xref: /linux/security/selinux/hooks.c (revision 99b5aa3c10c7cff1e97239fda93649222fc12d25)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14  *                          <dgoeddel@trustedcs.com>
15  *  Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
16  *                     Paul Moore, <paul.moore@hp.com>
17  *
18  *	This program is free software; you can redistribute it and/or modify
19  *	it under the terms of the GNU General Public License version 2,
20  *      as published by the Free Software Foundation.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/errno.h>
28 #include <linux/sched.h>
29 #include <linux/security.h>
30 #include <linux/xattr.h>
31 #include <linux/capability.h>
32 #include <linux/unistd.h>
33 #include <linux/mm.h>
34 #include <linux/mman.h>
35 #include <linux/slab.h>
36 #include <linux/pagemap.h>
37 #include <linux/swap.h>
38 #include <linux/smp_lock.h>
39 #include <linux/spinlock.h>
40 #include <linux/syscalls.h>
41 #include <linux/file.h>
42 #include <linux/namei.h>
43 #include <linux/mount.h>
44 #include <linux/ext2_fs.h>
45 #include <linux/proc_fs.h>
46 #include <linux/kd.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>		/* for sysctl_local_port_range[] */
52 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
53 #include <asm/uaccess.h>
54 #include <asm/ioctls.h>
55 #include <linux/bitops.h>
56 #include <linux/interrupt.h>
57 #include <linux/netdevice.h>	/* for network interface checks */
58 #include <linux/netlink.h>
59 #include <linux/tcp.h>
60 #include <linux/udp.h>
61 #include <linux/dccp.h>
62 #include <linux/quota.h>
63 #include <linux/un.h>		/* for Unix socket types */
64 #include <net/af_unix.h>	/* for Unix socket types */
65 #include <linux/parser.h>
66 #include <linux/nfs_mount.h>
67 #include <net/ipv6.h>
68 #include <linux/hugetlb.h>
69 #include <linux/personality.h>
70 #include <linux/sysctl.h>
71 #include <linux/audit.h>
72 #include <linux/string.h>
73 #include <linux/selinux.h>
74 #include <linux/mutex.h>
75 
76 #include "avc.h"
77 #include "objsec.h"
78 #include "netif.h"
79 #include "xfrm.h"
80 #include "selinux_netlabel.h"
81 
82 #define XATTR_SELINUX_SUFFIX "selinux"
83 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
84 
85 extern unsigned int policydb_loaded_version;
86 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
87 extern int selinux_compat_net;
88 
89 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
90 int selinux_enforcing = 0;
91 
92 static int __init enforcing_setup(char *str)
93 {
94 	selinux_enforcing = simple_strtol(str,NULL,0);
95 	return 1;
96 }
97 __setup("enforcing=", enforcing_setup);
98 #endif
99 
100 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
101 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
102 
103 static int __init selinux_enabled_setup(char *str)
104 {
105 	selinux_enabled = simple_strtol(str, NULL, 0);
106 	return 1;
107 }
108 __setup("selinux=", selinux_enabled_setup);
109 #else
110 int selinux_enabled = 1;
111 #endif
112 
113 /* Original (dummy) security module. */
114 static struct security_operations *original_ops = NULL;
115 
116 /* Minimal support for a secondary security module,
117    just to allow the use of the dummy or capability modules.
118    The owlsm module can alternatively be used as a secondary
119    module as long as CONFIG_OWLSM_FD is not enabled. */
120 static struct security_operations *secondary_ops = NULL;
121 
122 /* Lists of inode and superblock security structures initialized
123    before the policy was loaded. */
124 static LIST_HEAD(superblock_security_head);
125 static DEFINE_SPINLOCK(sb_security_lock);
126 
127 static struct kmem_cache *sel_inode_cache;
128 
129 /* Return security context for a given sid or just the context
130    length if the buffer is null or length is 0 */
131 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
132 {
133 	char *context;
134 	unsigned len;
135 	int rc;
136 
137 	rc = security_sid_to_context(sid, &context, &len);
138 	if (rc)
139 		return rc;
140 
141 	if (!buffer || !size)
142 		goto getsecurity_exit;
143 
144 	if (size < len) {
145 		len = -ERANGE;
146 		goto getsecurity_exit;
147 	}
148 	memcpy(buffer, context, len);
149 
150 getsecurity_exit:
151 	kfree(context);
152 	return len;
153 }
154 
155 /* Allocate and free functions for each kind of security blob. */
156 
157 static int task_alloc_security(struct task_struct *task)
158 {
159 	struct task_security_struct *tsec;
160 
161 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
162 	if (!tsec)
163 		return -ENOMEM;
164 
165 	tsec->task = task;
166 	tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
167 	task->security = tsec;
168 
169 	return 0;
170 }
171 
172 static void task_free_security(struct task_struct *task)
173 {
174 	struct task_security_struct *tsec = task->security;
175 	task->security = NULL;
176 	kfree(tsec);
177 }
178 
179 static int inode_alloc_security(struct inode *inode)
180 {
181 	struct task_security_struct *tsec = current->security;
182 	struct inode_security_struct *isec;
183 
184 	isec = kmem_cache_alloc(sel_inode_cache, GFP_KERNEL);
185 	if (!isec)
186 		return -ENOMEM;
187 
188 	memset(isec, 0, sizeof(*isec));
189 	mutex_init(&isec->lock);
190 	INIT_LIST_HEAD(&isec->list);
191 	isec->inode = inode;
192 	isec->sid = SECINITSID_UNLABELED;
193 	isec->sclass = SECCLASS_FILE;
194 	isec->task_sid = tsec->sid;
195 	inode->i_security = isec;
196 
197 	return 0;
198 }
199 
200 static void inode_free_security(struct inode *inode)
201 {
202 	struct inode_security_struct *isec = inode->i_security;
203 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
204 
205 	spin_lock(&sbsec->isec_lock);
206 	if (!list_empty(&isec->list))
207 		list_del_init(&isec->list);
208 	spin_unlock(&sbsec->isec_lock);
209 
210 	inode->i_security = NULL;
211 	kmem_cache_free(sel_inode_cache, isec);
212 }
213 
214 static int file_alloc_security(struct file *file)
215 {
216 	struct task_security_struct *tsec = current->security;
217 	struct file_security_struct *fsec;
218 
219 	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
220 	if (!fsec)
221 		return -ENOMEM;
222 
223 	fsec->file = file;
224 	fsec->sid = tsec->sid;
225 	fsec->fown_sid = tsec->sid;
226 	file->f_security = fsec;
227 
228 	return 0;
229 }
230 
231 static void file_free_security(struct file *file)
232 {
233 	struct file_security_struct *fsec = file->f_security;
234 	file->f_security = NULL;
235 	kfree(fsec);
236 }
237 
238 static int superblock_alloc_security(struct super_block *sb)
239 {
240 	struct superblock_security_struct *sbsec;
241 
242 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
243 	if (!sbsec)
244 		return -ENOMEM;
245 
246 	mutex_init(&sbsec->lock);
247 	INIT_LIST_HEAD(&sbsec->list);
248 	INIT_LIST_HEAD(&sbsec->isec_head);
249 	spin_lock_init(&sbsec->isec_lock);
250 	sbsec->sb = sb;
251 	sbsec->sid = SECINITSID_UNLABELED;
252 	sbsec->def_sid = SECINITSID_FILE;
253 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
254 	sb->s_security = sbsec;
255 
256 	return 0;
257 }
258 
259 static void superblock_free_security(struct super_block *sb)
260 {
261 	struct superblock_security_struct *sbsec = sb->s_security;
262 
263 	spin_lock(&sb_security_lock);
264 	if (!list_empty(&sbsec->list))
265 		list_del_init(&sbsec->list);
266 	spin_unlock(&sb_security_lock);
267 
268 	sb->s_security = NULL;
269 	kfree(sbsec);
270 }
271 
272 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
273 {
274 	struct sk_security_struct *ssec;
275 
276 	ssec = kzalloc(sizeof(*ssec), priority);
277 	if (!ssec)
278 		return -ENOMEM;
279 
280 	ssec->sk = sk;
281 	ssec->peer_sid = SECINITSID_UNLABELED;
282 	ssec->sid = SECINITSID_UNLABELED;
283 	sk->sk_security = ssec;
284 
285 	selinux_netlbl_sk_security_init(ssec, family);
286 
287 	return 0;
288 }
289 
290 static void sk_free_security(struct sock *sk)
291 {
292 	struct sk_security_struct *ssec = sk->sk_security;
293 
294 	sk->sk_security = NULL;
295 	kfree(ssec);
296 }
297 
298 /* The security server must be initialized before
299    any labeling or access decisions can be provided. */
300 extern int ss_initialized;
301 
302 /* The file system's label must be initialized prior to use. */
303 
304 static char *labeling_behaviors[6] = {
305 	"uses xattr",
306 	"uses transition SIDs",
307 	"uses task SIDs",
308 	"uses genfs_contexts",
309 	"not configured for labeling",
310 	"uses mountpoint labeling",
311 };
312 
313 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
314 
315 static inline int inode_doinit(struct inode *inode)
316 {
317 	return inode_doinit_with_dentry(inode, NULL);
318 }
319 
320 enum {
321 	Opt_context = 1,
322 	Opt_fscontext = 2,
323 	Opt_defcontext = 4,
324 	Opt_rootcontext = 8,
325 };
326 
327 static match_table_t tokens = {
328 	{Opt_context, "context=%s"},
329 	{Opt_fscontext, "fscontext=%s"},
330 	{Opt_defcontext, "defcontext=%s"},
331 	{Opt_rootcontext, "rootcontext=%s"},
332 };
333 
334 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
335 
336 static int may_context_mount_sb_relabel(u32 sid,
337 			struct superblock_security_struct *sbsec,
338 			struct task_security_struct *tsec)
339 {
340 	int rc;
341 
342 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
343 			  FILESYSTEM__RELABELFROM, NULL);
344 	if (rc)
345 		return rc;
346 
347 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
348 			  FILESYSTEM__RELABELTO, NULL);
349 	return rc;
350 }
351 
352 static int may_context_mount_inode_relabel(u32 sid,
353 			struct superblock_security_struct *sbsec,
354 			struct task_security_struct *tsec)
355 {
356 	int rc;
357 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
358 			  FILESYSTEM__RELABELFROM, NULL);
359 	if (rc)
360 		return rc;
361 
362 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
363 			  FILESYSTEM__ASSOCIATE, NULL);
364 	return rc;
365 }
366 
367 static int try_context_mount(struct super_block *sb, void *data)
368 {
369 	char *context = NULL, *defcontext = NULL;
370 	char *fscontext = NULL, *rootcontext = NULL;
371 	const char *name;
372 	u32 sid;
373 	int alloc = 0, rc = 0, seen = 0;
374 	struct task_security_struct *tsec = current->security;
375 	struct superblock_security_struct *sbsec = sb->s_security;
376 
377 	if (!data)
378 		goto out;
379 
380 	name = sb->s_type->name;
381 
382 	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
383 
384 		/* NFS we understand. */
385 		if (!strcmp(name, "nfs")) {
386 			struct nfs_mount_data *d = data;
387 
388 			if (d->version <  NFS_MOUNT_VERSION)
389 				goto out;
390 
391 			if (d->context[0]) {
392 				context = d->context;
393 				seen |= Opt_context;
394 			}
395 		} else
396 			goto out;
397 
398 	} else {
399 		/* Standard string-based options. */
400 		char *p, *options = data;
401 
402 		while ((p = strsep(&options, "|")) != NULL) {
403 			int token;
404 			substring_t args[MAX_OPT_ARGS];
405 
406 			if (!*p)
407 				continue;
408 
409 			token = match_token(p, tokens, args);
410 
411 			switch (token) {
412 			case Opt_context:
413 				if (seen & (Opt_context|Opt_defcontext)) {
414 					rc = -EINVAL;
415 					printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
416 					goto out_free;
417 				}
418 				context = match_strdup(&args[0]);
419 				if (!context) {
420 					rc = -ENOMEM;
421 					goto out_free;
422 				}
423 				if (!alloc)
424 					alloc = 1;
425 				seen |= Opt_context;
426 				break;
427 
428 			case Opt_fscontext:
429 				if (seen & Opt_fscontext) {
430 					rc = -EINVAL;
431 					printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
432 					goto out_free;
433 				}
434 				fscontext = match_strdup(&args[0]);
435 				if (!fscontext) {
436 					rc = -ENOMEM;
437 					goto out_free;
438 				}
439 				if (!alloc)
440 					alloc = 1;
441 				seen |= Opt_fscontext;
442 				break;
443 
444 			case Opt_rootcontext:
445 				if (seen & Opt_rootcontext) {
446 					rc = -EINVAL;
447 					printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
448 					goto out_free;
449 				}
450 				rootcontext = match_strdup(&args[0]);
451 				if (!rootcontext) {
452 					rc = -ENOMEM;
453 					goto out_free;
454 				}
455 				if (!alloc)
456 					alloc = 1;
457 				seen |= Opt_rootcontext;
458 				break;
459 
460 			case Opt_defcontext:
461 				if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
462 					rc = -EINVAL;
463 					printk(KERN_WARNING "SELinux:  "
464 					       "defcontext option is invalid "
465 					       "for this filesystem type\n");
466 					goto out_free;
467 				}
468 				if (seen & (Opt_context|Opt_defcontext)) {
469 					rc = -EINVAL;
470 					printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
471 					goto out_free;
472 				}
473 				defcontext = match_strdup(&args[0]);
474 				if (!defcontext) {
475 					rc = -ENOMEM;
476 					goto out_free;
477 				}
478 				if (!alloc)
479 					alloc = 1;
480 				seen |= Opt_defcontext;
481 				break;
482 
483 			default:
484 				rc = -EINVAL;
485 				printk(KERN_WARNING "SELinux:  unknown mount "
486 				       "option\n");
487 				goto out_free;
488 
489 			}
490 		}
491 	}
492 
493 	if (!seen)
494 		goto out;
495 
496 	/* sets the context of the superblock for the fs being mounted. */
497 	if (fscontext) {
498 		rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
499 		if (rc) {
500 			printk(KERN_WARNING "SELinux: security_context_to_sid"
501 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
502 			       fscontext, sb->s_id, name, rc);
503 			goto out_free;
504 		}
505 
506 		rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
507 		if (rc)
508 			goto out_free;
509 
510 		sbsec->sid = sid;
511 	}
512 
513 	/*
514 	 * Switch to using mount point labeling behavior.
515 	 * sets the label used on all file below the mountpoint, and will set
516 	 * the superblock context if not already set.
517 	 */
518 	if (context) {
519 		rc = security_context_to_sid(context, strlen(context), &sid);
520 		if (rc) {
521 			printk(KERN_WARNING "SELinux: security_context_to_sid"
522 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
523 			       context, sb->s_id, name, rc);
524 			goto out_free;
525 		}
526 
527 		if (!fscontext) {
528 			rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
529 			if (rc)
530 				goto out_free;
531 			sbsec->sid = sid;
532 		} else {
533 			rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
534 			if (rc)
535 				goto out_free;
536 		}
537 		sbsec->mntpoint_sid = sid;
538 
539 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
540 	}
541 
542 	if (rootcontext) {
543 		struct inode *inode = sb->s_root->d_inode;
544 		struct inode_security_struct *isec = inode->i_security;
545 		rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
546 		if (rc) {
547 			printk(KERN_WARNING "SELinux: security_context_to_sid"
548 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
549 			       rootcontext, sb->s_id, name, rc);
550 			goto out_free;
551 		}
552 
553 		rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
554 		if (rc)
555 			goto out_free;
556 
557 		isec->sid = sid;
558 		isec->initialized = 1;
559 	}
560 
561 	if (defcontext) {
562 		rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
563 		if (rc) {
564 			printk(KERN_WARNING "SELinux: security_context_to_sid"
565 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
566 			       defcontext, sb->s_id, name, rc);
567 			goto out_free;
568 		}
569 
570 		if (sid == sbsec->def_sid)
571 			goto out_free;
572 
573 		rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
574 		if (rc)
575 			goto out_free;
576 
577 		sbsec->def_sid = sid;
578 	}
579 
580 out_free:
581 	if (alloc) {
582 		kfree(context);
583 		kfree(defcontext);
584 		kfree(fscontext);
585 		kfree(rootcontext);
586 	}
587 out:
588 	return rc;
589 }
590 
591 static int superblock_doinit(struct super_block *sb, void *data)
592 {
593 	struct superblock_security_struct *sbsec = sb->s_security;
594 	struct dentry *root = sb->s_root;
595 	struct inode *inode = root->d_inode;
596 	int rc = 0;
597 
598 	mutex_lock(&sbsec->lock);
599 	if (sbsec->initialized)
600 		goto out;
601 
602 	if (!ss_initialized) {
603 		/* Defer initialization until selinux_complete_init,
604 		   after the initial policy is loaded and the security
605 		   server is ready to handle calls. */
606 		spin_lock(&sb_security_lock);
607 		if (list_empty(&sbsec->list))
608 			list_add(&sbsec->list, &superblock_security_head);
609 		spin_unlock(&sb_security_lock);
610 		goto out;
611 	}
612 
613 	/* Determine the labeling behavior to use for this filesystem type. */
614 	rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
615 	if (rc) {
616 		printk(KERN_WARNING "%s:  security_fs_use(%s) returned %d\n",
617 		       __FUNCTION__, sb->s_type->name, rc);
618 		goto out;
619 	}
620 
621 	rc = try_context_mount(sb, data);
622 	if (rc)
623 		goto out;
624 
625 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
626 		/* Make sure that the xattr handler exists and that no
627 		   error other than -ENODATA is returned by getxattr on
628 		   the root directory.  -ENODATA is ok, as this may be
629 		   the first boot of the SELinux kernel before we have
630 		   assigned xattr values to the filesystem. */
631 		if (!inode->i_op->getxattr) {
632 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
633 			       "xattr support\n", sb->s_id, sb->s_type->name);
634 			rc = -EOPNOTSUPP;
635 			goto out;
636 		}
637 		rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
638 		if (rc < 0 && rc != -ENODATA) {
639 			if (rc == -EOPNOTSUPP)
640 				printk(KERN_WARNING "SELinux: (dev %s, type "
641 				       "%s) has no security xattr handler\n",
642 				       sb->s_id, sb->s_type->name);
643 			else
644 				printk(KERN_WARNING "SELinux: (dev %s, type "
645 				       "%s) getxattr errno %d\n", sb->s_id,
646 				       sb->s_type->name, -rc);
647 			goto out;
648 		}
649 	}
650 
651 	if (strcmp(sb->s_type->name, "proc") == 0)
652 		sbsec->proc = 1;
653 
654 	sbsec->initialized = 1;
655 
656 	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
657 		printk(KERN_INFO "SELinux: initialized (dev %s, type %s), unknown behavior\n",
658 		       sb->s_id, sb->s_type->name);
659 	}
660 	else {
661 		printk(KERN_INFO "SELinux: initialized (dev %s, type %s), %s\n",
662 		       sb->s_id, sb->s_type->name,
663 		       labeling_behaviors[sbsec->behavior-1]);
664 	}
665 
666 	/* Initialize the root inode. */
667 	rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
668 
669 	/* Initialize any other inodes associated with the superblock, e.g.
