 	u32 sk_sid = sksec->sid;
5069 	struct common_audit_data ad;
5070 	struct lsm_network_audit net;
5071 	char *addrp;
5072 
5073 	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5074 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5075 	if (err)
5076 		return err;
5077 
5078 	if (selinux_secmark_enabled()) {
5079 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5080 				   PACKET__RECV, &ad);
5081 		if (err)
5082 			return err;
5083 	}
5084 
5085 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5086 	if (err)
5087 		return err;
5088 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5089 
5090 	return err;
5091 }
5092 
5093 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5094 {
5095 	int err, peerlbl_active, secmark_active;
5096 	struct sk_security_struct *sksec = selinux_sock(sk);
5097 	u16 family = sk->sk_family;
5098 	u32 sk_sid = sksec->sid;
5099 	struct common_audit_data ad;
5100 	struct lsm_network_audit net;
5101 	char *addrp;
5102 
5103 	if (family != PF_INET && family != PF_INET6)
5104 		return 0;
5105 
5106 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5107 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5108 		family = PF_INET;
5109 
5110 	/* If any sort of compatibility mode is enabled then handoff processing
5111 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5112 	 * special handling.  We do this in an attempt to keep this function
5113 	 * as fast and as clean as possible. */
5114 	if (!selinux_policycap_netpeer())
5115 		return selinux_sock_rcv_skb_compat(sk, skb, family);
5116 
5117 	secmark_active = selinux_secmark_enabled();
5118 	peerlbl_active = selinux_peerlbl_enabled();
5119 	if (!secmark_active && !peerlbl_active)
5120 		return 0;
5121 
5122 	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5123 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5124 	if (err)
5125 		return err;
5126 
5127 	if (peerlbl_active) {
5128 		u32 peer_sid;
5129 
5130 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5131 		if (err)
5132 			return err;
5133 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5134 					       addrp, family, peer_sid, &ad);
5135 		if (err) {
5136 			selinux_netlbl_err(skb, family, err, 0);
5137 			return err;
5138 		}
5139 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
5140 				   PEER__RECV, &ad);
5141 		if (err) {
5142 			selinux_netlbl_err(skb, family, err, 0);
5143 			return err;
5144 		}
5145 	}
5146 
5147 	if (secmark_active) {
5148 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5149 				   PACKET__RECV, &ad);
5150 		if (err)
5151 			return err;
5152 	}
5153 
5154 	return err;
5155 }
5156 
5157 static int selinux_socket_getpeersec_stream(struct socket *sock,
5158 					    sockptr_t optval, sockptr_t optlen,
5159 					    unsigned int len)
5160 {
5161 	int err = 0;
5162 	char *scontext = NULL;
5163 	u32 scontext_len;
5164 	struct sk_security_struct *sksec = selinux_sock(sock->sk);
5165 	u32 peer_sid = SECSID_NULL;
5166 
5167 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5168 	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5169 	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5170 		peer_sid = sksec->peer_sid;
5171 	if (peer_sid == SECSID_NULL)
5172 		return -ENOPROTOOPT;
5173 
5174 	err = security_sid_to_context(peer_sid, &scontext,
5175 				      &scontext_len);
5176 	if (err)
5177 		return err;
5178 	if (scontext_len > len) {
5179 		err = -ERANGE;
5180 		goto out_len;
5181 	}
5182 
5183 	if (copy_to_sockptr(optval, scontext, scontext_len))
5184 		err = -EFAULT;
5185 out_len:
5186 	if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5187 		err = -EFAULT;
5188 	kfree(scontext);
5189 	return err;
5190 }
5191 
5192 static int selinux_socket_getpeersec_dgram(struct socket *sock,
5193 					   struct sk_buff *skb, u32 *secid)
5194 {
5195 	u32 peer_secid = SECSID_NULL;
5196 	u16 family;
5197 
5198 	if (skb && skb->protocol == htons(ETH_P_IP))
5199 		family = PF_INET;
5200 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5201 		family = PF_INET6;
5202 	else if (sock)
5203 		family = sock->sk->sk_family;
5204 	else {
5205 		*secid = SECSID_NULL;
5206 		return -EINVAL;
5207 	}
5208 
5209 	if (sock && family == PF_UNIX) {
5210 		struct inode_security_struct *isec;
5211 		isec = inode_security_novalidate(SOCK_INODE(sock));
5212 		peer_secid = isec->sid;
5213 	} else if (skb)
5214 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5215 
5216 	*secid = peer_secid;
5217 	if (peer_secid == SECSID_NULL)
5218 		return -ENOPROTOOPT;
5219 	return 0;
5220 }
5221 
5222 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5223 {
5224 	struct sk_security_struct *sksec = selinux_sock(sk);
5225 
5226 	sksec->peer_sid = SECINITSID_UNLABELED;
5227 	sksec->sid = SECINITSID_UNLABELED;
5228 	sksec->sclass = SECCLASS_SOCKET;
5229 	selinux_netlbl_sk_security_reset(sksec);
5230 
5231 	return 0;
5232 }
5233 
5234 static void selinux_sk_free_security(struct sock *sk)
5235 {
5236 	struct sk_security_struct *sksec = selinux_sock(sk);
5237 
5238 	selinux_netlbl_sk_security_free(sksec);
5239 }
5240 
5241 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5242 {
5243 	struct sk_security_struct *sksec = selinux_sock(sk);
5244 	struct sk_security_struct *newsksec = selinux_sock(newsk);
5245 
5246 	newsksec->sid = sksec->sid;
5247 	newsksec->peer_sid = sksec->peer_sid;
5248 	newsksec->sclass = sksec->sclass;
5249 
5250 	selinux_netlbl_sk_security_reset(newsksec);
5251 }
5252 
5253 static void selinux_sk_getsecid(const struct sock *sk, u32 *secid)
5254 {
5255 	if (!sk)
5256 		*secid = SECINITSID_ANY_SOCKET;
5257 	else {
5258 		const struct sk_security_struct *sksec = selinux_sock(sk);
5259 
5260 		*secid = sksec->sid;
5261 	}
5262 }
5263 
5264 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5265 {
5266 	struct inode_security_struct *isec =
5267 		inode_security_novalidate(SOCK_INODE(parent));
5268 	struct sk_security_struct *sksec = selinux_sock(sk);
5269 
5270 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5271 	    sk->sk_family == PF_UNIX)
5272 		isec->sid = sksec->sid;
5273 	sksec->sclass = isec->sclass;
5274 }
5275 
5276 /*
5277  * Determines peer_secid for the asoc and updates socket's peer label
5278  * if it's the first association on the socket.
5279  */
5280 static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5281 					  struct sk_buff *skb)
5282 {
5283 	struct sock *sk = asoc->base.sk;
5284 	u16 family = sk->sk_family;
5285 	struct sk_security_struct *sksec = selinux_sock(sk);
5286 	struct common_audit_data ad;
5287 	struct lsm_network_audit net;
5288 	int err;
5289 
5290 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5291 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5292 		family = PF_INET;
5293 
5294 	if (selinux_peerlbl_enabled()) {
5295 		asoc->peer_secid = SECSID_NULL;
5296 
5297 		/* This will return peer_sid = SECSID_NULL if there are
5298 		 * no peer labels, see security_net_peersid_resolve().
5299 		 */
5300 		err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5301 		if (err)
5302 			return err;
5303 
5304 		if (asoc->peer_secid == SECSID_NULL)
5305 			asoc->peer_secid = SECINITSID_UNLABELED;
5306 	} else {
5307 		asoc->peer_secid = SECINITSID_UNLABELED;
5308 	}
5309 
5310 	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5311 		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5312 
5313 		/* Here as first association on socket. As the peer SID
5314 		 * was allowed by peer recv (and the netif/node checks),
5315 		 * then it is approved by policy and used as the primary
5316 		 * peer SID for getpeercon(3).
5317 		 */
5318 		sksec->peer_sid = asoc->peer_secid;
5319 	} else if (sksec->peer_sid != asoc->peer_secid) {
5320 		/* Other association peer SIDs are checked to enforce
5321 		 * consistency among the peer SIDs.
5322 		 */
5323 		ad_net_init_from_sk(&ad, &net, asoc->base.sk);
5324 		err = avc_has_perm(sksec->peer_sid, asoc->peer_secid,
5325 				   sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5326 				   &ad);
5327 		if (err)
5328 			return err;
5329 	}
5330 	return 0;
5331 }
5332 
5333 /* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5334  * happens on an incoming connect(2), sctp_connectx(3) or
5335  * sctp_sendmsg(3) (with no association already present).
5336  */
5337 static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5338 				      struct sk_buff *skb)
5339 {
5340 	struct sk_security_struct *sksec = selinux_sock(asoc->base.sk);
5341 	u32 conn_sid;
5342 	int err;
5343 
5344 	if (!selinux_policycap_extsockclass())
5345 		return 0;
5346 
5347 	err = selinux_sctp_process_new_assoc(asoc, skb);
5348 	if (err)
5349 		return err;
5350 
5351 	/* Compute the MLS component for the connection and store
5352 	 * the information in asoc. This will be used by SCTP TCP type
5353 	 * sockets and peeled off connections as they cause a new
5354 	 * socket to be generated. selinux_sctp_sk_clone() will then
5355 	 * plug this into the new socket.
5356 	 */
5357 	err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5358 	if (err)
5359 		return err;
5360 
5361 	asoc->secid = conn_sid;
5362 
5363 	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5364 	return selinux_netlbl_sctp_assoc_request(asoc, skb);
5365 }
5366 
5367 /* Called when SCTP receives a COOKIE ACK chunk as the final
5368  * response to an association request (initited by us).
