xref: /linux/security/selinux/hooks.c (revision 9d9659b6c0ebf7dde65ebada4c67980818245913)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *	      Chris Vance, <cvance@nai.com>
8  *	      Wayne Salamon, <wsalamon@nai.com>
9  *	      James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *					   Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *			    <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *	Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *	This program is free software; you can redistribute it and/or modify
22  *	it under the terms of the GNU General Public License version 2,
23  *	as published by the Free Software Foundation.
24  */
25 
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/ext2_fs.h>
32 #include <linux/sched.h>
33 #include <linux/security.h>
34 #include <linux/xattr.h>
35 #include <linux/capability.h>
36 #include <linux/unistd.h>
37 #include <linux/mm.h>
38 #include <linux/mman.h>
39 #include <linux/slab.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/swap.h>
43 #include <linux/spinlock.h>
44 #include <linux/syscalls.h>
45 #include <linux/dcache.h>
46 #include <linux/file.h>
47 #include <linux/fdtable.h>
48 #include <linux/namei.h>
49 #include <linux/mount.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>		/* for local_port_range[] */
55 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
56 #include <net/net_namespace.h>
57 #include <net/netlabel.h>
58 #include <linux/uaccess.h>
59 #include <asm/ioctls.h>
60 #include <asm/atomic.h>
61 #include <linux/bitops.h>
62 #include <linux/interrupt.h>
63 #include <linux/netdevice.h>	/* for network interface checks */
64 #include <linux/netlink.h>
65 #include <linux/tcp.h>
66 #include <linux/udp.h>
67 #include <linux/dccp.h>
68 #include <linux/quota.h>
69 #include <linux/un.h>		/* for Unix socket types */
70 #include <net/af_unix.h>	/* for Unix socket types */
71 #include <linux/parser.h>
72 #include <linux/nfs_mount.h>
73 #include <net/ipv6.h>
74 #include <linux/hugetlb.h>
75 #include <linux/personality.h>
76 #include <linux/audit.h>
77 #include <linux/string.h>
78 #include <linux/selinux.h>
79 #include <linux/mutex.h>
80 #include <linux/posix-timers.h>
81 #include <linux/syslog.h>
82 
83 #include "avc.h"
84 #include "objsec.h"
85 #include "netif.h"
86 #include "netnode.h"
87 #include "netport.h"
88 #include "xfrm.h"
89 #include "netlabel.h"
90 #include "audit.h"
91 
92 #define NUM_SEL_MNT_OPTS 5
93 
94 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
95 extern struct security_operations *security_ops;
96 
97 /* SECMARK reference count */
98 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
99 
100 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
101 int selinux_enforcing;
102 
103 static int __init enforcing_setup(char *str)
104 {
105 	unsigned long enforcing;
106 	if (!strict_strtoul(str, 0, &enforcing))
107 		selinux_enforcing = enforcing ? 1 : 0;
108 	return 1;
109 }
110 __setup("enforcing=", enforcing_setup);
111 #endif
112 
113 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
114 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
115 
116 static int __init selinux_enabled_setup(char *str)
117 {
118 	unsigned long enabled;
119 	if (!strict_strtoul(str, 0, &enabled))
120 		selinux_enabled = enabled ? 1 : 0;
121 	return 1;
122 }
123 __setup("selinux=", selinux_enabled_setup);
124 #else
125 int selinux_enabled = 1;
126 #endif
127 
128 static struct kmem_cache *sel_inode_cache;
129 
130 /**
131  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
132  *
133  * Description:
134  * This function checks the SECMARK reference counter to see if any SECMARK
135  * targets are currently configured, if the reference counter is greater than
136  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
137  * enabled, false (0) if SECMARK is disabled.
138  *
139  */
140 static int selinux_secmark_enabled(void)
141 {
142 	return (atomic_read(&selinux_secmark_refcount) > 0);
143 }
144 
145 /*
146  * initialise the security for the init task
147  */
148 static void cred_init_security(void)
149 {
150 	struct cred *cred = (struct cred *) current->real_cred;
151 	struct task_security_struct *tsec;
152 
153 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
154 	if (!tsec)
155 		panic("SELinux:  Failed to initialize initial task.\n");
156 
157 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
158 	cred->security = tsec;
159 }
160 
161 /*
162  * get the security ID of a set of credentials
163  */
164 static inline u32 cred_sid(const struct cred *cred)
165 {
166 	const struct task_security_struct *tsec;
167 
168 	tsec = cred->security;
169 	return tsec->sid;
170 }
171 
172 /*
173  * get the objective security ID of a task
174  */
175 static inline u32 task_sid(const struct task_struct *task)
176 {
177 	u32 sid;
178 
179 	rcu_read_lock();
180 	sid = cred_sid(__task_cred(task));
181 	rcu_read_unlock();
182 	return sid;
183 }
184 
185 /*
186  * get the subjective security ID of the current task
187  */
188 static inline u32 current_sid(void)
189 {
190 	const struct task_security_struct *tsec = current_security();
191 
192 	return tsec->sid;
193 }
194 
195 /* Allocate and free functions for each kind of security blob. */
196 
197 static int inode_alloc_security(struct inode *inode)
198 {
199 	struct inode_security_struct *isec;
200 	u32 sid = current_sid();
201 
202 	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
203 	if (!isec)
204 		return -ENOMEM;
205 
206 	mutex_init(&isec->lock);
207 	INIT_LIST_HEAD(&isec->list);
208 	isec->inode = inode;
209 	isec->sid = SECINITSID_UNLABELED;
210 	isec->sclass = SECCLASS_FILE;
211 	isec->task_sid = sid;
212 	inode->i_security = isec;
213 
214 	return 0;
215 }
216 
217 static void inode_free_security(struct inode *inode)
218 {
219 	struct inode_security_struct *isec = inode->i_security;
220 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
221 
222 	spin_lock(&sbsec->isec_lock);
223 	if (!list_empty(&isec->list))
224 		list_del_init(&isec->list);
225 	spin_unlock(&sbsec->isec_lock);
226 
227 	inode->i_security = NULL;
228 	kmem_cache_free(sel_inode_cache, isec);
229 }
230 
231 static int file_alloc_security(struct file *file)
232 {
233 	struct file_security_struct *fsec;
234 	u32 sid = current_sid();
235 
236 	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
237 	if (!fsec)
238 		return -ENOMEM;
239 
240 	fsec->sid = sid;
241 	fsec->fown_sid = sid;
242 	file->f_security = fsec;
243 
244 	return 0;
245 }
246 
247 static void file_free_security(struct file *file)
248 {
249 	struct file_security_struct *fsec = file->f_security;
250 	file->f_security = NULL;
251 	kfree(fsec);
252 }
253 
254 static int superblock_alloc_security(struct super_block *sb)
255 {
256 	struct superblock_security_struct *sbsec;
257 
258 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
259 	if (!sbsec)
260 		return -ENOMEM;
261 
262 	mutex_init(&sbsec->lock);
263 	INIT_LIST_HEAD(&sbsec->isec_head);
264 	spin_lock_init(&sbsec->isec_lock);
265 	sbsec->sb = sb;
266 	sbsec->sid = SECINITSID_UNLABELED;
267 	sbsec->def_sid = SECINITSID_FILE;
268 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
269 	sb->s_security = sbsec;
270 
271 	return 0;
272 }
273 
274 static void superblock_free_security(struct super_block *sb)
275 {
276 	struct superblock_security_struct *sbsec = sb->s_security;
277 	sb->s_security = NULL;
278 	kfree(sbsec);
279 }
280 
281 /* The security server must be initialized before
282    any labeling or access decisions can be provided. */
283 extern int ss_initialized;
284 
285 /* The file system's label must be initialized prior to use. */
286 
287 static const char *labeling_behaviors[6] = {
288 	"uses xattr",
289 	"uses transition SIDs",
290 	"uses task SIDs",
291 	"uses genfs_contexts",
292 	"not configured for labeling",
293 	"uses mountpoint labeling",
294 };
295 
296 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
297 
298 static inline int inode_doinit(struct inode *inode)
299 {
300 	return inode_doinit_with_dentry(inode, NULL);
301 }
302 
303 enum {
304 	Opt_error = -1,
305 	Opt_context = 1,
306 	Opt_fscontext = 2,
307 	Opt_defcontext = 3,
308 	Opt_rootcontext = 4,
309 	Opt_labelsupport = 5,
310 };
311 
312 static const match_table_t tokens = {
313 	{Opt_context, CONTEXT_STR "%s"},
314 	{Opt_fscontext, FSCONTEXT_STR "%s"},
315 	{Opt_defcontext, DEFCONTEXT_STR "%s"},
316 	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
317 	{Opt_labelsupport, LABELSUPP_STR},
318 	{Opt_error, NULL},
319 };
320 
321 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
322 
323 static int may_context_mount_sb_relabel(u32 sid,
324 			struct superblock_security_struct *sbsec,
325 			const struct cred *cred)
326 {
327 	const struct task_security_struct *tsec = cred->security;
328 	int rc;
329 
330 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
331 			  FILESYSTEM__RELABELFROM, NULL);
332 	if (rc)
333 		return rc;
334 
335 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
336 			  FILESYSTEM__RELABELTO, NULL);
337 	return rc;
338 }
339 
340 static int may_context_mount_inode_relabel(u32 sid,
341 			struct superblock_security_struct *sbsec,
342 			const struct cred *cred)
343 {
344 	const struct task_security_struct *tsec = cred->security;
345 	int rc;
346 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
347 			  FILESYSTEM__RELABELFROM, NULL);
348 	if (rc)
349 		return rc;
350 
351 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
352 			  FILESYSTEM__ASSOCIATE, NULL);
353 	return rc;
354 }
355 
356 static int sb_finish_set_opts(struct super_block *sb)
357 {
358 	struct superblock_security_struct *sbsec = sb->s_security;
359 	struct dentry *root = sb->s_root;
360 	struct inode *root_inode = root->d_inode;
361 	int rc = 0;
362 
363 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
364 		/* Make sure that the xattr handler exists and that no
365 		   error other than -ENODATA is returned by getxattr on
366 		   the root directory.  -ENODATA is ok, as this may be
367 		   the first boot of the SELinux kernel before we have
368 		   assigned xattr values to the filesystem. */
369 		if (!root_inode->i_op->getxattr) {
370 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
371 			       "xattr support\n", sb->s_id, sb->s_type->name);
372 			rc = -EOPNOTSUPP;
373 			goto out;
374 		}
375 		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
376 		if (rc < 0 && rc != -ENODATA) {
377 			if (rc == -EOPNOTSUPP)
378 				printk(KERN_WARNING "SELinux: (dev %s, type "
379 				       "%s) has no security xattr handler\n",
380 				       sb->s_id, sb->s_type->name);
381 			else
382 				printk(KERN_WARNING "SELinux: (dev %s, type "
383 				       "%s) getxattr errno %d\n", sb->s_id,
384 				       sb->s_type->name, -rc);
385 			goto out;
386 		}
387 	}
388 
389 	sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
390 
391 	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
392 		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
393 		       sb->s_id, sb->s_type->name);
394 	else
395 		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
396 		       sb->s_id, sb->s_type->name,
397 		       labeling_behaviors[sbsec->behavior-1]);
398 
399 	if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
400 	    sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
401 	    sbsec->behavior == SECURITY_FS_USE_NONE ||
402 	    sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
403 		sbsec->flags &= ~SE_SBLABELSUPP;
404 
405 	/* Special handling for sysfs. Is genfs but also has setxattr handler*/
406 	if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
407 		sbsec->flags |= SE_SBLABELSUPP;
408 
409 	/* Initialize the root inode. */
410 	rc = inode_doinit_with_dentry(root_inode, root);
411 
412 	/* Initialize any other inodes associated with the superblock, e.g.
413 	   inodes created prior to initial policy load or inodes created
414 	   during get_sb by a pseudo filesystem that directly
415 	   populates itself. */
416 	spin_lock(&sbsec->isec_lock);
417 next_inode:
418 	if (!list_empty(&sbsec->isec_head)) {
419 		struct inode_security_struct *isec =
420 				list_entry(sbsec->isec_head.next,
421 					   struct inode_security_struct, list);
422 		struct inode *inode = isec->inode;
423 		spin_unlock(&sbsec->isec_lock);
424 		inode = igrab(inode);
425 		if (inode) {
426 			if (!IS_PRIVATE(inode))
427 				inode_doinit(inode);
428 			iput(inode);
429 		}
430 		spin_lock(&sbsec->isec_lock);
431 		list_del_init(&isec->list);
432 		goto next_inode;
433 	}
434 	spin_unlock(&sbsec->isec_lock);
435 out:
436 	return rc;
437 }
438 
439 /*
440  * This function should allow an FS to ask what it's mount security
441  * options were so it can use those later for submounts, displaying
442  * mount options, or whatever.
443  */
444 static int selinux_get_mnt_opts(const struct super_block *sb,
445 				struct security_mnt_opts *opts)
446 {
447 	int rc = 0, i;
448 	struct superblock_security_struct *sbsec = sb->s_security;
449 	char *context = NULL;
450 	u32 len;
451 	char tmp;
452 
453 	security_init_mnt_opts(opts);
454 
455 	if (!(sbsec->flags & SE_SBINITIALIZED))
456 		return -EINVAL;
457 
458 	if (!ss_initialized)
459 		return -EINVAL;
460 
461 	tmp = sbsec->flags & SE_MNTMASK;
462 	/* count the number of mount options for this sb */
463 	for (i = 0; i < 8; i++) {
464 		if (tmp & 0x01)
465 			opts->num_mnt_opts++;
466 		tmp >>= 1;
467 	}
468 	/* Check if the Label support flag is set */
469 	if (sbsec->flags & SE_SBLABELSUPP)
470 		opts->num_mnt_opts++;
471 
472 	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
473 	if (!opts->mnt_opts) {
474 		rc = -ENOMEM;
475 		goto out_free;
476 	}
477 
478 	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
479 	if (!opts->mnt_opts_flags) {
480 		rc = -ENOMEM;
481 		goto out_free;
482 	}
483 
484 	i = 0;
485 	if (sbsec->flags & FSCONTEXT_MNT) {
486 		rc = security_sid_to_context(sbsec->sid, &context, &len);
487 		if (rc)
488 			goto out_free;
489 		opts->mnt_opts[i] = context;
490 		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
491 	}
492 	if (sbsec->flags & CONTEXT_MNT) {
493 		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
494 		if (rc)
495 			goto out_free;
496 		opts->mnt_opts[i] = context;
497 		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
498 	}
499 	if (sbsec->flags & DEFCONTEXT_MNT) {
500 		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
501 		if (rc)
502 			goto out_free;
503 		opts->mnt_opts[i] = context;
504 		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
505 	}
506 	if (sbsec->flags & ROOTCONTEXT_MNT) {
507 		struct inode *root = sbsec->sb->s_root->d_inode;
508 		struct inode_security_struct *isec = root->i_security;
509 
510 		rc = security_sid_to_context(isec->sid, &context, &len);
511 		if (rc)
512 			goto out_free;
513 		opts->mnt_opts[i] = context;
514 		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
515 	}
516 	if (sbsec->flags & SE_SBLABELSUPP) {
517 		opts->mnt_opts[i] = NULL;
518 		opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
519 	}
520 
521 	BUG_ON(i != opts->num_mnt_opts);
522 
523 	return 0;
524 
525 out_free:
526 	security_free_mnt_opts(opts);
527 	return rc;
528 }
529 
530 static int bad_option(struct superblock_security_struct *sbsec, char flag,
531 		      u32 old_sid, u32 new_sid)
532 {
533 	char mnt_flags = sbsec->flags & SE_MNTMASK;
534 
535 	/* check if the old mount command had the same options */
536 	if (sbsec->flags & SE_SBINITIALIZED)
537 		if (!(sbsec->flags & flag) ||
538 		    (old_sid != new_sid))
539 			return 1;
540 
541 	/* check if we were passed the same options twice,
542 	 * aka someone passed context=a,context=b
543 	 */
544 	if (!(sbsec->flags & SE_SBINITIALIZED))
545 		if (mnt_flags & flag)
546 			return 1;
547 	return 0;
548 }
549 
550 /*
551  * Allow filesystems with binary mount data to explicitly set mount point
552  * labeling information.
553  */
554 static int selinux_set_mnt_opts(struct super_block *sb,
555 				struct security_mnt_opts *opts)
556 {
557 	const struct cred *cred = current_cred();
558 	int rc = 0, i;
559 	struct superblock_security_struct *sbsec = sb->s_security;
560 	const char *name = sb->s_type->name;
561 	struct inode *inode = sbsec->sb->s_root->d_inode;
562 	struct inode_security_struct *root_isec = inode->i_security;
563 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
564 	u32 defcontext_sid = 0;
565 	char **mount_options = opts->mnt_opts;
566 	int *flags = opts->mnt_opts_flags;
567 	int num_opts = opts->num_mnt_opts;
568 
569 	mutex_lock(&sbsec->lock);
570 
571 	if (!ss_initialized) {
572 		if (!num_opts) {
573 			/* Defer initialization until selinux_complete_init,
574 			   after the initial policy is loaded and the security
575 			   server is ready to handle calls. */
576 			goto out;
577 		}
578 		rc = -EINVAL;
579 		printk(KERN_WARNING "SELinux: Unable to set superblock options "
580 			"before the security server is initialized\n");
581 		goto out;
582 	}
583 
584 	/*
585 	 * Binary mount data FS will come through this function twice.  Once
586 	 * from an explicit call and once from the generic calls from the vfs.
587 	 * Since the generic VFS calls will not contain any security mount data
588 	 * we need to skip the double mount verification.
589 	 *
590 	 * This does open a hole in which we will not notice if the first
591 	 * mount using this sb set explict options and a second mount using
592 	 * this sb does not set any security options.  (The first options
593 	 * will be used for both mounts)
594 	 */
595 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
596 	    && (num_opts == 0))
597 		goto out;
598 
599 	/*
600 	 * parse the mount options, check if they are valid sids.
601 	 * also check if someone is trying to mount the same sb more
602 	 * than once with different security options.
603 	 */
604 	for (i = 0; i < num_opts; i++) {
605 		u32 sid;
606 
607 		if (flags[i] == SE_SBLABELSUPP)
608 			continue;
609 		rc = security_context_to_sid(mount_options[i],
610 					     strlen(mount_options[i]), &sid);
611 		if (rc) {
612 			printk(KERN_WARNING "SELinux: security_context_to_sid"
613 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
614 			       mount_options[i], sb->s_id, name, rc);
615 			goto out;
616 		}
617 		switch (flags[i]) {
618 		case FSCONTEXT_MNT:
619 			fscontext_sid = sid;
620 
621 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
622 					fscontext_sid))
623 				goto out_double_mount;
624 
625 			sbsec->flags |= FSCONTEXT_MNT;
626 			break;
627 		case CONTEXT_MNT:
628 			context_sid = sid;
629 
630 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
631 					context_sid))
632 				goto out_double_mount;
633 
634 			sbsec->flags |= CONTEXT_MNT;
635 			break;
636 		case ROOTCONTEXT_MNT:
637 			rootcontext_sid = sid;
638 
639 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
640 					rootcontext_sid))
641 				goto out_double_mount;
642 
643 			sbsec->flags |= ROOTCONTEXT_MNT;
644 
645 			break;
646 		case DEFCONTEXT_MNT:
647 			defcontext_sid = sid;
648 
649 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
650 					defcontext_sid))
651 				goto out_double_mount;
652 
653 			sbsec->flags |= DEFCONTEXT_MNT;
654 
655 			break;
656 		default:
657 			rc = -EINVAL;
658 			goto out;
659 		}
660 	}
661 
662 	if (sbsec->flags & SE_SBINITIALIZED) {
663 		/* previously mounted with options, but not on this attempt? */
664 		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
665 			goto out_double_mount;
666 		rc = 0;
667 		goto out;
668 	}
669 
670 	if (strcmp(sb->s_type->name, "proc") == 0)
671 		sbsec->flags |= SE_SBPROC;
672 
673 	/* Determine the labeling behavior to use for this filesystem type. */
674 	rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
675 	if (rc) {
676 		printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
677 		       __func__, sb->s_type->name, rc);
678 		goto out;
679 	}
680 
681 	/* sets the context of the superblock for the fs being mounted. */
682 	if (fscontext_sid) {
683 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
684 		if (rc)
685 			goto out;
686 
687 		sbsec->sid = fscontext_sid;
688 	}
689 
690 	/*
691 	 * Switch to using mount point labeling behavior.
692 	 * sets the label used on all file below the mountpoint, and will set
693 	 * the superblock context if not already set.