670 	   inodes created prior to initial policy load or inodes created
671 	   during get_sb by a pseudo filesystem that directly
672 	   populates itself. */
673 	spin_lock(&sbsec->isec_lock);
674 next_inode:
675 	if (!list_empty(&sbsec->isec_head)) {
676 		struct inode_security_struct *isec =
677 				list_entry(sbsec->isec_head.next,
678 				           struct inode_security_struct, list);
679 		struct inode *inode = isec->inode;
680 		spin_unlock(&sbsec->isec_lock);
681 		inode = igrab(inode);
682 		if (inode) {
683 			if (!IS_PRIVATE (inode))
684 				inode_doinit(inode);
685 			iput(inode);
686 		}
687 		spin_lock(&sbsec->isec_lock);
688 		list_del_init(&isec->list);
689 		goto next_inode;
690 	}
691 	spin_unlock(&sbsec->isec_lock);
692 out:
693 	mutex_unlock(&sbsec->lock);
694 	return rc;
695 }
696 
697 static inline u16 inode_mode_to_security_class(umode_t mode)
698 {
699 	switch (mode & S_IFMT) {
700 	case S_IFSOCK:
701 		return SECCLASS_SOCK_FILE;
702 	case S_IFLNK:
703 		return SECCLASS_LNK_FILE;
704 	case S_IFREG:
705 		return SECCLASS_FILE;
706 	case S_IFBLK:
707 		return SECCLASS_BLK_FILE;
708 	case S_IFDIR:
709 		return SECCLASS_DIR;
710 	case S_IFCHR:
711 		return SECCLASS_CHR_FILE;
712 	case S_IFIFO:
713 		return SECCLASS_FIFO_FILE;
714 
715 	}
716 
717 	return SECCLASS_FILE;
718 }
719 
720 static inline int default_protocol_stream(int protocol)
721 {
722 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
723 }
724 
725 static inline int default_protocol_dgram(int protocol)
726 {
727 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
728 }
729 
730 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
731 {
732 	switch (family) {
733 	case PF_UNIX:
734 		switch (type) {
735 		case SOCK_STREAM:
736 		case SOCK_SEQPACKET:
737 			return SECCLASS_UNIX_STREAM_SOCKET;
738 		case SOCK_DGRAM:
739 			return SECCLASS_UNIX_DGRAM_SOCKET;
740 		}
741 		break;
742 	case PF_INET:
743 	case PF_INET6:
744 		switch (type) {
745 		case SOCK_STREAM:
746 			if (default_protocol_stream(protocol))
747 				return SECCLASS_TCP_SOCKET;
748 			else
749 				return SECCLASS_RAWIP_SOCKET;
750 		case SOCK_DGRAM:
751 			if (default_protocol_dgram(protocol))
752 				return SECCLASS_UDP_SOCKET;
753 			else
754 				return SECCLASS_RAWIP_SOCKET;
755 		case SOCK_DCCP:
756 			return SECCLASS_DCCP_SOCKET;
757 		default:
758 			return SECCLASS_RAWIP_SOCKET;
759 		}
760 		break;
761 	case PF_NETLINK:
762 		switch (protocol) {
763 		case NETLINK_ROUTE:
764 			return SECCLASS_NETLINK_ROUTE_SOCKET;
765 		case NETLINK_FIREWALL:
766 			return SECCLASS_NETLINK_FIREWALL_SOCKET;
767 		case NETLINK_INET_DIAG:
768 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
769 		case NETLINK_NFLOG:
770 			return SECCLASS_NETLINK_NFLOG_SOCKET;
771 		case NETLINK_XFRM:
772 			return SECCLASS_NETLINK_XFRM_SOCKET;
773 		case NETLINK_SELINUX:
774 			return SECCLASS_NETLINK_SELINUX_SOCKET;
775 		case NETLINK_AUDIT:
776 			return SECCLASS_NETLINK_AUDIT_SOCKET;
777 		case NETLINK_IP6_FW:
778 			return SECCLASS_NETLINK_IP6FW_SOCKET;
779 		case NETLINK_DNRTMSG:
780 			return SECCLASS_NETLINK_DNRT_SOCKET;
781 		case NETLINK_KOBJECT_UEVENT:
782 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
783 		default:
784 			return SECCLASS_NETLINK_SOCKET;
785 		}
786 	case PF_PACKET:
787 		return SECCLASS_PACKET_SOCKET;
788 	case PF_KEY:
789 		return SECCLASS_KEY_SOCKET;
790 	case PF_APPLETALK:
791 		return SECCLASS_APPLETALK_SOCKET;
792 	}
793 
794 	return SECCLASS_SOCKET;
795 }
796 
797 #ifdef CONFIG_PROC_FS
798 static int selinux_proc_get_sid(struct proc_dir_entry *de,
799 				u16 tclass,
800 				u32 *sid)
801 {
802 	int buflen, rc;
803 	char *buffer, *path, *end;
804 
805 	buffer = (char*)__get_free_page(GFP_KERNEL);
806 	if (!buffer)
807 		return -ENOMEM;
808 
809 	buflen = PAGE_SIZE;
810 	end = buffer+buflen;
811 	*--end = '\0';
812 	buflen--;
813 	path = end-1;
814 	*path = '/';
815 	while (de && de != de->parent) {
816 		buflen -= de->namelen + 1;
817 		if (buflen < 0)
818 			break;
819 		end -= de->namelen;
820 		memcpy(end, de->name, de->namelen);
821 		*--end = '/';
822 		path = end;
823 		de = de->parent;
824 	}
825 	rc = security_genfs_sid("proc", path, tclass, sid);
826 	free_page((unsigned long)buffer);
827 	return rc;
828 }
829 #else
830 static int selinux_proc_get_sid(struct proc_dir_entry *de,
831 				u16 tclass,
832 				u32 *sid)
833 {
834 	return -EINVAL;
835 }
836 #endif
837 
838 /* The inode's security attributes must be initialized before first use. */
839 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
840 {
841 	struct superblock_security_struct *sbsec = NULL;
842 	struct inode_security_struct *isec = inode->i_security;
843 	u32 sid;
844 	struct dentry *dentry;
845 #define INITCONTEXTLEN 255
846 	char *context = NULL;
847 	unsigned len = 0;
848 	int rc = 0;
849 
850 	if (isec->initialized)
851 		goto out;
852 
853 	mutex_lock(&isec->lock);
854 	if (isec->initialized)
855 		goto out_unlock;
856 
857 	sbsec = inode->i_sb->s_security;
858 	if (!sbsec->initialized) {
859 		/* Defer initialization until selinux_complete_init,
860 		   after the initial policy is loaded and the security
861 		   server is ready to handle calls. */
862 		spin_lock(&sbsec->isec_lock);
863 		if (list_empty(&isec->list))
864 			list_add(&isec->list, &sbsec->isec_head);
865 		spin_unlock(&sbsec->isec_lock);
866 		goto out_unlock;
867 	}
868 
869 	switch (sbsec->behavior) {
870 	case SECURITY_FS_USE_XATTR:
871 		if (!inode->i_op->getxattr) {
872 			isec->sid = sbsec->def_sid;
873 			break;
874 		}
875 
876 		/* Need a dentry, since the xattr API requires one.
877 		   Life would be simpler if we could just pass the inode. */
878 		if (opt_dentry) {
879 			/* Called from d_instantiate or d_splice_alias. */
880 			dentry = dget(opt_dentry);
881 		} else {
882 			/* Called from selinux_complete_init, try to find a dentry. */
883 			dentry = d_find_alias(inode);
884 		}
885 		if (!dentry) {
886 			printk(KERN_WARNING "%s:  no dentry for dev=%s "
887 			       "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
888 			       inode->i_ino);
889 			goto out_unlock;
890 		}
891 
892 		len = INITCONTEXTLEN;
893 		context = kmalloc(len, GFP_KERNEL);
894 		if (!context) {
895 			rc = -ENOMEM;
896 			dput(dentry);
897 			goto out_unlock;
898 		}
899 		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
900 					   context, len);
901 		if (rc == -ERANGE) {
902 			/* Need a larger buffer.  Query for the right size. */
903 			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
904 						   NULL, 0);
905 			if (rc < 0) {
906 				dput(dentry);
907 				goto out_unlock;
908 			}
909 			kfree(context);
910 			len = rc;
911 			context = kmalloc(len, GFP_KERNEL);
912 			if (!context) {
913 				rc = -ENOMEM;
914 				dput(dentry);
915 				goto out_unlock;
916 			}
917 			rc = inode->i_op->getxattr(dentry,
918 						   XATTR_NAME_SELINUX,
919 						   context, len);
920 		}
921 		dput(dentry);
922 		if (rc < 0) {
923 			if (rc != -ENODATA) {
924 				printk(KERN_WARNING "%s:  getxattr returned "
925 				       "%d for dev=%s ino=%ld\n", __FUNCTION__,
926 				       -rc, inode->i_sb->s_id, inode->i_ino);
927 				kfree(context);
928 				goto out_unlock;
929 			}
930 			/* Map ENODATA to the default file SID */
931 			sid = sbsec->def_sid;
932 			rc = 0;
933 		} else {
934 			rc = security_context_to_sid_default(context, rc, &sid,
935 			                                     sbsec->def_sid);
936 			if (rc) {
937 				printk(KERN_WARNING "%s:  context_to_sid(%s) "
938 				       "returned %d for dev=%s ino=%ld\n",
939 				       __FUNCTION__, context, -rc,
940 				       inode->i_sb->s_id, inode->i_ino);
941 				kfree(context);
942 				/* Leave with the unlabeled SID */
943 				rc = 0;
944 				break;
945 			}
946 		}
947 		kfree(context);
948 		isec->sid = sid;
949 		break;
950 	case SECURITY_FS_USE_TASK:
951 		isec->sid = isec->task_sid;
952 		break;
953 	case SECURITY_FS_USE_TRANS:
954 		/* Default to the fs SID. */
955 		isec->sid = sbsec->sid;
956 
957 		/* Try to obtain a transition SID. */
958 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
959 		rc = security_transition_sid(isec->task_sid,
960 					     sbsec->sid,
961 					     isec->sclass,
962 					     &sid);
963 		if (rc)
964 			goto out_unlock;
965 		isec->sid = sid;
966 		break;
967 	case SECURITY_FS_USE_MNTPOINT:
968 		isec->sid = sbsec->mntpoint_sid;
969 		break;
970 	default:
971 		/* Default to the fs superblock SID. */
972 		isec->sid = sbsec->sid;
973 
974 		if (sbsec->proc) {
975 			struct proc_inode *proci = PROC_I(inode);
976 			if (proci->pde) {
977 				isec->sclass = inode_mode_to_security_class(inode->i_mode);
978 				rc = selinux_proc_get_sid(proci->pde,
979 							  isec->sclass,
980 							  &sid);
981 				if (rc)
982 					goto out_unlock;
983 				isec->sid = sid;
984 			}
985 		}
986 		break;
987 	}
988 
989 	isec->initialized = 1;
990 
991 out_unlock:
992 	mutex_unlock(&isec->lock);
993 out:
994 	if (isec->sclass == SECCLASS_FILE)
995 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
996 	return rc;
997 }
998 
999 /* Convert a Linux signal to an access vector. */
1000 static inline u32 signal_to_av(int sig)
1001 {
1002 	u32 perm = 0;
1003 
1004 	switch (sig) {
1005 	case SIGCHLD:
1006 		/* Commonly granted from child to parent. */
1007 		perm = PROCESS__SIGCHLD;
1008 		break;
1009 	case SIGKILL:
1010 		/* Cannot be caught or ignored */
1011 		perm = PROCESS__SIGKILL;
1012 		break;
1013 	case SIGSTOP:
1014 		/* Cannot be caught or ignored */
1015 		perm = PROCESS__SIGSTOP;
1016 		break;
1017 	default:
1018 		/* All other signals. */
1019 		perm = PROCESS__SIGNAL;
1020 		break;
1021 	}
1022 
1023 	return perm;
1024 }
1025 
1026 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1027    fork check, ptrace check, etc. */
1028 static int task_has_perm(struct task_struct *tsk1,
1029 			 struct task_struct *tsk2,
1030 			 u32 perms)
1031 {
1032 	struct task_security_struct *tsec1, *tsec2;
1033 
1034 	tsec1 = tsk1->security;
1035 	tsec2 = tsk2->security;
1036 	return avc_has_perm(tsec1->sid, tsec2->sid,
1037 			    SECCLASS_PROCESS, perms, NULL);
1038 }
1039 
1040 /* Check whether a task is allowed to use a capability. */
1041 static int task_has_capability(struct task_struct *tsk,
1042 			       int cap)
1043 {
1044 	struct task_security_struct *tsec;
1045 	struct avc_audit_data ad;
1046 
1047 	tsec = tsk->security;
1048 
1049 	AVC_AUDIT_DATA_INIT(&ad,CAP);
1050 	ad.tsk = tsk;
1051 	ad.u.cap = cap;
1052 
1053 	return avc_has_perm(tsec->sid, tsec->sid,
1054 			    SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1055 }
1056 
1057 /* Check whether a task is allowed to use a system operation. */
1058 static int task_has_system(struct task_struct *tsk,
1059 			   u32 perms)
1060 {
1061 	struct task_security_struct *tsec;
1062 
1063 	tsec = tsk->security;
1064 
1065 	return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1066 			    SECCLASS_SYSTEM, perms, NULL);
1067 }
1068 
1069 /* Check whether a task has a particular permission to an inode.
1070    The 'adp' parameter is optional and allows other audit
1071    data to be passed (e.g. the dentry). */
1072 static int inode_has_perm(struct task_struct *tsk,
1073 			  struct inode *inode,
1074 			  u32 perms,
1075 			  struct avc_audit_data *adp)
1076 {
1077 	struct task_security_struct *tsec;
1078 	struct inode_security_struct *isec;
1079 	struct avc_audit_data ad;
1080 
1081 	tsec = tsk->security;
1082 	isec = inode->i_security;
1083 
1084 	if (!adp) {
1085 		adp = &ad;
1086 		AVC_AUDIT_DATA_INIT(&ad, FS);
1087 		ad.u.fs.inode = inode;
1088 	}
1089 
1090 	return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1091 }
1092 
1093 /* Same as inode_has_perm, but pass explicit audit data containing
1094    the dentry to help the auditing code to more easily generate the
1095    pathname if needed. */
1096 static inline int dentry_has_perm(struct task_struct *tsk,
1097 				  struct vfsmount *mnt,
1098 				  struct dentry *dentry,
1099 				  u32 av)
1100 {
1101 	struct inode *inode = dentry->d_inode;
1102 	struct avc_audit_data ad;
1103 	AVC_AUDIT_DATA_INIT(&ad,FS);
1104 	ad.u.fs.mnt = mnt;
1105 	ad.u.fs.dentry = dentry;
1106 	return inode_has_perm(tsk, inode, av, &ad);
1107 }
1108 
1109 /* Check whether a task can use an open file descriptor to
1110    access an inode in a given way.  Check access to the
1111    descriptor itself, and then use dentry_has_perm to
1112    check a particular permission to the file.