5369  */
5370 static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5371 					  struct sk_buff *skb)
5372 {
5373 	struct sk_security_struct *sksec = selinux_sock(asoc->base.sk);
5374 
5375 	if (!selinux_policycap_extsockclass())
5376 		return 0;
5377 
5378 	/* Inherit secid from the parent socket - this will be picked up
5379 	 * by selinux_sctp_sk_clone() if the association gets peeled off
5380 	 * into a new socket.
5381 	 */
5382 	asoc->secid = sksec->sid;
5383 
5384 	return selinux_sctp_process_new_assoc(asoc, skb);
5385 }
5386 
5387 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5388  * based on their @optname.
5389  */
5390 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5391 				     struct sockaddr *address,
5392 				     int addrlen)
5393 {
5394 	int len, err = 0, walk_size = 0;
5395 	void *addr_buf;
5396 	struct sockaddr *addr;
5397 	struct socket *sock;
5398 
5399 	if (!selinux_policycap_extsockclass())
5400 		return 0;
5401 
5402 	/* Process one or more addresses that may be IPv4 or IPv6 */
5403 	sock = sk->sk_socket;
5404 	addr_buf = address;
5405 
5406 	while (walk_size < addrlen) {
5407 		if (walk_size + sizeof(sa_family_t) > addrlen)
5408 			return -EINVAL;
5409 
5410 		addr = addr_buf;
5411 		switch (addr->sa_family) {
5412 		case AF_UNSPEC:
5413 		case AF_INET:
5414 			len = sizeof(struct sockaddr_in);
5415 			break;
5416 		case AF_INET6:
5417 			len = sizeof(struct sockaddr_in6);
5418 			break;
5419 		default:
5420 			return -EINVAL;
5421 		}
5422 
5423 		if (walk_size + len > addrlen)
5424 			return -EINVAL;
5425 
5426 		err = -EINVAL;
5427 		switch (optname) {
5428 		/* Bind checks */
5429 		case SCTP_PRIMARY_ADDR:
5430 		case SCTP_SET_PEER_PRIMARY_ADDR:
5431 		case SCTP_SOCKOPT_BINDX_ADD:
5432 			err = selinux_socket_bind(sock, addr, len);
5433 			break;
5434 		/* Connect checks */
5435 		case SCTP_SOCKOPT_CONNECTX:
5436 		case SCTP_PARAM_SET_PRIMARY:
5437 		case SCTP_PARAM_ADD_IP:
5438 		case SCTP_SENDMSG_CONNECT:
5439 			err = selinux_socket_connect_helper(sock, addr, len);
5440 			if (err)
5441 				return err;
5442 
5443 			/* As selinux_sctp_bind_connect() is called by the
5444 			 * SCTP protocol layer, the socket is already locked,
5445 			 * therefore selinux_netlbl_socket_connect_locked()
5446 			 * is called here. The situations handled are:
5447 			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5448 			 * whenever a new IP address is added or when a new
5449 			 * primary address is selected.
5450 			 * Note that an SCTP connect(2) call happens before
5451 			 * the SCTP protocol layer and is handled via
5452 			 * selinux_socket_connect().
5453 			 */
5454 			err = selinux_netlbl_socket_connect_locked(sk, addr);
5455 			break;
5456 		}
5457 
5458 		if (err)
5459 			return err;
5460 
5461 		addr_buf += len;
5462 		walk_size += len;
5463 	}
5464 
5465 	return 0;
5466 }
5467 
5468 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5469 static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5470 				  struct sock *newsk)
5471 {
5472 	struct sk_security_struct *sksec = selinux_sock(sk);
5473 	struct sk_security_struct *newsksec = selinux_sock(newsk);
5474 
5475 	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5476 	 * the non-sctp clone version.
5477 	 */
5478 	if (!selinux_policycap_extsockclass())
5479 		return selinux_sk_clone_security(sk, newsk);
5480 
5481 	newsksec->sid = asoc->secid;
5482 	newsksec->peer_sid = asoc->peer_secid;
5483 	newsksec->sclass = sksec->sclass;
5484 	selinux_netlbl_sctp_sk_clone(sk, newsk);
5485 }
5486 
5487 static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5488 {
5489 	struct sk_security_struct *ssksec = selinux_sock(ssk);
5490 	struct sk_security_struct *sksec = selinux_sock(sk);
5491 
5492 	ssksec->sclass = sksec->sclass;
5493 	ssksec->sid = sksec->sid;
5494 
5495 	/* replace the existing subflow label deleting the existing one
5496 	 * and re-recreating a new label using the updated context
5497 	 */
5498 	selinux_netlbl_sk_security_free(ssksec);
5499 	return selinux_netlbl_socket_post_create(ssk, ssk->sk_family);
5500 }
5501 
5502 static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5503 				     struct request_sock *req)
5504 {
5505 	struct sk_security_struct *sksec = selinux_sock(sk);
5506 	int err;
5507 	u16 family = req->rsk_ops->family;
5508 	u32 connsid;
5509 	u32 peersid;
5510 
5511 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5512 	if (err)
5513 		return err;
5514 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5515 	if (err)
5516 		return err;
5517 	req->secid = connsid;
5518 	req->peer_secid = peersid;
5519 
5520 	return selinux_netlbl_inet_conn_request(req, family);
5521 }
5522 
5523 static void selinux_inet_csk_clone(struct sock *newsk,
5524 				   const struct request_sock *req)
5525 {
5526 	struct sk_security_struct *newsksec = selinux_sock(newsk);
5527 
5528 	newsksec->sid = req->secid;
5529 	newsksec->peer_sid = req->peer_secid;
5530 	/* NOTE: Ideally, we should also get the isec->sid for the
5531 	   new socket in sync, but we don't have the isec available yet.
5532 	   So we will wait until sock_graft to do it, by which
5533 	   time it will have been created and available. */
5534 
5535 	/* We don't need to take any sort of lock here as we are the only
5536 	 * thread with access to newsksec */
5537 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5538 }
5539 
5540 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5541 {
5542 	u16 family = sk->sk_family;
5543 	struct sk_security_struct *sksec = selinux_sock(sk);
5544 
5545 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5546 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5547 		family = PF_INET;
5548 
5549 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5550 }
5551 
5552 static int selinux_secmark_relabel_packet(u32 sid)
5553 {
5554 	return avc_has_perm(current_sid(), sid, SECCLASS_PACKET, PACKET__RELABELTO,
5555 			    NULL);
5556 }
5557 
5558 static void selinux_secmark_refcount_inc(void)
5559 {
5560 	atomic_inc(&selinux_secmark_refcount);
5561 }
5562 
5563 static void selinux_secmark_refcount_dec(void)
5564 {
5565 	atomic_dec(&selinux_secmark_refcount);
5566 }
5567 
5568 static void selinux_req_classify_flow(const struct request_sock *req,
5569 				      struct flowi_common *flic)
5570 {
5571 	flic->flowic_secid = req->secid;
5572 }
5573 
5574 static int selinux_tun_dev_alloc_security(void *security)
5575 {
5576 	struct tun_security_struct *tunsec = selinux_tun_dev(security);
5577 
5578 	tunsec->sid = current_sid();
5579 	return 0;
5580 }
5581 
5582 static int selinux_tun_dev_create(void)
5583 {
5584 	u32 sid = current_sid();
5585 
5586 	/* we aren't taking into account the "sockcreate" SID since the socket
5587 	 * that is being created here is not a socket in the traditional sense,
5588 	 * instead it is a private sock, accessible only to the kernel, and
5589 	 * representing a wide range of network traffic spanning multiple
5590 	 * connections unlike traditional sockets - check the TUN driver to
5591 	 * get a better understanding of why this socket is special */
5592 
5593 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5594 			    NULL);
5595 }
5596 
5597 static int selinux_tun_dev_attach_queue(void *security)
5598 {
5599 	struct tun_security_struct *tunsec = selinux_tun_dev(security);
5600 
5601 	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5602 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5603 }
5604 
5605 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5606 {
5607 	struct tun_security_struct *tunsec = selinux_tun_dev(security);
5608 	struct sk_security_struct *sksec = selinux_sock(sk);
5609 
5610 	/* we don't currently perform any NetLabel based labeling here and it
5611 	 * isn't clear that we would want to do so anyway; while we could apply
5612 	 * labeling without the support of the TUN user the resulting labeled
5613 	 * traffic from the other end of the connection would almost certainly
5614 	 * cause confusion to the TUN user that had no idea network labeling
5615 	 * protocols were being used */
5616 
5617 	sksec->sid = tunsec->sid;
5618 	sksec->sclass = SECCLASS_TUN_SOCKET;
5619 
5620 	return 0;
5621 }
5622 
5623 static int selinux_tun_dev_open(void *security)
5624 {
5625 	struct tun_security_struct *tunsec = selinux_tun_dev(security);
5626 	u32 sid = current_sid();
5627 	int err;
5628 
5629 	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5630 			   TUN_SOCKET__RELABELFROM, NULL);
5631 	if (err)
5632 		return err;
5633 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5634 			   TUN_SOCKET__RELABELTO, NULL);
5635 	if (err)
5636 		return err;
5637 	tunsec->sid = sid;
5638 
5639 	return 0;
5640 }
5641 
5642 #ifdef CONFIG_NETFILTER
5643 
5644 static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5645 				       const struct nf_hook_state *state)
5646 {
5647 	int ifindex;
5648 	u16 family;
5649 	char *addrp;
5650 	u32 peer_sid;
5651 	struct common_audit_data ad;
5652 	struct lsm_network_audit net;
5653 	int secmark_active, peerlbl_active;
5654 
5655 	if (!selinux_policycap_netpeer())
5656 		return NF_ACCEPT;
5657 
5658 	secmark_active = selinux_secmark_enabled();
5659 	peerlbl_active = selinux_peerlbl_enabled();
5660 	if (!secmark_active && !peerlbl_active)
5661 		return NF_ACCEPT;
5662 
5663 	family = state->pf;
5664 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5665 		return NF_DROP;
5666 
5667 	ifindex = state->in->ifindex;
5668 	ad_net_init_from_iif(&ad, &net, ifindex, family);
5669 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5670 		return NF_DROP;
5671 
5672 	if (peerlbl_active) {
5673 		int err;
5674 
5675 		err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5676 					       addrp, family, peer_sid, &ad);
5677 		if (err) {
5678 			selinux_netlbl_err(skb, family, err, 1);
5679 			return NF_DROP;
5680 		}
5681 	}
5682 
5683 	if (secmark_active)
5684 		if (avc_has_perm(peer_sid, skb->secmark,
5685 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5686 			return NF_DROP;
5687 
5688 	if (netlbl_enabled())
5689 		/* we do this in the FORWARD path and not the POST_ROUTING
5690 		 * path because we want to make sure we apply the necessary
5691 		 * labeling before IPsec is applied so we can leverage AH
5692 		 * protection */
5693 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5694 			return NF_DROP;
5695 
5696 	return NF_ACCEPT;
5697 }
5698 
5699 static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5700 				      const struct nf_hook_state *state)
5701 {
5702 	struct sock *sk;
5703 	u32 sid;
5704 
5705 	if (!netlbl_enabled())
5706 		return NF_ACCEPT;
5707 
5708 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5709 	 * because we want to make sure we apply the necessary labeling
5710 	 * before IPsec is applied so we can leverage AH protection */
5711 	sk = skb->sk;
5712 	if (sk) {
5713 		struct sk_security_struct *sksec;
5714 
5715 		if (sk_listener(sk))
5716 			/* if the socket is the listening state then this
5717 			 * packet is a SYN-ACK packet which means it needs to
5718 			 * be labeled based on the connection/request_sock and
5719 			 * not the parent socket.  unfortunately, we can't
5720 			 * lookup the request_sock yet as it isn't queued on
5721 			 * the parent socket until after the SYN-ACK is sent.
