xref: /linux/security/selinux/hooks.c (revision aaa44952bbd1d4db14a4d676bf9595bb5db7e7b0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  NSA Security-Enhanced Linux (SELinux) security module
4  *
5  *  This file contains the SELinux hook function implementations.
6  *
7  *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
8  *	      Chris Vance, <cvance@nai.com>
9  *	      Wayne Salamon, <wsalamon@nai.com>
10  *	      James Morris <jmorris@redhat.com>
11  *
12  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14  *					   Eric Paris <eparis@redhat.com>
15  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  *			    <dgoeddel@trustedcs.com>
17  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18  *	Paul Moore <paul@paul-moore.com>
19  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
21  *  Copyright (C) 2016 Mellanox Technologies
22  */
23 
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched/signal.h>
31 #include <linux/sched/task.h>
32 #include <linux/lsm_hooks.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51 #include <linux/netfilter_ipv4.h>
52 #include <linux/netfilter_ipv6.h>
53 #include <linux/tty.h>
54 #include <net/icmp.h>
55 #include <net/ip.h>		/* for local_port_range[] */
56 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
57 #include <net/inet_connection_sock.h>
58 #include <net/net_namespace.h>
59 #include <net/netlabel.h>
60 #include <linux/uaccess.h>
61 #include <asm/ioctls.h>
62 #include <linux/atomic.h>
63 #include <linux/bitops.h>
64 #include <linux/interrupt.h>
65 #include <linux/netdevice.h>	/* for network interface checks */
66 #include <net/netlink.h>
67 #include <linux/tcp.h>
68 #include <linux/udp.h>
69 #include <linux/dccp.h>
70 #include <linux/sctp.h>
71 #include <net/sctp/structs.h>
72 #include <linux/quota.h>
73 #include <linux/un.h>		/* for Unix socket types */
74 #include <net/af_unix.h>	/* for Unix socket types */
75 #include <linux/parser.h>
76 #include <linux/nfs_mount.h>
77 #include <net/ipv6.h>
78 #include <linux/hugetlb.h>
79 #include <linux/personality.h>
80 #include <linux/audit.h>
81 #include <linux/string.h>
82 #include <linux/mutex.h>
83 #include <linux/posix-timers.h>
84 #include <linux/syslog.h>
85 #include <linux/user_namespace.h>
86 #include <linux/export.h>
87 #include <linux/msg.h>
88 #include <linux/shm.h>
89 #include <linux/bpf.h>
90 #include <linux/kernfs.h>
91 #include <linux/stringhash.h>	/* for hashlen_string() */
92 #include <uapi/linux/mount.h>
93 #include <linux/fsnotify.h>
94 #include <linux/fanotify.h>
95 
96 #include "avc.h"
97 #include "objsec.h"
98 #include "netif.h"
99 #include "netnode.h"
100 #include "netport.h"
101 #include "ibpkey.h"
102 #include "xfrm.h"
103 #include "netlabel.h"
104 #include "audit.h"
105 #include "avc_ss.h"
106 
107 struct selinux_state selinux_state;
108 
109 /* SECMARK reference count */
110 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
111 
112 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
113 static int selinux_enforcing_boot __initdata;
114 
115 static int __init enforcing_setup(char *str)
116 {
117 	unsigned long enforcing;
118 	if (!kstrtoul(str, 0, &enforcing))
119 		selinux_enforcing_boot = enforcing ? 1 : 0;
120 	return 1;
121 }
122 __setup("enforcing=", enforcing_setup);
123 #else
124 #define selinux_enforcing_boot 1
125 #endif
126 
127 int selinux_enabled_boot __initdata = 1;
128 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
129 static int __init selinux_enabled_setup(char *str)
130 {
131 	unsigned long enabled;
132 	if (!kstrtoul(str, 0, &enabled))
133 		selinux_enabled_boot = enabled ? 1 : 0;
134 	return 1;
135 }
136 __setup("selinux=", selinux_enabled_setup);
137 #endif
138 
139 static unsigned int selinux_checkreqprot_boot =
140 	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
141 
142 static int __init checkreqprot_setup(char *str)
143 {
144 	unsigned long checkreqprot;
145 
146 	if (!kstrtoul(str, 0, &checkreqprot)) {
147 		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
148 		if (checkreqprot)
149 			pr_warn("SELinux: checkreqprot set to 1 via kernel parameter.  This is deprecated and will be rejected in a future kernel release.\n");
150 	}
151 	return 1;
152 }
153 __setup("checkreqprot=", checkreqprot_setup);
154 
155 /**
156  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157  *
158  * Description:
159  * This function checks the SECMARK reference counter to see if any SECMARK
160  * targets are currently configured, if the reference counter is greater than
161  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
162  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
163  * policy capability is enabled, SECMARK is always considered enabled.
164  *
165  */
166 static int selinux_secmark_enabled(void)
167 {
168 	return (selinux_policycap_alwaysnetwork() ||
169 		atomic_read(&selinux_secmark_refcount));
170 }
171 
172 /**
173  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174  *
175  * Description:
176  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
177  * (1) if any are enabled or false (0) if neither are enabled.  If the
178  * always_check_network policy capability is enabled, peer labeling
179  * is always considered enabled.
180  *
181  */
182 static int selinux_peerlbl_enabled(void)
183 {
184 	return (selinux_policycap_alwaysnetwork() ||
185 		netlbl_enabled() || selinux_xfrm_enabled());
186 }
187 
188 static int selinux_netcache_avc_callback(u32 event)
189 {
190 	if (event == AVC_CALLBACK_RESET) {
191 		sel_netif_flush();
192 		sel_netnode_flush();
193 		sel_netport_flush();
194 		synchronize_net();
195 	}
196 	return 0;
197 }
198 
199 static int selinux_lsm_notifier_avc_callback(u32 event)
200 {
201 	if (event == AVC_CALLBACK_RESET) {
202 		sel_ib_pkey_flush();
203 		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 	}
205 
206 	return 0;
207 }
208 
209 /*
210  * initialise the security for the init task
211  */
212 static void cred_init_security(void)
213 {
214 	struct cred *cred = (struct cred *) current->real_cred;
215 	struct task_security_struct *tsec;
216 
217 	tsec = selinux_cred(cred);
218 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
219 }
220 
221 /*
222  * get the security ID of a set of credentials
223  */
224 static inline u32 cred_sid(const struct cred *cred)
225 {
226 	const struct task_security_struct *tsec;
227 
228 	tsec = selinux_cred(cred);
229 	return tsec->sid;
230 }
231 
232 /*
233  * get the subjective security ID of a task
234  */
235 static inline u32 task_sid_subj(const struct task_struct *task)
236 {
237 	u32 sid;
238 
239 	rcu_read_lock();
240 	sid = cred_sid(rcu_dereference(task->cred));
241 	rcu_read_unlock();
242 	return sid;
243 }
244 
245 /*
246  * get the objective security ID of a task
247  */
248 static inline u32 task_sid_obj(const struct task_struct *task)
249 {
250 	u32 sid;
251 
252 	rcu_read_lock();
253 	sid = cred_sid(__task_cred(task));
254 	rcu_read_unlock();
255 	return sid;
256 }
257 
258 /*
259  * get the security ID of a task for use with binder
260  */
261 static inline u32 task_sid_binder(const struct task_struct *task)
262 {
263 	/*
264 	 * In many case where this function is used we should be using the
265 	 * task's subjective SID, but we can't reliably access the subjective
266 	 * creds of a task other than our own so we must use the objective
267 	 * creds/SID, which are safe to access.  The downside is that if a task
268 	 * is temporarily overriding it's creds it will not be reflected here;
269 	 * however, it isn't clear that binder would handle that case well
270 	 * anyway.
271 	 *
272 	 * If this ever changes and we can safely reference the subjective
273 	 * creds/SID of another task, this function will make it easier to
274 	 * identify the various places where we make use of the task SIDs in
275 	 * the binder code.  It is also likely that we will need to adjust
276 	 * the main drivers/android binder code as well.
277 	 */
278 	return task_sid_obj(task);
279 }
280 
281 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
282 
283 /*
284  * Try reloading inode security labels that have been marked as invalid.  The
285  * @may_sleep parameter indicates when sleeping and thus reloading labels is
286  * allowed; when set to false, returns -ECHILD when the label is
287  * invalid.  The @dentry parameter should be set to a dentry of the inode.
288  */
289 static int __inode_security_revalidate(struct inode *inode,
290 				       struct dentry *dentry,
291 				       bool may_sleep)
292 {
293 	struct inode_security_struct *isec = selinux_inode(inode);
294 
295 	might_sleep_if(may_sleep);
296 
297 	if (selinux_initialized(&selinux_state) &&
298 	    isec->initialized != LABEL_INITIALIZED) {
299 		if (!may_sleep)
300 			return -ECHILD;
301 
302 		/*
303 		 * Try reloading the inode security label.  This will fail if
304 		 * @opt_dentry is NULL and no dentry for this inode can be
305 		 * found; in that case, continue using the old label.
306 		 */
307 		inode_doinit_with_dentry(inode, dentry);
308 	}
309 	return 0;
310 }
311 
312 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
313 {
314 	return selinux_inode(inode);
315 }
316 
317 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
318 {
319 	int error;
320 
321 	error = __inode_security_revalidate(inode, NULL, !rcu);
322 	if (error)
323 		return ERR_PTR(error);
324 	return selinux_inode(inode);
325 }
326 
327 /*
328  * Get the security label of an inode.
329  */
330 static struct inode_security_struct *inode_security(struct inode *inode)
331 {
332 	__inode_security_revalidate(inode, NULL, true);
333 	return selinux_inode(inode);
334 }
335 
336 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
337 {
338 	struct inode *inode = d_backing_inode(dentry);
339 
340 	return selinux_inode(inode);
341 }
342 
343 /*
344  * Get the security label of a dentry's backing inode.
345  */
346 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
347 {
348 	struct inode *inode = d_backing_inode(dentry);
349 
350 	__inode_security_revalidate(inode, dentry, true);
351 	return selinux_inode(inode);
352 }
353 
354 static void inode_free_security(struct inode *inode)
355 {
356 	struct inode_security_struct *isec = selinux_inode(inode);
357 	struct superblock_security_struct *sbsec;
358 
359 	if (!isec)
360 		return;
361 	sbsec = selinux_superblock(inode->i_sb);
362 	/*
363 	 * As not all inode security structures are in a list, we check for
364 	 * empty list outside of the lock to make sure that we won't waste
365 	 * time taking a lock doing nothing.
366 	 *
367 	 * The list_del_init() function can be safely called more than once.
368 	 * It should not be possible for this function to be called with
369 	 * concurrent list_add(), but for better safety against future changes
370 	 * in the code, we use list_empty_careful() here.
371 	 */
372 	if (!list_empty_careful(&isec->list)) {
373 		spin_lock(&sbsec->isec_lock);
374 		list_del_init(&isec->list);
375 		spin_unlock(&sbsec->isec_lock);
376 	}
377 }
378 
379 struct selinux_mnt_opts {
380 	const char *fscontext, *context, *rootcontext, *defcontext;
381 };
382 
383 static void selinux_free_mnt_opts(void *mnt_opts)
384 {
385 	struct selinux_mnt_opts *opts = mnt_opts;
386 	kfree(opts->fscontext);
387 	kfree(opts->context);
388 	kfree(opts->rootcontext);
389 	kfree(opts->defcontext);
390 	kfree(opts);
391 }
392 
393 enum {
394 	Opt_error = -1,
395 	Opt_context = 0,
396 	Opt_defcontext = 1,
397 	Opt_fscontext = 2,
398 	Opt_rootcontext = 3,
399 	Opt_seclabel = 4,
400 };
401 
402 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
403 static struct {
404 	const char *name;
405 	int len;
406 	int opt;
407 	bool has_arg;
408 } tokens[] = {
409 	A(context, true),
410 	A(fscontext, true),
411 	A(defcontext, true),
412 	A(rootcontext, true),
413 	A(seclabel, false),
414 };
415 #undef A
416 
417 static int match_opt_prefix(char *s, int l, char **arg)
418 {
419 	int i;
420 
421 	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
422 		size_t len = tokens[i].len;
423 		if (len > l || memcmp(s, tokens[i].name, len))
424 			continue;
425 		if (tokens[i].has_arg) {
426 			if (len == l || s[len] != '=')
427 				continue;
428 			*arg = s + len + 1;
429 		} else if (len != l)
430 			continue;
431 		return tokens[i].opt;
432 	}
433 	return Opt_error;
434 }
435 
436 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
437 
438 static int may_context_mount_sb_relabel(u32 sid,
439 			struct superblock_security_struct *sbsec,
440 			const struct cred *cred)
441 {
442 	const struct task_security_struct *tsec = selinux_cred(cred);
443 	int rc;
444 
445 	rc = avc_has_perm(&selinux_state,
446 			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
447 			  FILESYSTEM__RELABELFROM, NULL);
448 	if (rc)
449 		return rc;
450 
451 	rc = avc_has_perm(&selinux_state,
452 			  tsec->sid, sid, SECCLASS_FILESYSTEM,
453 			  FILESYSTEM__RELABELTO, NULL);
454 	return rc;
455 }
456 
457 static int may_context_mount_inode_relabel(u32 sid,
458 			struct superblock_security_struct *sbsec,
459 			const struct cred *cred)
460 {
461 	const struct task_security_struct *tsec = selinux_cred(cred);
462 	int rc;
463 	rc = avc_has_perm(&selinux_state,
464 			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
465 			  FILESYSTEM__RELABELFROM, NULL);
466 	if (rc)
467 		return rc;
468 
469 	rc = avc_has_perm(&selinux_state,
470 			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
471 			  FILESYSTEM__ASSOCIATE, NULL);
472 	return rc;
473 }
474 
475 static int selinux_is_genfs_special_handling(struct super_block *sb)
476 {
477 	/* Special handling. Genfs but also in-core setxattr handler */
478 	return	!strcmp(sb->s_type->name, "sysfs") ||
479 		!strcmp(sb->s_type->name, "pstore") ||
480 		!strcmp(sb->s_type->name, "debugfs") ||
481 		!strcmp(sb->s_type->name, "tracefs") ||
482 		!strcmp(sb->s_type->name, "rootfs") ||
483 		(selinux_policycap_cgroupseclabel() &&
484 		 (!strcmp(sb->s_type->name, "cgroup") ||
485 		  !strcmp(sb->s_type->name, "cgroup2")));
486 }
487 
488 static int selinux_is_sblabel_mnt(struct super_block *sb)
489 {
490 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
491 
492 	/*
493 	 * IMPORTANT: Double-check logic in this function when adding a new
494 	 * SECURITY_FS_USE_* definition!
495 	 */
496 	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
497 
498 	switch (sbsec->behavior) {
499 	case SECURITY_FS_USE_XATTR:
500 	case SECURITY_FS_USE_TRANS:
501 	case SECURITY_FS_USE_TASK:
502 	case SECURITY_FS_USE_NATIVE:
503 		return 1;
504 
505 	case SECURITY_FS_USE_GENFS:
506 		return selinux_is_genfs_special_handling(sb);
507 
508 	/* Never allow relabeling on context mounts */
509 	case SECURITY_FS_USE_MNTPOINT:
510 	case SECURITY_FS_USE_NONE:
511 	default:
512 		return 0;
513 	}
514 }
515 
516 static int sb_check_xattr_support(struct super_block *sb)
517 {
518 	struct superblock_security_struct *sbsec = sb->s_security;
519 	struct dentry *root = sb->s_root;
520 	struct inode *root_inode = d_backing_inode(root);
521 	u32 sid;
522 	int rc;
523 
524 	/*
525 	 * Make sure that the xattr handler exists and that no
526 	 * error other than -ENODATA is returned by getxattr on
527 	 * the root directory.  -ENODATA is ok, as this may be
528 	 * the first boot of the SELinux kernel before we have
529 	 * assigned xattr values to the filesystem.
530 	 */
531 	if (!(root_inode->i_opflags & IOP_XATTR)) {
532 		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
533 			sb->s_id, sb->s_type->name);
534 		goto fallback;
535 	}
536 
537 	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
538 	if (rc < 0 && rc != -ENODATA) {
539 		if (rc == -EOPNOTSUPP) {
540 			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
541 				sb->s_id, sb->s_type->name);
542 			goto fallback;
543 		} else {
544 			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
545 				sb->s_id, sb->s_type->name, -rc);
546 			return rc;
547 		}
548 	}
549 	return 0;
550 
551 fallback:
552 	/* No xattr support - try to fallback to genfs if possible. */
553 	rc = security_genfs_sid(&selinux_state, sb->s_type->name, "/",
554 				SECCLASS_DIR, &sid);
555 	if (rc)
556 		return -EOPNOTSUPP;
557 
558 	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
559 		sb->s_id, sb->s_type->name);
560 	sbsec->behavior = SECURITY_FS_USE_GENFS;
561 	sbsec->sid = sid;
562 	return 0;
563 }
564 
565 static int sb_finish_set_opts(struct super_block *sb)
566 {
567 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
568 	struct dentry *root = sb->s_root;
569 	struct inode *root_inode = d_backing_inode(root);
570 	int rc = 0;
571 
572 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
573 		rc = sb_check_xattr_support(sb);
574 		if (rc)
575 			return rc;
576 	}
577 
578 	sbsec->flags |= SE_SBINITIALIZED;
579 
580 	/*
581 	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
582 	 * leave the flag untouched because sb_clone_mnt_opts might be handing
583 	 * us a superblock that needs the flag to be cleared.
584 	 */
585 	if (selinux_is_sblabel_mnt(sb))
586 		sbsec->flags |= SBLABEL_MNT;
587 	else
588 		sbsec->flags &= ~SBLABEL_MNT;
589 
590 	/* Initialize the root inode. */
591 	rc = inode_doinit_with_dentry(root_inode, root);
592 
593 	/* Initialize any other inodes associated with the superblock, e.g.
594 	   inodes created prior to initial policy load or inodes created
595 	   during get_sb by a pseudo filesystem that directly
596 	   populates itself. */
597 	spin_lock(&sbsec->isec_lock);
598 	while (!list_empty(&sbsec->isec_head)) {
599 		struct inode_security_struct *isec =
600 				list_first_entry(&sbsec->isec_head,
601 					   struct inode_security_struct, list);
602 		struct inode *inode = isec->inode;
603 		list_del_init(&isec->list);
604 		spin_unlock(&sbsec->isec_lock);
605 		inode = igrab(inode);
606 		if (inode) {
607 			if (!IS_PRIVATE(inode))
608 				inode_doinit_with_dentry(inode, NULL);
609 			iput(inode);
610 		}
611 		spin_lock(&sbsec->isec_lock);
612 	}
613 	spin_unlock(&sbsec->isec_lock);
614 	return rc;
615 }
616 
617 static int bad_option(struct superblock_security_struct *sbsec, char flag,
618 		      u32 old_sid, u32 new_sid)
619 {
620 	char mnt_flags = sbsec->flags & SE_MNTMASK;
621 
622 	/* check if the old mount command had the same options */
623 	if (sbsec->flags & SE_SBINITIALIZED)
624 		if (!(sbsec->flags & flag) ||
625 		    (old_sid != new_sid))
626 			return 1;
627 
628 	/* check if we were passed the same options twice,
629 	 * aka someone passed context=a,context=b
630 	 */
631 	if (!(sbsec->flags & SE_SBINITIALIZED))
632 		if (mnt_flags & flag)
633 			return 1;
634 	return 0;
635 }
636 
637 static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
638 {
639 	int rc = security_context_str_to_sid(&selinux_state, s,
640 					     sid, GFP_KERNEL);
641 	if (rc)
642 		pr_warn("SELinux: security_context_str_to_sid"
643 		       "(%s) failed for (dev %s, type %s) errno=%d\n",
644 		       s, sb->s_id, sb->s_type->name, rc);
645 	return rc;
646 }
647 
648 /*
649  * Allow filesystems with binary mount data to explicitly set mount point
650  * labeling information.
651  */
652 static int selinux_set_mnt_opts(struct super_block *sb,
653 				void *mnt_opts,
654 				unsigned long kern_flags,
655 				unsigned long *set_kern_flags)
656 {
657 	const struct cred *cred = current_cred();
658 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
659 	struct dentry *root = sb->s_root;
660 	struct selinux_mnt_opts *opts = mnt_opts;
661 	struct inode_security_struct *root_isec;
662 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
663 	u32 defcontext_sid = 0;
664 	int rc = 0;
665 
666 	mutex_lock(&sbsec->lock);
667 
668 	if (!selinux_initialized(&selinux_state)) {
669 		if (!opts) {
670 			/* Defer initialization until selinux_complete_init,
671 			   after the initial policy is loaded and the security
672 			   server is ready to handle calls. */
673 			goto out;
674 		}
675 		rc = -EINVAL;
676 		pr_warn("SELinux: Unable to set superblock options "
677 			"before the security server is initialized\n");
678 		goto out;
679 	}
680 	if (kern_flags && !set_kern_flags) {
681 		/* Specifying internal flags without providing a place to
682 		 * place the results is not allowed */
683 		rc = -EINVAL;
684 		goto out;
685 	}
686 
687 	/*
688 	 * Binary mount data FS will come through this function twice.  Once
689 	 * from an explicit call and once from the generic calls from the vfs.
690 	 * Since the generic VFS calls will not contain any security mount data
691 	 * we need to skip the double mount verification.
692 	 *
693 	 * This does open a hole in which we will not notice if the first
694 	 * mount using this sb set explict options and a second mount using
695 	 * this sb does not set any security options.  (The first options
696 	 * will be used for both mounts)
697 	 */
698 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
699 	    && !opts)
700 		goto out;
701 
702 	root_isec = backing_inode_security_novalidate(root);
703 
704 	/*
705 	 * parse the mount options, check if they are valid sids.
706 	 * also check if someone is trying to mount the same sb more
707 	 * than once with different security options.
708 	 */
709 	if (opts) {
710 		if (opts->fscontext) {
711 			rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
712 			if (rc)
713 				goto out;
714 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
715 					fscontext_sid))
716 				goto out_double_mount;
717 			sbsec->flags |= FSCONTEXT_MNT;
718 		}
719 		if (opts->context) {
720 			rc = parse_sid(sb, opts->context, &context_sid);
721 			if (rc)
722 				goto out;
723 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
724 					context_sid))
725 				goto out_double_mount;
726 			sbsec->flags |= CONTEXT_MNT;
727 		}
728 		if (opts->rootcontext) {
729 			rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
730 			if (rc)
731 				goto out;
732 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
733 					rootcontext_sid))
734 				goto out_double_mount;
735 			sbsec->flags |= ROOTCONTEXT_MNT;
736 		}
737 		if (opts->defcontext) {
738 			rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
739 			if (rc)
740 				goto out;
741 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
742 					defcontext_sid))
743 				goto out_double_mount;
744 			sbsec->flags |= DEFCONTEXT_MNT;
745 		}
746 	}
747 
748 	if (sbsec->flags & SE_SBINITIALIZED) {
749 		/* previously mounted with options, but not on this attempt? */
750 		if ((sbsec->flags & SE_MNTMASK) && !opts)
751 			goto out_double_mount;
752 		rc = 0;
753 		goto out;
754 	}
755 
756 	if (strcmp(sb->s_type->name, "proc") == 0)
757 		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
758 
759 	if (!strcmp(sb->s_type->name, "debugfs") ||
760 	    !strcmp(sb->s_type->name, "tracefs") ||
761 	    !strcmp(sb->s_type->name, "binder") ||
762 	    !strcmp(sb->s_type->name, "bpf") ||
763 	    !strcmp(sb->s_type->name, "pstore"))
764 		sbsec->flags |= SE_SBGENFS;
765 
766 	if (!strcmp(sb->s_type->name, "sysfs") ||
767 	    !strcmp(sb->s_type->name, "cgroup") ||
768 	    !strcmp(sb->s_type->name, "cgroup2"))
769 		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
770 
771 	if (!sbsec->behavior) {
772 		/*
773 		 * Determine the labeling behavior to use for this
774 		 * filesystem type.
775 		 */
776 		rc = security_fs_use(&selinux_state, sb);
777 		if (rc) {
778 			pr_warn("%s: security_fs_use(%s) returned %d\n",
779 					__func__, sb->s_type->name, rc);
780 			goto out;
781 		}
782 	}
783 
784 	/*
785 	 * If this is a user namespace mount and the filesystem type is not
786 	 * explicitly whitelisted, then no contexts are allowed on the command
787 	 * line and security labels must be ignored.
788 	 */
789 	if (sb->s_user_ns != &init_user_ns &&
790 	    strcmp(sb->s_type->name, "tmpfs") &&
791 	    strcmp(sb->s_type->name, "ramfs") &&
792 	    strcmp(sb->s_type->name, "devpts") &&
793 	    strcmp(sb->s_type->name, "overlay")) {
794 		if (context_sid || fscontext_sid || rootcontext_sid ||
795 		    defcontext_sid) {
796 			rc = -EACCES;
797 			goto out;
798 		}
799 		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
800 			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
801 			rc = security_transition_sid(&selinux_state,
802 						     current_sid(),
803 						     current_sid(),
804 						     SECCLASS_FILE, NULL,
805 						     &sbsec->mntpoint_sid);
806 			if (rc)
807 				goto out;
808 		}
809 		goto out_set_opts;
810 	}
811 
812 	/* sets the context of the superblock for the fs being mounted. */
813 	if (fscontext_sid) {
814 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
815 		if (rc)
816 			goto out;
817 
818 		sbsec->sid = fscontext_sid;
819 	}
820 
821 	/*
822 	 * Switch to using mount point labeling behavior.
823 	 * sets the label used on all file below the mountpoint, and will set
824 	 * the superblock context if not already set.
825 	 */
826 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
827 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
828 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
829 	}
830 
831 	if (context_sid) {
832 		if (!fscontext_sid) {
833 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
834 							  cred);
835 			if (rc)
836 				goto out;
837 			sbsec->sid = context_sid;
838 		} else {
839 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
840 							     cred);
841 			if (rc)
842 				goto out;
843 		}
844 		if (!rootcontext_sid)
845 			rootcontext_sid = context_sid;
846 
847 		sbsec->mntpoint_sid = context_sid;
848 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
849 	}
850 
851 	if (rootcontext_sid) {
852 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
853 						     cred);
854 		if (rc)
855 			goto out;
856 
857 		root_isec->sid = rootcontext_sid;
858 		root_isec->initialized = LABEL_INITIALIZED;
859 	}
860 
861 	if (defcontext_sid) {
862 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
863 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
864 			rc = -EINVAL;
865 			pr_warn("SELinux: defcontext option is "
866 			       "invalid for this filesystem type\n");
867 			goto out;
868 		}
869 
870 		if (defcontext_sid != sbsec->def_sid) {
871 			rc = may_context_mount_inode_relabel(defcontext_sid,
872 							     sbsec, cred);
873 			if (rc)
874 				goto out;
875 		}
876 
877 		sbsec->def_sid = defcontext_sid;
878 	}
879 
880 out_set_opts:
881 	rc = sb_finish_set_opts(sb);
882 out:
883 	mutex_unlock(&sbsec->lock);
884 	return rc;
885 out_double_mount:
886 	rc = -EINVAL;
887 	pr_warn("SELinux: mount invalid.  Same superblock, different "
888 	       "security settings for (dev %s, type %s)\n", sb->s_id,
889 	       sb->s_type->name);
890 	goto out;
891 }
892 
893 static int selinux_cmp_sb_context(const struct super_block *oldsb,
894 				    const struct super_block *newsb)
895 {
896 	struct superblock_security_struct *old = selinux_superblock(oldsb);
897 	struct superblock_security_struct *new = selinux_superblock(newsb);
898 	char oldflags = old->flags & SE_MNTMASK;
899 	char newflags = new->flags & SE_MNTMASK;
900 
901 	if (oldflags != newflags)
902 		goto mismatch;
903 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
904 		goto mismatch;
905 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
906 		goto mismatch;
907 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
908 		goto mismatch;
909 	if (oldflags & ROOTCONTEXT_MNT) {
910 		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
911 		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
912 		if (oldroot->sid != newroot->sid)
913 			goto mismatch;
914 	}
915 	return 0;
916 mismatch:
917 	pr_warn("SELinux: mount invalid.  Same superblock, "
918 			    "different security settings for (dev %s, "
919 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
920 	return -EBUSY;
921 }
922 
923 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
924 					struct super_block *newsb,
925 					unsigned long kern_flags,
926 					unsigned long *set_kern_flags)
927 {
928 	int rc = 0;
929 	const struct superblock_security_struct *oldsbsec =
930 						selinux_superblock(oldsb);
931 	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
932 
933 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
934 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
935 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
936 
937 	/*
938 	 * if the parent was able to be mounted it clearly had no special lsm
939 	 * mount options.  thus we can safely deal with this superblock later
940 	 */
941 	if (!selinux_initialized(&selinux_state))
942 		return 0;
943 
944 	/*
945 	 * Specifying internal flags without providing a place to
946 	 * place the results is not allowed.