1113    Access to the descriptor is implicitly granted if it
1114    has the same SID as the process.  If av is zero, then
1115    access to the file is not checked, e.g. for cases
1116    where only the descriptor is affected like seek. */
1117 static int file_has_perm(struct task_struct *tsk,
1118 				struct file *file,
1119 				u32 av)
1120 {
1121 	struct task_security_struct *tsec = tsk->security;
1122 	struct file_security_struct *fsec = file->f_security;
1123 	struct vfsmount *mnt = file->f_path.mnt;
1124 	struct dentry *dentry = file->f_path.dentry;
1125 	struct inode *inode = dentry->d_inode;
1126 	struct avc_audit_data ad;
1127 	int rc;
1128 
1129 	AVC_AUDIT_DATA_INIT(&ad, FS);
1130 	ad.u.fs.mnt = mnt;
1131 	ad.u.fs.dentry = dentry;
1132 
1133 	if (tsec->sid != fsec->sid) {
1134 		rc = avc_has_perm(tsec->sid, fsec->sid,
1135 				  SECCLASS_FD,
1136 				  FD__USE,
1137 				  &ad);
1138 		if (rc)
1139 			return rc;
1140 	}
1141 
1142 	/* av is zero if only checking access to the descriptor. */
1143 	if (av)
1144 		return inode_has_perm(tsk, inode, av, &ad);
1145 
1146 	return 0;
1147 }
1148 
1149 /* Check whether a task can create a file. */
1150 static int may_create(struct inode *dir,
1151 		      struct dentry *dentry,
1152 		      u16 tclass)
1153 {
1154 	struct task_security_struct *tsec;
1155 	struct inode_security_struct *dsec;
1156 	struct superblock_security_struct *sbsec;
1157 	u32 newsid;
1158 	struct avc_audit_data ad;
1159 	int rc;
1160 
1161 	tsec = current->security;
1162 	dsec = dir->i_security;
1163 	sbsec = dir->i_sb->s_security;
1164 
1165 	AVC_AUDIT_DATA_INIT(&ad, FS);
1166 	ad.u.fs.dentry = dentry;
1167 
1168 	rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1169 			  DIR__ADD_NAME | DIR__SEARCH,
1170 			  &ad);
1171 	if (rc)
1172 		return rc;
1173 
1174 	if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1175 		newsid = tsec->create_sid;
1176 	} else {
1177 		rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1178 					     &newsid);
1179 		if (rc)
1180 			return rc;
1181 	}
1182 
1183 	rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1184 	if (rc)
1185 		return rc;
1186 
1187 	return avc_has_perm(newsid, sbsec->sid,
1188 			    SECCLASS_FILESYSTEM,
1189 			    FILESYSTEM__ASSOCIATE, &ad);
1190 }
1191 
1192 /* Check whether a task can create a key. */
1193 static int may_create_key(u32 ksid,
1194 			  struct task_struct *ctx)
1195 {
1196 	struct task_security_struct *tsec;
1197 
1198 	tsec = ctx->security;
1199 
1200 	return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1201 }
1202 
1203 #define MAY_LINK   0
1204 #define MAY_UNLINK 1
1205 #define MAY_RMDIR  2
1206 
1207 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1208 static int may_link(struct inode *dir,
1209 		    struct dentry *dentry,
1210 		    int kind)
1211 
1212 {
1213 	struct task_security_struct *tsec;
1214 	struct inode_security_struct *dsec, *isec;
1215 	struct avc_audit_data ad;
1216 	u32 av;
1217 	int rc;
1218 
1219 	tsec = current->security;
1220 	dsec = dir->i_security;
1221 	isec = dentry->d_inode->i_security;
1222 
1223 	AVC_AUDIT_DATA_INIT(&ad, FS);
1224 	ad.u.fs.dentry = dentry;
1225 
1226 	av = DIR__SEARCH;
1227 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1228 	rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1229 	if (rc)
1230 		return rc;
1231 
1232 	switch (kind) {
1233 	case MAY_LINK:
1234 		av = FILE__LINK;
1235 		break;
1236 	case MAY_UNLINK:
1237 		av = FILE__UNLINK;
1238 		break;
1239 	case MAY_RMDIR:
1240 		av = DIR__RMDIR;
1241 		break;
1242 	default:
1243 		printk(KERN_WARNING "may_link:  unrecognized kind %d\n", kind);
1244 		return 0;
1245 	}
1246 
1247 	rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1248 	return rc;
1249 }
1250 
1251 static inline int may_rename(struct inode *old_dir,
1252 			     struct dentry *old_dentry,
1253 			     struct inode *new_dir,
1254 			     struct dentry *new_dentry)
1255 {
1256 	struct task_security_struct *tsec;
1257 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1258 	struct avc_audit_data ad;
1259 	u32 av;
1260 	int old_is_dir, new_is_dir;
1261 	int rc;
1262 
1263 	tsec = current->security;
1264 	old_dsec = old_dir->i_security;
1265 	old_isec = old_dentry->d_inode->i_security;
1266 	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1267 	new_dsec = new_dir->i_security;
1268 
1269 	AVC_AUDIT_DATA_INIT(&ad, FS);
1270 
1271 	ad.u.fs.dentry = old_dentry;
1272 	rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1273 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1274 	if (rc)
1275 		return rc;
1276 	rc = avc_has_perm(tsec->sid, old_isec->sid,
1277 			  old_isec->sclass, FILE__RENAME, &ad);
1278 	if (rc)
1279 		return rc;
1280 	if (old_is_dir && new_dir != old_dir) {
1281 		rc = avc_has_perm(tsec->sid, old_isec->sid,
1282 				  old_isec->sclass, DIR__REPARENT, &ad);
1283 		if (rc)
1284 			return rc;
1285 	}
1286 
1287 	ad.u.fs.dentry = new_dentry;
1288 	av = DIR__ADD_NAME | DIR__SEARCH;
1289 	if (new_dentry->d_inode)
1290 		av |= DIR__REMOVE_NAME;
1291 	rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1292 	if (rc)
1293 		return rc;
1294 	if (new_dentry->d_inode) {
1295 		new_isec = new_dentry->d_inode->i_security;
1296 		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1297 		rc = avc_has_perm(tsec->sid, new_isec->sid,
1298 				  new_isec->sclass,
1299 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1300 		if (rc)
1301 			return rc;
1302 	}
1303 
1304 	return 0;
1305 }
1306 
1307 /* Check whether a task can perform a filesystem operation. */
1308 static int superblock_has_perm(struct task_struct *tsk,
1309 			       struct super_block *sb,
1310 			       u32 perms,
1311 			       struct avc_audit_data *ad)
1312 {
1313 	struct task_security_struct *tsec;
1314 	struct superblock_security_struct *sbsec;
1315 
1316 	tsec = tsk->security;
1317 	sbsec = sb->s_security;
1318 	return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1319 			    perms, ad);
1320 }
1321 
1322 /* Convert a Linux mode and permission mask to an access vector. */
1323 static inline u32 file_mask_to_av(int mode, int mask)
1324 {
1325 	u32 av = 0;
1326 
1327 	if ((mode & S_IFMT) != S_IFDIR) {
1328 		if (mask & MAY_EXEC)
1329 			av |= FILE__EXECUTE;
1330 		if (mask & MAY_READ)
1331 			av |= FILE__READ;
1332 
1333 		if (mask & MAY_APPEND)
1334 			av |= FILE__APPEND;
1335 		else if (mask & MAY_WRITE)
1336 			av |= FILE__WRITE;
1337 
1338 	} else {
1339 		if (mask & MAY_EXEC)
1340 			av |= DIR__SEARCH;
1341 		if (mask & MAY_WRITE)
1342 			av |= DIR__WRITE;
1343 		if (mask & MAY_READ)
1344 			av |= DIR__READ;
1345 	}
1346 
1347 	return av;
1348 }
1349 
1350 /* Convert a Linux file to an access vector. */
1351 static inline u32 file_to_av(struct file *file)
1352 {
1353 	u32 av = 0;
1354 
1355 	if (file->f_mode & FMODE_READ)
1356 		av |= FILE__READ;
1357 	if (file->f_mode & FMODE_WRITE) {
1358 		if (file->f_flags & O_APPEND)
1359 			av |= FILE__APPEND;
1360 		else
1361 			av |= FILE__WRITE;
1362 	}
1363 
1364 	return av;
1365 }
1366 
1367 /* Hook functions begin here. */
1368 
1369 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1370 {
1371 	struct task_security_struct *psec = parent->security;
1372 	struct task_security_struct *csec = child->security;
1373 	int rc;
1374 
1375 	rc = secondary_ops->ptrace(parent,child);
1376 	if (rc)
1377 		return rc;
1378 
1379 	rc = task_has_perm(parent, child, PROCESS__PTRACE);
1380 	/* Save the SID of the tracing process for later use in apply_creds. */
1381 	if (!(child->ptrace & PT_PTRACED) && !rc)
1382 		csec->ptrace_sid = psec->sid;
1383 	return rc;
1384 }
1385 
1386 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1387                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1388 {
1389 	int error;
1390 
1391 	error = task_has_perm(current, target, PROCESS__GETCAP);
1392 	if (error)
1393 		return error;
1394 
1395 	return secondary_ops->capget(target, effective, inheritable, permitted);
1396 }
1397 
1398 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1399                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1400 {
1401 	int error;
1402 
1403 	error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1404 	if (error)
1405 		return error;
1406 
1407 	return task_has_perm(current, target, PROCESS__SETCAP);
1408 }
1409 
1410 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1411                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1412 {
1413 	secondary_ops->capset_set(target, effective, inheritable, permitted);
1414 }
1415 
1416 static int selinux_capable(struct task_struct *tsk, int cap)
1417 {
1418 	int rc;
1419 
1420 	rc = secondary_ops->capable(tsk, cap);
1421 	if (rc)
1422 		return rc;
1423 
1424 	return task_has_capability(tsk,cap);
1425 }
1426 
1427 static int selinux_sysctl(ctl_table *table, int op)
1428 {
1429 	int error = 0;
1430 	u32 av;
1431 	struct task_security_struct *tsec;
1432 	u32 tsid;
1433 	int rc;
1434 
1435 	rc = secondary_ops->sysctl(table, op);
1436 	if (rc)
1437 		return rc;
1438 
1439 	tsec = current->security;
1440 
1441 	rc = selinux_proc_get_sid(table->de, (op == 001) ?
1442 	                          SECCLASS_DIR : SECCLASS_FILE, &tsid);
1443 	if (rc) {
1444 		/* Default to the well-defined sysctl SID. */
1445 		tsid = SECINITSID_SYSCTL;
1446 	}
1447 
1448 	/* The op values are "defined" in sysctl.c, thereby creating
1449 	 * a bad coupling between this module and sysctl.c */
1450 	if(op == 001) {
1451 		error = avc_has_perm(tsec->sid, tsid,
1452 				     SECCLASS_DIR, DIR__SEARCH, NULL);
1453 	} else {
1454 		av = 0;
1455 		if (op & 004)
1456 			av |= FILE__READ;
1457 		if (op & 002)
1458 			av |= FILE__WRITE;
1459 		if (av)
1460 			error = avc_has_perm(tsec->sid, tsid,
1461 					     SECCLASS_FILE, av, NULL);
1462         }
1463 
1464 	return error;
1465 }
1466 
1467 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1468 {
1469 	int rc = 0;
1470 
1471 	if (!sb)
1472 		return 0;
1473 
1474 	switch (cmds) {
1475 		case Q_SYNC:
1476 		case Q_QUOTAON:
1477 		case Q_QUOTAOFF:
1478 	        case Q_SETINFO:
1479 		case Q_SETQUOTA:
1480 			rc = superblock_has_perm(current,
1481 						 sb,
1482 						 FILESYSTEM__QUOTAMOD, NULL);
1483 			break;
1484 	        case Q_GETFMT:
1485 	        case Q_GETINFO:
1486 		case Q_GETQUOTA:
1487 			rc = superblock_has_perm(current,
1488 						 sb,
1489 						 FILESYSTEM__QUOTAGET, NULL);
1490 			break;
1491 		default:
1492 			rc = 0;  /* let the kernel handle invalid cmds */
1493 			break;
1494 	}
1495 	return rc;
1496 }
1497 
1498 static int selinux_quota_on(struct dentry *dentry)
1499 {
1500 	return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1501 }
1502 
1503 static int selinux_syslog(int type)
1504 {
1505 	int rc;
1506 
1507 	rc = secondary_ops->syslog(type);
1508 	if (rc)
1509 		return rc;
1510 
1511 	switch (type) {
1512 		case 3:         /* Read last kernel messages */
1513 		case 10:        /* Return size of the log buffer */
1514 			rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1515 			break;
1516 		case 6:         /* Disable logging to console */
1517 		case 7:         /* Enable logging to console */
1518 		case 8:		/* Set level of messages printed to console */
1519 			rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1520 			break;
1521 		case 0:         /* Close log */
1522 		case 1:         /* Open log */
1523 		case 2:         /* Read from log */
1524 		case 4:         /* Read/clear last kernel messages */
1525 		case 5:         /* Clear ring buffer */
1526 		default:
1527 			rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1528 			break;
1529 	}
1530 	return rc;
1531 }
1532 
1533 /*
1534  * Check that a process has enough memory to allocate a new virtual
1535  * mapping. 0 means there is enough memory for the allocation to
1536  * succeed and -ENOMEM implies there is not.
1537  *
1538  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1539  * if the capability is granted, but __vm_enough_memory requires 1 if
1540  * the capability is granted.
1541  *
1542  * Do not audit the selinux permission check, as this is applied to all
1543  * processes that allocate mappings.
1544  */
1545 static int selinux_vm_enough_memory(long pages)
1546 {
1547 	int rc, cap_sys_admin = 0;
1548 	struct task_security_struct *tsec = current->security;
1549 
1550 	rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1551 	if (rc == 0)
1552 		rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1553 					SECCLASS_CAPABILITY,
1554 					CAP_TO_MASK(CAP_SYS_ADMIN),
1555 					NULL);
1556 
1557 	if (rc == 0)
1558 		cap_sys_admin = 1;
1559 
1560 	return __vm_enough_memory(pages, cap_sys_admin);
1561 }
1562 
1563 /* binprm security operations */
1564 
1565 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1566 {
1567 	struct bprm_security_struct *bsec;
1568 
1569 	bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1570 	if (!bsec)
1571 		return -ENOMEM;
1572 
1573 	bsec->bprm = bprm;
1574 	bsec->sid = SECINITSID_UNLABELED;
1575 	bsec->set = 0;
1576 
1577 	bprm->security = bsec;
1578 	return 0;
1579 }
1580 
1581 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1582 {
1583 	struct task_security_struct *tsec;
1584 	struct inode *inode = bprm->file->f_path.dentry->d_inode;
1585 	struct inode_security_struct *isec;
1586 	struct bprm_security_struct *bsec;
1587 	u32 newsid;
1588 	struct avc_audit_data ad;
1589 	int rc;
1590 
1591 	rc = secondary_ops->bprm_set_security(bprm);
1592 	if (rc)
1593 		return rc;
1594 
1595 	bsec = bprm->security;
1596 
1597 	if (bsec->set)
1598 		return 0;
1599 
1600 	tsec = current->security;
1601 	isec = inode->i_security;
1602 
1603 	/* Default to the current task SID. */
1604 	bsec->sid = tsec->sid;
1605 
1606 	/* Reset fs, key, and sock SIDs on execve. */
1607 	tsec->create_sid = 0;
1608 	tsec->keycreate_sid = 0;
1609 	tsec->sockcreate_sid = 0;
1610 
1611 	if (tsec->exec_sid) {
1612 		newsid = tsec->exec_sid;
1613 		/* Reset exec SID on execve. */
1614 		tsec->exec_sid = 0;
1615 	} else {
1616 		/* Check for a default transition on this program. */
1617 		rc = security_transition_sid(tsec->sid, isec->sid,
1618 		                             SECCLASS_PROCESS, &newsid);
1619 		if (rc)
1620 			return rc;
1621 	}
1622 
1623 	AVC_AUDIT_DATA_INIT(&ad, FS);
1624 	ad.u.fs.mnt = bprm->file->f_path.mnt;
1625 	ad.u.fs.dentry = bprm->file->f_path.dentry;
1626 
1627 	if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1628 		newsid = tsec->sid;
1629 
1630         if (tsec->sid == newsid) {
1631 		rc = avc_has_perm(tsec->sid, isec->sid,
1632 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1633 		if (rc)
1634 			return rc;
1635 	} else {
1636 		/* Check permissions for the transition. */
1637 		rc = avc_has_perm(tsec->sid, newsid,
1638 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1639 		if (rc)
1640 			return rc;
1641 
1642 		rc = avc_has_perm(newsid, isec->sid,
1643 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1644 		if (rc)
1645 			return rc;
1646 
1647 		/* Clear any possibly unsafe personality bits on exec: */
1648 		current->personality &= ~PER_CLEAR_ON_SETID;
1649 
1650 		/* Set the security field to the new SID. */
1651 		bsec->sid = newsid;
1652 	}
1653 
1654 	bsec->set = 1;
1655 	return 0;
1656 }
1657 
1658 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1659 {
1660 	return secondary_ops->bprm_check_security(bprm);
1661 }
1662 
1663 
1664 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1665 {
1666 	struct task_security_struct *tsec = current->security;
1667 	int atsecure = 0;
1668 
1669 	if (tsec->osid != tsec->sid) {
1670 		/* Enable secure mode for SIDs transitions unless
1671 		   the noatsecure permission is granted between
1672 		   the two SIDs, i.e. ahp returns 0. */
1673 		atsecure = avc_has_perm(tsec->osid, tsec->sid,
1674 					 SECCLASS_PROCESS,
1675 					 PROCESS__NOATSECURE, NULL);
1676 	}
1677 
1678 	return (atsecure || secondary_ops->bprm_secureexec(bprm));
1679 }
1680 
1681 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1682 {
1683 	kfree(bprm->security);
1684 	bprm->security = NULL;
1685 }
1686 
1687 extern struct vfsmount *selinuxfs_mount;
1688 extern struct dentry *selinux_null;
1689 
1690 /* Derived from fs/exec.c:flush_old_files. */
1691 static inline void flush_unauthorized_files(struct files_struct * files)
1692 {
1693 	struct avc_audit_data ad;
1694 	struct file *file, *devnull = NULL;
1695 	struct tty_struct *tty;
1696 	struct fdtable *fdt;
1697 	long j = -1;
1698 	int drop_tty = 0;
1699 
1700 	mutex_lock(&tty_mutex);
1701 	tty = get_current_tty();
1702 	if (tty) {
1703 		file_list_lock();
1704 		file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1705 		if (file) {
1706 			/* Revalidate access to controlling tty.
1707 			   Use inode_has_perm on the tty inode directly rather
1708 			   than using file_has_perm, as this particular open
1709 			   file may belong to another process and we are only
1710 			   interested in the inode-based check here. */
1711 			struct inode *inode = file->f_path.dentry->d_inode;
1712 			if (inode_has_perm(current, inode,
1713 					   FILE__READ | FILE__WRITE, NULL)) {
1714 				drop_tty = 1;
1715 			}
1716 		}
1717 		file_list_unlock();
1718 
1719 		/* Reset controlling tty. */
1720 		if (drop_tty)
1721 			proc_set_tty(current, NULL);
1722 	}
1723 	mutex_unlock(&tty_mutex);
1724 
1725 	/* Revalidate access to inherited open files. */
1726 
1727 	AVC_AUDIT_DATA_INIT(&ad,FS);
1728 
1729 	spin_lock(&files->file_lock);
1730 	for (;;) {
1731 		unsigned long set, i;
1732 		int fd;
1733 
1734 		j++;
1735 		i = j * __NFDBITS;
1736 		fdt = files_fdtable(files);
1737 		if (i >= fdt->max_fds)
1738 			break;
1739 		set = fdt->open_fds->fds_bits[j];
1740 		if (!set)
1741 			continue;
1742 		spin_unlock(&files->file_lock);
1743 		for ( ; set ; i++,set >>= 1) {
1744 			if (set & 1) {
1745 				file = fget(i);
1746 				if (!file)
1747 					continue;
1748 				if (file_has_perm(current,
1749 						  file,
1750 						  file_to_av(file))) {
1751 					sys_close(i);
1752 					fd = get_unused_fd();
1753 					if (fd != i) {
1754 						if (fd >= 0)
1755 							put_unused_fd(fd);
1756 						fput(file);
1757 						continue;
1758 					}
1759 					if (devnull) {
1760 						get_file(devnull);
1761 					} else {
1762 						devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1763 						if (IS_ERR(devnull)) {
1764 							devnull = NULL;
1765 							put_unused_fd(fd);
1766 							fput(file);
1767 							continue;
1768 						}
1769 					}
1770 					fd_install(fd, devnull);
1771 				}
1772 				fput(file);
1773 			}
1774 		}
1775 		spin_lock(&files->file_lock);
1776 
1777 	}
1778 	spin_unlock(&files->file_lock);
1779 }
1780 
1781 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1782 {
1783 	struct task_security_struct *tsec;
1784 	struct bprm_security_struct *bsec;
1785 	u32 sid;
1786 	int rc;
1787 
1788 	secondary_ops->bprm_apply_creds(bprm, unsafe);
1789 
1790 	tsec = current->security;
1791 
1792 	bsec = bprm->security;
1793 	sid = bsec->sid;
1794 
1795 	tsec->osid = tsec->sid;
1796 	bsec->unsafe = 0;
1797 	if (tsec->sid != sid) {
1798 		/* Check for shared state.  If not ok, leave SID
1799 		   unchanged and kill. */
1800 		if (unsafe & LSM_UNSAFE_SHARE) {
1801 			rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1802 					PROCESS__SHARE, NULL);
1803 			if (rc) {
1804 				bsec->unsafe = 1;
1805 				return;
1806 			}
1807 		}
1808 
1809 		/* Check for ptracing, and update the task SID if ok.
1810 		   Otherwise, leave SID unchanged and kill. */
1811 		if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1812 			rc = avc_has_perm(tsec->ptrace_sid, sid,
1813 					  SECCLASS_PROCESS, PROCESS__PTRACE,
1814 					  NULL);
1815 			if (rc) {
1816 				bsec->unsafe = 1;
1817 				return;
1818 			}
1819 		}
1820 		tsec->sid = sid;
1821 	}
1822 }
1823 
1824 /*
1825  * called after apply_creds without the task lock held
1826  */
1827 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1828 {
1829 	struct task_security_struct *tsec;
1830 	struct rlimit *rlim, *initrlim;
1831 	struct itimerval itimer;
1832 	struct bprm_security_struct *bsec;
1833 	int rc, i;
1834 
1835 	tsec = current->security;
1836 	bsec = bprm->security;
1837 
1838 	if (bsec->unsafe) {
1839 		force_sig_specific(SIGKILL, current);
1840 		return;
1841 	}
1842 	if (tsec->osid == tsec->sid)
1843 		return;
1844 
1845 	/* Close files for which the new task SID is not authorized. */
1846 	flush_unauthorized_files(current->files);
1847 
1848 	/* Check whether the new SID can inherit signal state
1849 	   from the old SID.  If not, clear itimers to avoid
1850 	   subsequent signal generation and flush and unblock
1851 	   signals. This must occur _after_ the task SID has
1852 	  been updated so that any kill done after the flush
1853 	  will be checked against the new SID. */
1854 	rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1855 			  PROCESS__SIGINH, NULL);
1856 	if (rc) {
1857 		memset(&itimer, 0, sizeof itimer);
1858 		for (i = 0; i < 3; i++)
1859 			do_setitimer(i, &itimer, NULL);
1860 		flush_signals(current);
1861 		spin_lock_irq(&current->sighand->siglock);
1862 		flush_signal_handlers(current, 1);
1863 		sigemptyset(&current->blocked);
1864 		recalc_sigpending();
1865 		spin_unlock_irq(&current->sighand->siglock);
1866 	}
1867 
1868 	/* Check whether the new SID can inherit resource limits
1869 	   from the old SID.  If not, reset all soft limits to
1870 	   the lower of the current task's hard limit and the init
1871 	   task's soft limit.  Note that the setting of hard limits
1872 	   (even to lower them) can be controlled by the setrlimit
1873 	   check. The inclusion of the init task's soft limit into
1874 	   the computation is to avoid resetting soft limits higher
1875 	   than the default soft limit for cases where the default
1876 	   is lower than the hard limit, e.g. RLIMIT_CORE or
1877 	   RLIMIT_STACK.*/
1878 	rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1879 			  PROCESS__RLIMITINH, NULL);
1880 	if (rc) {
1881 		for (i = 0; i < RLIM_NLIMITS; i++) {
1882 			rlim = current->signal->rlim + i;
1883 			initrlim = init_task.signal->rlim+i;
1884 			rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1885 		}
1886 		if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1887 			/*
1888 			 * This will cause RLIMIT_CPU calculations
1889 			 * to be refigured.