5722 			 * the "solution" is to simply pass the packet as-is
5723 			 * as any IP option based labeling should be copied
5724 			 * from the initial connection request (in the IP
5725 			 * layer).  it is far from ideal, but until we get a
5726 			 * security label in the packet itself this is the
5727 			 * best we can do. */
5728 			return NF_ACCEPT;
5729 
5730 		/* standard practice, label using the parent socket */
5731 		sksec = selinux_sock(sk);
5732 		sid = sksec->sid;
5733 	} else
5734 		sid = SECINITSID_KERNEL;
5735 	if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5736 		return NF_DROP;
5737 
5738 	return NF_ACCEPT;
5739 }
5740 
5741 
5742 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5743 					const struct nf_hook_state *state)
5744 {
5745 	struct sock *sk;
5746 	struct sk_security_struct *sksec;
5747 	struct common_audit_data ad;
5748 	struct lsm_network_audit net;
5749 	u8 proto = 0;
5750 
5751 	sk = skb_to_full_sk(skb);
5752 	if (sk == NULL)
5753 		return NF_ACCEPT;
5754 	sksec = selinux_sock(sk);
5755 
5756 	ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf);
5757 	if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5758 		return NF_DROP;
5759 
5760 	if (selinux_secmark_enabled())
5761 		if (avc_has_perm(sksec->sid, skb->secmark,
5762 				 SECCLASS_PACKET, PACKET__SEND, &ad))
5763 			return NF_DROP_ERR(-ECONNREFUSED);
5764 
5765 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5766 		return NF_DROP_ERR(-ECONNREFUSED);
5767 
5768 	return NF_ACCEPT;
5769 }
5770 
5771 static unsigned int selinux_ip_postroute(void *priv,
5772 					 struct sk_buff *skb,
5773 					 const struct nf_hook_state *state)
5774 {
5775 	u16 family;
5776 	u32 secmark_perm;
5777 	u32 peer_sid;
5778 	int ifindex;
5779 	struct sock *sk;
5780 	struct common_audit_data ad;
5781 	struct lsm_network_audit net;
5782 	char *addrp;
5783 	int secmark_active, peerlbl_active;
5784 
5785 	/* If any sort of compatibility mode is enabled then handoff processing
5786 	 * to the selinux_ip_postroute_compat() function to deal with the
5787 	 * special handling.  We do this in an attempt to keep this function
5788 	 * as fast and as clean as possible. */
5789 	if (!selinux_policycap_netpeer())
5790 		return selinux_ip_postroute_compat(skb, state);
5791 
5792 	secmark_active = selinux_secmark_enabled();
5793 	peerlbl_active = selinux_peerlbl_enabled();
5794 	if (!secmark_active && !peerlbl_active)
5795 		return NF_ACCEPT;
5796 
5797 	sk = skb_to_full_sk(skb);
5798 
5799 #ifdef CONFIG_XFRM
5800 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5801 	 * packet transformation so allow the packet to pass without any checks
5802 	 * since we'll have another chance to perform access control checks
5803 	 * when the packet is on it's final way out.
5804 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5805 	 *       is NULL, in this case go ahead and apply access control.
5806 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5807 	 *       TCP listening state we cannot wait until the XFRM processing
5808 	 *       is done as we will miss out on the SA label if we do;
5809 	 *       unfortunately, this means more work, but it is only once per
5810 	 *       connection. */
5811 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5812 	    !(sk && sk_listener(sk)))
5813 		return NF_ACCEPT;
5814 #endif
5815 
5816 	family = state->pf;
5817 	if (sk == NULL) {
5818 		/* Without an associated socket the packet is either coming
5819 		 * from the kernel or it is being forwarded; check the packet
5820 		 * to determine which and if the packet is being forwarded
5821 		 * query the packet directly to determine the security label. */
5822 		if (skb->skb_iif) {
5823 			secmark_perm = PACKET__FORWARD_OUT;
5824 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5825 				return NF_DROP;
5826 		} else {
5827 			secmark_perm = PACKET__SEND;
5828 			peer_sid = SECINITSID_KERNEL;
5829 		}
5830 	} else if (sk_listener(sk)) {
5831 		/* Locally generated packet but the associated socket is in the
5832 		 * listening state which means this is a SYN-ACK packet.  In
5833 		 * this particular case the correct security label is assigned
5834 		 * to the connection/request_sock but unfortunately we can't
5835 		 * query the request_sock as it isn't queued on the parent
5836 		 * socket until after the SYN-ACK packet is sent; the only
5837 		 * viable choice is to regenerate the label like we do in
5838 		 * selinux_inet_conn_request().  See also selinux_ip_output()
5839 		 * for similar problems. */
5840 		u32 skb_sid;
5841 		struct sk_security_struct *sksec;
5842 
5843 		sksec = selinux_sock(sk);
5844 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5845 			return NF_DROP;
5846 		/* At this point, if the returned skb peerlbl is SECSID_NULL
5847 		 * and the packet has been through at least one XFRM
5848 		 * transformation then we must be dealing with the "final"
5849 		 * form of labeled IPsec packet; since we've already applied
5850 		 * all of our access controls on this packet we can safely
5851 		 * pass the packet. */
5852 		if (skb_sid == SECSID_NULL) {
5853 			switch (family) {
5854 			case PF_INET:
5855 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5856 					return NF_ACCEPT;
5857 				break;
5858 			case PF_INET6:
5859 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5860 					return NF_ACCEPT;
5861 				break;
5862 			default:
5863 				return NF_DROP_ERR(-ECONNREFUSED);
5864 			}
5865 		}
5866 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5867 			return NF_DROP;
5868 		secmark_perm = PACKET__SEND;
5869 	} else {
5870 		/* Locally generated packet, fetch the security label from the
5871 		 * associated socket. */
5872 		struct sk_security_struct *sksec = selinux_sock(sk);
5873 		peer_sid = sksec->sid;
5874 		secmark_perm = PACKET__SEND;
5875 	}
5876 
5877 	ifindex = state->out->ifindex;
5878 	ad_net_init_from_iif(&ad, &net, ifindex, family);
5879 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5880 		return NF_DROP;
5881 
5882 	if (secmark_active)
5883 		if (avc_has_perm(peer_sid, skb->secmark,
5884 				 SECCLASS_PACKET, secmark_perm, &ad))
5885 			return NF_DROP_ERR(-ECONNREFUSED);
5886 
5887 	if (peerlbl_active) {
5888 		u32 if_sid;
5889 		u32 node_sid;
5890 
5891 		if (sel_netif_sid(state->net, ifindex, &if_sid))
5892 			return NF_DROP;
5893 		if (avc_has_perm(peer_sid, if_sid,
5894 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5895 			return NF_DROP_ERR(-ECONNREFUSED);
5896 
5897 		if (sel_netnode_sid(addrp, family, &node_sid))
5898 			return NF_DROP;
5899 		if (avc_has_perm(peer_sid, node_sid,
5900 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5901 			return NF_DROP_ERR(-ECONNREFUSED);
5902 	}
5903 
5904 	return NF_ACCEPT;
5905 }
5906 #endif	/* CONFIG_NETFILTER */
5907 
5908 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5909 {
5910 	int rc = 0;
5911 	unsigned int msg_len;
5912 	unsigned int data_len = skb->len;
5913 	unsigned char *data = skb->data;
5914 	struct nlmsghdr *nlh;
5915 	struct sk_security_struct *sksec = selinux_sock(sk);
5916 	u16 sclass = sksec->sclass;
5917 	u32 perm;
5918 
5919 	while (data_len >= nlmsg_total_size(0)) {
5920 		nlh = (struct nlmsghdr *)data;
5921 
5922 		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5923 		 *       users which means we can't reject skb's with bogus
5924 		 *       length fields; our solution is to follow what
5925 		 *       netlink_rcv_skb() does and simply skip processing at
5926 		 *       messages with length fields that are clearly junk
5927 		 */
5928 		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5929 			return 0;
5930 
5931 		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5932 		if (rc == 0) {
5933 			rc = sock_has_perm(sk, perm);
5934 			if (rc)
5935 				return rc;
5936 		} else if (rc == -EINVAL) {
5937 			/* -EINVAL is a missing msg/perm mapping */
5938 			pr_warn_ratelimited("SELinux: unrecognized netlink"
