xref: /linux/security/selinux/hooks.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *	      Chris Vance, <cvance@nai.com>
8  *	      Wayne Salamon, <wsalamon@nai.com>
9  *	      James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *					   Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *			    <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *	Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *	This program is free software; you can redistribute it and/or modify
22  *	it under the terms of the GNU General Public License version 2,
23  *	as published by the Free Software Foundation.
24  */
25 
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h>		/* for local_port_range[] */
54 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
55 #include <net/net_namespace.h>
56 #include <net/netlabel.h>
57 #include <linux/uaccess.h>
58 #include <asm/ioctls.h>
59 #include <linux/atomic.h>
60 #include <linux/bitops.h>
61 #include <linux/interrupt.h>
62 #include <linux/netdevice.h>	/* for network interface checks */
63 #include <linux/netlink.h>
64 #include <linux/tcp.h>
65 #include <linux/udp.h>
66 #include <linux/dccp.h>
67 #include <linux/quota.h>
68 #include <linux/un.h>		/* for Unix socket types */
69 #include <net/af_unix.h>	/* for Unix socket types */
70 #include <linux/parser.h>
71 #include <linux/nfs_mount.h>
72 #include <net/ipv6.h>
73 #include <linux/hugetlb.h>
74 #include <linux/personality.h>
75 #include <linux/audit.h>
76 #include <linux/string.h>
77 #include <linux/selinux.h>
78 #include <linux/mutex.h>
79 #include <linux/posix-timers.h>
80 #include <linux/syslog.h>
81 #include <linux/user_namespace.h>
82 #include <linux/export.h>
83 #include <linux/msg.h>
84 #include <linux/shm.h>
85 
86 #include "avc.h"
87 #include "objsec.h"
88 #include "netif.h"
89 #include "netnode.h"
90 #include "netport.h"
91 #include "xfrm.h"
92 #include "netlabel.h"
93 #include "audit.h"
94 #include "avc_ss.h"
95 
96 #define NUM_SEL_MNT_OPTS 5
97 
98 extern struct security_operations *security_ops;
99 
100 /* SECMARK reference count */
101 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
102 
103 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104 int selinux_enforcing;
105 
106 static int __init enforcing_setup(char *str)
107 {
108 	unsigned long enforcing;
109 	if (!strict_strtoul(str, 0, &enforcing))
110 		selinux_enforcing = enforcing ? 1 : 0;
111 	return 1;
112 }
113 __setup("enforcing=", enforcing_setup);
114 #endif
115 
116 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
118 
119 static int __init selinux_enabled_setup(char *str)
120 {
121 	unsigned long enabled;
122 	if (!strict_strtoul(str, 0, &enabled))
123 		selinux_enabled = enabled ? 1 : 0;
124 	return 1;
125 }
126 __setup("selinux=", selinux_enabled_setup);
127 #else
128 int selinux_enabled = 1;
129 #endif
130 
131 static struct kmem_cache *sel_inode_cache;
132 
133 /**
134  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
135  *
136  * Description:
137  * This function checks the SECMARK reference counter to see if any SECMARK
138  * targets are currently configured, if the reference counter is greater than
139  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
140  * enabled, false (0) if SECMARK is disabled.
141  *
142  */
143 static int selinux_secmark_enabled(void)
144 {
145 	return (atomic_read(&selinux_secmark_refcount) > 0);
146 }
147 
148 /*
149  * initialise the security for the init task
150  */
151 static void cred_init_security(void)
152 {
153 	struct cred *cred = (struct cred *) current->real_cred;
154 	struct task_security_struct *tsec;
155 
156 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
157 	if (!tsec)
158 		panic("SELinux:  Failed to initialize initial task.\n");
159 
160 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
161 	cred->security = tsec;
162 }
163 
164 /*
165  * get the security ID of a set of credentials
166  */
167 static inline u32 cred_sid(const struct cred *cred)
168 {
169 	const struct task_security_struct *tsec;
170 
171 	tsec = cred->security;
172 	return tsec->sid;
173 }
174 
175 /*
176  * get the objective security ID of a task
177  */
178 static inline u32 task_sid(const struct task_struct *task)
179 {
180 	u32 sid;
181 
182 	rcu_read_lock();
183 	sid = cred_sid(__task_cred(task));
184 	rcu_read_unlock();
185 	return sid;
186 }
187 
188 /*
189  * get the subjective security ID of the current task
190  */
191 static inline u32 current_sid(void)
192 {
193 	const struct task_security_struct *tsec = current_security();
194 
195 	return tsec->sid;
196 }
197 
198 /* Allocate and free functions for each kind of security blob. */
199 
200 static int inode_alloc_security(struct inode *inode)
201 {
202 	struct inode_security_struct *isec;
203 	u32 sid = current_sid();
204 
205 	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
206 	if (!isec)
207 		return -ENOMEM;
208 
209 	mutex_init(&isec->lock);
210 	INIT_LIST_HEAD(&isec->list);
211 	isec->inode = inode;
212 	isec->sid = SECINITSID_UNLABELED;
213 	isec->sclass = SECCLASS_FILE;
214 	isec->task_sid = sid;
215 	inode->i_security = isec;
216 
217 	return 0;
218 }
219 
220 static void inode_free_security(struct inode *inode)
221 {
222 	struct inode_security_struct *isec = inode->i_security;
223 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
224 
225 	spin_lock(&sbsec->isec_lock);
226 	if (!list_empty(&isec->list))
227 		list_del_init(&isec->list);
228 	spin_unlock(&sbsec->isec_lock);
229 
230 	inode->i_security = NULL;
231 	kmem_cache_free(sel_inode_cache, isec);
232 }
233 
234 static int file_alloc_security(struct file *file)
235 {
236 	struct file_security_struct *fsec;
237 	u32 sid = current_sid();
238 
239 	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
240 	if (!fsec)
241 		return -ENOMEM;
242 
243 	fsec->sid = sid;
244 	fsec->fown_sid = sid;
245 	file->f_security = fsec;
246 
247 	return 0;
248 }
249 
250 static void file_free_security(struct file *file)
251 {
252 	struct file_security_struct *fsec = file->f_security;
253 	file->f_security = NULL;
254 	kfree(fsec);
255 }
256 
257 static int superblock_alloc_security(struct super_block *sb)
258 {
259 	struct superblock_security_struct *sbsec;
260 
261 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
262 	if (!sbsec)
263 		return -ENOMEM;
264 
265 	mutex_init(&sbsec->lock);
266 	INIT_LIST_HEAD(&sbsec->isec_head);
267 	spin_lock_init(&sbsec->isec_lock);
268 	sbsec->sb = sb;
269 	sbsec->sid = SECINITSID_UNLABELED;
270 	sbsec->def_sid = SECINITSID_FILE;
271 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
272 	sb->s_security = sbsec;
273 
274 	return 0;
275 }
276 
277 static void superblock_free_security(struct super_block *sb)
278 {
279 	struct superblock_security_struct *sbsec = sb->s_security;
280 	sb->s_security = NULL;
281 	kfree(sbsec);
282 }
283 
284 /* The file system's label must be initialized prior to use. */
285 
286 static const char *labeling_behaviors[6] = {
287 	"uses xattr",
288 	"uses transition SIDs",
289 	"uses task SIDs",
290 	"uses genfs_contexts",
291 	"not configured for labeling",
292 	"uses mountpoint labeling",
293 };
294 
295 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
296 
297 static inline int inode_doinit(struct inode *inode)
298 {
299 	return inode_doinit_with_dentry(inode, NULL);
300 }
301 
302 enum {
303 	Opt_error = -1,
304 	Opt_context = 1,
305 	Opt_fscontext = 2,
306 	Opt_defcontext = 3,
307 	Opt_rootcontext = 4,
308 	Opt_labelsupport = 5,
309 };
310 
311 static const match_table_t tokens = {
312 	{Opt_context, CONTEXT_STR "%s"},
313 	{Opt_fscontext, FSCONTEXT_STR "%s"},
314 	{Opt_defcontext, DEFCONTEXT_STR "%s"},
315 	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
316 	{Opt_labelsupport, LABELSUPP_STR},
317 	{Opt_error, NULL},
318 };
319 
320 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
321 
322 static int may_context_mount_sb_relabel(u32 sid,
323 			struct superblock_security_struct *sbsec,
324 			const struct cred *cred)
325 {
326 	const struct task_security_struct *tsec = cred->security;
327 	int rc;
328 
329 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
330 			  FILESYSTEM__RELABELFROM, NULL);
331 	if (rc)
332 		return rc;
333 