694 	 */
695 	if (context_sid) {
696 		if (!fscontext_sid) {
697 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
698 							  cred);
699 			if (rc)
700 				goto out;
701 			sbsec->sid = context_sid;
702 		} else {
703 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
704 							     cred);
705 			if (rc)
706 				goto out;
707 		}
708 		if (!rootcontext_sid)
709 			rootcontext_sid = context_sid;
710 
711 		sbsec->mntpoint_sid = context_sid;
712 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
713 	}
714 
715 	if (rootcontext_sid) {
716 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
717 						     cred);
718 		if (rc)
719 			goto out;
720 
721 		root_isec->sid = rootcontext_sid;
722 		root_isec->initialized = 1;
723 	}
724 
725 	if (defcontext_sid) {
726 		if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
727 			rc = -EINVAL;
728 			printk(KERN_WARNING "SELinux: defcontext option is "
729 			       "invalid for this filesystem type\n");
730 			goto out;
731 		}
732 
733 		if (defcontext_sid != sbsec->def_sid) {
734 			rc = may_context_mount_inode_relabel(defcontext_sid,
735 							     sbsec, cred);
736 			if (rc)
737 				goto out;
738 		}
739 
740 		sbsec->def_sid = defcontext_sid;
741 	}
742 
743 	rc = sb_finish_set_opts(sb);
744 out:
745 	mutex_unlock(&sbsec->lock);
746 	return rc;
747 out_double_mount:
748 	rc = -EINVAL;
749 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
750 	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
751 	goto out;
752 }
753 
754 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
755 					struct super_block *newsb)
756 {
757 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
758 	struct superblock_security_struct *newsbsec = newsb->s_security;
759 
760 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
761 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
762 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
763 
764 	/*
765 	 * if the parent was able to be mounted it clearly had no special lsm
766 	 * mount options.  thus we can safely deal with this superblock later
767 	 */
768 	if (!ss_initialized)
769 		return;
770 
771 	/* how can we clone if the old one wasn't set up?? */
772 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
773 
774 	/* if fs is reusing a sb, just let its options stand... */
775 	if (newsbsec->flags & SE_SBINITIALIZED)
776 		return;
777 
778 	mutex_lock(&newsbsec->lock);
779 
780 	newsbsec->flags = oldsbsec->flags;
781 
782 	newsbsec->sid = oldsbsec->sid;
783 	newsbsec->def_sid = oldsbsec->def_sid;
784 	newsbsec->behavior = oldsbsec->behavior;
785 
786 	if (set_context) {
787 		u32 sid = oldsbsec->mntpoint_sid;
788 
789 		if (!set_fscontext)
790 			newsbsec->sid = sid;
791 		if (!set_rootcontext) {
792 			struct inode *newinode = newsb->s_root->d_inode;
793 			struct inode_security_struct *newisec = newinode->i_security;
794 			newisec->sid = sid;
795 		}
796 		newsbsec->mntpoint_sid = sid;
797 	}
798 	if (set_rootcontext) {
799 		const struct inode *oldinode = oldsb->s_root->d_inode;
800 		const struct inode_security_struct *oldisec = oldinode->i_security;
801 		struct inode *newinode = newsb->s_root->d_inode;
802 		struct inode_security_struct *newisec = newinode->i_security;
803 
804 		newisec->sid = oldisec->sid;
805 	}
806 
807 	sb_finish_set_opts(newsb);
808 	mutex_unlock(&newsbsec->lock);
809 }
810 
811 static int selinux_parse_opts_str(char *options,
812 				  struct security_mnt_opts *opts)
813 {
814 	char *p;
815 	char *context = NULL, *defcontext = NULL;
816 	char *fscontext = NULL, *rootcontext = NULL;
817 	int rc, num_mnt_opts = 0;
818 
819 	opts->num_mnt_opts = 0;
820 
821 	/* Standard string-based options. */
822 	while ((p = strsep(&options, "|")) != NULL) {
823 		int token;
824 		substring_t args[MAX_OPT_ARGS];
825 
826 		if (!*p)
827 			continue;
828 
829 		token = match_token(p, tokens, args);
830 
831 		switch (token) {
832 		case Opt_context:
833 			if (context || defcontext) {
834 				rc = -EINVAL;
835 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
836 				goto out_err;
837 			}
838 			context = match_strdup(&args[0]);
839 			if (!context) {
840 				rc = -ENOMEM;
841 				goto out_err;
842 			}
843 			break;
844 
845 		case Opt_fscontext:
846 			if (fscontext) {
847 				rc = -EINVAL;
848 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
849 				goto out_err;
850 			}
851 			fscontext = match_strdup(&args[0]);
852 			if (!fscontext) {
853 				rc = -ENOMEM;
854 				goto out_err;
855 			}
856 			break;
857 
858 		case Opt_rootcontext:
859 			if (rootcontext) {
860 				rc = -EINVAL;
861 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
862 				goto out_err;
863 			}
864 			rootcontext = match_strdup(&args[0]);
865 			if (!rootcontext) {
866 				rc = -ENOMEM;
867 				goto out_err;
868 			}
869 			break;
870 
871 		case Opt_defcontext:
872 			if (context || defcontext) {
873 				rc = -EINVAL;
874 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
875 				goto out_err;
876 			}
877 			defcontext = match_strdup(&args[0]);
878 			if (!defcontext) {
879 				rc = -ENOMEM;
880 				goto out_err;
881 			}
882 			break;
883 		case Opt_labelsupport:
884 			break;
885 		default:
886 			rc = -EINVAL;
887 			printk(KERN_WARNING "SELinux:  unknown mount option\n");
888 			goto out_err;
889 
890 		}
891 	}
892 
893 	rc = -ENOMEM;
894 	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
895 	if (!opts->mnt_opts)
896 		goto out_err;
897 
898 	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
899 	if (!opts->mnt_opts_flags) {
900 		kfree(opts->mnt_opts);
901 		goto out_err;
902 	}
903 
904 	if (fscontext) {
905 		opts->mnt_opts[num_mnt_opts] = fscontext;
906 		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
907 	}
908 	if (context) {
909 		opts->mnt_opts[num_mnt_opts] = context;
910 		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
911 	}
912 	if (rootcontext) {
913 		opts->mnt_opts[num_mnt_opts] = rootcontext;
914 		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
915 	}
916 	if (defcontext) {
917 		opts->mnt_opts[num_mnt_opts] = defcontext;
918 		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
919 	}
920 
921 	opts->num_mnt_opts = num_mnt_opts;
922 	return 0;
923 
924 out_err:
925 	kfree(context);
926 	kfree(defcontext);
927 	kfree(fscontext);
928 	kfree(rootcontext);
929 	return rc;
930 }
931 /*
932  * string mount options parsing and call set the sbsec
933  */
934 static int superblock_doinit(struct super_block *sb, void *data)
935 {
936 	int rc = 0;
937 	char *options = data;
938 	struct security_mnt_opts opts;
939 
940 	security_init_mnt_opts(&opts);
941 
942 	if (!data)
943 		goto out;
944 
945 	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
946 
947 	rc = selinux_parse_opts_str(options, &opts);
948 	if (rc)
949 		goto out_err;
950 
951 out:
952 	rc = selinux_set_mnt_opts(sb, &opts);
953 
954 out_err:
955 	security_free_mnt_opts(&opts);
956 	return rc;
957 }
958 
959 static void selinux_write_opts(struct seq_file *m,
960 			       struct security_mnt_opts *opts)
961 {
962 	int i;
963 	char *prefix;
964 
965 	for (i = 0; i < opts->num_mnt_opts; i++) {
966 		char *has_comma;
967 
968 		if (opts->mnt_opts[i])
969 			has_comma = strchr(opts->mnt_opts[i], ',');
970 		else
971 			has_comma = NULL;
972 
973 		switch (opts->mnt_opts_flags[i]) {
974 		case CONTEXT_MNT:
975 			prefix = CONTEXT_STR;
976 			break;
977 		case FSCONTEXT_MNT:
978 			prefix = FSCONTEXT_STR;
979 			break;
980 		case ROOTCONTEXT_MNT:
981 			prefix = ROOTCONTEXT_STR;
982 			break;
983 		case DEFCONTEXT_MNT:
984 			prefix = DEFCONTEXT_STR;
985 			break;
986 		case SE_SBLABELSUPP:
987 			seq_putc(m, ',');
988 			seq_puts(m, LABELSUPP_STR);
989 			continue;
990 		default:
991 			BUG();
992 		};
993 		/* we need a comma before each option */
994 		seq_putc(m, ',');
995 		seq_puts(m, prefix);
996 		if (has_comma)
997 			seq_putc(m, '\"');
998 		seq_puts(m, opts->mnt_opts[i]);
999 		if (has_comma)
1000 			seq_putc(m, '\"');
1001 	}
1002 }
1003 
1004 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1005 {
1006 	struct security_mnt_opts opts;
1007 	int rc;
1008 
1009 	rc = selinux_get_mnt_opts(sb, &opts);
1010 	if (rc) {
1011 		/* before policy load we may get EINVAL, don't show anything */
1012 		if (rc == -EINVAL)
1013 			rc = 0;
1014 		return rc;
1015 	}
1016 
1017 	selinux_write_opts(m, &opts);
1018 
1019 	security_free_mnt_opts(&opts);
1020 
1021 	return rc;
1022 }
1023 
1024 static inline u16 inode_mode_to_security_class(umode_t mode)
1025 {
1026 	switch (mode & S_IFMT) {
1027 	case S_IFSOCK:
1028 		return SECCLASS_SOCK_FILE;
1029 	case S_IFLNK:
1030 		return SECCLASS_LNK_FILE;
1031 	case S_IFREG:
1032 		return SECCLASS_FILE;
1033 	case S_IFBLK:
1034 		return SECCLASS_BLK_FILE;
1035 	case S_IFDIR:
1036 		return SECCLASS_DIR;
1037 	case S_IFCHR:
1038 		return SECCLASS_CHR_FILE;
1039 	case S_IFIFO:
1040 		return SECCLASS_FIFO_FILE;
1041 
1042 	}
1043 
1044 	return SECCLASS_FILE;
1045 }
1046 
1047 static inline int default_protocol_stream(int protocol)
1048 {
1049 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1050 }
1051 
1052 static inline int default_protocol_dgram(int protocol)
1053 {
1054 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1055 }
1056 
1057 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1058 {
1059 	switch (family) {
1060 	case PF_UNIX:
1061 		switch (type) {
1062 		case SOCK_STREAM:
1063 		case SOCK_SEQPACKET:
1064 			return SECCLASS_UNIX_STREAM_SOCKET;
1065 		case SOCK_DGRAM:
1066 			return SECCLASS_UNIX_DGRAM_SOCKET;
1067 		}
1068 		break;
1069 	case PF_INET:
1070 	case PF_INET6:
1071 		switch (type) {
1072 		case SOCK_STREAM:
1073 			if (default_protocol_stream(protocol))
1074 				return SECCLASS_TCP_SOCKET;
1075 			else
1076 				return SECCLASS_RAWIP_SOCKET;
1077 		case SOCK_DGRAM:
1078 			if (default_protocol_dgram(protocol))
1079 				return SECCLASS_UDP_SOCKET;
1080 			else
1081 				return SECCLASS_RAWIP_SOCKET;
1082 		case SOCK_DCCP:
1083 			return SECCLASS_DCCP_SOCKET;
1084 		default:
1085 			return SECCLASS_RAWIP_SOCKET;
1086 		}
1087 		break;
1088 	case PF_NETLINK:
1089 		switch (protocol) {
1090 		case NETLINK_ROUTE:
1091 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1092 		case NETLINK_FIREWALL:
1093 			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1094 		case NETLINK_INET_DIAG:
1095 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1096 		case NETLINK_NFLOG:
1097 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1098 		case NETLINK_XFRM:
1099 			return SECCLASS_NETLINK_XFRM_SOCKET;
1100 		case NETLINK_SELINUX:
1101 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1102 		case NETLINK_AUDIT:
1103 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1104 		case NETLINK_IP6_FW:
1105 			return SECCLASS_NETLINK_IP6FW_SOCKET;
1106 		case NETLINK_DNRTMSG:
1107 			return SECCLASS_NETLINK_DNRT_SOCKET;
1108 		case NETLINK_KOBJECT_UEVENT:
1109 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1110 		default:
1111 			return SECCLASS_NETLINK_SOCKET;
1112 		}
1113 	case PF_PACKET:
1114 		return SECCLASS_PACKET_SOCKET;
1115 	case PF_KEY:
1116 		return SECCLASS_KEY_SOCKET;
1117 	case PF_APPLETALK:
1118 		return SECCLASS_APPLETALK_SOCKET;
1119 	}
1120 
1121 	return SECCLASS_SOCKET;
1122 }
1123 
1124 #ifdef CONFIG_PROC_FS
1125 static int selinux_proc_get_sid(struct dentry *dentry,
1126 				u16 tclass,
1127 				u32 *sid)
1128 {
1129 	int rc;
1130 	char *buffer, *path;
1131 
1132 	buffer = (char *)__get_free_page(GFP_KERNEL);
1133 	if (!buffer)
1134 		return -ENOMEM;
1135 
1136 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1137 	if (IS_ERR(path))
1138 		rc = PTR_ERR(path);
1139 	else {
1140 		/* each process gets a /proc/PID/ entry. Strip off the
1141 		 * PID part to get a valid selinux labeling.
1142 		 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1143 		while (path[1] >= '0' && path[1] <= '9') {
1144 			path[1] = '/';
1145 			path++;
1146 		}
1147 		rc = security_genfs_sid("proc", path, tclass, sid);
1148 	}
1149 	free_page((unsigned long)buffer);
1150 	return rc;
1151 }
1152 #else
1153 static int selinux_proc_get_sid(struct dentry *dentry,
1154 				u16 tclass,
1155 				u32 *sid)
1156 {
1157 	return -EINVAL;
1158 }
1159 #endif
1160 
1161 /* The inode's security attributes must be initialized before first use. */
1162 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1163 {
1164 	struct superblock_security_struct *sbsec = NULL;
1165 	struct inode_security_struct *isec = inode->i_security;
1166 	u32 sid;
1167 	struct dentry *dentry;
1168 #define INITCONTEXTLEN 255
1169 	char *context = NULL;
1170 	unsigned len = 0;
1171 	int rc = 0;
1172 
1173 	if (isec->initialized)
1174 		goto out;
1175 
1176 	mutex_lock(&isec->lock);
1177 	if (isec->initialized)
1178 		goto out_unlock;
1179 
1180 	sbsec = inode->i_sb->s_security;
1181 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1182 		/* Defer initialization until selinux_complete_init,
1183 		   after the initial policy is loaded and the security
1184 		   server is ready to handle calls. */
1185 		spin_lock(&sbsec->isec_lock);
1186 		if (list_empty(&isec->list))
1187 			list_add(&isec->list, &sbsec->isec_head);
1188 		spin_unlock(&sbsec->isec_lock);
1189 		goto out_unlock;
1190 	}
1191 
1192 	switch (sbsec->behavior) {
1193 	case SECURITY_FS_USE_XATTR:
1194 		if (!inode->i_op->getxattr) {
1195 			isec->sid = sbsec->def_sid;
1196 			break;
1197 		}
1198 
1199 		/* Need a dentry, since the xattr API requires one.
1200 		   Life would be simpler if we could just pass the inode. */
1201 		if (opt_dentry) {
1202 			/* Called from d_instantiate or d_splice_alias. */
1203 			dentry = dget(opt_dentry);
1204 		} else {
1205 			/* Called from selinux_complete_init, try to find a dentry. */
1206 			dentry = d_find_alias(inode);
1207 		}
1208 		if (!dentry) {
1209 			/*
1210 			 * this is can be hit on boot when a file is accessed
1211 			 * before the policy is loaded.  When we load policy we
1212 			 * may find inodes that have no dentry on the
1213 			 * sbsec->isec_head list.  No reason to complain as these
1214 			 * will get fixed up the next time we go through
1215 			 * inode_doinit with a dentry, before these inodes could
1216 			 * be used again by userspace.
1217 			 */
1218 			goto out_unlock;
1219 		}
1220 
1221 		len = INITCONTEXTLEN;
1222 		context = kmalloc(len+1, GFP_NOFS);
1223 		if (!context) {
1224 			rc = -ENOMEM;
1225 			dput(dentry);
1226 			goto out_unlock;
1227 		}
1228 		context[len] = '\0';
1229 		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1230 					   context, len);
1231 		if (rc == -ERANGE) {
1232 			kfree(context);
1233 
1234 			/* Need a larger buffer.  Query for the right size. */
1235 			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1236 						   NULL, 0);
1237 			if (rc < 0) {
1238 				dput(dentry);
1239 				goto out_unlock;
1240 			}
1241 			len = rc;
1242 			context = kmalloc(len+1, GFP_NOFS);
1243 			if (!context) {
1244 				rc = -ENOMEM;
1245 				dput(dentry);
1246 				goto out_unlock;
1247 			}
1248 			context[len] = '\0';
1249 			rc = inode->i_op->getxattr(dentry,
1250 						   XATTR_NAME_SELINUX,
1251 						   context, len);
1252 		}
1253 		dput(dentry);
1254 		if (rc < 0) {
1255 			if (rc != -ENODATA) {
1256 				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1257 				       "%d for dev=%s ino=%ld\n", __func__,
1258 				       -rc, inode->i_sb->s_id, inode->i_ino);
1259 				kfree(context);
1260 				goto out_unlock;
1261 			}
1262 			/* Map ENODATA to the default file SID */
1263 			sid = sbsec->def_sid;
1264 			rc = 0;
1265 		} else {
1266 			rc = security_context_to_sid_default(context, rc, &sid,
1267 							     sbsec->def_sid,
1268 							     GFP_NOFS);
1269 			if (rc) {
1270 				char *dev = inode->i_sb->s_id;
1271 				unsigned long ino = inode->i_ino;
1272 
1273 				if (rc == -EINVAL) {
1274 					if (printk_ratelimit())
1275 						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1276 							"context=%s.  This indicates you may need to relabel the inode or the "
1277 							"filesystem in question.\n", ino, dev, context);
1278 				} else {
1279 					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1280 					       "returned %d for dev=%s ino=%ld\n",
1281 					       __func__, context, -rc, dev, ino);
1282 				}
1283 				kfree(context);
1284 				/* Leave with the unlabeled SID */
1285 				rc = 0;
1286 				break;
1287 			}
1288 		}
1289 		kfree(context);
1290 		isec->sid = sid;
1291 		break;
1292 	case SECURITY_FS_USE_TASK:
1293 		isec->sid = isec->task_sid;
1294 		break;
1295 	case SECURITY_FS_USE_TRANS:
1296 		/* Default to the fs SID. */
1297 		isec->sid = sbsec->sid;
1298 
1299 		/* Try to obtain a transition SID. */
1300 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1301 		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1302 					     isec->sclass, NULL, &sid);
1303 		if (rc)
1304 			goto out_unlock;
1305 		isec->sid = sid;
1306 		break;
1307 	case SECURITY_FS_USE_MNTPOINT:
1308 		isec->sid = sbsec->mntpoint_sid;
1309 		break;
1310 	default:
1311 		/* Default to the fs superblock SID. */
1312 		isec->sid = sbsec->sid;
1313 
1314 		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1315 			if (opt_dentry) {
1316 				isec->sclass = inode_mode_to_security_class(inode->i_mode);
1317 				rc = selinux_proc_get_sid(opt_dentry,
1318 							  isec->sclass,
1319 							  &sid);
1320 				if (rc)
1321 					goto out_unlock;
1322 				isec->sid = sid;
1323 			}
1324 		}
1325 		break;
1326 	}
1327 
1328 	isec->initialized = 1;
1329 
1330 out_unlock:
1331 	mutex_unlock(&isec->lock);
1332 out:
1333 	if (isec->sclass == SECCLASS_FILE)
1334 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1335 	return rc;
1336 }
1337 
1338 /* Convert a Linux signal to an access vector. */
1339 static inline u32 signal_to_av(int sig)
1340 {
1341 	u32 perm = 0;
1342 
1343 	switch (sig) {
1344 	case SIGCHLD:
1345 		/* Commonly granted from child to parent. */
1346 		perm = PROCESS__SIGCHLD;
1347 		break;
1348 	case SIGKILL:
1349 		/* Cannot be caught or ignored */
1350 		perm = PROCESS__SIGKILL;
1351 		break;
1352 	case SIGSTOP:
1353 		/* Cannot be caught or ignored */
1354 		perm = PROCESS__SIGSTOP;
1355 		break;
1356 	default:
1357 		/* All other signals. */
1358 		perm = PROCESS__SIGNAL;
1359 		break;
1360 	}
1361 
1362 	return perm;
1363 }
1364 
1365 /*
1366  * Check permission between a pair of credentials
1367  * fork check, ptrace check, etc.
1368  */
1369 static int cred_has_perm(const struct cred *actor,
1370 			 const struct cred *target,
1371 			 u32 perms)
1372 {
1373 	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1374 
1375 	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1376 }
1377 
1378 /*
1379  * Check permission between a pair of tasks, e.g. signal checks,
1380  * fork check, ptrace check, etc.
1381  * tsk1 is the actor and tsk2 is the target
1382  * - this uses the default subjective creds of tsk1
1383  */
1384 static int task_has_perm(const struct task_struct *tsk1,
1385 			 const struct task_struct *tsk2,
1386 			 u32 perms)
1387 {
1388 	const struct task_security_struct *__tsec1, *__tsec2;
1389 	u32 sid1, sid2;
1390 
1391 	rcu_read_lock();
1392 	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1393 	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1394 	rcu_read_unlock();
1395 	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1396 }
1397 
1398 /*
1399  * Check permission between current and another task, e.g. signal checks,
1400  * fork check, ptrace check, etc.
1401  * current is the actor and tsk2 is the target
1402  * - this uses current's subjective creds
1403  */
1404 static int current_has_perm(const struct task_struct *tsk,
1405 			    u32 perms)
1406 {
1407 	u32 sid, tsid;
1408 
1409 	sid = current_sid();
1410 	tsid = task_sid(tsk);
1411 	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1412 }
1413 
1414 #if CAP_LAST_CAP > 63
1415 #error Fix SELinux to handle capabilities > 63.
1416 #endif
1417 
1418 /* Check whether a task is allowed to use a capability. */
1419 static int task_has_capability(struct task_struct *tsk,
1420 			       const struct cred *cred,
1421 			       int cap, int audit)
1422 {
1423 	struct common_audit_data ad;
1424 	struct av_decision avd;
1425 	u16 sclass;
1426 	u32 sid = cred_sid(cred);
1427 	u32 av = CAP_TO_MASK(cap);
1428 	int rc;
1429 
1430 	COMMON_AUDIT_DATA_INIT(&ad, CAP);
1431 	ad.tsk = tsk;
1432 	ad.u.cap = cap;
1433 
1434 	switch (CAP_TO_INDEX(cap)) {
1435 	case 0:
1436 		sclass = SECCLASS_CAPABILITY;
1437 		break;
1438 	case 1:
1439 		sclass = SECCLASS_CAPABILITY2;
1440 		break;
1441 	default:
1442 		printk(KERN_ERR
1443 		       "SELinux:  out of range capability %d\n", cap);
1444 		BUG();
1445 	}
1446 
1447 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1448 	if (audit == SECURITY_CAP_AUDIT)
1449 		avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1450 	return rc;
1451 }
1452 
1453 /* Check whether a task is allowed to use a system operation. */
1454 static int task_has_system(struct task_struct *tsk,
1455 			   u32 perms)
1456 {
1457 	u32 sid = task_sid(tsk);
1458 
1459 	return avc_has_perm(sid, SECINITSID_KERNEL,
1460 			    SECCLASS_SYSTEM, perms, NULL);
1461 }
1462 
1463 /* Check whether a task has a particular permission to an inode.