5939 				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5940 				" pid=%d comm=%s\n",
5941 				sk->sk_protocol, nlh->nlmsg_type,
5942 				secclass_map[sclass - 1].name,
5943 				task_pid_nr(current), current->comm);
5944 			if (enforcing_enabled() &&
5945 			    !security_get_allow_unknown())
5946 				return rc;
5947 			rc = 0;
5948 		} else if (rc == -ENOENT) {
5949 			/* -ENOENT is a missing socket/class mapping, ignore */
5950 			rc = 0;
5951 		} else {
5952 			return rc;
5953 		}
5954 
5955 		/* move to the next message after applying netlink padding */
5956 		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5957 		if (msg_len >= data_len)
5958 			return 0;
5959 		data_len -= msg_len;
5960 		data += msg_len;
5961 	}
5962 
5963 	return rc;
5964 }
5965 
5966 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5967 {
5968 	isec->sclass = sclass;
5969 	isec->sid = current_sid();
5970 }
5971 
5972 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5973 			u32 perms)
5974 {
5975 	struct ipc_security_struct *isec;
5976 	struct common_audit_data ad;
5977 	u32 sid = current_sid();
5978 
5979 	isec = selinux_ipc(ipc_perms);
5980 
5981 	ad.type = LSM_AUDIT_DATA_IPC;
5982 	ad.u.ipc_id = ipc_perms->key;
5983 
5984 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5985 }
5986 
5987 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5988 {
5989 	struct msg_security_struct *msec;
5990 
5991 	msec = selinux_msg_msg(msg);
5992 	msec->sid = SECINITSID_UNLABELED;
5993 
5994 	return 0;
5995 }
5996 
5997 /* message queue security operations */
5998 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5999 {
6000 	struct ipc_security_struct *isec;
6001 	struct common_audit_data ad;
6002 	u32 sid = current_sid();
6003 
6004 	isec = selinux_ipc(msq);
6005 	ipc_init_security(isec, SECCLASS_MSGQ);
6006 
6007 	ad.type = LSM_AUDIT_DATA_IPC;
6008 	ad.u.ipc_id = msq->key;
6009 
6010 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6011 			    MSGQ__CREATE, &ad);
6012 }
6013 
6014 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6015 {
6016 	struct ipc_security_struct *isec;
6017 	struct common_audit_data ad;
6018 	u32 sid = current_sid();
6019 
6020 	isec = selinux_ipc(msq);
6021 
6022 	ad.type = LSM_AUDIT_DATA_IPC;
6023 	ad.u.ipc_id = msq->key;
6024 
6025 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6026 			    MSGQ__ASSOCIATE, &ad);
6027 }
6028 
6029 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6030 {
6031 	u32 perms;
6032 
6033 	switch (cmd) {
6034 	case IPC_INFO:
6035 	case MSG_INFO:
6036 		/* No specific object, just general system-wide information. */
6037 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6038 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6039 	case IPC_STAT:
6040 	case MSG_STAT:
6041 	case MSG_STAT_ANY:
6042 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6043 		break;
6044 	case IPC_SET:
6045 		perms = MSGQ__SETATTR;
6046 		break;
6047 	case IPC_RMID:
6048 		perms = MSGQ__DESTROY;
6049 		break;
6050 	default:
6051 		return 0;
6052 	}
6053 
6054 	return ipc_has_perm(msq, perms);
6055 }
6056 
6057 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6058 {
6059 	struct ipc_security_struct *isec;
6060 	struct msg_security_struct *msec;
6061 	struct common_audit_data ad;
6062 	u32 sid = current_sid();
6063 	int rc;
6064 
6065 	isec = selinux_ipc(msq);
6066 	msec = selinux_msg_msg(msg);
6067 
6068 	/*
6069 	 * First time through, need to assign label to the message
6070 	 */
6071 	if (msec->sid == SECINITSID_UNLABELED) {
6072 		/*
6073 		 * Compute new sid based on current process and
6074 		 * message queue this message will be stored in
6075 		 */
6076 		rc = security_transition_sid(sid, isec->sid,
6077 					     SECCLASS_MSG, NULL, &msec->sid);
6078 		if (rc)
6079 			return rc;
6080 	}
6081 
6082 	ad.type = LSM_AUDIT_DATA_IPC;
6083 	ad.u.ipc_id = msq->key;
6084 
6085 	/* Can this process write to the queue? */
6086 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6087 			  MSGQ__WRITE, &ad);
6088 	if (!rc)
6089 		/* Can this process send the message */
6090 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
6091 				  MSG__SEND, &ad);
6092 	if (!rc)
6093 		/* Can the message be put in the queue? */
6094 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
6095 				  MSGQ__ENQUEUE, &ad);
6096 
6097 	return rc;
6098 }
6099 
6100 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6101 				    struct task_struct *target,
6102 				    long type, int mode)
6103 {
6104 	struct ipc_security_struct *isec;
6105 	struct msg_security_struct *msec;
6106 	struct common_audit_data ad;
6107 	u32 sid = task_sid_obj(target);
6108 	int rc;
6109 
6110 	isec = selinux_ipc(msq);
6111 	msec = selinux_msg_msg(msg);
6112 
6113 	ad.type = LSM_AUDIT_DATA_IPC;
6114 	ad.u.ipc_id = msq->key;
6115 
6116 	rc = avc_has_perm(sid, isec->sid,
6117 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6118 	if (!rc)
6119 		rc = avc_has_perm(sid, msec->sid,
6120 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6121 	return rc;
6122 }
6123 
6124 /* Shared Memory security operations */
6125 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6126 {
6127 	struct ipc_security_struct *isec;
6128 	struct common_audit_data ad;
6129 	u32 sid = current_sid();
6130 
6131 	isec = selinux_ipc(shp);
6132 	ipc_init_security(isec, SECCLASS_SHM);
6133 
6134 	ad.type = LSM_AUDIT_DATA_IPC;
6135 	ad.u.ipc_id = shp->key;
6136 
6137 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6138 			    SHM__CREATE, &ad);
6139 }
6140 
6141 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6142 {
6143 	struct ipc_security_struct *isec;
6144 	struct common_audit_data ad;
6145 	u32 sid = current_sid();
6146 
6147 	isec = selinux_ipc(shp);
6148 
6149 	ad.type = LSM_AUDIT_DATA_IPC;
6150 	ad.u.ipc_id = shp->key;
6151 
6152 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6153 			    SHM__ASSOCIATE, &ad);
6154 }
6155 
6156 /* Note, at this point, shp is locked down */
6157 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6158 {
6159 	u32 perms;
6160 
6161 	switch (cmd) {
6162 	case IPC_INFO:
6163 	case SHM_INFO:
6164 		/* No specific object, just general system-wide information. */
6165 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6166 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6167 	case IPC_STAT:
6168 	case SHM_STAT:
6169 	case SHM_STAT_ANY:
6170 		perms = SHM__GETATTR | SHM__ASSOCIATE;
6171 		break;
6172 	case IPC_SET:
6173 		perms = SHM__SETATTR;
6174 		break;
6175 	case SHM_LOCK:
6176 	case SHM_UNLOCK:
6177 		perms = SHM__LOCK;
6178 		break;
6179 	case IPC_RMID:
6180 		perms = SHM__DESTROY;
6181 		break;
6182 	default:
6183 		return 0;
6184 	}
6185 
6186 	return ipc_has_perm(shp, perms);
6187 }
6188 
6189 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6190 			     char __user *shmaddr, int shmflg)
6191 {
6192 	u32 perms;
6193 
6194 	if (shmflg & SHM_RDONLY)
6195 		perms = SHM__READ;
6196 	else
6197 		perms = SHM__READ | SHM__WRITE;
6198 
6199 	return ipc_has_perm(shp, perms);
6200 }
6201 
6202 /* Semaphore security operations */
6203 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6204 {
6205 	struct ipc_security_struct *isec;
6206 	struct common_audit_data ad;
6207 	u32 sid = current_sid();
6208 
6209 	isec = selinux_ipc(sma);
6210 	ipc_init_security(isec, SECCLASS_SEM);
6211 
6212 	ad.type = LSM_AUDIT_DATA_IPC;
6213 	ad.u.ipc_id = sma->key;
6214 
6215 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6216 			    SEM__CREATE, &ad);
6217 }
6218 
6219 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6220 {
6221 	struct ipc_security_struct *isec;
6222 	struct common_audit_data ad;
6223 	u32 sid = current_sid();
6224 
6225 	isec = selinux_ipc(sma);
6226 
6227 	ad.type = LSM_AUDIT_DATA_IPC;
6228 	ad.u.ipc_id = sma->key;
6229 
6230 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6231 			    SEM__ASSOCIATE, &ad);
6232 }
6233 
6234 /* Note, at this point, sma is locked down */