334 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
335 			  FILESYSTEM__RELABELTO, NULL);
336 	return rc;
337 }
338 
339 static int may_context_mount_inode_relabel(u32 sid,
340 			struct superblock_security_struct *sbsec,
341 			const struct cred *cred)
342 {
343 	const struct task_security_struct *tsec = cred->security;
344 	int rc;
345 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
346 			  FILESYSTEM__RELABELFROM, NULL);
347 	if (rc)
348 		return rc;
349 
350 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
351 			  FILESYSTEM__ASSOCIATE, NULL);
352 	return rc;
353 }
354 
355 static int sb_finish_set_opts(struct super_block *sb)
356 {
357 	struct superblock_security_struct *sbsec = sb->s_security;
358 	struct dentry *root = sb->s_root;
359 	struct inode *root_inode = root->d_inode;
360 	int rc = 0;
361 
362 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
363 		/* Make sure that the xattr handler exists and that no
364 		   error other than -ENODATA is returned by getxattr on
365 		   the root directory.  -ENODATA is ok, as this may be
366 		   the first boot of the SELinux kernel before we have
367 		   assigned xattr values to the filesystem. */
368 		if (!root_inode->i_op->getxattr) {
369 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
370 			       "xattr support\n", sb->s_id, sb->s_type->name);
371 			rc = -EOPNOTSUPP;
372 			goto out;
373 		}
374 		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
375 		if (rc < 0 && rc != -ENODATA) {
376 			if (rc == -EOPNOTSUPP)
377 				printk(KERN_WARNING "SELinux: (dev %s, type "
378 				       "%s) has no security xattr handler\n",
379 				       sb->s_id, sb->s_type->name);
380 			else
381 				printk(KERN_WARNING "SELinux: (dev %s, type "
382 				       "%s) getxattr errno %d\n", sb->s_id,
383 				       sb->s_type->name, -rc);
384 			goto out;
385 		}
386 	}
387 
388 	sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
389 
390 	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
391 		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
392 		       sb->s_id, sb->s_type->name);
393 	else
394 		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
395 		       sb->s_id, sb->s_type->name,
396 		       labeling_behaviors[sbsec->behavior-1]);
397 
398 	if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
399 	    sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
400 	    sbsec->behavior == SECURITY_FS_USE_NONE ||
401 	    sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
402 		sbsec->flags &= ~SE_SBLABELSUPP;
403 
404 	/* Special handling for sysfs. Is genfs but also has setxattr handler*/
405 	if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
406 		sbsec->flags |= SE_SBLABELSUPP;
407 
408 	/* Initialize the root inode. */
409 	rc = inode_doinit_with_dentry(root_inode, root);
410 
411 	/* Initialize any other inodes associated with the superblock, e.g.
412 	   inodes created prior to initial policy load or inodes created
413 	   during get_sb by a pseudo filesystem that directly
414 	   populates itself. */
415 	spin_lock(&sbsec->isec_lock);
416 next_inode:
417 	if (!list_empty(&sbsec->isec_head)) {
418 		struct inode_security_struct *isec =
419 				list_entry(sbsec->isec_head.next,
420 					   struct inode_security_struct, list);
421 		struct inode *inode = isec->inode;
422 		spin_unlock(&sbsec->isec_lock);
423 		inode = igrab(inode);
424 		if (inode) {
425 			if (!IS_PRIVATE(inode))
426 				inode_doinit(inode);
427 			iput(inode);
428 		}
429 		spin_lock(&sbsec->isec_lock);
430 		list_del_init(&isec->list);
431 		goto next_inode;
432 	}
433 	spin_unlock(&sbsec->isec_lock);
434 out:
435 	return rc;
436 }
437 
438 /*
439  * This function should allow an FS to ask what it's mount security
440  * options were so it can use those later for submounts, displaying
441  * mount options, or whatever.
442  */
443 static int selinux_get_mnt_opts(const struct super_block *sb,
444 				struct security_mnt_opts *opts)
445 {
446 	int rc = 0, i;
447 	struct superblock_security_struct *sbsec = sb->s_security;
448 	char *context = NULL;
449 	u32 len;
450 	char tmp;
451 
452 	security_init_mnt_opts(opts);
453 
454 	if (!(sbsec->flags & SE_SBINITIALIZED))
455 		return -EINVAL;
456 
457 	if (!ss_initialized)
458 		return -EINVAL;
459 
460 	tmp = sbsec->flags & SE_MNTMASK;
461 	/* count the number of mount options for this sb */
462 	for (i = 0; i < 8; i++) {
463 		if (tmp & 0x01)
464 			opts->num_mnt_opts++;
465 		tmp >>= 1;
466 	}
467 	/* Check if the Label support flag is set */
468 	if (sbsec->flags & SE_SBLABELSUPP)
469 		opts->num_mnt_opts++;
470 
471 	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
472 	if (!opts->mnt_opts) {
473 		rc = -ENOMEM;
474 		goto out_free;
475 	}
476 
477 	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
478 	if (!opts->mnt_opts_flags) {
479 		rc = -ENOMEM;
480 		goto out_free;
481 	}
482 
483 	i = 0;
484 	if (sbsec->flags & FSCONTEXT_MNT) {
485 		rc = security_sid_to_context(sbsec->sid, &context, &len);
486 		if (rc)
487 			goto out_free;
488 		opts->mnt_opts[i] = context;
489 		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
490 	}
491 	if (sbsec->flags & CONTEXT_MNT) {
492 		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
493 		if (rc)
494 			goto out_free;
495 		opts->mnt_opts[i] = context;
496 		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
497 	}
498 	if (sbsec->flags & DEFCONTEXT_MNT) {
499 		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
500 		if (rc)
501 			goto out_free;
502 		opts->mnt_opts[i] = context;
503 		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
504 	}
505 	if (sbsec->flags & ROOTCONTEXT_MNT) {
506 		struct inode *root = sbsec->sb->s_root->d_inode;
507 		struct inode_security_struct *isec = root->i_security;
508 
509 		rc = security_sid_to_context(isec->sid, &context, &len);
510 		if (rc)
511 			goto out_free;
512 		opts->mnt_opts[i] = context;
513 		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
514 	}
515 	if (sbsec->flags & SE_SBLABELSUPP) {
516 		opts->mnt_opts[i] = NULL;
517 		opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
518 	}
519 
520 	BUG_ON(i != opts->num_mnt_opts);
521 
522 	return 0;
523 
524 out_free:
525 	security_free_mnt_opts(opts);
526 	return rc;
527 }
528 
529 static int bad_option(struct superblock_security_struct *sbsec, char flag,
530 		      u32 old_sid, u32 new_sid)
531 {
532 	char mnt_flags = sbsec->flags & SE_MNTMASK;
533 
534 	/* check if the old mount command had the same options */
535 	if (sbsec->flags & SE_SBINITIALIZED)
536 		if (!(sbsec->flags & flag) ||
537 		    (old_sid != new_sid))
538 			return 1;
539 
540 	/* check if we were passed the same options twice,
541 	 * aka someone passed context=a,context=b
542 	 */
543 	if (!(sbsec->flags & SE_SBINITIALIZED))
544 		if (mnt_flags & flag)
545 			return 1;
546 	return 0;
547 }
548 
549 /*
550  * Allow filesystems with binary mount data to explicitly set mount point
551  * labeling information.
552  */
553 static int selinux_set_mnt_opts(struct super_block *sb,
554 				struct security_mnt_opts *opts)
555 {
556 	const struct cred *cred = current_cred();
557 	int rc = 0, i;
558 	struct superblock_security_struct *sbsec = sb->s_security;
559 	const char *name = sb->s_type->name;
560 	struct inode *inode = sbsec->sb->s_root->d_inode;
561 	struct inode_security_struct *root_isec = inode->i_security;
562 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
563 	u32 defcontext_sid = 0;
564 	char **mount_options = opts->mnt_opts;
565 	int *flags = opts->mnt_opts_flags;
566 	int num_opts = opts->num_mnt_opts;
567 
568 	mutex_lock(&sbsec->lock);
569 
570 	if (!ss_initialized) {
571 		if (!num_opts) {
572 			/* Defer initialization until selinux_complete_init,
573 			   after the initial policy is loaded and the security
574 			   server is ready to handle calls. */
575 			goto out;
576 		}
577 		rc = -EINVAL;
578 		printk(KERN_WARNING "SELinux: Unable to set superblock options "
579 			"before the security server is initialized\n");
580 		goto out;
581 	}
582 
583 	/*
584 	 * Binary mount data FS will come through this function twice.  Once
585 	 * from an explicit call and once from the generic calls from the vfs.