1464    The 'adp' parameter is optional and allows other audit
1465    data to be passed (e.g. the dentry). */
1466 static int inode_has_perm(const struct cred *cred,
1467 			  struct inode *inode,
1468 			  u32 perms,
1469 			  struct common_audit_data *adp)
1470 {
1471 	struct inode_security_struct *isec;
1472 	struct common_audit_data ad;
1473 	u32 sid;
1474 
1475 	validate_creds(cred);
1476 
1477 	if (unlikely(IS_PRIVATE(inode)))
1478 		return 0;
1479 
1480 	sid = cred_sid(cred);
1481 	isec = inode->i_security;
1482 
1483 	if (!adp) {
1484 		adp = &ad;
1485 		COMMON_AUDIT_DATA_INIT(&ad, FS);
1486 		ad.u.fs.inode = inode;
1487 	}
1488 
1489 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1490 }
1491 
1492 /* Same as inode_has_perm, but pass explicit audit data containing
1493    the dentry to help the auditing code to more easily generate the
1494    pathname if needed. */
1495 static inline int dentry_has_perm(const struct cred *cred,
1496 				  struct vfsmount *mnt,
1497 				  struct dentry *dentry,
1498 				  u32 av)
1499 {
1500 	struct inode *inode = dentry->d_inode;
1501 	struct common_audit_data ad;
1502 
1503 	COMMON_AUDIT_DATA_INIT(&ad, FS);
1504 	ad.u.fs.path.mnt = mnt;
1505 	ad.u.fs.path.dentry = dentry;
1506 	return inode_has_perm(cred, inode, av, &ad);
1507 }
1508 
1509 /* Check whether a task can use an open file descriptor to
1510    access an inode in a given way.  Check access to the
1511    descriptor itself, and then use dentry_has_perm to
1512    check a particular permission to the file.
1513    Access to the descriptor is implicitly granted if it
1514    has the same SID as the process.  If av is zero, then
1515    access to the file is not checked, e.g. for cases
1516    where only the descriptor is affected like seek. */
1517 static int file_has_perm(const struct cred *cred,
1518 			 struct file *file,
1519 			 u32 av)
1520 {
1521 	struct file_security_struct *fsec = file->f_security;
1522 	struct inode *inode = file->f_path.dentry->d_inode;
1523 	struct common_audit_data ad;
1524 	u32 sid = cred_sid(cred);
1525 	int rc;
1526 
1527 	COMMON_AUDIT_DATA_INIT(&ad, FS);
1528 	ad.u.fs.path = file->f_path;
1529 
1530 	if (sid != fsec->sid) {
1531 		rc = avc_has_perm(sid, fsec->sid,
1532 				  SECCLASS_FD,
1533 				  FD__USE,
1534 				  &ad);
1535 		if (rc)
1536 			goto out;
1537 	}
1538 
1539 	/* av is zero if only checking access to the descriptor. */
1540 	rc = 0;
1541 	if (av)
1542 		rc = inode_has_perm(cred, inode, av, &ad);
1543 
1544 out:
1545 	return rc;
1546 }
1547 
1548 /* Check whether a task can create a file. */
1549 static int may_create(struct inode *dir,
1550 		      struct dentry *dentry,
1551 		      u16 tclass)
1552 {
1553 	const struct task_security_struct *tsec = current_security();
1554 	struct inode_security_struct *dsec;
1555 	struct superblock_security_struct *sbsec;
1556 	u32 sid, newsid;
1557 	struct common_audit_data ad;
1558 	int rc;
1559 
1560 	dsec = dir->i_security;
1561 	sbsec = dir->i_sb->s_security;
1562 
1563 	sid = tsec->sid;
1564 	newsid = tsec->create_sid;
1565 
1566 	COMMON_AUDIT_DATA_INIT(&ad, FS);
1567 	ad.u.fs.path.dentry = dentry;
1568 
1569 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1570 			  DIR__ADD_NAME | DIR__SEARCH,
1571 			  &ad);
1572 	if (rc)
1573 		return rc;
1574 
1575 	if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1576 		rc = security_transition_sid(sid, dsec->sid, tclass, NULL, &newsid);
1577 		if (rc)
1578 			return rc;
1579 	}
1580 
1581 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1582 	if (rc)
1583 		return rc;
1584 
1585 	return avc_has_perm(newsid, sbsec->sid,
1586 			    SECCLASS_FILESYSTEM,
1587 			    FILESYSTEM__ASSOCIATE, &ad);
1588 }
1589 
1590 /* Check whether a task can create a key. */
1591 static int may_create_key(u32 ksid,
1592 			  struct task_struct *ctx)
1593 {
1594 	u32 sid = task_sid(ctx);
1595 
1596 	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1597 }
1598 
1599 #define MAY_LINK	0
1600 #define MAY_UNLINK	1
1601 #define MAY_RMDIR	2
1602 
1603 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1604 static int may_link(struct inode *dir,
1605 		    struct dentry *dentry,
1606 		    int kind)
1607 
1608 {
1609 	struct inode_security_struct *dsec, *isec;
1610 	struct common_audit_data ad;
1611 	u32 sid = current_sid();
1612 	u32 av;
1613 	int rc;
1614 
1615 	dsec = dir->i_security;
1616 	isec = dentry->d_inode->i_security;
1617 
1618 	COMMON_AUDIT_DATA_INIT(&ad, FS);
1619 	ad.u.fs.path.dentry = dentry;
1620 
1621 	av = DIR__SEARCH;
1622 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1623 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1624 	if (rc)
1625 		return rc;
1626 
1627 	switch (kind) {
1628 	case MAY_LINK:
1629 		av = FILE__LINK;
1630 		break;
1631 	case MAY_UNLINK:
1632 		av = FILE__UNLINK;
1633 		break;
1634 	case MAY_RMDIR:
1635 		av = DIR__RMDIR;
1636 		break;
1637 	default:
1638 		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1639 			__func__, kind);
1640 		return 0;
1641 	}
1642 
1643 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1644 	return rc;
1645 }
1646 
1647 static inline int may_rename(struct inode *old_dir,
1648 			     struct dentry *old_dentry,
1649 			     struct inode *new_dir,
1650 			     struct dentry *new_dentry)
1651 {
1652 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1653 	struct common_audit_data ad;
1654 	u32 sid = current_sid();
1655 	u32 av;
1656 	int old_is_dir, new_is_dir;
1657 	int rc;
1658 
1659 	old_dsec = old_dir->i_security;
1660 	old_isec = old_dentry->d_inode->i_security;
1661 	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1662 	new_dsec = new_dir->i_security;
1663 
1664 	COMMON_AUDIT_DATA_INIT(&ad, FS);
1665 
1666 	ad.u.fs.path.dentry = old_dentry;
1667 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1668 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1669 	if (rc)
1670 		return rc;
1671 	rc = avc_has_perm(sid, old_isec->sid,
1672 			  old_isec->sclass, FILE__RENAME, &ad);
1673 	if (rc)
1674 		return rc;
1675 	if (old_is_dir && new_dir != old_dir) {
1676 		rc = avc_has_perm(sid, old_isec->sid,
1677 				  old_isec->sclass, DIR__REPARENT, &ad);
1678 		if (rc)
1679 			return rc;
1680 	}
1681 
1682 	ad.u.fs.path.dentry = new_dentry;
1683 	av = DIR__ADD_NAME | DIR__SEARCH;
1684 	if (new_dentry->d_inode)
1685 		av |= DIR__REMOVE_NAME;
1686 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1687 	if (rc)
1688 		return rc;
1689 	if (new_dentry->d_inode) {
1690 		new_isec = new_dentry->d_inode->i_security;
1691 		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1692 		rc = avc_has_perm(sid, new_isec->sid,
1693 				  new_isec->sclass,
1694 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1695 		if (rc)
1696 			return rc;
1697 	}
1698 
1699 	return 0;
1700 }
1701 
1702 /* Check whether a task can perform a filesystem operation. */
1703 static int superblock_has_perm(const struct cred *cred,
1704 			       struct super_block *sb,
1705 			       u32 perms,
1706 			       struct common_audit_data *ad)
1707 {
1708 	struct superblock_security_struct *sbsec;
1709 	u32 sid = cred_sid(cred);
1710 
1711 	sbsec = sb->s_security;
1712 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1713 }
1714 
1715 /* Convert a Linux mode and permission mask to an access vector. */
1716 static inline u32 file_mask_to_av(int mode, int mask)
1717 {
1718 	u32 av = 0;
1719 
1720 	if ((mode & S_IFMT) != S_IFDIR) {
1721 		if (mask & MAY_EXEC)
1722 			av |= FILE__EXECUTE;
1723 		if (mask & MAY_READ)
1724 			av |= FILE__READ;
1725 
1726 		if (mask & MAY_APPEND)
1727 			av |= FILE__APPEND;
1728 		else if (mask & MAY_WRITE)
1729 			av |= FILE__WRITE;
1730 
1731 	} else {
1732 		if (mask & MAY_EXEC)
1733 			av |= DIR__SEARCH;
1734 		if (mask & MAY_WRITE)
1735 			av |= DIR__WRITE;
1736 		if (mask & MAY_READ)
1737 			av |= DIR__READ;
1738 	}
1739 
1740 	return av;
1741 }
1742 
1743 /* Convert a Linux file to an access vector. */
1744 static inline u32 file_to_av(struct file *file)
1745 {
1746 	u32 av = 0;
1747 
1748 	if (file->f_mode & FMODE_READ)
1749 		av |= FILE__READ;
1750 	if (file->f_mode & FMODE_WRITE) {
1751 		if (file->f_flags & O_APPEND)
1752 			av |= FILE__APPEND;
1753 		else
1754 			av |= FILE__WRITE;
1755 	}
1756 	if (!av) {
1757 		/*
1758 		 * Special file opened with flags 3 for ioctl-only use.
1759 		 */
1760 		av = FILE__IOCTL;
1761 	}
1762 
1763 	return av;
1764 }
1765 
1766 /*
1767  * Convert a file to an access vector and include the correct open
1768  * open permission.
1769  */
1770 static inline u32 open_file_to_av(struct file *file)
1771 {
1772 	u32 av = file_to_av(file);
1773 
1774 	if (selinux_policycap_openperm)
1775 		av |= FILE__OPEN;
1776 
1777 	return av;
1778 }
1779 
1780 /* Hook functions begin here. */
1781 
1782 static int selinux_ptrace_access_check(struct task_struct *child,
1783 				     unsigned int mode)
1784 {
1785 	int rc;
1786 
1787 	rc = cap_ptrace_access_check(child, mode);
1788 	if (rc)
1789 		return rc;
1790 
1791 	if (mode == PTRACE_MODE_READ) {
1792 		u32 sid = current_sid();
1793 		u32 csid = task_sid(child);
1794 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1795 	}
1796 
1797 	return current_has_perm(child, PROCESS__PTRACE);
1798 }
1799 
1800 static int selinux_ptrace_traceme(struct task_struct *parent)
1801 {
1802 	int rc;
1803 
1804 	rc = cap_ptrace_traceme(parent);
1805 	if (rc)
1806 		return rc;
1807 
1808 	return task_has_perm(parent, current, PROCESS__PTRACE);
1809 }
1810 
1811 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1812 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1813 {
1814 	int error;
1815 
1816 	error = current_has_perm(target, PROCESS__GETCAP);
1817 	if (error)
1818 		return error;
1819 
1820 	return cap_capget(target, effective, inheritable, permitted);
1821 }
1822 
1823 static int selinux_capset(struct cred *new, const struct cred *old,
1824 			  const kernel_cap_t *effective,
1825 			  const kernel_cap_t *inheritable,
1826 			  const kernel_cap_t *permitted)
1827 {
1828 	int error;
1829 
1830 	error = cap_capset(new, old,
1831 				      effective, inheritable, permitted);
1832 	if (error)
1833 		return error;
1834 
1835 	return cred_has_perm(old, new, PROCESS__SETCAP);
1836 }
1837 
1838 /*
1839  * (This comment used to live with the selinux_task_setuid hook,
1840  * which was removed).
1841  *
1842  * Since setuid only affects the current process, and since the SELinux
1843  * controls are not based on the Linux identity attributes, SELinux does not
1844  * need to control this operation.  However, SELinux does control the use of
1845  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1846  */
1847 
1848 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1849 			   int cap, int audit)
1850 {
1851 	int rc;
1852 
1853 	rc = cap_capable(tsk, cred, cap, audit);
1854 	if (rc)
1855 		return rc;
1856 
1857 	return task_has_capability(tsk, cred, cap, audit);
1858 }
1859 
1860 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1861 {
1862 	const struct cred *cred = current_cred();
1863 	int rc = 0;
1864 
1865 	if (!sb)
1866 		return 0;
1867 
1868 	switch (cmds) {
1869 	case Q_SYNC:
1870 	case Q_QUOTAON:
1871 	case Q_QUOTAOFF:
1872 	case Q_SETINFO:
1873 	case Q_SETQUOTA:
1874 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1875 		break;
1876 	case Q_GETFMT:
1877 	case Q_GETINFO:
1878 	case Q_GETQUOTA:
1879 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1880 		break;
1881 	default:
1882 		rc = 0;  /* let the kernel handle invalid cmds */
1883 		break;
1884 	}
1885 	return rc;
1886 }
1887 
1888 static int selinux_quota_on(struct dentry *dentry)
1889 {
1890 	const struct cred *cred = current_cred();
1891 
1892 	return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
1893 }
1894 
1895 static int selinux_syslog(int type)
1896 {
1897 	int rc;
1898 
1899 	switch (type) {
1900 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
1901 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
1902 		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1903 		break;
1904 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
1905 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
1906 	/* Set level of messages printed to console */
1907 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1908 		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1909 		break;
1910 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1911 	case SYSLOG_ACTION_OPEN:	/* Open log */
1912 	case SYSLOG_ACTION_READ:	/* Read from log */
1913 	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
1914 	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
1915 	default:
1916 		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1917 		break;
1918 	}
1919 	return rc;
1920 }
1921 
1922 /*
1923  * Check that a process has enough memory to allocate a new virtual
1924  * mapping. 0 means there is enough memory for the allocation to
1925  * succeed and -ENOMEM implies there is not.
1926  *
1927  * Do not audit the selinux permission check, as this is applied to all
1928  * processes that allocate mappings.
1929  */
1930 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1931 {
1932 	int rc, cap_sys_admin = 0;
1933 
1934 	rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
1935 			     SECURITY_CAP_NOAUDIT);
1936 	if (rc == 0)
1937 		cap_sys_admin = 1;
1938 
1939 	return __vm_enough_memory(mm, pages, cap_sys_admin);
1940 }
1941 
1942 /* binprm security operations */
1943 
1944 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1945 {
1946 	const struct task_security_struct *old_tsec;
1947 	struct task_security_struct *new_tsec;
1948 	struct inode_security_struct *isec;
1949 	struct common_audit_data ad;
1950 	struct inode *inode = bprm->file->f_path.dentry->d_inode;
1951 	int rc;
1952 
1953 	rc = cap_bprm_set_creds(bprm);
1954 	if (rc)
1955 		return rc;
1956 
1957 	/* SELinux context only depends on initial program or script and not
1958 	 * the script interpreter */
1959 	if (bprm->cred_prepared)
1960 		return 0;
1961 
1962 	old_tsec = current_security();
1963 	new_tsec = bprm->cred->security;
1964 	isec = inode->i_security;
1965 
1966 	/* Default to the current task SID. */
1967 	new_tsec->sid = old_tsec->sid;
1968 	new_tsec->osid = old_tsec->sid;
1969 
1970 	/* Reset fs, key, and sock SIDs on execve. */
1971 	new_tsec->create_sid = 0;
1972 	new_tsec->keycreate_sid = 0;
1973 	new_tsec->sockcreate_sid = 0;
1974 
1975 	if (old_tsec->exec_sid) {
1976 		new_tsec->sid = old_tsec->exec_sid;
1977 		/* Reset exec SID on execve. */
1978 		new_tsec->exec_sid = 0;
1979 	} else {
1980 		/* Check for a default transition on this program. */
1981 		rc = security_transition_sid(old_tsec->sid, isec->sid,
1982 					     SECCLASS_PROCESS, NULL,
1983 					     &new_tsec->sid);
1984 		if (rc)
1985 			return rc;
1986 	}
1987 
1988 	COMMON_AUDIT_DATA_INIT(&ad, FS);
1989 	ad.u.fs.path = bprm->file->f_path;
1990 
1991 	if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1992 		new_tsec->sid = old_tsec->sid;
1993 
1994 	if (new_tsec->sid == old_tsec->sid) {
1995 		rc = avc_has_perm(old_tsec->sid, isec->sid,
1996 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1997 		if (rc)
1998 			return rc;
1999 	} else {
2000 		/* Check permissions for the transition. */
2001 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2002 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2003 		if (rc)
2004 			return rc;
2005 
2006 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2007 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2008 		if (rc)
2009 			return rc;
2010 
2011 		/* Check for shared state */
2012 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2013 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2014 					  SECCLASS_PROCESS, PROCESS__SHARE,
2015 					  NULL);
2016 			if (rc)
2017 				return -EPERM;
2018 		}
2019 
2020 		/* Make sure that anyone attempting to ptrace over a task that
2021 		 * changes its SID has the appropriate permit */
2022 		if (bprm->unsafe &
2023 		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2024 			struct task_struct *tracer;
2025 			struct task_security_struct *sec;
2026 			u32 ptsid = 0;
2027 
2028 			rcu_read_lock();
2029 			tracer = tracehook_tracer_task(current);
2030 			if (likely(tracer != NULL)) {
2031 				sec = __task_cred(tracer)->security;
2032 				ptsid = sec->sid;
2033 			}
2034 			rcu_read_unlock();
2035 
2036 			if (ptsid != 0) {
2037 				rc = avc_has_perm(ptsid, new_tsec->sid,
2038 						  SECCLASS_PROCESS,
2039 						  PROCESS__PTRACE, NULL);
2040 				if (rc)
2041 					return -EPERM;
2042 			}
2043 		}
2044 
2045 		/* Clear any possibly unsafe personality bits on exec: */
2046 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2047 	}
2048 
2049 	return 0;
2050 }
2051 
2052 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2053 {
2054 	const struct task_security_struct *tsec = current_security();
2055 	u32 sid, osid;
2056 	int atsecure = 0;
2057 
2058 	sid = tsec->sid;
2059 	osid = tsec->osid;
2060 
2061 	if (osid != sid) {
2062 		/* Enable secure mode for SIDs transitions unless
2063 		   the noatsecure permission is granted between
2064 		   the two SIDs, i.e. ahp returns 0. */
2065 		atsecure = avc_has_perm(osid, sid,
2066 					SECCLASS_PROCESS,
2067 					PROCESS__NOATSECURE, NULL);
2068 	}
2069 
2070 	return (atsecure || cap_bprm_secureexec(bprm));
2071 }
2072 
2073 extern struct vfsmount *selinuxfs_mount;
2074 extern struct dentry *selinux_null;
2075 
2076 /* Derived from fs/exec.c:flush_old_files. */
2077 static inline void flush_unauthorized_files(const struct cred *cred,
2078 					    struct files_struct *files)
2079 {
2080 	struct common_audit_data ad;
2081 	struct file *file, *devnull = NULL;
2082 	struct tty_struct *tty;
2083 	struct fdtable *fdt;
2084 	long j = -1;
2085 	int drop_tty = 0;
2086 
2087 	tty = get_current_tty();
2088 	if (tty) {
2089 		spin_lock(&tty_files_lock);
2090 		if (!list_empty(&tty->tty_files)) {
2091 			struct tty_file_private *file_priv;
2092 			struct inode *inode;
2093 
2094 			/* Revalidate access to controlling tty.
2095 			   Use inode_has_perm on the tty inode directly rather
2096 			   than using file_has_perm, as this particular open
2097 			   file may belong to another process and we are only
2098 			   interested in the inode-based check here. */
2099 			file_priv = list_first_entry(&tty->tty_files,
2100 						struct tty_file_private, list);
2101 			file = file_priv->file;
2102 			inode = file->f_path.dentry->d_inode;
2103 			if (inode_has_perm(cred, inode,
2104 					   FILE__READ | FILE__WRITE, NULL)) {
2105 				drop_tty = 1;
2106 			}
2107 		}
2108 		spin_unlock(&tty_files_lock);
2109 		tty_kref_put(tty);
2110 	}
2111 	/* Reset controlling tty. */
2112 	if (drop_tty)
2113 		no_tty();
2114 
2115 	/* Revalidate access to inherited open files. */
2116 
2117 	COMMON_AUDIT_DATA_INIT(&ad, FS);
2118 
2119 	spin_lock(&files->file_lock);
2120 	for (;;) {
2121 		unsigned long set, i;
2122 		int fd;
2123 
2124 		j++;
2125 		i = j * __NFDBITS;
2126 		fdt = files_fdtable(files);
2127 		if (i >= fdt->max_fds)
2128 			break;
2129 		set = fdt->open_fds->fds_bits[j];
2130 		if (!set)
2131 			continue;
2132 		spin_unlock(&files->file_lock);
2133 		for ( ; set ; i++, set >>= 1) {
2134 			if (set & 1) {
2135 				file = fget(i);
2136 				if (!file)
2137 					continue;
2138 				if (file_has_perm(cred,
2139 						  file,
2140 						  file_to_av(file))) {
2141 					sys_close(i);
2142 					fd = get_unused_fd();
2143 					if (fd != i) {
2144 						if (fd >= 0)
2145 							put_unused_fd(fd);
2146 						fput(file);
2147 						continue;
2148 					}
2149 					if (devnull) {
2150 						get_file(devnull);
2151 					} else {
2152 						devnull = dentry_open(
2153 							dget(selinux_null),
2154 							mntget(selinuxfs_mount),
2155 							O_RDWR, cred);
2156 						if (IS_ERR(devnull)) {
2157 							devnull = NULL;
2158 							put_unused_fd(fd);
2159 							fput(file);
2160 							continue;
2161 						}
2162 					}
2163 					fd_install(fd, devnull);
2164 				}
2165 				fput(file);
2166 			}
2167 		}
2168 		spin_lock(&files->file_lock);
2169 
2170 	}
2171 	spin_unlock(&files->file_lock);
2172 }
2173 
2174 /*
2175  * Prepare a process for imminent new credential changes due to exec
2176  */
2177 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2178 {
2179 	struct task_security_struct *new_tsec;
2180 	struct rlimit *rlim, *initrlim;
2181 	int rc, i;
2182 
2183 	new_tsec = bprm->cred->security;
2184 	if (new_tsec->sid == new_tsec->osid)
2185 		return;
2186 
2187 	/* Close files for which the new task SID is not authorized. */
2188 	flush_unauthorized_files(bprm->cred, current->files);
2189 
2190 	/* Always clear parent death signal on SID transitions. */
2191 	current->pdeath_signal = 0;
2192 
2193 	/* Check whether the new SID can inherit resource limits from the old
2194 	 * SID.  If not, reset all soft limits to the lower of the current
2195 	 * task's hard limit and the init task's soft limit.