6235 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6236 {
6237 	int err;
6238 	u32 perms;
6239 
6240 	switch (cmd) {
6241 	case IPC_INFO:
6242 	case SEM_INFO:
6243 		/* No specific object, just general system-wide information. */
6244 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6245 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6246 	case GETPID:
6247 	case GETNCNT:
6248 	case GETZCNT:
6249 		perms = SEM__GETATTR;
6250 		break;
6251 	case GETVAL:
6252 	case GETALL:
6253 		perms = SEM__READ;
6254 		break;
6255 	case SETVAL:
6256 	case SETALL:
6257 		perms = SEM__WRITE;
6258 		break;
6259 	case IPC_RMID:
6260 		perms = SEM__DESTROY;
6261 		break;
6262 	case IPC_SET:
6263 		perms = SEM__SETATTR;
6264 		break;
6265 	case IPC_STAT:
6266 	case SEM_STAT:
6267 	case SEM_STAT_ANY:
6268 		perms = SEM__GETATTR | SEM__ASSOCIATE;
6269 		break;
6270 	default:
6271 		return 0;
6272 	}
6273 
6274 	err = ipc_has_perm(sma, perms);
6275 	return err;
6276 }
6277 
6278 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6279 			     struct sembuf *sops, unsigned nsops, int alter)
6280 {
6281 	u32 perms;
6282 
6283 	if (alter)
6284 		perms = SEM__READ | SEM__WRITE;
6285 	else
6286 		perms = SEM__READ;
6287 
6288 	return ipc_has_perm(sma, perms);
6289 }
6290 
6291 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6292 {
6293 	u32 av = 0;
6294 
6295 	av = 0;
6296 	if (flag & S_IRUGO)
6297 		av |= IPC__UNIX_READ;
6298 	if (flag & S_IWUGO)
6299 		av |= IPC__UNIX_WRITE;
6300 
6301 	if (av == 0)
6302 		return 0;
6303 
6304 	return ipc_has_perm(ipcp, av);
6305 }
6306 
6307 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6308 {
6309 	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6310 	*secid = isec->sid;
6311 }
6312 
6313 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6314 {
6315 	if (inode)
6316 		inode_doinit_with_dentry(inode, dentry);
6317 }
6318 
6319 static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p,
6320 			       char **value)
6321 {
6322 	const struct task_security_struct *tsec;
6323 	int error;
6324 	u32 sid;
6325 	u32 len;
6326 
6327 	rcu_read_lock();
6328 	tsec = selinux_cred(__task_cred(p));
6329 	if (p != current) {
6330 		error = avc_has_perm(current_sid(), tsec->sid,
6331 				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6332 		if (error)
6333 			goto err_unlock;
6334 	}
6335 	switch (attr) {
6336 	case LSM_ATTR_CURRENT:
6337 		sid = tsec->sid;
6338 		break;
6339 	case LSM_ATTR_PREV:
6340 		sid = tsec->osid;
6341 		break;
6342 	case LSM_ATTR_EXEC:
6343 		sid = tsec->exec_sid;
6344 		break;
6345 	case LSM_ATTR_FSCREATE:
6346 		sid = tsec->create_sid;
6347 		break;
6348 	case LSM_ATTR_KEYCREATE:
6349 		sid = tsec->keycreate_sid;
6350 		break;
6351 	case LSM_ATTR_SOCKCREATE:
6352 		sid = tsec->sockcreate_sid;
6353 		break;
6354 	default:
6355 		error = -EOPNOTSUPP;
6356 		goto err_unlock;
6357 	}
6358 	rcu_read_unlock();
6359 
6360 	if (sid == SECSID_NULL) {
6361 		*value = NULL;
6362 		return 0;
6363 	}
6364 
6365 	error = security_sid_to_context(sid, value, &len);
6366 	if (error)
6367 		return error;
6368 	return len;
6369 
6370 err_unlock:
6371 	rcu_read_unlock();
6372 	return error;
6373 }
6374 
6375 static int selinux_lsm_setattr(u64 attr, void *value, size_t size)
6376 {
6377 	struct task_security_struct *tsec;
6378 	struct cred *new;
6379 	u32 mysid = current_sid(), sid = 0, ptsid;
6380 	int error;
6381 	char *str = value;
6382 
6383 	/*
6384 	 * Basic control over ability to set these attributes at all.
6385 	 */
6386 	switch (attr) {
6387 	case LSM_ATTR_EXEC:
6388 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6389 				     PROCESS__SETEXEC, NULL);
6390 		break;
6391 	case LSM_ATTR_FSCREATE:
6392 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6393 				     PROCESS__SETFSCREATE, NULL);
6394 		break;
6395 	case LSM_ATTR_KEYCREATE:
6396 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6397 				     PROCESS__SETKEYCREATE, NULL);
6398 		break;
6399 	case LSM_ATTR_SOCKCREATE:
6400 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6401 				     PROCESS__SETSOCKCREATE, NULL);
6402 		break;
6403 	case LSM_ATTR_CURRENT:
6404 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6405 				     PROCESS__SETCURRENT, NULL);
6406 		break;
6407 	default:
6408 		error = -EOPNOTSUPP;
6409 		break;
6410 	}
6411 	if (error)
6412 		return error;
6413 
6414 	/* Obtain a SID for the context, if one was specified. */
6415 	if (size && str[0] && str[0] != '\n') {
6416 		if (str[size-1] == '\n') {
6417 			str[size-1] = 0;
6418 			size--;
6419 		}
6420 		error = security_context_to_sid(value, size,
6421 						&sid, GFP_KERNEL);
6422 		if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) {
6423 			if (!has_cap_mac_admin(true)) {
6424 				struct audit_buffer *ab;
6425 				size_t audit_size;
6426 
6427 				/* We strip a nul only if it is at the end,
6428 				 * otherwise the context contains a nul and
6429 				 * we should audit that */
6430 				if (str[size - 1] == '\0')
6431 					audit_size = size - 1;
6432 				else
6433 					audit_size = size;
6434 				ab = audit_log_start(audit_context(),
6435 						     GFP_ATOMIC,
6436 						     AUDIT_SELINUX_ERR);
6437 				if (!ab)
6438 					return error;
6439 				audit_log_format(ab, "op=fscreate invalid_context=");
6440 				audit_log_n_untrustedstring(ab, value,
6441 							    audit_size);
6442 				audit_log_end(ab);
6443 
6444 				return error;
6445 			}
6446 			error = security_context_to_sid_force(value, size,
6447 							&sid);
6448 		}
6449 		if (error)
6450 			return error;
6451 	}
6452 
6453 	new = prepare_creds();
6454 	if (!new)
6455 		return -ENOMEM;
6456 
6457 	/* Permission checking based on the specified context is
6458 	   performed during the actual operation (execve,
6459 	   open/mkdir/...), when we know the full context of the
6460 	   operation.  See selinux_bprm_creds_for_exec for the execve
6461 	   checks and may_create for the file creation checks. The
6462 	   operation will then fail if the context is not permitted. */
6463 	tsec = selinux_cred(new);
6464 	if (attr == LSM_ATTR_EXEC) {
6465 		tsec->exec_sid = sid;
6466 	} else if (attr == LSM_ATTR_FSCREATE) {
6467 		tsec->create_sid = sid;
6468 	} else if (attr == LSM_ATTR_KEYCREATE) {
6469 		if (sid) {
6470 			error = avc_has_perm(mysid, sid,
6471 					     SECCLASS_KEY, KEY__CREATE, NULL);
6472 			if (error)
6473 				goto abort_change;
6474 		}
6475 		tsec->keycreate_sid = sid;
6476 	} else if (attr == LSM_ATTR_SOCKCREATE) {
6477 		tsec->sockcreate_sid = sid;
6478 	} else if (attr == LSM_ATTR_CURRENT) {
6479 		error = -EINVAL;
6480 		if (sid == 0)
6481 			goto abort_change;
6482 
6483 		if (!current_is_single_threaded()) {
6484 			error = security_bounded_transition(tsec->sid, sid);
6485 			if (error)
6486 				goto abort_change;
6487 		}
6488 
6489 		/* Check permissions for the transition. */
6490 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
6491 				     PROCESS__DYNTRANSITION, NULL);
6492 		if (error)
6493 			goto abort_change;
6494 
6495 		/* Check for ptracing, and update the task SID if ok.
6496 		   Otherwise, leave SID unchanged and fail. */
6497 		ptsid = ptrace_parent_sid();
6498 		if (ptsid != 0) {
6499 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
6500 					     PROCESS__PTRACE, NULL);
6501 			if (error)
6502 				goto abort_change;
6503 		}
6504 
6505 		tsec->sid = sid;
6506 	} else {
6507 		error = -EINVAL;
6508 		goto abort_change;
6509 	}
6510 
6511 	commit_creds(new);
6512 	return size;
6513 
6514 abort_change:
6515 	abort_creds(new);
6516 	return error;
6517 }
6518 
6519 /**
6520  * selinux_getselfattr - Get SELinux current task attributes
6521  * @attr: the requested attribute
6522  * @ctx: buffer to receive the result
6523  * @size: buffer size (input), buffer size used (output)
6524  * @flags: unused
6525  *
6526  * Fill the passed user space @ctx with the details of the requested
6527  * attribute.