586 	 * Since the generic VFS calls will not contain any security mount data
587 	 * we need to skip the double mount verification.
588 	 *
589 	 * This does open a hole in which we will not notice if the first
590 	 * mount using this sb set explict options and a second mount using
591 	 * this sb does not set any security options.  (The first options
592 	 * will be used for both mounts)
593 	 */
594 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
595 	    && (num_opts == 0))
596 		goto out;
597 
598 	/*
599 	 * parse the mount options, check if they are valid sids.
600 	 * also check if someone is trying to mount the same sb more
601 	 * than once with different security options.
602 	 */
603 	for (i = 0; i < num_opts; i++) {
604 		u32 sid;
605 
606 		if (flags[i] == SE_SBLABELSUPP)
607 			continue;
608 		rc = security_context_to_sid(mount_options[i],
609 					     strlen(mount_options[i]), &sid);
610 		if (rc) {
611 			printk(KERN_WARNING "SELinux: security_context_to_sid"
612 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
613 			       mount_options[i], sb->s_id, name, rc);
614 			goto out;
615 		}
616 		switch (flags[i]) {
617 		case FSCONTEXT_MNT:
618 			fscontext_sid = sid;
619 
620 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
621 					fscontext_sid))
622 				goto out_double_mount;
623 
624 			sbsec->flags |= FSCONTEXT_MNT;
625 			break;
626 		case CONTEXT_MNT:
627 			context_sid = sid;
628 
629 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
630 					context_sid))
631 				goto out_double_mount;
632 
633 			sbsec->flags |= CONTEXT_MNT;
634 			break;
635 		case ROOTCONTEXT_MNT:
636 			rootcontext_sid = sid;
637 
638 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
639 					rootcontext_sid))
640 				goto out_double_mount;
641 
642 			sbsec->flags |= ROOTCONTEXT_MNT;
643 
644 			break;
645 		case DEFCONTEXT_MNT:
646 			defcontext_sid = sid;
647 
648 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
649 					defcontext_sid))
650 				goto out_double_mount;
651 
652 			sbsec->flags |= DEFCONTEXT_MNT;
653 
654 			break;
655 		default:
656 			rc = -EINVAL;
657 			goto out;
658 		}
659 	}
660 
661 	if (sbsec->flags & SE_SBINITIALIZED) {
662 		/* previously mounted with options, but not on this attempt? */
663 		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
664 			goto out_double_mount;
665 		rc = 0;
666 		goto out;
667 	}
668 
669 	if (strcmp(sb->s_type->name, "proc") == 0)
670 		sbsec->flags |= SE_SBPROC;
671 
672 	/* Determine the labeling behavior to use for this filesystem type. */
673 	rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
674 	if (rc) {
675 		printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
676 		       __func__, sb->s_type->name, rc);
677 		goto out;
678 	}
679 
680 	/* sets the context of the superblock for the fs being mounted. */
681 	if (fscontext_sid) {
682 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
683 		if (rc)
684 			goto out;
685 
686 		sbsec->sid = fscontext_sid;
687 	}
688 
689 	/*
690 	 * Switch to using mount point labeling behavior.
691 	 * sets the label used on all file below the mountpoint, and will set
692 	 * the superblock context if not already set.
693 	 */
694 	if (context_sid) {
695 		if (!fscontext_sid) {
696 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
697 							  cred);
698 			if (rc)
699 				goto out;
700 			sbsec->sid = context_sid;
701 		} else {
702 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
703 							     cred);
704 			if (rc)
705 				goto out;
706 		}
707 		if (!rootcontext_sid)
708 			rootcontext_sid = context_sid;
709 
710 		sbsec->mntpoint_sid = context_sid;
711 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
712 	}
713 
714 	if (rootcontext_sid) {
715 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
716 						     cred);
717 		if (rc)
718 			goto out;
719 
720 		root_isec->sid = rootcontext_sid;
721 		root_isec->initialized = 1;
722 	}
723 
724 	if (defcontext_sid) {
725 		if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
726 			rc = -EINVAL;
727 			printk(KERN_WARNING "SELinux: defcontext option is "
728 			       "invalid for this filesystem type\n");
729 			goto out;
730 		}
731 
732 		if (defcontext_sid != sbsec->def_sid) {
733 			rc = may_context_mount_inode_relabel(defcontext_sid,
734 							     sbsec, cred);
735 			if (rc)
736 				goto out;
737 		}
738 
739 		sbsec->def_sid = defcontext_sid;
740 	}
741 
742 	rc = sb_finish_set_opts(sb);
743 out:
744 	mutex_unlock(&sbsec->lock);
745 	return rc;
746 out_double_mount:
747 	rc = -EINVAL;
748 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
749 	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
750 	goto out;
751 }
752 
753 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
754 					struct super_block *newsb)
755 {
756 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
757 	struct superblock_security_struct *newsbsec = newsb->s_security;
758 
759 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
760 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
761 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
762 
763 	/*
764 	 * if the parent was able to be mounted it clearly had no special lsm
765 	 * mount options.  thus we can safely deal with this superblock later
766 	 */
767 	if (!ss_initialized)
768 		return;
769 
770 	/* how can we clone if the old one wasn't set up?? */
771 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
772 
773 	/* if fs is reusing a sb, just let its options stand... */
774 	if (newsbsec->flags & SE_SBINITIALIZED)
775 		return;
776 
777 	mutex_lock(&newsbsec->lock);
778 
779 	newsbsec->flags = oldsbsec->flags;
780 
781 	newsbsec->sid = oldsbsec->sid;
782 	newsbsec->def_sid = oldsbsec->def_sid;
783 	newsbsec->behavior = oldsbsec->behavior;
784 
785 	if (set_context) {
786 		u32 sid = oldsbsec->mntpoint_sid;
787 
788 		if (!set_fscontext)
789 			newsbsec->sid = sid;
790 		if (!set_rootcontext) {
791 			struct inode *newinode = newsb->s_root->d_inode;
792 			struct inode_security_struct *newisec = newinode->i_security;
793 			newisec->sid = sid;
794 		}
795 		newsbsec->mntpoint_sid = sid;
796 	}
797 	if (set_rootcontext) {
798 		const struct inode *oldinode = oldsb->s_root->d_inode;
799 		const struct inode_security_struct *oldisec = oldinode->i_security;
800 		struct inode *newinode = newsb->s_root->d_inode;
801 		struct inode_security_struct *newisec = newinode->i_security;
802 
803 		newisec->sid = oldisec->sid;
804 	}
805 
806 	sb_finish_set_opts(newsb);
807 	mutex_unlock(&newsbsec->lock);
808 }
809 
810 static int selinux_parse_opts_str(char *options,
811 				  struct security_mnt_opts *opts)
812 {
813 	char *p;
814 	char *context = NULL, *defcontext = NULL;
815 	char *fscontext = NULL, *rootcontext = NULL;
816 	int rc, num_mnt_opts = 0;
817 
818 	opts->num_mnt_opts = 0;
819 
820 	/* Standard string-based options. */
821 	while ((p = strsep(&options, "|")) != NULL) {
822 		int token;
823 		substring_t args[MAX_OPT_ARGS];
824 
825 		if (!*p)
826 			continue;
827 
828 		token = match_token(p, tokens, args);
829 
830 		switch (token) {
831 		case Opt_context:
832 			if (context || defcontext) {
833 				rc = -EINVAL;
834 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
835 				goto out_err;
836 			}
837 			context = match_strdup(&args[0]);
838 			if (!context) {
839 				rc = -ENOMEM;
840 				goto out_err;
841 			}
842 			break;
843 
844 		case Opt_fscontext:
845 			if (fscontext) {
846 				rc = -EINVAL;