947 	 */
948 	if (kern_flags && !set_kern_flags)
949 		return -EINVAL;
950 
951 	/* how can we clone if the old one wasn't set up?? */
952 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
953 
954 	/* if fs is reusing a sb, make sure that the contexts match */
955 	if (newsbsec->flags & SE_SBINITIALIZED) {
956 		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
957 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
958 		return selinux_cmp_sb_context(oldsb, newsb);
959 	}
960 
961 	mutex_lock(&newsbsec->lock);
962 
963 	newsbsec->flags = oldsbsec->flags;
964 
965 	newsbsec->sid = oldsbsec->sid;
966 	newsbsec->def_sid = oldsbsec->def_sid;
967 	newsbsec->behavior = oldsbsec->behavior;
968 
969 	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
970 		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
971 		rc = security_fs_use(&selinux_state, newsb);
972 		if (rc)
973 			goto out;
974 	}
975 
976 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
977 		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
978 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
979 	}
980 
981 	if (set_context) {
982 		u32 sid = oldsbsec->mntpoint_sid;
983 
984 		if (!set_fscontext)
985 			newsbsec->sid = sid;
986 		if (!set_rootcontext) {
987 			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
988 			newisec->sid = sid;
989 		}
990 		newsbsec->mntpoint_sid = sid;
991 	}
992 	if (set_rootcontext) {
993 		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
994 		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
995 
996 		newisec->sid = oldisec->sid;
997 	}
998 
999 	sb_finish_set_opts(newsb);
1000 out:
1001 	mutex_unlock(&newsbsec->lock);
1002 	return rc;
1003 }
1004 
1005 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
1006 {
1007 	struct selinux_mnt_opts *opts = *mnt_opts;
1008 
1009 	if (token == Opt_seclabel)	/* eaten and completely ignored */
1010 		return 0;
1011 
1012 	if (!opts) {
1013 		opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
1014 		if (!opts)
1015 			return -ENOMEM;
1016 		*mnt_opts = opts;
1017 	}
1018 	if (!s)
1019 		return -ENOMEM;
1020 	switch (token) {
1021 	case Opt_context:
1022 		if (opts->context || opts->defcontext)
1023 			goto Einval;
1024 		opts->context = s;
1025 		break;
1026 	case Opt_fscontext:
1027 		if (opts->fscontext)
1028 			goto Einval;
1029 		opts->fscontext = s;
1030 		break;
1031 	case Opt_rootcontext:
1032 		if (opts->rootcontext)
1033 			goto Einval;
1034 		opts->rootcontext = s;
1035 		break;
1036 	case Opt_defcontext:
1037 		if (opts->context || opts->defcontext)
1038 			goto Einval;
1039 		opts->defcontext = s;
1040 		break;
1041 	}
1042 	return 0;
1043 Einval:
1044 	pr_warn(SEL_MOUNT_FAIL_MSG);
1045 	return -EINVAL;
1046 }
1047 
1048 static int selinux_add_mnt_opt(const char *option, const char *val, int len,
1049 			       void **mnt_opts)
1050 {
1051 	int token = Opt_error;
1052 	int rc, i;
1053 
1054 	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
1055 		if (strcmp(option, tokens[i].name) == 0) {
1056 			token = tokens[i].opt;
1057 			break;
1058 		}
1059 	}
1060 
1061 	if (token == Opt_error)
1062 		return -EINVAL;
1063 
1064 	if (token != Opt_seclabel) {
1065 		val = kmemdup_nul(val, len, GFP_KERNEL);
1066 		if (!val) {
1067 			rc = -ENOMEM;
1068 			goto free_opt;
1069 		}
1070 	}
1071 	rc = selinux_add_opt(token, val, mnt_opts);
1072 	if (unlikely(rc)) {
1073 		kfree(val);
1074 		goto free_opt;
1075 	}
1076 	return rc;
1077 
1078 free_opt:
1079 	if (*mnt_opts) {
1080 		selinux_free_mnt_opts(*mnt_opts);
1081 		*mnt_opts = NULL;
1082 	}
1083 	return rc;
1084 }
1085 
1086 static int show_sid(struct seq_file *m, u32 sid)
1087 {
1088 	char *context = NULL;
1089 	u32 len;
1090 	int rc;
1091 
1092 	rc = security_sid_to_context(&selinux_state, sid,
1093 					     &context, &len);
1094 	if (!rc) {
1095 		bool has_comma = context && strchr(context, ',');
1096 
1097 		seq_putc(m, '=');
1098 		if (has_comma)
1099 			seq_putc(m, '\"');
1100 		seq_escape(m, context, "\"\n\\");
1101 		if (has_comma)
1102 			seq_putc(m, '\"');
1103 	}
1104 	kfree(context);
1105 	return rc;
1106 }
1107 
1108 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1109 {
1110 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1111 	int rc;
1112 
1113 	if (!(sbsec->flags & SE_SBINITIALIZED))
1114 		return 0;
1115 
1116 	if (!selinux_initialized(&selinux_state))
1117 		return 0;
1118 
1119 	if (sbsec->flags & FSCONTEXT_MNT) {
1120 		seq_putc(m, ',');
1121 		seq_puts(m, FSCONTEXT_STR);
1122 		rc = show_sid(m, sbsec->sid);
1123 		if (rc)
1124 			return rc;
1125 	}
1126 	if (sbsec->flags & CONTEXT_MNT) {
1127 		seq_putc(m, ',');
1128 		seq_puts(m, CONTEXT_STR);
1129 		rc = show_sid(m, sbsec->mntpoint_sid);
1130 		if (rc)
1131 			return rc;
1132 	}
1133 	if (sbsec->flags & DEFCONTEXT_MNT) {
1134 		seq_putc(m, ',');
1135 		seq_puts(m, DEFCONTEXT_STR);
1136 		rc = show_sid(m, sbsec->def_sid);
1137 		if (rc)
1138 			return rc;
1139 	}
1140 	if (sbsec->flags & ROOTCONTEXT_MNT) {
1141 		struct dentry *root = sb->s_root;
1142 		struct inode_security_struct *isec = backing_inode_security(root);
1143 		seq_putc(m, ',');
1144 		seq_puts(m, ROOTCONTEXT_STR);
1145 		rc = show_sid(m, isec->sid);
1146 		if (rc)
1147 			return rc;
1148 	}
1149 	if (sbsec->flags & SBLABEL_MNT) {
1150 		seq_putc(m, ',');
1151 		seq_puts(m, SECLABEL_STR);
1152 	}
1153 	return 0;
1154 }
1155 
1156 static inline u16 inode_mode_to_security_class(umode_t mode)
1157 {
1158 	switch (mode & S_IFMT) {
1159 	case S_IFSOCK:
1160 		return SECCLASS_SOCK_FILE;
1161 	case S_IFLNK:
1162 		return SECCLASS_LNK_FILE;
1163 	case S_IFREG:
1164 		return SECCLASS_FILE;
1165 	case S_IFBLK:
1166 		return SECCLASS_BLK_FILE;
1167 	case S_IFDIR:
1168 		return SECCLASS_DIR;
1169 	case S_IFCHR:
1170 		return SECCLASS_CHR_FILE;
1171 	case S_IFIFO:
1172 		return SECCLASS_FIFO_FILE;
1173 
1174 	}
1175 
1176 	return SECCLASS_FILE;
1177 }
1178 
1179 static inline int default_protocol_stream(int protocol)
1180 {
1181 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1182 		protocol == IPPROTO_MPTCP);
1183 }
1184 
1185 static inline int default_protocol_dgram(int protocol)
1186 {
1187 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1188 }
1189 
1190 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1191 {
1192 	int extsockclass = selinux_policycap_extsockclass();
1193 
1194 	switch (family) {
1195 	case PF_UNIX:
1196 		switch (type) {
1197 		case SOCK_STREAM:
1198 		case SOCK_SEQPACKET:
1199 			return SECCLASS_UNIX_STREAM_SOCKET;
1200 		case SOCK_DGRAM:
1201 		case SOCK_RAW:
1202 			return SECCLASS_UNIX_DGRAM_SOCKET;
1203 		}
1204 		break;
1205 	case PF_INET:
1206 	case PF_INET6:
1207 		switch (type) {
1208 		case SOCK_STREAM:
1209 		case SOCK_SEQPACKET:
1210 			if (default_protocol_stream(protocol))
1211 				return SECCLASS_TCP_SOCKET;
1212 			else if (extsockclass && protocol == IPPROTO_SCTP)
1213 				return SECCLASS_SCTP_SOCKET;
1214 			else
1215 				return SECCLASS_RAWIP_SOCKET;
1216 		case SOCK_DGRAM:
1217 			if (default_protocol_dgram(protocol))
1218 				return SECCLASS_UDP_SOCKET;
1219 			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1220 						  protocol == IPPROTO_ICMPV6))
1221 				return SECCLASS_ICMP_SOCKET;
1222 			else
1223 				return SECCLASS_RAWIP_SOCKET;
1224 		case SOCK_DCCP:
1225 			return SECCLASS_DCCP_SOCKET;
1226 		default:
1227 			return SECCLASS_RAWIP_SOCKET;
1228 		}
1229 		break;
1230 	case PF_NETLINK:
1231 		switch (protocol) {
1232 		case NETLINK_ROUTE:
1233 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1234 		case NETLINK_SOCK_DIAG:
1235 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1236 		case NETLINK_NFLOG:
1237 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1238 		case NETLINK_XFRM:
1239 			return SECCLASS_NETLINK_XFRM_SOCKET;
1240 		case NETLINK_SELINUX:
1241 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1242 		case NETLINK_ISCSI:
1243 			return SECCLASS_NETLINK_ISCSI_SOCKET;
1244 		case NETLINK_AUDIT:
1245 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1246 		case NETLINK_FIB_LOOKUP:
1247 			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1248 		case NETLINK_CONNECTOR:
1249 			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1250 		case NETLINK_NETFILTER:
1251 			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1252 		case NETLINK_DNRTMSG:
1253 			return SECCLASS_NETLINK_DNRT_SOCKET;
1254 		case NETLINK_KOBJECT_UEVENT:
1255 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1256 		case NETLINK_GENERIC:
1257 			return SECCLASS_NETLINK_GENERIC_SOCKET;
1258 		case NETLINK_SCSITRANSPORT:
1259 			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1260 		case NETLINK_RDMA:
1261 			return SECCLASS_NETLINK_RDMA_SOCKET;
1262 		case NETLINK_CRYPTO:
1263 			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1264 		default:
1265 			return SECCLASS_NETLINK_SOCKET;
1266 		}
1267 	case PF_PACKET:
1268 		return SECCLASS_PACKET_SOCKET;
1269 	case PF_KEY:
1270 		return SECCLASS_KEY_SOCKET;
1271 	case PF_APPLETALK:
1272 		return SECCLASS_APPLETALK_SOCKET;
1273 	}
1274 
1275 	if (extsockclass) {
1276 		switch (family) {
1277 		case PF_AX25:
1278 			return SECCLASS_AX25_SOCKET;
1279 		case PF_IPX:
1280 			return SECCLASS_IPX_SOCKET;
1281 		case PF_NETROM:
1282 			return SECCLASS_NETROM_SOCKET;
1283 		case PF_ATMPVC:
1284 			return SECCLASS_ATMPVC_SOCKET;
1285 		case PF_X25:
1286 			return SECCLASS_X25_SOCKET;
1287 		case PF_ROSE:
1288 			return SECCLASS_ROSE_SOCKET;
1289 		case PF_DECnet:
1290 			return SECCLASS_DECNET_SOCKET;
1291 		case PF_ATMSVC:
1292 			return SECCLASS_ATMSVC_SOCKET;
1293 		case PF_RDS:
1294 			return SECCLASS_RDS_SOCKET;
1295 		case PF_IRDA:
1296 			return SECCLASS_IRDA_SOCKET;
1297 		case PF_PPPOX:
1298 			return SECCLASS_PPPOX_SOCKET;
1299 		case PF_LLC:
1300 			return SECCLASS_LLC_SOCKET;
1301 		case PF_CAN:
1302 			return SECCLASS_CAN_SOCKET;
1303 		case PF_TIPC:
1304 			return SECCLASS_TIPC_SOCKET;
1305 		case PF_BLUETOOTH:
1306 			return SECCLASS_BLUETOOTH_SOCKET;
1307 		case PF_IUCV:
1308 			return SECCLASS_IUCV_SOCKET;
1309 		case PF_RXRPC:
1310 			return SECCLASS_RXRPC_SOCKET;
1311 		case PF_ISDN:
1312 			return SECCLASS_ISDN_SOCKET;
1313 		case PF_PHONET:
1314 			return SECCLASS_PHONET_SOCKET;
1315 		case PF_IEEE802154:
1316 			return SECCLASS_IEEE802154_SOCKET;
1317 		case PF_CAIF:
1318 			return SECCLASS_CAIF_SOCKET;
1319 		case PF_ALG:
1320 			return SECCLASS_ALG_SOCKET;
1321 		case PF_NFC:
1322 			return SECCLASS_NFC_SOCKET;
1323 		case PF_VSOCK:
1324 			return SECCLASS_VSOCK_SOCKET;
1325 		case PF_KCM:
1326 			return SECCLASS_KCM_SOCKET;
1327 		case PF_QIPCRTR:
1328 			return SECCLASS_QIPCRTR_SOCKET;
1329 		case PF_SMC:
1330 			return SECCLASS_SMC_SOCKET;
1331 		case PF_XDP:
1332 			return SECCLASS_XDP_SOCKET;
1333 #if PF_MAX > 45
1334 #error New address family defined, please update this function.
1335 #endif
1336 		}
1337 	}
1338 
1339 	return SECCLASS_SOCKET;
1340 }
1341 
1342 static int selinux_genfs_get_sid(struct dentry *dentry,
1343 				 u16 tclass,
1344 				 u16 flags,
1345 				 u32 *sid)
1346 {
1347 	int rc;
1348 	struct super_block *sb = dentry->d_sb;
1349 	char *buffer, *path;
1350 
1351 	buffer = (char *)__get_free_page(GFP_KERNEL);
1352 	if (!buffer)
1353 		return -ENOMEM;
1354 
1355 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1356 	if (IS_ERR(path))
1357 		rc = PTR_ERR(path);
1358 	else {
1359 		if (flags & SE_SBPROC) {
1360 			/* each process gets a /proc/PID/ entry. Strip off the
1361 			 * PID part to get a valid selinux labeling.
1362 			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1363 			while (path[1] >= '0' && path[1] <= '9') {
1364 				path[1] = '/';
1365 				path++;
1366 			}
1367 		}
1368 		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1369 					path, tclass, sid);
1370 		if (rc == -ENOENT) {
1371 			/* No match in policy, mark as unlabeled. */
1372 			*sid = SECINITSID_UNLABELED;
1373 			rc = 0;
1374 		}
1375 	}
1376 	free_page((unsigned long)buffer);
1377 	return rc;
1378 }
1379 
1380 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1381 				  u32 def_sid, u32 *sid)
1382 {
1383 #define INITCONTEXTLEN 255
1384 	char *context;
1385 	unsigned int len;
1386 	int rc;
1387 
1388 	len = INITCONTEXTLEN;
1389 	context = kmalloc(len + 1, GFP_NOFS);
1390 	if (!context)
1391 		return -ENOMEM;
1392 
1393 	context[len] = '\0';
1394 	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1395 	if (rc == -ERANGE) {
1396 		kfree(context);
1397 
1398 		/* Need a larger buffer.  Query for the right size. */
1399 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1400 		if (rc < 0)
1401 			return rc;
1402 
1403 		len = rc;
1404 		context = kmalloc(len + 1, GFP_NOFS);
1405 		if (!context)
1406 			return -ENOMEM;
1407 
1408 		context[len] = '\0';
1409 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1410 				    context, len);
1411 	}
1412 	if (rc < 0) {
1413 		kfree(context);
1414 		if (rc != -ENODATA) {
1415 			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1416 				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1417 			return rc;
1418 		}
1419 		*sid = def_sid;
1420 		return 0;
1421 	}
1422 
1423 	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1424 					     def_sid, GFP_NOFS);
1425 	if (rc) {
1426 		char *dev = inode->i_sb->s_id;
1427 		unsigned long ino = inode->i_ino;
1428 
1429 		if (rc == -EINVAL) {
1430 			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1431 					      ino, dev, context);
1432 		} else {
1433 			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1434 				__func__, context, -rc, dev, ino);
1435 		}
1436 	}
1437 	kfree(context);
1438 	return 0;
1439 }
1440 
1441 /* The inode's security attributes must be initialized before first use. */
1442 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1443 {
1444 	struct superblock_security_struct *sbsec = NULL;
1445 	struct inode_security_struct *isec = selinux_inode(inode);
1446 	u32 task_sid, sid = 0;
1447 	u16 sclass;
1448 	struct dentry *dentry;
1449 	int rc = 0;
1450 
1451 	if (isec->initialized == LABEL_INITIALIZED)
1452 		return 0;
1453 
1454 	spin_lock(&isec->lock);
1455 	if (isec->initialized == LABEL_INITIALIZED)
1456 		goto out_unlock;
1457 
1458 	if (isec->sclass == SECCLASS_FILE)
1459 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1460 
1461 	sbsec = selinux_superblock(inode->i_sb);
1462 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1463 		/* Defer initialization until selinux_complete_init,
1464 		   after the initial policy is loaded and the security
1465 		   server is ready to handle calls. */
1466 		spin_lock(&sbsec->isec_lock);
1467 		if (list_empty(&isec->list))
1468 			list_add(&isec->list, &sbsec->isec_head);
1469 		spin_unlock(&sbsec->isec_lock);
1470 		goto out_unlock;
1471 	}
1472 
1473 	sclass = isec->sclass;
1474 	task_sid = isec->task_sid;
1475 	sid = isec->sid;
1476 	isec->initialized = LABEL_PENDING;
1477 	spin_unlock(&isec->lock);
1478 
1479 	switch (sbsec->behavior) {
1480 	case SECURITY_FS_USE_NATIVE:
1481 		break;
1482 	case SECURITY_FS_USE_XATTR:
1483 		if (!(inode->i_opflags & IOP_XATTR)) {
1484 			sid = sbsec->def_sid;
1485 			break;
1486 		}
1487 		/* Need a dentry, since the xattr API requires one.
1488 		   Life would be simpler if we could just pass the inode. */
1489 		if (opt_dentry) {
1490 			/* Called from d_instantiate or d_splice_alias. */
1491 			dentry = dget(opt_dentry);
1492 		} else {
1493 			/*
1494 			 * Called from selinux_complete_init, try to find a dentry.
1495 			 * Some filesystems really want a connected one, so try
1496 			 * that first.  We could split SECURITY_FS_USE_XATTR in
1497 			 * two, depending upon that...
1498 			 */
1499 			dentry = d_find_alias(inode);
1500 			if (!dentry)
1501 				dentry = d_find_any_alias(inode);
1502 		}
1503 		if (!dentry) {
1504 			/*
1505 			 * this is can be hit on boot when a file is accessed
1506 			 * before the policy is loaded.  When we load policy we
1507 			 * may find inodes that have no dentry on the
1508 			 * sbsec->isec_head list.  No reason to complain as these
1509 			 * will get fixed up the next time we go through
1510 			 * inode_doinit with a dentry, before these inodes could
1511 			 * be used again by userspace.
1512 			 */
1513 			goto out_invalid;
1514 		}
1515 
1516 		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1517 					    &sid);
1518 		dput(dentry);
1519 		if (rc)
1520 			goto out;
1521 		break;
1522 	case SECURITY_FS_USE_TASK:
1523 		sid = task_sid;
1524 		break;
1525 	case SECURITY_FS_USE_TRANS:
1526 		/* Default to the fs SID. */
1527 		sid = sbsec->sid;
1528 
1529 		/* Try to obtain a transition SID. */
1530 		rc = security_transition_sid(&selinux_state, task_sid, sid,
1531 					     sclass, NULL, &sid);
1532 		if (rc)
1533 			goto out;
1534 		break;
1535 	case SECURITY_FS_USE_MNTPOINT:
1536 		sid = sbsec->mntpoint_sid;
1537 		break;
1538 	default:
1539 		/* Default to the fs superblock SID. */
1540 		sid = sbsec->sid;
1541 
1542 		if ((sbsec->flags & SE_SBGENFS) &&
1543 		     (!S_ISLNK(inode->i_mode) ||
1544 		      selinux_policycap_genfs_seclabel_symlinks())) {
1545 			/* We must have a dentry to determine the label on
1546 			 * procfs inodes */
1547 			if (opt_dentry) {
1548 				/* Called from d_instantiate or
1549 				 * d_splice_alias. */
1550 				dentry = dget(opt_dentry);
1551 			} else {
1552 				/* Called from selinux_complete_init, try to
1553 				 * find a dentry.  Some filesystems really want
1554 				 * a connected one, so try that first.
1555 				 */
1556 				dentry = d_find_alias(inode);
1557 				if (!dentry)
1558 					dentry = d_find_any_alias(inode);
1559 			}
1560 			/*
1561 			 * This can be hit on boot when a file is accessed
1562 			 * before the policy is loaded.  When we load policy we
1563 			 * may find inodes that have no dentry on the
1564 			 * sbsec->isec_head list.  No reason to complain as
1565 			 * these will get fixed up the next time we go through
1566 			 * inode_doinit() with a dentry, before these inodes
1567 			 * could be used again by userspace.
1568 			 */
1569 			if (!dentry)
1570 				goto out_invalid;
1571 			rc = selinux_genfs_get_sid(dentry, sclass,
1572 						   sbsec->flags, &sid);
1573 			if (rc) {
1574 				dput(dentry);
1575 				goto out;
1576 			}
1577 
1578 			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1579 			    (inode->i_opflags & IOP_XATTR)) {
1580 				rc = inode_doinit_use_xattr(inode, dentry,
1581 							    sid, &sid);
1582 				if (rc) {
1583 					dput(dentry);
1584 					goto out;
1585 				}
1586 			}
1587 			dput(dentry);
1588 		}
1589 		break;
1590 	}
1591 
1592 out:
1593 	spin_lock(&isec->lock);
1594 	if (isec->initialized == LABEL_PENDING) {
1595 		if (rc) {
1596 			isec->initialized = LABEL_INVALID;
1597 			goto out_unlock;
1598 		}
1599 		isec->initialized = LABEL_INITIALIZED;
1600 		isec->sid = sid;
1601 	}
1602 
1603 out_unlock:
1604 	spin_unlock(&isec->lock);
1605 	return rc;
1606 
1607 out_invalid:
1608 	spin_lock(&isec->lock);
1609 	if (isec->initialized == LABEL_PENDING) {
1610 		isec->initialized = LABEL_INVALID;
1611 		isec->sid = sid;
1612 	}
1613 	spin_unlock(&isec->lock);
1614 	return 0;
1615 }
1616 
1617 /* Convert a Linux signal to an access vector. */
1618 static inline u32 signal_to_av(int sig)
1619 {
1620 	u32 perm = 0;
1621 
1622 	switch (sig) {
1623 	case SIGCHLD:
1624 		/* Commonly granted from child to parent. */
1625 		perm = PROCESS__SIGCHLD;
1626 		break;
1627 	case SIGKILL:
1628 		/* Cannot be caught or ignored */
1629 		perm = PROCESS__SIGKILL;
1630 		break;
1631 	case SIGSTOP:
1632 		/* Cannot be caught or ignored */
1633 		perm = PROCESS__SIGSTOP;
1634 		break;
1635 	default:
1636 		/* All other signals. */
1637 		perm = PROCESS__SIGNAL;
1638 		break;
1639 	}
1640 
1641 	return perm;
1642 }
1643 
1644 #if CAP_LAST_CAP > 63
1645 #error Fix SELinux to handle capabilities > 63.
1646 #endif
1647 
1648 /* Check whether a task is allowed to use a capability. */
1649 static int cred_has_capability(const struct cred *cred,
1650 			       int cap, unsigned int opts, bool initns)
1651 {
1652 	struct common_audit_data ad;
1653 	struct av_decision avd;
1654 	u16 sclass;
1655 	u32 sid = cred_sid(cred);
1656 	u32 av = CAP_TO_MASK(cap);
1657 	int rc;
1658 
1659 	ad.type = LSM_AUDIT_DATA_CAP;
1660 	ad.u.cap = cap;
1661 
1662 	switch (CAP_TO_INDEX(cap)) {
1663 	case 0:
1664 		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1665 		break;
1666 	case 1:
1667 		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1668 		break;
1669 	default:
1670 		pr_err("SELinux:  out of range capability %d\n", cap);
1671 		BUG();
1672 		return -EINVAL;
1673 	}
1674 
1675 	rc = avc_has_perm_noaudit(&selinux_state,
1676 				  sid, sid, sclass, av, 0, &avd);
1677 	if (!(opts & CAP_OPT_NOAUDIT)) {
1678 		int rc2 = avc_audit(&selinux_state,
1679 				    sid, sid, sclass, av, &avd, rc, &ad, 0);
1680 		if (rc2)
1681 			return rc2;
1682 	}
1683 	return rc;
1684 }
1685 
1686 /* Check whether a task has a particular permission to an inode.
1687    The 'adp' parameter is optional and allows other audit
1688    data to be passed (e.g. the dentry). */
1689 static int inode_has_perm(const struct cred *cred,
1690 			  struct inode *inode,
1691 			  u32 perms,
1692 			  struct common_audit_data *adp)
1693 {
1694 	struct inode_security_struct *isec;
1695 	u32 sid;
1696 
1697 	validate_creds(cred);
1698 
1699 	if (unlikely(IS_PRIVATE(inode)))
1700 		return 0;
1701 
1702 	sid = cred_sid(cred);
1703 	isec = selinux_inode(inode);
1704 
1705 	return avc_has_perm(&selinux_state,
1706 			    sid, isec->sid, isec->sclass, perms, adp);
1707 }
1708 
1709 /* Same as inode_has_perm, but pass explicit audit data containing
1710    the dentry to help the auditing code to more easily generate the
1711    pathname if needed. */
1712 static inline int dentry_has_perm(const struct cred *cred,
1713 				  struct dentry *dentry,
1714 				  u32 av)
1715 {
1716 	struct inode *inode = d_backing_inode(dentry);
1717 	struct common_audit_data ad;
1718 
1719 	ad.type = LSM_AUDIT_DATA_DENTRY;
1720 	ad.u.dentry = dentry;
1721 	__inode_security_revalidate(inode, dentry, true);
1722 	return inode_has_perm(cred, inode, av, &ad);
1723 }
1724 
1725 /* Same as inode_has_perm, but pass explicit audit data containing
1726    the path to help the auditing code to more easily generate the
1727    pathname if needed. */
1728 static inline int path_has_perm(const struct cred *cred,
1729 				const struct path *path,
1730 				u32 av)
1731 {
1732 	struct inode *inode = d_backing_inode(path->dentry);
1733 	struct common_audit_data ad;
1734 
1735 	ad.type = LSM_AUDIT_DATA_PATH;
1736 	ad.u.path = *path;
1737 	__inode_security_revalidate(inode, path->dentry, true);
1738 	return inode_has_perm(cred, inode, av, &ad);
1739 }
1740 
1741 /* Same as path_has_perm, but uses the inode from the file struct. */
1742 static inline int file_path_has_perm(const struct cred *cred,
1743 				     struct file *file,
1744 				     u32 av)
1745 {
1746 	struct common_audit_data ad;
1747 
1748 	ad.type = LSM_AUDIT_DATA_FILE;
1749 	ad.u.file = file;
1750 	return inode_has_perm(cred, file_inode(file), av, &ad);
1751 }
1752 
1753 #ifdef CONFIG_BPF_SYSCALL
1754 static int bpf_fd_pass(struct file *file, u32 sid);
1755 #endif
1756 
1757 /* Check whether a task can use an open file descriptor to
1758    access an inode in a given way.  Check access to the
1759    descriptor itself, and then use dentry_has_perm to
1760    check a particular permission to the file.
1761    Access to the descriptor is implicitly granted if it
1762    has the same SID as the process.  If av is zero, then
1763    access to the file is not checked, e.g. for cases
1764    where only the descriptor is affected like seek. */
1765 static int file_has_perm(const struct cred *cred,
1766 			 struct file *file,
1767 			 u32 av)
1768 {
1769 	struct file_security_struct *fsec = selinux_file(file);
1770 	struct inode *inode = file_inode(file);
1771 	struct common_audit_data ad;
1772 	u32 sid = cred_sid(cred);
1773 	int rc;
1774 
1775 	ad.type = LSM_AUDIT_DATA_FILE;
1776 	ad.u.file = file;
1777 
1778 	if (sid != fsec->sid) {
1779 		rc = avc_has_perm(&selinux_state,
1780 				  sid, fsec->sid,
1781 				  SECCLASS_FD,
1782 				  FD__USE,
1783 				  &ad);
1784 		if (rc)
1785 			goto out;
1786 	}
1787 
1788 #ifdef CONFIG_BPF_SYSCALL
1789 	rc = bpf_fd_pass(file, cred_sid(cred));
1790 	if (rc)
1791 		return rc;
1792 #endif
1793 
1794 	/* av is zero if only checking access to the descriptor. */
1795 	rc = 0;
1796 	if (av)
1797 		rc = inode_has_perm(cred, inode, av, &ad);
1798 
1799 out:
1800 	return rc;
1801 }
1802 
1803 /*
1804  * Determine the label for an inode that might be unioned.