6528  *
6529  * Returns the number of attributes on success, an error code otherwise.
6530  * There will only ever be one attribute.
6531  */
6532 static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx,
6533 			       u32 *size, u32 flags)
6534 {
6535 	int rc;
6536 	char *val = NULL;
6537 	int val_len;
6538 
6539 	val_len = selinux_lsm_getattr(attr, current, &val);
6540 	if (val_len < 0)
6541 		return val_len;
6542 	rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0);
6543 	kfree(val);
6544 	return (!rc ? 1 : rc);
6545 }
6546 
6547 static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx,
6548 			       u32 size, u32 flags)
6549 {
6550 	int rc;
6551 
6552 	rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len);
6553 	if (rc > 0)
6554 		return 0;
6555 	return rc;
6556 }
6557 
6558 static int selinux_getprocattr(struct task_struct *p,
6559 			       const char *name, char **value)
6560 {
6561 	unsigned int attr = lsm_name_to_attr(name);
6562 	int rc;
6563 
6564 	if (attr) {
6565 		rc = selinux_lsm_getattr(attr, p, value);
6566 		if (rc != -EOPNOTSUPP)
6567 			return rc;
6568 	}
6569 
6570 	return -EINVAL;
6571 }
6572 
6573 static int selinux_setprocattr(const char *name, void *value, size_t size)
6574 {
6575 	int attr = lsm_name_to_attr(name);
6576 
6577 	if (attr)
6578 		return selinux_lsm_setattr(attr, value, size);
6579 	return -EINVAL;
6580 }
6581 
6582 static int selinux_ismaclabel(const char *name)
6583 {
6584 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6585 }
6586 
6587 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6588 {
6589 	return security_sid_to_context(secid,
6590 				       secdata, seclen);
6591 }
6592 
6593 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6594 {
6595 	return security_context_to_sid(secdata, seclen,
6596 				       secid, GFP_KERNEL);
6597 }
6598 
6599 static void selinux_release_secctx(char *secdata, u32 seclen)
6600 {
6601 	kfree(secdata);
6602 }
6603 
6604 static void selinux_inode_invalidate_secctx(struct inode *inode)
6605 {
6606 	struct inode_security_struct *isec = selinux_inode(inode);
6607 
6608 	spin_lock(&isec->lock);
6609 	isec->initialized = LABEL_INVALID;
6610 	spin_unlock(&isec->lock);
6611 }
6612 
6613 /*
6614  *	called with inode->i_mutex locked
6615  */
6616 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6617 {
6618 	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6619 					   ctx, ctxlen, 0);
6620 	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6621 	return rc == -EOPNOTSUPP ? 0 : rc;
6622 }
6623 
6624 /*
6625  *	called with inode->i_mutex locked
6626  */
6627 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6628 {
6629 	return __vfs_setxattr_noperm(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX,
6630 				     ctx, ctxlen, 0);
6631 }
6632 
6633 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6634 {
6635 	int len = 0;
6636 	len = selinux_inode_getsecurity(&nop_mnt_idmap, inode,
6637 					XATTR_SELINUX_SUFFIX, ctx, true);
6638 	if (len < 0)
6639 		return len;
6640 	*ctxlen = len;
6641 	return 0;
6642 }
6643 #ifdef CONFIG_KEYS
6644 
6645 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6646 			     unsigned long flags)
6647 {
6648 	const struct task_security_struct *tsec;
6649 	struct key_security_struct *ksec = selinux_key(k);
6650 
6651 	tsec = selinux_cred(cred);
6652 	if (tsec->keycreate_sid)
6653 		ksec->sid = tsec->keycreate_sid;
6654 	else
6655 		ksec->sid = tsec->sid;
6656 
6657 	return 0;
6658 }
6659 
6660 static int selinux_key_permission(key_ref_t key_ref,
6661 				  const struct cred *cred,
6662 				  enum key_need_perm need_perm)
6663 {
6664 	struct key *key;
6665 	struct key_security_struct *ksec;
6666 	u32 perm, sid;
6667 
6668 	switch (need_perm) {
6669 	case KEY_NEED_VIEW:
6670 		perm = KEY__VIEW;
6671 		break;
6672 	case KEY_NEED_READ:
6673 		perm = KEY__READ;
6674 		break;
6675 	case KEY_NEED_WRITE:
6676 		perm = KEY__WRITE;
6677 		break;
6678 	case KEY_NEED_SEARCH:
6679 		perm = KEY__SEARCH;
6680 		break;
6681 	case KEY_NEED_LINK:
6682 		perm = KEY__LINK;
6683 		break;
6684 	case KEY_NEED_SETATTR:
6685 		perm = KEY__SETATTR;
6686 		break;
6687 	case KEY_NEED_UNLINK:
6688 	case KEY_SYSADMIN_OVERRIDE:
6689 	case KEY_AUTHTOKEN_OVERRIDE:
6690 	case KEY_DEFER_PERM_CHECK:
6691 		return 0;
6692 	default:
6693 		WARN_ON(1);
6694 		return -EPERM;
6695 
6696 	}
6697 
6698 	sid = cred_sid(cred);
6699 	key = key_ref_to_ptr(key_ref);
6700 	ksec = selinux_key(key);
6701 
6702 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6703 }
6704 
6705 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6706 {
6707 	struct key_security_struct *ksec = selinux_key(key);
6708 	char *context = NULL;
6709 	unsigned len;
6710 	int rc;
6711 
6712 	rc = security_sid_to_context(ksec->sid,
6713 				     &context, &len);
6714 	if (!rc)
6715 		rc = len;
6716 	*_buffer = context;
6717 	return rc;
6718 }
6719 
6720 #ifdef CONFIG_KEY_NOTIFICATIONS
6721 static int selinux_watch_key(struct key *key)
6722 {
6723 	struct key_security_struct *ksec = key->security;
6724 	u32 sid = current_sid();
6725 
6726 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6727 }
6728 #endif
6729 #endif
6730 
6731 #ifdef CONFIG_SECURITY_INFINIBAND
6732 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6733 {
6734 	struct common_audit_data ad;
6735 	int err;
6736 	u32 sid = 0;
6737 	struct ib_security_struct *sec = ib_sec;
6738 	struct lsm_ibpkey_audit ibpkey;
6739 
6740 	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6741 	if (err)
6742 		return err;
6743 
6744 	ad.type = LSM_AUDIT_DATA_IBPKEY;
6745 	ibpkey.subnet_prefix = subnet_prefix;
6746 	ibpkey.pkey = pkey_val;
6747 	ad.u.ibpkey = &ibpkey;
6748 	return avc_has_perm(sec->sid, sid,
6749 			    SECCLASS_INFINIBAND_PKEY,
6750 			    INFINIBAND_PKEY__ACCESS, &ad);
6751 }
6752 
6753 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6754 					    u8 port_num)
6755 {
6756 	struct common_audit_data ad;
6757 	int err;
6758 	u32 sid = 0;
6759 	struct ib_security_struct *sec = ib_sec;
6760 	struct lsm_ibendport_audit ibendport;
6761 
6762 	err = security_ib_endport_sid(dev_name, port_num,
6763 				      &sid);
6764 
6765 	if (err)
6766 		return err;
6767 
6768 	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6769 	ibendport.dev_name = dev_name;
6770 	ibendport.port = port_num;
6771 	ad.u.ibendport = &ibendport;
6772 	return avc_has_perm(sec->sid, sid,
6773 			    SECCLASS_INFINIBAND_ENDPORT,
6774 			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6775 }
6776 
6777 static int selinux_ib_alloc_security(void *ib_sec)
6778 {
6779 	struct ib_security_struct *sec = selinux_ib(ib_sec);
6780 
6781 	sec->sid = current_sid();
6782 	return 0;
6783 }
6784 #endif
6785 
6786 #ifdef CONFIG_BPF_SYSCALL
6787 static int selinux_bpf(int cmd, union bpf_attr *attr,
6788 				     unsigned int size)
6789 {
6790 	u32 sid = current_sid();
6791 	int ret;
6792 
6793 	switch (cmd) {
6794 	case BPF_MAP_CREATE:
6795 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6796 				   NULL);
6797 		break;
6798 	case BPF_PROG_LOAD:
6799 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6800 				   NULL);
6801 		break;
6802 	default:
6803 		ret = 0;
6804 		break;
6805 	}
6806 
6807 	return ret;
6808 }
6809 
6810 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6811 {
6812 	u32 av = 0;
6813 
6814 	if (fmode & FMODE_READ)
6815 		av |= BPF__MAP_READ;
6816 	if (fmode & FMODE_WRITE)
6817 		av |= BPF__MAP_WRITE;
6818 	return av;
6819 }
6820 
6821 /* This function will check the file pass through unix socket or binder to see
6822  * if it is a bpf related object. And apply corresponding checks on the bpf
6823  * object based on the type. The bpf maps and programs, not like other files and
6824  * socket, are using a shared anonymous inode inside the kernel as their inode.
6825  * So checking that inode cannot identify if the process have privilege to
6826  * access the bpf object and that's why we have to add this additional check in
6827  * selinux_file_receive and selinux_binder_transfer_files.