1890 			 */
1891 			current->it_prof_expires = jiffies_to_cputime(1);
1892 		}
1893 	}
1894 
1895 	/* Wake up the parent if it is waiting so that it can
1896 	   recheck wait permission to the new task SID. */
1897 	wake_up_interruptible(&current->parent->signal->wait_chldexit);
1898 }
1899 
1900 /* superblock security operations */
1901 
1902 static int selinux_sb_alloc_security(struct super_block *sb)
1903 {
1904 	return superblock_alloc_security(sb);
1905 }
1906 
1907 static void selinux_sb_free_security(struct super_block *sb)
1908 {
1909 	superblock_free_security(sb);
1910 }
1911 
1912 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1913 {
1914 	if (plen > olen)
1915 		return 0;
1916 
1917 	return !memcmp(prefix, option, plen);
1918 }
1919 
1920 static inline int selinux_option(char *option, int len)
1921 {
1922 	return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1923 	        match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1924 	        match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1925 		match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1926 }
1927 
1928 static inline void take_option(char **to, char *from, int *first, int len)
1929 {
1930 	if (!*first) {
1931 		**to = ',';
1932 		*to += 1;
1933 	} else
1934 		*first = 0;
1935 	memcpy(*to, from, len);
1936 	*to += len;
1937 }
1938 
1939 static inline void take_selinux_option(char **to, char *from, int *first,
1940 		                       int len)
1941 {
1942 	int current_size = 0;
1943 
1944 	if (!*first) {
1945 		**to = '|';
1946 		*to += 1;
1947 	}
1948 	else
1949 		*first = 0;
1950 
1951 	while (current_size < len) {
1952 		if (*from != '"') {
1953 			**to = *from;
1954 			*to += 1;
1955 		}
1956 		from += 1;
1957 		current_size += 1;
1958 	}
1959 }
1960 
1961 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
1962 {
1963 	int fnosec, fsec, rc = 0;
1964 	char *in_save, *in_curr, *in_end;
1965 	char *sec_curr, *nosec_save, *nosec;
1966 	int open_quote = 0;
1967 
1968 	in_curr = orig;
1969 	sec_curr = copy;
1970 
1971 	/* Binary mount data: just copy */
1972 	if (type->fs_flags & FS_BINARY_MOUNTDATA) {
1973 		copy_page(sec_curr, in_curr);
1974 		goto out;
1975 	}
1976 
1977 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
1978 	if (!nosec) {
1979 		rc = -ENOMEM;
1980 		goto out;
1981 	}
1982 
1983 	nosec_save = nosec;
1984 	fnosec = fsec = 1;
1985 	in_save = in_end = orig;
1986 
1987 	do {
1988 		if (*in_end == '"')
1989 			open_quote = !open_quote;
1990 		if ((*in_end == ',' && open_quote == 0) ||
1991 				*in_end == '\0') {
1992 			int len = in_end - in_curr;
1993 
1994 			if (selinux_option(in_curr, len))
1995 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
1996 			else
1997 				take_option(&nosec, in_curr, &fnosec, len);
1998 
1999 			in_curr = in_end + 1;
2000 		}
2001 	} while (*in_end++);
2002 
2003 	strcpy(in_save, nosec_save);
2004 	free_page((unsigned long)nosec_save);
2005 out:
2006 	return rc;
2007 }
2008 
2009 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2010 {
2011 	struct avc_audit_data ad;
2012 	int rc;
2013 
2014 	rc = superblock_doinit(sb, data);
2015 	if (rc)
2016 		return rc;
2017 
2018 	AVC_AUDIT_DATA_INIT(&ad,FS);
2019 	ad.u.fs.dentry = sb->s_root;
2020 	return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2021 }
2022 
2023 static int selinux_sb_statfs(struct dentry *dentry)
2024 {
2025 	struct avc_audit_data ad;
2026 
2027 	AVC_AUDIT_DATA_INIT(&ad,FS);
2028 	ad.u.fs.dentry = dentry->d_sb->s_root;
2029 	return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2030 }
2031 
2032 static int selinux_mount(char * dev_name,
2033                          struct nameidata *nd,
2034                          char * type,
2035                          unsigned long flags,
2036                          void * data)
2037 {
2038 	int rc;
2039 
2040 	rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2041 	if (rc)
2042 		return rc;
2043 
2044 	if (flags & MS_REMOUNT)
2045 		return superblock_has_perm(current, nd->mnt->mnt_sb,
2046 		                           FILESYSTEM__REMOUNT, NULL);
2047 	else
2048 		return dentry_has_perm(current, nd->mnt, nd->dentry,
2049 		                       FILE__MOUNTON);
2050 }
2051 
2052 static int selinux_umount(struct vfsmount *mnt, int flags)
2053 {
2054 	int rc;
2055 
2056 	rc = secondary_ops->sb_umount(mnt, flags);
2057 	if (rc)
2058 		return rc;
2059 
2060 	return superblock_has_perm(current,mnt->mnt_sb,
2061 	                           FILESYSTEM__UNMOUNT,NULL);
2062 }
2063 
2064 /* inode security operations */
2065 
2066 static int selinux_inode_alloc_security(struct inode *inode)
2067 {
2068 	return inode_alloc_security(inode);
2069 }
2070 
2071 static void selinux_inode_free_security(struct inode *inode)
2072 {
2073 	inode_free_security(inode);
2074 }
2075 
2076 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2077 				       char **name, void **value,
2078 				       size_t *len)
2079 {
2080 	struct task_security_struct *tsec;
2081 	struct inode_security_struct *dsec;
2082 	struct superblock_security_struct *sbsec;
2083 	u32 newsid, clen;
2084 	int rc;
2085 	char *namep = NULL, *context;
2086 
2087 	tsec = current->security;
2088 	dsec = dir->i_security;
2089 	sbsec = dir->i_sb->s_security;
2090 
2091 	if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2092 		newsid = tsec->create_sid;
2093 	} else {
2094 		rc = security_transition_sid(tsec->sid, dsec->sid,
2095 					     inode_mode_to_security_class(inode->i_mode),
2096 					     &newsid);
2097 		if (rc) {
2098 			printk(KERN_WARNING "%s:  "
2099 			       "security_transition_sid failed, rc=%d (dev=%s "
2100 			       "ino=%ld)\n",
2101 			       __FUNCTION__,
2102 			       -rc, inode->i_sb->s_id, inode->i_ino);
2103 			return rc;
2104 		}
2105 	}
2106 
2107 	/* Possibly defer initialization to selinux_complete_init. */
2108 	if (sbsec->initialized) {
2109 		struct inode_security_struct *isec = inode->i_security;
2110 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2111 		isec->sid = newsid;
2112 		isec->initialized = 1;
2113 	}
2114 
2115 	if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2116 		return -EOPNOTSUPP;
2117 
2118 	if (name) {
2119 		namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2120 		if (!namep)
2121 			return -ENOMEM;
2122 		*name = namep;
2123 	}
2124 
2125 	if (value && len) {
2126 		rc = security_sid_to_context(newsid, &context, &clen);
2127 		if (rc) {
2128 			kfree(namep);
2129 			return rc;
2130 		}
2131 		*value = context;
2132 		*len = clen;
2133 	}
2134 
2135 	return 0;
2136 }
2137 
2138 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2139 {
2140 	return may_create(dir, dentry, SECCLASS_FILE);
2141 }
2142 
2143 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2144 {
2145 	int rc;
2146 
2147 	rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2148 	if (rc)
2149 		return rc;
2150 	return may_link(dir, old_dentry, MAY_LINK);
2151 }
2152 
2153 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2154 {
2155 	int rc;
2156 
2157 	rc = secondary_ops->inode_unlink(dir, dentry);
2158 	if (rc)
2159 		return rc;
2160 	return may_link(dir, dentry, MAY_UNLINK);
2161 }
2162 
2163 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2164 {
2165 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2166 }
2167 
2168 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2169 {
2170 	return may_create(dir, dentry, SECCLASS_DIR);
2171 }
2172 
2173 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2174 {
2175 	return may_link(dir, dentry, MAY_RMDIR);
2176 }
2177 
2178 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2179 {
2180 	int rc;
2181 
2182 	rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2183 	if (rc)
2184 		return rc;
2185 
2186 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2187 }
2188 
2189 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2190                                 struct inode *new_inode, struct dentry *new_dentry)
2191 {
2192 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2193 }
2194 
2195 static int selinux_inode_readlink(struct dentry *dentry)
2196 {
2197 	return dentry_has_perm(current, NULL, dentry, FILE__READ);
2198 }
2199 
2200 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2201 {
2202 	int rc;
2203 
2204 	rc = secondary_ops->inode_follow_link(dentry,nameidata);
2205 	if (rc)
2206 		return rc;
2207 	return dentry_has_perm(current, NULL, dentry, FILE__READ);
2208 }
2209 
2210 static int selinux_inode_permission(struct inode *inode, int mask,
2211 				    struct nameidata *nd)
2212 {
2213 	int rc;
2214 
2215 	rc = secondary_ops->inode_permission(inode, mask, nd);
2216 	if (rc)
2217 		return rc;
2218 
2219 	if (!mask) {
2220 		/* No permission to check.  Existence test. */
2221 		return 0;
2222 	}
2223 
2224 	return inode_has_perm(current, inode,
2225 			       file_mask_to_av(inode->i_mode, mask), NULL);
2226 }
2227 
2228 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2229 {
2230 	int rc;
2231 
2232 	rc = secondary_ops->inode_setattr(dentry, iattr);
2233 	if (rc)
2234 		return rc;
2235 
2236 	if (iattr->ia_valid & ATTR_FORCE)
2237 		return 0;
2238 
2239 	if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2240 			       ATTR_ATIME_SET | ATTR_MTIME_SET))
2241 		return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2242 
2243 	return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2244 }
2245 
2246 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2247 {
2248 	return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2249 }
2250 
2251 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2252 {
2253 	struct task_security_struct *tsec = current->security;
2254 	struct inode *inode = dentry->d_inode;
2255 	struct inode_security_struct *isec = inode->i_security;
2256 	struct superblock_security_struct *sbsec;
2257 	struct avc_audit_data ad;
2258 	u32 newsid;
2259 	int rc = 0;
2260 
2261 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2262 		if (!strncmp(name, XATTR_SECURITY_PREFIX,
2263 			     sizeof XATTR_SECURITY_PREFIX - 1) &&
2264 		    !capable(CAP_SYS_ADMIN)) {
2265 			/* A different attribute in the security namespace.
2266 			   Restrict to administrator. */
2267 			return -EPERM;
2268 		}
2269 
2270 		/* Not an attribute we recognize, so just check the
2271 		   ordinary setattr permission. */
2272 		return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2273 	}
2274 
2275 	sbsec = inode->i_sb->s_security;
2276 	if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2277 		return -EOPNOTSUPP;
2278 
2279 	if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
2280 		return -EPERM;
2281 
2282 	AVC_AUDIT_DATA_INIT(&ad,FS);
2283 	ad.u.fs.dentry = dentry;
2284 
2285 	rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2286 			  FILE__RELABELFROM, &ad);
2287 	if (rc)
2288 		return rc;
2289 
2290 	rc = security_context_to_sid(value, size, &newsid);
2291 	if (rc)
2292 		return rc;
2293 
2294 	rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2295 			  FILE__RELABELTO, &ad);
2296 	if (rc)
2297 		return rc;
2298 
2299 	rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2300 	                                  isec->sclass);
2301 	if (rc)
2302 		return rc;
2303 
2304 	return avc_has_perm(newsid,
2305 			    sbsec->sid,
2306 			    SECCLASS_FILESYSTEM,
2307 			    FILESYSTEM__ASSOCIATE,
2308 			    &ad);
2309 }
2310 
2311 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2312                                         void *value, size_t size, int flags)
2313 {
2314 	struct inode *inode = dentry->d_inode;
2315 	struct inode_security_struct *isec = inode->i_security;
2316 	u32 newsid;
2317 	int rc;
2318 
2319 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2320 		/* Not an attribute we recognize, so nothing to do. */
2321 		return;
2322 	}
2323 
2324 	rc = security_context_to_sid(value, size, &newsid);
2325 	if (rc) {
2326 		printk(KERN_WARNING "%s:  unable to obtain SID for context "
2327 		       "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2328 		return;
2329 	}
2330 
2331 	isec->sid = newsid;
2332 	return;
2333 }
2334 
2335 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2336 {
2337 	return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2338 }
2339 
2340 static int selinux_inode_listxattr (struct dentry *dentry)
2341 {
2342 	return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2343 }
2344 
2345 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2346 {
2347 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2348 		if (!strncmp(name, XATTR_SECURITY_PREFIX,
2349 			     sizeof XATTR_SECURITY_PREFIX - 1) &&
2350 		    !capable(CAP_SYS_ADMIN)) {
2351 			/* A different attribute in the security namespace.
2352 			   Restrict to administrator. */
2353 			return -EPERM;
2354 		}
2355 
2356 		/* Not an attribute we recognize, so just check the
2357 		   ordinary setattr permission. Might want a separate
2358 		   permission for removexattr. */
2359 		return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2360 	}
2361 
2362 	/* No one is allowed to remove a SELinux security label.
2363 	   You can change the label, but all data must be labeled. */
2364 	return -EACCES;
2365 }
2366 
2367 static const char *selinux_inode_xattr_getsuffix(void)
2368 {
2369       return XATTR_SELINUX_SUFFIX;
2370 }
2371 
2372 /*
2373  * Copy the in-core inode security context value to the user.  If the
2374  * getxattr() prior to this succeeded, check to see if we need to
2375  * canonicalize the value to be finally returned to the user.
2376  *
2377  * Permission check is handled by selinux_inode_getxattr hook.
2378  */
2379 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2380 {
2381 	struct inode_security_struct *isec = inode->i_security;
2382 
2383 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2384 		return -EOPNOTSUPP;
2385 
2386 	return selinux_getsecurity(isec->sid, buffer, size);
2387 }
2388 
2389 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2390                                      const void *value, size_t size, int flags)
2391 {
2392 	struct inode_security_struct *isec = inode->i_security;
2393 	u32 newsid;
2394 	int rc;
2395 
2396 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2397 		return -EOPNOTSUPP;
2398 
2399 	if (!value || !size)
2400 		return -EACCES;
2401 
2402 	rc = security_context_to_sid((void*)value, size, &newsid);
2403 	if (rc)
2404 		return rc;
2405 
2406 	isec->sid = newsid;
2407 	return 0;
2408 }
2409 
2410 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2411 {
2412 	const int len = sizeof(XATTR_NAME_SELINUX);
2413 	if (buffer && len <= buffer_size)
2414 		memcpy(buffer, XATTR_NAME_SELINUX, len);
2415 	return len;
2416 }
2417 
2418 /* file security operations */
2419 
2420 static int selinux_file_permission(struct file *file, int mask)
2421 {
2422 	int rc;
2423 	struct inode *inode = file->f_path.dentry->d_inode;
2424 
2425 	if (!mask) {
2426 		/* No permission to check.  Existence test. */
2427 		return 0;
2428 	}
2429 
2430 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2431 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2432 		mask |= MAY_APPEND;
2433 
2434 	rc = file_has_perm(current, file,
2435 			   file_mask_to_av(inode->i_mode, mask));
2436 	if (rc)
2437 		return rc;
2438 
2439 	return selinux_netlbl_inode_permission(inode, mask);
2440 }
2441 
2442 static int selinux_file_alloc_security(struct file *file)
2443 {
2444 	return file_alloc_security(file);
2445 }
2446 
2447 static void selinux_file_free_security(struct file *file)
2448 {
2449 	file_free_security(file);
2450 }
2451 
2452 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2453 			      unsigned long arg)
2454 {
2455 	int error = 0;
2456 
2457 	switch (cmd) {
2458 		case FIONREAD:
2459 		/* fall through */
2460 		case FIBMAP:
2461 		/* fall through */
2462 		case FIGETBSZ:
2463 		/* fall through */
2464 		case EXT2_IOC_GETFLAGS:
2465 		/* fall through */
2466 		case EXT2_IOC_GETVERSION:
2467 			error = file_has_perm(current, file, FILE__GETATTR);
2468 			break;
2469 
2470 		case EXT2_IOC_SETFLAGS:
2471 		/* fall through */
2472 		case EXT2_IOC_SETVERSION:
2473 			error = file_has_perm(current, file, FILE__SETATTR);
2474 			break;
2475 
2476 		/* sys_ioctl() checks */
2477 		case FIONBIO:
2478 		/* fall through */
2479 		case FIOASYNC:
2480 			error = file_has_perm(current, file, 0);
2481 			break;
2482 
2483 	        case KDSKBENT:
2484 	        case KDSKBSENT:
2485 			error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2486 			break;
2487 
2488 		/* default case assumes that the command will go
2489 		 * to the file's ioctl() function.
2490 		 */
2491 		default:
2492 			error = file_has_perm(current, file, FILE__IOCTL);
2493 
2494 	}
2495 	return error;
2496 }
2497 
2498 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2499 {
2500 #ifndef CONFIG_PPC32
2501 	if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2502 		/*
2503 		 * We are making executable an anonymous mapping or a
2504 		 * private file mapping that will also be writable.
2505 		 * This has an additional check.
2506 		 */
2507 		int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2508 		if (rc)
2509 			return rc;
2510 	}
2511 #endif
2512 
2513 	if (file) {
2514 		/* read access is always possible with a mapping */
2515 		u32 av = FILE__READ;
2516 
2517 		/* write access only matters if the mapping is shared */
2518 		if (shared && (prot & PROT_WRITE))
2519 			av |= FILE__WRITE;
2520 
2521 		if (prot & PROT_EXEC)
2522 			av |= FILE__EXECUTE;
2523 
2524 		return file_has_perm(current, file, av);
2525 	}
2526 	return 0;
2527 }
2528 
2529 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2530 			     unsigned long prot, unsigned long flags)
2531 {
2532 	int rc;
2533 
2534 	rc = secondary_ops->file_mmap(file, reqprot, prot, flags);
2535 	if (rc)
2536 		return rc;
2537 
2538 	if (selinux_checkreqprot)
2539 		prot = reqprot;
2540 
2541 	return file_map_prot_check(file, prot,
2542 				   (flags & MAP_TYPE) == MAP_SHARED);
2543 }
2544 
2545 static int selinux_file_mprotect(struct vm_area_struct *vma,
2546 				 unsigned long reqprot,
2547 				 unsigned long prot)
2548 {
2549 	int rc;
2550 
2551 	rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2552 	if (rc)
2553 		return rc;
2554 
2555 	if (selinux_checkreqprot)
2556 		prot = reqprot;
2557 
2558 #ifndef CONFIG_PPC32
2559 	if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2560 		rc = 0;
2561 		if (vma->vm_start >= vma->vm_mm->start_brk &&
2562 		    vma->vm_end <= vma->vm_mm->brk) {
2563 			rc = task_has_perm(current, current,
2564 					   PROCESS__EXECHEAP);
2565 		} else if (!vma->vm_file &&
2566 			   vma->vm_start <= vma->vm_mm->start_stack &&
2567 			   vma->vm_end >= vma->vm_mm->start_stack) {
2568 			rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2569 		} else if (vma->vm_file && vma->anon_vma) {
2570 			/*
2571 			 * We are making executable a file mapping that has
2572 			 * had some COW done. Since pages might have been
2573 			 * written, check ability to execute the possibly
2574 			 * modified content.  This typically should only
2575 			 * occur for text relocations.