2196 	 *
2197 	 * Note that the setting of hard limits (even to lower them) can be
2198 	 * controlled by the setrlimit check.  The inclusion of the init task's
2199 	 * soft limit into the computation is to avoid resetting soft limits
2200 	 * higher than the default soft limit for cases where the default is
2201 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2202 	 */
2203 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2204 			  PROCESS__RLIMITINH, NULL);
2205 	if (rc) {
2206 		/* protect against do_prlimit() */
2207 		task_lock(current);
2208 		for (i = 0; i < RLIM_NLIMITS; i++) {
2209 			rlim = current->signal->rlim + i;
2210 			initrlim = init_task.signal->rlim + i;
2211 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2212 		}
2213 		task_unlock(current);
2214 		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2215 	}
2216 }
2217 
2218 /*
2219  * Clean up the process immediately after the installation of new credentials
2220  * due to exec
2221  */
2222 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2223 {
2224 	const struct task_security_struct *tsec = current_security();
2225 	struct itimerval itimer;
2226 	u32 osid, sid;
2227 	int rc, i;
2228 
2229 	osid = tsec->osid;
2230 	sid = tsec->sid;
2231 
2232 	if (sid == osid)
2233 		return;
2234 
2235 	/* Check whether the new SID can inherit signal state from the old SID.
2236 	 * If not, clear itimers to avoid subsequent signal generation and
2237 	 * flush and unblock signals.
2238 	 *
2239 	 * This must occur _after_ the task SID has been updated so that any
2240 	 * kill done after the flush will be checked against the new SID.
2241 	 */
2242 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2243 	if (rc) {
2244 		memset(&itimer, 0, sizeof itimer);
2245 		for (i = 0; i < 3; i++)
2246 			do_setitimer(i, &itimer, NULL);
2247 		spin_lock_irq(&current->sighand->siglock);
2248 		if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2249 			__flush_signals(current);
2250 			flush_signal_handlers(current, 1);
2251 			sigemptyset(&current->blocked);
2252 		}
2253 		spin_unlock_irq(&current->sighand->siglock);
2254 	}
2255 
2256 	/* Wake up the parent if it is waiting so that it can recheck
2257 	 * wait permission to the new task SID. */
2258 	read_lock(&tasklist_lock);
2259 	__wake_up_parent(current, current->real_parent);
2260 	read_unlock(&tasklist_lock);
2261 }
2262 
2263 /* superblock security operations */
2264 
2265 static int selinux_sb_alloc_security(struct super_block *sb)
2266 {
2267 	return superblock_alloc_security(sb);
2268 }
2269 
2270 static void selinux_sb_free_security(struct super_block *sb)
2271 {
2272 	superblock_free_security(sb);
2273 }
2274 
2275 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2276 {
2277 	if (plen > olen)
2278 		return 0;
2279 
2280 	return !memcmp(prefix, option, plen);
2281 }
2282 
2283 static inline int selinux_option(char *option, int len)
2284 {
2285 	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2286 		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2287 		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2288 		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2289 		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2290 }
2291 
2292 static inline void take_option(char **to, char *from, int *first, int len)
2293 {
2294 	if (!*first) {
2295 		**to = ',';
2296 		*to += 1;
2297 	} else
2298 		*first = 0;
2299 	memcpy(*to, from, len);
2300 	*to += len;
2301 }
2302 
2303 static inline void take_selinux_option(char **to, char *from, int *first,
2304 				       int len)
2305 {
2306 	int current_size = 0;
2307 
2308 	if (!*first) {
2309 		**to = '|';
2310 		*to += 1;
2311 	} else
2312 		*first = 0;
2313 
2314 	while (current_size < len) {
2315 		if (*from != '"') {
2316 			**to = *from;
2317 			*to += 1;
2318 		}
2319 		from += 1;
2320 		current_size += 1;
2321 	}
2322 }
2323 
2324 static int selinux_sb_copy_data(char *orig, char *copy)
2325 {
2326 	int fnosec, fsec, rc = 0;
2327 	char *in_save, *in_curr, *in_end;
2328 	char *sec_curr, *nosec_save, *nosec;
2329 	int open_quote = 0;
2330 
2331 	in_curr = orig;
2332 	sec_curr = copy;
2333 
2334 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2335 	if (!nosec) {
2336 		rc = -ENOMEM;
2337 		goto out;
2338 	}
2339 
2340 	nosec_save = nosec;
2341 	fnosec = fsec = 1;
2342 	in_save = in_end = orig;
2343 
2344 	do {
2345 		if (*in_end == '"')
2346 			open_quote = !open_quote;
2347 		if ((*in_end == ',' && open_quote == 0) ||
2348 				*in_end == '\0') {
2349 			int len = in_end - in_curr;
2350 
2351 			if (selinux_option(in_curr, len))
2352 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2353 			else
2354 				take_option(&nosec, in_curr, &fnosec, len);
2355 
2356 			in_curr = in_end + 1;
2357 		}
2358 	} while (*in_end++);
2359 
2360 	strcpy(in_save, nosec_save);
2361 	free_page((unsigned long)nosec_save);
2362 out:
2363 	return rc;
2364 }
2365 
2366 static int selinux_sb_remount(struct super_block *sb, void *data)
2367 {
2368 	int rc, i, *flags;
2369 	struct security_mnt_opts opts;
2370 	char *secdata, **mount_options;
2371 	struct superblock_security_struct *sbsec = sb->s_security;
2372 
2373 	if (!(sbsec->flags & SE_SBINITIALIZED))
2374 		return 0;
2375 
2376 	if (!data)
2377 		return 0;
2378 
2379 	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2380 		return 0;
2381 
2382 	security_init_mnt_opts(&opts);
2383 	secdata = alloc_secdata();
2384 	if (!secdata)
2385 		return -ENOMEM;
2386 	rc = selinux_sb_copy_data(data, secdata);
2387 	if (rc)
2388 		goto out_free_secdata;
2389 
2390 	rc = selinux_parse_opts_str(secdata, &opts);
2391 	if (rc)
2392 		goto out_free_secdata;
2393 
2394 	mount_options = opts.mnt_opts;
2395 	flags = opts.mnt_opts_flags;
2396 
2397 	for (i = 0; i < opts.num_mnt_opts; i++) {
2398 		u32 sid;
2399 		size_t len;
2400 
2401 		if (flags[i] == SE_SBLABELSUPP)
2402 			continue;
2403 		len = strlen(mount_options[i]);
2404 		rc = security_context_to_sid(mount_options[i], len, &sid);
2405 		if (rc) {
2406 			printk(KERN_WARNING "SELinux: security_context_to_sid"
2407 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2408 			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2409 			goto out_free_opts;
2410 		}
2411 		rc = -EINVAL;
2412 		switch (flags[i]) {
2413 		case FSCONTEXT_MNT:
2414 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2415 				goto out_bad_option;
2416 			break;
2417 		case CONTEXT_MNT:
2418 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2419 				goto out_bad_option;
2420 			break;
2421 		case ROOTCONTEXT_MNT: {
2422 			struct inode_security_struct *root_isec;
2423 			root_isec = sb->s_root->d_inode->i_security;
2424 
2425 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2426 				goto out_bad_option;
2427 			break;
2428 		}
2429 		case DEFCONTEXT_MNT:
2430 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2431 				goto out_bad_option;
2432 			break;
2433 		default:
2434 			goto out_free_opts;
2435 		}
2436 	}
2437 
2438 	rc = 0;
2439 out_free_opts:
2440 	security_free_mnt_opts(&opts);
2441 out_free_secdata:
2442 	free_secdata(secdata);
2443 	return rc;
2444 out_bad_option:
2445 	printk(KERN_WARNING "SELinux: unable to change security options "
2446 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2447 	       sb->s_type->name);
2448 	goto out_free_opts;
2449 }
2450 
2451 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2452 {
2453 	const struct cred *cred = current_cred();
2454 	struct common_audit_data ad;
2455 	int rc;
2456 
2457 	rc = superblock_doinit(sb, data);
2458 	if (rc)
2459 		return rc;
2460 
2461 	/* Allow all mounts performed by the kernel */
2462 	if (flags & MS_KERNMOUNT)
2463 		return 0;
2464 
2465 	COMMON_AUDIT_DATA_INIT(&ad, FS);
2466 	ad.u.fs.path.dentry = sb->s_root;
2467 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2468 }
2469 
2470 static int selinux_sb_statfs(struct dentry *dentry)
2471 {
2472 	const struct cred *cred = current_cred();
2473 	struct common_audit_data ad;
2474 
2475 	COMMON_AUDIT_DATA_INIT(&ad, FS);
2476 	ad.u.fs.path.dentry = dentry->d_sb->s_root;
2477 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2478 }
2479 
2480 static int selinux_mount(char *dev_name,
2481 			 struct path *path,
2482 			 char *type,
2483 			 unsigned long flags,
2484 			 void *data)
2485 {
2486 	const struct cred *cred = current_cred();
2487 
2488 	if (flags & MS_REMOUNT)
2489 		return superblock_has_perm(cred, path->mnt->mnt_sb,
2490 					   FILESYSTEM__REMOUNT, NULL);
2491 	else
2492 		return dentry_has_perm(cred, path->mnt, path->dentry,
2493 				       FILE__MOUNTON);
2494 }
2495 
2496 static int selinux_umount(struct vfsmount *mnt, int flags)
2497 {
2498 	const struct cred *cred = current_cred();
2499 
2500 	return superblock_has_perm(cred, mnt->mnt_sb,
2501 				   FILESYSTEM__UNMOUNT, NULL);
2502 }
2503 
2504 /* inode security operations */
2505 
2506 static int selinux_inode_alloc_security(struct inode *inode)
2507 {
2508 	return inode_alloc_security(inode);
2509 }
2510 
2511 static void selinux_inode_free_security(struct inode *inode)
2512 {
2513 	inode_free_security(inode);
2514 }
2515 
2516 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2517 				       const struct qstr *qstr, char **name,
2518 				       void **value, size_t *len)
2519 {
2520 	const struct task_security_struct *tsec = current_security();
2521 	struct inode_security_struct *dsec;
2522 	struct superblock_security_struct *sbsec;
2523 	u32 sid, newsid, clen;
2524 	int rc;
2525 	char *namep = NULL, *context;
2526 
2527 	dsec = dir->i_security;
2528 	sbsec = dir->i_sb->s_security;
2529 
2530 	sid = tsec->sid;
2531 	newsid = tsec->create_sid;
2532 
2533 	if ((sbsec->flags & SE_SBINITIALIZED) &&
2534 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2535 		newsid = sbsec->mntpoint_sid;
2536 	else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2537 		rc = security_transition_sid(sid, dsec->sid,
2538 					     inode_mode_to_security_class(inode->i_mode),
2539 					     qstr, &newsid);
2540 		if (rc) {
2541 			printk(KERN_WARNING "%s:  "
2542 			       "security_transition_sid failed, rc=%d (dev=%s "
2543 			       "ino=%ld)\n",
2544 			       __func__,
2545 			       -rc, inode->i_sb->s_id, inode->i_ino);
2546 			return rc;
2547 		}
2548 	}
2549 
2550 	/* Possibly defer initialization to selinux_complete_init. */
2551 	if (sbsec->flags & SE_SBINITIALIZED) {
2552 		struct inode_security_struct *isec = inode->i_security;
2553 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2554 		isec->sid = newsid;
2555 		isec->initialized = 1;
2556 	}
2557 
2558 	if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2559 		return -EOPNOTSUPP;
2560 
2561 	if (name) {
2562 		namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2563 		if (!namep)
2564 			return -ENOMEM;
2565 		*name = namep;
2566 	}
2567 
2568 	if (value && len) {
2569 		rc = security_sid_to_context_force(newsid, &context, &clen);
2570 		if (rc) {
2571 			kfree(namep);
2572 			return rc;
2573 		}
2574 		*value = context;
2575 		*len = clen;
2576 	}
2577 
2578 	return 0;
2579 }
2580 
2581 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2582 {
2583 	return may_create(dir, dentry, SECCLASS_FILE);
2584 }
2585 
2586 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2587 {
2588 	return may_link(dir, old_dentry, MAY_LINK);
2589 }
2590 
2591 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2592 {
2593 	return may_link(dir, dentry, MAY_UNLINK);
2594 }
2595 
2596 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2597 {
2598 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2599 }
2600 
2601 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2602 {
2603 	return may_create(dir, dentry, SECCLASS_DIR);
2604 }
2605 
2606 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2607 {
2608 	return may_link(dir, dentry, MAY_RMDIR);
2609 }
2610 
2611 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2612 {
2613 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2614 }
2615 
2616 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2617 				struct inode *new_inode, struct dentry *new_dentry)
2618 {
2619 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2620 }
2621 
2622 static int selinux_inode_readlink(struct dentry *dentry)
2623 {
2624 	const struct cred *cred = current_cred();
2625 
2626 	return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2627 }
2628 
2629 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2630 {
2631 	const struct cred *cred = current_cred();
2632 
2633 	return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2634 }
2635 
2636 static int selinux_inode_permission(struct inode *inode, int mask)
2637 {
2638 	const struct cred *cred = current_cred();
2639 	struct common_audit_data ad;
2640 	u32 perms;
2641 	bool from_access;
2642 
2643 	from_access = mask & MAY_ACCESS;
2644 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2645 
2646 	/* No permission to check.  Existence test. */
2647 	if (!mask)
2648 		return 0;
2649 
2650 	COMMON_AUDIT_DATA_INIT(&ad, FS);
2651 	ad.u.fs.inode = inode;
2652 
2653 	if (from_access)
2654 		ad.selinux_audit_data.auditdeny |= FILE__AUDIT_ACCESS;
2655 
2656 	perms = file_mask_to_av(inode->i_mode, mask);
2657 
2658 	return inode_has_perm(cred, inode, perms, &ad);
2659 }
2660 
2661 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2662 {
2663 	const struct cred *cred = current_cred();
2664 	unsigned int ia_valid = iattr->ia_valid;
2665 
2666 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2667 	if (ia_valid & ATTR_FORCE) {
2668 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2669 			      ATTR_FORCE);
2670 		if (!ia_valid)
2671 			return 0;
2672 	}
2673 
2674 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2675 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2676 		return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2677 
2678 	return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2679 }
2680 
2681 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2682 {
2683 	const struct cred *cred = current_cred();
2684 
2685 	return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2686 }
2687 
2688 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2689 {
2690 	const struct cred *cred = current_cred();
2691 
2692 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2693 		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2694 		if (!strcmp(name, XATTR_NAME_CAPS)) {
2695 			if (!capable(CAP_SETFCAP))
2696 				return -EPERM;
2697 		} else if (!capable(CAP_SYS_ADMIN)) {
2698 			/* A different attribute in the security namespace.
2699 			   Restrict to administrator. */
2700 			return -EPERM;
2701 		}
2702 	}
2703 
2704 	/* Not an attribute we recognize, so just check the
2705 	   ordinary setattr permission. */
2706 	return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2707 }
2708 
2709 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2710 				  const void *value, size_t size, int flags)
2711 {
2712 	struct inode *inode = dentry->d_inode;
2713 	struct inode_security_struct *isec = inode->i_security;
2714 	struct superblock_security_struct *sbsec;
2715 	struct common_audit_data ad;
2716 	u32 newsid, sid = current_sid();
2717 	int rc = 0;
2718 
2719 	if (strcmp(name, XATTR_NAME_SELINUX))
2720 		return selinux_inode_setotherxattr(dentry, name);
2721 
2722 	sbsec = inode->i_sb->s_security;
2723 	if (!(sbsec->flags & SE_SBLABELSUPP))
2724 		return -EOPNOTSUPP;
2725 
2726 	if (!is_owner_or_cap(inode))
2727 		return -EPERM;
2728 
2729 	COMMON_AUDIT_DATA_INIT(&ad, FS);
2730 	ad.u.fs.path.dentry = dentry;
2731 
2732 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
2733 			  FILE__RELABELFROM, &ad);
2734 	if (rc)
2735 		return rc;
2736 
2737 	rc = security_context_to_sid(value, size, &newsid);
2738 	if (rc == -EINVAL) {
2739 		if (!capable(CAP_MAC_ADMIN))
2740 			return rc;
2741 		rc = security_context_to_sid_force(value, size, &newsid);
2742 	}
2743 	if (rc)
2744 		return rc;
2745 
2746 	rc = avc_has_perm(sid, newsid, isec->sclass,
2747 			  FILE__RELABELTO, &ad);
2748 	if (rc)
2749 		return rc;
2750 
2751 	rc = security_validate_transition(isec->sid, newsid, sid,
2752 					  isec->sclass);
2753 	if (rc)
2754 		return rc;
2755 
2756 	return avc_has_perm(newsid,
2757 			    sbsec->sid,
2758 			    SECCLASS_FILESYSTEM,
2759 			    FILESYSTEM__ASSOCIATE,
2760 			    &ad);
2761 }
2762 
2763 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2764 					const void *value, size_t size,
2765 					int flags)
2766 {
2767 	struct inode *inode = dentry->d_inode;
2768 	struct inode_security_struct *isec = inode->i_security;
2769 	u32 newsid;
2770 	int rc;
2771 
2772 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2773 		/* Not an attribute we recognize, so nothing to do. */
2774 		return;
2775 	}
2776 
2777 	rc = security_context_to_sid_force(value, size, &newsid);
2778 	if (rc) {
2779 		printk(KERN_ERR "SELinux:  unable to map context to SID"
2780 		       "for (%s, %lu), rc=%d\n",
2781 		       inode->i_sb->s_id, inode->i_ino, -rc);
2782 		return;
2783 	}
2784 
2785 	isec->sid = newsid;
2786 	return;
2787 }
2788 
2789 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2790 {
2791 	const struct cred *cred = current_cred();
2792 
2793 	return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2794 }
2795 
2796 static int selinux_inode_listxattr(struct dentry *dentry)
2797 {
2798 	const struct cred *cred = current_cred();
2799 
2800 	return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2801 }
2802 
2803 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2804 {
2805 	if (strcmp(name, XATTR_NAME_SELINUX))
2806 		return selinux_inode_setotherxattr(dentry, name);
2807 
2808 	/* No one is allowed to remove a SELinux security label.
2809 	   You can change the label, but all data must be labeled. */
2810 	return -EACCES;
2811 }
2812 
2813 /*
2814  * Copy the inode security context value to the user.
2815  *
2816  * Permission check is handled by selinux_inode_getxattr hook.
2817  */
2818 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2819 {
2820 	u32 size;
2821 	int error;
2822 	char *context = NULL;
2823 	struct inode_security_struct *isec = inode->i_security;
2824 
2825 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2826 		return -EOPNOTSUPP;
2827 
2828 	/*
2829 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
2830 	 * value even if it is not defined by current policy; otherwise,
2831 	 * use the in-core value under current policy.
2832 	 * Use the non-auditing forms of the permission checks since
2833 	 * getxattr may be called by unprivileged processes commonly
2834 	 * and lack of permission just means that we fall back to the
2835 	 * in-core context value, not a denial.
2836 	 */
2837 	error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2838 				SECURITY_CAP_NOAUDIT);
2839 	if (!error)
2840 		error = security_sid_to_context_force(isec->sid, &context,
2841 						      &size);
2842 	else
2843 		error = security_sid_to_context(isec->sid, &context, &size);
2844 	if (error)
2845 		return error;
2846 	error = size;
2847 	if (alloc) {
2848 		*buffer = context;
2849 		goto out_nofree;
2850 	}
2851 	kfree(context);
2852 out_nofree:
2853 	return error;
2854 }
2855 
2856 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2857 				     const void *value, size_t size, int flags)
2858 {
2859 	struct inode_security_struct *isec = inode->i_security;
2860 	u32 newsid;
2861 	int rc;
2862 
2863 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2864 		return -EOPNOTSUPP;
2865 
2866 	if (!value || !size)
2867 		return -EACCES;
2868 
2869 	rc = security_context_to_sid((void *)value, size, &newsid);
2870 	if (rc)
2871 		return rc;
2872 
2873 	isec->sid = newsid;
2874 	isec->initialized = 1;
2875 	return 0;
2876 }
2877 
2878 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2879 {
2880 	const int len = sizeof(XATTR_NAME_SELINUX);
2881 	if (buffer && len <= buffer_size)
2882 		memcpy(buffer, XATTR_NAME_SELINUX, len);
2883 	return len;
2884 }
2885 
2886 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2887 {
2888 	struct inode_security_struct *isec = inode->i_security;
2889 	*secid = isec->sid;
2890 }
2891 
2892 /* file security operations */
2893 
2894 static int selinux_revalidate_file_permission(struct file *file, int mask)
2895 {
2896 	const struct cred *cred = current_cred();
2897 	struct inode *inode = file->f_path.dentry->d_inode;
2898 
2899 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2900 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2901 		mask |= MAY_APPEND;
2902 
2903 	return file_has_perm(cred, file,
2904 			     file_mask_to_av(inode->i_mode, mask));
2905 }
2906 
2907 static int selinux_file_permission(struct file *file, int mask)
2908 {
2909 	struct inode *inode = file->f_path.dentry->d_inode;
2910 	struct file_security_struct *fsec = file->f_security;
2911 	struct inode_security_struct *isec = inode->i_security;
2912 	u32 sid = current_sid();
2913 
2914 	if (!mask)
2915 		/* No permission to check.  Existence test. */
2916 		return 0;
2917 
2918 	if (sid == fsec->sid && fsec->isid == isec->sid &&
2919 	    fsec->pseqno == avc_policy_seqno())
2920 		/* No change since dentry_open check. */
2921 		return 0;
2922 
2923 	return selinux_revalidate_file_permission(file, mask);
2924 }
2925 
2926 static int selinux_file_alloc_security(struct file *file)
2927 {
2928 	return file_alloc_security(file);
2929 }
2930 
2931 static void selinux_file_free_security(struct file *file)
2932 {
2933 	file_free_security(file);
2934 }
2935 
2936 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2937 			      unsigned long arg)
2938 {
2939 	const struct cred *cred = current_cred();
2940 	int error = 0;
2941 
2942 	switch (cmd) {
2943 	case FIONREAD:
2944 	/* fall through */
2945 	case FIBMAP:
2946 	/* fall through */
2947 	case FIGETBSZ:
2948 	/* fall through */
2949 	case EXT2_IOC_GETFLAGS:
2950 	/* fall through */
2951 	case EXT2_IOC_GETVERSION:
2952 		error = file_has_perm(cred, file, FILE__GETATTR);
2953 		break;
2954 
2955 	case EXT2_IOC_SETFLAGS:
2956 	/* fall through */
2957 	case EXT2_IOC_SETVERSION:
2958 		error = file_has_perm(cred, file, FILE__SETATTR);
2959 		break;
2960 
2961 	/* sys_ioctl() checks */
2962 	case FIONBIO:
2963 	/* fall through */
2964 	case FIOASYNC:
2965 		error = file_has_perm(cred, file, 0);
2966 		break;
2967 
2968 	case KDSKBENT:
2969 	case KDSKBSENT:
2970 		error = task_has_capability(current, cred, CAP_SYS_TTY_CONFIG,
2971 					    SECURITY_CAP_AUDIT);
2972 		break;
2973 
2974 	/* default case assumes that the command will go
2975 	 * to the file's ioctl() function.