6828  */
6829 static int bpf_fd_pass(const struct file *file, u32 sid)
6830 {
6831 	struct bpf_security_struct *bpfsec;
6832 	struct bpf_prog *prog;
6833 	struct bpf_map *map;
6834 	int ret;
6835 
6836 	if (file->f_op == &bpf_map_fops) {
6837 		map = file->private_data;
6838 		bpfsec = map->security;
6839 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6840 				   bpf_map_fmode_to_av(file->f_mode), NULL);
6841 		if (ret)
6842 			return ret;
6843 	} else if (file->f_op == &bpf_prog_fops) {
6844 		prog = file->private_data;
6845 		bpfsec = prog->aux->security;
6846 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6847 				   BPF__PROG_RUN, NULL);
6848 		if (ret)
6849 			return ret;
6850 	}
6851 	return 0;
6852 }
6853 
6854 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6855 {
6856 	u32 sid = current_sid();
6857 	struct bpf_security_struct *bpfsec;
6858 
6859 	bpfsec = map->security;
6860 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6861 			    bpf_map_fmode_to_av(fmode), NULL);
6862 }
6863 
6864 static int selinux_bpf_prog(struct bpf_prog *prog)
6865 {
6866 	u32 sid = current_sid();
6867 	struct bpf_security_struct *bpfsec;
6868 
6869 	bpfsec = prog->aux->security;
6870 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6871 			    BPF__PROG_RUN, NULL);
6872 }
6873 
6874 static int selinux_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
6875 				  struct bpf_token *token)
6876 {
6877 	struct bpf_security_struct *bpfsec;
6878 
6879 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6880 	if (!bpfsec)
6881 		return -ENOMEM;
6882 
6883 	bpfsec->sid = current_sid();
6884 	map->security = bpfsec;
6885 
6886 	return 0;
6887 }
6888 
6889 static void selinux_bpf_map_free(struct bpf_map *map)
6890 {
6891 	struct bpf_security_struct *bpfsec = map->security;
6892 
6893 	map->security = NULL;
6894 	kfree(bpfsec);
6895 }
6896 
6897 static int selinux_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
6898 				 struct bpf_token *token)
6899 {
6900 	struct bpf_security_struct *bpfsec;
6901 
6902 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6903 	if (!bpfsec)
6904 		return -ENOMEM;
6905 
6906 	bpfsec->sid = current_sid();
6907 	prog->aux->security = bpfsec;
6908 
6909 	return 0;
6910 }
6911 
6912 static void selinux_bpf_prog_free(struct bpf_prog *prog)
6913 {
6914 	struct bpf_security_struct *bpfsec = prog->aux->security;
6915 
6916 	prog->aux->security = NULL;
6917 	kfree(bpfsec);
6918 }
6919 
6920 static int selinux_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
6921 				    struct path *path)
6922 {
6923 	struct bpf_security_struct *bpfsec;
6924 
6925 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6926 	if (!bpfsec)
6927 		return -ENOMEM;
6928 
6929 	bpfsec->sid = current_sid();
6930 	token->security = bpfsec;
6931 
6932 	return 0;
6933 }
6934 
6935 static void selinux_bpf_token_free(struct bpf_token *token)
6936 {
6937 	struct bpf_security_struct *bpfsec = token->security;
6938 
6939 	token->security = NULL;
6940 	kfree(bpfsec);
6941 }
6942 #endif
6943 
6944 struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = {
6945 	.lbs_cred = sizeof(struct task_security_struct),
6946 	.lbs_file = sizeof(struct file_security_struct),
6947 	.lbs_inode = sizeof(struct inode_security_struct),
6948 	.lbs_ipc = sizeof(struct ipc_security_struct),
6949 	.lbs_key = sizeof(struct key_security_struct),
6950 	.lbs_msg_msg = sizeof(struct msg_security_struct),
6951 #ifdef CONFIG_PERF_EVENTS
6952 	.lbs_perf_event = sizeof(struct perf_event_security_struct),
6953 #endif
6954 	.lbs_sock = sizeof(struct sk_security_struct),
6955 	.lbs_superblock = sizeof(struct superblock_security_struct),
6956 	.lbs_xattr_count = SELINUX_INODE_INIT_XATTRS,
6957 	.lbs_tun_dev = sizeof(struct tun_security_struct),
6958 	.lbs_ib = sizeof(struct ib_security_struct),
6959 };
6960 
6961 #ifdef CONFIG_PERF_EVENTS
6962 static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6963 {
6964 	u32 requested, sid = current_sid();
6965 
6966 	if (type == PERF_SECURITY_OPEN)
6967 		requested = PERF_EVENT__OPEN;
6968 	else if (type == PERF_SECURITY_CPU)
6969 		requested = PERF_EVENT__CPU;
6970 	else if (type == PERF_SECURITY_KERNEL)
6971 		requested = PERF_EVENT__KERNEL;
6972 	else if (type == PERF_SECURITY_TRACEPOINT)
6973 		requested = PERF_EVENT__TRACEPOINT;
6974 	else
6975 		return -EINVAL;
6976 
6977 	return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT,
6978 			    requested, NULL);
6979 }
6980 
6981 static int selinux_perf_event_alloc(struct perf_event *event)
6982 {
6983 	struct perf_event_security_struct *perfsec;
6984 
6985 	perfsec = selinux_perf_event(event->security);
6986 	perfsec->sid = current_sid();
6987 
6988 	return 0;
6989 }
6990 
6991 static int selinux_perf_event_read(struct perf_event *event)
6992 {
6993 	struct perf_event_security_struct *perfsec = event->security;
6994 	u32 sid = current_sid();
6995 
6996 	return avc_has_perm(sid, perfsec->sid,
6997 			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6998 }
6999 
7000 static int selinux_perf_event_write(struct perf_event *event)
7001 {
7002 	struct perf_event_security_struct *perfsec = event->security;
7003 	u32 sid = current_sid();
7004 
7005 	return avc_has_perm(sid, perfsec->sid,
7006 			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7007 }
7008 #endif
7009 
7010 #ifdef CONFIG_IO_URING
7011 /**
7012  * selinux_uring_override_creds - check the requested cred override
7013  * @new: the target creds
7014  *
7015  * Check to see if the current task is allowed to override it's credentials
7016  * to service an io_uring operation.
7017  */
7018 static int selinux_uring_override_creds(const struct cred *new)
7019 {
7020 	return avc_has_perm(current_sid(), cred_sid(new),
7021 			    SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
7022 }
7023 
7024 /**
7025  * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7026  *
7027  * Check to see if the current task is allowed to create a new io_uring
7028  * kernel polling thread.
7029  */
7030 static int selinux_uring_sqpoll(void)
7031 {
7032 	u32 sid = current_sid();
7033 
7034 	return avc_has_perm(sid, sid,
7035 			    SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7036 }
7037 
7038 /**
7039  * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7040  * @ioucmd: the io_uring command structure
7041  *
7042  * Check to see if the current domain is allowed to execute an
7043  * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7044  *
7045  */
7046 static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7047 {
7048 	struct file *file = ioucmd->file;
7049 	struct inode *inode = file_inode(file);
7050 	struct inode_security_struct *isec = selinux_inode(inode);
7051 	struct common_audit_data ad;
7052 
7053 	ad.type = LSM_AUDIT_DATA_FILE;
7054 	ad.u.file = file;
7055 
7056 	return avc_has_perm(current_sid(), isec->sid,
7057 			    SECCLASS_IO_URING, IO_URING__CMD, &ad);
7058 }
7059 #endif /* CONFIG_IO_URING */
7060 
7061 static const struct lsm_id selinux_lsmid = {
7062 	.name = "selinux",
7063 	.id = LSM_ID_SELINUX,
7064 };
7065 
7066 /*
7067  * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7068  * 1. any hooks that don't belong to (2.) or (3.) below,
7069  * 2. hooks that both access structures allocated by other hooks, and allocate
7070  *    structures that can be later accessed by other hooks (mostly "cloning"
7071  *    hooks),
7072  * 3. hooks that only allocate structures that can be later accessed by other
7073  *    hooks ("allocating" hooks).
7074  *
7075  * Please follow block comment delimiters in the list to keep this order.