2576 			 */
2577 			rc = file_has_perm(current, vma->vm_file,
2578 					   FILE__EXECMOD);
2579 		}
2580 		if (rc)
2581 			return rc;
2582 	}
2583 #endif
2584 
2585 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2586 }
2587 
2588 static int selinux_file_lock(struct file *file, unsigned int cmd)
2589 {
2590 	return file_has_perm(current, file, FILE__LOCK);
2591 }
2592 
2593 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2594 			      unsigned long arg)
2595 {
2596 	int err = 0;
2597 
2598 	switch (cmd) {
2599 	        case F_SETFL:
2600 			if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2601 				err = -EINVAL;
2602 				break;
2603 			}
2604 
2605 			if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2606 				err = file_has_perm(current, file,FILE__WRITE);
2607 				break;
2608 			}
2609 			/* fall through */
2610 	        case F_SETOWN:
2611 	        case F_SETSIG:
2612 	        case F_GETFL:
2613 	        case F_GETOWN:
2614 	        case F_GETSIG:
2615 			/* Just check FD__USE permission */
2616 			err = file_has_perm(current, file, 0);
2617 			break;
2618 		case F_GETLK:
2619 		case F_SETLK:
2620 	        case F_SETLKW:
2621 #if BITS_PER_LONG == 32
2622 	        case F_GETLK64:
2623 		case F_SETLK64:
2624 	        case F_SETLKW64:
2625 #endif
2626 			if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2627 				err = -EINVAL;
2628 				break;
2629 			}
2630 			err = file_has_perm(current, file, FILE__LOCK);
2631 			break;
2632 	}
2633 
2634 	return err;
2635 }
2636 
2637 static int selinux_file_set_fowner(struct file *file)
2638 {
2639 	struct task_security_struct *tsec;
2640 	struct file_security_struct *fsec;
2641 
2642 	tsec = current->security;
2643 	fsec = file->f_security;
2644 	fsec->fown_sid = tsec->sid;
2645 
2646 	return 0;
2647 }
2648 
2649 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2650 				       struct fown_struct *fown, int signum)
2651 {
2652         struct file *file;
2653 	u32 perm;
2654 	struct task_security_struct *tsec;
2655 	struct file_security_struct *fsec;
2656 
2657 	/* struct fown_struct is never outside the context of a struct file */
2658         file = (struct file *)((long)fown - offsetof(struct file,f_owner));
2659 
2660 	tsec = tsk->security;
2661 	fsec = file->f_security;
2662 
2663 	if (!signum)
2664 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2665 	else
2666 		perm = signal_to_av(signum);
2667 
2668 	return avc_has_perm(fsec->fown_sid, tsec->sid,
2669 			    SECCLASS_PROCESS, perm, NULL);
2670 }
2671 
2672 static int selinux_file_receive(struct file *file)
2673 {
2674 	return file_has_perm(current, file, file_to_av(file));
2675 }
2676 
2677 /* task security operations */
2678 
2679 static int selinux_task_create(unsigned long clone_flags)
2680 {
2681 	int rc;
2682 
2683 	rc = secondary_ops->task_create(clone_flags);
2684 	if (rc)
2685 		return rc;
2686 
2687 	return task_has_perm(current, current, PROCESS__FORK);
2688 }
2689 
2690 static int selinux_task_alloc_security(struct task_struct *tsk)
2691 {
2692 	struct task_security_struct *tsec1, *tsec2;
2693 	int rc;
2694 
2695 	tsec1 = current->security;
2696 
2697 	rc = task_alloc_security(tsk);
2698 	if (rc)
2699 		return rc;
2700 	tsec2 = tsk->security;
2701 
2702 	tsec2->osid = tsec1->osid;
2703 	tsec2->sid = tsec1->sid;
2704 
2705 	/* Retain the exec, fs, key, and sock SIDs across fork */
2706 	tsec2->exec_sid = tsec1->exec_sid;
2707 	tsec2->create_sid = tsec1->create_sid;
2708 	tsec2->keycreate_sid = tsec1->keycreate_sid;
2709 	tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2710 
2711 	/* Retain ptracer SID across fork, if any.
2712 	   This will be reset by the ptrace hook upon any
2713 	   subsequent ptrace_attach operations. */
2714 	tsec2->ptrace_sid = tsec1->ptrace_sid;
2715 
2716 	return 0;
2717 }
2718 
2719 static void selinux_task_free_security(struct task_struct *tsk)
2720 {
2721 	task_free_security(tsk);
2722 }
2723 
2724 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2725 {
2726 	/* Since setuid only affects the current process, and
2727 	   since the SELinux controls are not based on the Linux
2728 	   identity attributes, SELinux does not need to control
2729 	   this operation.  However, SELinux does control the use
2730 	   of the CAP_SETUID and CAP_SETGID capabilities using the
2731 	   capable hook. */
2732 	return 0;
2733 }
2734 
2735 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2736 {
2737 	return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2738 }
2739 
2740 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2741 {
2742 	/* See the comment for setuid above. */
2743 	return 0;
2744 }
2745 
2746 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2747 {
2748 	return task_has_perm(current, p, PROCESS__SETPGID);
2749 }
2750 
2751 static int selinux_task_getpgid(struct task_struct *p)
2752 {
2753 	return task_has_perm(current, p, PROCESS__GETPGID);
2754 }
2755 
2756 static int selinux_task_getsid(struct task_struct *p)
2757 {
2758 	return task_has_perm(current, p, PROCESS__GETSESSION);
2759 }
2760 
2761 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2762 {
2763 	selinux_get_task_sid(p, secid);
2764 }
2765 
2766 static int selinux_task_setgroups(struct group_info *group_info)
2767 {
2768 	/* See the comment for setuid above. */
2769 	return 0;
2770 }
2771 
2772 static int selinux_task_setnice(struct task_struct *p, int nice)
2773 {
2774 	int rc;
2775 
2776 	rc = secondary_ops->task_setnice(p, nice);
2777 	if (rc)
2778 		return rc;
2779 
2780 	return task_has_perm(current,p, PROCESS__SETSCHED);
2781 }
2782 
2783 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2784 {
2785 	return task_has_perm(current, p, PROCESS__SETSCHED);
2786 }
2787 
2788 static int selinux_task_getioprio(struct task_struct *p)
2789 {
2790 	return task_has_perm(current, p, PROCESS__GETSCHED);
2791 }
2792 
2793 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2794 {
2795 	struct rlimit *old_rlim = current->signal->rlim + resource;
2796 	int rc;
2797 
2798 	rc = secondary_ops->task_setrlimit(resource, new_rlim);
2799 	if (rc)
2800 		return rc;
2801 
2802 	/* Control the ability to change the hard limit (whether
2803 	   lowering or raising it), so that the hard limit can
2804 	   later be used as a safe reset point for the soft limit
2805 	   upon context transitions. See selinux_bprm_apply_creds. */
2806 	if (old_rlim->rlim_max != new_rlim->rlim_max)
2807 		return task_has_perm(current, current, PROCESS__SETRLIMIT);
2808 
2809 	return 0;
2810 }
2811 
2812 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2813 {
2814 	return task_has_perm(current, p, PROCESS__SETSCHED);
2815 }
2816 
2817 static int selinux_task_getscheduler(struct task_struct *p)
2818 {
2819 	return task_has_perm(current, p, PROCESS__GETSCHED);
2820 }
2821 
2822 static int selinux_task_movememory(struct task_struct *p)
2823 {
2824 	return task_has_perm(current, p, PROCESS__SETSCHED);
2825 }
2826 
2827 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2828 				int sig, u32 secid)
2829 {
2830 	u32 perm;
2831 	int rc;
2832 	struct task_security_struct *tsec;
2833 
2834 	rc = secondary_ops->task_kill(p, info, sig, secid);
2835 	if (rc)
2836 		return rc;
2837 
2838 	if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2839 		return 0;
2840 
2841 	if (!sig)
2842 		perm = PROCESS__SIGNULL; /* null signal; existence test */
2843 	else
2844 		perm = signal_to_av(sig);
2845 	tsec = p->security;
2846 	if (secid)
2847 		rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2848 	else
2849 		rc = task_has_perm(current, p, perm);
2850 	return rc;
2851 }
2852 
2853 static int selinux_task_prctl(int option,
2854 			      unsigned long arg2,
2855 			      unsigned long arg3,
2856 			      unsigned long arg4,
2857 			      unsigned long arg5)
2858 {
2859 	/* The current prctl operations do not appear to require
2860 	   any SELinux controls since they merely observe or modify
2861 	   the state of the current process. */
2862 	return 0;
2863 }
2864 
2865 static int selinux_task_wait(struct task_struct *p)
2866 {
2867 	u32 perm;
2868 
2869 	perm = signal_to_av(p->exit_signal);
2870 
2871 	return task_has_perm(p, current, perm);
2872 }
2873 
2874 static void selinux_task_reparent_to_init(struct task_struct *p)
2875 {
2876   	struct task_security_struct *tsec;
2877 
2878 	secondary_ops->task_reparent_to_init(p);
2879 
2880 	tsec = p->security;
2881 	tsec->osid = tsec->sid;
2882 	tsec->sid = SECINITSID_KERNEL;
2883 	return;
2884 }
2885 
2886 static void selinux_task_to_inode(struct task_struct *p,
2887 				  struct inode *inode)
2888 {
2889 	struct task_security_struct *tsec = p->security;
2890 	struct inode_security_struct *isec = inode->i_security;
2891 
2892 	isec->sid = tsec->sid;
2893 	isec->initialized = 1;
2894 	return;
2895 }
2896 
2897 /* Returns error only if unable to parse addresses */
2898 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
2899 			struct avc_audit_data *ad, u8 *proto)
2900 {
2901 	int offset, ihlen, ret = -EINVAL;
2902 	struct iphdr _iph, *ih;
2903 
2904 	offset = skb->nh.raw - skb->data;
2905 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2906 	if (ih == NULL)
2907 		goto out;
2908 
2909 	ihlen = ih->ihl * 4;
2910 	if (ihlen < sizeof(_iph))
2911 		goto out;
2912 
2913 	ad->u.net.v4info.saddr = ih->saddr;
2914 	ad->u.net.v4info.daddr = ih->daddr;
2915 	ret = 0;
2916 
2917 	if (proto)
2918 		*proto = ih->protocol;
2919 
2920 	switch (ih->protocol) {
2921         case IPPROTO_TCP: {
2922         	struct tcphdr _tcph, *th;
2923 
2924         	if (ntohs(ih->frag_off) & IP_OFFSET)
2925         		break;
2926 
2927 		offset += ihlen;
2928 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2929 		if (th == NULL)
2930 			break;
2931 
2932 		ad->u.net.sport = th->source;
2933 		ad->u.net.dport = th->dest;
2934 		break;
2935         }
2936 
2937         case IPPROTO_UDP: {
2938         	struct udphdr _udph, *uh;
2939 
2940         	if (ntohs(ih->frag_off) & IP_OFFSET)
2941         		break;
2942 
2943 		offset += ihlen;
2944         	uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2945 		if (uh == NULL)
2946 			break;
2947 
2948         	ad->u.net.sport = uh->source;
2949         	ad->u.net.dport = uh->dest;
2950         	break;
2951         }
2952 
2953 	case IPPROTO_DCCP: {
2954 		struct dccp_hdr _dccph, *dh;
2955 
2956 		if (ntohs(ih->frag_off) & IP_OFFSET)
2957 			break;
2958 
2959 		offset += ihlen;
2960 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
2961 		if (dh == NULL)
2962 			break;
2963 
2964 		ad->u.net.sport = dh->dccph_sport;
2965 		ad->u.net.dport = dh->dccph_dport;
2966 		break;
2967         }
2968 
2969         default:
2970         	break;
2971         }
2972 out:
2973 	return ret;
2974 }
2975 
2976 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2977 
2978 /* Returns error only if unable to parse addresses */
2979 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
2980 			struct avc_audit_data *ad, u8 *proto)
2981 {
2982 	u8 nexthdr;
2983 	int ret = -EINVAL, offset;
2984 	struct ipv6hdr _ipv6h, *ip6;
2985 
2986 	offset = skb->nh.raw - skb->data;
2987 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
2988 	if (ip6 == NULL)
2989 		goto out;
2990 
2991 	ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
2992 	ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
2993 	ret = 0;
2994 
2995 	nexthdr = ip6->nexthdr;
2996 	offset += sizeof(_ipv6h);
2997 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
2998 	if (offset < 0)
2999 		goto out;
3000 
3001 	if (proto)
3002 		*proto = nexthdr;
3003 
3004 	switch (nexthdr) {
3005 	case IPPROTO_TCP: {
3006         	struct tcphdr _tcph, *th;
3007 
3008 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3009 		if (th == NULL)
3010 			break;
3011 
3012 		ad->u.net.sport = th->source;
3013 		ad->u.net.dport = th->dest;
3014 		break;
3015 	}
3016 
3017 	case IPPROTO_UDP: {
3018 		struct udphdr _udph, *uh;
3019 
3020 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3021 		if (uh == NULL)
3022 			break;
3023 
3024 		ad->u.net.sport = uh->source;
3025 		ad->u.net.dport = uh->dest;
3026 		break;
3027 	}
3028 
3029 	case IPPROTO_DCCP: {
3030 		struct dccp_hdr _dccph, *dh;
3031 
3032 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3033 		if (dh == NULL)
3034 			break;
3035 
3036 		ad->u.net.sport = dh->dccph_sport;
3037 		ad->u.net.dport = dh->dccph_dport;
3038 		break;
3039         }
3040 
3041 	/* includes fragments */
3042 	default:
3043 		break;
3044 	}
3045 out:
3046 	return ret;
3047 }
3048 
3049 #endif /* IPV6 */
3050 
3051 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3052 			     char **addrp, int *len, int src, u8 *proto)
3053 {
3054 	int ret = 0;
3055 
3056 	switch (ad->u.net.family) {
3057 	case PF_INET:
3058 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3059 		if (ret || !addrp)
3060 			break;
3061 		*len = 4;
3062 		*addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3063 					&ad->u.net.v4info.daddr);
3064 		break;
3065 
3066 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3067 	case PF_INET6:
3068 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3069 		if (ret || !addrp)
3070 			break;
3071 		*len = 16;
3072 		*addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3073 					&ad->u.net.v6info.daddr);
3074 		break;
3075 #endif	/* IPV6 */
3076 	default:
3077 		break;
3078 	}
3079 
3080 	return ret;
3081 }
3082 
3083 /* socket security operations */
3084 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3085 			   u32 perms)
3086 {
3087 	struct inode_security_struct *isec;
3088 	struct task_security_struct *tsec;
3089 	struct avc_audit_data ad;
3090 	int err = 0;
3091 
3092 	tsec = task->security;
3093 	isec = SOCK_INODE(sock)->i_security;
3094 
3095 	if (isec->sid == SECINITSID_KERNEL)
3096 		goto out;
3097 
3098 	AVC_AUDIT_DATA_INIT(&ad,NET);
3099 	ad.u.net.sk = sock->sk;
3100 	err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3101 
3102 out:
3103 	return err;
3104 }
3105 
3106 static int selinux_socket_create(int family, int type,
3107 				 int protocol, int kern)
3108 {
3109 	int err = 0;
3110 	struct task_security_struct *tsec;
3111 	u32 newsid;
3112 
3113 	if (kern)
3114 		goto out;
3115 
3116 	tsec = current->security;
3117 	newsid = tsec->sockcreate_sid ? : tsec->sid;
3118 	err = avc_has_perm(tsec->sid, newsid,
3119 			   socket_type_to_security_class(family, type,
3120 			   protocol), SOCKET__CREATE, NULL);
3121 
3122 out:
3123 	return err;
3124 }
3125 
3126 static int selinux_socket_post_create(struct socket *sock, int family,
3127 				      int type, int protocol, int kern)
3128 {
3129 	int err = 0;
3130 	struct inode_security_struct *isec;
3131 	struct task_security_struct *tsec;
3132 	struct sk_security_struct *sksec;
3133 	u32 newsid;
3134 
3135 	isec = SOCK_INODE(sock)->i_security;
3136 
3137 	tsec = current->security;
3138 	newsid = tsec->sockcreate_sid ? : tsec->sid;
3139 	isec->sclass = socket_type_to_security_class(family, type, protocol);
3140 	isec->sid = kern ? SECINITSID_KERNEL : newsid;
3141 	isec->initialized = 1;
3142 
3143 	if (sock->sk) {
3144 		sksec = sock->sk->sk_security;
3145 		sksec->sid = isec->sid;
3146 		err = selinux_netlbl_socket_post_create(sock);
3147 	}
3148 
3149 	return err;
3150 }
3151 
3152 /* Range of port numbers used to automatically bind.
3153    Need to determine whether we should perform a name_bind
3154    permission check between the socket and the port number. */
3155 #define ip_local_port_range_0 sysctl_local_port_range[0]
3156 #define ip_local_port_range_1 sysctl_local_port_range[1]
3157 
3158 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3159 {
3160 	u16 family;
3161 	int err;
3162 
3163 	err = socket_has_perm(current, sock, SOCKET__BIND);
3164 	if (err)
3165 		goto out;
3166 
3167 	/*
3168 	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3169 	 * Multiple address binding for SCTP is not supported yet: we just
3170 	 * check the first address now.