1805  */
1806 static int
1807 selinux_determine_inode_label(const struct task_security_struct *tsec,
1808 				 struct inode *dir,
1809 				 const struct qstr *name, u16 tclass,
1810 				 u32 *_new_isid)
1811 {
1812 	const struct superblock_security_struct *sbsec =
1813 						selinux_superblock(dir->i_sb);
1814 
1815 	if ((sbsec->flags & SE_SBINITIALIZED) &&
1816 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1817 		*_new_isid = sbsec->mntpoint_sid;
1818 	} else if ((sbsec->flags & SBLABEL_MNT) &&
1819 		   tsec->create_sid) {
1820 		*_new_isid = tsec->create_sid;
1821 	} else {
1822 		const struct inode_security_struct *dsec = inode_security(dir);
1823 		return security_transition_sid(&selinux_state, tsec->sid,
1824 					       dsec->sid, tclass,
1825 					       name, _new_isid);
1826 	}
1827 
1828 	return 0;
1829 }
1830 
1831 /* Check whether a task can create a file. */
1832 static int may_create(struct inode *dir,
1833 		      struct dentry *dentry,
1834 		      u16 tclass)
1835 {
1836 	const struct task_security_struct *tsec = selinux_cred(current_cred());
1837 	struct inode_security_struct *dsec;
1838 	struct superblock_security_struct *sbsec;
1839 	u32 sid, newsid;
1840 	struct common_audit_data ad;
1841 	int rc;
1842 
1843 	dsec = inode_security(dir);
1844 	sbsec = selinux_superblock(dir->i_sb);
1845 
1846 	sid = tsec->sid;
1847 
1848 	ad.type = LSM_AUDIT_DATA_DENTRY;
1849 	ad.u.dentry = dentry;
1850 
1851 	rc = avc_has_perm(&selinux_state,
1852 			  sid, dsec->sid, SECCLASS_DIR,
1853 			  DIR__ADD_NAME | DIR__SEARCH,
1854 			  &ad);
1855 	if (rc)
1856 		return rc;
1857 
1858 	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1859 					   &newsid);
1860 	if (rc)
1861 		return rc;
1862 
1863 	rc = avc_has_perm(&selinux_state,
1864 			  sid, newsid, tclass, FILE__CREATE, &ad);
1865 	if (rc)
1866 		return rc;
1867 
1868 	return avc_has_perm(&selinux_state,
1869 			    newsid, sbsec->sid,
1870 			    SECCLASS_FILESYSTEM,
1871 			    FILESYSTEM__ASSOCIATE, &ad);
1872 }
1873 
1874 #define MAY_LINK	0
1875 #define MAY_UNLINK	1
1876 #define MAY_RMDIR	2
1877 
1878 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1879 static int may_link(struct inode *dir,
1880 		    struct dentry *dentry,
1881 		    int kind)
1882 
1883 {
1884 	struct inode_security_struct *dsec, *isec;
1885 	struct common_audit_data ad;
1886 	u32 sid = current_sid();
1887 	u32 av;
1888 	int rc;
1889 
1890 	dsec = inode_security(dir);
1891 	isec = backing_inode_security(dentry);
1892 
1893 	ad.type = LSM_AUDIT_DATA_DENTRY;
1894 	ad.u.dentry = dentry;
1895 
1896 	av = DIR__SEARCH;
1897 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1898 	rc = avc_has_perm(&selinux_state,
1899 			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1900 	if (rc)
1901 		return rc;
1902 
1903 	switch (kind) {
1904 	case MAY_LINK:
1905 		av = FILE__LINK;
1906 		break;
1907 	case MAY_UNLINK:
1908 		av = FILE__UNLINK;
1909 		break;
1910 	case MAY_RMDIR:
1911 		av = DIR__RMDIR;
1912 		break;
1913 	default:
1914 		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1915 			__func__, kind);
1916 		return 0;
1917 	}
1918 
1919 	rc = avc_has_perm(&selinux_state,
1920 			  sid, isec->sid, isec->sclass, av, &ad);
1921 	return rc;
1922 }
1923 
1924 static inline int may_rename(struct inode *old_dir,
1925 			     struct dentry *old_dentry,
1926 			     struct inode *new_dir,
1927 			     struct dentry *new_dentry)
1928 {
1929 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1930 	struct common_audit_data ad;
1931 	u32 sid = current_sid();
1932 	u32 av;
1933 	int old_is_dir, new_is_dir;
1934 	int rc;
1935 
1936 	old_dsec = inode_security(old_dir);
1937 	old_isec = backing_inode_security(old_dentry);
1938 	old_is_dir = d_is_dir(old_dentry);
1939 	new_dsec = inode_security(new_dir);
1940 
1941 	ad.type = LSM_AUDIT_DATA_DENTRY;
1942 
1943 	ad.u.dentry = old_dentry;
1944 	rc = avc_has_perm(&selinux_state,
1945 			  sid, old_dsec->sid, SECCLASS_DIR,
1946 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1947 	if (rc)
1948 		return rc;
1949 	rc = avc_has_perm(&selinux_state,
1950 			  sid, old_isec->sid,
1951 			  old_isec->sclass, FILE__RENAME, &ad);
1952 	if (rc)
1953 		return rc;
1954 	if (old_is_dir && new_dir != old_dir) {
1955 		rc = avc_has_perm(&selinux_state,
1956 				  sid, old_isec->sid,
1957 				  old_isec->sclass, DIR__REPARENT, &ad);
1958 		if (rc)
1959 			return rc;
1960 	}
1961 
1962 	ad.u.dentry = new_dentry;
1963 	av = DIR__ADD_NAME | DIR__SEARCH;
1964 	if (d_is_positive(new_dentry))
1965 		av |= DIR__REMOVE_NAME;
1966 	rc = avc_has_perm(&selinux_state,
1967 			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1968 	if (rc)
1969 		return rc;
1970 	if (d_is_positive(new_dentry)) {
1971 		new_isec = backing_inode_security(new_dentry);
1972 		new_is_dir = d_is_dir(new_dentry);
1973 		rc = avc_has_perm(&selinux_state,
1974 				  sid, new_isec->sid,
1975 				  new_isec->sclass,
1976 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1977 		if (rc)
1978 			return rc;
1979 	}
1980 
1981 	return 0;
1982 }
1983 
1984 /* Check whether a task can perform a filesystem operation. */
1985 static int superblock_has_perm(const struct cred *cred,
1986 			       struct super_block *sb,
1987 			       u32 perms,
1988 			       struct common_audit_data *ad)
1989 {
1990 	struct superblock_security_struct *sbsec;
1991 	u32 sid = cred_sid(cred);
1992 
1993 	sbsec = selinux_superblock(sb);
1994 	return avc_has_perm(&selinux_state,
1995 			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1996 }
1997 
1998 /* Convert a Linux mode and permission mask to an access vector. */
1999 static inline u32 file_mask_to_av(int mode, int mask)
2000 {
2001 	u32 av = 0;
2002 
2003 	if (!S_ISDIR(mode)) {
2004 		if (mask & MAY_EXEC)
2005 			av |= FILE__EXECUTE;
2006 		if (mask & MAY_READ)
2007 			av |= FILE__READ;
2008 
2009 		if (mask & MAY_APPEND)
2010 			av |= FILE__APPEND;
2011 		else if (mask & MAY_WRITE)
2012 			av |= FILE__WRITE;
2013 
2014 	} else {
2015 		if (mask & MAY_EXEC)
2016 			av |= DIR__SEARCH;
2017 		if (mask & MAY_WRITE)
2018 			av |= DIR__WRITE;
2019 		if (mask & MAY_READ)
2020 			av |= DIR__READ;
2021 	}
2022 
2023 	return av;
2024 }
2025 
2026 /* Convert a Linux file to an access vector. */
2027 static inline u32 file_to_av(struct file *file)
2028 {
2029 	u32 av = 0;
2030 
2031 	if (file->f_mode & FMODE_READ)
2032 		av |= FILE__READ;
2033 	if (file->f_mode & FMODE_WRITE) {
2034 		if (file->f_flags & O_APPEND)
2035 			av |= FILE__APPEND;
2036 		else
2037 			av |= FILE__WRITE;
2038 	}
2039 	if (!av) {
2040 		/*
2041 		 * Special file opened with flags 3 for ioctl-only use.
2042 		 */
2043 		av = FILE__IOCTL;
2044 	}
2045 
2046 	return av;
2047 }
2048 
2049 /*
2050  * Convert a file to an access vector and include the correct
2051  * open permission.
2052  */
2053 static inline u32 open_file_to_av(struct file *file)
2054 {
2055 	u32 av = file_to_av(file);
2056 	struct inode *inode = file_inode(file);
2057 
2058 	if (selinux_policycap_openperm() &&
2059 	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2060 		av |= FILE__OPEN;
2061 
2062 	return av;
2063 }
2064 
2065 /* Hook functions begin here. */
2066 
2067 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2068 {
2069 	return avc_has_perm(&selinux_state,
2070 			    current_sid(), task_sid_binder(mgr), SECCLASS_BINDER,
2071 			    BINDER__SET_CONTEXT_MGR, NULL);
2072 }
2073 
2074 static int selinux_binder_transaction(struct task_struct *from,
2075 				      struct task_struct *to)
2076 {
2077 	u32 mysid = current_sid();
2078 	u32 fromsid = task_sid_binder(from);
2079 	int rc;
2080 
2081 	if (mysid != fromsid) {
2082 		rc = avc_has_perm(&selinux_state,
2083 				  mysid, fromsid, SECCLASS_BINDER,
2084 				  BINDER__IMPERSONATE, NULL);
2085 		if (rc)
2086 			return rc;
2087 	}
2088 
2089 	return avc_has_perm(&selinux_state, fromsid, task_sid_binder(to),
2090 			    SECCLASS_BINDER, BINDER__CALL, NULL);
2091 }
2092 
2093 static int selinux_binder_transfer_binder(struct task_struct *from,
2094 					  struct task_struct *to)
2095 {
2096 	return avc_has_perm(&selinux_state,
2097 			    task_sid_binder(from), task_sid_binder(to),
2098 			    SECCLASS_BINDER, BINDER__TRANSFER,
2099 			    NULL);
2100 }
2101 
2102 static int selinux_binder_transfer_file(struct task_struct *from,
2103 					struct task_struct *to,
2104 					struct file *file)
2105 {
2106 	u32 sid = task_sid_binder(to);
2107 	struct file_security_struct *fsec = selinux_file(file);
2108 	struct dentry *dentry = file->f_path.dentry;
2109 	struct inode_security_struct *isec;
2110 	struct common_audit_data ad;
2111 	int rc;
2112 
2113 	ad.type = LSM_AUDIT_DATA_PATH;
2114 	ad.u.path = file->f_path;
2115 
2116 	if (sid != fsec->sid) {
2117 		rc = avc_has_perm(&selinux_state,
2118 				  sid, fsec->sid,
2119 				  SECCLASS_FD,
2120 				  FD__USE,
2121 				  &ad);
2122 		if (rc)
2123 			return rc;
2124 	}
2125 
2126 #ifdef CONFIG_BPF_SYSCALL
2127 	rc = bpf_fd_pass(file, sid);
2128 	if (rc)
2129 		return rc;
2130 #endif
2131 
2132 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2133 		return 0;
2134 
2135 	isec = backing_inode_security(dentry);
2136 	return avc_has_perm(&selinux_state,
2137 			    sid, isec->sid, isec->sclass, file_to_av(file),
2138 			    &ad);
2139 }
2140 
2141 static int selinux_ptrace_access_check(struct task_struct *child,
2142 				       unsigned int mode)
2143 {
2144 	u32 sid = current_sid();
2145 	u32 csid = task_sid_obj(child);
2146 
2147 	if (mode & PTRACE_MODE_READ)
2148 		return avc_has_perm(&selinux_state,
2149 				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2150 
2151 	return avc_has_perm(&selinux_state,
2152 			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2153 }
2154 
2155 static int selinux_ptrace_traceme(struct task_struct *parent)
2156 {
2157 	return avc_has_perm(&selinux_state,
2158 			    task_sid_subj(parent), task_sid_obj(current),
2159 			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2160 }
2161 
2162 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2163 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2164 {
2165 	return avc_has_perm(&selinux_state,
2166 			    current_sid(), task_sid_obj(target), SECCLASS_PROCESS,
2167 			    PROCESS__GETCAP, NULL);
2168 }
2169 
2170 static int selinux_capset(struct cred *new, const struct cred *old,
2171 			  const kernel_cap_t *effective,
2172 			  const kernel_cap_t *inheritable,
2173 			  const kernel_cap_t *permitted)
2174 {
2175 	return avc_has_perm(&selinux_state,
2176 			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2177 			    PROCESS__SETCAP, NULL);
2178 }
2179 
2180 /*
2181  * (This comment used to live with the selinux_task_setuid hook,
2182  * which was removed).
2183  *
2184  * Since setuid only affects the current process, and since the SELinux
2185  * controls are not based on the Linux identity attributes, SELinux does not
2186  * need to control this operation.  However, SELinux does control the use of
2187  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2188  */
2189 
2190 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2191 			   int cap, unsigned int opts)
2192 {
2193 	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2194 }
2195 
2196 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2197 {
2198 	const struct cred *cred = current_cred();
2199 	int rc = 0;
2200 
2201 	if (!sb)
2202 		return 0;
2203 
2204 	switch (cmds) {
2205 	case Q_SYNC:
2206 	case Q_QUOTAON:
2207 	case Q_QUOTAOFF:
2208 	case Q_SETINFO:
2209 	case Q_SETQUOTA:
2210 	case Q_XQUOTAOFF:
2211 	case Q_XQUOTAON:
2212 	case Q_XSETQLIM:
2213 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2214 		break;
2215 	case Q_GETFMT:
2216 	case Q_GETINFO:
2217 	case Q_GETQUOTA:
2218 	case Q_XGETQUOTA:
2219 	case Q_XGETQSTAT:
2220 	case Q_XGETQSTATV:
2221 	case Q_XGETNEXTQUOTA:
2222 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2223 		break;
2224 	default:
2225 		rc = 0;  /* let the kernel handle invalid cmds */
2226 		break;
2227 	}
2228 	return rc;
2229 }
2230 
2231 static int selinux_quota_on(struct dentry *dentry)
2232 {
2233 	const struct cred *cred = current_cred();
2234 
2235 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2236 }
2237 
2238 static int selinux_syslog(int type)
2239 {
2240 	switch (type) {
2241 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2242 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2243 		return avc_has_perm(&selinux_state,
2244 				    current_sid(), SECINITSID_KERNEL,
2245 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2246 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2247 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2248 	/* Set level of messages printed to console */
2249 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2250 		return avc_has_perm(&selinux_state,
2251 				    current_sid(), SECINITSID_KERNEL,
2252 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2253 				    NULL);
2254 	}
2255 	/* All other syslog types */
2256 	return avc_has_perm(&selinux_state,
2257 			    current_sid(), SECINITSID_KERNEL,
2258 			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2259 }
2260 
2261 /*
2262  * Check that a process has enough memory to allocate a new virtual
2263  * mapping. 0 means there is enough memory for the allocation to
2264  * succeed and -ENOMEM implies there is not.
2265  *
2266  * Do not audit the selinux permission check, as this is applied to all
2267  * processes that allocate mappings.
2268  */
2269 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2270 {
2271 	int rc, cap_sys_admin = 0;
2272 
2273 	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2274 				 CAP_OPT_NOAUDIT, true);
2275 	if (rc == 0)
2276 		cap_sys_admin = 1;
2277 
2278 	return cap_sys_admin;
2279 }
2280 
2281 /* binprm security operations */
2282 
2283 static u32 ptrace_parent_sid(void)
2284 {
2285 	u32 sid = 0;
2286 	struct task_struct *tracer;
2287 
2288 	rcu_read_lock();
2289 	tracer = ptrace_parent(current);
2290 	if (tracer)
2291 		sid = task_sid_obj(tracer);
2292 	rcu_read_unlock();
2293 
2294 	return sid;
2295 }
2296 
2297 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2298 			    const struct task_security_struct *old_tsec,
2299 			    const struct task_security_struct *new_tsec)
2300 {
2301 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2302 	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2303 	int rc;
2304 	u32 av;
2305 
2306 	if (!nnp && !nosuid)
2307 		return 0; /* neither NNP nor nosuid */
2308 
2309 	if (new_tsec->sid == old_tsec->sid)
2310 		return 0; /* No change in credentials */
2311 
2312 	/*
2313 	 * If the policy enables the nnp_nosuid_transition policy capability,
2314 	 * then we permit transitions under NNP or nosuid if the
2315 	 * policy allows the corresponding permission between
2316 	 * the old and new contexts.
2317 	 */
2318 	if (selinux_policycap_nnp_nosuid_transition()) {
2319 		av = 0;
2320 		if (nnp)
2321 			av |= PROCESS2__NNP_TRANSITION;
2322 		if (nosuid)
2323 			av |= PROCESS2__NOSUID_TRANSITION;
2324 		rc = avc_has_perm(&selinux_state,
2325 				  old_tsec->sid, new_tsec->sid,
2326 				  SECCLASS_PROCESS2, av, NULL);
2327 		if (!rc)
2328 			return 0;
2329 	}
2330 
2331 	/*
2332 	 * We also permit NNP or nosuid transitions to bounded SIDs,
2333 	 * i.e. SIDs that are guaranteed to only be allowed a subset
2334 	 * of the permissions of the current SID.
2335 	 */
2336 	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2337 					 new_tsec->sid);
2338 	if (!rc)
2339 		return 0;
2340 
2341 	/*
2342 	 * On failure, preserve the errno values for NNP vs nosuid.
2343 	 * NNP:  Operation not permitted for caller.
2344 	 * nosuid:  Permission denied to file.
2345 	 */
2346 	if (nnp)
2347 		return -EPERM;
2348 	return -EACCES;
2349 }
2350 
2351 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2352 {
2353 	const struct task_security_struct *old_tsec;
2354 	struct task_security_struct *new_tsec;
2355 	struct inode_security_struct *isec;
2356 	struct common_audit_data ad;
2357 	struct inode *inode = file_inode(bprm->file);
2358 	int rc;
2359 
2360 	/* SELinux context only depends on initial program or script and not
2361 	 * the script interpreter */
2362 
2363 	old_tsec = selinux_cred(current_cred());
2364 	new_tsec = selinux_cred(bprm->cred);
2365 	isec = inode_security(inode);
2366 
2367 	/* Default to the current task SID. */
2368 	new_tsec->sid = old_tsec->sid;
2369 	new_tsec->osid = old_tsec->sid;
2370 
2371 	/* Reset fs, key, and sock SIDs on execve. */
2372 	new_tsec->create_sid = 0;
2373 	new_tsec->keycreate_sid = 0;
2374 	new_tsec->sockcreate_sid = 0;
2375 
2376 	if (old_tsec->exec_sid) {
2377 		new_tsec->sid = old_tsec->exec_sid;
2378 		/* Reset exec SID on execve. */
2379 		new_tsec->exec_sid = 0;
2380 
2381 		/* Fail on NNP or nosuid if not an allowed transition. */
2382 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2383 		if (rc)
2384 			return rc;
2385 	} else {
2386 		/* Check for a default transition on this program. */
2387 		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2388 					     isec->sid, SECCLASS_PROCESS, NULL,
2389 					     &new_tsec->sid);
2390 		if (rc)
2391 			return rc;
2392 
2393 		/*
2394 		 * Fallback to old SID on NNP or nosuid if not an allowed
2395 		 * transition.
2396 		 */
2397 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2398 		if (rc)
2399 			new_tsec->sid = old_tsec->sid;
2400 	}
2401 
2402 	ad.type = LSM_AUDIT_DATA_FILE;
2403 	ad.u.file = bprm->file;
2404 
2405 	if (new_tsec->sid == old_tsec->sid) {
2406 		rc = avc_has_perm(&selinux_state,
2407 				  old_tsec->sid, isec->sid,
2408 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2409 		if (rc)
2410 			return rc;
2411 	} else {
2412 		/* Check permissions for the transition. */
2413 		rc = avc_has_perm(&selinux_state,
2414 				  old_tsec->sid, new_tsec->sid,
2415 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2416 		if (rc)
2417 			return rc;
2418 
2419 		rc = avc_has_perm(&selinux_state,
2420 				  new_tsec->sid, isec->sid,
2421 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2422 		if (rc)
2423 			return rc;
2424 
2425 		/* Check for shared state */
2426 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2427 			rc = avc_has_perm(&selinux_state,
2428 					  old_tsec->sid, new_tsec->sid,
2429 					  SECCLASS_PROCESS, PROCESS__SHARE,
2430 					  NULL);
2431 			if (rc)
2432 				return -EPERM;
2433 		}
2434 
2435 		/* Make sure that anyone attempting to ptrace over a task that
2436 		 * changes its SID has the appropriate permit */
2437 		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2438 			u32 ptsid = ptrace_parent_sid();
2439 			if (ptsid != 0) {
2440 				rc = avc_has_perm(&selinux_state,
2441 						  ptsid, new_tsec->sid,
2442 						  SECCLASS_PROCESS,
2443 						  PROCESS__PTRACE, NULL);
2444 				if (rc)
2445 					return -EPERM;
2446 			}
2447 		}
2448 
2449 		/* Clear any possibly unsafe personality bits on exec: */
2450 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2451 
2452 		/* Enable secure mode for SIDs transitions unless
2453 		   the noatsecure permission is granted between
2454 		   the two SIDs, i.e. ahp returns 0. */
2455 		rc = avc_has_perm(&selinux_state,
2456 				  old_tsec->sid, new_tsec->sid,
2457 				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2458 				  NULL);
2459 		bprm->secureexec |= !!rc;
2460 	}
2461 
2462 	return 0;
2463 }
2464 
2465 static int match_file(const void *p, struct file *file, unsigned fd)
2466 {
2467 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2468 }
2469 
2470 /* Derived from fs/exec.c:flush_old_files. */
2471 static inline void flush_unauthorized_files(const struct cred *cred,
2472 					    struct files_struct *files)
2473 {
2474 	struct file *file, *devnull = NULL;
2475 	struct tty_struct *tty;
2476 	int drop_tty = 0;
2477 	unsigned n;
2478 
2479 	tty = get_current_tty();
2480 	if (tty) {
2481 		spin_lock(&tty->files_lock);
2482 		if (!list_empty(&tty->tty_files)) {
2483 			struct tty_file_private *file_priv;
2484 
2485 			/* Revalidate access to controlling tty.
2486 			   Use file_path_has_perm on the tty path directly
2487 			   rather than using file_has_perm, as this particular
2488 			   open file may belong to another process and we are
2489 			   only interested in the inode-based check here. */
2490 			file_priv = list_first_entry(&tty->tty_files,
2491 						struct tty_file_private, list);
2492 			file = file_priv->file;
2493 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2494 				drop_tty = 1;
2495 		}
2496 		spin_unlock(&tty->files_lock);
2497 		tty_kref_put(tty);
2498 	}
2499 	/* Reset controlling tty. */
2500 	if (drop_tty)
2501 		no_tty();
2502 
2503 	/* Revalidate access to inherited open files. */
2504 	n = iterate_fd(files, 0, match_file, cred);
2505 	if (!n) /* none found? */
2506 		return;
2507 
2508 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2509 	if (IS_ERR(devnull))
2510 		devnull = NULL;
2511 	/* replace all the matching ones with this */
2512 	do {
2513 		replace_fd(n - 1, devnull, 0);
2514 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2515 	if (devnull)
2516 		fput(devnull);
2517 }
2518 
2519 /*
2520  * Prepare a process for imminent new credential changes due to exec
2521  */
2522 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2523 {
2524 	struct task_security_struct *new_tsec;
2525 	struct rlimit *rlim, *initrlim;
2526 	int rc, i;
2527 
2528 	new_tsec = selinux_cred(bprm->cred);
2529 	if (new_tsec->sid == new_tsec->osid)
2530 		return;
2531 
2532 	/* Close files for which the new task SID is not authorized. */
2533 	flush_unauthorized_files(bprm->cred, current->files);
2534 
2535 	/* Always clear parent death signal on SID transitions. */
2536 	current->pdeath_signal = 0;
2537 
2538 	/* Check whether the new SID can inherit resource limits from the old
2539 	 * SID.  If not, reset all soft limits to the lower of the current
2540 	 * task's hard limit and the init task's soft limit.
2541 	 *
2542 	 * Note that the setting of hard limits (even to lower them) can be
2543 	 * controlled by the setrlimit check.  The inclusion of the init task's
2544 	 * soft limit into the computation is to avoid resetting soft limits
2545 	 * higher than the default soft limit for cases where the default is
2546 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2547 	 */
2548 	rc = avc_has_perm(&selinux_state,
2549 			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2550 			  PROCESS__RLIMITINH, NULL);
2551 	if (rc) {
2552 		/* protect against do_prlimit() */
2553 		task_lock(current);
2554 		for (i = 0; i < RLIM_NLIMITS; i++) {
2555 			rlim = current->signal->rlim + i;
2556 			initrlim = init_task.signal->rlim + i;
2557 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2558 		}
2559 		task_unlock(current);
2560 		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2561 			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2562 	}
2563 }
2564 
2565 /*
2566  * Clean up the process immediately after the installation of new credentials
2567  * due to exec
2568  */
2569 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2570 {
2571 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2572 	u32 osid, sid;
2573 	int rc;
2574 
2575 	osid = tsec->osid;
2576 	sid = tsec->sid;
2577 
2578 	if (sid == osid)
2579 		return;
2580 
2581 	/* Check whether the new SID can inherit signal state from the old SID.
2582 	 * If not, clear itimers to avoid subsequent signal generation and
2583 	 * flush and unblock signals.
2584 	 *
2585 	 * This must occur _after_ the task SID has been updated so that any
2586 	 * kill done after the flush will be checked against the new SID.
2587 	 */
2588 	rc = avc_has_perm(&selinux_state,
2589 			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2590 	if (rc) {
2591 		clear_itimer();
2592 
2593 		spin_lock_irq(&current->sighand->siglock);
2594 		if (!fatal_signal_pending(current)) {
2595 			flush_sigqueue(&current->pending);
2596 			flush_sigqueue(&current->signal->shared_pending);
2597 			flush_signal_handlers(current, 1);
2598 			sigemptyset(&current->blocked);
2599 			recalc_sigpending();
2600 		}
2601 		spin_unlock_irq(&current->sighand->siglock);
2602 	}
2603 
2604 	/* Wake up the parent if it is waiting so that it can recheck
2605 	 * wait permission to the new task SID. */
2606 	read_lock(&tasklist_lock);
2607 	__wake_up_parent(current, current->real_parent);
2608 	read_unlock(&tasklist_lock);
2609 }
2610 
2611 /* superblock security operations */
2612 
2613 static int selinux_sb_alloc_security(struct super_block *sb)
2614 {
2615 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2616 
2617 	mutex_init(&sbsec->lock);
2618 	INIT_LIST_HEAD(&sbsec->isec_head);
2619 	spin_lock_init(&sbsec->isec_lock);
2620 	sbsec->sid = SECINITSID_UNLABELED;
2621 	sbsec->def_sid = SECINITSID_FILE;
2622 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2623 
2624 	return 0;
2625 }
2626 
2627 static inline int opt_len(const char *s)
2628 {
2629 	bool open_quote = false;
2630 	int len;
2631 	char c;
2632 
2633 	for (len = 0; (c = s[len]) != '\0'; len++) {
2634 		if (c == '"')
2635 			open_quote = !open_quote;
2636 		if (c == ',' && !open_quote)
2637 			break;
2638 	}
2639 	return len;
2640 }
2641 
2642 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2643 {
2644 	char *from = options;
2645 	char *to = options;
2646 	bool first = true;
2647 	int rc;
2648 
2649 	while (1) {
2650 		int len = opt_len(from);
2651 		int token;
2652 		char *arg = NULL;
2653 
2654 		token = match_opt_prefix(from, len, &arg);
2655 
2656 		if (token != Opt_error) {
2657 			char *p, *q;
2658 
2659 			/* strip quotes */
2660 			if (arg) {
2661 				for (p = q = arg; p < from + len; p++) {
2662 					char c = *p;
2663 					if (c != '"')
2664 						*q++ = c;
2665 				}
2666 				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2667 				if (!arg) {
2668 					rc = -ENOMEM;
2669 					goto free_opt;
2670 				}
2671 			}
2672 			rc = selinux_add_opt(token, arg, mnt_opts);
2673 			if (unlikely(rc)) {
2674 				kfree(arg);
2675 				goto free_opt;
2676 			}
2677 		} else {
2678 			if (!first) {	// copy with preceding comma
2679 				from--;
2680 				len++;
2681 			}
2682 			if (to != from)
2683 				memmove(to, from, len);
2684 			to += len;
2685 			first = false;
2686 		}
2687 		if (!from[len])
2688 			break;
2689 		from += len + 1;
2690 	}
2691 	*to = '\0';
2692 	return 0;
2693 
2694 free_opt:
2695 	if (*mnt_opts) {
2696 		selinux_free_mnt_opts(*mnt_opts);
2697 		*mnt_opts = NULL;
2698 	}
2699 	return rc;
2700 }
2701 
2702 static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2703 {
2704 	struct selinux_mnt_opts *opts = mnt_opts;
2705 	struct superblock_security_struct *sbsec = sb->s_security;
2706 	u32 sid;
2707 	int rc;
2708 
2709 	/*
2710 	 * Superblock not initialized (i.e. no options) - reject if any
2711 	 * options specified, otherwise accept.
2712 	 */
2713 	if (!(sbsec->flags & SE_SBINITIALIZED))
2714 		return opts ? 1 : 0;
2715 
2716 	/*
2717 	 * Superblock initialized and no options specified - reject if
2718 	 * superblock has any options set, otherwise accept.