7076  */
7077 static struct security_hook_list selinux_hooks[] __ro_after_init = {
7078 	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7079 	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7080 	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7081 	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7082 
7083 	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7084 	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7085 	LSM_HOOK_INIT(capget, selinux_capget),
7086 	LSM_HOOK_INIT(capset, selinux_capset),
7087 	LSM_HOOK_INIT(capable, selinux_capable),
7088 	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7089 	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7090 	LSM_HOOK_INIT(syslog, selinux_syslog),
7091 	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7092 
7093 	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7094 
7095 	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7096 	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7097 	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7098 
7099 	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7100 	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7101 	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7102 	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7103 	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7104 	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7105 	LSM_HOOK_INIT(sb_mount, selinux_mount),
7106 	LSM_HOOK_INIT(sb_umount, selinux_umount),
7107 	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7108 	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7109 
7110 	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7111 
7112 	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7113 	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7114 
7115 	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7116 	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7117 	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7118 	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7119 	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7120 	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7121 	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7122 	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7123 	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7124 	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7125 	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7126 	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7127 	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7128 	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7129 	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7130 	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7131 	LSM_HOOK_INIT(inode_xattr_skipcap, selinux_inode_xattr_skipcap),
7132 	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7133 	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7134 	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7135 	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7136 	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7137 	LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7138 	LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7139 	LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7140 	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7141 	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7142 	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7143 	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7144 	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7145 	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7146 	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7147 
7148 	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7149 
7150 	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7151 	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7152 	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7153 	LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat),
7154 	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7155 	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7156 	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7157 	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7158 	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7159 	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7160 	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7161 	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7162 
7163 	LSM_HOOK_INIT(file_open, selinux_file_open),
7164 
7165 	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7166 	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7167 	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7168 	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7169 	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7170 	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7171 	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7172 	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7173 	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7174 	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7175 	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7176 	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7177 	LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7178 	LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7179 	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7180 	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7181 	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7182 	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7183 	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7184 	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7185 	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7186 	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7187 	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7188 	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7189 	LSM_HOOK_INIT(userns_create, selinux_userns_create),
7190 
7191 	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7192 	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7193 
7194 	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7195 	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7196 	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7197 	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7198 
7199 	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7200 	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7201 	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7202 
7203 	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7204 	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7205 	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7206 
7207 	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7208 
7209 	LSM_HOOK_INIT(getselfattr, selinux_getselfattr),
7210 	LSM_HOOK_INIT(setselfattr, selinux_setselfattr),
7211 	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7212 	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7213 
7214 	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7215 	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7216 	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7217 	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7218 	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7219 	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7220 
7221 	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7222 	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7223 
7224 	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7225 	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7226 	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7227 	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7228 	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7229 	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7230 	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7231 	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7232 	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7233 	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7234 	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7235 	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7236 	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7237 	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7238 	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7239 	LSM_HOOK_INIT(socket_getpeersec_stream,
7240 			selinux_socket_getpeersec_stream),
7241 	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7242 	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7243 	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7244 	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7245 	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7246 	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7247 	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7248 	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7249 	LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7250 	LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow),
7251 	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7252 	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7253 	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7254 	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7255 	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7256 	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7257 	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7258 	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7259 	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7260 	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7261 	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7262 #ifdef CONFIG_SECURITY_INFINIBAND
7263 	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7264 	LSM_HOOK_INIT(ib_endport_manage_subnet,
7265 		      selinux_ib_endport_manage_subnet),
7266 #endif
7267 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7268 	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7269 	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7270 	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7271 	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7272 	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7273 	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7274 			selinux_xfrm_state_pol_flow_match),
7275 	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7276 #endif
7277 
7278 #ifdef CONFIG_KEYS
7279 	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7280 	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7281 #ifdef CONFIG_KEY_NOTIFICATIONS
7282 	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7283 #endif
7284 #endif
7285 
7286 #ifdef CONFIG_AUDIT
7287 	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7288 	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7289 	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7290 #endif
7291 
7292 #ifdef CONFIG_BPF_SYSCALL
7293 	LSM_HOOK_INIT(bpf, selinux_bpf),
7294 	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7295 	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7296 	LSM_HOOK_INIT(bpf_map_free, selinux_bpf_map_free),
7297 	LSM_HOOK_INIT(bpf_prog_free, selinux_bpf_prog_free),
7298 	LSM_HOOK_INIT(bpf_token_free, selinux_bpf_token_free),
7299 #endif
7300 
7301 #ifdef CONFIG_PERF_EVENTS
7302 	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7303 	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7304 	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7305 #endif
7306 
7307 #ifdef CONFIG_IO_URING
7308 	LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7309 	LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7310 	LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7311 #endif
7312 
7313 	/*
7314 	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7315 	 */
7316 	LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount),
7317 	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7318 	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7319 	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7320 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7321 	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7322 #endif
7323 
7324 	/*
7325 	 * PUT "ALLOCATING" HOOKS HERE
7326 	 */
7327 	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7328 	LSM_HOOK_INIT(msg_queue_alloc_security,
7329 		      selinux_msg_queue_alloc_security),
7330 	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7331 	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7332 	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7333 	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7334 	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7335 	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7336 	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7337 	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7338 #ifdef CONFIG_SECURITY_INFINIBAND
7339 	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7340 #endif
7341 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7342 	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7343 	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7344 	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7345 		      selinux_xfrm_state_alloc_acquire),
7346 #endif
7347 #ifdef CONFIG_KEYS
7348 	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7349 #endif
7350 #ifdef CONFIG_AUDIT
7351 	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7352 #endif
7353 #ifdef CONFIG_BPF_SYSCALL
7354 	LSM_HOOK_INIT(bpf_map_create, selinux_bpf_map_create),
7355 	LSM_HOOK_INIT(bpf_prog_load, selinux_bpf_prog_load),
7356 	LSM_HOOK_INIT(bpf_token_create, selinux_bpf_token_create),
7357 #endif
7358 #ifdef CONFIG_PERF_EVENTS
7359 	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7360 #endif
7361 };
7362 
7363 static __init int selinux_init(void)
7364 {
7365 	pr_info("SELinux:  Initializing.\n");
7366 
7367 	memset(&selinux_state, 0, sizeof(selinux_state));
7368 	enforcing_set(selinux_enforcing_boot);
7369 	selinux_avc_init();
7370 	mutex_init(&selinux_state.status_lock);
7371 	mutex_init(&selinux_state.policy_mutex);
7372 
7373 	/* Set the security state for the initial task. */
7374 	cred_init_security();
7375 
7376 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7377 	if (!default_noexec)
7378 		pr_notice("SELinux:  virtual memory is executable by default\n");
7379 
7380 	avc_init();
7381 
7382 	avtab_cache_init();
7383 
7384 	ebitmap_cache_init();
7385 
7386 	hashtab_cache_init();
7387 
7388 	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks),
7389 			   &selinux_lsmid);
7390 
7391 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7392 		panic("SELinux: Unable to register AVC netcache callback\n");
7393 
7394 	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7395 		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7396 
7397 	if (selinux_enforcing_boot)
7398 		pr_debug("SELinux:  Starting in enforcing mode\n");
7399 	else
7400 		pr_debug("SELinux:  Starting in permissive mode\n");
7401 
7402 	fs_validate_description("selinux", selinux_fs_parameters);
7403 
7404 	return 0;
7405 }
7406 
7407 static void delayed_superblock_init(struct super_block *sb, void *unused)
7408 {
7409 	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7410 }
7411 
7412 void selinux_complete_init(void)
7413 {
7414 	pr_debug("SELinux:  Completing initialization.\n");
7415 
7416 	/* Set up any superblocks initialized prior to the policy load. */
7417 	pr_debug("SELinux:  Setting up existing superblocks.\n");
7418 	iterate_supers(delayed_superblock_init, NULL);
7419 }
7420 
7421 /* SELinux requires early initialization in order to label
7422    all processes and objects when they are created. */
7423 DEFINE_LSM(selinux) = {
7424 	.name = "selinux",
7425 	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7426 	.enabled = &selinux_enabled_boot,
7427 	.blobs = &selinux_blob_sizes,
7428 	.init = selinux_init,
7429 };
7430 
7431 #if defined(CONFIG_NETFILTER)
7432 static const struct nf_hook_ops selinux_nf_ops[] = {
7433 	{
7434 		.hook =		selinux_ip_postroute,
7435 		.pf =		NFPROTO_IPV4,
7436 		.hooknum =	NF_INET_POST_ROUTING,
7437 		.priority =	NF_IP_PRI_SELINUX_LAST,
7438 	},
7439 	{
7440 		.hook =		selinux_ip_forward,
7441 		.pf =		NFPROTO_IPV4,
7442 		.hooknum =	NF_INET_FORWARD,
7443 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7444 	},
7445 	{
7446 		.hook =		selinux_ip_output,
7447 		.pf =		NFPROTO_IPV4,
7448 		.hooknum =	NF_INET_LOCAL_OUT,
7449 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7450 	},
7451 #if IS_ENABLED(CONFIG_IPV6)
7452 	{
7453 		.hook =		selinux_ip_postroute,
7454 		.pf =		NFPROTO_IPV6,
7455 		.hooknum =	NF_INET_POST_ROUTING,
7456 		.priority =	NF_IP6_PRI_SELINUX_LAST,
7457 	},
7458 	{
7459 		.hook =		selinux_ip_forward,
7460 		.pf =		NFPROTO_IPV6,
7461 		.hooknum =	NF_INET_FORWARD,
7462 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7463 	},
7464 	{
7465 		.hook =		selinux_ip_output,
7466 		.pf =		NFPROTO_IPV6,
7467 		.hooknum =	NF_INET_LOCAL_OUT,
7468 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7469 	},
7470 #endif	/* IPV6 */
7471 };
7472 
7473 static int __net_init selinux_nf_register(struct net *net)
7474 {
7475 	return nf_register_net_hooks(net, selinux_nf_ops,
7476 				     ARRAY_SIZE(selinux_nf_ops));
7477 }
7478 
7479 static void __net_exit selinux_nf_unregister(struct net *net)
7480 {
7481 	nf_unregister_net_hooks(net, selinux_nf_ops,
7482 				ARRAY_SIZE(selinux_nf_ops));
7483 }
7484 
7485 static struct pernet_operations selinux_net_ops = {
7486 	.init = selinux_nf_register,
7487 	.exit = selinux_nf_unregister,
7488 };
7489 
7490 static int __init selinux_nf_ip_init(void)
7491 {
7492 	int err;
7493 
7494 	if (!selinux_enabled_boot)
7495 		return 0;
7496 
7497 	pr_debug("SELinux:  Registering netfilter hooks\n");
7498 
7499 	err = register_pernet_subsys(&selinux_net_ops);
7500 	if (err)
7501 		panic("SELinux: register_pernet_subsys: error %d\n", err);
7502 
7503 	return 0;
7504 }
7505 __initcall(selinux_nf_ip_init);
7506 #endif /* CONFIG_NETFILTER */
7507