3171 	 */
3172 	family = sock->sk->sk_family;
3173 	if (family == PF_INET || family == PF_INET6) {
3174 		char *addrp;
3175 		struct inode_security_struct *isec;
3176 		struct task_security_struct *tsec;
3177 		struct avc_audit_data ad;
3178 		struct sockaddr_in *addr4 = NULL;
3179 		struct sockaddr_in6 *addr6 = NULL;
3180 		unsigned short snum;
3181 		struct sock *sk = sock->sk;
3182 		u32 sid, node_perm, addrlen;
3183 
3184 		tsec = current->security;
3185 		isec = SOCK_INODE(sock)->i_security;
3186 
3187 		if (family == PF_INET) {
3188 			addr4 = (struct sockaddr_in *)address;
3189 			snum = ntohs(addr4->sin_port);
3190 			addrlen = sizeof(addr4->sin_addr.s_addr);
3191 			addrp = (char *)&addr4->sin_addr.s_addr;
3192 		} else {
3193 			addr6 = (struct sockaddr_in6 *)address;
3194 			snum = ntohs(addr6->sin6_port);
3195 			addrlen = sizeof(addr6->sin6_addr.s6_addr);
3196 			addrp = (char *)&addr6->sin6_addr.s6_addr;
3197 		}
3198 
3199 		if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
3200 			   snum > ip_local_port_range_1)) {
3201 			err = security_port_sid(sk->sk_family, sk->sk_type,
3202 						sk->sk_protocol, snum, &sid);
3203 			if (err)
3204 				goto out;
3205 			AVC_AUDIT_DATA_INIT(&ad,NET);
3206 			ad.u.net.sport = htons(snum);
3207 			ad.u.net.family = family;
3208 			err = avc_has_perm(isec->sid, sid,
3209 					   isec->sclass,
3210 					   SOCKET__NAME_BIND, &ad);
3211 			if (err)
3212 				goto out;
3213 		}
3214 
3215 		switch(isec->sclass) {
3216 		case SECCLASS_TCP_SOCKET:
3217 			node_perm = TCP_SOCKET__NODE_BIND;
3218 			break;
3219 
3220 		case SECCLASS_UDP_SOCKET:
3221 			node_perm = UDP_SOCKET__NODE_BIND;
3222 			break;
3223 
3224 		case SECCLASS_DCCP_SOCKET:
3225 			node_perm = DCCP_SOCKET__NODE_BIND;
3226 			break;
3227 
3228 		default:
3229 			node_perm = RAWIP_SOCKET__NODE_BIND;
3230 			break;
3231 		}
3232 
3233 		err = security_node_sid(family, addrp, addrlen, &sid);
3234 		if (err)
3235 			goto out;
3236 
3237 		AVC_AUDIT_DATA_INIT(&ad,NET);
3238 		ad.u.net.sport = htons(snum);
3239 		ad.u.net.family = family;
3240 
3241 		if (family == PF_INET)
3242 			ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3243 		else
3244 			ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3245 
3246 		err = avc_has_perm(isec->sid, sid,
3247 		                   isec->sclass, node_perm, &ad);
3248 		if (err)
3249 			goto out;
3250 	}
3251 out:
3252 	return err;
3253 }
3254 
3255 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3256 {
3257 	struct inode_security_struct *isec;
3258 	int err;
3259 
3260 	err = socket_has_perm(current, sock, SOCKET__CONNECT);
3261 	if (err)
3262 		return err;
3263 
3264 	/*
3265 	 * If a TCP or DCCP socket, check name_connect permission for the port.
3266 	 */
3267 	isec = SOCK_INODE(sock)->i_security;
3268 	if (isec->sclass == SECCLASS_TCP_SOCKET ||
3269 	    isec->sclass == SECCLASS_DCCP_SOCKET) {
3270 		struct sock *sk = sock->sk;
3271 		struct avc_audit_data ad;
3272 		struct sockaddr_in *addr4 = NULL;
3273 		struct sockaddr_in6 *addr6 = NULL;
3274 		unsigned short snum;
3275 		u32 sid, perm;
3276 
3277 		if (sk->sk_family == PF_INET) {
3278 			addr4 = (struct sockaddr_in *)address;
3279 			if (addrlen < sizeof(struct sockaddr_in))
3280 				return -EINVAL;
3281 			snum = ntohs(addr4->sin_port);
3282 		} else {
3283 			addr6 = (struct sockaddr_in6 *)address;
3284 			if (addrlen < SIN6_LEN_RFC2133)
3285 				return -EINVAL;
3286 			snum = ntohs(addr6->sin6_port);
3287 		}
3288 
3289 		err = security_port_sid(sk->sk_family, sk->sk_type,
3290 					sk->sk_protocol, snum, &sid);
3291 		if (err)
3292 			goto out;
3293 
3294 		perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3295 		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3296 
3297 		AVC_AUDIT_DATA_INIT(&ad,NET);
3298 		ad.u.net.dport = htons(snum);
3299 		ad.u.net.family = sk->sk_family;
3300 		err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3301 		if (err)
3302 			goto out;
3303 	}
3304 
3305 out:
3306 	return err;
3307 }
3308 
3309 static int selinux_socket_listen(struct socket *sock, int backlog)
3310 {
3311 	return socket_has_perm(current, sock, SOCKET__LISTEN);
3312 }
3313 
3314 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3315 {
3316 	int err;
3317 	struct inode_security_struct *isec;
3318 	struct inode_security_struct *newisec;
3319 
3320 	err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3321 	if (err)
3322 		return err;
3323 
3324 	newisec = SOCK_INODE(newsock)->i_security;
3325 
3326 	isec = SOCK_INODE(sock)->i_security;
3327 	newisec->sclass = isec->sclass;
3328 	newisec->sid = isec->sid;
3329 	newisec->initialized = 1;
3330 
3331 	return 0;
3332 }
3333 
3334 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3335  				  int size)
3336 {
3337 	int rc;
3338 
3339 	rc = socket_has_perm(current, sock, SOCKET__WRITE);
3340 	if (rc)
3341 		return rc;
3342 
3343 	return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3344 }
3345 
3346 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3347 				  int size, int flags)
3348 {
3349 	return socket_has_perm(current, sock, SOCKET__READ);
3350 }
3351 
3352 static int selinux_socket_getsockname(struct socket *sock)
3353 {
3354 	return socket_has_perm(current, sock, SOCKET__GETATTR);
3355 }
3356 
3357 static int selinux_socket_getpeername(struct socket *sock)
3358 {
3359 	return socket_has_perm(current, sock, SOCKET__GETATTR);
3360 }
3361 
3362 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3363 {
3364 	int err;
3365 
3366 	err = socket_has_perm(current, sock, SOCKET__SETOPT);
3367 	if (err)
3368 		return err;
3369 
3370 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
3371 }
3372 
3373 static int selinux_socket_getsockopt(struct socket *sock, int level,
3374 				     int optname)
3375 {
3376 	return socket_has_perm(current, sock, SOCKET__GETOPT);
3377 }
3378 
3379 static int selinux_socket_shutdown(struct socket *sock, int how)
3380 {
3381 	return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3382 }
3383 
3384 static int selinux_socket_unix_stream_connect(struct socket *sock,
3385 					      struct socket *other,
3386 					      struct sock *newsk)
3387 {
3388 	struct sk_security_struct *ssec;
3389 	struct inode_security_struct *isec;
3390 	struct inode_security_struct *other_isec;
3391 	struct avc_audit_data ad;
3392 	int err;
3393 
3394 	err = secondary_ops->unix_stream_connect(sock, other, newsk);
3395 	if (err)
3396 		return err;
3397 
3398 	isec = SOCK_INODE(sock)->i_security;
3399 	other_isec = SOCK_INODE(other)->i_security;
3400 
3401 	AVC_AUDIT_DATA_INIT(&ad,NET);
3402 	ad.u.net.sk = other->sk;
3403 
3404 	err = avc_has_perm(isec->sid, other_isec->sid,
3405 			   isec->sclass,
3406 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3407 	if (err)
3408 		return err;
3409 
3410 	/* connecting socket */
3411 	ssec = sock->sk->sk_security;
3412 	ssec->peer_sid = other_isec->sid;
3413 
3414 	/* server child socket */
3415 	ssec = newsk->sk_security;
3416 	ssec->peer_sid = isec->sid;
3417 	err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3418 
3419 	return err;
3420 }
3421 
3422 static int selinux_socket_unix_may_send(struct socket *sock,
3423 					struct socket *other)
3424 {
3425 	struct inode_security_struct *isec;
3426 	struct inode_security_struct *other_isec;
3427 	struct avc_audit_data ad;
3428 	int err;
3429 
3430 	isec = SOCK_INODE(sock)->i_security;
3431 	other_isec = SOCK_INODE(other)->i_security;
3432 
3433 	AVC_AUDIT_DATA_INIT(&ad,NET);
3434 	ad.u.net.sk = other->sk;
3435 
3436 	err = avc_has_perm(isec->sid, other_isec->sid,
3437 			   isec->sclass, SOCKET__SENDTO, &ad);
3438 	if (err)
3439 		return err;
3440 
3441 	return 0;
3442 }
3443 
3444 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3445 		struct avc_audit_data *ad, u16 family, char *addrp, int len)
3446 {
3447 	int err = 0;
3448 	u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3449 	struct socket *sock;
3450 	u16 sock_class = 0;
3451 	u32 sock_sid = 0;
3452 
3453  	read_lock_bh(&sk->sk_callback_lock);
3454  	sock = sk->sk_socket;
3455  	if (sock) {
3456  		struct inode *inode;
3457  		inode = SOCK_INODE(sock);
3458  		if (inode) {
3459  			struct inode_security_struct *isec;
3460  			isec = inode->i_security;
3461  			sock_sid = isec->sid;
3462  			sock_class = isec->sclass;
3463  		}
3464  	}
3465  	read_unlock_bh(&sk->sk_callback_lock);
3466  	if (!sock_sid)
3467   		goto out;
3468 
3469 	if (!skb->dev)
3470 		goto out;
3471 
3472 	err = sel_netif_sids(skb->dev, &if_sid, NULL);
3473 	if (err)
3474 		goto out;
3475 
3476 	switch (sock_class) {
3477 	case SECCLASS_UDP_SOCKET:
3478 		netif_perm = NETIF__UDP_RECV;
3479 		node_perm = NODE__UDP_RECV;
3480 		recv_perm = UDP_SOCKET__RECV_MSG;
3481 		break;
3482 
3483 	case SECCLASS_TCP_SOCKET:
3484 		netif_perm = NETIF__TCP_RECV;
3485 		node_perm = NODE__TCP_RECV;
3486 		recv_perm = TCP_SOCKET__RECV_MSG;
3487 		break;
3488 
3489 	case SECCLASS_DCCP_SOCKET:
3490 		netif_perm = NETIF__DCCP_RECV;
3491 		node_perm = NODE__DCCP_RECV;
3492 		recv_perm = DCCP_SOCKET__RECV_MSG;
3493 		break;
3494 
3495 	default:
3496 		netif_perm = NETIF__RAWIP_RECV;
3497 		node_perm = NODE__RAWIP_RECV;
3498 		break;
3499 	}
3500 
3501 	err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3502 	if (err)
3503 		goto out;
3504 
3505 	err = security_node_sid(family, addrp, len, &node_sid);
3506 	if (err)
3507 		goto out;
3508 
3509 	err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3510 	if (err)
3511 		goto out;
3512 
3513 	if (recv_perm) {
3514 		u32 port_sid;
3515 
3516 		err = security_port_sid(sk->sk_family, sk->sk_type,
3517 		                        sk->sk_protocol, ntohs(ad->u.net.sport),
3518 		                        &port_sid);
3519 		if (err)
3520 			goto out;
3521 
3522 		err = avc_has_perm(sock_sid, port_sid,
3523 				   sock_class, recv_perm, ad);
3524 	}
3525 
3526 out:
3527 	return err;
3528 }
3529 
3530 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3531 {
3532 	u16 family;
3533 	char *addrp;
3534 	int len, err = 0;
3535 	struct avc_audit_data ad;
3536 	struct sk_security_struct *sksec = sk->sk_security;
3537 
3538 	family = sk->sk_family;
3539 	if (family != PF_INET && family != PF_INET6)
3540 		goto out;
3541 
3542 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
3543 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
3544 		family = PF_INET;
3545 
3546 	AVC_AUDIT_DATA_INIT(&ad, NET);
3547 	ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3548 	ad.u.net.family = family;
3549 
3550 	err = selinux_parse_skb(skb, &ad, &addrp, &len, 1, NULL);
3551 	if (err)
3552 		goto out;
3553 
3554 	if (selinux_compat_net)
3555 		err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family,
3556 						  addrp, len);
3557 	else
3558 		err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3559 				   PACKET__RECV, &ad);
3560 	if (err)
3561 		goto out;
3562 
3563 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad);
3564 	if (err)
3565 		goto out;
3566 
3567 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
3568 out:
3569 	return err;
3570 }
3571 
3572 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3573 					    int __user *optlen, unsigned len)
3574 {
3575 	int err = 0;
3576 	char *scontext;
3577 	u32 scontext_len;
3578 	struct sk_security_struct *ssec;
3579 	struct inode_security_struct *isec;
3580 	u32 peer_sid = SECSID_NULL;
3581 
3582 	isec = SOCK_INODE(sock)->i_security;
3583 
3584 	if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
3585 	    isec->sclass == SECCLASS_TCP_SOCKET) {
3586 		ssec = sock->sk->sk_security;
3587 		peer_sid = ssec->peer_sid;
3588 	}
3589 	if (peer_sid == SECSID_NULL) {
3590 		err = -ENOPROTOOPT;
3591 		goto out;
3592 	}
3593 
3594 	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3595 
3596 	if (err)
3597 		goto out;
3598 
3599 	if (scontext_len > len) {
3600 		err = -ERANGE;
3601 		goto out_len;
3602 	}
3603 
3604 	if (copy_to_user(optval, scontext, scontext_len))
3605 		err = -EFAULT;
3606 
3607 out_len:
3608 	if (put_user(scontext_len, optlen))
3609 		err = -EFAULT;
3610 
3611 	kfree(scontext);
3612 out:
3613 	return err;
3614 }
3615 
3616 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3617 {
3618 	u32 peer_secid = SECSID_NULL;
3619 	int err = 0;
3620 
3621 	if (sock && sock->sk->sk_family == PF_UNIX)
3622 		selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
3623 	else if (skb)
3624 		security_skb_extlbl_sid(skb,
3625 					SECINITSID_UNLABELED,
3626 					&peer_secid);
3627 
3628 	if (peer_secid == SECSID_NULL)
3629 		err = -EINVAL;
3630 	*secid = peer_secid;
3631 
3632 	return err;
3633 }
3634 
3635 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3636 {
3637 	return sk_alloc_security(sk, family, priority);
3638 }
3639 
3640 static void selinux_sk_free_security(struct sock *sk)
3641 {
3642 	sk_free_security(sk);
3643 }
3644 
3645 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
3646 {
3647 	struct sk_security_struct *ssec = sk->sk_security;
3648 	struct sk_security_struct *newssec = newsk->sk_security;
3649 
3650 	newssec->sid = ssec->sid;
3651 	newssec->peer_sid = ssec->peer_sid;
3652 
3653 	selinux_netlbl_sk_security_clone(ssec, newssec);
3654 }
3655 
3656 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
3657 {
3658 	if (!sk)
3659 		*secid = SECINITSID_ANY_SOCKET;
3660 	else {
3661 		struct sk_security_struct *sksec = sk->sk_security;
3662 
3663 		*secid = sksec->sid;
3664 	}
3665 }
3666 
3667 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
3668 {
3669 	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
3670 	struct sk_security_struct *sksec = sk->sk_security;
3671 
3672 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
3673 	    sk->sk_family == PF_UNIX)
3674 		isec->sid = sksec->sid;
3675 
3676 	selinux_netlbl_sock_graft(sk, parent);
3677 }
3678 
3679 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
3680 				     struct request_sock *req)
3681 {
3682 	struct sk_security_struct *sksec = sk->sk_security;
3683 	int err;
3684 	u32 newsid;
3685 	u32 peersid;
3686 
3687 	security_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &peersid);
3688 	if (peersid == SECSID_NULL) {
3689 		req->secid = sksec->sid;
3690 		req->peer_secid = SECSID_NULL;
3691 		return 0;
3692 	}
3693 
3694 	err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
3695 	if (err)
3696 		return err;
3697 
3698 	req->secid = newsid;
3699 	req->peer_secid = peersid;
3700 	return 0;
3701 }
3702 
3703 static void selinux_inet_csk_clone(struct sock *newsk,
3704 				   const struct request_sock *req)
3705 {
3706 	struct sk_security_struct *newsksec = newsk->sk_security;
3707 
3708 	newsksec->sid = req->secid;
3709 	newsksec->peer_sid = req->peer_secid;
3710 	/* NOTE: Ideally, we should also get the isec->sid for the
3711 	   new socket in sync, but we don't have the isec available yet.