2976 	 */
2977 	default:
2978 		error = file_has_perm(cred, file, FILE__IOCTL);
2979 	}
2980 	return error;
2981 }
2982 
2983 static int default_noexec;
2984 
2985 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2986 {
2987 	const struct cred *cred = current_cred();
2988 	int rc = 0;
2989 
2990 	if (default_noexec &&
2991 	    (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2992 		/*
2993 		 * We are making executable an anonymous mapping or a
2994 		 * private file mapping that will also be writable.
2995 		 * This has an additional check.
2996 		 */
2997 		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
2998 		if (rc)
2999 			goto error;
3000 	}
3001 
3002 	if (file) {
3003 		/* read access is always possible with a mapping */
3004 		u32 av = FILE__READ;
3005 
3006 		/* write access only matters if the mapping is shared */
3007 		if (shared && (prot & PROT_WRITE))
3008 			av |= FILE__WRITE;
3009 
3010 		if (prot & PROT_EXEC)
3011 			av |= FILE__EXECUTE;
3012 
3013 		return file_has_perm(cred, file, av);
3014 	}
3015 
3016 error:
3017 	return rc;
3018 }
3019 
3020 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3021 			     unsigned long prot, unsigned long flags,
3022 			     unsigned long addr, unsigned long addr_only)
3023 {
3024 	int rc = 0;
3025 	u32 sid = current_sid();
3026 
3027 	/*
3028 	 * notice that we are intentionally putting the SELinux check before
3029 	 * the secondary cap_file_mmap check.  This is such a likely attempt
3030 	 * at bad behaviour/exploit that we always want to get the AVC, even
3031 	 * if DAC would have also denied the operation.
3032 	 */
3033 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3034 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3035 				  MEMPROTECT__MMAP_ZERO, NULL);
3036 		if (rc)
3037 			return rc;
3038 	}
3039 
3040 	/* do DAC check on address space usage */
3041 	rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3042 	if (rc || addr_only)
3043 		return rc;
3044 
3045 	if (selinux_checkreqprot)
3046 		prot = reqprot;
3047 
3048 	return file_map_prot_check(file, prot,
3049 				   (flags & MAP_TYPE) == MAP_SHARED);
3050 }
3051 
3052 static int selinux_file_mprotect(struct vm_area_struct *vma,
3053 				 unsigned long reqprot,
3054 				 unsigned long prot)
3055 {
3056 	const struct cred *cred = current_cred();
3057 
3058 	if (selinux_checkreqprot)
3059 		prot = reqprot;
3060 
3061 	if (default_noexec &&
3062 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3063 		int rc = 0;
3064 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3065 		    vma->vm_end <= vma->vm_mm->brk) {
3066 			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3067 		} else if (!vma->vm_file &&
3068 			   vma->vm_start <= vma->vm_mm->start_stack &&
3069 			   vma->vm_end >= vma->vm_mm->start_stack) {
3070 			rc = current_has_perm(current, PROCESS__EXECSTACK);
3071 		} else if (vma->vm_file && vma->anon_vma) {
3072 			/*
3073 			 * We are making executable a file mapping that has
3074 			 * had some COW done. Since pages might have been
3075 			 * written, check ability to execute the possibly
3076 			 * modified content.  This typically should only
3077 			 * occur for text relocations.
3078 			 */
3079 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3080 		}
3081 		if (rc)
3082 			return rc;
3083 	}
3084 
3085 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3086 }
3087 
3088 static int selinux_file_lock(struct file *file, unsigned int cmd)
3089 {
3090 	const struct cred *cred = current_cred();
3091 
3092 	return file_has_perm(cred, file, FILE__LOCK);
3093 }
3094 
3095 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3096 			      unsigned long arg)
3097 {
3098 	const struct cred *cred = current_cred();
3099 	int err = 0;
3100 
3101 	switch (cmd) {
3102 	case F_SETFL:
3103 		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3104 			err = -EINVAL;
3105 			break;
3106 		}
3107 
3108 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3109 			err = file_has_perm(cred, file, FILE__WRITE);
3110 			break;
3111 		}
3112 		/* fall through */
3113 	case F_SETOWN:
3114 	case F_SETSIG:
3115 	case F_GETFL:
3116 	case F_GETOWN:
3117 	case F_GETSIG:
3118 		/* Just check FD__USE permission */
3119 		err = file_has_perm(cred, file, 0);
3120 		break;
3121 	case F_GETLK:
3122 	case F_SETLK:
3123 	case F_SETLKW:
3124 #if BITS_PER_LONG == 32
3125 	case F_GETLK64:
3126 	case F_SETLK64:
3127 	case F_SETLKW64:
3128 #endif
3129 		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3130 			err = -EINVAL;
3131 			break;
3132 		}
3133 		err = file_has_perm(cred, file, FILE__LOCK);
3134 		break;
3135 	}
3136 
3137 	return err;
3138 }
3139 
3140 static int selinux_file_set_fowner(struct file *file)
3141 {
3142 	struct file_security_struct *fsec;
3143 
3144 	fsec = file->f_security;
3145 	fsec->fown_sid = current_sid();
3146 
3147 	return 0;
3148 }
3149 
3150 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3151 				       struct fown_struct *fown, int signum)
3152 {
3153 	struct file *file;
3154 	u32 sid = task_sid(tsk);
3155 	u32 perm;
3156 	struct file_security_struct *fsec;
3157 
3158 	/* struct fown_struct is never outside the context of a struct file */
3159 	file = container_of(fown, struct file, f_owner);
3160 
3161 	fsec = file->f_security;
3162 
3163 	if (!signum)
3164 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3165 	else
3166 		perm = signal_to_av(signum);
3167 
3168 	return avc_has_perm(fsec->fown_sid, sid,
3169 			    SECCLASS_PROCESS, perm, NULL);
3170 }
3171 
3172 static int selinux_file_receive(struct file *file)
3173 {
3174 	const struct cred *cred = current_cred();
3175 
3176 	return file_has_perm(cred, file, file_to_av(file));
3177 }
3178 
3179 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3180 {
3181 	struct file_security_struct *fsec;
3182 	struct inode *inode;
3183 	struct inode_security_struct *isec;
3184 
3185 	inode = file->f_path.dentry->d_inode;
3186 	fsec = file->f_security;
3187 	isec = inode->i_security;
3188 	/*
3189 	 * Save inode label and policy sequence number
3190 	 * at open-time so that selinux_file_permission
3191 	 * can determine whether revalidation is necessary.
3192 	 * Task label is already saved in the file security
3193 	 * struct as its SID.
3194 	 */
3195 	fsec->isid = isec->sid;
3196 	fsec->pseqno = avc_policy_seqno();
3197 	/*
3198 	 * Since the inode label or policy seqno may have changed
3199 	 * between the selinux_inode_permission check and the saving
3200 	 * of state above, recheck that access is still permitted.
3201 	 * Otherwise, access might never be revalidated against the
3202 	 * new inode label or new policy.
3203 	 * This check is not redundant - do not remove.
3204 	 */
3205 	return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3206 }
3207 
3208 /* task security operations */
3209 
3210 static int selinux_task_create(unsigned long clone_flags)
3211 {
3212 	return current_has_perm(current, PROCESS__FORK);
3213 }
3214 
3215 /*
3216  * allocate the SELinux part of blank credentials
3217  */
3218 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3219 {
3220 	struct task_security_struct *tsec;
3221 
3222 	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3223 	if (!tsec)
3224 		return -ENOMEM;
3225 
3226 	cred->security = tsec;
3227 	return 0;
3228 }
3229 
3230 /*
3231  * detach and free the LSM part of a set of credentials
3232  */
3233 static void selinux_cred_free(struct cred *cred)
3234 {
3235 	struct task_security_struct *tsec = cred->security;
3236 
3237 	/*
3238 	 * cred->security == NULL if security_cred_alloc_blank() or
3239 	 * security_prepare_creds() returned an error.
3240 	 */
3241 	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3242 	cred->security = (void *) 0x7UL;
3243 	kfree(tsec);
3244 }
3245 
3246 /*
3247  * prepare a new set of credentials for modification
3248  */
3249 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3250 				gfp_t gfp)
3251 {
3252 	const struct task_security_struct *old_tsec;
3253 	struct task_security_struct *tsec;
3254 
3255 	old_tsec = old->security;
3256 
3257 	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3258 	if (!tsec)
3259 		return -ENOMEM;
3260 
3261 	new->security = tsec;
3262 	return 0;
3263 }
3264 
3265 /*
3266  * transfer the SELinux data to a blank set of creds
3267  */
3268 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3269 {
3270 	const struct task_security_struct *old_tsec = old->security;
3271 	struct task_security_struct *tsec = new->security;
3272 
3273 	*tsec = *old_tsec;
3274 }
3275 
3276 /*
3277  * set the security data for a kernel service
3278  * - all the creation contexts are set to unlabelled
3279  */
3280 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3281 {
3282 	struct task_security_struct *tsec = new->security;
3283 	u32 sid = current_sid();
3284 	int ret;
3285 
3286 	ret = avc_has_perm(sid, secid,
3287 			   SECCLASS_KERNEL_SERVICE,
3288 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3289 			   NULL);
3290 	if (ret == 0) {
3291 		tsec->sid = secid;
3292 		tsec->create_sid = 0;
3293 		tsec->keycreate_sid = 0;
3294 		tsec->sockcreate_sid = 0;
3295 	}
3296 	return ret;
3297 }
3298 
3299 /*
3300  * set the file creation context in a security record to the same as the
3301  * objective context of the specified inode
3302  */
3303 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3304 {
3305 	struct inode_security_struct *isec = inode->i_security;
3306 	struct task_security_struct *tsec = new->security;
3307 	u32 sid = current_sid();
3308 	int ret;
3309 
3310 	ret = avc_has_perm(sid, isec->sid,
3311 			   SECCLASS_KERNEL_SERVICE,
3312 			   KERNEL_SERVICE__CREATE_FILES_AS,
3313 			   NULL);
3314 
3315 	if (ret == 0)
3316 		tsec->create_sid = isec->sid;
3317 	return ret;
3318 }
3319 
3320 static int selinux_kernel_module_request(char *kmod_name)
3321 {
3322 	u32 sid;
3323 	struct common_audit_data ad;
3324 
3325 	sid = task_sid(current);
3326 
3327 	COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3328 	ad.u.kmod_name = kmod_name;
3329 
3330 	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3331 			    SYSTEM__MODULE_REQUEST, &ad);
3332 }
3333 
3334 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3335 {
3336 	return current_has_perm(p, PROCESS__SETPGID);
3337 }
3338 
3339 static int selinux_task_getpgid(struct task_struct *p)
3340 {
3341 	return current_has_perm(p, PROCESS__GETPGID);
3342 }
3343 
3344 static int selinux_task_getsid(struct task_struct *p)
3345 {
3346 	return current_has_perm(p, PROCESS__GETSESSION);
3347 }
3348 
3349 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3350 {
3351 	*secid = task_sid(p);
3352 }
3353 
3354 static int selinux_task_setnice(struct task_struct *p, int nice)
3355 {
3356 	int rc;
3357 
3358 	rc = cap_task_setnice(p, nice);
3359 	if (rc)
3360 		return rc;
3361 
3362 	return current_has_perm(p, PROCESS__SETSCHED);
3363 }
3364 
3365 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3366 {
3367 	int rc;
3368 
3369 	rc = cap_task_setioprio(p, ioprio);
3370 	if (rc)
3371 		return rc;
3372 
3373 	return current_has_perm(p, PROCESS__SETSCHED);
3374 }
3375 
3376 static int selinux_task_getioprio(struct task_struct *p)
3377 {
3378 	return current_has_perm(p, PROCESS__GETSCHED);
3379 }
3380 
3381 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3382 		struct rlimit *new_rlim)
3383 {
3384 	struct rlimit *old_rlim = p->signal->rlim + resource;
3385 
3386 	/* Control the ability to change the hard limit (whether
3387 	   lowering or raising it), so that the hard limit can
3388 	   later be used as a safe reset point for the soft limit
3389 	   upon context transitions.  See selinux_bprm_committing_creds. */
3390 	if (old_rlim->rlim_max != new_rlim->rlim_max)
3391 		return current_has_perm(p, PROCESS__SETRLIMIT);
3392 
3393 	return 0;
3394 }
3395 
3396 static int selinux_task_setscheduler(struct task_struct *p)
3397 {
3398 	int rc;
3399 
3400 	rc = cap_task_setscheduler(p);
3401 	if (rc)
3402 		return rc;
3403 
3404 	return current_has_perm(p, PROCESS__SETSCHED);
3405 }
3406 
3407 static int selinux_task_getscheduler(struct task_struct *p)
3408 {
3409 	return current_has_perm(p, PROCESS__GETSCHED);
3410 }
3411 
3412 static int selinux_task_movememory(struct task_struct *p)
3413 {
3414 	return current_has_perm(p, PROCESS__SETSCHED);
3415 }
3416 
3417 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3418 				int sig, u32 secid)
3419 {
3420 	u32 perm;
3421 	int rc;
3422 
3423 	if (!sig)
3424 		perm = PROCESS__SIGNULL; /* null signal; existence test */
3425 	else
3426 		perm = signal_to_av(sig);
3427 	if (secid)
3428 		rc = avc_has_perm(secid, task_sid(p),
3429 				  SECCLASS_PROCESS, perm, NULL);
3430 	else
3431 		rc = current_has_perm(p, perm);
3432 	return rc;
3433 }
3434 
3435 static int selinux_task_wait(struct task_struct *p)
3436 {
3437 	return task_has_perm(p, current, PROCESS__SIGCHLD);
3438 }
3439 
3440 static void selinux_task_to_inode(struct task_struct *p,
3441 				  struct inode *inode)
3442 {
3443 	struct inode_security_struct *isec = inode->i_security;
3444 	u32 sid = task_sid(p);
3445 
3446 	isec->sid = sid;
3447 	isec->initialized = 1;
3448 }
3449 
3450 /* Returns error only if unable to parse addresses */
3451 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3452 			struct common_audit_data *ad, u8 *proto)
3453 {
3454 	int offset, ihlen, ret = -EINVAL;
3455 	struct iphdr _iph, *ih;
3456 
3457 	offset = skb_network_offset(skb);
3458 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3459 	if (ih == NULL)
3460 		goto out;
3461 
3462 	ihlen = ih->ihl * 4;
3463 	if (ihlen < sizeof(_iph))
3464 		goto out;
3465 
3466 	ad->u.net.v4info.saddr = ih->saddr;
3467 	ad->u.net.v4info.daddr = ih->daddr;
3468 	ret = 0;
3469 
3470 	if (proto)
3471 		*proto = ih->protocol;
3472 
3473 	switch (ih->protocol) {
3474 	case IPPROTO_TCP: {
3475 		struct tcphdr _tcph, *th;
3476 
3477 		if (ntohs(ih->frag_off) & IP_OFFSET)
3478 			break;
3479 
3480 		offset += ihlen;
3481 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3482 		if (th == NULL)
3483 			break;
3484 
3485 		ad->u.net.sport = th->source;
3486 		ad->u.net.dport = th->dest;
3487 		break;
3488 	}
3489 
3490 	case IPPROTO_UDP: {
3491 		struct udphdr _udph, *uh;
3492 
3493 		if (ntohs(ih->frag_off) & IP_OFFSET)
3494 			break;
3495 
3496 		offset += ihlen;
3497 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3498 		if (uh == NULL)
3499 			break;
3500 
3501 		ad->u.net.sport = uh->source;
3502 		ad->u.net.dport = uh->dest;
3503 		break;
3504 	}
3505 
3506 	case IPPROTO_DCCP: {
3507 		struct dccp_hdr _dccph, *dh;
3508 
3509 		if (ntohs(ih->frag_off) & IP_OFFSET)
3510 			break;
3511 
3512 		offset += ihlen;
3513 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3514 		if (dh == NULL)
3515 			break;
3516 
3517 		ad->u.net.sport = dh->dccph_sport;
3518 		ad->u.net.dport = dh->dccph_dport;
3519 		break;
3520 	}
3521 
3522 	default:
3523 		break;
3524 	}
3525 out:
3526 	return ret;
3527 }
3528 
3529 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3530 
3531 /* Returns error only if unable to parse addresses */
3532 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3533 			struct common_audit_data *ad, u8 *proto)
3534 {
3535 	u8 nexthdr;
3536 	int ret = -EINVAL, offset;
3537 	struct ipv6hdr _ipv6h, *ip6;
3538 
3539 	offset = skb_network_offset(skb);
3540 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3541 	if (ip6 == NULL)
3542 		goto out;
3543 
3544 	ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3545 	ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3546 	ret = 0;
3547 
3548 	nexthdr = ip6->nexthdr;
3549 	offset += sizeof(_ipv6h);
3550 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3551 	if (offset < 0)
3552 		goto out;
3553 
3554 	if (proto)
3555 		*proto = nexthdr;
3556 
3557 	switch (nexthdr) {
3558 	case IPPROTO_TCP: {
3559 		struct tcphdr _tcph, *th;
3560 
3561 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3562 		if (th == NULL)
3563 			break;
3564 
3565 		ad->u.net.sport = th->source;
3566 		ad->u.net.dport = th->dest;
3567 		break;
3568 	}
3569 
3570 	case IPPROTO_UDP: {
3571 		struct udphdr _udph, *uh;
3572 
3573 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3574 		if (uh == NULL)
3575 			break;
3576 
3577 		ad->u.net.sport = uh->source;
3578 		ad->u.net.dport = uh->dest;
3579 		break;
3580 	}
3581 
3582 	case IPPROTO_DCCP: {
3583 		struct dccp_hdr _dccph, *dh;
3584 
3585 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3586 		if (dh == NULL)
3587 			break;
3588 
3589 		ad->u.net.sport = dh->dccph_sport;
3590 		ad->u.net.dport = dh->dccph_dport;
3591 		break;
3592 	}
3593 
3594 	/* includes fragments */
3595 	default:
3596 		break;
3597 	}
3598 out:
3599 	return ret;
3600 }
3601 
3602 #endif /* IPV6 */
3603 
3604 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3605 			     char **_addrp, int src, u8 *proto)
3606 {
3607 	char *addrp;
3608 	int ret;
3609 
3610 	switch (ad->u.net.family) {
3611 	case PF_INET:
3612 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3613 		if (ret)
3614 			goto parse_error;
3615 		addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3616 				       &ad->u.net.v4info.daddr);
3617 		goto okay;
3618 
3619 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3620 	case PF_INET6:
3621 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3622 		if (ret)
3623 			goto parse_error;
3624 		addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3625 				       &ad->u.net.v6info.daddr);
3626 		goto okay;
3627 #endif	/* IPV6 */
3628 	default:
3629 		addrp = NULL;
3630 		goto okay;
3631 	}
3632 
3633 parse_error:
3634 	printk(KERN_WARNING
3635 	       "SELinux: failure in selinux_parse_skb(),"
3636 	       " unable to parse packet\n");
3637 	return ret;
3638 
3639 okay:
3640 	if (_addrp)
3641 		*_addrp = addrp;
3642 	return 0;
3643 }
3644 
3645 /**
3646  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3647  * @skb: the packet
3648  * @family: protocol family
3649  * @sid: the packet's peer label SID
3650  *
3651  * Description:
3652  * Check the various different forms of network peer labeling and determine
3653  * the peer label/SID for the packet; most of the magic actually occurs in
3654  * the security server function security_net_peersid_cmp().  The function
3655  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3656  * or -EACCES if @sid is invalid due to inconsistencies with the different
3657  * peer labels.