847 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
848 				goto out_err;
849 			}
850 			fscontext = match_strdup(&args[0]);
851 			if (!fscontext) {
852 				rc = -ENOMEM;
853 				goto out_err;
854 			}
855 			break;
856 
857 		case Opt_rootcontext:
858 			if (rootcontext) {
859 				rc = -EINVAL;
860 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
861 				goto out_err;
862 			}
863 			rootcontext = match_strdup(&args[0]);
864 			if (!rootcontext) {
865 				rc = -ENOMEM;
866 				goto out_err;
867 			}
868 			break;
869 
870 		case Opt_defcontext:
871 			if (context || defcontext) {
872 				rc = -EINVAL;
873 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
874 				goto out_err;
875 			}
876 			defcontext = match_strdup(&args[0]);
877 			if (!defcontext) {
878 				rc = -ENOMEM;
879 				goto out_err;
880 			}
881 			break;
882 		case Opt_labelsupport:
883 			break;
884 		default:
885 			rc = -EINVAL;
886 			printk(KERN_WARNING "SELinux:  unknown mount option\n");
887 			goto out_err;
888 
889 		}
890 	}
891 
892 	rc = -ENOMEM;
893 	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
894 	if (!opts->mnt_opts)
895 		goto out_err;
896 
897 	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
898 	if (!opts->mnt_opts_flags) {
899 		kfree(opts->mnt_opts);
900 		goto out_err;
901 	}
902 
903 	if (fscontext) {
904 		opts->mnt_opts[num_mnt_opts] = fscontext;
905 		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
906 	}
907 	if (context) {
908 		opts->mnt_opts[num_mnt_opts] = context;
909 		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
910 	}
911 	if (rootcontext) {
912 		opts->mnt_opts[num_mnt_opts] = rootcontext;
913 		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
914 	}
915 	if (defcontext) {
916 		opts->mnt_opts[num_mnt_opts] = defcontext;
917 		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
918 	}
919 
920 	opts->num_mnt_opts = num_mnt_opts;
921 	return 0;
922 
923 out_err:
924 	kfree(context);
925 	kfree(defcontext);
926 	kfree(fscontext);
927 	kfree(rootcontext);
928 	return rc;
929 }
930 /*
931  * string mount options parsing and call set the sbsec
932  */
933 static int superblock_doinit(struct super_block *sb, void *data)
934 {
935 	int rc = 0;
936 	char *options = data;
937 	struct security_mnt_opts opts;
938 
939 	security_init_mnt_opts(&opts);
940 
941 	if (!data)
942 		goto out;
943 
944 	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
945 
946 	rc = selinux_parse_opts_str(options, &opts);
947 	if (rc)
948 		goto out_err;
949 
950 out:
951 	rc = selinux_set_mnt_opts(sb, &opts);
952 
953 out_err:
954 	security_free_mnt_opts(&opts);
955 	return rc;
956 }
957 
958 static void selinux_write_opts(struct seq_file *m,
959 			       struct security_mnt_opts *opts)
960 {
961 	int i;
962 	char *prefix;
963 
964 	for (i = 0; i < opts->num_mnt_opts; i++) {
965 		char *has_comma;
966 
967 		if (opts->mnt_opts[i])
968 			has_comma = strchr(opts->mnt_opts[i], ',');
969 		else
970 			has_comma = NULL;
971 
972 		switch (opts->mnt_opts_flags[i]) {
973 		case CONTEXT_MNT:
974 			prefix = CONTEXT_STR;
975 			break;
976 		case FSCONTEXT_MNT:
977 			prefix = FSCONTEXT_STR;
978 			break;
979 		case ROOTCONTEXT_MNT:
980 			prefix = ROOTCONTEXT_STR;
981 			break;
982 		case DEFCONTEXT_MNT:
983 			prefix = DEFCONTEXT_STR;
984 			break;
985 		case SE_SBLABELSUPP:
986 			seq_putc(m, ',');
987 			seq_puts(m, LABELSUPP_STR);
988 			continue;
989 		default:
990 			BUG();
991 			return;
992 		};
993 		/* we need a comma before each option */
994 		seq_putc(m, ',');
995 		seq_puts(m, prefix);
996 		if (has_comma)
997 			seq_putc(m, '\"');
998 		seq_puts(m, opts->mnt_opts[i]);
999 		if (has_comma)
1000 			seq_putc(m, '\"');
1001 	}
1002 }
1003 
1004 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1005 {
1006 	struct security_mnt_opts opts;
1007 	int rc;
1008 
1009 	rc = selinux_get_mnt_opts(sb, &opts);
1010 	if (rc) {
1011 		/* before policy load we may get EINVAL, don't show anything */
1012 		if (rc == -EINVAL)
1013 			rc = 0;
1014 		return rc;
1015 	}
1016 
1017 	selinux_write_opts(m, &opts);
1018 
1019 	security_free_mnt_opts(&opts);
1020 
1021 	return rc;
1022 }
1023 
1024 static inline u16 inode_mode_to_security_class(umode_t mode)
1025 {
1026 	switch (mode & S_IFMT) {
1027 	case S_IFSOCK:
1028 		return SECCLASS_SOCK_FILE;
1029 	case S_IFLNK:
1030 		return SECCLASS_LNK_FILE;
1031 	case S_IFREG:
1032 		return SECCLASS_FILE;
1033 	case S_IFBLK:
1034 		return SECCLASS_BLK_FILE;
1035 	case S_IFDIR:
1036 		return SECCLASS_DIR;
1037 	case S_IFCHR:
1038 		return SECCLASS_CHR_FILE;
1039 	case S_IFIFO:
1040 		return SECCLASS_FIFO_FILE;
1041 
1042 	}
1043 
1044 	return SECCLASS_FILE;
1045 }
1046 
1047 static inline int default_protocol_stream(int protocol)
1048 {
1049 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1050 }
1051 
1052 static inline int default_protocol_dgram(int protocol)
1053 {
1054 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1055 }
1056 
1057 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1058 {
1059 	switch (family) {
1060 	case PF_UNIX:
1061 		switch (type) {
1062 		case SOCK_STREAM:
1063 		case SOCK_SEQPACKET:
1064 			return SECCLASS_UNIX_STREAM_SOCKET;
1065 		case SOCK_DGRAM:
1066 			return SECCLASS_UNIX_DGRAM_SOCKET;
1067 		}
1068 		break;
1069 	case PF_INET:
1070 	case PF_INET6:
1071 		switch (type) {
1072 		case SOCK_STREAM:
1073 			if (default_protocol_stream(protocol))
1074 				return SECCLASS_TCP_SOCKET;
1075 			else
1076 				return SECCLASS_RAWIP_SOCKET;
1077 		case SOCK_DGRAM:
1078 			if (default_protocol_dgram(protocol))
1079 				return SECCLASS_UDP_SOCKET;
1080 			else
1081 				return SECCLASS_RAWIP_SOCKET;
1082 		case SOCK_DCCP:
1083 			return SECCLASS_DCCP_SOCKET;
1084 		default:
1085 			return SECCLASS_RAWIP_SOCKET;
1086 		}
1087 		break;
1088 	case PF_NETLINK:
1089 		switch (protocol) {
1090 		case NETLINK_ROUTE:
1091 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1092 		case NETLINK_FIREWALL:
1093 			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1094 		case NETLINK_SOCK_DIAG:
1095 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1096 		case NETLINK_NFLOG:
1097 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1098 		case NETLINK_XFRM:
1099 			return SECCLASS_NETLINK_XFRM_SOCKET;
1100 		case NETLINK_SELINUX:
1101 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1102 		case NETLINK_AUDIT:
1103 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1104 		case NETLINK_IP6_FW:
1105 			return SECCLASS_NETLINK_IP6FW_SOCKET;
1106 		case NETLINK_DNRTMSG:
1107 			return SECCLASS_NETLINK_DNRT_SOCKET;
1108 		case NETLINK_KOBJECT_UEVENT:
1109 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1110 		default:
1111 			return SECCLASS_NETLINK_SOCKET;
1112 		}
1113 	case PF_PACKET:
1114 		return SECCLASS_PACKET_SOCKET;
1115 	case PF_KEY:
1116 		return SECCLASS_KEY_SOCKET;
1117 	case PF_APPLETALK:
1118 		return SECCLASS_APPLETALK_SOCKET;
1119 	}
1120 
1121 	return SECCLASS_SOCKET;
1122 }
1123 
1124 #ifdef CONFIG_PROC_FS
1125 static int selinux_proc_get_sid(struct dentry *dentry,
1126 				u16 tclass,
1127 				u32 *sid)
1128 {
1129 	int rc;
1130 	char *buffer, *path;
1131 
1132 	buffer = (char *)__get_free_page(GFP_KERNEL);
1133 	if (!buffer)
1134 		return -ENOMEM;
1135 
1136 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1137 	if (IS_ERR(path))
1138 		rc = PTR_ERR(path);
1139 	else {
1140 		/* each process gets a /proc/PID/ entry. Strip off the
1141 		 * PID part to get a valid selinux labeling.