3712 	   So we will wait until sock_graft to do it, by which
3713 	   time it will have been created and available. */
3714 
3715 	/* We don't need to take any sort of lock here as we are the only
3716 	 * thread with access to newsksec */
3717 	selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
3718 }
3719 
3720 static void selinux_inet_conn_established(struct sock *sk,
3721 				struct sk_buff *skb)
3722 {
3723 	struct sk_security_struct *sksec = sk->sk_security;
3724 
3725 	security_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &sksec->peer_sid);
3726 }
3727 
3728 static void selinux_req_classify_flow(const struct request_sock *req,
3729 				      struct flowi *fl)
3730 {
3731 	fl->secid = req->secid;
3732 }
3733 
3734 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3735 {
3736 	int err = 0;
3737 	u32 perm;
3738 	struct nlmsghdr *nlh;
3739 	struct socket *sock = sk->sk_socket;
3740 	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3741 
3742 	if (skb->len < NLMSG_SPACE(0)) {
3743 		err = -EINVAL;
3744 		goto out;
3745 	}
3746 	nlh = (struct nlmsghdr *)skb->data;
3747 
3748 	err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3749 	if (err) {
3750 		if (err == -EINVAL) {
3751 			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3752 				  "SELinux:  unrecognized netlink message"
3753 				  " type=%hu for sclass=%hu\n",
3754 				  nlh->nlmsg_type, isec->sclass);
3755 			if (!selinux_enforcing)
3756 				err = 0;
3757 		}
3758 
3759 		/* Ignore */
3760 		if (err == -ENOENT)
3761 			err = 0;
3762 		goto out;
3763 	}
3764 
3765 	err = socket_has_perm(current, sock, perm);
3766 out:
3767 	return err;
3768 }
3769 
3770 #ifdef CONFIG_NETFILTER
3771 
3772 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3773 					    struct avc_audit_data *ad,
3774 					    u16 family, char *addrp, int len)
3775 {
3776 	int err = 0;
3777 	u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3778 	struct socket *sock;
3779 	struct inode *inode;
3780 	struct inode_security_struct *isec;
3781 
3782 	sock = sk->sk_socket;
3783 	if (!sock)
3784 		goto out;
3785 
3786 	inode = SOCK_INODE(sock);
3787 	if (!inode)
3788 		goto out;
3789 
3790 	isec = inode->i_security;
3791 
3792 	err = sel_netif_sids(dev, &if_sid, NULL);
3793 	if (err)
3794 		goto out;
3795 
3796 	switch (isec->sclass) {
3797 	case SECCLASS_UDP_SOCKET:
3798 		netif_perm = NETIF__UDP_SEND;
3799 		node_perm = NODE__UDP_SEND;
3800 		send_perm = UDP_SOCKET__SEND_MSG;
3801 		break;
3802 
3803 	case SECCLASS_TCP_SOCKET:
3804 		netif_perm = NETIF__TCP_SEND;
3805 		node_perm = NODE__TCP_SEND;
3806 		send_perm = TCP_SOCKET__SEND_MSG;
3807 		break;
3808 
3809 	case SECCLASS_DCCP_SOCKET:
3810 		netif_perm = NETIF__DCCP_SEND;
3811 		node_perm = NODE__DCCP_SEND;
3812 		send_perm = DCCP_SOCKET__SEND_MSG;
3813 		break;
3814 
3815 	default:
3816 		netif_perm = NETIF__RAWIP_SEND;
3817 		node_perm = NODE__RAWIP_SEND;
3818 		break;
3819 	}
3820 
3821 	err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3822 	if (err)
3823 		goto out;
3824 
3825 	err = security_node_sid(family, addrp, len, &node_sid);
3826 	if (err)
3827 		goto out;
3828 
3829 	err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3830 	if (err)
3831 		goto out;
3832 
3833 	if (send_perm) {
3834 		u32 port_sid;
3835 
3836 		err = security_port_sid(sk->sk_family,
3837 		                        sk->sk_type,
3838 		                        sk->sk_protocol,
3839 		                        ntohs(ad->u.net.dport),
3840 		                        &port_sid);
3841 		if (err)
3842 			goto out;
3843 
3844 		err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3845 				   send_perm, ad);
3846 	}
3847 out:
3848 	return err;
3849 }
3850 
3851 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3852                                               struct sk_buff **pskb,
3853                                               const struct net_device *in,
3854                                               const struct net_device *out,
3855                                               int (*okfn)(struct sk_buff *),
3856                                               u16 family)
3857 {
3858 	char *addrp;
3859 	int len, err = 0;
3860 	struct sock *sk;
3861 	struct sk_buff *skb = *pskb;
3862 	struct avc_audit_data ad;
3863 	struct net_device *dev = (struct net_device *)out;
3864 	struct sk_security_struct *sksec;
3865 	u8 proto;
3866 
3867 	sk = skb->sk;
3868 	if (!sk)
3869 		goto out;
3870 
3871 	sksec = sk->sk_security;
3872 
3873 	AVC_AUDIT_DATA_INIT(&ad, NET);
3874 	ad.u.net.netif = dev->name;
3875 	ad.u.net.family = family;
3876 
3877 	err = selinux_parse_skb(skb, &ad, &addrp, &len, 0, &proto);
3878 	if (err)
3879 		goto out;
3880 
3881 	if (selinux_compat_net)
3882 		err = selinux_ip_postroute_last_compat(sk, dev, &ad,
3883 						       family, addrp, len);
3884 	else
3885 		err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3886 				   PACKET__SEND, &ad);
3887 
3888 	if (err)
3889 		goto out;
3890 
3891 	err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto);
3892 out:
3893 	return err ? NF_DROP : NF_ACCEPT;
3894 }
3895 
3896 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3897 						struct sk_buff **pskb,
3898 						const struct net_device *in,
3899 						const struct net_device *out,
3900 						int (*okfn)(struct sk_buff *))
3901 {
3902 	return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3903 }
3904 
3905 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3906 
3907 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3908 						struct sk_buff **pskb,
3909 						const struct net_device *in,
3910 						const struct net_device *out,
3911 						int (*okfn)(struct sk_buff *))
3912 {
3913 	return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3914 }
3915 
3916 #endif	/* IPV6 */
3917 
3918 #endif	/* CONFIG_NETFILTER */
3919 
3920 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
3921 {
3922 	int err;
3923 
3924 	err = secondary_ops->netlink_send(sk, skb);
3925 	if (err)
3926 		return err;
3927 
3928 	if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
3929 		err = selinux_nlmsg_perm(sk, skb);
3930 
3931 	return err;
3932 }
3933 
3934 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
3935 {
3936 	int err;
3937 	struct avc_audit_data ad;
3938 
3939 	err = secondary_ops->netlink_recv(skb, capability);
3940 	if (err)
3941 		return err;
3942 
3943 	AVC_AUDIT_DATA_INIT(&ad, CAP);
3944 	ad.u.cap = capability;
3945 
3946 	return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
3947 	                    SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
3948 }
3949 
3950 static int ipc_alloc_security(struct task_struct *task,
3951 			      struct kern_ipc_perm *perm,
3952 			      u16 sclass)
3953 {
3954 	struct task_security_struct *tsec = task->security;
3955 	struct ipc_security_struct *isec;
3956 
3957 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
3958 	if (!isec)
3959 		return -ENOMEM;
3960 
3961 	isec->sclass = sclass;
3962 	isec->ipc_perm = perm;
3963 	isec->sid = tsec->sid;
3964 	perm->security = isec;
3965 
3966 	return 0;
3967 }
3968 
3969 static void ipc_free_security(struct kern_ipc_perm *perm)
3970 {
3971 	struct ipc_security_struct *isec = perm->security;
3972 	perm->security = NULL;
3973 	kfree(isec);
3974 }
3975 
3976 static int msg_msg_alloc_security(struct msg_msg *msg)
3977 {
3978 	struct msg_security_struct *msec;
3979 
3980 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
3981 	if (!msec)
3982 		return -ENOMEM;
3983 
3984 	msec->msg = msg;
3985 	msec->sid = SECINITSID_UNLABELED;
3986 	msg->security = msec;
3987 
3988 	return 0;
3989 }
3990 
3991 static void msg_msg_free_security(struct msg_msg *msg)
3992 {
3993 	struct msg_security_struct *msec = msg->security;
3994 
3995 	msg->security = NULL;
3996 	kfree(msec);
3997 }
3998 
3999 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4000 			u32 perms)
4001 {
4002 	struct task_security_struct *tsec;
4003 	struct ipc_security_struct *isec;
4004 	struct avc_audit_data ad;
4005 
4006 	tsec = current->security;
4007 	isec = ipc_perms->security;
4008 
4009 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4010 	ad.u.ipc_id = ipc_perms->key;
4011 
4012 	return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4013 }
4014 
4015 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4016 {
4017 	return msg_msg_alloc_security(msg);
4018 }
4019 
4020 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4021 {
4022 	msg_msg_free_security(msg);
4023 }
4024 
4025 /* message queue security operations */
4026 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4027 {
4028 	struct task_security_struct *tsec;
4029 	struct ipc_security_struct *isec;
4030 	struct avc_audit_data ad;
4031 	int rc;
4032 
4033 	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4034 	if (rc)
4035 		return rc;
4036 
4037 	tsec = current->security;
4038 	isec = msq->q_perm.security;
4039 
4040 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4041  	ad.u.ipc_id = msq->q_perm.key;
4042 
4043 	rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4044 			  MSGQ__CREATE, &ad);
4045 	if (rc) {
4046 		ipc_free_security(&msq->q_perm);
4047 		return rc;
4048 	}
4049 	return 0;
4050 }
4051 
4052 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4053 {
4054 	ipc_free_security(&msq->q_perm);
4055 }
4056 
4057 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4058 {
4059 	struct task_security_struct *tsec;
4060 	struct ipc_security_struct *isec;
4061 	struct avc_audit_data ad;
4062 
4063 	tsec = current->security;
4064 	isec = msq->q_perm.security;
4065 
4066 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4067 	ad.u.ipc_id = msq->q_perm.key;
4068 
4069 	return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4070 			    MSGQ__ASSOCIATE, &ad);
4071 }
4072 
4073 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4074 {
4075 	int err;
4076 	int perms;
4077 
4078 	switch(cmd) {
4079 	case IPC_INFO:
4080 	case MSG_INFO:
4081 		/* No specific object, just general system-wide information. */
4082 		return task_has_system(current, SYSTEM__IPC_INFO);
4083 	case IPC_STAT:
4084 	case MSG_STAT:
4085 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4086 		break;
4087 	case IPC_SET:
4088 		perms = MSGQ__SETATTR;
4089 		break;
4090 	case IPC_RMID:
4091 		perms = MSGQ__DESTROY;
4092 		break;
4093 	default:
4094 		return 0;
4095 	}
4096 
4097 	err = ipc_has_perm(&msq->q_perm, perms);
4098 	return err;
4099 }
4100 
4101 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4102 {
4103 	struct task_security_struct *tsec;
4104 	struct ipc_security_struct *isec;
4105 	struct msg_security_struct *msec;
4106 	struct avc_audit_data ad;
4107 	int rc;
4108 
4109 	tsec = current->security;
4110 	isec = msq->q_perm.security;
4111 	msec = msg->security;
4112 
4113 	/*
4114 	 * First time through, need to assign label to the message
4115 	 */
4116 	if (msec->sid == SECINITSID_UNLABELED) {
4117 		/*
4118 		 * Compute new sid based on current process and
4119 		 * message queue this message will be stored in
4120 		 */
4121 		rc = security_transition_sid(tsec->sid,
4122 					     isec->sid,
4123 					     SECCLASS_MSG,
4124 					     &msec->sid);
4125 		if (rc)
4126 			return rc;
4127 	}
4128 
4129 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4130 	ad.u.ipc_id = msq->q_perm.key;
4131 
4132 	/* Can this process write to the queue? */
4133 	rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4134 			  MSGQ__WRITE, &ad);
4135 	if (!rc)
4136 		/* Can this process send the message */
4137 		rc = avc_has_perm(tsec->sid, msec->sid,
4138 				  SECCLASS_MSG, MSG__SEND, &ad);
4139 	if (!rc)
4140 		/* Can the message be put in the queue? */
4141 		rc = avc_has_perm(msec->sid, isec->sid,
4142 				  SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4143 
4144 	return rc;
4145 }
4146 
4147 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4148 				    struct task_struct *target,
4149 				    long type, int mode)
4150 {
4151 	struct task_security_struct *tsec;
4152 	struct ipc_security_struct *isec;
4153 	struct msg_security_struct *msec;
4154 	struct avc_audit_data ad;
4155 	int rc;
4156 
4157 	tsec = target->security;
4158 	isec = msq->q_perm.security;
4159 	msec = msg->security;
4160 
4161 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4162  	ad.u.ipc_id = msq->q_perm.key;
4163 
4164 	rc = avc_has_perm(tsec->sid, isec->sid,
4165 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
4166 	if (!rc)
4167 		rc = avc_has_perm(tsec->sid, msec->sid,
4168 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
4169 	return rc;
4170 }
4171 
4172 /* Shared Memory security operations */
4173 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4174 {
4175 	struct task_security_struct *tsec;
4176 	struct ipc_security_struct *isec;
4177 	struct avc_audit_data ad;
4178 	int rc;
4179 
4180 	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4181 	if (rc)
4182 		return rc;
4183 
4184 	tsec = current->security;
4185 	isec = shp->shm_perm.security;
4186 
4187 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4188  	ad.u.ipc_id = shp->shm_perm.key;
4189 
4190 	rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4191 			  SHM__CREATE, &ad);
4192 	if (rc) {
4193 		ipc_free_security(&shp->shm_perm);
4194 		return rc;
4195 	}
4196 	return 0;
4197 }
4198 
4199 static void selinux_shm_free_security(struct shmid_kernel *shp)
4200 {
4201 	ipc_free_security(&shp->shm_perm);
4202 }
4203 
4204 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4205 {
4206 	struct task_security_struct *tsec;
4207 	struct ipc_security_struct *isec;
4208 	struct avc_audit_data ad;
4209 
4210 	tsec = current->security;
4211 	isec = shp->shm_perm.security;
4212 
4213 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4214 	ad.u.ipc_id = shp->shm_perm.key;
4215 
4216 	return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4217 			    SHM__ASSOCIATE, &ad);
4218 }
4219 
4220 /* Note, at this point, shp is locked down */
4221 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4222 {
4223 	int perms;
4224 	int err;
4225 
4226 	switch(cmd) {
4227 	case IPC_INFO:
4228 	case SHM_INFO:
4229 		/* No specific object, just general system-wide information. */
4230 		return task_has_system(current, SYSTEM__IPC_INFO);
4231 	case IPC_STAT:
4232 	case SHM_STAT:
4233 		perms = SHM__GETATTR | SHM__ASSOCIATE;
4234 		break;
4235 	case IPC_SET:
4236 		perms = SHM__SETATTR;
4237 		break;
4238 	case SHM_LOCK:
4239 	case SHM_UNLOCK:
4240 		perms = SHM__LOCK;
4241 		break;
4242 	case IPC_RMID:
4243 		perms = SHM__DESTROY;
4244 		break;
4245 	default:
4246 		return 0;
4247 	}
4248 
4249 	err = ipc_has_perm(&shp->shm_perm, perms);
4250 	return err;
4251 }
4252 
4253 static int selinux_shm_shmat(struct shmid_kernel *shp,
4254 			     char __user *shmaddr, int shmflg)
4255 {
4256 	u32 perms;
4257 	int rc;
4258 
4259 	rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4260 	if (rc)
4261 		return rc;
4262 
4263 	if (shmflg & SHM_RDONLY)
4264 		perms = SHM__READ;
4265 	else
4266 		perms = SHM__READ | SHM__WRITE;
4267 
4268 	return ipc_has_perm(&shp->shm_perm, perms);
4269 }
4270 
4271 /* Semaphore security operations */
4272 static int selinux_sem_alloc_security(struct sem_array *sma)
4273 {
4274 	struct task_security_struct *tsec;
4275 	struct ipc_security_struct *isec;
4276 	struct avc_audit_data ad;
4277 	int rc;
4278 
4279 	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4280 	if (rc)
4281 		return rc;
4282 
4283 	tsec = current->security;
4284 	isec = sma->sem_perm.security;
4285 
4286 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4287  	ad.u.ipc_id = sma->sem_perm.key;
4288 
4289 	rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4290 			  SEM__CREATE, &ad);
4291 	if (rc) {
4292 		ipc_free_security(&sma->sem_perm);
4293 		return rc;
4294 	}
4295 	return 0;
4296 }
4297 
4298 static void selinux_sem_free_security(struct sem_array *sma)
4299 {
4300 	ipc_free_security(&sma->sem_perm);
4301 }
4302 
4303 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4304 {
4305 	struct task_security_struct *tsec;
4306 	struct ipc_security_struct *isec;
4307 	struct avc_audit_data ad;
4308 
4309 	tsec = current->security;
4310 	isec = sma->sem_perm.security;
4311 
4312 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4313 	ad.u.ipc_id = sma->sem_perm.key;
4314 
4315 	return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4316 			    SEM__ASSOCIATE, &ad);
4317 }
4318 
4319 /* Note, at this point, sma is locked down */
4320 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4321 {
4322 	int err;
4323 	u32 perms;
4324 
4325 	switch(cmd) {
4326 	case IPC_INFO:
4327 	case SEM_INFO:
4328 		/* No specific object, just general system-wide information. */
4329 		return task_has_system(current, SYSTEM__IPC_INFO);
4330 	case GETPID:
4331 	case GETNCNT:
4332 	case GETZCNT:
4333 		perms = SEM__GETATTR;
4334 		break;
4335 	case GETVAL:
4336 	case GETALL:
4337 		perms = SEM__READ;
4338 		break;
4339 	case SETVAL:
4340 	case SETALL:
4341 		perms = SEM__WRITE;
4342 		break;
4343 	case IPC_RMID:
4344 		perms = SEM__DESTROY;
4345 		break;
4346 	case IPC_SET:
4347 		perms = SEM__SETATTR;
4348 		break;
4349 	case IPC_STAT:
4350 	case SEM_STAT:
4351 		perms = SEM__GETATTR | SEM__ASSOCIATE;
4352 		break;
4353 	default:
4354 		return 0;
4355 	}
4356 
4357 	err = ipc_has_perm(&sma->sem_perm, perms);
4358 	return err;
4359 }
4360 
4361 static int selinux_sem_semop(struct sem_array *sma,
4362 			     struct sembuf *sops, unsigned nsops, int alter)
4363 {
4364 	u32 perms;
4365 
4366 	if (alter)
4367 		perms = SEM__READ | SEM__WRITE;
4368 	else
4369 		perms = SEM__READ;
4370 
4371 	return ipc_has_perm(&sma->sem_perm, perms);
4372 }
4373 
4374 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4375 {
4376 	u32 av = 0;
4377 
4378 	av = 0;
4379 	if (flag & S_IRUGO)
4380 		av |= IPC__UNIX_READ;
4381 	if (flag & S_IWUGO)
4382 		av |= IPC__UNIX_WRITE;
4383 
4384 	if (av == 0)
4385 		return 0;
4386 
4387 	return ipc_has_perm(ipcp, av);
4388 }
4389 
4390 /* module stacking operations */
4391 static int selinux_register_security (const char *name, struct security_operations *ops)
4392 {
4393 	if (secondary_ops != original_ops) {
4394 		printk(KERN_INFO "%s:  There is already a secondary security "
4395 		       "module registered.\n", __FUNCTION__);
4396 		return -EINVAL;
4397  	}
4398 
4399 	secondary_ops = ops;
4400 
4401 	printk(KERN_INFO "%s:  Registering secondary module %s\n",
4402 	       __FUNCTION__,
4403 	       name);
4404 
4405 	return 0;
4406 }
4407 
4408 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4409 {
4410 	if (ops != secondary_ops) {
4411 		printk (KERN_INFO "%s:  trying to unregister a security module "
4412 		        "that is not registered.\n", __FUNCTION__);
4413 		return -EINVAL;
4414 	}
4415 
4416 	secondary_ops = original_ops;
4417 
4418 	return 0;
4419 }
4420 
4421 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4422 {
4423 	if (inode)
4424 		inode_doinit_with_dentry(inode, dentry);
4425 }
4426 
4427 static int selinux_getprocattr(struct task_struct *p,
4428 			       char *name, void *value, size_t size)
4429 {
4430 	struct task_security_struct *tsec;
4431 	u32 sid;
4432 	int error;
4433 
4434 	if (current != p) {
4435 		error = task_has_perm(current, p, PROCESS__GETATTR);
4436 		if (error)
4437 			return error;
4438 	}
4439 
4440 	tsec = p->security;
4441 
4442 	if (!strcmp(name, "current"))
4443 		sid = tsec->sid;
4444 	else if (!strcmp(name, "prev"))
4445 		sid = tsec->osid;
4446 	else if (!strcmp(name, "exec"))
4447 		sid = tsec->exec_sid;
4448 	else if (!strcmp(name, "fscreate"))
4449 		sid = tsec->create_sid;
4450 	else if (!strcmp(name, "keycreate"))
4451 		sid = tsec->keycreate_sid;
4452 	else if (!strcmp(name, "sockcreate"))
4453 		sid = tsec->sockcreate_sid;
4454 	else
4455 		return -EINVAL;
4456 
4457 	if (!sid)
4458 		return 0;
4459 
4460 	return selinux_getsecurity(sid, value, size);
4461 }
4462 
4463 static int selinux_setprocattr(struct task_struct *p,
4464 			       char *name, void *value, size_t size)
4465 {
4466 	struct task_security_struct *tsec;
4467 	u32 sid = 0;
4468 	int error;
4469 	char *str = value;
4470 
4471 	if (current != p) {
4472 		/* SELinux only allows a process to change its own
4473 		   security attributes. */
4474 		return -EACCES;
4475 	}
4476 
4477 	/*
4478 	 * Basic control over ability to set these attributes at all.
4479 	 * current == p, but we'll pass them separately in case the
4480 	 * above restriction is ever removed.