2719 	 */
2720 	if (!opts)
2721 		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2722 
2723 	if (opts->fscontext) {
2724 		rc = parse_sid(sb, opts->fscontext, &sid);
2725 		if (rc)
2726 			return 1;
2727 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2728 			return 1;
2729 	}
2730 	if (opts->context) {
2731 		rc = parse_sid(sb, opts->context, &sid);
2732 		if (rc)
2733 			return 1;
2734 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2735 			return 1;
2736 	}
2737 	if (opts->rootcontext) {
2738 		struct inode_security_struct *root_isec;
2739 
2740 		root_isec = backing_inode_security(sb->s_root);
2741 		rc = parse_sid(sb, opts->rootcontext, &sid);
2742 		if (rc)
2743 			return 1;
2744 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2745 			return 1;
2746 	}
2747 	if (opts->defcontext) {
2748 		rc = parse_sid(sb, opts->defcontext, &sid);
2749 		if (rc)
2750 			return 1;
2751 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2752 			return 1;
2753 	}
2754 	return 0;
2755 }
2756 
2757 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2758 {
2759 	struct selinux_mnt_opts *opts = mnt_opts;
2760 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2761 	u32 sid;
2762 	int rc;
2763 
2764 	if (!(sbsec->flags & SE_SBINITIALIZED))
2765 		return 0;
2766 
2767 	if (!opts)
2768 		return 0;
2769 
2770 	if (opts->fscontext) {
2771 		rc = parse_sid(sb, opts->fscontext, &sid);
2772 		if (rc)
2773 			return rc;
2774 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2775 			goto out_bad_option;
2776 	}
2777 	if (opts->context) {
2778 		rc = parse_sid(sb, opts->context, &sid);
2779 		if (rc)
2780 			return rc;
2781 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2782 			goto out_bad_option;
2783 	}
2784 	if (opts->rootcontext) {
2785 		struct inode_security_struct *root_isec;
2786 		root_isec = backing_inode_security(sb->s_root);
2787 		rc = parse_sid(sb, opts->rootcontext, &sid);
2788 		if (rc)
2789 			return rc;
2790 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2791 			goto out_bad_option;
2792 	}
2793 	if (opts->defcontext) {
2794 		rc = parse_sid(sb, opts->defcontext, &sid);
2795 		if (rc)
2796 			return rc;
2797 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2798 			goto out_bad_option;
2799 	}
2800 	return 0;
2801 
2802 out_bad_option:
2803 	pr_warn("SELinux: unable to change security options "
2804 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2805 	       sb->s_type->name);
2806 	return -EINVAL;
2807 }
2808 
2809 static int selinux_sb_kern_mount(struct super_block *sb)
2810 {
2811 	const struct cred *cred = current_cred();
2812 	struct common_audit_data ad;
2813 
2814 	ad.type = LSM_AUDIT_DATA_DENTRY;
2815 	ad.u.dentry = sb->s_root;
2816 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2817 }
2818 
2819 static int selinux_sb_statfs(struct dentry *dentry)
2820 {
2821 	const struct cred *cred = current_cred();
2822 	struct common_audit_data ad;
2823 
2824 	ad.type = LSM_AUDIT_DATA_DENTRY;
2825 	ad.u.dentry = dentry->d_sb->s_root;
2826 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2827 }
2828 
2829 static int selinux_mount(const char *dev_name,
2830 			 const struct path *path,
2831 			 const char *type,
2832 			 unsigned long flags,
2833 			 void *data)
2834 {
2835 	const struct cred *cred = current_cred();
2836 
2837 	if (flags & MS_REMOUNT)
2838 		return superblock_has_perm(cred, path->dentry->d_sb,
2839 					   FILESYSTEM__REMOUNT, NULL);
2840 	else
2841 		return path_has_perm(cred, path, FILE__MOUNTON);
2842 }
2843 
2844 static int selinux_move_mount(const struct path *from_path,
2845 			      const struct path *to_path)
2846 {
2847 	const struct cred *cred = current_cred();
2848 
2849 	return path_has_perm(cred, to_path, FILE__MOUNTON);
2850 }
2851 
2852 static int selinux_umount(struct vfsmount *mnt, int flags)
2853 {
2854 	const struct cred *cred = current_cred();
2855 
2856 	return superblock_has_perm(cred, mnt->mnt_sb,
2857 				   FILESYSTEM__UNMOUNT, NULL);
2858 }
2859 
2860 static int selinux_fs_context_dup(struct fs_context *fc,
2861 				  struct fs_context *src_fc)
2862 {
2863 	const struct selinux_mnt_opts *src = src_fc->security;
2864 	struct selinux_mnt_opts *opts;
2865 
2866 	if (!src)
2867 		return 0;
2868 
2869 	fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2870 	if (!fc->security)
2871 		return -ENOMEM;
2872 
2873 	opts = fc->security;
2874 
2875 	if (src->fscontext) {
2876 		opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2877 		if (!opts->fscontext)
2878 			return -ENOMEM;
2879 	}
2880 	if (src->context) {
2881 		opts->context = kstrdup(src->context, GFP_KERNEL);
2882 		if (!opts->context)
2883 			return -ENOMEM;
2884 	}
2885 	if (src->rootcontext) {
2886 		opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2887 		if (!opts->rootcontext)
2888 			return -ENOMEM;
2889 	}
2890 	if (src->defcontext) {
2891 		opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2892 		if (!opts->defcontext)
2893 			return -ENOMEM;
2894 	}
2895 	return 0;
2896 }
2897 
2898 static const struct fs_parameter_spec selinux_fs_parameters[] = {
2899 	fsparam_string(CONTEXT_STR,	Opt_context),
2900 	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2901 	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2902 	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2903 	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2904 	{}
2905 };
2906 
2907 static int selinux_fs_context_parse_param(struct fs_context *fc,
2908 					  struct fs_parameter *param)
2909 {
2910 	struct fs_parse_result result;
2911 	int opt, rc;
2912 
2913 	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2914 	if (opt < 0)
2915 		return opt;
2916 
2917 	rc = selinux_add_opt(opt, param->string, &fc->security);
2918 	if (!rc) {
2919 		param->string = NULL;
2920 		rc = 1;
2921 	}
2922 	return rc;
2923 }
2924 
2925 /* inode security operations */
2926 
2927 static int selinux_inode_alloc_security(struct inode *inode)
2928 {
2929 	struct inode_security_struct *isec = selinux_inode(inode);
2930 	u32 sid = current_sid();
2931 
2932 	spin_lock_init(&isec->lock);
2933 	INIT_LIST_HEAD(&isec->list);
2934 	isec->inode = inode;
2935 	isec->sid = SECINITSID_UNLABELED;
2936 	isec->sclass = SECCLASS_FILE;
2937 	isec->task_sid = sid;
2938 	isec->initialized = LABEL_INVALID;
2939 
2940 	return 0;
2941 }
2942 
2943 static void selinux_inode_free_security(struct inode *inode)
2944 {
2945 	inode_free_security(inode);
2946 }
2947 
2948 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2949 					const struct qstr *name, void **ctx,
2950 					u32 *ctxlen)
2951 {
2952 	u32 newsid;
2953 	int rc;
2954 
2955 	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2956 					   d_inode(dentry->d_parent), name,
2957 					   inode_mode_to_security_class(mode),
2958 					   &newsid);
2959 	if (rc)
2960 		return rc;
2961 
2962 	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2963 				       ctxlen);
2964 }
2965 
2966 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2967 					  struct qstr *name,
2968 					  const struct cred *old,
2969 					  struct cred *new)
2970 {
2971 	u32 newsid;
2972 	int rc;
2973 	struct task_security_struct *tsec;
2974 
2975 	rc = selinux_determine_inode_label(selinux_cred(old),
2976 					   d_inode(dentry->d_parent), name,
2977 					   inode_mode_to_security_class(mode),
2978 					   &newsid);
2979 	if (rc)
2980 		return rc;
2981 
2982 	tsec = selinux_cred(new);
2983 	tsec->create_sid = newsid;
2984 	return 0;
2985 }
2986 
2987 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2988 				       const struct qstr *qstr,
2989 				       const char **name,
2990 				       void **value, size_t *len)
2991 {
2992 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2993 	struct superblock_security_struct *sbsec;
2994 	u32 newsid, clen;
2995 	int rc;
2996 	char *context;
2997 
2998 	sbsec = selinux_superblock(dir->i_sb);
2999 
3000 	newsid = tsec->create_sid;
3001 
3002 	rc = selinux_determine_inode_label(tsec, dir, qstr,
3003 		inode_mode_to_security_class(inode->i_mode),
3004 		&newsid);
3005 	if (rc)
3006 		return rc;
3007 
3008 	/* Possibly defer initialization to selinux_complete_init. */
3009 	if (sbsec->flags & SE_SBINITIALIZED) {
3010 		struct inode_security_struct *isec = selinux_inode(inode);
3011 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
3012 		isec->sid = newsid;
3013 		isec->initialized = LABEL_INITIALIZED;
3014 	}
3015 
3016 	if (!selinux_initialized(&selinux_state) ||
3017 	    !(sbsec->flags & SBLABEL_MNT))
3018 		return -EOPNOTSUPP;
3019 
3020 	if (name)
3021 		*name = XATTR_SELINUX_SUFFIX;
3022 
3023 	if (value && len) {
3024 		rc = security_sid_to_context_force(&selinux_state, newsid,
3025 						   &context, &clen);
3026 		if (rc)
3027 			return rc;
3028 		*value = context;
3029 		*len = clen;
3030 	}
3031 
3032 	return 0;
3033 }
3034 
3035 static int selinux_inode_init_security_anon(struct inode *inode,
3036 					    const struct qstr *name,
3037 					    const struct inode *context_inode)
3038 {
3039 	const struct task_security_struct *tsec = selinux_cred(current_cred());
3040 	struct common_audit_data ad;
3041 	struct inode_security_struct *isec;
3042 	int rc;
3043 
3044 	if (unlikely(!selinux_initialized(&selinux_state)))
3045 		return 0;
3046 
3047 	isec = selinux_inode(inode);
3048 
3049 	/*
3050 	 * We only get here once per ephemeral inode.  The inode has
3051 	 * been initialized via inode_alloc_security but is otherwise
3052 	 * untouched.
3053 	 */
3054 
3055 	if (context_inode) {
3056 		struct inode_security_struct *context_isec =
3057 			selinux_inode(context_inode);
3058 		if (context_isec->initialized != LABEL_INITIALIZED) {
3059 			pr_err("SELinux:  context_inode is not initialized");
3060 			return -EACCES;
3061 		}
3062 
3063 		isec->sclass = context_isec->sclass;
3064 		isec->sid = context_isec->sid;
3065 	} else {
3066 		isec->sclass = SECCLASS_ANON_INODE;
3067 		rc = security_transition_sid(
3068 			&selinux_state, tsec->sid, tsec->sid,
3069 			isec->sclass, name, &isec->sid);
3070 		if (rc)
3071 			return rc;
3072 	}
3073 
3074 	isec->initialized = LABEL_INITIALIZED;
3075 	/*
3076 	 * Now that we've initialized security, check whether we're
3077 	 * allowed to actually create this type of anonymous inode.
3078 	 */
3079 
3080 	ad.type = LSM_AUDIT_DATA_INODE;
3081 	ad.u.inode = inode;
3082 
3083 	return avc_has_perm(&selinux_state,
3084 			    tsec->sid,
3085 			    isec->sid,
3086 			    isec->sclass,
3087 			    FILE__CREATE,
3088 			    &ad);
3089 }
3090 
3091 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3092 {
3093 	return may_create(dir, dentry, SECCLASS_FILE);
3094 }
3095 
3096 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3097 {
3098 	return may_link(dir, old_dentry, MAY_LINK);
3099 }
3100 
3101 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3102 {
3103 	return may_link(dir, dentry, MAY_UNLINK);
3104 }
3105 
3106 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3107 {
3108 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3109 }
3110 
3111 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3112 {
3113 	return may_create(dir, dentry, SECCLASS_DIR);
3114 }
3115 
3116 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3117 {
3118 	return may_link(dir, dentry, MAY_RMDIR);
3119 }
3120 
3121 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3122 {
3123 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3124 }
3125 
3126 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3127 				struct inode *new_inode, struct dentry *new_dentry)
3128 {
3129 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3130 }
3131 
3132 static int selinux_inode_readlink(struct dentry *dentry)
3133 {
3134 	const struct cred *cred = current_cred();
3135 
3136 	return dentry_has_perm(cred, dentry, FILE__READ);
3137 }
3138 
3139 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3140 				     bool rcu)
3141 {
3142 	const struct cred *cred = current_cred();
3143 	struct common_audit_data ad;
3144 	struct inode_security_struct *isec;
3145 	u32 sid;
3146 
3147 	validate_creds(cred);
3148 
3149 	ad.type = LSM_AUDIT_DATA_DENTRY;
3150 	ad.u.dentry = dentry;
3151 	sid = cred_sid(cred);
3152 	isec = inode_security_rcu(inode, rcu);
3153 	if (IS_ERR(isec))
3154 		return PTR_ERR(isec);
3155 
3156 	return avc_has_perm_flags(&selinux_state,
3157 				  sid, isec->sid, isec->sclass, FILE__READ, &ad,
3158 				  rcu ? MAY_NOT_BLOCK : 0);
3159 }
3160 
3161 static noinline int audit_inode_permission(struct inode *inode,
3162 					   u32 perms, u32 audited, u32 denied,
3163 					   int result)
3164 {
3165 	struct common_audit_data ad;
3166 	struct inode_security_struct *isec = selinux_inode(inode);
3167 	int rc;
3168 
3169 	ad.type = LSM_AUDIT_DATA_INODE;
3170 	ad.u.inode = inode;
3171 
3172 	rc = slow_avc_audit(&selinux_state,
3173 			    current_sid(), isec->sid, isec->sclass, perms,
3174 			    audited, denied, result, &ad);
3175 	if (rc)
3176 		return rc;
3177 	return 0;
3178 }
3179 
3180 static int selinux_inode_permission(struct inode *inode, int mask)
3181 {
3182 	const struct cred *cred = current_cred();
3183 	u32 perms;
3184 	bool from_access;
3185 	bool no_block = mask & MAY_NOT_BLOCK;
3186 	struct inode_security_struct *isec;
3187 	u32 sid;
3188 	struct av_decision avd;
3189 	int rc, rc2;
3190 	u32 audited, denied;
3191 
3192 	from_access = mask & MAY_ACCESS;
3193 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3194 
3195 	/* No permission to check.  Existence test. */
3196 	if (!mask)
3197 		return 0;
3198 
3199 	validate_creds(cred);
3200 
3201 	if (unlikely(IS_PRIVATE(inode)))
3202 		return 0;
3203 
3204 	perms = file_mask_to_av(inode->i_mode, mask);
3205 
3206 	sid = cred_sid(cred);
3207 	isec = inode_security_rcu(inode, no_block);
3208 	if (IS_ERR(isec))
3209 		return PTR_ERR(isec);
3210 
3211 	rc = avc_has_perm_noaudit(&selinux_state,
3212 				  sid, isec->sid, isec->sclass, perms,
3213 				  no_block ? AVC_NONBLOCKING : 0,
3214 				  &avd);
3215 	audited = avc_audit_required(perms, &avd, rc,
3216 				     from_access ? FILE__AUDIT_ACCESS : 0,
3217 				     &denied);
3218 	if (likely(!audited))
3219 		return rc;
3220 
3221 	/* fall back to ref-walk if we have to generate audit */
3222 	if (no_block)
3223 		return -ECHILD;
3224 
3225 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3226 	if (rc2)
3227 		return rc2;
3228 	return rc;
3229 }
3230 
3231 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3232 {
3233 	const struct cred *cred = current_cred();
3234 	struct inode *inode = d_backing_inode(dentry);
3235 	unsigned int ia_valid = iattr->ia_valid;
3236 	__u32 av = FILE__WRITE;
3237 
3238 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3239 	if (ia_valid & ATTR_FORCE) {
3240 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3241 			      ATTR_FORCE);
3242 		if (!ia_valid)
3243 			return 0;
3244 	}
3245 
3246 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3247 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3248 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3249 
3250 	if (selinux_policycap_openperm() &&
3251 	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3252 	    (ia_valid & ATTR_SIZE) &&
3253 	    !(ia_valid & ATTR_FILE))
3254 		av |= FILE__OPEN;
3255 
3256 	return dentry_has_perm(cred, dentry, av);
3257 }
3258 
3259 static int selinux_inode_getattr(const struct path *path)
3260 {
3261 	return path_has_perm(current_cred(), path, FILE__GETATTR);
3262 }
3263 
3264 static bool has_cap_mac_admin(bool audit)
3265 {
3266 	const struct cred *cred = current_cred();
3267 	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3268 
3269 	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3270 		return false;
3271 	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3272 		return false;
3273 	return true;
3274 }
3275 
3276 static int selinux_inode_setxattr(struct user_namespace *mnt_userns,
3277 				  struct dentry *dentry, const char *name,
3278 				  const void *value, size_t size, int flags)
3279 {
3280 	struct inode *inode = d_backing_inode(dentry);
3281 	struct inode_security_struct *isec;
3282 	struct superblock_security_struct *sbsec;
3283 	struct common_audit_data ad;
3284 	u32 newsid, sid = current_sid();
3285 	int rc = 0;
3286 
3287 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3288 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3289 		if (rc)
3290 			return rc;
3291 
3292 		/* Not an attribute we recognize, so just check the
3293 		   ordinary setattr permission. */
3294 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3295 	}
3296 
3297 	if (!selinux_initialized(&selinux_state))
3298 		return (inode_owner_or_capable(mnt_userns, inode) ? 0 : -EPERM);
3299 
3300 	sbsec = selinux_superblock(inode->i_sb);
3301 	if (!(sbsec->flags & SBLABEL_MNT))
3302 		return -EOPNOTSUPP;
3303 
3304 	if (!inode_owner_or_capable(mnt_userns, inode))
3305 		return -EPERM;
3306 
3307 	ad.type = LSM_AUDIT_DATA_DENTRY;
3308 	ad.u.dentry = dentry;
3309 
3310 	isec = backing_inode_security(dentry);
3311 	rc = avc_has_perm(&selinux_state,
3312 			  sid, isec->sid, isec->sclass,
3313 			  FILE__RELABELFROM, &ad);
3314 	if (rc)
3315 		return rc;
3316 
3317 	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3318 				     GFP_KERNEL);
3319 	if (rc == -EINVAL) {
3320 		if (!has_cap_mac_admin(true)) {
3321 			struct audit_buffer *ab;
3322 			size_t audit_size;
3323 
3324 			/* We strip a nul only if it is at the end, otherwise the
3325 			 * context contains a nul and we should audit that */
3326 			if (value) {
3327 				const char *str = value;
3328 
3329 				if (str[size - 1] == '\0')
3330 					audit_size = size - 1;
3331 				else
3332 					audit_size = size;
3333 			} else {
3334 				audit_size = 0;
3335 			}
3336 			ab = audit_log_start(audit_context(),
3337 					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3338 			audit_log_format(ab, "op=setxattr invalid_context=");
3339 			audit_log_n_untrustedstring(ab, value, audit_size);
3340 			audit_log_end(ab);
3341 
3342 			return rc;
3343 		}
3344 		rc = security_context_to_sid_force(&selinux_state, value,
3345 						   size, &newsid);
3346 	}
3347 	if (rc)
3348 		return rc;
3349 
3350 	rc = avc_has_perm(&selinux_state,
3351 			  sid, newsid, isec->sclass,
3352 			  FILE__RELABELTO, &ad);
3353 	if (rc)
3354 		return rc;
3355 
3356 	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3357 					  sid, isec->sclass);
3358 	if (rc)
3359 		return rc;
3360 
3361 	return avc_has_perm(&selinux_state,
3362 			    newsid,
3363 			    sbsec->sid,
3364 			    SECCLASS_FILESYSTEM,
3365 			    FILESYSTEM__ASSOCIATE,
3366 			    &ad);
3367 }
3368 
3369 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3370 					const void *value, size_t size,
3371 					int flags)
3372 {
3373 	struct inode *inode = d_backing_inode(dentry);
3374 	struct inode_security_struct *isec;
3375 	u32 newsid;
3376 	int rc;
3377 
3378 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3379 		/* Not an attribute we recognize, so nothing to do. */
3380 		return;
3381 	}
3382 
3383 	if (!selinux_initialized(&selinux_state)) {
3384 		/* If we haven't even been initialized, then we can't validate
3385 		 * against a policy, so leave the label as invalid. It may
3386 		 * resolve to a valid label on the next revalidation try if
3387 		 * we've since initialized.
3388 		 */
3389 		return;
3390 	}
3391 
3392 	rc = security_context_to_sid_force(&selinux_state, value, size,
3393 					   &newsid);
3394 	if (rc) {
3395 		pr_err("SELinux:  unable to map context to SID"
3396 		       "for (%s, %lu), rc=%d\n",
3397 		       inode->i_sb->s_id, inode->i_ino, -rc);
3398 		return;
3399 	}
3400 
3401 	isec = backing_inode_security(dentry);
3402 	spin_lock(&isec->lock);
3403 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3404 	isec->sid = newsid;
3405 	isec->initialized = LABEL_INITIALIZED;
3406 	spin_unlock(&isec->lock);
3407 
3408 	return;
3409 }
3410 
3411 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3412 {
3413 	const struct cred *cred = current_cred();
3414 
3415 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3416 }
3417 
3418 static int selinux_inode_listxattr(struct dentry *dentry)
3419 {
3420 	const struct cred *cred = current_cred();
3421 
3422 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3423 }
3424 
3425 static int selinux_inode_removexattr(struct user_namespace *mnt_userns,
3426 				     struct dentry *dentry, const char *name)
3427 {
3428 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3429 		int rc = cap_inode_removexattr(mnt_userns, dentry, name);
3430 		if (rc)
3431 			return rc;
3432 
3433 		/* Not an attribute we recognize, so just check the
3434 		   ordinary setattr permission. */
3435 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3436 	}
3437 
3438 	if (!selinux_initialized(&selinux_state))
3439 		return 0;
3440 
3441 	/* No one is allowed to remove a SELinux security label.
3442 	   You can change the label, but all data must be labeled. */
3443 	return -EACCES;
3444 }
3445 
3446 static int selinux_path_notify(const struct path *path, u64 mask,
3447 						unsigned int obj_type)
3448 {
3449 	int ret;
3450 	u32 perm;
3451 
3452 	struct common_audit_data ad;
3453 
3454 	ad.type = LSM_AUDIT_DATA_PATH;
3455 	ad.u.path = *path;
3456 
3457 	/*
3458 	 * Set permission needed based on the type of mark being set.
3459 	 * Performs an additional check for sb watches.
3460 	 */
3461 	switch (obj_type) {
3462 	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3463 		perm = FILE__WATCH_MOUNT;
3464 		break;
3465 	case FSNOTIFY_OBJ_TYPE_SB:
3466 		perm = FILE__WATCH_SB;
3467 		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3468 						FILESYSTEM__WATCH, &ad);
3469 		if (ret)
3470 			return ret;
3471 		break;
3472 	case FSNOTIFY_OBJ_TYPE_INODE:
3473 		perm = FILE__WATCH;
3474 		break;
3475 	default:
3476 		return -EINVAL;
3477 	}
3478 
3479 	/* blocking watches require the file:watch_with_perm permission */
3480 	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3481 		perm |= FILE__WATCH_WITH_PERM;
3482 
3483 	/* watches on read-like events need the file:watch_reads permission */
3484 	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3485 		perm |= FILE__WATCH_READS;
3486 
3487 	return path_has_perm(current_cred(), path, perm);
3488 }
3489 
3490 /*
3491  * Copy the inode security context value to the user.
3492  *
3493  * Permission check is handled by selinux_inode_getxattr hook.
3494  */
3495 static int selinux_inode_getsecurity(struct user_namespace *mnt_userns,
3496 				     struct inode *inode, const char *name,
3497 				     void **buffer, bool alloc)
3498 {
3499 	u32 size;
3500 	int error;
3501 	char *context = NULL;
3502 	struct inode_security_struct *isec;
3503 
3504 	/*
3505 	 * If we're not initialized yet, then we can't validate contexts, so
3506 	 * just let vfs_getxattr fall back to using the on-disk xattr.
3507 	 */
3508 	if (!selinux_initialized(&selinux_state) ||
3509 	    strcmp(name, XATTR_SELINUX_SUFFIX))
3510 		return -EOPNOTSUPP;
3511 
3512 	/*
3513 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3514 	 * value even if it is not defined by current policy; otherwise,
3515 	 * use the in-core value under current policy.
3516 	 * Use the non-auditing forms of the permission checks since
3517 	 * getxattr may be called by unprivileged processes commonly
3518 	 * and lack of permission just means that we fall back to the
3519 	 * in-core context value, not a denial.
3520 	 */
3521 	isec = inode_security(inode);
3522 	if (has_cap_mac_admin(false))
3523 		error = security_sid_to_context_force(&selinux_state,
3524 						      isec->sid, &context,
3525 						      &size);
3526 	else
3527 		error = security_sid_to_context(&selinux_state, isec->sid,
3528 						&context, &size);
3529 	if (error)
3530 		return error;
3531 	error = size;
3532 	if (alloc) {
3533 		*buffer = context;
3534 		goto out_nofree;
3535 	}
3536 	kfree(context);
3537 out_nofree:
3538 	return error;
3539 }
3540 
3541 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3542 				     const void *value, size_t size, int flags)
3543 {
3544 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3545 	struct superblock_security_struct *sbsec;
3546 	u32 newsid;
3547 	int rc;
3548 
3549 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3550 		return -EOPNOTSUPP;
3551 
3552 	sbsec = selinux_superblock(inode->i_sb);
3553 	if (!(sbsec->flags & SBLABEL_MNT))
3554 		return -EOPNOTSUPP;
3555 
3556 	if (!value || !size)
3557 		return -EACCES;
3558 
3559 	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3560 				     GFP_KERNEL);
3561 	if (rc)
3562 		return rc;
3563 
3564 	spin_lock(&isec->lock);
3565 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3566 	isec->sid = newsid;
3567 	isec->initialized = LABEL_INITIALIZED;
3568 	spin_unlock(&isec->lock);
3569 	return 0;
3570 }
3571 
3572 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3573 {
3574 	const int len = sizeof(XATTR_NAME_SELINUX);
3575 
3576 	if (!selinux_initialized(&selinux_state))
3577 		return 0;
3578 
3579 	if (buffer && len <= buffer_size)
3580 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3581 	return len;
3582 }
3583 
3584 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3585 {
3586 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3587 	*secid = isec->sid;
3588 }
3589 
3590 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3591 {
3592 	u32 sid;
3593 	struct task_security_struct *tsec;
3594 	struct cred *new_creds = *new;
3595 
3596 	if (new_creds == NULL) {
3597 		new_creds = prepare_creds();
3598 		if (!new_creds)
3599 			return -ENOMEM;
3600 	}
3601 
3602 	tsec = selinux_cred(new_creds);
3603 	/* Get label from overlay inode and set it in create_sid */
3604 	selinux_inode_getsecid(d_inode(src), &sid);
3605 	tsec->create_sid = sid;
3606 	*new = new_creds;
3607 	return 0;
3608 }
3609 
3610 static int selinux_inode_copy_up_xattr(const char *name)
3611 {
3612 	/* The copy_up hook above sets the initial context on an inode, but we
3613 	 * don't then want to overwrite it by blindly copying all the lower
3614 	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3615 	 */
3616 	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3617 		return 1; /* Discard */
3618 	/*
3619 	 * Any other attribute apart from SELINUX is not claimed, supported
3620 	 * by selinux.
3621 	 */
3622 	return -EOPNOTSUPP;
3623 }
3624 
3625 /* kernfs node operations */
3626 
3627 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3628 					struct kernfs_node *kn)
3629 {
3630 	const struct task_security_struct *tsec = selinux_cred(current_cred());
3631 	u32 parent_sid, newsid, clen;
3632 	int rc;
3633 	char *context;
3634 
3635 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3636 	if (rc == -ENODATA)
3637 		return 0;
3638 	else if (rc < 0)
3639 		return rc;
3640 
3641 	clen = (u32)rc;
3642 	context = kmalloc(clen, GFP_KERNEL);
3643 	if (!context)
3644 		return -ENOMEM;
3645 
3646 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3647 	if (rc < 0) {
3648 		kfree(context);
3649 		return rc;
3650 	}
3651 
3652 	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3653 				     GFP_KERNEL);
3654 	kfree(context);
3655 	if (rc)
3656 		return rc;
3657 
3658 	if (tsec->create_sid) {
3659 		newsid = tsec->create_sid;
3660 	} else {
3661 		u16 secclass = inode_mode_to_security_class(kn->mode);
3662 		struct qstr q;
3663 
3664 		q.name = kn->name;
3665 		q.hash_len = hashlen_string(kn_dir, kn->name);
3666 
3667 		rc = security_transition_sid(&selinux_state, tsec->sid,
3668 					     parent_sid, secclass, &q,
3669 					     &newsid);
3670 		if (rc)
3671 			return rc;
3672 	}
3673 
3674 	rc = security_sid_to_context_force(&selinux_state, newsid,
3675 					   &context, &clen);
3676 	if (rc)
3677 		return rc;
3678 
3679 	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3680 			      XATTR_CREATE);
3681 	kfree(context);
3682 	return rc;
3683 }
3684 
3685 
3686 /* file security operations */
3687 
3688 static int selinux_revalidate_file_permission(struct file *file, int mask)
3689 {
3690 	const struct cred *cred = current_cred();
3691 	struct inode *inode = file_inode(file);
3692 
3693 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3694 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3695 		mask |= MAY_APPEND;
3696 
3697 	return file_has_perm(cred, file,
3698 			     file_mask_to_av(inode->i_mode, mask));
3699 }
3700 
3701 static int selinux_file_permission(struct file *file, int mask)
3702 {
3703 	struct inode *inode = file_inode(file);
3704 	struct file_security_struct *fsec = selinux_file(file);
3705 	struct inode_security_struct *isec;
3706 	u32 sid = current_sid();
3707 
3708 	if (!mask)
3709 		/* No permission to check.  Existence test. */
3710 		return 0;
3711 
3712 	isec = inode_security(inode);
3713 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3714 	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3715 		/* No change since file_open check. */
3716 		return 0;
3717 
3718 	return selinux_revalidate_file_permission(file, mask);
3719 }
3720 
3721 static int selinux_file_alloc_security(struct file *file)
3722 {
3723 	struct file_security_struct *fsec = selinux_file(file);
3724 	u32 sid = current_sid();
3725 
3726 	fsec->sid = sid;
3727 	fsec->fown_sid = sid;
3728 
3729 	return 0;
3730 }
3731 
3732 /*
3733  * Check whether a task has the ioctl permission and cmd
3734  * operation to an inode.