3658  *
3659  */
3660 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3661 {
3662 	int err;
3663 	u32 xfrm_sid;
3664 	u32 nlbl_sid;
3665 	u32 nlbl_type;
3666 
3667 	selinux_skb_xfrm_sid(skb, &xfrm_sid);
3668 	selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3669 
3670 	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3671 	if (unlikely(err)) {
3672 		printk(KERN_WARNING
3673 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3674 		       " unable to determine packet's peer label\n");
3675 		return -EACCES;
3676 	}
3677 
3678 	return 0;
3679 }
3680 
3681 /* socket security operations */
3682 
3683 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3684 				 u16 secclass, u32 *socksid)
3685 {
3686 	if (tsec->sockcreate_sid > SECSID_NULL) {
3687 		*socksid = tsec->sockcreate_sid;
3688 		return 0;
3689 	}
3690 
3691 	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3692 				       socksid);
3693 }
3694 
3695 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3696 {
3697 	struct sk_security_struct *sksec = sk->sk_security;
3698 	struct common_audit_data ad;
3699 	u32 tsid = task_sid(task);
3700 
3701 	if (sksec->sid == SECINITSID_KERNEL)
3702 		return 0;
3703 
3704 	COMMON_AUDIT_DATA_INIT(&ad, NET);
3705 	ad.u.net.sk = sk;
3706 
3707 	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3708 }
3709 
3710 static int selinux_socket_create(int family, int type,
3711 				 int protocol, int kern)
3712 {
3713 	const struct task_security_struct *tsec = current_security();
3714 	u32 newsid;
3715 	u16 secclass;
3716 	int rc;
3717 
3718 	if (kern)
3719 		return 0;
3720 
3721 	secclass = socket_type_to_security_class(family, type, protocol);
3722 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3723 	if (rc)
3724 		return rc;
3725 
3726 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3727 }
3728 
3729 static int selinux_socket_post_create(struct socket *sock, int family,
3730 				      int type, int protocol, int kern)
3731 {
3732 	const struct task_security_struct *tsec = current_security();
3733 	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3734 	struct sk_security_struct *sksec;
3735 	int err = 0;
3736 
3737 	isec->sclass = socket_type_to_security_class(family, type, protocol);
3738 
3739 	if (kern)
3740 		isec->sid = SECINITSID_KERNEL;
3741 	else {
3742 		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3743 		if (err)
3744 			return err;
3745 	}
3746 
3747 	isec->initialized = 1;
3748 
3749 	if (sock->sk) {
3750 		sksec = sock->sk->sk_security;
3751 		sksec->sid = isec->sid;
3752 		sksec->sclass = isec->sclass;
3753 		err = selinux_netlbl_socket_post_create(sock->sk, family);
3754 	}
3755 
3756 	return err;
3757 }
3758 
3759 /* Range of port numbers used to automatically bind.
3760    Need to determine whether we should perform a name_bind
3761    permission check between the socket and the port number. */
3762 
3763 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3764 {
3765 	struct sock *sk = sock->sk;
3766 	u16 family;
3767 	int err;
3768 
3769 	err = sock_has_perm(current, sk, SOCKET__BIND);
3770 	if (err)
3771 		goto out;
3772 
3773 	/*
3774 	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3775 	 * Multiple address binding for SCTP is not supported yet: we just
3776 	 * check the first address now.
3777 	 */
3778 	family = sk->sk_family;
3779 	if (family == PF_INET || family == PF_INET6) {
3780 		char *addrp;
3781 		struct sk_security_struct *sksec = sk->sk_security;
3782 		struct common_audit_data ad;
3783 		struct sockaddr_in *addr4 = NULL;
3784 		struct sockaddr_in6 *addr6 = NULL;
3785 		unsigned short snum;
3786 		u32 sid, node_perm;
3787 
3788 		if (family == PF_INET) {
3789 			addr4 = (struct sockaddr_in *)address;
3790 			snum = ntohs(addr4->sin_port);
3791 			addrp = (char *)&addr4->sin_addr.s_addr;
3792 		} else {
3793 			addr6 = (struct sockaddr_in6 *)address;
3794 			snum = ntohs(addr6->sin6_port);
3795 			addrp = (char *)&addr6->sin6_addr.s6_addr;
3796 		}
3797 
3798 		if (snum) {
3799 			int low, high;
3800 
3801 			inet_get_local_port_range(&low, &high);
3802 
3803 			if (snum < max(PROT_SOCK, low) || snum > high) {
3804 				err = sel_netport_sid(sk->sk_protocol,
3805 						      snum, &sid);
3806 				if (err)
3807 					goto out;
3808 				COMMON_AUDIT_DATA_INIT(&ad, NET);
3809 				ad.u.net.sport = htons(snum);
3810 				ad.u.net.family = family;
3811 				err = avc_has_perm(sksec->sid, sid,
3812 						   sksec->sclass,
3813 						   SOCKET__NAME_BIND, &ad);
3814 				if (err)
3815 					goto out;
3816 			}
3817 		}
3818 
3819 		switch (sksec->sclass) {
3820 		case SECCLASS_TCP_SOCKET:
3821 			node_perm = TCP_SOCKET__NODE_BIND;
3822 			break;
3823 
3824 		case SECCLASS_UDP_SOCKET:
3825 			node_perm = UDP_SOCKET__NODE_BIND;
3826 			break;
3827 
3828 		case SECCLASS_DCCP_SOCKET:
3829 			node_perm = DCCP_SOCKET__NODE_BIND;
3830 			break;
3831 
3832 		default:
3833 			node_perm = RAWIP_SOCKET__NODE_BIND;
3834 			break;
3835 		}
3836 
3837 		err = sel_netnode_sid(addrp, family, &sid);
3838 		if (err)
3839 			goto out;
3840 
3841 		COMMON_AUDIT_DATA_INIT(&ad, NET);
3842 		ad.u.net.sport = htons(snum);
3843 		ad.u.net.family = family;
3844 
3845 		if (family == PF_INET)
3846 			ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3847 		else
3848 			ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3849 
3850 		err = avc_has_perm(sksec->sid, sid,
3851 				   sksec->sclass, node_perm, &ad);
3852 		if (err)
3853 			goto out;
3854 	}
3855 out:
3856 	return err;
3857 }
3858 
3859 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3860 {
3861 	struct sock *sk = sock->sk;
3862 	struct sk_security_struct *sksec = sk->sk_security;
3863 	int err;
3864 
3865 	err = sock_has_perm(current, sk, SOCKET__CONNECT);
3866 	if (err)
3867 		return err;
3868 
3869 	/*
3870 	 * If a TCP or DCCP socket, check name_connect permission for the port.
3871 	 */
3872 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3873 	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
3874 		struct common_audit_data ad;
3875 		struct sockaddr_in *addr4 = NULL;
3876 		struct sockaddr_in6 *addr6 = NULL;
3877 		unsigned short snum;
3878 		u32 sid, perm;
3879 
3880 		if (sk->sk_family == PF_INET) {
3881 			addr4 = (struct sockaddr_in *)address;
3882 			if (addrlen < sizeof(struct sockaddr_in))
3883 				return -EINVAL;
3884 			snum = ntohs(addr4->sin_port);
3885 		} else {
3886 			addr6 = (struct sockaddr_in6 *)address;
3887 			if (addrlen < SIN6_LEN_RFC2133)
3888 				return -EINVAL;
3889 			snum = ntohs(addr6->sin6_port);
3890 		}
3891 
3892 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3893 		if (err)
3894 			goto out;
3895 
3896 		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3897 		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3898 
3899 		COMMON_AUDIT_DATA_INIT(&ad, NET);
3900 		ad.u.net.dport = htons(snum);
3901 		ad.u.net.family = sk->sk_family;
3902 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3903 		if (err)
3904 			goto out;
3905 	}
3906 
3907 	err = selinux_netlbl_socket_connect(sk, address);
3908 
3909 out:
3910 	return err;
3911 }
3912 
3913 static int selinux_socket_listen(struct socket *sock, int backlog)
3914 {
3915 	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3916 }
3917 
3918 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3919 {
3920 	int err;
3921 	struct inode_security_struct *isec;
3922 	struct inode_security_struct *newisec;
3923 
3924 	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3925 	if (err)
3926 		return err;
3927 
3928 	newisec = SOCK_INODE(newsock)->i_security;
3929 
3930 	isec = SOCK_INODE(sock)->i_security;
3931 	newisec->sclass = isec->sclass;
3932 	newisec->sid = isec->sid;
3933 	newisec->initialized = 1;
3934 
3935 	return 0;
3936 }
3937 
3938 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3939 				  int size)
3940 {
3941 	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3942 }
3943 
3944 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3945 				  int size, int flags)
3946 {
3947 	return sock_has_perm(current, sock->sk, SOCKET__READ);
3948 }
3949 
3950 static int selinux_socket_getsockname(struct socket *sock)
3951 {
3952 	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3953 }
3954 
3955 static int selinux_socket_getpeername(struct socket *sock)
3956 {
3957 	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3958 }
3959 
3960 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3961 {
3962 	int err;
3963 
3964 	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
3965 	if (err)
3966 		return err;
3967 
3968 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
3969 }
3970 
3971 static int selinux_socket_getsockopt(struct socket *sock, int level,
3972 				     int optname)
3973 {
3974 	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
3975 }
3976 
3977 static int selinux_socket_shutdown(struct socket *sock, int how)
3978 {
3979 	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
3980 }
3981 
3982 static int selinux_socket_unix_stream_connect(struct sock *sock,
3983 					      struct sock *other,
3984 					      struct sock *newsk)
3985 {
3986 	struct sk_security_struct *sksec_sock = sock->sk_security;
3987 	struct sk_security_struct *sksec_other = other->sk_security;
3988 	struct sk_security_struct *sksec_new = newsk->sk_security;
3989 	struct common_audit_data ad;
3990 	int err;
3991 
3992 	COMMON_AUDIT_DATA_INIT(&ad, NET);
3993 	ad.u.net.sk = other;
3994 
3995 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
3996 			   sksec_other->sclass,
3997 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3998 	if (err)
3999 		return err;
4000 
4001 	/* server child socket */
4002 	sksec_new->peer_sid = sksec_sock->sid;
4003 	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4004 				    &sksec_new->sid);
4005 	if (err)
4006 		return err;
4007 
4008 	/* connecting socket */
4009 	sksec_sock->peer_sid = sksec_new->sid;
4010 
4011 	return 0;
4012 }
4013 
4014 static int selinux_socket_unix_may_send(struct socket *sock,
4015 					struct socket *other)
4016 {
4017 	struct sk_security_struct *ssec = sock->sk->sk_security;
4018 	struct sk_security_struct *osec = other->sk->sk_security;
4019 	struct common_audit_data ad;
4020 
4021 	COMMON_AUDIT_DATA_INIT(&ad, NET);
4022 	ad.u.net.sk = other->sk;
4023 
4024 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4025 			    &ad);
4026 }
4027 
4028 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4029 				    u32 peer_sid,
4030 				    struct common_audit_data *ad)
4031 {
4032 	int err;
4033 	u32 if_sid;
4034 	u32 node_sid;
4035 
4036 	err = sel_netif_sid(ifindex, &if_sid);
4037 	if (err)
4038 		return err;
4039 	err = avc_has_perm(peer_sid, if_sid,
4040 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4041 	if (err)
4042 		return err;
4043 
4044 	err = sel_netnode_sid(addrp, family, &node_sid);
4045 	if (err)
4046 		return err;
4047 	return avc_has_perm(peer_sid, node_sid,
4048 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4049 }
4050 
4051 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4052 				       u16 family)
4053 {
4054 	int err = 0;
4055 	struct sk_security_struct *sksec = sk->sk_security;
4056 	u32 sk_sid = sksec->sid;
4057 	struct common_audit_data ad;
4058 	char *addrp;
4059 
4060 	COMMON_AUDIT_DATA_INIT(&ad, NET);
4061 	ad.u.net.netif = skb->skb_iif;
4062 	ad.u.net.family = family;
4063 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4064 	if (err)
4065 		return err;
4066 
4067 	if (selinux_secmark_enabled()) {
4068 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4069 				   PACKET__RECV, &ad);
4070 		if (err)
4071 			return err;
4072 	}
4073 
4074 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4075 	if (err)
4076 		return err;
4077 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4078 
4079 	return err;
4080 }
4081 
4082 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4083 {
4084 	int err;
4085 	struct sk_security_struct *sksec = sk->sk_security;
4086 	u16 family = sk->sk_family;
4087 	u32 sk_sid = sksec->sid;
4088 	struct common_audit_data ad;
4089 	char *addrp;
4090 	u8 secmark_active;
4091 	u8 peerlbl_active;
4092 
4093 	if (family != PF_INET && family != PF_INET6)
4094 		return 0;
4095 
4096 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4097 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4098 		family = PF_INET;
4099 
4100 	/* If any sort of compatibility mode is enabled then handoff processing
4101 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4102 	 * special handling.  We do this in an attempt to keep this function
4103 	 * as fast and as clean as possible. */
4104 	if (!selinux_policycap_netpeer)
4105 		return selinux_sock_rcv_skb_compat(sk, skb, family);
4106 
4107 	secmark_active = selinux_secmark_enabled();
4108 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4109 	if (!secmark_active && !peerlbl_active)
4110 		return 0;
4111 
4112 	COMMON_AUDIT_DATA_INIT(&ad, NET);
4113 	ad.u.net.netif = skb->skb_iif;
4114 	ad.u.net.family = family;
4115 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4116 	if (err)
4117 		return err;
4118 
4119 	if (peerlbl_active) {
4120 		u32 peer_sid;
4121 
4122 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4123 		if (err)
4124 			return err;
4125 		err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4126 					       peer_sid, &ad);
4127 		if (err) {
4128 			selinux_netlbl_err(skb, err, 0);
4129 			return err;
4130 		}
4131 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4132 				   PEER__RECV, &ad);
4133 		if (err)
4134 			selinux_netlbl_err(skb, err, 0);
4135 	}
4136 
4137 	if (secmark_active) {
4138 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4139 				   PACKET__RECV, &ad);
4140 		if (err)
4141 			return err;
4142 	}
4143 
4144 	return err;
4145 }
4146 
4147 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4148 					    int __user *optlen, unsigned len)
4149 {
4150 	int err = 0;
4151 	char *scontext;
4152 	u32 scontext_len;
4153 	struct sk_security_struct *sksec = sock->sk->sk_security;
4154 	u32 peer_sid = SECSID_NULL;
4155 
4156 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4157 	    sksec->sclass == SECCLASS_TCP_SOCKET)
4158 		peer_sid = sksec->peer_sid;
4159 	if (peer_sid == SECSID_NULL)
4160 		return -ENOPROTOOPT;
4161 
4162 	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4163 	if (err)
4164 		return err;
4165 
4166 	if (scontext_len > len) {
4167 		err = -ERANGE;
4168 		goto out_len;
4169 	}
4170 
4171 	if (copy_to_user(optval, scontext, scontext_len))
4172 		err = -EFAULT;
4173 
4174 out_len:
4175 	if (put_user(scontext_len, optlen))
4176 		err = -EFAULT;
4177 	kfree(scontext);
4178 	return err;
4179 }
4180 
4181 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4182 {
4183 	u32 peer_secid = SECSID_NULL;
4184 	u16 family;
4185 
4186 	if (skb && skb->protocol == htons(ETH_P_IP))
4187 		family = PF_INET;
4188 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4189 		family = PF_INET6;
4190 	else if (sock)
4191 		family = sock->sk->sk_family;
4192 	else
4193 		goto out;
4194 
4195 	if (sock && family == PF_UNIX)
4196 		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4197 	else if (skb)
4198 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4199 
4200 out:
4201 	*secid = peer_secid;
4202 	if (peer_secid == SECSID_NULL)
4203 		return -EINVAL;
4204 	return 0;
4205 }
4206 
4207 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4208 {
4209 	struct sk_security_struct *sksec;
4210 
4211 	sksec = kzalloc(sizeof(*sksec), priority);
4212 	if (!sksec)
4213 		return -ENOMEM;
4214 
4215 	sksec->peer_sid = SECINITSID_UNLABELED;
4216 	sksec->sid = SECINITSID_UNLABELED;
4217 	selinux_netlbl_sk_security_reset(sksec);
4218 	sk->sk_security = sksec;
4219 
4220 	return 0;
4221 }
4222 
4223 static void selinux_sk_free_security(struct sock *sk)
4224 {
4225 	struct sk_security_struct *sksec = sk->sk_security;
4226 
4227 	sk->sk_security = NULL;
4228 	selinux_netlbl_sk_security_free(sksec);
4229 	kfree(sksec);
4230 }
4231 
4232 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4233 {
4234 	struct sk_security_struct *sksec = sk->sk_security;
4235 	struct sk_security_struct *newsksec = newsk->sk_security;
4236 
4237 	newsksec->sid = sksec->sid;
4238 	newsksec->peer_sid = sksec->peer_sid;
4239 	newsksec->sclass = sksec->sclass;
4240 
4241 	selinux_netlbl_sk_security_reset(newsksec);
4242 }
4243 
4244 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4245 {
4246 	if (!sk)
4247 		*secid = SECINITSID_ANY_SOCKET;
4248 	else {
4249 		struct sk_security_struct *sksec = sk->sk_security;
4250 
4251 		*secid = sksec->sid;
4252 	}
4253 }
4254 
4255 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4256 {
4257 	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4258 	struct sk_security_struct *sksec = sk->sk_security;
4259 
4260 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4261 	    sk->sk_family == PF_UNIX)
4262 		isec->sid = sksec->sid;
4263 	sksec->sclass = isec->sclass;
4264 }
4265 
4266 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4267 				     struct request_sock *req)
4268 {
4269 	struct sk_security_struct *sksec = sk->sk_security;
4270 	int err;
4271 	u16 family = sk->sk_family;
4272 	u32 newsid;
4273 	u32 peersid;
4274 
4275 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4276 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4277 		family = PF_INET;
4278 
4279 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4280 	if (err)
4281 		return err;
4282 	if (peersid == SECSID_NULL) {
4283 		req->secid = sksec->sid;
4284 		req->peer_secid = SECSID_NULL;
4285 	} else {
4286 		err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4287 		if (err)
4288 			return err;
4289 		req->secid = newsid;
4290 		req->peer_secid = peersid;
4291 	}
4292 
4293 	return selinux_netlbl_inet_conn_request(req, family);
4294 }
4295 
4296 static void selinux_inet_csk_clone(struct sock *newsk,
4297 				   const struct request_sock *req)
4298 {
4299 	struct sk_security_struct *newsksec = newsk->sk_security;
4300 
4301 	newsksec->sid = req->secid;
4302 	newsksec->peer_sid = req->peer_secid;
4303 	/* NOTE: Ideally, we should also get the isec->sid for the
4304 	   new socket in sync, but we don't have the isec available yet.