1142 		 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1143 		while (path[1] >= '0' && path[1] <= '9') {
1144 			path[1] = '/';
1145 			path++;
1146 		}
1147 		rc = security_genfs_sid("proc", path, tclass, sid);
1148 	}
1149 	free_page((unsigned long)buffer);
1150 	return rc;
1151 }
1152 #else
1153 static int selinux_proc_get_sid(struct dentry *dentry,
1154 				u16 tclass,
1155 				u32 *sid)
1156 {
1157 	return -EINVAL;
1158 }
1159 #endif
1160 
1161 /* The inode's security attributes must be initialized before first use. */
1162 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1163 {
1164 	struct superblock_security_struct *sbsec = NULL;
1165 	struct inode_security_struct *isec = inode->i_security;
1166 	u32 sid;
1167 	struct dentry *dentry;
1168 #define INITCONTEXTLEN 255
1169 	char *context = NULL;
1170 	unsigned len = 0;
1171 	int rc = 0;
1172 
1173 	if (isec->initialized)
1174 		goto out;
1175 
1176 	mutex_lock(&isec->lock);
1177 	if (isec->initialized)
1178 		goto out_unlock;
1179 
1180 	sbsec = inode->i_sb->s_security;
1181 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1182 		/* Defer initialization until selinux_complete_init,
1183 		   after the initial policy is loaded and the security
1184 		   server is ready to handle calls. */
1185 		spin_lock(&sbsec->isec_lock);
1186 		if (list_empty(&isec->list))
1187 			list_add(&isec->list, &sbsec->isec_head);
1188 		spin_unlock(&sbsec->isec_lock);
1189 		goto out_unlock;
1190 	}
1191 
1192 	switch (sbsec->behavior) {
1193 	case SECURITY_FS_USE_XATTR:
1194 		if (!inode->i_op->getxattr) {
1195 			isec->sid = sbsec->def_sid;
1196 			break;
1197 		}
1198 
1199 		/* Need a dentry, since the xattr API requires one.
1200 		   Life would be simpler if we could just pass the inode. */
1201 		if (opt_dentry) {
1202 			/* Called from d_instantiate or d_splice_alias. */
1203 			dentry = dget(opt_dentry);
1204 		} else {
1205 			/* Called from selinux_complete_init, try to find a dentry. */
1206 			dentry = d_find_alias(inode);
1207 		}
1208 		if (!dentry) {
1209 			/*
1210 			 * this is can be hit on boot when a file is accessed
1211 			 * before the policy is loaded.  When we load policy we
1212 			 * may find inodes that have no dentry on the
1213 			 * sbsec->isec_head list.  No reason to complain as these
1214 			 * will get fixed up the next time we go through
1215 			 * inode_doinit with a dentry, before these inodes could
1216 			 * be used again by userspace.
1217 			 */
1218 			goto out_unlock;
1219 		}
1220 
1221 		len = INITCONTEXTLEN;
1222 		context = kmalloc(len+1, GFP_NOFS);
1223 		if (!context) {
1224 			rc = -ENOMEM;
1225 			dput(dentry);
1226 			goto out_unlock;
1227 		}
1228 		context[len] = '\0';
1229 		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1230 					   context, len);
1231 		if (rc == -ERANGE) {
1232 			kfree(context);
1233 
1234 			/* Need a larger buffer.  Query for the right size. */
1235 			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1236 						   NULL, 0);
1237 			if (rc < 0) {
1238 				dput(dentry);
1239 				goto out_unlock;
1240 			}
1241 			len = rc;
1242 			context = kmalloc(len+1, GFP_NOFS);
1243 			if (!context) {
1244 				rc = -ENOMEM;
1245 				dput(dentry);
1246 				goto out_unlock;
1247 			}
1248 			context[len] = '\0';
1249 			rc = inode->i_op->getxattr(dentry,
1250 						   XATTR_NAME_SELINUX,
1251 						   context, len);
1252 		}
1253 		dput(dentry);
1254 		if (rc < 0) {
1255 			if (rc != -ENODATA) {
1256 				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1257 				       "%d for dev=%s ino=%ld\n", __func__,
1258 				       -rc, inode->i_sb->s_id, inode->i_ino);
1259 				kfree(context);
1260 				goto out_unlock;
1261 			}
1262 			/* Map ENODATA to the default file SID */
1263 			sid = sbsec->def_sid;
1264 			rc = 0;
1265 		} else {
1266 			rc = security_context_to_sid_default(context, rc, &sid,
1267 							     sbsec->def_sid,
1268 							     GFP_NOFS);
1269 			if (rc) {
1270 				char *dev = inode->i_sb->s_id;
1271 				unsigned long ino = inode->i_ino;
1272 
1273 				if (rc == -EINVAL) {
1274 					if (printk_ratelimit())
1275 						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1276 							"context=%s.  This indicates you may need to relabel the inode or the "
1277 							"filesystem in question.\n", ino, dev, context);
1278 				} else {
1279 					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1280 					       "returned %d for dev=%s ino=%ld\n",
1281 					       __func__, context, -rc, dev, ino);
1282 				}
1283 				kfree(context);
1284 				/* Leave with the unlabeled SID */
1285 				rc = 0;
1286 				break;
1287 			}
1288 		}
1289 		kfree(context);
1290 		isec->sid = sid;
1291 		break;
1292 	case SECURITY_FS_USE_TASK:
1293 		isec->sid = isec->task_sid;
1294 		break;
1295 	case SECURITY_FS_USE_TRANS:
1296 		/* Default to the fs SID. */
1297 		isec->sid = sbsec->sid;
1298 
1299 		/* Try to obtain a transition SID. */
1300 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1301 		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1302 					     isec->sclass, NULL, &sid);
1303 		if (rc)
1304 			goto out_unlock;
1305 		isec->sid = sid;
1306 		break;
1307 	case SECURITY_FS_USE_MNTPOINT:
1308 		isec->sid = sbsec->mntpoint_sid;
1309 		break;
1310 	default:
1311 		/* Default to the fs superblock SID. */
1312 		isec->sid = sbsec->sid;
1313 
1314 		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1315 			if (opt_dentry) {
1316 				isec->sclass = inode_mode_to_security_class(inode->i_mode);
1317 				rc = selinux_proc_get_sid(opt_dentry,
1318 							  isec->sclass,
1319 							  &sid);
1320 				if (rc)
1321 					goto out_unlock;
1322 				isec->sid = sid;
1323 			}
1324 		}
1325 		break;
1326 	}
1327 
1328 	isec->initialized = 1;
1329 
1330 out_unlock:
1331 	mutex_unlock(&isec->lock);
1332 out:
1333 	if (isec->sclass == SECCLASS_FILE)
1334 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1335 	return rc;
1336 }
1337 
1338 /* Convert a Linux signal to an access vector. */
1339 static inline u32 signal_to_av(int sig)
1340 {
1341 	u32 perm = 0;
1342 
1343 	switch (sig) {
1344 	case SIGCHLD:
1345 		/* Commonly granted from child to parent. */
1346 		perm = PROCESS__SIGCHLD;
1347 		break;
1348 	case SIGKILL:
1349 		/* Cannot be caught or ignored */
1350 		perm = PROCESS__SIGKILL;
1351 		break;
1352 	case SIGSTOP:
1353 		/* Cannot be caught or ignored */
1354 		perm = PROCESS__SIGSTOP;
1355 		break;
1356 	default:
1357 		/* All other signals. */
1358 		perm = PROCESS__SIGNAL;
1359 		break;
1360 	}
1361 
1362 	return perm;
1363 }
1364 
1365 /*
1366  * Check permission between a pair of credentials
1367  * fork check, ptrace check, etc.
1368  */
1369 static int cred_has_perm(const struct cred *actor,
1370 			 const struct cred *target,
1371 			 u32 perms)
1372 {
1373 	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1374 
1375 	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1376 }
1377 
1378 /*
1379  * Check permission between a pair of tasks, e.g. signal checks,
1380  * fork check, ptrace check, etc.