3735  */
3736 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3737 		u32 requested, u16 cmd)
3738 {
3739 	struct common_audit_data ad;
3740 	struct file_security_struct *fsec = selinux_file(file);
3741 	struct inode *inode = file_inode(file);
3742 	struct inode_security_struct *isec;
3743 	struct lsm_ioctlop_audit ioctl;
3744 	u32 ssid = cred_sid(cred);
3745 	int rc;
3746 	u8 driver = cmd >> 8;
3747 	u8 xperm = cmd & 0xff;
3748 
3749 	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3750 	ad.u.op = &ioctl;
3751 	ad.u.op->cmd = cmd;
3752 	ad.u.op->path = file->f_path;
3753 
3754 	if (ssid != fsec->sid) {
3755 		rc = avc_has_perm(&selinux_state,
3756 				  ssid, fsec->sid,
3757 				SECCLASS_FD,
3758 				FD__USE,
3759 				&ad);
3760 		if (rc)
3761 			goto out;
3762 	}
3763 
3764 	if (unlikely(IS_PRIVATE(inode)))
3765 		return 0;
3766 
3767 	isec = inode_security(inode);
3768 	rc = avc_has_extended_perms(&selinux_state,
3769 				    ssid, isec->sid, isec->sclass,
3770 				    requested, driver, xperm, &ad);
3771 out:
3772 	return rc;
3773 }
3774 
3775 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3776 			      unsigned long arg)
3777 {
3778 	const struct cred *cred = current_cred();
3779 	int error = 0;
3780 
3781 	switch (cmd) {
3782 	case FIONREAD:
3783 	case FIBMAP:
3784 	case FIGETBSZ:
3785 	case FS_IOC_GETFLAGS:
3786 	case FS_IOC_GETVERSION:
3787 		error = file_has_perm(cred, file, FILE__GETATTR);
3788 		break;
3789 
3790 	case FS_IOC_SETFLAGS:
3791 	case FS_IOC_SETVERSION:
3792 		error = file_has_perm(cred, file, FILE__SETATTR);
3793 		break;
3794 
3795 	/* sys_ioctl() checks */
3796 	case FIONBIO:
3797 	case FIOASYNC:
3798 		error = file_has_perm(cred, file, 0);
3799 		break;
3800 
3801 	case KDSKBENT:
3802 	case KDSKBSENT:
3803 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3804 					    CAP_OPT_NONE, true);
3805 		break;
3806 
3807 	/* default case assumes that the command will go
3808 	 * to the file's ioctl() function.
3809 	 */
3810 	default:
3811 		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3812 	}
3813 	return error;
3814 }
3815 
3816 static int default_noexec __ro_after_init;
3817 
3818 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3819 {
3820 	const struct cred *cred = current_cred();
3821 	u32 sid = cred_sid(cred);
3822 	int rc = 0;
3823 
3824 	if (default_noexec &&
3825 	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3826 				   (!shared && (prot & PROT_WRITE)))) {
3827 		/*
3828 		 * We are making executable an anonymous mapping or a
3829 		 * private file mapping that will also be writable.
3830 		 * This has an additional check.
3831 		 */
3832 		rc = avc_has_perm(&selinux_state,
3833 				  sid, sid, SECCLASS_PROCESS,
3834 				  PROCESS__EXECMEM, NULL);
3835 		if (rc)
3836 			goto error;
3837 	}
3838 
3839 	if (file) {
3840 		/* read access is always possible with a mapping */
3841 		u32 av = FILE__READ;
3842 
3843 		/* write access only matters if the mapping is shared */
3844 		if (shared && (prot & PROT_WRITE))
3845 			av |= FILE__WRITE;
3846 
3847 		if (prot & PROT_EXEC)
3848 			av |= FILE__EXECUTE;
3849 
3850 		return file_has_perm(cred, file, av);
3851 	}
3852 
3853 error:
3854 	return rc;
3855 }
3856 
3857 static int selinux_mmap_addr(unsigned long addr)
3858 {
3859 	int rc = 0;
3860 
3861 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3862 		u32 sid = current_sid();
3863 		rc = avc_has_perm(&selinux_state,
3864 				  sid, sid, SECCLASS_MEMPROTECT,
3865 				  MEMPROTECT__MMAP_ZERO, NULL);
3866 	}
3867 
3868 	return rc;
3869 }
3870 
3871 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3872 			     unsigned long prot, unsigned long flags)
3873 {
3874 	struct common_audit_data ad;
3875 	int rc;
3876 
3877 	if (file) {
3878 		ad.type = LSM_AUDIT_DATA_FILE;
3879 		ad.u.file = file;
3880 		rc = inode_has_perm(current_cred(), file_inode(file),
3881 				    FILE__MAP, &ad);
3882 		if (rc)
3883 			return rc;
3884 	}
3885 
3886 	if (checkreqprot_get(&selinux_state))
3887 		prot = reqprot;
3888 
3889 	return file_map_prot_check(file, prot,
3890 				   (flags & MAP_TYPE) == MAP_SHARED);
3891 }
3892 
3893 static int selinux_file_mprotect(struct vm_area_struct *vma,
3894 				 unsigned long reqprot,
3895 				 unsigned long prot)
3896 {
3897 	const struct cred *cred = current_cred();
3898 	u32 sid = cred_sid(cred);
3899 
3900 	if (checkreqprot_get(&selinux_state))
3901 		prot = reqprot;
3902 
3903 	if (default_noexec &&
3904 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3905 		int rc = 0;
3906 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3907 		    vma->vm_end <= vma->vm_mm->brk) {
3908 			rc = avc_has_perm(&selinux_state,
3909 					  sid, sid, SECCLASS_PROCESS,
3910 					  PROCESS__EXECHEAP, NULL);
3911 		} else if (!vma->vm_file &&
3912 			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3913 			     vma->vm_end >= vma->vm_mm->start_stack) ||
3914 			    vma_is_stack_for_current(vma))) {
3915 			rc = avc_has_perm(&selinux_state,
3916 					  sid, sid, SECCLASS_PROCESS,
3917 					  PROCESS__EXECSTACK, NULL);
3918 		} else if (vma->vm_file && vma->anon_vma) {
3919 			/*
3920 			 * We are making executable a file mapping that has
3921 			 * had some COW done. Since pages might have been
3922 			 * written, check ability to execute the possibly
3923 			 * modified content.  This typically should only
3924 			 * occur for text relocations.
3925 			 */
3926 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3927 		}
3928 		if (rc)
3929 			return rc;
3930 	}
3931 
3932 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3933 }
3934 
3935 static int selinux_file_lock(struct file *file, unsigned int cmd)
3936 {
3937 	const struct cred *cred = current_cred();
3938 
3939 	return file_has_perm(cred, file, FILE__LOCK);
3940 }
3941 
3942 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3943 			      unsigned long arg)
3944 {
3945 	const struct cred *cred = current_cred();
3946 	int err = 0;
3947 
3948 	switch (cmd) {
3949 	case F_SETFL:
3950 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3951 			err = file_has_perm(cred, file, FILE__WRITE);
3952 			break;
3953 		}
3954 		fallthrough;
3955 	case F_SETOWN:
3956 	case F_SETSIG:
3957 	case F_GETFL:
3958 	case F_GETOWN:
3959 	case F_GETSIG:
3960 	case F_GETOWNER_UIDS:
3961 		/* Just check FD__USE permission */
3962 		err = file_has_perm(cred, file, 0);
3963 		break;
3964 	case F_GETLK:
3965 	case F_SETLK:
3966 	case F_SETLKW:
3967 	case F_OFD_GETLK:
3968 	case F_OFD_SETLK:
3969 	case F_OFD_SETLKW:
3970 #if BITS_PER_LONG == 32
3971 	case F_GETLK64:
3972 	case F_SETLK64:
3973 	case F_SETLKW64:
3974 #endif
3975 		err = file_has_perm(cred, file, FILE__LOCK);
3976 		break;
3977 	}
3978 
3979 	return err;
3980 }
3981 
3982 static void selinux_file_set_fowner(struct file *file)
3983 {
3984 	struct file_security_struct *fsec;
3985 
3986 	fsec = selinux_file(file);
3987 	fsec->fown_sid = current_sid();
3988 }
3989 
3990 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3991 				       struct fown_struct *fown, int signum)
3992 {
3993 	struct file *file;
3994 	u32 sid = task_sid_obj(tsk);
3995 	u32 perm;
3996 	struct file_security_struct *fsec;
3997 
3998 	/* struct fown_struct is never outside the context of a struct file */
3999 	file = container_of(fown, struct file, f_owner);
4000 
4001 	fsec = selinux_file(file);
4002 
4003 	if (!signum)
4004 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
4005 	else
4006 		perm = signal_to_av(signum);
4007 
4008 	return avc_has_perm(&selinux_state,
4009 			    fsec->fown_sid, sid,
4010 			    SECCLASS_PROCESS, perm, NULL);
4011 }
4012 
4013 static int selinux_file_receive(struct file *file)
4014 {
4015 	const struct cred *cred = current_cred();
4016 
4017 	return file_has_perm(cred, file, file_to_av(file));
4018 }
4019 
4020 static int selinux_file_open(struct file *file)
4021 {
4022 	struct file_security_struct *fsec;
4023 	struct inode_security_struct *isec;
4024 
4025 	fsec = selinux_file(file);
4026 	isec = inode_security(file_inode(file));
4027 	/*
4028 	 * Save inode label and policy sequence number
4029 	 * at open-time so that selinux_file_permission
4030 	 * can determine whether revalidation is necessary.
4031 	 * Task label is already saved in the file security
4032 	 * struct as its SID.
4033 	 */
4034 	fsec->isid = isec->sid;
4035 	fsec->pseqno = avc_policy_seqno(&selinux_state);
4036 	/*
4037 	 * Since the inode label or policy seqno may have changed
4038 	 * between the selinux_inode_permission check and the saving
4039 	 * of state above, recheck that access is still permitted.
4040 	 * Otherwise, access might never be revalidated against the
4041 	 * new inode label or new policy.
4042 	 * This check is not redundant - do not remove.
4043 	 */
4044 	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
4045 }
4046 
4047 /* task security operations */
4048 
4049 static int selinux_task_alloc(struct task_struct *task,
4050 			      unsigned long clone_flags)
4051 {
4052 	u32 sid = current_sid();
4053 
4054 	return avc_has_perm(&selinux_state,
4055 			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
4056 }
4057 
4058 /*
4059  * prepare a new set of credentials for modification
4060  */
4061 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4062 				gfp_t gfp)
4063 {
4064 	const struct task_security_struct *old_tsec = selinux_cred(old);
4065 	struct task_security_struct *tsec = selinux_cred(new);
4066 
4067 	*tsec = *old_tsec;
4068 	return 0;
4069 }
4070 
4071 /*
4072  * transfer the SELinux data to a blank set of creds
4073  */
4074 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4075 {
4076 	const struct task_security_struct *old_tsec = selinux_cred(old);
4077 	struct task_security_struct *tsec = selinux_cred(new);
4078 
4079 	*tsec = *old_tsec;
4080 }
4081 
4082 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4083 {
4084 	*secid = cred_sid(c);
4085 }
4086 
4087 /*
4088  * set the security data for a kernel service
4089  * - all the creation contexts are set to unlabelled
4090  */
4091 static int selinux_kernel_act_as(struct cred *new, u32 secid)
4092 {
4093 	struct task_security_struct *tsec = selinux_cred(new);
4094 	u32 sid = current_sid();
4095 	int ret;
4096 
4097 	ret = avc_has_perm(&selinux_state,
4098 			   sid, secid,
4099 			   SECCLASS_KERNEL_SERVICE,
4100 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
4101 			   NULL);
4102 	if (ret == 0) {
4103 		tsec->sid = secid;
4104 		tsec->create_sid = 0;
4105 		tsec->keycreate_sid = 0;
4106 		tsec->sockcreate_sid = 0;
4107 	}
4108 	return ret;
4109 }
4110 
4111 /*
4112  * set the file creation context in a security record to the same as the
4113  * objective context of the specified inode
4114  */
4115 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4116 {
4117 	struct inode_security_struct *isec = inode_security(inode);
4118 	struct task_security_struct *tsec = selinux_cred(new);
4119 	u32 sid = current_sid();
4120 	int ret;
4121 
4122 	ret = avc_has_perm(&selinux_state,
4123 			   sid, isec->sid,
4124 			   SECCLASS_KERNEL_SERVICE,
4125 			   KERNEL_SERVICE__CREATE_FILES_AS,
4126 			   NULL);
4127 
4128 	if (ret == 0)
4129 		tsec->create_sid = isec->sid;
4130 	return ret;
4131 }
4132 
4133 static int selinux_kernel_module_request(char *kmod_name)
4134 {
4135 	struct common_audit_data ad;
4136 
4137 	ad.type = LSM_AUDIT_DATA_KMOD;
4138 	ad.u.kmod_name = kmod_name;
4139 
4140 	return avc_has_perm(&selinux_state,
4141 			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4142 			    SYSTEM__MODULE_REQUEST, &ad);
4143 }
4144 
4145 static int selinux_kernel_module_from_file(struct file *file)
4146 {
4147 	struct common_audit_data ad;
4148 	struct inode_security_struct *isec;
4149 	struct file_security_struct *fsec;
4150 	u32 sid = current_sid();
4151 	int rc;
4152 
4153 	/* init_module */
4154 	if (file == NULL)
4155 		return avc_has_perm(&selinux_state,
4156 				    sid, sid, SECCLASS_SYSTEM,
4157 					SYSTEM__MODULE_LOAD, NULL);
4158 
4159 	/* finit_module */
4160 
4161 	ad.type = LSM_AUDIT_DATA_FILE;
4162 	ad.u.file = file;
4163 
4164 	fsec = selinux_file(file);
4165 	if (sid != fsec->sid) {
4166 		rc = avc_has_perm(&selinux_state,
4167 				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4168 		if (rc)
4169 			return rc;
4170 	}
4171 
4172 	isec = inode_security(file_inode(file));
4173 	return avc_has_perm(&selinux_state,
4174 			    sid, isec->sid, SECCLASS_SYSTEM,
4175 				SYSTEM__MODULE_LOAD, &ad);
4176 }
4177 
4178 static int selinux_kernel_read_file(struct file *file,
4179 				    enum kernel_read_file_id id,
4180 				    bool contents)
4181 {
4182 	int rc = 0;
4183 
4184 	switch (id) {
4185 	case READING_MODULE:
4186 		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4187 		break;
4188 	default:
4189 		break;
4190 	}
4191 
4192 	return rc;
4193 }
4194 
4195 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4196 {
4197 	int rc = 0;
4198 
4199 	switch (id) {
4200 	case LOADING_MODULE:
4201 		rc = selinux_kernel_module_from_file(NULL);
4202 		break;
4203 	default:
4204 		break;
4205 	}
4206 
4207 	return rc;
4208 }
4209 
4210 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4211 {
4212 	return avc_has_perm(&selinux_state,
4213 			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4214 			    PROCESS__SETPGID, NULL);
4215 }
4216 
4217 static int selinux_task_getpgid(struct task_struct *p)
4218 {
4219 	return avc_has_perm(&selinux_state,
4220 			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4221 			    PROCESS__GETPGID, NULL);
4222 }
4223 
4224 static int selinux_task_getsid(struct task_struct *p)
4225 {
4226 	return avc_has_perm(&selinux_state,
4227 			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4228 			    PROCESS__GETSESSION, NULL);
4229 }
4230 
4231 static void selinux_task_getsecid_subj(struct task_struct *p, u32 *secid)
4232 {
4233 	*secid = task_sid_subj(p);
4234 }
4235 
4236 static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4237 {
4238 	*secid = task_sid_obj(p);
4239 }
4240 
4241 static int selinux_task_setnice(struct task_struct *p, int nice)
4242 {
4243 	return avc_has_perm(&selinux_state,
4244 			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4245 			    PROCESS__SETSCHED, NULL);
4246 }
4247 
4248 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4249 {
4250 	return avc_has_perm(&selinux_state,
4251 			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4252 			    PROCESS__SETSCHED, NULL);
4253 }
4254 
4255 static int selinux_task_getioprio(struct task_struct *p)
4256 {
4257 	return avc_has_perm(&selinux_state,
4258 			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4259 			    PROCESS__GETSCHED, NULL);
4260 }
4261 
4262 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4263 				unsigned int flags)
4264 {
4265 	u32 av = 0;
4266 
4267 	if (!flags)
4268 		return 0;
4269 	if (flags & LSM_PRLIMIT_WRITE)
4270 		av |= PROCESS__SETRLIMIT;
4271 	if (flags & LSM_PRLIMIT_READ)
4272 		av |= PROCESS__GETRLIMIT;
4273 	return avc_has_perm(&selinux_state,
4274 			    cred_sid(cred), cred_sid(tcred),
4275 			    SECCLASS_PROCESS, av, NULL);
4276 }
4277 
4278 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4279 		struct rlimit *new_rlim)
4280 {
4281 	struct rlimit *old_rlim = p->signal->rlim + resource;
4282 
4283 	/* Control the ability to change the hard limit (whether
4284 	   lowering or raising it), so that the hard limit can
4285 	   later be used as a safe reset point for the soft limit
4286 	   upon context transitions.  See selinux_bprm_committing_creds. */
4287 	if (old_rlim->rlim_max != new_rlim->rlim_max)
4288 		return avc_has_perm(&selinux_state,
4289 				    current_sid(), task_sid_obj(p),
4290 				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4291 
4292 	return 0;
4293 }
4294 
4295 static int selinux_task_setscheduler(struct task_struct *p)
4296 {
4297 	return avc_has_perm(&selinux_state,
4298 			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4299 			    PROCESS__SETSCHED, NULL);
4300 }
4301 
4302 static int selinux_task_getscheduler(struct task_struct *p)
4303 {
4304 	return avc_has_perm(&selinux_state,
4305 			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4306 			    PROCESS__GETSCHED, NULL);
4307 }
4308 
4309 static int selinux_task_movememory(struct task_struct *p)
4310 {
4311 	return avc_has_perm(&selinux_state,
4312 			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4313 			    PROCESS__SETSCHED, NULL);
4314 }
4315 
4316 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4317 				int sig, const struct cred *cred)
4318 {
4319 	u32 secid;
4320 	u32 perm;
4321 
4322 	if (!sig)
4323 		perm = PROCESS__SIGNULL; /* null signal; existence test */
4324 	else
4325 		perm = signal_to_av(sig);
4326 	if (!cred)
4327 		secid = current_sid();
4328 	else
4329 		secid = cred_sid(cred);
4330 	return avc_has_perm(&selinux_state,
4331 			    secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4332 }
4333 
4334 static void selinux_task_to_inode(struct task_struct *p,
4335 				  struct inode *inode)
4336 {
4337 	struct inode_security_struct *isec = selinux_inode(inode);
4338 	u32 sid = task_sid_obj(p);
4339 
4340 	spin_lock(&isec->lock);
4341 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4342 	isec->sid = sid;
4343 	isec->initialized = LABEL_INITIALIZED;
4344 	spin_unlock(&isec->lock);
4345 }
4346 
4347 /* Returns error only if unable to parse addresses */
4348 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4349 			struct common_audit_data *ad, u8 *proto)
4350 {
4351 	int offset, ihlen, ret = -EINVAL;
4352 	struct iphdr _iph, *ih;
4353 
4354 	offset = skb_network_offset(skb);
4355 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4356 	if (ih == NULL)
4357 		goto out;
4358 
4359 	ihlen = ih->ihl * 4;
4360 	if (ihlen < sizeof(_iph))
4361 		goto out;
4362 
4363 	ad->u.net->v4info.saddr = ih->saddr;
4364 	ad->u.net->v4info.daddr = ih->daddr;
4365 	ret = 0;
4366 
4367 	if (proto)
4368 		*proto = ih->protocol;
4369 
4370 	switch (ih->protocol) {
4371 	case IPPROTO_TCP: {
4372 		struct tcphdr _tcph, *th;
4373 
4374 		if (ntohs(ih->frag_off) & IP_OFFSET)
4375 			break;
4376 
4377 		offset += ihlen;
4378 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4379 		if (th == NULL)
4380 			break;
4381 
4382 		ad->u.net->sport = th->source;
4383 		ad->u.net->dport = th->dest;
4384 		break;
4385 	}
4386 
4387 	case IPPROTO_UDP: {
4388 		struct udphdr _udph, *uh;
4389 
4390 		if (ntohs(ih->frag_off) & IP_OFFSET)
4391 			break;
4392 
4393 		offset += ihlen;
4394 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4395 		if (uh == NULL)
4396 			break;
4397 
4398 		ad->u.net->sport = uh->source;
4399 		ad->u.net->dport = uh->dest;
4400 		break;
4401 	}
4402 
4403 	case IPPROTO_DCCP: {
4404 		struct dccp_hdr _dccph, *dh;
4405 
4406 		if (ntohs(ih->frag_off) & IP_OFFSET)
4407 			break;
4408 
4409 		offset += ihlen;
4410 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4411 		if (dh == NULL)
4412 			break;
4413 
4414 		ad->u.net->sport = dh->dccph_sport;
4415 		ad->u.net->dport = dh->dccph_dport;
4416 		break;
4417 	}
4418 
4419 #if IS_ENABLED(CONFIG_IP_SCTP)
4420 	case IPPROTO_SCTP: {
4421 		struct sctphdr _sctph, *sh;
4422 
4423 		if (ntohs(ih->frag_off) & IP_OFFSET)
4424 			break;
4425 
4426 		offset += ihlen;
4427 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4428 		if (sh == NULL)
4429 			break;
4430 
4431 		ad->u.net->sport = sh->source;
4432 		ad->u.net->dport = sh->dest;
4433 		break;
4434 	}
4435 #endif
4436 	default:
4437 		break;
4438 	}
4439 out:
4440 	return ret;
4441 }
4442 
4443 #if IS_ENABLED(CONFIG_IPV6)
4444 
4445 /* Returns error only if unable to parse addresses */
4446 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4447 			struct common_audit_data *ad, u8 *proto)
4448 {
4449 	u8 nexthdr;
4450 	int ret = -EINVAL, offset;
4451 	struct ipv6hdr _ipv6h, *ip6;
4452 	__be16 frag_off;
4453 
4454 	offset = skb_network_offset(skb);
4455 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4456 	if (ip6 == NULL)
4457 		goto out;
4458 
4459 	ad->u.net->v6info.saddr = ip6->saddr;
4460 	ad->u.net->v6info.daddr = ip6->daddr;
4461 	ret = 0;
4462 
4463 	nexthdr = ip6->nexthdr;
4464 	offset += sizeof(_ipv6h);
4465 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4466 	if (offset < 0)
4467 		goto out;
4468 
4469 	if (proto)
4470 		*proto = nexthdr;
4471 
4472 	switch (nexthdr) {
4473 	case IPPROTO_TCP: {
4474 		struct tcphdr _tcph, *th;
4475 
4476 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4477 		if (th == NULL)
4478 			break;
4479 
4480 		ad->u.net->sport = th->source;
4481 		ad->u.net->dport = th->dest;
4482 		break;
4483 	}
4484 
4485 	case IPPROTO_UDP: {
4486 		struct udphdr _udph, *uh;
4487 
4488 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4489 		if (uh == NULL)
4490 			break;
4491 
4492 		ad->u.net->sport = uh->source;
4493 		ad->u.net->dport = uh->dest;
4494 		break;
4495 	}
4496 
4497 	case IPPROTO_DCCP: {
4498 		struct dccp_hdr _dccph, *dh;
4499 
4500 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4501 		if (dh == NULL)
4502 			break;
4503 
4504 		ad->u.net->sport = dh->dccph_sport;
4505 		ad->u.net->dport = dh->dccph_dport;
4506 		break;
4507 	}
4508 
4509 #if IS_ENABLED(CONFIG_IP_SCTP)
4510 	case IPPROTO_SCTP: {
4511 		struct sctphdr _sctph, *sh;
4512 
4513 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4514 		if (sh == NULL)
4515 			break;
4516 
4517 		ad->u.net->sport = sh->source;
4518 		ad->u.net->dport = sh->dest;
4519 		break;
4520 	}
4521 #endif
4522 	/* includes fragments */
4523 	default:
4524 		break;
4525 	}
4526 out:
4527 	return ret;
4528 }
4529 
4530 #endif /* IPV6 */
4531 
4532 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4533 			     char **_addrp, int src, u8 *proto)
4534 {
4535 	char *addrp;
4536 	int ret;
4537 
4538 	switch (ad->u.net->family) {
4539 	case PF_INET:
4540 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4541 		if (ret)
4542 			goto parse_error;
4543 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4544 				       &ad->u.net->v4info.daddr);
4545 		goto okay;
4546 
4547 #if IS_ENABLED(CONFIG_IPV6)
4548 	case PF_INET6:
4549 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4550 		if (ret)
4551 			goto parse_error;
4552 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4553 				       &ad->u.net->v6info.daddr);
4554 		goto okay;
4555 #endif	/* IPV6 */
4556 	default:
4557 		addrp = NULL;
4558 		goto okay;
4559 	}
4560 
4561 parse_error:
4562 	pr_warn(
4563 	       "SELinux: failure in selinux_parse_skb(),"
4564 	       " unable to parse packet\n");
4565 	return ret;
4566 
4567 okay:
4568 	if (_addrp)
4569 		*_addrp = addrp;
4570 	return 0;
4571 }
4572 
4573 /**
4574  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4575  * @skb: the packet
4576  * @family: protocol family
4577  * @sid: the packet's peer label SID
4578  *
4579  * Description:
4580  * Check the various different forms of network peer labeling and determine
4581  * the peer label/SID for the packet; most of the magic actually occurs in
4582  * the security server function security_net_peersid_cmp().  The function
4583  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4584  * or -EACCES if @sid is invalid due to inconsistencies with the different
4585  * peer labels.
4586  *
4587  */
4588 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4589 {
4590 	int err;
4591 	u32 xfrm_sid;
4592 	u32 nlbl_sid;
4593 	u32 nlbl_type;
4594 
4595 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4596 	if (unlikely(err))
4597 		return -EACCES;
4598 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4599 	if (unlikely(err))
4600 		return -EACCES;
4601 
4602 	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4603 					   nlbl_type, xfrm_sid, sid);
4604 	if (unlikely(err)) {
4605 		pr_warn(
4606 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4607 		       " unable to determine packet's peer label\n");
4608 		return -EACCES;
4609 	}
4610 
4611 	return 0;
4612 }
4613 
4614 /**
4615  * selinux_conn_sid - Determine the child socket label for a connection
4616  * @sk_sid: the parent socket's SID
4617  * @skb_sid: the packet's SID
4618  * @conn_sid: the resulting connection SID
4619  *
4620  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4621  * combined with the MLS information from @skb_sid in order to create
4622  * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4623  * of @sk_sid.  Returns zero on success, negative values on failure.
4624  *
4625  */
4626 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4627 {
4628 	int err = 0;
4629 
4630 	if (skb_sid != SECSID_NULL)
4631 		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4632 					    conn_sid);
4633 	else
4634 		*conn_sid = sk_sid;
4635 
4636 	return err;
4637 }
4638 
4639 /* socket security operations */
4640 
4641 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4642 				 u16 secclass, u32 *socksid)
4643 {
4644 	if (tsec->sockcreate_sid > SECSID_NULL) {
4645 		*socksid = tsec->sockcreate_sid;
4646 		return 0;
4647 	}
4648 
4649 	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4650 				       secclass, NULL, socksid);
4651 }
4652 
4653 static int sock_has_perm(struct sock *sk, u32 perms)
4654 {
4655 	struct sk_security_struct *sksec = sk->sk_security;
4656 	struct common_audit_data ad;
4657 	struct lsm_network_audit net = {0,};
4658 
4659 	if (sksec->sid == SECINITSID_KERNEL)
4660 		return 0;
4661 
4662 	ad.type = LSM_AUDIT_DATA_NET;
4663 	ad.u.net = &net;
4664 	ad.u.net->sk = sk;
4665 
4666 	return avc_has_perm(&selinux_state,
4667 			    current_sid(), sksec->sid, sksec->sclass, perms,
4668 			    &ad);
4669 }
4670 
4671 static int selinux_socket_create(int family, int type,
4672 				 int protocol, int kern)
4673 {
4674 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4675 	u32 newsid;
4676 	u16 secclass;
4677 	int rc;
4678 
4679 	if (kern)
4680 		return 0;
4681 
4682 	secclass = socket_type_to_security_class(family, type, protocol);
4683 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4684 	if (rc)
4685 		return rc;
4686 
4687 	return avc_has_perm(&selinux_state,
4688 			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4689 }
4690 
4691 static int selinux_socket_post_create(struct socket *sock, int family,
4692 				      int type, int protocol, int kern)
4693 {
4694 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4695 	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4696 	struct sk_security_struct *sksec;
4697 	u16 sclass = socket_type_to_security_class(family, type, protocol);
4698 	u32 sid = SECINITSID_KERNEL;
4699 	int err = 0;
4700 
4701 	if (!kern) {
4702 		err = socket_sockcreate_sid(tsec, sclass, &sid);
4703 		if (err)
4704 			return err;
4705 	}
4706 
4707 	isec->sclass = sclass;
4708 	isec->sid = sid;
4709 	isec->initialized = LABEL_INITIALIZED;
4710 
4711 	if (sock->sk) {
4712 		sksec = sock->sk->sk_security;
4713 		sksec->sclass = sclass;
4714 		sksec->sid = sid;
4715 		/* Allows detection of the first association on this socket */
4716 		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4717 			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4718 
4719 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4720 	}
4721 
4722 	return err;
4723 }
4724 
4725 static int selinux_socket_socketpair(struct socket *socka,
4726 				     struct socket *sockb)
4727 {
4728 	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4729 	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4730 
4731 	sksec_a->peer_sid = sksec_b->sid;
4732 	sksec_b->peer_sid = sksec_a->sid;
4733 
4734 	return 0;
4735 }
4736 
4737 /* Range of port numbers used to automatically bind.