4305 	   So we will wait until sock_graft to do it, by which
4306 	   time it will have been created and available. */
4307 
4308 	/* We don't need to take any sort of lock here as we are the only
4309 	 * thread with access to newsksec */
4310 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4311 }
4312 
4313 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4314 {
4315 	u16 family = sk->sk_family;
4316 	struct sk_security_struct *sksec = sk->sk_security;
4317 
4318 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4319 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4320 		family = PF_INET;
4321 
4322 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4323 }
4324 
4325 static int selinux_secmark_relabel_packet(u32 sid)
4326 {
4327 	const struct task_security_struct *__tsec;
4328 	u32 tsid;
4329 
4330 	__tsec = current_security();
4331 	tsid = __tsec->sid;
4332 
4333 	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4334 }
4335 
4336 static void selinux_secmark_refcount_inc(void)
4337 {
4338 	atomic_inc(&selinux_secmark_refcount);
4339 }
4340 
4341 static void selinux_secmark_refcount_dec(void)
4342 {
4343 	atomic_dec(&selinux_secmark_refcount);
4344 }
4345 
4346 static void selinux_req_classify_flow(const struct request_sock *req,
4347 				      struct flowi *fl)
4348 {
4349 	fl->flowi_secid = req->secid;
4350 }
4351 
4352 static int selinux_tun_dev_create(void)
4353 {
4354 	u32 sid = current_sid();
4355 
4356 	/* we aren't taking into account the "sockcreate" SID since the socket
4357 	 * that is being created here is not a socket in the traditional sense,
4358 	 * instead it is a private sock, accessible only to the kernel, and
4359 	 * representing a wide range of network traffic spanning multiple
4360 	 * connections unlike traditional sockets - check the TUN driver to
4361 	 * get a better understanding of why this socket is special */
4362 
4363 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4364 			    NULL);
4365 }
4366 
4367 static void selinux_tun_dev_post_create(struct sock *sk)
4368 {
4369 	struct sk_security_struct *sksec = sk->sk_security;
4370 
4371 	/* we don't currently perform any NetLabel based labeling here and it
4372 	 * isn't clear that we would want to do so anyway; while we could apply
4373 	 * labeling without the support of the TUN user the resulting labeled
4374 	 * traffic from the other end of the connection would almost certainly
4375 	 * cause confusion to the TUN user that had no idea network labeling
4376 	 * protocols were being used */
4377 
4378 	/* see the comments in selinux_tun_dev_create() about why we don't use
4379 	 * the sockcreate SID here */
4380 
4381 	sksec->sid = current_sid();
4382 	sksec->sclass = SECCLASS_TUN_SOCKET;
4383 }
4384 
4385 static int selinux_tun_dev_attach(struct sock *sk)
4386 {
4387 	struct sk_security_struct *sksec = sk->sk_security;
4388 	u32 sid = current_sid();
4389 	int err;
4390 
4391 	err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4392 			   TUN_SOCKET__RELABELFROM, NULL);
4393 	if (err)
4394 		return err;
4395 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4396 			   TUN_SOCKET__RELABELTO, NULL);
4397 	if (err)
4398 		return err;
4399 
4400 	sksec->sid = sid;
4401 
4402 	return 0;
4403 }
4404 
4405 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4406 {
4407 	int err = 0;
4408 	u32 perm;
4409 	struct nlmsghdr *nlh;
4410 	struct sk_security_struct *sksec = sk->sk_security;
4411 
4412 	if (skb->len < NLMSG_SPACE(0)) {
4413 		err = -EINVAL;
4414 		goto out;
4415 	}
4416 	nlh = nlmsg_hdr(skb);
4417 
4418 	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4419 	if (err) {
4420 		if (err == -EINVAL) {
4421 			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4422 				  "SELinux:  unrecognized netlink message"
4423 				  " type=%hu for sclass=%hu\n",
4424 				  nlh->nlmsg_type, sksec->sclass);
4425 			if (!selinux_enforcing || security_get_allow_unknown())
4426 				err = 0;
4427 		}
4428 
4429 		/* Ignore */
4430 		if (err == -ENOENT)
4431 			err = 0;
4432 		goto out;
4433 	}
4434 
4435 	err = sock_has_perm(current, sk, perm);
4436 out:
4437 	return err;
4438 }
4439 
4440 #ifdef CONFIG_NETFILTER
4441 
4442 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4443 				       u16 family)
4444 {
4445 	int err;
4446 	char *addrp;
4447 	u32 peer_sid;
4448 	struct common_audit_data ad;
4449 	u8 secmark_active;
4450 	u8 netlbl_active;
4451 	u8 peerlbl_active;
4452 
4453 	if (!selinux_policycap_netpeer)
4454 		return NF_ACCEPT;
4455 
4456 	secmark_active = selinux_secmark_enabled();
4457 	netlbl_active = netlbl_enabled();
4458 	peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4459 	if (!secmark_active && !peerlbl_active)
4460 		return NF_ACCEPT;
4461 
4462 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4463 		return NF_DROP;
4464 
4465 	COMMON_AUDIT_DATA_INIT(&ad, NET);
4466 	ad.u.net.netif = ifindex;
4467 	ad.u.net.family = family;
4468 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4469 		return NF_DROP;
4470 
4471 	if (peerlbl_active) {
4472 		err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4473 					       peer_sid, &ad);
4474 		if (err) {
4475 			selinux_netlbl_err(skb, err, 1);
4476 			return NF_DROP;
4477 		}
4478 	}
4479 
4480 	if (secmark_active)
4481 		if (avc_has_perm(peer_sid, skb->secmark,
4482 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4483 			return NF_DROP;
4484 
4485 	if (netlbl_active)
4486 		/* we do this in the FORWARD path and not the POST_ROUTING
4487 		 * path because we want to make sure we apply the necessary
4488 		 * labeling before IPsec is applied so we can leverage AH
4489 		 * protection */
4490 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4491 			return NF_DROP;
4492 
4493 	return NF_ACCEPT;
4494 }
4495 
4496 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4497 					 struct sk_buff *skb,
4498 					 const struct net_device *in,
4499 					 const struct net_device *out,
4500 					 int (*okfn)(struct sk_buff *))
4501 {
4502 	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4503 }
4504 
4505 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4506 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4507 					 struct sk_buff *skb,
4508 					 const struct net_device *in,
4509 					 const struct net_device *out,
4510 					 int (*okfn)(struct sk_buff *))
4511 {
4512 	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4513 }
4514 #endif	/* IPV6 */
4515 
4516 static unsigned int selinux_ip_output(struct sk_buff *skb,
4517 				      u16 family)
4518 {
4519 	u32 sid;
4520 
4521 	if (!netlbl_enabled())
4522 		return NF_ACCEPT;
4523 
4524 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4525 	 * because we want to make sure we apply the necessary labeling
4526 	 * before IPsec is applied so we can leverage AH protection */
4527 	if (skb->sk) {
4528 		struct sk_security_struct *sksec = skb->sk->sk_security;
4529 		sid = sksec->sid;
4530 	} else
4531 		sid = SECINITSID_KERNEL;
4532 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4533 		return NF_DROP;
4534 
4535 	return NF_ACCEPT;
4536 }
4537 
4538 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4539 					struct sk_buff *skb,
4540 					const struct net_device *in,
4541 					const struct net_device *out,
4542 					int (*okfn)(struct sk_buff *))
4543 {
4544 	return selinux_ip_output(skb, PF_INET);
4545 }
4546 
4547 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4548 						int ifindex,
4549 						u16 family)
4550 {
4551 	struct sock *sk = skb->sk;
4552 	struct sk_security_struct *sksec;
4553 	struct common_audit_data ad;
4554 	char *addrp;
4555 	u8 proto;
4556 
4557 	if (sk == NULL)
4558 		return NF_ACCEPT;
4559 	sksec = sk->sk_security;
4560 
4561 	COMMON_AUDIT_DATA_INIT(&ad, NET);
4562 	ad.u.net.netif = ifindex;
4563 	ad.u.net.family = family;
4564 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4565 		return NF_DROP;
4566 
4567 	if (selinux_secmark_enabled())
4568 		if (avc_has_perm(sksec->sid, skb->secmark,
4569 				 SECCLASS_PACKET, PACKET__SEND, &ad))
4570 			return NF_DROP_ERR(-ECONNREFUSED);
4571 
4572 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4573 		return NF_DROP_ERR(-ECONNREFUSED);
4574 
4575 	return NF_ACCEPT;
4576 }
4577 
4578 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4579 					 u16 family)
4580 {
4581 	u32 secmark_perm;
4582 	u32 peer_sid;
4583 	struct sock *sk;
4584 	struct common_audit_data ad;
4585 	char *addrp;
4586 	u8 secmark_active;
4587 	u8 peerlbl_active;
4588 
4589 	/* If any sort of compatibility mode is enabled then handoff processing
4590 	 * to the selinux_ip_postroute_compat() function to deal with the
4591 	 * special handling.  We do this in an attempt to keep this function
4592 	 * as fast and as clean as possible. */
4593 	if (!selinux_policycap_netpeer)
4594 		return selinux_ip_postroute_compat(skb, ifindex, family);
4595 #ifdef CONFIG_XFRM
4596 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4597 	 * packet transformation so allow the packet to pass without any checks
4598 	 * since we'll have another chance to perform access control checks
4599 	 * when the packet is on it's final way out.
4600 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4601 	 *       is NULL, in this case go ahead and apply access control. */
4602 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4603 		return NF_ACCEPT;
4604 #endif
4605 	secmark_active = selinux_secmark_enabled();
4606 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4607 	if (!secmark_active && !peerlbl_active)
4608 		return NF_ACCEPT;
4609 
4610 	/* if the packet is being forwarded then get the peer label from the
4611 	 * packet itself; otherwise check to see if it is from a local
4612 	 * application or the kernel, if from an application get the peer label
4613 	 * from the sending socket, otherwise use the kernel's sid */
4614 	sk = skb->sk;
4615 	if (sk == NULL) {
4616 		if (skb->skb_iif) {
4617 			secmark_perm = PACKET__FORWARD_OUT;
4618 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4619 				return NF_DROP;
4620 		} else {
4621 			secmark_perm = PACKET__SEND;
4622 			peer_sid = SECINITSID_KERNEL;
4623 		}
4624 	} else {
4625 		struct sk_security_struct *sksec = sk->sk_security;
4626 		peer_sid = sksec->sid;
4627 		secmark_perm = PACKET__SEND;
4628 	}
4629 
4630 	COMMON_AUDIT_DATA_INIT(&ad, NET);
4631 	ad.u.net.netif = ifindex;
4632 	ad.u.net.family = family;
4633 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4634 		return NF_DROP;
4635 
4636 	if (secmark_active)
4637 		if (avc_has_perm(peer_sid, skb->secmark,
4638 				 SECCLASS_PACKET, secmark_perm, &ad))
4639 			return NF_DROP_ERR(-ECONNREFUSED);
4640 
4641 	if (peerlbl_active) {
4642 		u32 if_sid;
4643 		u32 node_sid;
4644 
4645 		if (sel_netif_sid(ifindex, &if_sid))
4646 			return NF_DROP;
4647 		if (avc_has_perm(peer_sid, if_sid,
4648 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4649 			return NF_DROP_ERR(-ECONNREFUSED);
4650 
4651 		if (sel_netnode_sid(addrp, family, &node_sid))
4652 			return NF_DROP;
4653 		if (avc_has_perm(peer_sid, node_sid,
4654 				 SECCLASS_NODE, NODE__SENDTO, &ad))
4655 			return NF_DROP_ERR(-ECONNREFUSED);
4656 	}
4657 
4658 	return NF_ACCEPT;
4659 }
4660 
4661 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4662 					   struct sk_buff *skb,
4663 					   const struct net_device *in,
4664 					   const struct net_device *out,
4665 					   int (*okfn)(struct sk_buff *))
4666 {
4667 	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4668 }
4669 
4670 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4671 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4672 					   struct sk_buff *skb,
4673 					   const struct net_device *in,
4674 					   const struct net_device *out,
4675 					   int (*okfn)(struct sk_buff *))
4676 {
4677 	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4678 }
4679 #endif	/* IPV6 */
4680 
4681 #endif	/* CONFIG_NETFILTER */
4682 
4683 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4684 {
4685 	int err;
4686 
4687 	err = cap_netlink_send(sk, skb);
4688 	if (err)
4689 		return err;
4690 
4691 	return selinux_nlmsg_perm(sk, skb);
4692 }
4693 
4694 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4695 {
4696 	int err;
4697 	struct common_audit_data ad;
4698 	u32 sid;
4699 
4700 	err = cap_netlink_recv(skb, capability);
4701 	if (err)
4702 		return err;
4703 
4704 	COMMON_AUDIT_DATA_INIT(&ad, CAP);
4705 	ad.u.cap = capability;
4706 
4707 	security_task_getsecid(current, &sid);
4708 	return avc_has_perm(sid, sid, SECCLASS_CAPABILITY,
4709 			    CAP_TO_MASK(capability), &ad);
4710 }
4711 
4712 static int ipc_alloc_security(struct task_struct *task,
4713 			      struct kern_ipc_perm *perm,
4714 			      u16 sclass)
4715 {
4716 	struct ipc_security_struct *isec;
4717 	u32 sid;
4718 
4719 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4720 	if (!isec)
4721 		return -ENOMEM;
4722 
4723 	sid = task_sid(task);
4724 	isec->sclass = sclass;
4725 	isec->sid = sid;
4726 	perm->security = isec;
4727 
4728 	return 0;
4729 }
4730 
4731 static void ipc_free_security(struct kern_ipc_perm *perm)
4732 {
4733 	struct ipc_security_struct *isec = perm->security;
4734 	perm->security = NULL;
4735 	kfree(isec);
4736 }
4737 
4738 static int msg_msg_alloc_security(struct msg_msg *msg)
4739 {
4740 	struct msg_security_struct *msec;
4741 
4742 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4743 	if (!msec)
4744 		return -ENOMEM;
4745 
4746 	msec->sid = SECINITSID_UNLABELED;
4747 	msg->security = msec;
4748 
4749 	return 0;
4750 }
4751 
4752 static void msg_msg_free_security(struct msg_msg *msg)
4753 {
4754 	struct msg_security_struct *msec = msg->security;
4755 
4756 	msg->security = NULL;
4757 	kfree(msec);
4758 }
4759 
4760 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4761 			u32 perms)
4762 {
4763 	struct ipc_security_struct *isec;
4764 	struct common_audit_data ad;
4765 	u32 sid = current_sid();
4766 
4767 	isec = ipc_perms->security;
4768 
4769 	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4770 	ad.u.ipc_id = ipc_perms->key;
4771 
4772 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4773 }
4774 
4775 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4776 {
4777 	return msg_msg_alloc_security(msg);
4778 }
4779 
4780 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4781 {
4782 	msg_msg_free_security(msg);
4783 }
4784 
4785 /* message queue security operations */
4786 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4787 {
4788 	struct ipc_security_struct *isec;
4789 	struct common_audit_data ad;
4790 	u32 sid = current_sid();
4791 	int rc;
4792 
4793 	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4794 	if (rc)
4795 		return rc;
4796 
4797 	isec = msq->q_perm.security;
4798 
4799 	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4800 	ad.u.ipc_id = msq->q_perm.key;
4801 
4802 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4803 			  MSGQ__CREATE, &ad);
4804 	if (rc) {
4805 		ipc_free_security(&msq->q_perm);
4806 		return rc;
4807 	}
4808 	return 0;
4809 }
4810 
4811 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4812 {
4813 	ipc_free_security(&msq->q_perm);
4814 }
4815 
4816 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4817 {
4818 	struct ipc_security_struct *isec;
4819 	struct common_audit_data ad;
4820 	u32 sid = current_sid();
4821 
4822 	isec = msq->q_perm.security;
4823 
4824 	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4825 	ad.u.ipc_id = msq->q_perm.key;
4826 
4827 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4828 			    MSGQ__ASSOCIATE, &ad);
4829 }
4830 
4831 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4832 {
4833 	int err;
4834 	int perms;
4835 
4836 	switch (cmd) {
4837 	case IPC_INFO:
4838 	case MSG_INFO:
4839 		/* No specific object, just general system-wide information. */
4840 		return task_has_system(current, SYSTEM__IPC_INFO);
4841 	case IPC_STAT:
4842 	case MSG_STAT:
4843 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4844 		break;
4845 	case IPC_SET:
4846 		perms = MSGQ__SETATTR;
4847 		break;
4848 	case IPC_RMID:
4849 		perms = MSGQ__DESTROY;
4850 		break;
4851 	default:
4852 		return 0;
4853 	}
4854 
4855 	err = ipc_has_perm(&msq->q_perm, perms);
4856 	return err;
4857 }
4858 
4859 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4860 {
4861 	struct ipc_security_struct *isec;
4862 	struct msg_security_struct *msec;
4863 	struct common_audit_data ad;
4864 	u32 sid = current_sid();
4865 	int rc;
4866 
4867 	isec = msq->q_perm.security;
4868 	msec = msg->security;
4869 
4870 	/*
4871 	 * First time through, need to assign label to the message
4872 	 */
4873 	if (msec->sid == SECINITSID_UNLABELED) {
4874 		/*
4875 		 * Compute new sid based on current process and
4876 		 * message queue this message will be stored in
4877 		 */
4878 		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4879 					     NULL, &msec->sid);
4880 		if (rc)
4881 			return rc;
4882 	}
4883 
4884 	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4885 	ad.u.ipc_id = msq->q_perm.key;
4886 
4887 	/* Can this process write to the queue? */
4888 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4889 			  MSGQ__WRITE, &ad);
4890 	if (!rc)
4891 		/* Can this process send the message */
4892 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4893 				  MSG__SEND, &ad);
4894 	if (!rc)
4895 		/* Can the message be put in the queue? */
4896 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4897 				  MSGQ__ENQUEUE, &ad);
4898 
4899 	return rc;
4900 }
4901 
4902 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4903 				    struct task_struct *target,
4904 				    long type, int mode)
4905 {
4906 	struct ipc_security_struct *isec;
4907 	struct msg_security_struct *msec;
4908 	struct common_audit_data ad;
4909 	u32 sid = task_sid(target);
4910 	int rc;
4911 
4912 	isec = msq->q_perm.security;
4913 	msec = msg->security;
4914 
4915 	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4916 	ad.u.ipc_id = msq->q_perm.key;
4917 
4918 	rc = avc_has_perm(sid, isec->sid,
4919 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
4920 	if (!rc)
4921 		rc = avc_has_perm(sid, msec->sid,
4922 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
4923 	return rc;
4924 }
4925 
4926 /* Shared Memory security operations */
4927 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4928 {
4929 	struct ipc_security_struct *isec;
4930 	struct common_audit_data ad;
4931 	u32 sid = current_sid();
4932 	int rc;
4933 
4934 	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4935 	if (rc)
4936 		return rc;
4937 
4938 	isec = shp->shm_perm.security;
4939 
4940 	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4941 	ad.u.ipc_id = shp->shm_perm.key;
4942 
4943 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4944 			  SHM__CREATE, &ad);
4945 	if (rc) {
4946 		ipc_free_security(&shp->shm_perm);
4947 		return rc;
4948 	}
4949 	return 0;
4950 }
4951 
4952 static void selinux_shm_free_security(struct shmid_kernel *shp)
4953 {
4954 	ipc_free_security(&shp->shm_perm);
4955 }
4956 
4957 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4958 {
4959 	struct ipc_security_struct *isec;
4960 	struct common_audit_data ad;
4961 	u32 sid = current_sid();
4962 
4963 	isec = shp->shm_perm.security;
4964 
4965 	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4966 	ad.u.ipc_id = shp->shm_perm.key;
4967 
4968 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4969 			    SHM__ASSOCIATE, &ad);
4970 }
4971 
4972 /* Note, at this point, shp is locked down */
4973 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4974 {
4975 	int perms;
4976 	int err;
4977 
4978 	switch (cmd) {
4979 	case IPC_INFO:
4980 	case SHM_INFO:
4981 		/* No specific object, just general system-wide information. */
4982 		return task_has_system(current, SYSTEM__IPC_INFO);
4983 	case IPC_STAT:
4984 	case SHM_STAT:
4985 		perms = SHM__GETATTR | SHM__ASSOCIATE;
4986 		break;
4987 	case IPC_SET:
4988 		perms = SHM__SETATTR;
4989 		break;
4990 	case SHM_LOCK:
4991 	case SHM_UNLOCK:
4992 		perms = SHM__LOCK;
4993 		break;
4994 	case IPC_RMID:
4995 		perms = SHM__DESTROY;
4996 		break;
4997 	default:
4998 		return 0;
4999 	}
5000 
5001 	err = ipc_has_perm(&shp->shm_perm, perms);
5002 	return err;
5003 }
5004 
5005 static int selinux_shm_shmat(struct shmid_kernel *shp,
5006 			     char __user *shmaddr, int shmflg)
5007 {
5008 	u32 perms;
5009 
5010 	if (shmflg & SHM_RDONLY)
5011 		perms = SHM__READ;
5012 	else
5013 		perms = SHM__READ | SHM__WRITE;
5014 
5015 	return ipc_has_perm(&shp->shm_perm, perms);
5016 }
5017 
5018 /* Semaphore security operations */
5019 static int selinux_sem_alloc_security(struct sem_array *sma)
5020 {
5021 	struct ipc_security_struct *isec;
5022 	struct common_audit_data ad;
5023 	u32 sid = current_sid();
5024 	int rc;
5025 
5026 	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5027 	if (rc)
5028 		return rc;
5029 
5030 	isec = sma->sem_perm.security;
5031 
5032 	COMMON_AUDIT_DATA_INIT(&ad, IPC);
5033 	ad.u.ipc_id = sma->sem_perm.key;
5034 
5035 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5036 			  SEM__CREATE, &ad);
5037 	if (rc) {
5038 		ipc_free_security(&sma->sem_perm);
5039 		return rc;
5040 	}
5041 	return 0;
5042 }
5043 
5044 static void selinux_sem_free_security(struct sem_array *sma)
5045 {
5046 	ipc_free_security(&sma->sem_perm);
5047 }
5048 
5049 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5050 {
5051 	struct ipc_security_struct *isec;
5052 	struct common_audit_data ad;
5053 	u32 sid = current_sid();
5054 
5055 	isec = sma->sem_perm.security;
5056 
5057 	COMMON_AUDIT_DATA_INIT(&ad, IPC);
5058 	ad.u.ipc_id = sma->sem_perm.key;
5059 
5060 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5061 			    SEM__ASSOCIATE, &ad);
5062 }
5063 
5064 /* Note, at this point, sma is locked down */
5065 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5066 {
5067 	int err;
5068 	u32 perms;
5069 
5070 	switch (cmd) {
5071 	case IPC_INFO:
5072 	case SEM_INFO:
5073 		/* No specific object, just general system-wide information. */
5074 		return task_has_system(current, SYSTEM__IPC_INFO);
5075 	case GETPID:
5076 	case GETNCNT:
5077 	case GETZCNT:
5078 		perms = SEM__GETATTR;
5079 		break;
5080 	case GETVAL:
5081 	case GETALL:
5082 		perms = SEM__READ;
5083 		break;
5084 	case SETVAL:
5085 	case SETALL:
5086 		perms = SEM__WRITE;
5087 		break;
5088 	case IPC_RMID:
5089 		perms = SEM__DESTROY;
5090 		break;
5091 	case IPC_SET:
5092 		perms = SEM__SETATTR;
5093 		break;
5094 	case IPC_STAT:
5095 	case SEM_STAT:
5096 		perms = SEM__GETATTR | SEM__ASSOCIATE;
5097 		break;
5098 	default:
5099 		return 0;
5100 	}
5101 
5102 	err = ipc_has_perm(&sma->sem_perm, perms);
5103 	return err;
5104 }
5105 
5106 static int selinux_sem_semop(struct sem_array *sma,
5107 			     struct sembuf *sops, unsigned nsops, int alter)
5108 {
5109 	u32 perms;
5110 
5111 	if (alter)
5112 		perms = SEM__READ | SEM__WRITE;
5113 	else
5114 		perms = SEM__READ;
5115 
5116 	return ipc_has_perm(&sma->sem_perm, perms);
5117 }
5118 
5119 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5120 {
5121 	u32 av = 0;
5122 
5123 	av = 0;
5124 	if (flag & S_IRUGO)
5125 		av |= IPC__UNIX_READ;
5126 	if (flag & S_IWUGO)
5127 		av |= IPC__UNIX_WRITE;
5128 
5129 	if (av == 0)
5130 		return 0;
5131 
5132 	return ipc_has_perm(ipcp, av);
5133 }
5134 
5135 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5136 {
5137 	struct ipc_security_struct *isec = ipcp->security;
5138 	*secid = isec->sid;
5139 }
5140 
5141 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5142 {
5143 	if (inode)
5144 		inode_doinit_with_dentry(inode, dentry);
5145 }
5146 
5147 static int selinux_getprocattr(struct task_struct *p,
5148 			       char *name, char **value)
5149 {
5150 	const struct task_security_struct *__tsec;
5151 	u32 sid;
5152 	int error;
5153 	unsigned len;
5154 
5155 	if (current != p) {
5156 		error = current_has_perm(p, PROCESS__GETATTR);
5157 		if (error)
5158 			return error;
5159 	}
5160 
5161 	rcu_read_lock();
5162 	__tsec = __task_cred(p)->security;
5163 
5164 	if (!strcmp(name, "current"))
5165 		sid = __tsec->sid;
5166 	else if (!strcmp(name, "prev"))
5167 		sid = __tsec->osid;
5168 	else if (!strcmp(name, "exec"))
5169 		sid = __tsec->exec_sid;
5170 	else if (!strcmp(name, "fscreate"))
5171 		sid = __tsec->create_sid;
5172 	else if (!strcmp(name, "keycreate"))
5173 		sid = __tsec->keycreate_sid;
5174 	else if (!strcmp(name, "sockcreate"))
5175 		sid = __tsec->sockcreate_sid;
5176 	else
5177 		goto invalid;
5178 	rcu_read_unlock();
5179 
5180 	if (!sid)
5181 		return 0;
5182 
5183 	error = security_sid_to_context(sid, value, &len);
5184 	if (error)
5185 		return error;
5186 	return len;
5187 
5188 invalid:
5189 	rcu_read_unlock();
5190 	return -EINVAL;
5191 }
5192 
5193 static int selinux_setprocattr(struct task_struct *p,
5194 			       char *name, void *value, size_t size)
5195 {
5196 	struct task_security_struct *tsec;
5197 	struct task_struct *tracer;
5198 	struct cred *new;
5199 	u32 sid = 0, ptsid;
5200 	int error;
5201 	char *str = value;
5202 
5203 	if (current != p) {
5204 		/* SELinux only allows a process to change its own
5205 		   security attributes. */
5206 		return -EACCES;
5207 	}
5208 
5209 	/*
5210 	 * Basic control over ability to set these attributes at all.