4481 	 */
4482 	if (!strcmp(name, "exec"))
4483 		error = task_has_perm(current, p, PROCESS__SETEXEC);
4484 	else if (!strcmp(name, "fscreate"))
4485 		error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4486 	else if (!strcmp(name, "keycreate"))
4487 		error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4488 	else if (!strcmp(name, "sockcreate"))
4489 		error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4490 	else if (!strcmp(name, "current"))
4491 		error = task_has_perm(current, p, PROCESS__SETCURRENT);
4492 	else
4493 		error = -EINVAL;
4494 	if (error)
4495 		return error;
4496 
4497 	/* Obtain a SID for the context, if one was specified. */
4498 	if (size && str[1] && str[1] != '\n') {
4499 		if (str[size-1] == '\n') {
4500 			str[size-1] = 0;
4501 			size--;
4502 		}
4503 		error = security_context_to_sid(value, size, &sid);
4504 		if (error)
4505 			return error;
4506 	}
4507 
4508 	/* Permission checking based on the specified context is
4509 	   performed during the actual operation (execve,
4510 	   open/mkdir/...), when we know the full context of the
4511 	   operation.  See selinux_bprm_set_security for the execve
4512 	   checks and may_create for the file creation checks. The
4513 	   operation will then fail if the context is not permitted. */
4514 	tsec = p->security;
4515 	if (!strcmp(name, "exec"))
4516 		tsec->exec_sid = sid;
4517 	else if (!strcmp(name, "fscreate"))
4518 		tsec->create_sid = sid;
4519 	else if (!strcmp(name, "keycreate")) {
4520 		error = may_create_key(sid, p);
4521 		if (error)
4522 			return error;
4523 		tsec->keycreate_sid = sid;
4524 	} else if (!strcmp(name, "sockcreate"))
4525 		tsec->sockcreate_sid = sid;
4526 	else if (!strcmp(name, "current")) {
4527 		struct av_decision avd;
4528 
4529 		if (sid == 0)
4530 			return -EINVAL;
4531 
4532 		/* Only allow single threaded processes to change context */
4533 		if (atomic_read(&p->mm->mm_users) != 1) {
4534 			struct task_struct *g, *t;
4535 			struct mm_struct *mm = p->mm;
4536 			read_lock(&tasklist_lock);
4537 			do_each_thread(g, t)
4538 				if (t->mm == mm && t != p) {
4539 					read_unlock(&tasklist_lock);
4540 					return -EPERM;
4541 				}
4542 			while_each_thread(g, t);
4543 			read_unlock(&tasklist_lock);
4544                 }
4545 
4546 		/* Check permissions for the transition. */
4547 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4548 		                     PROCESS__DYNTRANSITION, NULL);
4549 		if (error)
4550 			return error;
4551 
4552 		/* Check for ptracing, and update the task SID if ok.
4553 		   Otherwise, leave SID unchanged and fail. */
4554 		task_lock(p);
4555 		if (p->ptrace & PT_PTRACED) {
4556 			error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4557 						     SECCLASS_PROCESS,
4558 						     PROCESS__PTRACE, &avd);
4559 			if (!error)
4560 				tsec->sid = sid;
4561 			task_unlock(p);
4562 			avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4563 				  PROCESS__PTRACE, &avd, error, NULL);
4564 			if (error)
4565 				return error;
4566 		} else {
4567 			tsec->sid = sid;
4568 			task_unlock(p);
4569 		}
4570 	}
4571 	else
4572 		return -EINVAL;
4573 
4574 	return size;
4575 }
4576 
4577 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4578 {
4579 	return security_sid_to_context(secid, secdata, seclen);
4580 }
4581 
4582 static void selinux_release_secctx(char *secdata, u32 seclen)
4583 {
4584 	if (secdata)
4585 		kfree(secdata);
4586 }
4587 
4588 #ifdef CONFIG_KEYS
4589 
4590 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4591 			     unsigned long flags)
4592 {
4593 	struct task_security_struct *tsec = tsk->security;
4594 	struct key_security_struct *ksec;
4595 
4596 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4597 	if (!ksec)
4598 		return -ENOMEM;
4599 
4600 	ksec->obj = k;
4601 	if (tsec->keycreate_sid)
4602 		ksec->sid = tsec->keycreate_sid;
4603 	else
4604 		ksec->sid = tsec->sid;
4605 	k->security = ksec;
4606 
4607 	return 0;
4608 }
4609 
4610 static void selinux_key_free(struct key *k)
4611 {
4612 	struct key_security_struct *ksec = k->security;
4613 
4614 	k->security = NULL;
4615 	kfree(ksec);
4616 }
4617 
4618 static int selinux_key_permission(key_ref_t key_ref,
4619 			    struct task_struct *ctx,
4620 			    key_perm_t perm)
4621 {
4622 	struct key *key;
4623 	struct task_security_struct *tsec;
4624 	struct key_security_struct *ksec;
4625 
4626 	key = key_ref_to_ptr(key_ref);
4627 
4628 	tsec = ctx->security;
4629 	ksec = key->security;
4630 
4631 	/* if no specific permissions are requested, we skip the
4632 	   permission check. No serious, additional covert channels
4633 	   appear to be created. */
4634 	if (perm == 0)
4635 		return 0;
4636 
4637 	return avc_has_perm(tsec->sid, ksec->sid,
4638 			    SECCLASS_KEY, perm, NULL);
4639 }
4640 
4641 #endif
4642 
4643 static struct security_operations selinux_ops = {
4644 	.ptrace =			selinux_ptrace,
4645 	.capget =			selinux_capget,
4646 	.capset_check =			selinux_capset_check,
4647 	.capset_set =			selinux_capset_set,
4648 	.sysctl =			selinux_sysctl,
4649 	.capable =			selinux_capable,
4650 	.quotactl =			selinux_quotactl,
4651 	.quota_on =			selinux_quota_on,
4652 	.syslog =			selinux_syslog,
4653 	.vm_enough_memory =		selinux_vm_enough_memory,
4654 
4655 	.netlink_send =			selinux_netlink_send,
4656         .netlink_recv =			selinux_netlink_recv,
4657 
4658 	.bprm_alloc_security =		selinux_bprm_alloc_security,
4659 	.bprm_free_security =		selinux_bprm_free_security,
4660 	.bprm_apply_creds =		selinux_bprm_apply_creds,
4661 	.bprm_post_apply_creds =	selinux_bprm_post_apply_creds,
4662 	.bprm_set_security =		selinux_bprm_set_security,
4663 	.bprm_check_security =		selinux_bprm_check_security,
4664 	.bprm_secureexec =		selinux_bprm_secureexec,
4665 
4666 	.sb_alloc_security =		selinux_sb_alloc_security,
4667 	.sb_free_security =		selinux_sb_free_security,
4668 	.sb_copy_data =			selinux_sb_copy_data,
4669 	.sb_kern_mount =	        selinux_sb_kern_mount,
4670 	.sb_statfs =			selinux_sb_statfs,
4671 	.sb_mount =			selinux_mount,
4672 	.sb_umount =			selinux_umount,
4673 
4674 	.inode_alloc_security =		selinux_inode_alloc_security,
4675 	.inode_free_security =		selinux_inode_free_security,
4676 	.inode_init_security =		selinux_inode_init_security,
4677 	.inode_create =			selinux_inode_create,
4678 	.inode_link =			selinux_inode_link,
4679 	.inode_unlink =			selinux_inode_unlink,
4680 	.inode_symlink =		selinux_inode_symlink,
4681 	.inode_mkdir =			selinux_inode_mkdir,
4682 	.inode_rmdir =			selinux_inode_rmdir,
4683 	.inode_mknod =			selinux_inode_mknod,
4684 	.inode_rename =			selinux_inode_rename,
4685 	.inode_readlink =		selinux_inode_readlink,
4686 	.inode_follow_link =		selinux_inode_follow_link,
4687 	.inode_permission =		selinux_inode_permission,
4688 	.inode_setattr =		selinux_inode_setattr,
4689 	.inode_getattr =		selinux_inode_getattr,
4690 	.inode_setxattr =		selinux_inode_setxattr,
4691 	.inode_post_setxattr =		selinux_inode_post_setxattr,
4692 	.inode_getxattr =		selinux_inode_getxattr,
4693 	.inode_listxattr =		selinux_inode_listxattr,
4694 	.inode_removexattr =		selinux_inode_removexattr,
4695 	.inode_xattr_getsuffix =        selinux_inode_xattr_getsuffix,
4696 	.inode_getsecurity =            selinux_inode_getsecurity,
4697 	.inode_setsecurity =            selinux_inode_setsecurity,
4698 	.inode_listsecurity =           selinux_inode_listsecurity,
4699 
4700 	.file_permission =		selinux_file_permission,
4701 	.file_alloc_security =		selinux_file_alloc_security,
4702 	.file_free_security =		selinux_file_free_security,
4703 	.file_ioctl =			selinux_file_ioctl,
4704 	.file_mmap =			selinux_file_mmap,
4705 	.file_mprotect =		selinux_file_mprotect,
4706 	.file_lock =			selinux_file_lock,
4707 	.file_fcntl =			selinux_file_fcntl,
4708 	.file_set_fowner =		selinux_file_set_fowner,
4709 	.file_send_sigiotask =		selinux_file_send_sigiotask,
4710 	.file_receive =			selinux_file_receive,
4711 
4712 	.task_create =			selinux_task_create,
4713 	.task_alloc_security =		selinux_task_alloc_security,
4714 	.task_free_security =		selinux_task_free_security,
4715 	.task_setuid =			selinux_task_setuid,
4716 	.task_post_setuid =		selinux_task_post_setuid,
4717 	.task_setgid =			selinux_task_setgid,
4718 	.task_setpgid =			selinux_task_setpgid,
4719 	.task_getpgid =			selinux_task_getpgid,
4720 	.task_getsid =		        selinux_task_getsid,
4721 	.task_getsecid =		selinux_task_getsecid,
4722 	.task_setgroups =		selinux_task_setgroups,
4723 	.task_setnice =			selinux_task_setnice,
4724 	.task_setioprio =		selinux_task_setioprio,
4725 	.task_getioprio =		selinux_task_getioprio,
4726 	.task_setrlimit =		selinux_task_setrlimit,
4727 	.task_setscheduler =		selinux_task_setscheduler,
4728 	.task_getscheduler =		selinux_task_getscheduler,
4729 	.task_movememory =		selinux_task_movememory,
4730 	.task_kill =			selinux_task_kill,
4731 	.task_wait =			selinux_task_wait,
4732 	.task_prctl =			selinux_task_prctl,
4733 	.task_reparent_to_init =	selinux_task_reparent_to_init,
4734 	.task_to_inode =                selinux_task_to_inode,
4735 
4736 	.ipc_permission =		selinux_ipc_permission,
4737 
4738 	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
4739 	.msg_msg_free_security =	selinux_msg_msg_free_security,
4740 
4741 	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
4742 	.msg_queue_free_security =	selinux_msg_queue_free_security,
4743 	.msg_queue_associate =		selinux_msg_queue_associate,
4744 	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
4745 	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
4746 	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
4747 
4748 	.shm_alloc_security =		selinux_shm_alloc_security,
4749 	.shm_free_security =		selinux_shm_free_security,
4750 	.shm_associate =		selinux_shm_associate,
4751 	.shm_shmctl =			selinux_shm_shmctl,
4752 	.shm_shmat =			selinux_shm_shmat,
4753 
4754 	.sem_alloc_security = 		selinux_sem_alloc_security,
4755 	.sem_free_security =  		selinux_sem_free_security,
4756 	.sem_associate =		selinux_sem_associate,
4757 	.sem_semctl =			selinux_sem_semctl,
4758 	.sem_semop =			selinux_sem_semop,
4759 
4760 	.register_security =		selinux_register_security,
4761 	.unregister_security =		selinux_unregister_security,
4762 
4763 	.d_instantiate =                selinux_d_instantiate,
4764 
4765 	.getprocattr =                  selinux_getprocattr,
4766 	.setprocattr =                  selinux_setprocattr,
4767 
4768 	.secid_to_secctx =		selinux_secid_to_secctx,
4769 	.release_secctx =		selinux_release_secctx,
4770 
4771         .unix_stream_connect =		selinux_socket_unix_stream_connect,
4772 	.unix_may_send =		selinux_socket_unix_may_send,
4773 
4774 	.socket_create =		selinux_socket_create,
4775 	.socket_post_create =		selinux_socket_post_create,
4776 	.socket_bind =			selinux_socket_bind,
4777 	.socket_connect =		selinux_socket_connect,
4778 	.socket_listen =		selinux_socket_listen,
4779 	.socket_accept =		selinux_socket_accept,
4780 	.socket_sendmsg =		selinux_socket_sendmsg,
4781 	.socket_recvmsg =		selinux_socket_recvmsg,
4782 	.socket_getsockname =		selinux_socket_getsockname,
4783 	.socket_getpeername =		selinux_socket_getpeername,
4784 	.socket_getsockopt =		selinux_socket_getsockopt,
4785 	.socket_setsockopt =		selinux_socket_setsockopt,
4786 	.socket_shutdown =		selinux_socket_shutdown,
4787 	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
4788 	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
4789 	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
4790 	.sk_alloc_security =		selinux_sk_alloc_security,
4791 	.sk_free_security =		selinux_sk_free_security,
4792 	.sk_clone_security =		selinux_sk_clone_security,
4793 	.sk_getsecid = 			selinux_sk_getsecid,
4794 	.sock_graft =			selinux_sock_graft,
4795 	.inet_conn_request =		selinux_inet_conn_request,
4796 	.inet_csk_clone =		selinux_inet_csk_clone,
4797 	.inet_conn_established =	selinux_inet_conn_established,
4798 	.req_classify_flow =		selinux_req_classify_flow,
4799 
4800 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4801 	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
4802 	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
4803 	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
4804 	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
4805 	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
4806 	.xfrm_state_free_security =	selinux_xfrm_state_free,
4807 	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
4808 	.xfrm_policy_lookup = 		selinux_xfrm_policy_lookup,
4809 	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
4810 	.xfrm_decode_session =		selinux_xfrm_decode_session,
4811 #endif
4812 
4813 #ifdef CONFIG_KEYS
4814 	.key_alloc =                    selinux_key_alloc,
4815 	.key_free =                     selinux_key_free,
4816 	.key_permission =               selinux_key_permission,
4817 #endif
4818 };
4819 
4820 static __init int selinux_init(void)
4821 {
4822 	struct task_security_struct *tsec;
4823 
4824 	if (!selinux_enabled) {
4825 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
4826 		return 0;
4827 	}
4828 
4829 	printk(KERN_INFO "SELinux:  Initializing.\n");
4830 
4831 	/* Set the security state for the initial task. */
4832 	if (task_alloc_security(current))
4833 		panic("SELinux:  Failed to initialize initial task.\n");
4834 	tsec = current->security;
4835 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
4836 
4837 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
4838 					    sizeof(struct inode_security_struct),
4839 					    0, SLAB_PANIC, NULL, NULL);
4840 	avc_init();
4841 
4842 	original_ops = secondary_ops = security_ops;
4843 	if (!secondary_ops)
4844 		panic ("SELinux: No initial security operations\n");
4845 	if (register_security (&selinux_ops))
4846 		panic("SELinux: Unable to register with kernel.\n");
4847 
4848 	if (selinux_enforcing) {
4849 		printk(KERN_INFO "SELinux:  Starting in enforcing mode\n");
4850 	} else {
4851 		printk(KERN_INFO "SELinux:  Starting in permissive mode\n");
4852 	}
4853 
4854 #ifdef CONFIG_KEYS
4855 	/* Add security information to initial keyrings */
4856 	selinux_key_alloc(&root_user_keyring, current,
4857 			  KEY_ALLOC_NOT_IN_QUOTA);
4858 	selinux_key_alloc(&root_session_keyring, current,
4859 			  KEY_ALLOC_NOT_IN_QUOTA);
4860 #endif
4861 
4862 	return 0;
4863 }
4864 
4865 void selinux_complete_init(void)
4866 {
4867 	printk(KERN_INFO "SELinux:  Completing initialization.\n");
4868 
4869 	/* Set up any superblocks initialized prior to the policy load. */
4870 	printk(KERN_INFO "SELinux:  Setting up existing superblocks.\n");
4871 	spin_lock(&sb_lock);
4872 	spin_lock(&sb_security_lock);
4873 next_sb:
4874 	if (!list_empty(&superblock_security_head)) {
4875 		struct superblock_security_struct *sbsec =
4876 				list_entry(superblock_security_head.next,
4877 				           struct superblock_security_struct,
4878 				           list);
4879 		struct super_block *sb = sbsec->sb;
4880 		sb->s_count++;
4881 		spin_unlock(&sb_security_lock);
4882 		spin_unlock(&sb_lock);
4883 		down_read(&sb->s_umount);
4884 		if (sb->s_root)
4885 			superblock_doinit(sb, NULL);
4886 		drop_super(sb);
4887 		spin_lock(&sb_lock);
4888 		spin_lock(&sb_security_lock);
4889 		list_del_init(&sbsec->list);
4890 		goto next_sb;
4891 	}
4892 	spin_unlock(&sb_security_lock);
4893 	spin_unlock(&sb_lock);
4894 }
4895 
4896 /* SELinux requires early initialization in order to label
4897    all processes and objects when they are created. */
4898 security_initcall(selinux_init);
4899 
4900 #if defined(CONFIG_NETFILTER)
4901 
4902 static struct nf_hook_ops selinux_ipv4_op = {
4903 	.hook =		selinux_ipv4_postroute_last,
4904 	.owner =	THIS_MODULE,
4905 	.pf =		PF_INET,
4906 	.hooknum =	NF_IP_POST_ROUTING,
4907 	.priority =	NF_IP_PRI_SELINUX_LAST,
4908 };
4909 
4910 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4911 
4912 static struct nf_hook_ops selinux_ipv6_op = {
4913 	.hook =		selinux_ipv6_postroute_last,
4914 	.owner =	THIS_MODULE,
4915 	.pf =		PF_INET6,
4916 	.hooknum =	NF_IP6_POST_ROUTING,
4917 	.priority =	NF_IP6_PRI_SELINUX_LAST,
4918 };
4919 
4920 #endif	/* IPV6 */
4921 
4922 static int __init selinux_nf_ip_init(void)
4923 {
4924 	int err = 0;
4925 
4926 	if (!selinux_enabled)
4927 		goto out;
4928 
4929 	printk(KERN_INFO "SELinux:  Registering netfilter hooks\n");
4930 
4931 	err = nf_register_hook(&selinux_ipv4_op);
4932 	if (err)
4933 		panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
4934 
4935 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4936 
4937 	err = nf_register_hook(&selinux_ipv6_op);
4938 	if (err)
4939 		panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
4940 
4941 #endif	/* IPV6 */
4942 
4943 out:
4944 	return err;
4945 }
4946 
4947 __initcall(selinux_nf_ip_init);
4948 
4949 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4950 static void selinux_nf_ip_exit(void)
4951 {
4952 	printk(KERN_INFO "SELinux:  Unregistering netfilter hooks\n");
4953 
4954 	nf_unregister_hook(&selinux_ipv4_op);
4955 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4956 	nf_unregister_hook(&selinux_ipv6_op);
4957 #endif	/* IPV6 */
4958 }
4959 #endif
4960 
4961 #else /* CONFIG_NETFILTER */
4962 
4963 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4964 #define selinux_nf_ip_exit()
4965 #endif
4966 
4967 #endif /* CONFIG_NETFILTER */
4968 
4969 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4970 int selinux_disable(void)
4971 {
4972 	extern void exit_sel_fs(void);
4973 	static int selinux_disabled = 0;
4974 
4975 	if (ss_initialized) {
4976 		/* Not permitted after initial policy load. */
4977 		return -EINVAL;
4978 	}
4979 
4980 	if (selinux_disabled) {
4981 		/* Only do this once. */
4982 		return -EINVAL;
4983 	}
4984 
4985 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
4986 
4987 	selinux_disabled = 1;
4988 	selinux_enabled = 0;
4989 
4990 	/* Reset security_ops to the secondary module, dummy or capability. */
4991 	security_ops = secondary_ops;
4992 
4993 	/* Unregister netfilter hooks. */
4994 	selinux_nf_ip_exit();
4995 
4996 	/* Unregister selinuxfs. */
4997 	exit_sel_fs();
4998 
4999 	return 0;
5000 }
5001 #endif
5002 
5003 
5004