4738    Need to determine whether we should perform a name_bind
4739    permission check between the socket and the port number. */
4740 
4741 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4742 {
4743 	struct sock *sk = sock->sk;
4744 	struct sk_security_struct *sksec = sk->sk_security;
4745 	u16 family;
4746 	int err;
4747 
4748 	err = sock_has_perm(sk, SOCKET__BIND);
4749 	if (err)
4750 		goto out;
4751 
4752 	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4753 	family = sk->sk_family;
4754 	if (family == PF_INET || family == PF_INET6) {
4755 		char *addrp;
4756 		struct common_audit_data ad;
4757 		struct lsm_network_audit net = {0,};
4758 		struct sockaddr_in *addr4 = NULL;
4759 		struct sockaddr_in6 *addr6 = NULL;
4760 		u16 family_sa;
4761 		unsigned short snum;
4762 		u32 sid, node_perm;
4763 
4764 		/*
4765 		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4766 		 * that validates multiple binding addresses. Because of this
4767 		 * need to check address->sa_family as it is possible to have
4768 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4769 		 */
4770 		if (addrlen < offsetofend(struct sockaddr, sa_family))
4771 			return -EINVAL;
4772 		family_sa = address->sa_family;
4773 		switch (family_sa) {
4774 		case AF_UNSPEC:
4775 		case AF_INET:
4776 			if (addrlen < sizeof(struct sockaddr_in))
4777 				return -EINVAL;
4778 			addr4 = (struct sockaddr_in *)address;
4779 			if (family_sa == AF_UNSPEC) {
4780 				/* see __inet_bind(), we only want to allow
4781 				 * AF_UNSPEC if the address is INADDR_ANY
4782 				 */
4783 				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4784 					goto err_af;
4785 				family_sa = AF_INET;
4786 			}
4787 			snum = ntohs(addr4->sin_port);
4788 			addrp = (char *)&addr4->sin_addr.s_addr;
4789 			break;
4790 		case AF_INET6:
4791 			if (addrlen < SIN6_LEN_RFC2133)
4792 				return -EINVAL;
4793 			addr6 = (struct sockaddr_in6 *)address;
4794 			snum = ntohs(addr6->sin6_port);
4795 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4796 			break;
4797 		default:
4798 			goto err_af;
4799 		}
4800 
4801 		ad.type = LSM_AUDIT_DATA_NET;
4802 		ad.u.net = &net;
4803 		ad.u.net->sport = htons(snum);
4804 		ad.u.net->family = family_sa;
4805 
4806 		if (snum) {
4807 			int low, high;
4808 
4809 			inet_get_local_port_range(sock_net(sk), &low, &high);
4810 
4811 			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4812 			    snum < low || snum > high) {
4813 				err = sel_netport_sid(sk->sk_protocol,
4814 						      snum, &sid);
4815 				if (err)
4816 					goto out;
4817 				err = avc_has_perm(&selinux_state,
4818 						   sksec->sid, sid,
4819 						   sksec->sclass,
4820 						   SOCKET__NAME_BIND, &ad);
4821 				if (err)
4822 					goto out;
4823 			}
4824 		}
4825 
4826 		switch (sksec->sclass) {
4827 		case SECCLASS_TCP_SOCKET:
4828 			node_perm = TCP_SOCKET__NODE_BIND;
4829 			break;
4830 
4831 		case SECCLASS_UDP_SOCKET:
4832 			node_perm = UDP_SOCKET__NODE_BIND;
4833 			break;
4834 
4835 		case SECCLASS_DCCP_SOCKET:
4836 			node_perm = DCCP_SOCKET__NODE_BIND;
4837 			break;
4838 
4839 		case SECCLASS_SCTP_SOCKET:
4840 			node_perm = SCTP_SOCKET__NODE_BIND;
4841 			break;
4842 
4843 		default:
4844 			node_perm = RAWIP_SOCKET__NODE_BIND;
4845 			break;
4846 		}
4847 
4848 		err = sel_netnode_sid(addrp, family_sa, &sid);
4849 		if (err)
4850 			goto out;
4851 
4852 		if (family_sa == AF_INET)
4853 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4854 		else
4855 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4856 
4857 		err = avc_has_perm(&selinux_state,
4858 				   sksec->sid, sid,
4859 				   sksec->sclass, node_perm, &ad);
4860 		if (err)
4861 			goto out;
4862 	}
4863 out:
4864 	return err;
4865 err_af:
4866 	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4867 	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4868 		return -EINVAL;
4869 	return -EAFNOSUPPORT;
4870 }
4871 
4872 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4873  * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4874  */
4875 static int selinux_socket_connect_helper(struct socket *sock,
4876 					 struct sockaddr *address, int addrlen)
4877 {
4878 	struct sock *sk = sock->sk;
4879 	struct sk_security_struct *sksec = sk->sk_security;
4880 	int err;
4881 
4882 	err = sock_has_perm(sk, SOCKET__CONNECT);
4883 	if (err)
4884 		return err;
4885 	if (addrlen < offsetofend(struct sockaddr, sa_family))
4886 		return -EINVAL;
4887 
4888 	/* connect(AF_UNSPEC) has special handling, as it is a documented
4889 	 * way to disconnect the socket
4890 	 */
4891 	if (address->sa_family == AF_UNSPEC)
4892 		return 0;
4893 
4894 	/*
4895 	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4896 	 * for the port.
4897 	 */
4898 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4899 	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4900 	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4901 		struct common_audit_data ad;
4902 		struct lsm_network_audit net = {0,};
4903 		struct sockaddr_in *addr4 = NULL;
4904 		struct sockaddr_in6 *addr6 = NULL;
4905 		unsigned short snum;
4906 		u32 sid, perm;
4907 
4908 		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4909 		 * that validates multiple connect addresses. Because of this
4910 		 * need to check address->sa_family as it is possible to have
4911 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4912 		 */
4913 		switch (address->sa_family) {
4914 		case AF_INET:
4915 			addr4 = (struct sockaddr_in *)address;
4916 			if (addrlen < sizeof(struct sockaddr_in))
4917 				return -EINVAL;
4918 			snum = ntohs(addr4->sin_port);
4919 			break;
4920 		case AF_INET6:
4921 			addr6 = (struct sockaddr_in6 *)address;
4922 			if (addrlen < SIN6_LEN_RFC2133)
4923 				return -EINVAL;
4924 			snum = ntohs(addr6->sin6_port);
4925 			break;
4926 		default:
4927 			/* Note that SCTP services expect -EINVAL, whereas
4928 			 * others expect -EAFNOSUPPORT.
4929 			 */
4930 			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4931 				return -EINVAL;
4932 			else
4933 				return -EAFNOSUPPORT;
4934 		}
4935 
4936 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4937 		if (err)
4938 			return err;
4939 
4940 		switch (sksec->sclass) {
4941 		case SECCLASS_TCP_SOCKET:
4942 			perm = TCP_SOCKET__NAME_CONNECT;
4943 			break;
4944 		case SECCLASS_DCCP_SOCKET:
4945 			perm = DCCP_SOCKET__NAME_CONNECT;
4946 			break;
4947 		case SECCLASS_SCTP_SOCKET:
4948 			perm = SCTP_SOCKET__NAME_CONNECT;
4949 			break;
4950 		}
4951 
4952 		ad.type = LSM_AUDIT_DATA_NET;
4953 		ad.u.net = &net;
4954 		ad.u.net->dport = htons(snum);
4955 		ad.u.net->family = address->sa_family;
4956 		err = avc_has_perm(&selinux_state,
4957 				   sksec->sid, sid, sksec->sclass, perm, &ad);
4958 		if (err)
4959 			return err;
4960 	}
4961 
4962 	return 0;
4963 }
4964 
4965 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4966 static int selinux_socket_connect(struct socket *sock,
4967 				  struct sockaddr *address, int addrlen)
4968 {
4969 	int err;
4970 	struct sock *sk = sock->sk;
4971 
4972 	err = selinux_socket_connect_helper(sock, address, addrlen);
4973 	if (err)
4974 		return err;
4975 
4976 	return selinux_netlbl_socket_connect(sk, address);
4977 }
4978 
4979 static int selinux_socket_listen(struct socket *sock, int backlog)
4980 {
4981 	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4982 }
4983 
4984 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4985 {
4986 	int err;
4987 	struct inode_security_struct *isec;
4988 	struct inode_security_struct *newisec;
4989 	u16 sclass;
4990 	u32 sid;
4991 
4992 	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4993 	if (err)
4994 		return err;
4995 
4996 	isec = inode_security_novalidate(SOCK_INODE(sock));
4997 	spin_lock(&isec->lock);
4998 	sclass = isec->sclass;
4999 	sid = isec->sid;
5000 	spin_unlock(&isec->lock);
5001 
5002 	newisec = inode_security_novalidate(SOCK_INODE(newsock));
5003 	newisec->sclass = sclass;
5004 	newisec->sid = sid;
5005 	newisec->initialized = LABEL_INITIALIZED;
5006 
5007 	return 0;
5008 }
5009 
5010 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
5011 				  int size)
5012 {
5013 	return sock_has_perm(sock->sk, SOCKET__WRITE);
5014 }
5015 
5016 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
5017 				  int size, int flags)
5018 {
5019 	return sock_has_perm(sock->sk, SOCKET__READ);
5020 }
5021 
5022 static int selinux_socket_getsockname(struct socket *sock)
5023 {
5024 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
5025 }
5026 
5027 static int selinux_socket_getpeername(struct socket *sock)
5028 {
5029 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
5030 }
5031 
5032 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
5033 {
5034 	int err;
5035 
5036 	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
5037 	if (err)
5038 		return err;
5039 
5040 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
5041 }
5042 
5043 static int selinux_socket_getsockopt(struct socket *sock, int level,
5044 				     int optname)
5045 {
5046 	return sock_has_perm(sock->sk, SOCKET__GETOPT);
5047 }
5048 
5049 static int selinux_socket_shutdown(struct socket *sock, int how)
5050 {
5051 	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
5052 }
5053 
5054 static int selinux_socket_unix_stream_connect(struct sock *sock,
5055 					      struct sock *other,
5056 					      struct sock *newsk)
5057 {
5058 	struct sk_security_struct *sksec_sock = sock->sk_security;
5059 	struct sk_security_struct *sksec_other = other->sk_security;
5060 	struct sk_security_struct *sksec_new = newsk->sk_security;
5061 	struct common_audit_data ad;
5062 	struct lsm_network_audit net = {0,};
5063 	int err;
5064 
5065 	ad.type = LSM_AUDIT_DATA_NET;
5066 	ad.u.net = &net;
5067 	ad.u.net->sk = other;
5068 
5069 	err = avc_has_perm(&selinux_state,
5070 			   sksec_sock->sid, sksec_other->sid,
5071 			   sksec_other->sclass,
5072 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5073 	if (err)
5074 		return err;
5075 
5076 	/* server child socket */
5077 	sksec_new->peer_sid = sksec_sock->sid;
5078 	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
5079 				    sksec_sock->sid, &sksec_new->sid);
5080 	if (err)
5081 		return err;
5082 
5083 	/* connecting socket */
5084 	sksec_sock->peer_sid = sksec_new->sid;
5085 
5086 	return 0;
5087 }
5088 
5089 static int selinux_socket_unix_may_send(struct socket *sock,
5090 					struct socket *other)
5091 {
5092 	struct sk_security_struct *ssec = sock->sk->sk_security;
5093 	struct sk_security_struct *osec = other->sk->sk_security;
5094 	struct common_audit_data ad;
5095 	struct lsm_network_audit net = {0,};
5096 
5097 	ad.type = LSM_AUDIT_DATA_NET;
5098 	ad.u.net = &net;
5099 	ad.u.net->sk = other->sk;
5100 
5101 	return avc_has_perm(&selinux_state,
5102 			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5103 			    &ad);
5104 }
5105 
5106 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5107 				    char *addrp, u16 family, u32 peer_sid,
5108 				    struct common_audit_data *ad)
5109 {
5110 	int err;
5111 	u32 if_sid;
5112 	u32 node_sid;
5113 
5114 	err = sel_netif_sid(ns, ifindex, &if_sid);
5115 	if (err)
5116 		return err;
5117 	err = avc_has_perm(&selinux_state,
5118 			   peer_sid, if_sid,
5119 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5120 	if (err)
5121 		return err;
5122 
5123 	err = sel_netnode_sid(addrp, family, &node_sid);
5124 	if (err)
5125 		return err;
5126 	return avc_has_perm(&selinux_state,
5127 			    peer_sid, node_sid,
5128 			    SECCLASS_NODE, NODE__RECVFROM, ad);
5129 }
5130 
5131 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5132 				       u16 family)
5133 {
5134 	int err = 0;
5135 	struct sk_security_struct *sksec = sk->sk_security;
5136 	u32 sk_sid = sksec->sid;
5137 	struct common_audit_data ad;
5138 	struct lsm_network_audit net = {0,};
5139 	char *addrp;
5140 
5141 	ad.type = LSM_AUDIT_DATA_NET;
5142 	ad.u.net = &net;
5143 	ad.u.net->netif = skb->skb_iif;
5144 	ad.u.net->family = family;
5145 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5146 	if (err)
5147 		return err;
5148 
5149 	if (selinux_secmark_enabled()) {
5150 		err = avc_has_perm(&selinux_state,
5151 				   sk_sid, skb->secmark, SECCLASS_PACKET,
5152 				   PACKET__RECV, &ad);
5153 		if (err)
5154 			return err;
5155 	}
5156 
5157 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5158 	if (err)
5159 		return err;
5160 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5161 
5162 	return err;
5163 }
5164 
5165 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5166 {
5167 	int err;
5168 	struct sk_security_struct *sksec = sk->sk_security;
5169 	u16 family = sk->sk_family;
5170 	u32 sk_sid = sksec->sid;
5171 	struct common_audit_data ad;
5172 	struct lsm_network_audit net = {0,};
5173 	char *addrp;
5174 	u8 secmark_active;
5175 	u8 peerlbl_active;
5176 
5177 	if (family != PF_INET && family != PF_INET6)
5178 		return 0;
5179 
5180 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5181 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5182 		family = PF_INET;
5183 
5184 	/* If any sort of compatibility mode is enabled then handoff processing
5185 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5186 	 * special handling.  We do this in an attempt to keep this function
5187 	 * as fast and as clean as possible. */
5188 	if (!selinux_policycap_netpeer())
5189 		return selinux_sock_rcv_skb_compat(sk, skb, family);
5190 
5191 	secmark_active = selinux_secmark_enabled();
5192 	peerlbl_active = selinux_peerlbl_enabled();
5193 	if (!secmark_active && !peerlbl_active)
5194 		return 0;
5195 
5196 	ad.type = LSM_AUDIT_DATA_NET;
5197 	ad.u.net = &net;
5198 	ad.u.net->netif = skb->skb_iif;
5199 	ad.u.net->family = family;
5200 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5201 	if (err)
5202 		return err;
5203 
5204 	if (peerlbl_active) {
5205 		u32 peer_sid;
5206 
5207 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5208 		if (err)
5209 			return err;
5210 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5211 					       addrp, family, peer_sid, &ad);
5212 		if (err) {
5213 			selinux_netlbl_err(skb, family, err, 0);
5214 			return err;
5215 		}
5216 		err = avc_has_perm(&selinux_state,
5217 				   sk_sid, peer_sid, SECCLASS_PEER,
5218 				   PEER__RECV, &ad);
5219 		if (err) {
5220 			selinux_netlbl_err(skb, family, err, 0);
5221 			return err;
5222 		}
5223 	}
5224 
5225 	if (secmark_active) {
5226 		err = avc_has_perm(&selinux_state,
5227 				   sk_sid, skb->secmark, SECCLASS_PACKET,
5228 				   PACKET__RECV, &ad);
5229 		if (err)
5230 			return err;
5231 	}
5232 
5233 	return err;
5234 }
5235 
5236 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5237 					    int __user *optlen, unsigned len)
5238 {
5239 	int err = 0;
5240 	char *scontext;
5241 	u32 scontext_len;
5242 	struct sk_security_struct *sksec = sock->sk->sk_security;
5243 	u32 peer_sid = SECSID_NULL;
5244 
5245 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5246 	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5247 	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5248 		peer_sid = sksec->peer_sid;
5249 	if (peer_sid == SECSID_NULL)
5250 		return -ENOPROTOOPT;
5251 
5252 	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5253 				      &scontext_len);
5254 	if (err)
5255 		return err;
5256 
5257 	if (scontext_len > len) {
5258 		err = -ERANGE;
5259 		goto out_len;
5260 	}
5261 
5262 	if (copy_to_user(optval, scontext, scontext_len))
5263 		err = -EFAULT;
5264 
5265 out_len:
5266 	if (put_user(scontext_len, optlen))
5267 		err = -EFAULT;
5268 	kfree(scontext);
5269 	return err;
5270 }
5271 
5272 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5273 {
5274 	u32 peer_secid = SECSID_NULL;
5275 	u16 family;
5276 	struct inode_security_struct *isec;
5277 
5278 	if (skb && skb->protocol == htons(ETH_P_IP))
5279 		family = PF_INET;
5280 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5281 		family = PF_INET6;
5282 	else if (sock)
5283 		family = sock->sk->sk_family;
5284 	else
5285 		goto out;
5286 
5287 	if (sock && family == PF_UNIX) {
5288 		isec = inode_security_novalidate(SOCK_INODE(sock));
5289 		peer_secid = isec->sid;
5290 	} else if (skb)
5291 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5292 
5293 out:
5294 	*secid = peer_secid;
5295 	if (peer_secid == SECSID_NULL)
5296 		return -EINVAL;
5297 	return 0;
5298 }
5299 
5300 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5301 {
5302 	struct sk_security_struct *sksec;
5303 
5304 	sksec = kzalloc(sizeof(*sksec), priority);
5305 	if (!sksec)
5306 		return -ENOMEM;
5307 
5308 	sksec->peer_sid = SECINITSID_UNLABELED;
5309 	sksec->sid = SECINITSID_UNLABELED;
5310 	sksec->sclass = SECCLASS_SOCKET;
5311 	selinux_netlbl_sk_security_reset(sksec);
5312 	sk->sk_security = sksec;
5313 
5314 	return 0;
5315 }
5316 
5317 static void selinux_sk_free_security(struct sock *sk)
5318 {
5319 	struct sk_security_struct *sksec = sk->sk_security;
5320 
5321 	sk->sk_security = NULL;
5322 	selinux_netlbl_sk_security_free(sksec);
5323 	kfree(sksec);
5324 }
5325 
5326 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5327 {
5328 	struct sk_security_struct *sksec = sk->sk_security;
5329 	struct sk_security_struct *newsksec = newsk->sk_security;
5330 
5331 	newsksec->sid = sksec->sid;
5332 	newsksec->peer_sid = sksec->peer_sid;
5333 	newsksec->sclass = sksec->sclass;
5334 
5335 	selinux_netlbl_sk_security_reset(newsksec);
5336 }
5337 
5338 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5339 {
5340 	if (!sk)
5341 		*secid = SECINITSID_ANY_SOCKET;
5342 	else {
5343 		struct sk_security_struct *sksec = sk->sk_security;
5344 
5345 		*secid = sksec->sid;
5346 	}
5347 }
5348 
5349 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5350 {
5351 	struct inode_security_struct *isec =
5352 		inode_security_novalidate(SOCK_INODE(parent));
5353 	struct sk_security_struct *sksec = sk->sk_security;
5354 
5355 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5356 	    sk->sk_family == PF_UNIX)
5357 		isec->sid = sksec->sid;
5358 	sksec->sclass = isec->sclass;
5359 }
5360 
5361 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5362  * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5363  * already present).
5364  */
5365 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5366 				      struct sk_buff *skb)
5367 {
5368 	struct sk_security_struct *sksec = ep->base.sk->sk_security;
5369 	struct common_audit_data ad;
5370 	struct lsm_network_audit net = {0,};
5371 	u8 peerlbl_active;
5372 	u32 peer_sid = SECINITSID_UNLABELED;
5373 	u32 conn_sid;
5374 	int err = 0;
5375 
5376 	if (!selinux_policycap_extsockclass())
5377 		return 0;
5378 
5379 	peerlbl_active = selinux_peerlbl_enabled();
5380 
5381 	if (peerlbl_active) {
5382 		/* This will return peer_sid = SECSID_NULL if there are
5383 		 * no peer labels, see security_net_peersid_resolve().
5384 		 */
5385 		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5386 					      &peer_sid);
5387 		if (err)
5388 			return err;
5389 
5390 		if (peer_sid == SECSID_NULL)
5391 			peer_sid = SECINITSID_UNLABELED;
5392 	}
5393 
5394 	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5395 		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5396 
5397 		/* Here as first association on socket. As the peer SID
5398 		 * was allowed by peer recv (and the netif/node checks),
5399 		 * then it is approved by policy and used as the primary
5400 		 * peer SID for getpeercon(3).
5401 		 */
5402 		sksec->peer_sid = peer_sid;
5403 	} else if  (sksec->peer_sid != peer_sid) {
5404 		/* Other association peer SIDs are checked to enforce
5405 		 * consistency among the peer SIDs.
5406 		 */
5407 		ad.type = LSM_AUDIT_DATA_NET;
5408 		ad.u.net = &net;
5409 		ad.u.net->sk = ep->base.sk;
5410 		err = avc_has_perm(&selinux_state,
5411 				   sksec->peer_sid, peer_sid, sksec->sclass,
5412 				   SCTP_SOCKET__ASSOCIATION, &ad);
5413 		if (err)
5414 			return err;
5415 	}
5416 
5417 	/* Compute the MLS component for the connection and store
5418 	 * the information in ep. This will be used by SCTP TCP type
5419 	 * sockets and peeled off connections as they cause a new
5420 	 * socket to be generated. selinux_sctp_sk_clone() will then
5421 	 * plug this into the new socket.
5422 	 */
5423 	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5424 	if (err)
5425 		return err;
5426 
5427 	ep->secid = conn_sid;
5428 	ep->peer_secid = peer_sid;
5429 
5430 	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5431 	return selinux_netlbl_sctp_assoc_request(ep, skb);
5432 }
5433 
5434 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5435  * based on their @optname.
5436  */
5437 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5438 				     struct sockaddr *address,
5439 				     int addrlen)
5440 {
5441 	int len, err = 0, walk_size = 0;
5442 	void *addr_buf;
5443 	struct sockaddr *addr;
5444 	struct socket *sock;
5445 
5446 	if (!selinux_policycap_extsockclass())
5447 		return 0;
5448 
5449 	/* Process one or more addresses that may be IPv4 or IPv6 */
5450 	sock = sk->sk_socket;
5451 	addr_buf = address;
5452 
5453 	while (walk_size < addrlen) {
5454 		if (walk_size + sizeof(sa_family_t) > addrlen)
5455 			return -EINVAL;
5456 
5457 		addr = addr_buf;
5458 		switch (addr->sa_family) {
5459 		case AF_UNSPEC:
5460 		case AF_INET:
5461 			len = sizeof(struct sockaddr_in);
5462 			break;
5463 		case AF_INET6:
5464 			len = sizeof(struct sockaddr_in6);
5465 			break;
5466 		default:
5467 			return -EINVAL;
5468 		}
5469 
5470 		if (walk_size + len > addrlen)
5471 			return -EINVAL;
5472 
5473 		err = -EINVAL;
5474 		switch (optname) {
5475 		/* Bind checks */
5476 		case SCTP_PRIMARY_ADDR:
5477 		case SCTP_SET_PEER_PRIMARY_ADDR:
5478 		case SCTP_SOCKOPT_BINDX_ADD:
5479 			err = selinux_socket_bind(sock, addr, len);
5480 			break;
5481 		/* Connect checks */
5482 		case SCTP_SOCKOPT_CONNECTX:
5483 		case SCTP_PARAM_SET_PRIMARY:
5484 		case SCTP_PARAM_ADD_IP:
5485 		case SCTP_SENDMSG_CONNECT:
5486 			err = selinux_socket_connect_helper(sock, addr, len);
5487 			if (err)
5488 				return err;
5489 
5490 			/* As selinux_sctp_bind_connect() is called by the
5491 			 * SCTP protocol layer, the socket is already locked,
5492 			 * therefore selinux_netlbl_socket_connect_locked()
5493 			 * is called here. The situations handled are:
5494 			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5495 			 * whenever a new IP address is added or when a new
5496 			 * primary address is selected.
5497 			 * Note that an SCTP connect(2) call happens before
5498 			 * the SCTP protocol layer and is handled via
5499 			 * selinux_socket_connect().
5500 			 */
5501 			err = selinux_netlbl_socket_connect_locked(sk, addr);
5502 			break;
5503 		}
5504 
5505 		if (err)
5506 			return err;
5507 
5508 		addr_buf += len;
5509 		walk_size += len;
5510 	}
5511 
5512 	return 0;
5513 }
5514 
5515 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5516 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5517 				  struct sock *newsk)
5518 {
5519 	struct sk_security_struct *sksec = sk->sk_security;
5520 	struct sk_security_struct *newsksec = newsk->sk_security;
5521 
5522 	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5523 	 * the non-sctp clone version.
5524 	 */
5525 	if (!selinux_policycap_extsockclass())
5526 		return selinux_sk_clone_security(sk, newsk);
5527 
5528 	newsksec->sid = ep->secid;
5529 	newsksec->peer_sid = ep->peer_secid;
5530 	newsksec->sclass = sksec->sclass;
5531 	selinux_netlbl_sctp_sk_clone(sk, newsk);
5532 }
5533 
5534 static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5535 				     struct request_sock *req)
5536 {
5537 	struct sk_security_struct *sksec = sk->sk_security;
5538 	int err;
5539 	u16 family = req->rsk_ops->family;
5540 	u32 connsid;
5541 	u32 peersid;
5542 
5543 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5544 	if (err)
5545 		return err;
5546 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5547 	if (err)
5548 		return err;
5549 	req->secid = connsid;
5550 	req->peer_secid = peersid;
5551 
5552 	return selinux_netlbl_inet_conn_request(req, family);
5553 }
5554 
5555 static void selinux_inet_csk_clone(struct sock *newsk,
5556 				   const struct request_sock *req)
5557 {
5558 	struct sk_security_struct *newsksec = newsk->sk_security;
5559 
5560 	newsksec->sid = req->secid;
5561 	newsksec->peer_sid = req->peer_secid;
5562 	/* NOTE: Ideally, we should also get the isec->sid for the
5563 	   new socket in sync, but we don't have the isec available yet.
5564 	   So we will wait until sock_graft to do it, by which
5565 	   time it will have been created and available. */
5566 
5567 	/* We don't need to take any sort of lock here as we are the only
5568 	 * thread with access to newsksec */
5569 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5570 }
5571 
5572 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5573 {
5574 	u16 family = sk->sk_family;
5575 	struct sk_security_struct *sksec = sk->sk_security;
5576 
5577 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5578 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5579 		family = PF_INET;
5580 
5581 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5582 }
5583 
5584 static int selinux_secmark_relabel_packet(u32 sid)
5585 {
5586 	const struct task_security_struct *__tsec;
5587 	u32 tsid;
5588 
5589 	__tsec = selinux_cred(current_cred());
5590 	tsid = __tsec->sid;
5591 
5592 	return avc_has_perm(&selinux_state,
5593 			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5594 			    NULL);
5595 }
5596 
5597 static void selinux_secmark_refcount_inc(void)
5598 {
5599 	atomic_inc(&selinux_secmark_refcount);
5600 }
5601 
5602 static void selinux_secmark_refcount_dec(void)
5603 {
5604 	atomic_dec(&selinux_secmark_refcount);
5605 }
5606 
5607 static void selinux_req_classify_flow(const struct request_sock *req,
5608 				      struct flowi_common *flic)
5609 {
5610 	flic->flowic_secid = req->secid;
5611 }
5612 
5613 static int selinux_tun_dev_alloc_security(void **security)
5614 {
5615 	struct tun_security_struct *tunsec;
5616 
5617 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5618 	if (!tunsec)
5619 		return -ENOMEM;
5620 	tunsec->sid = current_sid();
5621 
5622 	*security = tunsec;
5623 	return 0;
5624 }
5625 
5626 static void selinux_tun_dev_free_security(void *security)
5627 {
5628 	kfree(security);
5629 }
5630 
5631 static int selinux_tun_dev_create(void)
5632 {
5633 	u32 sid = current_sid();
5634 
5635 	/* we aren't taking into account the "sockcreate" SID since the socket
5636 	 * that is being created here is not a socket in the traditional sense,
5637 	 * instead it is a private sock, accessible only to the kernel, and
5638 	 * representing a wide range of network traffic spanning multiple
5639 	 * connections unlike traditional sockets - check the TUN driver to
5640 	 * get a better understanding of why this socket is special */
5641 
5642 	return avc_has_perm(&selinux_state,
5643 			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5644 			    NULL);
5645 }
5646 
5647 static int selinux_tun_dev_attach_queue(void *security)
5648 {
5649 	struct tun_security_struct *tunsec = security;
5650 
5651 	return avc_has_perm(&selinux_state,
5652 			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5653 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5654 }
5655 
5656 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5657 {
5658 	struct tun_security_struct *tunsec = security;
5659 	struct sk_security_struct *sksec = sk->sk_security;
5660 
5661 	/* we don't currently perform any NetLabel based labeling here and it
5662 	 * isn't clear that we would want to do so anyway; while we could apply
5663 	 * labeling without the support of the TUN user the resulting labeled
5664 	 * traffic from the other end of the connection would almost certainly
5665 	 * cause confusion to the TUN user that had no idea network labeling
5666 	 * protocols were being used */
5667 
5668 	sksec->sid = tunsec->sid;
5669 	sksec->sclass = SECCLASS_TUN_SOCKET;
5670 
5671 	return 0;
5672 }
5673 
5674 static int selinux_tun_dev_open(void *security)
5675 {
5676 	struct tun_security_struct *tunsec = security;
5677 	u32 sid = current_sid();
5678 	int err;
5679 
5680 	err = avc_has_perm(&selinux_state,
5681 			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5682 			   TUN_SOCKET__RELABELFROM, NULL);
5683 	if (err)
5684 		return err;
5685 	err = avc_has_perm(&selinux_state,
5686 			   sid, sid, SECCLASS_TUN_SOCKET,
5687 			   TUN_SOCKET__RELABELTO, NULL);
5688 	if (err)
5689 		return err;
5690 	tunsec->sid = sid;
5691 
5692 	return 0;
5693 }
5694 
5695 #ifdef CONFIG_NETFILTER
5696 
5697 static unsigned int selinux_ip_forward(struct sk_buff *skb,
5698 				       const struct net_device *indev,
5699 				       u16 family)
5700 {
5701 	int err;
5702 	char *addrp;
5703 	u32 peer_sid;
5704 	struct common_audit_data ad;
5705 	struct lsm_network_audit net = {0,};
5706 	u8 secmark_active;
5707 	u8 netlbl_active;
5708 	u8 peerlbl_active;
5709 
5710 	if (!selinux_policycap_netpeer())
5711 		return NF_ACCEPT;
5712 
5713 	secmark_active = selinux_secmark_enabled();
5714 	netlbl_active = netlbl_enabled();
5715 	peerlbl_active = selinux_peerlbl_enabled();
5716 	if (!secmark_active && !peerlbl_active)
5717 		return NF_ACCEPT;
5718 
5719 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5720 		return NF_DROP;
5721 
5722 	ad.type = LSM_AUDIT_DATA_NET;
5723 	ad.u.net = &net;
5724 	ad.u.net->netif = indev->ifindex;
5725 	ad.u.net->family = family;
5726 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5727 		return NF_DROP;
5728 
5729 	if (peerlbl_active) {
5730 		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5731 					       addrp, family, peer_sid, &ad);
5732 		if (err) {
5733 			selinux_netlbl_err(skb, family, err, 1);
5734 			return NF_DROP;
5735 		}
5736 	}
5737 
5738 	if (secmark_active)
5739 		if (avc_has_perm(&selinux_state,
5740 				 peer_sid, skb->secmark,
5741 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5742 			return NF_DROP;
5743 
5744 	if (netlbl_active)
5745 		/* we do this in the FORWARD path and not the POST_ROUTING
5746 		 * path because we want to make sure we apply the necessary
5747 		 * labeling before IPsec is applied so we can leverage AH
5748 		 * protection */
5749 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5750 			return NF_DROP;
5751 
5752 	return NF_ACCEPT;
5753 }
5754 
5755 static unsigned int selinux_ipv4_forward(void *priv,
5756 					 struct sk_buff *skb,
5757 					 const struct nf_hook_state *state)
5758 {
5759 	return selinux_ip_forward(skb, state->in, PF_INET);
5760 }
5761 
5762 #if IS_ENABLED(CONFIG_IPV6)
5763 static unsigned int selinux_ipv6_forward(void *priv,
5764 					 struct sk_buff *skb,
5765 					 const struct nf_hook_state *state)
5766 {
5767 	return selinux_ip_forward(skb, state->in, PF_INET6);
5768 }
5769 #endif	/* IPV6 */
5770 
5771 static unsigned int selinux_ip_output(struct sk_buff *skb,
5772 				      u16 family)
5773 {
5774 	struct sock *sk;
5775 	u32 sid;
5776 
5777 	if (!netlbl_enabled())
5778 		return NF_ACCEPT;
5779 
5780 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5781 	 * because we want to make sure we apply the necessary labeling
5782 	 * before IPsec is applied so we can leverage AH protection */
5783 	sk = skb->sk;
5784 	if (sk) {
5785 		struct sk_security_struct *sksec;
5786 
5787 		if (sk_listener(sk))
5788 			/* if the socket is the listening state then this
5789 			 * packet is a SYN-ACK packet which means it needs to
5790 			 * be labeled based on the connection/request_sock and
5791 			 * not the parent socket.  unfortunately, we can't
5792 			 * lookup the request_sock yet as it isn't queued on
5793 			 * the parent socket until after the SYN-ACK is sent.