1381  * tsk1 is the actor and tsk2 is the target
1382  * - this uses the default subjective creds of tsk1
1383  */
1384 static int task_has_perm(const struct task_struct *tsk1,
1385 			 const struct task_struct *tsk2,
1386 			 u32 perms)
1387 {
1388 	const struct task_security_struct *__tsec1, *__tsec2;
1389 	u32 sid1, sid2;
1390 
1391 	rcu_read_lock();
1392 	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1393 	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1394 	rcu_read_unlock();
1395 	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1396 }
1397 
1398 /*
1399  * Check permission between current and another task, e.g. signal checks,
1400  * fork check, ptrace check, etc.
1401  * current is the actor and tsk2 is the target
1402  * - this uses current's subjective creds
1403  */
1404 static int current_has_perm(const struct task_struct *tsk,
1405 			    u32 perms)
1406 {
1407 	u32 sid, tsid;
1408 
1409 	sid = current_sid();
1410 	tsid = task_sid(tsk);
1411 	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1412 }
1413 
1414 #if CAP_LAST_CAP > 63
1415 #error Fix SELinux to handle capabilities > 63.
1416 #endif
1417 
1418 /* Check whether a task is allowed to use a capability. */
1419 static int cred_has_capability(const struct cred *cred,
1420 			       int cap, int audit)
1421 {
1422 	struct common_audit_data ad;
1423 	struct av_decision avd;
1424 	u16 sclass;
1425 	u32 sid = cred_sid(cred);
1426 	u32 av = CAP_TO_MASK(cap);
1427 	int rc;
1428 
1429 	ad.type = LSM_AUDIT_DATA_CAP;
1430 	ad.u.cap = cap;
1431 
1432 	switch (CAP_TO_INDEX(cap)) {
1433 	case 0:
1434 		sclass = SECCLASS_CAPABILITY;
1435 		break;
1436 	case 1:
1437 		sclass = SECCLASS_CAPABILITY2;
1438 		break;
1439 	default:
1440 		printk(KERN_ERR
1441 		       "SELinux:  out of range capability %d\n", cap);
1442 		BUG();
1443 		return -EINVAL;
1444 	}
1445 
1446 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1447 	if (audit == SECURITY_CAP_AUDIT) {
1448 		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1449 		if (rc2)
1450 			return rc2;
1451 	}
1452 	return rc;
1453 }
1454 
1455 /* Check whether a task is allowed to use a system operation. */
1456 static int task_has_system(struct task_struct *tsk,
1457 			   u32 perms)
1458 {
1459 	u32 sid = task_sid(tsk);
1460 
1461 	return avc_has_perm(sid, SECINITSID_KERNEL,
1462 			    SECCLASS_SYSTEM, perms, NULL);
1463 }
1464 
1465 /* Check whether a task has a particular permission to an inode.
1466    The 'adp' parameter is optional and allows other audit
1467    data to be passed (e.g. the dentry). */
1468 static int inode_has_perm(const struct cred *cred,
1469 			  struct inode *inode,
1470 			  u32 perms,
1471 			  struct common_audit_data *adp,
1472 			  unsigned flags)
1473 {
1474 	struct inode_security_struct *isec;
1475 	u32 sid;
1476 
1477 	validate_creds(cred);
1478 
1479 	if (unlikely(IS_PRIVATE(inode)))
1480 		return 0;
1481 
1482 	sid = cred_sid(cred);
1483 	isec = inode->i_security;
1484 
1485 	return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1486 }
1487 
1488 /* Same as inode_has_perm, but pass explicit audit data containing
1489    the dentry to help the auditing code to more easily generate the
1490    pathname if needed. */
1491 static inline int dentry_has_perm(const struct cred *cred,
1492 				  struct dentry *dentry,
1493 				  u32 av)
1494 {
1495 	struct inode *inode = dentry->d_inode;
1496 	struct common_audit_data ad;
1497 
1498 	ad.type = LSM_AUDIT_DATA_DENTRY;
1499 	ad.u.dentry = dentry;
1500 	return inode_has_perm(cred, inode, av, &ad, 0);
1501 }
1502 
1503 /* Same as inode_has_perm, but pass explicit audit data containing
1504    the path to help the auditing code to more easily generate the
1505    pathname if needed. */
1506 static inline int path_has_perm(const struct cred *cred,
1507 				struct path *path,
1508 				u32 av)
1509 {
1510 	struct inode *inode = path->dentry->d_inode;
1511 	struct common_audit_data ad;
1512 
1513 	ad.type = LSM_AUDIT_DATA_PATH;
1514 	ad.u.path = *path;
1515 	return inode_has_perm(cred, inode, av, &ad, 0);
1516 }
1517 
1518 /* Check whether a task can use an open file descriptor to
1519    access an inode in a given way.  Check access to the
1520    descriptor itself, and then use dentry_has_perm to
1521    check a particular permission to the file.
1522    Access to the descriptor is implicitly granted if it
1523    has the same SID as the process.  If av is zero, then
1524    access to the file is not checked, e.g. for cases
1525    where only the descriptor is affected like seek. */
1526 static int file_has_perm(const struct cred *cred,
1527 			 struct file *file,
1528 			 u32 av)
1529 {
1530 	struct file_security_struct *fsec = file->f_security;
1531 	struct inode *inode = file->f_path.dentry->d_inode;
1532 	struct common_audit_data ad;
1533 	u32 sid = cred_sid(cred);
1534 	int rc;
1535 
1536 	ad.type = LSM_AUDIT_DATA_PATH;
1537 	ad.u.path = file->f_path;
1538 
1539 	if (sid != fsec->sid) {
1540 		rc = avc_has_perm(sid, fsec->sid,
1541 				  SECCLASS_FD,
1542 				  FD__USE,
1543 				  &ad);
1544 		if (rc)
1545 			goto out;
1546 	}
1547 
1548 	/* av is zero if only checking access to the descriptor. */
1549 	rc = 0;
1550 	if (av)
1551 		rc = inode_has_perm(cred, inode, av, &ad, 0);
1552 
1553 out:
1554 	return rc;
1555 }
1556 
1557 /* Check whether a task can create a file. */
1558 static int may_create(struct inode *dir,
1559 		      struct dentry *dentry,
1560 		      u16 tclass)
1561 {
1562 	const struct task_security_struct *tsec = current_security();
1563 	struct inode_security_struct *dsec;
1564 	struct superblock_security_struct *sbsec;
1565 	u32 sid, newsid;
1566 	struct common_audit_data ad;
1567 	int rc;
1568 
1569 	dsec = dir->i_security;
1570 	sbsec = dir->i_sb->s_security;
1571 
1572 	sid = tsec->sid;
1573 	newsid = tsec->create_sid;
1574 
1575 	ad.type = LSM_AUDIT_DATA_DENTRY;
1576 	ad.u.dentry = dentry;
1577 
1578 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1579 			  DIR__ADD_NAME | DIR__SEARCH,
1580 			  &ad);
1581 	if (rc)
1582 		return rc;
1583 
1584 	if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1585 		rc = security_transition_sid(sid, dsec->sid, tclass,
1586 					     &dentry->d_name, &newsid);
1587 		if (rc)
1588 			return rc;
1589 	}
1590 
1591 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1592 	if (rc)
1593 		return rc;
1594 
1595 	return avc_has_perm(newsid, sbsec->sid,
1596 			    SECCLASS_FILESYSTEM,
1597 			    FILESYSTEM__ASSOCIATE, &ad);
1598 }
1599 
1600 /* Check whether a task can create a key. */
1601 static int may_create_key(u32 ksid,
1602 			  struct task_struct *ctx)
1603 {
1604 	u32 sid = task_sid(ctx);
1605 
1606 	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1607 }
1608 
1609 #define MAY_LINK	0
1610 #define MAY_UNLINK	1
1611 #define MAY_RMDIR	2
1612 
1613 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1614 static int may_link(struct inode *dir,
1615 		    struct dentry *dentry,
1616 		    int kind)
1617 
1618 {
1619 	struct inode_security_struct *dsec, *isec;
1620 	struct common_audit_data ad;
1621 	u32 sid = current_sid();
1622 	u32 av;
1623 	int rc;
1624 
1625 	dsec = dir->i_security;
1626 	isec = dentry->d_inode->i_security;
1627 
1628 	ad.type = LSM_AUDIT_DATA_DENTRY;
1629 	ad.u.dentry = dentry;
1630 
1631 	av = DIR__SEARCH;
1632 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1633 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1634 	if (rc)
1635 		return rc;
1636 
1637 	switch (kind) {
1638 	case MAY_LINK:
1639 		av = FILE__LINK;
1640 		break;
1641 	case MAY_UNLINK:
1642 		av = FILE__UNLINK;
1643 		break;
1644 	case MAY_RMDIR:
1645 		av = DIR__RMDIR;
1646 		break;
1647 	default:
1648 		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1649 			__func__, kind);
1650 		return 0;
1651 	}
1652 