5211 	 * current == p, but we'll pass them separately in case the
5212 	 * above restriction is ever removed.
5213 	 */
5214 	if (!strcmp(name, "exec"))
5215 		error = current_has_perm(p, PROCESS__SETEXEC);
5216 	else if (!strcmp(name, "fscreate"))
5217 		error = current_has_perm(p, PROCESS__SETFSCREATE);
5218 	else if (!strcmp(name, "keycreate"))
5219 		error = current_has_perm(p, PROCESS__SETKEYCREATE);
5220 	else if (!strcmp(name, "sockcreate"))
5221 		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5222 	else if (!strcmp(name, "current"))
5223 		error = current_has_perm(p, PROCESS__SETCURRENT);
5224 	else
5225 		error = -EINVAL;
5226 	if (error)
5227 		return error;
5228 
5229 	/* Obtain a SID for the context, if one was specified. */
5230 	if (size && str[1] && str[1] != '\n') {
5231 		if (str[size-1] == '\n') {
5232 			str[size-1] = 0;
5233 			size--;
5234 		}
5235 		error = security_context_to_sid(value, size, &sid);
5236 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5237 			if (!capable(CAP_MAC_ADMIN))
5238 				return error;
5239 			error = security_context_to_sid_force(value, size,
5240 							      &sid);
5241 		}
5242 		if (error)
5243 			return error;
5244 	}
5245 
5246 	new = prepare_creds();
5247 	if (!new)
5248 		return -ENOMEM;
5249 
5250 	/* Permission checking based on the specified context is
5251 	   performed during the actual operation (execve,
5252 	   open/mkdir/...), when we know the full context of the
5253 	   operation.  See selinux_bprm_set_creds for the execve
5254 	   checks and may_create for the file creation checks. The
5255 	   operation will then fail if the context is not permitted. */
5256 	tsec = new->security;
5257 	if (!strcmp(name, "exec")) {
5258 		tsec->exec_sid = sid;
5259 	} else if (!strcmp(name, "fscreate")) {
5260 		tsec->create_sid = sid;
5261 	} else if (!strcmp(name, "keycreate")) {
5262 		error = may_create_key(sid, p);
5263 		if (error)
5264 			goto abort_change;
5265 		tsec->keycreate_sid = sid;
5266 	} else if (!strcmp(name, "sockcreate")) {
5267 		tsec->sockcreate_sid = sid;
5268 	} else if (!strcmp(name, "current")) {
5269 		error = -EINVAL;
5270 		if (sid == 0)
5271 			goto abort_change;
5272 
5273 		/* Only allow single threaded processes to change context */
5274 		error = -EPERM;
5275 		if (!current_is_single_threaded()) {
5276 			error = security_bounded_transition(tsec->sid, sid);
5277 			if (error)
5278 				goto abort_change;
5279 		}
5280 
5281 		/* Check permissions for the transition. */
5282 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5283 				     PROCESS__DYNTRANSITION, NULL);
5284 		if (error)
5285 			goto abort_change;
5286 
5287 		/* Check for ptracing, and update the task SID if ok.
5288 		   Otherwise, leave SID unchanged and fail. */
5289 		ptsid = 0;
5290 		task_lock(p);
5291 		tracer = tracehook_tracer_task(p);
5292 		if (tracer)
5293 			ptsid = task_sid(tracer);
5294 		task_unlock(p);
5295 
5296 		if (tracer) {
5297 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5298 					     PROCESS__PTRACE, NULL);
5299 			if (error)
5300 				goto abort_change;
5301 		}
5302 
5303 		tsec->sid = sid;
5304 	} else {
5305 		error = -EINVAL;
5306 		goto abort_change;
5307 	}
5308 
5309 	commit_creds(new);
5310 	return size;
5311 
5312 abort_change:
5313 	abort_creds(new);
5314 	return error;
5315 }
5316 
5317 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5318 {
5319 	return security_sid_to_context(secid, secdata, seclen);
5320 }
5321 
5322 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5323 {
5324 	return security_context_to_sid(secdata, seclen, secid);
5325 }
5326 
5327 static void selinux_release_secctx(char *secdata, u32 seclen)
5328 {
5329 	kfree(secdata);
5330 }
5331 
5332 /*
5333  *	called with inode->i_mutex locked
5334  */
5335 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5336 {
5337 	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5338 }
5339 
5340 /*
5341  *	called with inode->i_mutex locked
5342  */
5343 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5344 {
5345 	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5346 }
5347 
5348 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5349 {
5350 	int len = 0;
5351 	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5352 						ctx, true);
5353 	if (len < 0)
5354 		return len;
5355 	*ctxlen = len;
5356 	return 0;
5357 }
5358 #ifdef CONFIG_KEYS
5359 
5360 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5361 			     unsigned long flags)
5362 {
5363 	const struct task_security_struct *tsec;
5364 	struct key_security_struct *ksec;
5365 
5366 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5367 	if (!ksec)
5368 		return -ENOMEM;
5369 
5370 	tsec = cred->security;
5371 	if (tsec->keycreate_sid)
5372 		ksec->sid = tsec->keycreate_sid;
5373 	else
5374 		ksec->sid = tsec->sid;
5375 
5376 	k->security = ksec;
5377 	return 0;
5378 }
5379 
5380 static void selinux_key_free(struct key *k)
5381 {
5382 	struct key_security_struct *ksec = k->security;
5383 
5384 	k->security = NULL;
5385 	kfree(ksec);
5386 }
5387 
5388 static int selinux_key_permission(key_ref_t key_ref,
5389 				  const struct cred *cred,
5390 				  key_perm_t perm)
5391 {
5392 	struct key *key;
5393 	struct key_security_struct *ksec;
5394 	u32 sid;
5395 
5396 	/* if no specific permissions are requested, we skip the
5397 	   permission check. No serious, additional covert channels
5398 	   appear to be created. */
5399 	if (perm == 0)
5400 		return 0;
5401 
5402 	sid = cred_sid(cred);
5403 
5404 	key = key_ref_to_ptr(key_ref);
5405 	ksec = key->security;
5406 
5407 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5408 }
5409 
5410 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5411 {
5412 	struct key_security_struct *ksec = key->security;
5413 	char *context = NULL;
5414 	unsigned len;
5415 	int rc;
5416 
5417 	rc = security_sid_to_context(ksec->sid, &context, &len);
5418 	if (!rc)
5419 		rc = len;
5420 	*_buffer = context;
5421 	return rc;
5422 }
5423 
5424 #endif
5425 
5426 static struct security_operations selinux_ops = {
5427 	.name =				"selinux",
5428 
5429 	.ptrace_access_check =		selinux_ptrace_access_check,
5430 	.ptrace_traceme =		selinux_ptrace_traceme,
5431 	.capget =			selinux_capget,
5432 	.capset =			selinux_capset,
5433 	.capable =			selinux_capable,
5434 	.quotactl =			selinux_quotactl,
5435 	.quota_on =			selinux_quota_on,
5436 	.syslog =			selinux_syslog,
5437 	.vm_enough_memory =		selinux_vm_enough_memory,
5438 
5439 	.netlink_send =			selinux_netlink_send,
5440 	.netlink_recv =			selinux_netlink_recv,
5441 
5442 	.bprm_set_creds =		selinux_bprm_set_creds,
5443 	.bprm_committing_creds =	selinux_bprm_committing_creds,
5444 	.bprm_committed_creds =		selinux_bprm_committed_creds,
5445 	.bprm_secureexec =		selinux_bprm_secureexec,
5446 
5447 	.sb_alloc_security =		selinux_sb_alloc_security,
5448 	.sb_free_security =		selinux_sb_free_security,
5449 	.sb_copy_data =			selinux_sb_copy_data,
5450 	.sb_remount =			selinux_sb_remount,
5451 	.sb_kern_mount =		selinux_sb_kern_mount,
5452 	.sb_show_options =		selinux_sb_show_options,
5453 	.sb_statfs =			selinux_sb_statfs,
5454 	.sb_mount =			selinux_mount,
5455 	.sb_umount =			selinux_umount,
5456 	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5457 	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5458 	.sb_parse_opts_str = 		selinux_parse_opts_str,
5459 
5460 
5461 	.inode_alloc_security =		selinux_inode_alloc_security,
5462 	.inode_free_security =		selinux_inode_free_security,
5463 	.inode_init_security =		selinux_inode_init_security,
5464 	.inode_create =			selinux_inode_create,
5465 	.inode_link =			selinux_inode_link,
5466 	.inode_unlink =			selinux_inode_unlink,
5467 	.inode_symlink =		selinux_inode_symlink,
5468 	.inode_mkdir =			selinux_inode_mkdir,
5469 	.inode_rmdir =			selinux_inode_rmdir,
5470 	.inode_mknod =			selinux_inode_mknod,
5471 	.inode_rename =			selinux_inode_rename,
5472 	.inode_readlink =		selinux_inode_readlink,
5473 	.inode_follow_link =		selinux_inode_follow_link,
5474 	.inode_permission =		selinux_inode_permission,
5475 	.inode_setattr =		selinux_inode_setattr,
5476 	.inode_getattr =		selinux_inode_getattr,
5477 	.inode_setxattr =		selinux_inode_setxattr,
5478 	.inode_post_setxattr =		selinux_inode_post_setxattr,
5479 	.inode_getxattr =		selinux_inode_getxattr,
5480 	.inode_listxattr =		selinux_inode_listxattr,
5481 	.inode_removexattr =		selinux_inode_removexattr,
5482 	.inode_getsecurity =		selinux_inode_getsecurity,
5483 	.inode_setsecurity =		selinux_inode_setsecurity,
5484 	.inode_listsecurity =		selinux_inode_listsecurity,
5485 	.inode_getsecid =		selinux_inode_getsecid,
5486 
5487 	.file_permission =		selinux_file_permission,
5488 	.file_alloc_security =		selinux_file_alloc_security,
5489 	.file_free_security =		selinux_file_free_security,
5490 	.file_ioctl =			selinux_file_ioctl,
5491 	.file_mmap =			selinux_file_mmap,
5492 	.file_mprotect =		selinux_file_mprotect,
5493 	.file_lock =			selinux_file_lock,
5494 	.file_fcntl =			selinux_file_fcntl,
5495 	.file_set_fowner =		selinux_file_set_fowner,
5496 	.file_send_sigiotask =		selinux_file_send_sigiotask,
5497 	.file_receive =			selinux_file_receive,
5498 
5499 	.dentry_open =			selinux_dentry_open,
5500 
5501 	.task_create =			selinux_task_create,
5502 	.cred_alloc_blank =		selinux_cred_alloc_blank,
5503 	.cred_free =			selinux_cred_free,
5504 	.cred_prepare =			selinux_cred_prepare,
5505 	.cred_transfer =		selinux_cred_transfer,
5506 	.kernel_act_as =		selinux_kernel_act_as,
5507 	.kernel_create_files_as =	selinux_kernel_create_files_as,
5508 	.kernel_module_request =	selinux_kernel_module_request,
5509 	.task_setpgid =			selinux_task_setpgid,
5510 	.task_getpgid =			selinux_task_getpgid,
5511 	.task_getsid =			selinux_task_getsid,
5512 	.task_getsecid =		selinux_task_getsecid,
5513 	.task_setnice =			selinux_task_setnice,
5514 	.task_setioprio =		selinux_task_setioprio,
5515 	.task_getioprio =		selinux_task_getioprio,
5516 	.task_setrlimit =		selinux_task_setrlimit,
5517 	.task_setscheduler =		selinux_task_setscheduler,
5518 	.task_getscheduler =		selinux_task_getscheduler,
5519 	.task_movememory =		selinux_task_movememory,
5520 	.task_kill =			selinux_task_kill,
5521 	.task_wait =			selinux_task_wait,
5522 	.task_to_inode =		selinux_task_to_inode,
5523 
5524 	.ipc_permission =		selinux_ipc_permission,
5525 	.ipc_getsecid =			selinux_ipc_getsecid,
5526 
5527 	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5528 	.msg_msg_free_security =	selinux_msg_msg_free_security,
5529 
5530 	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5531 	.msg_queue_free_security =	selinux_msg_queue_free_security,
5532 	.msg_queue_associate =		selinux_msg_queue_associate,
5533 	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5534 	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5535 	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5536 
5537 	.shm_alloc_security =		selinux_shm_alloc_security,
5538 	.shm_free_security =		selinux_shm_free_security,
5539 	.shm_associate =		selinux_shm_associate,
5540 	.shm_shmctl =			selinux_shm_shmctl,
5541 	.shm_shmat =			selinux_shm_shmat,
5542 
5543 	.sem_alloc_security =		selinux_sem_alloc_security,
5544 	.sem_free_security =		selinux_sem_free_security,
5545 	.sem_associate =		selinux_sem_associate,
5546 	.sem_semctl =			selinux_sem_semctl,
5547 	.sem_semop =			selinux_sem_semop,
5548 
5549 	.d_instantiate =		selinux_d_instantiate,
5550 
5551 	.getprocattr =			selinux_getprocattr,
5552 	.setprocattr =			selinux_setprocattr,
5553 
5554 	.secid_to_secctx =		selinux_secid_to_secctx,
5555 	.secctx_to_secid =		selinux_secctx_to_secid,
5556 	.release_secctx =		selinux_release_secctx,
5557 	.inode_notifysecctx =		selinux_inode_notifysecctx,
5558 	.inode_setsecctx =		selinux_inode_setsecctx,
5559 	.inode_getsecctx =		selinux_inode_getsecctx,
5560 
5561 	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5562 	.unix_may_send =		selinux_socket_unix_may_send,
5563 
5564 	.socket_create =		selinux_socket_create,
5565 	.socket_post_create =		selinux_socket_post_create,
5566 	.socket_bind =			selinux_socket_bind,
5567 	.socket_connect =		selinux_socket_connect,
5568 	.socket_listen =		selinux_socket_listen,
5569 	.socket_accept =		selinux_socket_accept,
5570 	.socket_sendmsg =		selinux_socket_sendmsg,
5571 	.socket_recvmsg =		selinux_socket_recvmsg,
5572 	.socket_getsockname =		selinux_socket_getsockname,
5573 	.socket_getpeername =		selinux_socket_getpeername,
5574 	.socket_getsockopt =		selinux_socket_getsockopt,
5575 	.socket_setsockopt =		selinux_socket_setsockopt,
5576 	.socket_shutdown =		selinux_socket_shutdown,
5577 	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5578 	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5579 	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5580 	.sk_alloc_security =		selinux_sk_alloc_security,
5581 	.sk_free_security =		selinux_sk_free_security,
5582 	.sk_clone_security =		selinux_sk_clone_security,
5583 	.sk_getsecid =			selinux_sk_getsecid,
5584 	.sock_graft =			selinux_sock_graft,
5585 	.inet_conn_request =		selinux_inet_conn_request,
5586 	.inet_csk_clone =		selinux_inet_csk_clone,
5587 	.inet_conn_established =	selinux_inet_conn_established,
5588 	.secmark_relabel_packet =	selinux_secmark_relabel_packet,
5589 	.secmark_refcount_inc =		selinux_secmark_refcount_inc,
5590 	.secmark_refcount_dec =		selinux_secmark_refcount_dec,
5591 	.req_classify_flow =		selinux_req_classify_flow,
5592 	.tun_dev_create =		selinux_tun_dev_create,
5593 	.tun_dev_post_create = 		selinux_tun_dev_post_create,
5594 	.tun_dev_attach =		selinux_tun_dev_attach,
5595 
5596 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5597 	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5598 	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5599 	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5600 	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5601 	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
5602 	.xfrm_state_free_security =	selinux_xfrm_state_free,
5603 	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5604 	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5605 	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5606 	.xfrm_decode_session =		selinux_xfrm_decode_session,
5607 #endif
5608 
5609 #ifdef CONFIG_KEYS
5610 	.key_alloc =			selinux_key_alloc,
5611 	.key_free =			selinux_key_free,
5612 	.key_permission =		selinux_key_permission,
5613 	.key_getsecurity =		selinux_key_getsecurity,
5614 #endif
5615 
5616 #ifdef CONFIG_AUDIT
5617 	.audit_rule_init =		selinux_audit_rule_init,
5618 	.audit_rule_known =		selinux_audit_rule_known,
5619 	.audit_rule_match =		selinux_audit_rule_match,
5620 	.audit_rule_free =		selinux_audit_rule_free,
5621 #endif
5622 };
5623 
5624 static __init int selinux_init(void)
5625 {
5626 	if (!security_module_enable(&selinux_ops)) {
5627 		selinux_enabled = 0;
5628 		return 0;
5629 	}
5630 
5631 	if (!selinux_enabled) {
5632 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5633 		return 0;
5634 	}
5635 
5636 	printk(KERN_INFO "SELinux:  Initializing.\n");
5637 
5638 	/* Set the security state for the initial task. */
5639 	cred_init_security();
5640 
5641 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5642 
5643 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5644 					    sizeof(struct inode_security_struct),
5645 					    0, SLAB_PANIC, NULL);
5646 	avc_init();
5647 
5648 	if (register_security(&selinux_ops))
5649 		panic("SELinux: Unable to register with kernel.\n");
5650 
5651 	if (selinux_enforcing)
5652 		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5653 	else
5654 		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5655 
5656 	return 0;
5657 }
5658 
5659 static void delayed_superblock_init(struct super_block *sb, void *unused)
5660 {
5661 	superblock_doinit(sb, NULL);
5662 }
5663 
5664 void selinux_complete_init(void)
5665 {
5666 	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5667 
5668 	/* Set up any superblocks initialized prior to the policy load. */
5669 	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5670 	iterate_supers(delayed_superblock_init, NULL);
5671 }
5672 
5673 /* SELinux requires early initialization in order to label
5674    all processes and objects when they are created. */
5675 security_initcall(selinux_init);
5676 
5677 #if defined(CONFIG_NETFILTER)
5678 
5679 static struct nf_hook_ops selinux_ipv4_ops[] = {
5680 	{
5681 		.hook =		selinux_ipv4_postroute,
5682 		.owner =	THIS_MODULE,
5683 		.pf =		PF_INET,
5684 		.hooknum =	NF_INET_POST_ROUTING,
5685 		.priority =	NF_IP_PRI_SELINUX_LAST,
5686 	},
5687 	{
5688 		.hook =		selinux_ipv4_forward,
5689 		.owner =	THIS_MODULE,
5690 		.pf =		PF_INET,
5691 		.hooknum =	NF_INET_FORWARD,
5692 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5693 	},
5694 	{
5695 		.hook =		selinux_ipv4_output,
5696 		.owner =	THIS_MODULE,
5697 		.pf =		PF_INET,
5698 		.hooknum =	NF_INET_LOCAL_OUT,
5699 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5700 	}
5701 };
5702 
5703 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5704 
5705 static struct nf_hook_ops selinux_ipv6_ops[] = {
5706 	{
5707 		.hook =		selinux_ipv6_postroute,
5708 		.owner =	THIS_MODULE,
5709 		.pf =		PF_INET6,
5710 		.hooknum =	NF_INET_POST_ROUTING,
5711 		.priority =	NF_IP6_PRI_SELINUX_LAST,
5712 	},
5713 	{
5714 		.hook =		selinux_ipv6_forward,
5715 		.owner =	THIS_MODULE,
5716 		.pf =		PF_INET6,
5717 		.hooknum =	NF_INET_FORWARD,
5718 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
5719 	}
5720 };
5721 
5722 #endif	/* IPV6 */
5723 
5724 static int __init selinux_nf_ip_init(void)
5725 {
5726 	int err = 0;
5727 
5728 	if (!selinux_enabled)
5729 		goto out;
5730 
5731 	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5732 
5733 	err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5734 	if (err)
5735 		panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5736 
5737 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5738 	err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5739 	if (err)
5740 		panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5741 #endif	/* IPV6 */
5742 
5743 out:
5744 	return err;
5745 }
5746 
5747 __initcall(selinux_nf_ip_init);
5748 
5749 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5750 static void selinux_nf_ip_exit(void)
5751 {
5752 	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5753 
5754 	nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5755 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5756 	nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5757 #endif	/* IPV6 */
5758 }
5759 #endif
5760 
5761 #else /* CONFIG_NETFILTER */
5762 
5763 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5764 #define selinux_nf_ip_exit()
5765 #endif
5766 
5767 #endif /* CONFIG_NETFILTER */
5768 
5769 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5770 static int selinux_disabled;
5771 
5772 int selinux_disable(void)
5773 {
5774 	extern void exit_sel_fs(void);
5775 
5776 	if (ss_initialized) {
5777 		/* Not permitted after initial policy load. */
5778 		return -EINVAL;
5779 	}
5780 
5781 	if (selinux_disabled) {
5782 		/* Only do this once. */
5783 		return -EINVAL;
5784 	}
5785 
5786 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5787 
5788 	selinux_disabled = 1;
5789 	selinux_enabled = 0;
5790 
5791 	reset_security_ops();
5792 
5793 	/* Try to destroy the avc node cache */
5794 	avc_disable();
5795 
5796 	/* Unregister netfilter hooks. */
5797 	selinux_nf_ip_exit();
5798 
5799 	/* Unregister selinuxfs. */
5800 	exit_sel_fs();
5801 
5802 	return 0;
5803 }
5804 #endif
5805