5794 			 * the "solution" is to simply pass the packet as-is
5795 			 * as any IP option based labeling should be copied
5796 			 * from the initial connection request (in the IP
5797 			 * layer).  it is far from ideal, but until we get a
5798 			 * security label in the packet itself this is the
5799 			 * best we can do. */
5800 			return NF_ACCEPT;
5801 
5802 		/* standard practice, label using the parent socket */
5803 		sksec = sk->sk_security;
5804 		sid = sksec->sid;
5805 	} else
5806 		sid = SECINITSID_KERNEL;
5807 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5808 		return NF_DROP;
5809 
5810 	return NF_ACCEPT;
5811 }
5812 
5813 static unsigned int selinux_ipv4_output(void *priv,
5814 					struct sk_buff *skb,
5815 					const struct nf_hook_state *state)
5816 {
5817 	return selinux_ip_output(skb, PF_INET);
5818 }
5819 
5820 #if IS_ENABLED(CONFIG_IPV6)
5821 static unsigned int selinux_ipv6_output(void *priv,
5822 					struct sk_buff *skb,
5823 					const struct nf_hook_state *state)
5824 {
5825 	return selinux_ip_output(skb, PF_INET6);
5826 }
5827 #endif	/* IPV6 */
5828 
5829 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5830 						int ifindex,
5831 						u16 family)
5832 {
5833 	struct sock *sk = skb_to_full_sk(skb);
5834 	struct sk_security_struct *sksec;
5835 	struct common_audit_data ad;
5836 	struct lsm_network_audit net = {0,};
5837 	char *addrp;
5838 	u8 proto;
5839 
5840 	if (sk == NULL)
5841 		return NF_ACCEPT;
5842 	sksec = sk->sk_security;
5843 
5844 	ad.type = LSM_AUDIT_DATA_NET;
5845 	ad.u.net = &net;
5846 	ad.u.net->netif = ifindex;
5847 	ad.u.net->family = family;
5848 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5849 		return NF_DROP;
5850 
5851 	if (selinux_secmark_enabled())
5852 		if (avc_has_perm(&selinux_state,
5853 				 sksec->sid, skb->secmark,
5854 				 SECCLASS_PACKET, PACKET__SEND, &ad))
5855 			return NF_DROP_ERR(-ECONNREFUSED);
5856 
5857 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5858 		return NF_DROP_ERR(-ECONNREFUSED);
5859 
5860 	return NF_ACCEPT;
5861 }
5862 
5863 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5864 					 const struct net_device *outdev,
5865 					 u16 family)
5866 {
5867 	u32 secmark_perm;
5868 	u32 peer_sid;
5869 	int ifindex = outdev->ifindex;
5870 	struct sock *sk;
5871 	struct common_audit_data ad;
5872 	struct lsm_network_audit net = {0,};
5873 	char *addrp;
5874 	u8 secmark_active;
5875 	u8 peerlbl_active;
5876 
5877 	/* If any sort of compatibility mode is enabled then handoff processing
5878 	 * to the selinux_ip_postroute_compat() function to deal with the
5879 	 * special handling.  We do this in an attempt to keep this function
5880 	 * as fast and as clean as possible. */
5881 	if (!selinux_policycap_netpeer())
5882 		return selinux_ip_postroute_compat(skb, ifindex, family);
5883 
5884 	secmark_active = selinux_secmark_enabled();
5885 	peerlbl_active = selinux_peerlbl_enabled();
5886 	if (!secmark_active && !peerlbl_active)
5887 		return NF_ACCEPT;
5888 
5889 	sk = skb_to_full_sk(skb);
5890 
5891 #ifdef CONFIG_XFRM
5892 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5893 	 * packet transformation so allow the packet to pass without any checks
5894 	 * since we'll have another chance to perform access control checks
5895 	 * when the packet is on it's final way out.
5896 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5897 	 *       is NULL, in this case go ahead and apply access control.
5898 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5899 	 *       TCP listening state we cannot wait until the XFRM processing
5900 	 *       is done as we will miss out on the SA label if we do;
5901 	 *       unfortunately, this means more work, but it is only once per
5902 	 *       connection. */
5903 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5904 	    !(sk && sk_listener(sk)))
5905 		return NF_ACCEPT;
5906 #endif
5907 
5908 	if (sk == NULL) {
5909 		/* Without an associated socket the packet is either coming
5910 		 * from the kernel or it is being forwarded; check the packet
5911 		 * to determine which and if the packet is being forwarded
5912 		 * query the packet directly to determine the security label. */
5913 		if (skb->skb_iif) {
5914 			secmark_perm = PACKET__FORWARD_OUT;
5915 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5916 				return NF_DROP;
5917 		} else {
5918 			secmark_perm = PACKET__SEND;
5919 			peer_sid = SECINITSID_KERNEL;
5920 		}
5921 	} else if (sk_listener(sk)) {
5922 		/* Locally generated packet but the associated socket is in the
5923 		 * listening state which means this is a SYN-ACK packet.  In
5924 		 * this particular case the correct security label is assigned
5925 		 * to the connection/request_sock but unfortunately we can't
5926 		 * query the request_sock as it isn't queued on the parent
5927 		 * socket until after the SYN-ACK packet is sent; the only
5928 		 * viable choice is to regenerate the label like we do in
5929 		 * selinux_inet_conn_request().  See also selinux_ip_output()
5930 		 * for similar problems. */
5931 		u32 skb_sid;
5932 		struct sk_security_struct *sksec;
5933 
5934 		sksec = sk->sk_security;
5935 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5936 			return NF_DROP;
5937 		/* At this point, if the returned skb peerlbl is SECSID_NULL
5938 		 * and the packet has been through at least one XFRM
5939 		 * transformation then we must be dealing with the "final"
5940 		 * form of labeled IPsec packet; since we've already applied
5941 		 * all of our access controls on this packet we can safely
5942 		 * pass the packet. */
5943 		if (skb_sid == SECSID_NULL) {
5944 			switch (family) {
5945 			case PF_INET:
5946 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5947 					return NF_ACCEPT;
5948 				break;
5949 			case PF_INET6:
5950 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5951 					return NF_ACCEPT;
5952 				break;
5953 			default:
5954 				return NF_DROP_ERR(-ECONNREFUSED);
5955 			}
5956 		}
5957 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5958 			return NF_DROP;
5959 		secmark_perm = PACKET__SEND;
5960 	} else {
5961 		/* Locally generated packet, fetch the security label from the
5962 		 * associated socket. */
5963 		struct sk_security_struct *sksec = sk->sk_security;
5964 		peer_sid = sksec->sid;
5965 		secmark_perm = PACKET__SEND;
5966 	}
5967 
5968 	ad.type = LSM_AUDIT_DATA_NET;
5969 	ad.u.net = &net;
5970 	ad.u.net->netif = ifindex;
5971 	ad.u.net->family = family;
5972 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5973 		return NF_DROP;
5974 
5975 	if (secmark_active)
5976 		if (avc_has_perm(&selinux_state,
5977 				 peer_sid, skb->secmark,
5978 				 SECCLASS_PACKET, secmark_perm, &ad))
5979 			return NF_DROP_ERR(-ECONNREFUSED);
5980 
5981 	if (peerlbl_active) {
5982 		u32 if_sid;
5983 		u32 node_sid;
5984 
5985 		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5986 			return NF_DROP;
5987 		if (avc_has_perm(&selinux_state,
5988 				 peer_sid, if_sid,
5989 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5990 			return NF_DROP_ERR(-ECONNREFUSED);
5991 
5992 		if (sel_netnode_sid(addrp, family, &node_sid))
5993 			return NF_DROP;
5994 		if (avc_has_perm(&selinux_state,
5995 				 peer_sid, node_sid,
5996 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5997 			return NF_DROP_ERR(-ECONNREFUSED);
5998 	}
5999 
6000 	return NF_ACCEPT;
6001 }
6002 
6003 static unsigned int selinux_ipv4_postroute(void *priv,
6004 					   struct sk_buff *skb,
6005 					   const struct nf_hook_state *state)
6006 {
6007 	return selinux_ip_postroute(skb, state->out, PF_INET);
6008 }
6009 
6010 #if IS_ENABLED(CONFIG_IPV6)
6011 static unsigned int selinux_ipv6_postroute(void *priv,
6012 					   struct sk_buff *skb,
6013 					   const struct nf_hook_state *state)
6014 {
6015 	return selinux_ip_postroute(skb, state->out, PF_INET6);
6016 }
6017 #endif	/* IPV6 */
6018 
6019 #endif	/* CONFIG_NETFILTER */
6020 
6021 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
6022 {
6023 	int rc = 0;
6024 	unsigned int msg_len;
6025 	unsigned int data_len = skb->len;
6026 	unsigned char *data = skb->data;
6027 	struct nlmsghdr *nlh;
6028 	struct sk_security_struct *sksec = sk->sk_security;
6029 	u16 sclass = sksec->sclass;
6030 	u32 perm;
6031 
6032 	while (data_len >= nlmsg_total_size(0)) {
6033 		nlh = (struct nlmsghdr *)data;
6034 
6035 		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
6036 		 *       users which means we can't reject skb's with bogus
6037 		 *       length fields; our solution is to follow what
6038 		 *       netlink_rcv_skb() does and simply skip processing at
6039 		 *       messages with length fields that are clearly junk
6040 		 */
6041 		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
6042 			return 0;
6043 
6044 		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
6045 		if (rc == 0) {
6046 			rc = sock_has_perm(sk, perm);
6047 			if (rc)
6048 				return rc;
6049 		} else if (rc == -EINVAL) {
6050 			/* -EINVAL is a missing msg/perm mapping */
6051 			pr_warn_ratelimited("SELinux: unrecognized netlink"
6052 				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
6053 				" pid=%d comm=%s\n",
6054 				sk->sk_protocol, nlh->nlmsg_type,
6055 				secclass_map[sclass - 1].name,
6056 				task_pid_nr(current), current->comm);
6057 			if (enforcing_enabled(&selinux_state) &&
6058 			    !security_get_allow_unknown(&selinux_state))
6059 				return rc;
6060 			rc = 0;
6061 		} else if (rc == -ENOENT) {
6062 			/* -ENOENT is a missing socket/class mapping, ignore */
6063 			rc = 0;
6064 		} else {
6065 			return rc;
6066 		}
6067 
6068 		/* move to the next message after applying netlink padding */
6069 		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
6070 		if (msg_len >= data_len)
6071 			return 0;
6072 		data_len -= msg_len;
6073 		data += msg_len;
6074 	}
6075 
6076 	return rc;
6077 }
6078 
6079 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
6080 {
6081 	isec->sclass = sclass;
6082 	isec->sid = current_sid();
6083 }
6084 
6085 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6086 			u32 perms)
6087 {
6088 	struct ipc_security_struct *isec;
6089 	struct common_audit_data ad;
6090 	u32 sid = current_sid();
6091 
6092 	isec = selinux_ipc(ipc_perms);
6093 
6094 	ad.type = LSM_AUDIT_DATA_IPC;
6095 	ad.u.ipc_id = ipc_perms->key;
6096 
6097 	return avc_has_perm(&selinux_state,
6098 			    sid, isec->sid, isec->sclass, perms, &ad);
6099 }
6100 
6101 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6102 {
6103 	struct msg_security_struct *msec;
6104 
6105 	msec = selinux_msg_msg(msg);
6106 	msec->sid = SECINITSID_UNLABELED;
6107 
6108 	return 0;
6109 }
6110 
6111 /* message queue security operations */
6112 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6113 {
6114 	struct ipc_security_struct *isec;
6115 	struct common_audit_data ad;
6116 	u32 sid = current_sid();
6117 	int rc;
6118 
6119 	isec = selinux_ipc(msq);
6120 	ipc_init_security(isec, SECCLASS_MSGQ);
6121 
6122 	ad.type = LSM_AUDIT_DATA_IPC;
6123 	ad.u.ipc_id = msq->key;
6124 
6125 	rc = avc_has_perm(&selinux_state,
6126 			  sid, isec->sid, SECCLASS_MSGQ,
6127 			  MSGQ__CREATE, &ad);
6128 	return rc;
6129 }
6130 
6131 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6132 {
6133 	struct ipc_security_struct *isec;
6134 	struct common_audit_data ad;
6135 	u32 sid = current_sid();
6136 
6137 	isec = selinux_ipc(msq);
6138 
6139 	ad.type = LSM_AUDIT_DATA_IPC;
6140 	ad.u.ipc_id = msq->key;
6141 
6142 	return avc_has_perm(&selinux_state,
6143 			    sid, isec->sid, SECCLASS_MSGQ,
6144 			    MSGQ__ASSOCIATE, &ad);
6145 }
6146 
6147 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6148 {
6149 	int err;
6150 	int perms;
6151 
6152 	switch (cmd) {
6153 	case IPC_INFO:
6154 	case MSG_INFO:
6155 		/* No specific object, just general system-wide information. */
6156 		return avc_has_perm(&selinux_state,
6157 				    current_sid(), SECINITSID_KERNEL,
6158 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6159 	case IPC_STAT:
6160 	case MSG_STAT:
6161 	case MSG_STAT_ANY:
6162 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6163 		break;
6164 	case IPC_SET:
6165 		perms = MSGQ__SETATTR;
6166 		break;
6167 	case IPC_RMID:
6168 		perms = MSGQ__DESTROY;
6169 		break;
6170 	default:
6171 		return 0;
6172 	}
6173 
6174 	err = ipc_has_perm(msq, perms);
6175 	return err;
6176 }
6177 
6178 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6179 {
6180 	struct ipc_security_struct *isec;
6181 	struct msg_security_struct *msec;
6182 	struct common_audit_data ad;
6183 	u32 sid = current_sid();
6184 	int rc;
6185 
6186 	isec = selinux_ipc(msq);
6187 	msec = selinux_msg_msg(msg);
6188 
6189 	/*
6190 	 * First time through, need to assign label to the message
6191 	 */
6192 	if (msec->sid == SECINITSID_UNLABELED) {
6193 		/*
6194 		 * Compute new sid based on current process and
6195 		 * message queue this message will be stored in
6196 		 */
6197 		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6198 					     SECCLASS_MSG, NULL, &msec->sid);
6199 		if (rc)
6200 			return rc;
6201 	}
6202 
6203 	ad.type = LSM_AUDIT_DATA_IPC;
6204 	ad.u.ipc_id = msq->key;
6205 
6206 	/* Can this process write to the queue? */
6207 	rc = avc_has_perm(&selinux_state,
6208 			  sid, isec->sid, SECCLASS_MSGQ,
6209 			  MSGQ__WRITE, &ad);
6210 	if (!rc)
6211 		/* Can this process send the message */
6212 		rc = avc_has_perm(&selinux_state,
6213 				  sid, msec->sid, SECCLASS_MSG,
6214 				  MSG__SEND, &ad);
6215 	if (!rc)
6216 		/* Can the message be put in the queue? */
6217 		rc = avc_has_perm(&selinux_state,
6218 				  msec->sid, isec->sid, SECCLASS_MSGQ,
6219 				  MSGQ__ENQUEUE, &ad);
6220 
6221 	return rc;
6222 }
6223 
6224 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6225 				    struct task_struct *target,
6226 				    long type, int mode)
6227 {
6228 	struct ipc_security_struct *isec;
6229 	struct msg_security_struct *msec;
6230 	struct common_audit_data ad;
6231 	u32 sid = task_sid_subj(target);
6232 	int rc;
6233 
6234 	isec = selinux_ipc(msq);
6235 	msec = selinux_msg_msg(msg);
6236 
6237 	ad.type = LSM_AUDIT_DATA_IPC;
6238 	ad.u.ipc_id = msq->key;
6239 
6240 	rc = avc_has_perm(&selinux_state,
6241 			  sid, isec->sid,
6242 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6243 	if (!rc)
6244 		rc = avc_has_perm(&selinux_state,
6245 				  sid, msec->sid,
6246 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6247 	return rc;
6248 }
6249 
6250 /* Shared Memory security operations */
6251 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6252 {
6253 	struct ipc_security_struct *isec;
6254 	struct common_audit_data ad;
6255 	u32 sid = current_sid();
6256 	int rc;
6257 
6258 	isec = selinux_ipc(shp);
6259 	ipc_init_security(isec, SECCLASS_SHM);
6260 
6261 	ad.type = LSM_AUDIT_DATA_IPC;
6262 	ad.u.ipc_id = shp->key;
6263 
6264 	rc = avc_has_perm(&selinux_state,
6265 			  sid, isec->sid, SECCLASS_SHM,
6266 			  SHM__CREATE, &ad);
6267 	return rc;
6268 }
6269 
6270 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6271 {
6272 	struct ipc_security_struct *isec;
6273 	struct common_audit_data ad;
6274 	u32 sid = current_sid();
6275 
6276 	isec = selinux_ipc(shp);
6277 
6278 	ad.type = LSM_AUDIT_DATA_IPC;
6279 	ad.u.ipc_id = shp->key;
6280 
6281 	return avc_has_perm(&selinux_state,
6282 			    sid, isec->sid, SECCLASS_SHM,
6283 			    SHM__ASSOCIATE, &ad);
6284 }
6285 
6286 /* Note, at this point, shp is locked down */
6287 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6288 {
6289 	int perms;
6290 	int err;
6291 
6292 	switch (cmd) {
6293 	case IPC_INFO:
6294 	case SHM_INFO:
6295 		/* No specific object, just general system-wide information. */
6296 		return avc_has_perm(&selinux_state,
6297 				    current_sid(), SECINITSID_KERNEL,
6298 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6299 	case IPC_STAT:
6300 	case SHM_STAT:
6301 	case SHM_STAT_ANY:
6302 		perms = SHM__GETATTR | SHM__ASSOCIATE;
6303 		break;
6304 	case IPC_SET:
6305 		perms = SHM__SETATTR;
6306 		break;
6307 	case SHM_LOCK:
6308 	case SHM_UNLOCK:
6309 		perms = SHM__LOCK;
6310 		break;
6311 	case IPC_RMID:
6312 		perms = SHM__DESTROY;
6313 		break;
6314 	default:
6315 		return 0;
6316 	}
6317 
6318 	err = ipc_has_perm(shp, perms);
6319 	return err;
6320 }
6321 
6322 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6323 			     char __user *shmaddr, int shmflg)
6324 {
6325 	u32 perms;
6326 
6327 	if (shmflg & SHM_RDONLY)
6328 		perms = SHM__READ;
6329 	else
6330 		perms = SHM__READ | SHM__WRITE;
6331 
6332 	return ipc_has_perm(shp, perms);
6333 }
6334 
6335 /* Semaphore security operations */
6336 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6337 {
6338 	struct ipc_security_struct *isec;
6339 	struct common_audit_data ad;
6340 	u32 sid = current_sid();
6341 	int rc;
6342 
6343 	isec = selinux_ipc(sma);
6344 	ipc_init_security(isec, SECCLASS_SEM);
6345 
6346 	ad.type = LSM_AUDIT_DATA_IPC;
6347 	ad.u.ipc_id = sma->key;
6348 
6349 	rc = avc_has_perm(&selinux_state,
6350 			  sid, isec->sid, SECCLASS_SEM,
6351 			  SEM__CREATE, &ad);
6352 	return rc;
6353 }
6354 
6355 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6356 {
6357 	struct ipc_security_struct *isec;
6358 	struct common_audit_data ad;
6359 	u32 sid = current_sid();
6360 
6361 	isec = selinux_ipc(sma);
6362 
6363 	ad.type = LSM_AUDIT_DATA_IPC;
6364 	ad.u.ipc_id = sma->key;
6365 
6366 	return avc_has_perm(&selinux_state,
6367 			    sid, isec->sid, SECCLASS_SEM,
6368 			    SEM__ASSOCIATE, &ad);
6369 }
6370 
6371 /* Note, at this point, sma is locked down */
6372 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6373 {
6374 	int err;
6375 	u32 perms;
6376 
6377 	switch (cmd) {
6378 	case IPC_INFO:
6379 	case SEM_INFO:
6380 		/* No specific object, just general system-wide information. */
6381 		return avc_has_perm(&selinux_state,
6382 				    current_sid(), SECINITSID_KERNEL,
6383 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6384 	case GETPID:
6385 	case GETNCNT:
6386 	case GETZCNT:
6387 		perms = SEM__GETATTR;
6388 		break;
6389 	case GETVAL:
6390 	case GETALL:
6391 		perms = SEM__READ;
6392 		break;
6393 	case SETVAL:
6394 	case SETALL:
6395 		perms = SEM__WRITE;
6396 		break;
6397 	case IPC_RMID:
6398 		perms = SEM__DESTROY;
6399 		break;
6400 	case IPC_SET:
6401 		perms = SEM__SETATTR;
6402 		break;
6403 	case IPC_STAT:
6404 	case SEM_STAT:
6405 	case SEM_STAT_ANY:
6406 		perms = SEM__GETATTR | SEM__ASSOCIATE;
6407 		break;
6408 	default:
6409 		return 0;
6410 	}
6411 
6412 	err = ipc_has_perm(sma, perms);
6413 	return err;
6414 }
6415 
6416 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6417 			     struct sembuf *sops, unsigned nsops, int alter)
6418 {
6419 	u32 perms;
6420 
6421 	if (alter)
6422 		perms = SEM__READ | SEM__WRITE;
6423 	else
6424 		perms = SEM__READ;
6425 
6426 	return ipc_has_perm(sma, perms);
6427 }
6428 
6429 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6430 {
6431 	u32 av = 0;
6432 
6433 	av = 0;
6434 	if (flag & S_IRUGO)
6435 		av |= IPC__UNIX_READ;
6436 	if (flag & S_IWUGO)
6437 		av |= IPC__UNIX_WRITE;
6438 
6439 	if (av == 0)
6440 		return 0;
6441 
6442 	return ipc_has_perm(ipcp, av);
6443 }
6444 
6445 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6446 {
6447 	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6448 	*secid = isec->sid;
6449 }
6450 
6451 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6452 {
6453 	if (inode)
6454 		inode_doinit_with_dentry(inode, dentry);
6455 }
6456 
6457 static int selinux_getprocattr(struct task_struct *p,
6458 			       char *name, char **value)
6459 {
6460 	const struct task_security_struct *__tsec;
6461 	u32 sid;
6462 	int error;
6463 	unsigned len;
6464 
6465 	rcu_read_lock();
6466 	__tsec = selinux_cred(__task_cred(p));
6467 
6468 	if (current != p) {
6469 		error = avc_has_perm(&selinux_state,
6470 				     current_sid(), __tsec->sid,
6471 				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6472 		if (error)
6473 			goto bad;
6474 	}
6475 
6476 	if (!strcmp(name, "current"))
6477 		sid = __tsec->sid;
6478 	else if (!strcmp(name, "prev"))
6479 		sid = __tsec->osid;
6480 	else if (!strcmp(name, "exec"))
6481 		sid = __tsec->exec_sid;
6482 	else if (!strcmp(name, "fscreate"))
6483 		sid = __tsec->create_sid;
6484 	else if (!strcmp(name, "keycreate"))
6485 		sid = __tsec->keycreate_sid;
6486 	else if (!strcmp(name, "sockcreate"))
6487 		sid = __tsec->sockcreate_sid;
6488 	else {
6489 		error = -EINVAL;
6490 		goto bad;
6491 	}
6492 	rcu_read_unlock();
6493 
6494 	if (!sid)
6495 		return 0;
6496 
6497 	error = security_sid_to_context(&selinux_state, sid, value, &len);
6498 	if (error)
6499 		return error;
6500 	return len;
6501 
6502 bad:
6503 	rcu_read_unlock();
6504 	return error;
6505 }
6506 
6507 static int selinux_setprocattr(const char *name, void *value, size_t size)
6508 {
6509 	struct task_security_struct *tsec;
6510 	struct cred *new;
6511 	u32 mysid = current_sid(), sid = 0, ptsid;
6512 	int error;
6513 	char *str = value;
6514 
6515 	/*
6516 	 * Basic control over ability to set these attributes at all.
6517 	 */
6518 	if (!strcmp(name, "exec"))
6519 		error = avc_has_perm(&selinux_state,
6520 				     mysid, mysid, SECCLASS_PROCESS,
6521 				     PROCESS__SETEXEC, NULL);
6522 	else if (!strcmp(name, "fscreate"))
6523 		error = avc_has_perm(&selinux_state,
6524 				     mysid, mysid, SECCLASS_PROCESS,
6525 				     PROCESS__SETFSCREATE, NULL);
6526 	else if (!strcmp(name, "keycreate"))
6527 		error = avc_has_perm(&selinux_state,
6528 				     mysid, mysid, SECCLASS_PROCESS,
6529 				     PROCESS__SETKEYCREATE, NULL);
6530 	else if (!strcmp(name, "sockcreate"))
6531 		error = avc_has_perm(&selinux_state,
6532 				     mysid, mysid, SECCLASS_PROCESS,
6533 				     PROCESS__SETSOCKCREATE, NULL);
6534 	else if (!strcmp(name, "current"))
6535 		error = avc_has_perm(&selinux_state,
6536 				     mysid, mysid, SECCLASS_PROCESS,
6537 				     PROCESS__SETCURRENT, NULL);
6538 	else
6539 		error = -EINVAL;
6540 	if (error)
6541 		return error;
6542 
6543 	/* Obtain a SID for the context, if one was specified. */
6544 	if (size && str[0] && str[0] != '\n') {
6545 		if (str[size-1] == '\n') {
6546 			str[size-1] = 0;
6547 			size--;
6548 		}
6549 		error = security_context_to_sid(&selinux_state, value, size,
6550 						&sid, GFP_KERNEL);
6551 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6552 			if (!has_cap_mac_admin(true)) {
6553 				struct audit_buffer *ab;
6554 				size_t audit_size;
6555 
6556 				/* We strip a nul only if it is at the end, otherwise the
6557 				 * context contains a nul and we should audit that */
6558 				if (str[size - 1] == '\0')
6559 					audit_size = size - 1;
6560 				else
6561 					audit_size = size;
6562 				ab = audit_log_start(audit_context(),
6563 						     GFP_ATOMIC,
6564 						     AUDIT_SELINUX_ERR);
6565 				audit_log_format(ab, "op=fscreate invalid_context=");
6566 				audit_log_n_untrustedstring(ab, value, audit_size);
6567 				audit_log_end(ab);
6568 
6569 				return error;
6570 			}
6571 			error = security_context_to_sid_force(
6572 						      &selinux_state,
6573 						      value, size, &sid);
6574 		}
6575 		if (error)
6576 			return error;
6577 	}
6578 
6579 	new = prepare_creds();
6580 	if (!new)
6581 		return -ENOMEM;
6582 
6583 	/* Permission checking based on the specified context is
6584 	   performed during the actual operation (execve,
6585 	   open/mkdir/...), when we know the full context of the
6586 	   operation.  See selinux_bprm_creds_for_exec for the execve
6587 	   checks and may_create for the file creation checks. The
6588 	   operation will then fail if the context is not permitted. */
6589 	tsec = selinux_cred(new);
6590 	if (!strcmp(name, "exec")) {
6591 		tsec->exec_sid = sid;
6592 	} else if (!strcmp(name, "fscreate")) {
6593 		tsec->create_sid = sid;
6594 	} else if (!strcmp(name, "keycreate")) {
6595 		if (sid) {
6596 			error = avc_has_perm(&selinux_state, mysid, sid,
6597 					     SECCLASS_KEY, KEY__CREATE, NULL);
6598 			if (error)
6599 				goto abort_change;
6600 		}
6601 		tsec->keycreate_sid = sid;
6602 	} else if (!strcmp(name, "sockcreate")) {
6603 		tsec->sockcreate_sid = sid;
6604 	} else if (!strcmp(name, "current")) {
6605 		error = -EINVAL;
6606 		if (sid == 0)
6607 			goto abort_change;
6608 
6609 		/* Only allow single threaded processes to change context */
6610 		error = -EPERM;
6611 		if (!current_is_single_threaded()) {
6612 			error = security_bounded_transition(&selinux_state,
6613 							    tsec->sid, sid);
6614 			if (error)
6615 				goto abort_change;
6616 		}
6617 
6618 		/* Check permissions for the transition. */
6619 		error = avc_has_perm(&selinux_state,
6620 				     tsec->sid, sid, SECCLASS_PROCESS,
6621 				     PROCESS__DYNTRANSITION, NULL);
6622 		if (error)
6623 			goto abort_change;
6624 
6625 		/* Check for ptracing, and update the task SID if ok.