1653 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1654 	return rc;
1655 }
1656 
1657 static inline int may_rename(struct inode *old_dir,
1658 			     struct dentry *old_dentry,
1659 			     struct inode *new_dir,
1660 			     struct dentry *new_dentry)
1661 {
1662 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1663 	struct common_audit_data ad;
1664 	u32 sid = current_sid();
1665 	u32 av;
1666 	int old_is_dir, new_is_dir;
1667 	int rc;
1668 
1669 	old_dsec = old_dir->i_security;
1670 	old_isec = old_dentry->d_inode->i_security;
1671 	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1672 	new_dsec = new_dir->i_security;
1673 
1674 	ad.type = LSM_AUDIT_DATA_DENTRY;
1675 
1676 	ad.u.dentry = old_dentry;
1677 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1678 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1679 	if (rc)
1680 		return rc;
1681 	rc = avc_has_perm(sid, old_isec->sid,
1682 			  old_isec->sclass, FILE__RENAME, &ad);
1683 	if (rc)
1684 		return rc;
1685 	if (old_is_dir && new_dir != old_dir) {
1686 		rc = avc_has_perm(sid, old_isec->sid,
1687 				  old_isec->sclass, DIR__REPARENT, &ad);
1688 		if (rc)
1689 			return rc;
1690 	}
1691 
1692 	ad.u.dentry = new_dentry;
1693 	av = DIR__ADD_NAME | DIR__SEARCH;
1694 	if (new_dentry->d_inode)
1695 		av |= DIR__REMOVE_NAME;
1696 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1697 	if (rc)
1698 		return rc;
1699 	if (new_dentry->d_inode) {
1700 		new_isec = new_dentry->d_inode->i_security;
1701 		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1702 		rc = avc_has_perm(sid, new_isec->sid,
1703 				  new_isec->sclass,
1704 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1705 		if (rc)
1706 			return rc;
1707 	}
1708 
1709 	return 0;
1710 }
1711 
1712 /* Check whether a task can perform a filesystem operation. */
1713 static int superblock_has_perm(const struct cred *cred,
1714 			       struct super_block *sb,
1715 			       u32 perms,
1716 			       struct common_audit_data *ad)
1717 {
1718 	struct superblock_security_struct *sbsec;
1719 	u32 sid = cred_sid(cred);
1720 
1721 	sbsec = sb->s_security;
1722 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1723 }
1724 
1725 /* Convert a Linux mode and permission mask to an access vector. */
1726 static inline u32 file_mask_to_av(int mode, int mask)
1727 {
1728 	u32 av = 0;
1729 
1730 	if (!S_ISDIR(mode)) {
1731 		if (mask & MAY_EXEC)
1732 			av |= FILE__EXECUTE;
1733 		if (mask & MAY_READ)
1734 			av |= FILE__READ;
1735 
1736 		if (mask & MAY_APPEND)
1737 			av |= FILE__APPEND;
1738 		else if (mask & MAY_WRITE)
1739 			av |= FILE__WRITE;
1740 
1741 	} else {
1742 		if (mask & MAY_EXEC)
1743 			av |= DIR__SEARCH;
1744 		if (mask & MAY_WRITE)
1745 			av |= DIR__WRITE;
1746 		if (mask & MAY_READ)
1747 			av |= DIR__READ;
1748 	}
1749 
1750 	return av;
1751 }
1752 
1753 /* Convert a Linux file to an access vector. */
1754 static inline u32 file_to_av(struct file *file)
1755 {
1756 	u32 av = 0;
1757 
1758 	if (file->f_mode & FMODE_READ)
1759 		av |= FILE__READ;
1760 	if (file->f_mode & FMODE_WRITE) {
1761 		if (file->f_flags & O_APPEND)
1762 			av |= FILE__APPEND;
1763 		else
1764 			av |= FILE__WRITE;
1765 	}
1766 	if (!av) {
1767 		/*
1768 		 * Special file opened with flags 3 for ioctl-only use.
1769 		 */
1770 		av = FILE__IOCTL;
1771 	}
1772 
1773 	return av;
1774 }
1775 
1776 /*
1777  * Convert a file to an access vector and include the correct open
1778  * open permission.
1779  */
1780 static inline u32 open_file_to_av(struct file *file)
1781 {
1782 	u32 av = file_to_av(file);
1783 
1784 	if (selinux_policycap_openperm)
1785 		av |= FILE__OPEN;
1786 
1787 	return av;
1788 }
1789 
1790 /* Hook functions begin here. */
1791 
1792 static int selinux_ptrace_access_check(struct task_struct *child,
1793 				     unsigned int mode)
1794 {
1795 	int rc;
1796 
1797 	rc = cap_ptrace_access_check(child, mode);
1798 	if (rc)
1799 		return rc;
1800 
1801 	if (mode & PTRACE_MODE_READ) {
1802 		u32 sid = current_sid();
1803 		u32 csid = task_sid(child);
1804 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1805 	}
1806 
1807 	return current_has_perm(child, PROCESS__PTRACE);
1808 }
1809 
1810 static int selinux_ptrace_traceme(struct task_struct *parent)
1811 {
1812 	int rc;
1813 
1814 	rc = cap_ptrace_traceme(parent);
1815 	if (rc)
1816 		return rc;
1817 
1818 	return task_has_perm(parent, current, PROCESS__PTRACE);
1819 }
1820 
1821 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1822 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1823 {
1824 	int error;
1825 
1826 	error = current_has_perm(target, PROCESS__GETCAP);
1827 	if (error)
1828 		return error;
1829 
1830 	return cap_capget(target, effective, inheritable, permitted);
1831 }
1832 
1833 static int selinux_capset(struct cred *new, const struct cred *old,
1834 			  const kernel_cap_t *effective,
1835 			  const kernel_cap_t *inheritable,
1836 			  const kernel_cap_t *permitted)
1837 {
1838 	int error;
1839 
1840 	error = cap_capset(new, old,
1841 				      effective, inheritable, permitted);
1842 	if (error)
1843 		return error;
1844 
1845 	return cred_has_perm(old, new, PROCESS__SETCAP);
1846 }
1847 
1848 /*
1849  * (This comment used to live with the selinux_task_setuid hook,
1850  * which was removed).
1851  *
1852  * Since setuid only affects the current process, and since the SELinux
1853  * controls are not based on the Linux identity attributes, SELinux does not
1854  * need to control this operation.  However, SELinux does control the use of
1855  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1856  */
1857 
1858 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1859 			   int cap, int audit)
1860 {
1861 	int rc;
1862 
1863 	rc = cap_capable(cred, ns, cap, audit);
1864 	if (rc)
1865 		return rc;
1866 
1867 	return cred_has_capability(cred, cap, audit);
1868 }
1869 
1870 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1871 {
1872 	const struct cred *cred = current_cred();
1873 	int rc = 0;
1874 
1875 	if (!sb)
1876 		return 0;
1877 
1878 	switch (cmds) {
1879 	case Q_SYNC:
1880 	case Q_QUOTAON:
1881 	case Q_QUOTAOFF:
1882 	case Q_SETINFO:
1883 	case Q_SETQUOTA:
1884 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1885 		break;
1886 	case Q_GETFMT:
1887 	case Q_GETINFO:
1888 	case Q_GETQUOTA:
1889 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1890 		break;
1891 	default:
1892 		rc = 0;  /* let the kernel handle invalid cmds */
1893 		break;
1894 	}
1895 	return rc;
1896 }
1897 
1898 static int selinux_quota_on(struct dentry *dentry)
1899 {
1900 	const struct cred *cred = current_cred();
1901 
1902 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1903 }
1904 
1905 static int selinux_syslog(int type)
1906 {
1907 	int rc;
1908 
1909 	switch (type) {
1910 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
1911 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
1912 		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1913 		break;
1914 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
1915 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
1916 	/* Set level of messages printed to console */
1917 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1918 		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1919 		break;
1920 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1921 	case SYSLOG_ACTION_OPEN:	/* Open log */
1922 	case SYSLOG_ACTION_READ:	/* Read from log */
1923 	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
1924 	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
1925 	default:
1926 		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1927 		break;
1928 	}
1929 	return rc;
1930 }
1931 
1932 /*
1933  * Check that a process has enough memory to allocate a new virtual
1934  * mapping. 0 means there is enough memory for the allocation to
1935  * succeed and -ENOMEM implies there is not.