6626 		   Otherwise, leave SID unchanged and fail. */
6627 		ptsid = ptrace_parent_sid();
6628 		if (ptsid != 0) {
6629 			error = avc_has_perm(&selinux_state,
6630 					     ptsid, sid, SECCLASS_PROCESS,
6631 					     PROCESS__PTRACE, NULL);
6632 			if (error)
6633 				goto abort_change;
6634 		}
6635 
6636 		tsec->sid = sid;
6637 	} else {
6638 		error = -EINVAL;
6639 		goto abort_change;
6640 	}
6641 
6642 	commit_creds(new);
6643 	return size;
6644 
6645 abort_change:
6646 	abort_creds(new);
6647 	return error;
6648 }
6649 
6650 static int selinux_ismaclabel(const char *name)
6651 {
6652 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6653 }
6654 
6655 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6656 {
6657 	return security_sid_to_context(&selinux_state, secid,
6658 				       secdata, seclen);
6659 }
6660 
6661 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6662 {
6663 	return security_context_to_sid(&selinux_state, secdata, seclen,
6664 				       secid, GFP_KERNEL);
6665 }
6666 
6667 static void selinux_release_secctx(char *secdata, u32 seclen)
6668 {
6669 	kfree(secdata);
6670 }
6671 
6672 static void selinux_inode_invalidate_secctx(struct inode *inode)
6673 {
6674 	struct inode_security_struct *isec = selinux_inode(inode);
6675 
6676 	spin_lock(&isec->lock);
6677 	isec->initialized = LABEL_INVALID;
6678 	spin_unlock(&isec->lock);
6679 }
6680 
6681 /*
6682  *	called with inode->i_mutex locked
6683  */
6684 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6685 {
6686 	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6687 					   ctx, ctxlen, 0);
6688 	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6689 	return rc == -EOPNOTSUPP ? 0 : rc;
6690 }
6691 
6692 /*
6693  *	called with inode->i_mutex locked
6694  */
6695 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6696 {
6697 	return __vfs_setxattr_noperm(&init_user_ns, dentry, XATTR_NAME_SELINUX,
6698 				     ctx, ctxlen, 0);
6699 }
6700 
6701 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6702 {
6703 	int len = 0;
6704 	len = selinux_inode_getsecurity(&init_user_ns, inode,
6705 					XATTR_SELINUX_SUFFIX, ctx, true);
6706 	if (len < 0)
6707 		return len;
6708 	*ctxlen = len;
6709 	return 0;
6710 }
6711 #ifdef CONFIG_KEYS
6712 
6713 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6714 			     unsigned long flags)
6715 {
6716 	const struct task_security_struct *tsec;
6717 	struct key_security_struct *ksec;
6718 
6719 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6720 	if (!ksec)
6721 		return -ENOMEM;
6722 
6723 	tsec = selinux_cred(cred);
6724 	if (tsec->keycreate_sid)
6725 		ksec->sid = tsec->keycreate_sid;
6726 	else
6727 		ksec->sid = tsec->sid;
6728 
6729 	k->security = ksec;
6730 	return 0;
6731 }
6732 
6733 static void selinux_key_free(struct key *k)
6734 {
6735 	struct key_security_struct *ksec = k->security;
6736 
6737 	k->security = NULL;
6738 	kfree(ksec);
6739 }
6740 
6741 static int selinux_key_permission(key_ref_t key_ref,
6742 				  const struct cred *cred,
6743 				  enum key_need_perm need_perm)
6744 {
6745 	struct key *key;
6746 	struct key_security_struct *ksec;
6747 	u32 perm, sid;
6748 
6749 	switch (need_perm) {
6750 	case KEY_NEED_VIEW:
6751 		perm = KEY__VIEW;
6752 		break;
6753 	case KEY_NEED_READ:
6754 		perm = KEY__READ;
6755 		break;
6756 	case KEY_NEED_WRITE:
6757 		perm = KEY__WRITE;
6758 		break;
6759 	case KEY_NEED_SEARCH:
6760 		perm = KEY__SEARCH;
6761 		break;
6762 	case KEY_NEED_LINK:
6763 		perm = KEY__LINK;
6764 		break;
6765 	case KEY_NEED_SETATTR:
6766 		perm = KEY__SETATTR;
6767 		break;
6768 	case KEY_NEED_UNLINK:
6769 	case KEY_SYSADMIN_OVERRIDE:
6770 	case KEY_AUTHTOKEN_OVERRIDE:
6771 	case KEY_DEFER_PERM_CHECK:
6772 		return 0;
6773 	default:
6774 		WARN_ON(1);
6775 		return -EPERM;
6776 
6777 	}
6778 
6779 	sid = cred_sid(cred);
6780 	key = key_ref_to_ptr(key_ref);
6781 	ksec = key->security;
6782 
6783 	return avc_has_perm(&selinux_state,
6784 			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6785 }
6786 
6787 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6788 {
6789 	struct key_security_struct *ksec = key->security;
6790 	char *context = NULL;
6791 	unsigned len;
6792 	int rc;
6793 
6794 	rc = security_sid_to_context(&selinux_state, ksec->sid,
6795 				     &context, &len);
6796 	if (!rc)
6797 		rc = len;
6798 	*_buffer = context;
6799 	return rc;
6800 }
6801 
6802 #ifdef CONFIG_KEY_NOTIFICATIONS
6803 static int selinux_watch_key(struct key *key)
6804 {
6805 	struct key_security_struct *ksec = key->security;
6806 	u32 sid = current_sid();
6807 
6808 	return avc_has_perm(&selinux_state,
6809 			    sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6810 }
6811 #endif
6812 #endif
6813 
6814 #ifdef CONFIG_SECURITY_INFINIBAND
6815 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6816 {
6817 	struct common_audit_data ad;
6818 	int err;
6819 	u32 sid = 0;
6820 	struct ib_security_struct *sec = ib_sec;
6821 	struct lsm_ibpkey_audit ibpkey;
6822 
6823 	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6824 	if (err)
6825 		return err;
6826 
6827 	ad.type = LSM_AUDIT_DATA_IBPKEY;
6828 	ibpkey.subnet_prefix = subnet_prefix;
6829 	ibpkey.pkey = pkey_val;
6830 	ad.u.ibpkey = &ibpkey;
6831 	return avc_has_perm(&selinux_state,
6832 			    sec->sid, sid,
6833 			    SECCLASS_INFINIBAND_PKEY,
6834 			    INFINIBAND_PKEY__ACCESS, &ad);
6835 }
6836 
6837 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6838 					    u8 port_num)
6839 {
6840 	struct common_audit_data ad;
6841 	int err;
6842 	u32 sid = 0;
6843 	struct ib_security_struct *sec = ib_sec;
6844 	struct lsm_ibendport_audit ibendport;
6845 
6846 	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6847 				      &sid);
6848 
6849 	if (err)
6850 		return err;
6851 
6852 	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6853 	strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6854 	ibendport.port = port_num;
6855 	ad.u.ibendport = &ibendport;
6856 	return avc_has_perm(&selinux_state,
6857 			    sec->sid, sid,
6858 			    SECCLASS_INFINIBAND_ENDPORT,
6859 			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6860 }
6861 
6862 static int selinux_ib_alloc_security(void **ib_sec)
6863 {
6864 	struct ib_security_struct *sec;
6865 
6866 	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6867 	if (!sec)
6868 		return -ENOMEM;
6869 	sec->sid = current_sid();
6870 
6871 	*ib_sec = sec;
6872 	return 0;
6873 }
6874 
6875 static void selinux_ib_free_security(void *ib_sec)
6876 {
6877 	kfree(ib_sec);
6878 }
6879 #endif
6880 
6881 #ifdef CONFIG_BPF_SYSCALL
6882 static int selinux_bpf(int cmd, union bpf_attr *attr,
6883 				     unsigned int size)
6884 {
6885 	u32 sid = current_sid();
6886 	int ret;
6887 
6888 	switch (cmd) {
6889 	case BPF_MAP_CREATE:
6890 		ret = avc_has_perm(&selinux_state,
6891 				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6892 				   NULL);
6893 		break;
6894 	case BPF_PROG_LOAD:
6895 		ret = avc_has_perm(&selinux_state,
6896 				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6897 				   NULL);
6898 		break;
6899 	default:
6900 		ret = 0;
6901 		break;
6902 	}
6903 
6904 	return ret;
6905 }
6906 
6907 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6908 {
6909 	u32 av = 0;
6910 
6911 	if (fmode & FMODE_READ)
6912 		av |= BPF__MAP_READ;
6913 	if (fmode & FMODE_WRITE)
6914 		av |= BPF__MAP_WRITE;
6915 	return av;
6916 }
6917 
6918 /* This function will check the file pass through unix socket or binder to see
6919  * if it is a bpf related object. And apply correspinding checks on the bpf
6920  * object based on the type. The bpf maps and programs, not like other files and
6921  * socket, are using a shared anonymous inode inside the kernel as their inode.
6922  * So checking that inode cannot identify if the process have privilege to
6923  * access the bpf object and that's why we have to add this additional check in
6924  * selinux_file_receive and selinux_binder_transfer_files.
6925  */
6926 static int bpf_fd_pass(struct file *file, u32 sid)
6927 {
6928 	struct bpf_security_struct *bpfsec;
6929 	struct bpf_prog *prog;
6930 	struct bpf_map *map;
6931 	int ret;
6932 
6933 	if (file->f_op == &bpf_map_fops) {
6934 		map = file->private_data;
6935 		bpfsec = map->security;
6936 		ret = avc_has_perm(&selinux_state,
6937 				   sid, bpfsec->sid, SECCLASS_BPF,
6938 				   bpf_map_fmode_to_av(file->f_mode), NULL);
6939 		if (ret)
6940 			return ret;
6941 	} else if (file->f_op == &bpf_prog_fops) {
6942 		prog = file->private_data;
6943 		bpfsec = prog->aux->security;
6944 		ret = avc_has_perm(&selinux_state,
6945 				   sid, bpfsec->sid, SECCLASS_BPF,
6946 				   BPF__PROG_RUN, NULL);
6947 		if (ret)
6948 			return ret;
6949 	}
6950 	return 0;
6951 }
6952 
6953 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6954 {
6955 	u32 sid = current_sid();
6956 	struct bpf_security_struct *bpfsec;
6957 
6958 	bpfsec = map->security;
6959 	return avc_has_perm(&selinux_state,
6960 			    sid, bpfsec->sid, SECCLASS_BPF,
6961 			    bpf_map_fmode_to_av(fmode), NULL);
6962 }
6963 
6964 static int selinux_bpf_prog(struct bpf_prog *prog)
6965 {
6966 	u32 sid = current_sid();
6967 	struct bpf_security_struct *bpfsec;
6968 
6969 	bpfsec = prog->aux->security;
6970 	return avc_has_perm(&selinux_state,
6971 			    sid, bpfsec->sid, SECCLASS_BPF,
6972 			    BPF__PROG_RUN, NULL);
6973 }
6974 
6975 static int selinux_bpf_map_alloc(struct bpf_map *map)
6976 {
6977 	struct bpf_security_struct *bpfsec;
6978 
6979 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6980 	if (!bpfsec)
6981 		return -ENOMEM;
6982 
6983 	bpfsec->sid = current_sid();
6984 	map->security = bpfsec;
6985 
6986 	return 0;
6987 }
6988 
6989 static void selinux_bpf_map_free(struct bpf_map *map)
6990 {
6991 	struct bpf_security_struct *bpfsec = map->security;
6992 
6993 	map->security = NULL;
6994 	kfree(bpfsec);
6995 }
6996 
6997 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6998 {
6999 	struct bpf_security_struct *bpfsec;
7000 
7001 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
7002 	if (!bpfsec)
7003 		return -ENOMEM;
7004 
7005 	bpfsec->sid = current_sid();
7006 	aux->security = bpfsec;
7007 
7008 	return 0;
7009 }
7010 
7011 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
7012 {
7013 	struct bpf_security_struct *bpfsec = aux->security;
7014 
7015 	aux->security = NULL;
7016 	kfree(bpfsec);
7017 }
7018 #endif
7019 
7020 static int selinux_lockdown(enum lockdown_reason what)
7021 {
7022 	struct common_audit_data ad;
7023 	u32 sid = current_sid();
7024 	int invalid_reason = (what <= LOCKDOWN_NONE) ||
7025 			     (what == LOCKDOWN_INTEGRITY_MAX) ||
7026 			     (what >= LOCKDOWN_CONFIDENTIALITY_MAX);
7027 
7028 	if (WARN(invalid_reason, "Invalid lockdown reason")) {
7029 		audit_log(audit_context(),
7030 			  GFP_ATOMIC, AUDIT_SELINUX_ERR,
7031 			  "lockdown_reason=invalid");
7032 		return -EINVAL;
7033 	}
7034 
7035 	ad.type = LSM_AUDIT_DATA_LOCKDOWN;
7036 	ad.u.reason = what;
7037 
7038 	if (what <= LOCKDOWN_INTEGRITY_MAX)
7039 		return avc_has_perm(&selinux_state,
7040 				    sid, sid, SECCLASS_LOCKDOWN,
7041 				    LOCKDOWN__INTEGRITY, &ad);
7042 	else
7043 		return avc_has_perm(&selinux_state,
7044 				    sid, sid, SECCLASS_LOCKDOWN,
7045 				    LOCKDOWN__CONFIDENTIALITY, &ad);
7046 }
7047 
7048 struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
7049 	.lbs_cred = sizeof(struct task_security_struct),
7050 	.lbs_file = sizeof(struct file_security_struct),
7051 	.lbs_inode = sizeof(struct inode_security_struct),
7052 	.lbs_ipc = sizeof(struct ipc_security_struct),
7053 	.lbs_msg_msg = sizeof(struct msg_security_struct),
7054 	.lbs_superblock = sizeof(struct superblock_security_struct),
7055 };
7056 
7057 #ifdef CONFIG_PERF_EVENTS
7058 static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7059 {
7060 	u32 requested, sid = current_sid();
7061 
7062 	if (type == PERF_SECURITY_OPEN)
7063 		requested = PERF_EVENT__OPEN;
7064 	else if (type == PERF_SECURITY_CPU)
7065 		requested = PERF_EVENT__CPU;
7066 	else if (type == PERF_SECURITY_KERNEL)
7067 		requested = PERF_EVENT__KERNEL;
7068 	else if (type == PERF_SECURITY_TRACEPOINT)
7069 		requested = PERF_EVENT__TRACEPOINT;
7070 	else
7071 		return -EINVAL;
7072 
7073 	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
7074 			    requested, NULL);
7075 }
7076 
7077 static int selinux_perf_event_alloc(struct perf_event *event)
7078 {
7079 	struct perf_event_security_struct *perfsec;
7080 
7081 	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
7082 	if (!perfsec)
7083 		return -ENOMEM;
7084 
7085 	perfsec->sid = current_sid();
7086 	event->security = perfsec;
7087 
7088 	return 0;
7089 }
7090 
7091 static void selinux_perf_event_free(struct perf_event *event)
7092 {
7093 	struct perf_event_security_struct *perfsec = event->security;
7094 
7095 	event->security = NULL;
7096 	kfree(perfsec);
7097 }
7098 
7099 static int selinux_perf_event_read(struct perf_event *event)
7100 {
7101 	struct perf_event_security_struct *perfsec = event->security;
7102 	u32 sid = current_sid();
7103 
7104 	return avc_has_perm(&selinux_state, sid, perfsec->sid,
7105 			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7106 }
7107 
7108 static int selinux_perf_event_write(struct perf_event *event)
7109 {
7110 	struct perf_event_security_struct *perfsec = event->security;
7111 	u32 sid = current_sid();
7112 
7113 	return avc_has_perm(&selinux_state, sid, perfsec->sid,
7114 			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7115 }
7116 #endif
7117 
7118 /*
7119  * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7120  * 1. any hooks that don't belong to (2.) or (3.) below,
7121  * 2. hooks that both access structures allocated by other hooks, and allocate
7122  *    structures that can be later accessed by other hooks (mostly "cloning"
7123  *    hooks),
7124  * 3. hooks that only allocate structures that can be later accessed by other
7125  *    hooks ("allocating" hooks).
7126  *
7127  * Please follow block comment delimiters in the list to keep this order.
7128  *
7129  * This ordering is needed for SELinux runtime disable to work at least somewhat
7130  * safely. Breaking the ordering rules above might lead to NULL pointer derefs
7131  * when disabling SELinux at runtime.
7132  */
7133 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
7134 	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7135 	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7136 	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7137 	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7138 
7139 	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7140 	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7141 	LSM_HOOK_INIT(capget, selinux_capget),
7142 	LSM_HOOK_INIT(capset, selinux_capset),
7143 	LSM_HOOK_INIT(capable, selinux_capable),
7144 	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7145 	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7146 	LSM_HOOK_INIT(syslog, selinux_syslog),
7147 	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7148 
7149 	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7150 
7151 	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7152 	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7153 	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7154 
7155 	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7156 	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7157 	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7158 	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7159 	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7160 	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7161 	LSM_HOOK_INIT(sb_mount, selinux_mount),
7162 	LSM_HOOK_INIT(sb_umount, selinux_umount),
7163 	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7164 	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7165 
7166 	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7167 
7168 	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7169 	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7170 
7171 	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7172 	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7173 	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7174 	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7175 	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7176 	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7177 	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7178 	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7179 	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7180 	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7181 	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7182 	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7183 	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7184 	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7185 	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7186 	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7187 	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7188 	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7189 	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7190 	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7191 	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7192 	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7193 	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7194 	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7195 	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7196 	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7197 	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7198 	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7199 
7200 	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7201 
7202 	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7203 	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7204 	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7205 	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7206 	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7207 	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7208 	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7209 	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7210 	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7211 	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7212 	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7213 
7214 	LSM_HOOK_INIT(file_open, selinux_file_open),
7215 
7216 	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7217 	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7218 	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7219 	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7220 	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7221 	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7222 	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7223 	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7224 	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7225 	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7226 	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7227 	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7228 	LSM_HOOK_INIT(task_getsecid_subj, selinux_task_getsecid_subj),
7229 	LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7230 	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7231 	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7232 	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7233 	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7234 	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7235 	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7236 	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7237 	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7238 	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7239 	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7240 
7241 	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7242 	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7243 
7244 	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7245 	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7246 	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7247 	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7248 
7249 	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7250 	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7251 	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7252 
7253 	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7254 	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7255 	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7256 
7257 	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7258 
7259 	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7260 	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7261 
7262 	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7263 	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7264 	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7265 	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7266 	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7267 	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7268 
7269 	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7270 	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7271 
7272 	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7273 	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7274 	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7275 	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7276 	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7277 	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7278 	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7279 	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7280 	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7281 	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7282 	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7283 	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7284 	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7285 	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7286 	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7287 	LSM_HOOK_INIT(socket_getpeersec_stream,
7288 			selinux_socket_getpeersec_stream),
7289 	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7290 	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7291 	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7292 	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7293 	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7294 	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7295 	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7296 	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7297 	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7298 	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7299 	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7300 	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7301 	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7302 	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7303 	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7304 	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7305 	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7306 	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7307 	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7308 	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7309 #ifdef CONFIG_SECURITY_INFINIBAND
7310 	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7311 	LSM_HOOK_INIT(ib_endport_manage_subnet,
7312 		      selinux_ib_endport_manage_subnet),
7313 	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7314 #endif
7315 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7316 	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7317 	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7318 	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7319 	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7320 	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7321 	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7322 			selinux_xfrm_state_pol_flow_match),
7323 	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7324 #endif
7325 
7326 #ifdef CONFIG_KEYS
7327 	LSM_HOOK_INIT(key_free, selinux_key_free),
7328 	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7329 	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7330 #ifdef CONFIG_KEY_NOTIFICATIONS
7331 	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7332 #endif
7333 #endif
7334 
7335 #ifdef CONFIG_AUDIT
7336 	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7337 	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7338 	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7339 #endif
7340 
7341 #ifdef CONFIG_BPF_SYSCALL
7342 	LSM_HOOK_INIT(bpf, selinux_bpf),
7343 	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7344 	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7345 	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7346 	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7347 #endif
7348 
7349 #ifdef CONFIG_PERF_EVENTS
7350 	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7351 	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7352 	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7353 	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7354 #endif
7355 
7356 	LSM_HOOK_INIT(locked_down, selinux_lockdown),
7357 
7358 	/*
7359 	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7360 	 */
7361 	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7362 	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7363 	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7364 	LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
7365 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7366 	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7367 #endif
7368 
7369 	/*
7370 	 * PUT "ALLOCATING" HOOKS HERE
7371 	 */
7372 	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7373 	LSM_HOOK_INIT(msg_queue_alloc_security,
7374 		      selinux_msg_queue_alloc_security),
7375 	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7376 	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7377 	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7378 	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7379 	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7380 	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7381 	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7382 	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7383 #ifdef CONFIG_SECURITY_INFINIBAND
7384 	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7385 #endif
7386 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7387 	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7388 	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7389 	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7390 		      selinux_xfrm_state_alloc_acquire),
7391 #endif
7392 #ifdef CONFIG_KEYS
7393 	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7394 #endif
7395 #ifdef CONFIG_AUDIT
7396 	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7397 #endif
7398 #ifdef CONFIG_BPF_SYSCALL
7399 	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7400 	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7401 #endif
7402 #ifdef CONFIG_PERF_EVENTS
7403 	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7404 #endif
7405 };
7406 
7407 static __init int selinux_init(void)
7408 {
7409 	pr_info("SELinux:  Initializing.\n");
7410 
7411 	memset(&selinux_state, 0, sizeof(selinux_state));
7412 	enforcing_set(&selinux_state, selinux_enforcing_boot);
7413 	checkreqprot_set(&selinux_state, selinux_checkreqprot_boot);
7414 	selinux_avc_init(&selinux_state.avc);
7415 	mutex_init(&selinux_state.status_lock);
7416 	mutex_init(&selinux_state.policy_mutex);
7417 
7418 	/* Set the security state for the initial task. */
7419 	cred_init_security();
7420 
7421 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7422 
7423 	avc_init();
7424 
7425 	avtab_cache_init();
7426 
7427 	ebitmap_cache_init();
7428 
7429 	hashtab_cache_init();
7430 
7431 	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7432 
7433 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7434 		panic("SELinux: Unable to register AVC netcache callback\n");
7435 
7436 	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7437 		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7438 
7439 	if (selinux_enforcing_boot)
7440 		pr_debug("SELinux:  Starting in enforcing mode\n");
7441 	else
7442 		pr_debug("SELinux:  Starting in permissive mode\n");
7443 
7444 	fs_validate_description("selinux", selinux_fs_parameters);
7445 
7446 	return 0;
7447 }
7448 
7449 static void delayed_superblock_init(struct super_block *sb, void *unused)
7450 {
7451 	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7452 }
7453 
7454 void selinux_complete_init(void)
7455 {
7456 	pr_debug("SELinux:  Completing initialization.\n");
7457 
7458 	/* Set up any superblocks initialized prior to the policy load. */
7459 	pr_debug("SELinux:  Setting up existing superblocks.\n");
7460 	iterate_supers(delayed_superblock_init, NULL);
7461 }
7462 
7463 /* SELinux requires early initialization in order to label
7464    all processes and objects when they are created. */
7465 DEFINE_LSM(selinux) = {
7466 	.name = "selinux",
7467 	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7468 	.enabled = &selinux_enabled_boot,
7469 	.blobs = &selinux_blob_sizes,
7470 	.init = selinux_init,
7471 };
7472 
7473 #if defined(CONFIG_NETFILTER)
7474 
7475 static const struct nf_hook_ops selinux_nf_ops[] = {
7476 	{
7477 		.hook =		selinux_ipv4_postroute,
7478 		.pf =		NFPROTO_IPV4,
7479 		.hooknum =	NF_INET_POST_ROUTING,
7480 		.priority =	NF_IP_PRI_SELINUX_LAST,
7481 	},
7482 	{
7483 		.hook =		selinux_ipv4_forward,
7484 		.pf =		NFPROTO_IPV4,
7485 		.hooknum =	NF_INET_FORWARD,
7486 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7487 	},
7488 	{
7489 		.hook =		selinux_ipv4_output,
7490 		.pf =		NFPROTO_IPV4,
7491 		.hooknum =	NF_INET_LOCAL_OUT,
7492 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7493 	},
7494 #if IS_ENABLED(CONFIG_IPV6)
7495 	{
7496 		.hook =		selinux_ipv6_postroute,
7497 		.pf =		NFPROTO_IPV6,
7498 		.hooknum =	NF_INET_POST_ROUTING,
7499 		.priority =	NF_IP6_PRI_SELINUX_LAST,
7500 	},
7501 	{
7502 		.hook =		selinux_ipv6_forward,
7503 		.pf =		NFPROTO_IPV6,
7504 		.hooknum =	NF_INET_FORWARD,
7505 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7506 	},
7507 	{
7508 		.hook =		selinux_ipv6_output,
7509 		.pf =		NFPROTO_IPV6,
7510 		.hooknum =	NF_INET_LOCAL_OUT,
7511 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7512 	},
7513 #endif	/* IPV6 */
7514 };
7515 
7516 static int __net_init selinux_nf_register(struct net *net)
7517 {
7518 	return nf_register_net_hooks(net, selinux_nf_ops,
7519 				     ARRAY_SIZE(selinux_nf_ops));
7520 }
7521 
7522 static void __net_exit selinux_nf_unregister(struct net *net)
7523 {
7524 	nf_unregister_net_hooks(net, selinux_nf_ops,
7525 				ARRAY_SIZE(selinux_nf_ops));
7526 }
7527 
7528 static struct pernet_operations selinux_net_ops = {
7529 	.init = selinux_nf_register,
7530 	.exit = selinux_nf_unregister,
7531 };
7532 
7533 static int __init selinux_nf_ip_init(void)
7534 {
7535 	int err;
7536 
7537 	if (!selinux_enabled_boot)
7538 		return 0;
7539 
7540 	pr_debug("SELinux:  Registering netfilter hooks\n");
7541 
7542 	err = register_pernet_subsys(&selinux_net_ops);
7543 	if (err)
7544 		panic("SELinux: register_pernet_subsys: error %d\n", err);
7545 
7546 	return 0;
7547 }
7548 __initcall(selinux_nf_ip_init);
7549 
7550 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7551 static void selinux_nf_ip_exit(void)
7552 {
7553 	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7554 
7555 	unregister_pernet_subsys(&selinux_net_ops);
7556 }
7557 #endif
7558 
7559 #else /* CONFIG_NETFILTER */
7560 
7561 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7562 #define selinux_nf_ip_exit()
7563 #endif
7564 
7565 #endif /* CONFIG_NETFILTER */
7566 
7567 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7568 int selinux_disable(struct selinux_state *state)
7569 {
7570 	if (selinux_initialized(state)) {
7571 		/* Not permitted after initial policy load. */
7572 		return -EINVAL;
7573 	}
7574 
7575 	if (selinux_disabled(state)) {
7576 		/* Only do this once. */
7577 		return -EINVAL;
7578 	}
7579 
7580 	selinux_mark_disabled(state);
7581 
7582 	pr_info("SELinux:  Disabled at runtime.\n");
7583 
7584 	/*
7585 	 * Unregister netfilter hooks.
7586 	 * Must be done before security_delete_hooks() to avoid breaking
7587 	 * runtime disable.
7588 	 */
7589 	selinux_nf_ip_exit();
7590 
7591 	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7592 
7593 	/* Try to destroy the avc node cache */
7594 	avc_disable();
7595 
7596 	/* Unregister selinuxfs. */
7597 	exit_sel_fs();
7598 
7599 	return 0;
7600 }
7601 #endif
7602