1936  *
1937  * Do not audit the selinux permission check, as this is applied to all
1938  * processes that allocate mappings.
1939  */
1940 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1941 {
1942 	int rc, cap_sys_admin = 0;
1943 
1944 	rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1945 			     SECURITY_CAP_NOAUDIT);
1946 	if (rc == 0)
1947 		cap_sys_admin = 1;
1948 
1949 	return __vm_enough_memory(mm, pages, cap_sys_admin);
1950 }
1951 
1952 /* binprm security operations */
1953 
1954 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1955 {
1956 	const struct task_security_struct *old_tsec;
1957 	struct task_security_struct *new_tsec;
1958 	struct inode_security_struct *isec;
1959 	struct common_audit_data ad;
1960 	struct inode *inode = bprm->file->f_path.dentry->d_inode;
1961 	int rc;
1962 
1963 	rc = cap_bprm_set_creds(bprm);
1964 	if (rc)
1965 		return rc;
1966 
1967 	/* SELinux context only depends on initial program or script and not
1968 	 * the script interpreter */
1969 	if (bprm->cred_prepared)
1970 		return 0;
1971 
1972 	old_tsec = current_security();
1973 	new_tsec = bprm->cred->security;
1974 	isec = inode->i_security;
1975 
1976 	/* Default to the current task SID. */
1977 	new_tsec->sid = old_tsec->sid;
1978 	new_tsec->osid = old_tsec->sid;
1979 
1980 	/* Reset fs, key, and sock SIDs on execve. */
1981 	new_tsec->create_sid = 0;
1982 	new_tsec->keycreate_sid = 0;
1983 	new_tsec->sockcreate_sid = 0;
1984 
1985 	if (old_tsec->exec_sid) {
1986 		new_tsec->sid = old_tsec->exec_sid;
1987 		/* Reset exec SID on execve. */
1988 		new_tsec->exec_sid = 0;
1989 
1990 		/*
1991 		 * Minimize confusion: if no_new_privs and a transition is
1992 		 * explicitly requested, then fail the exec.
1993 		 */
1994 		if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
1995 			return -EPERM;
1996 	} else {
1997 		/* Check for a default transition on this program. */
1998 		rc = security_transition_sid(old_tsec->sid, isec->sid,
1999 					     SECCLASS_PROCESS, NULL,
2000 					     &new_tsec->sid);
2001 		if (rc)
2002 			return rc;
2003 	}
2004 
2005 	ad.type = LSM_AUDIT_DATA_PATH;
2006 	ad.u.path = bprm->file->f_path;
2007 
2008 	if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2009 	    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2010 		new_tsec->sid = old_tsec->sid;
2011 
2012 	if (new_tsec->sid == old_tsec->sid) {
2013 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2014 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2015 		if (rc)
2016 			return rc;
2017 	} else {
2018 		/* Check permissions for the transition. */
2019 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2020 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2021 		if (rc)
2022 			return rc;
2023 
2024 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2025 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2026 		if (rc)
2027 			return rc;
2028 
2029 		/* Check for shared state */
2030 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2031 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2032 					  SECCLASS_PROCESS, PROCESS__SHARE,
2033 					  NULL);
2034 			if (rc)
2035 				return -EPERM;
2036 		}
2037 
2038 		/* Make sure that anyone attempting to ptrace over a task that
2039 		 * changes its SID has the appropriate permit */
2040 		if (bprm->unsafe &
2041 		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2042 			struct task_struct *tracer;
2043 			struct task_security_struct *sec;
2044 			u32 ptsid = 0;
2045 
2046 			rcu_read_lock();
2047 			tracer = ptrace_parent(current);
2048 			if (likely(tracer != NULL)) {
2049 				sec = __task_cred(tracer)->security;
2050 				ptsid = sec->sid;
2051 			}
2052 			rcu_read_unlock();
2053 
2054 			if (ptsid != 0) {
2055 				rc = avc_has_perm(ptsid, new_tsec->sid,
2056 						  SECCLASS_PROCESS,
2057 						  PROCESS__PTRACE, NULL);
2058 				if (rc)
2059 					return -EPERM;
2060 			}
2061 		}
2062 
2063 		/* Clear any possibly unsafe personality bits on exec: */
2064 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2065 	}
2066 
2067 	return 0;
2068 }
2069 
2070 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2071 {
2072 	const struct task_security_struct *tsec = current_security();
2073 	u32 sid, osid;
2074 	int atsecure = 0;
2075 
2076 	sid = tsec->sid;
2077 	osid = tsec->osid;
2078 
2079 	if (osid != sid) {
2080 		/* Enable secure mode for SIDs transitions unless
2081 		   the noatsecure permission is granted between
2082 		   the two SIDs, i.e. ahp returns 0. */
2083 		atsecure = avc_has_perm(osid, sid,
2084 					SECCLASS_PROCESS,
2085 					PROCESS__NOATSECURE, NULL);
2086 	}
2087 
2088 	return (atsecure || cap_bprm_secureexec(bprm));
2089 }
2090 
2091 /* Derived from fs/exec.c:flush_old_files. */
2092 static inline void flush_unauthorized_files(const struct cred *cred,
2093 					    struct files_struct *files)
2094 {
2095 	struct file *file, *devnull = NULL;
2096 	struct tty_struct *tty;
2097 	struct fdtable *fdt;
2098 	long j = -1;
2099 	int drop_tty = 0;
2100 
2101 	tty = get_current_tty();
2102 	if (tty) {
2103 		spin_lock(&tty_files_lock);
2104 		if (!list_empty(&tty->tty_files)) {
2105 			struct tty_file_private *file_priv;
2106 
2107 			/* Revalidate access to controlling tty.
2108 			   Use path_has_perm on the tty path directly rather
2109 			   than using file_has_perm, as this particular open
2110 			   file may belong to another process and we are only
2111 			   interested in the inode-based check here. */
2112 			file_priv = list_first_entry(&tty->tty_files,
2113 						struct tty_file_private, list);
2114 			file = file_priv->file;
2115 			if (path_has_perm(cred, &file->f_path, FILE__READ | FILE__WRITE))
2116 				drop_tty = 1;
2117 		}
2118 		spin_unlock(&tty_files_lock);
2119 		tty_kref_put(tty);
2120 	}
2121 	/* Reset controlling tty. */
2122 	if (drop_tty)
2123 		no_tty();
2124 
2125 	/* Revalidate access to inherited open files. */
2126 	spin_lock(&files->file_lock);
2127 	for (;;) {
2128 		unsigned long set, i;
2129 		int fd;
2130 
2131 		j++;
2132 		i = j * BITS_PER_LONG;
2133 		fdt = files_fdtable(files);
2134 		if (i >= fdt->max_fds)
2135 			break;
2136 		set = fdt->open_fds[j];
2137 		if (!set)
2138 			continue;
2139 		spin_unlock(&files->file_lock);
2140 		for ( ; set ; i++, set >>= 1) {
2141 			if (set & 1) {
2142 				file = fget(i);
2143 				if (!file)
2144 					continue;
2145 				if (file_has_perm(cred,
2146 						  file,
2147 						  file_to_av(file))) {
2148 					sys_close(i);
2149 					fd = get_unused_fd();
2150 					if (fd != i) {
2151 						if (fd >= 0)
2152 							put_unused_fd(fd);
2153 						fput(file);
2154 						continue;
2155 					}
2156 					if (devnull) {
2157 						get_file(devnull);
2158 					} else {
2159 						devnull = dentry_open(
2160 							&selinux_null,
2161 							O_RDWR, cred);
2162 						if (IS_ERR(devnull)) {
2163 							devnull = NULL;
2164 							put_unused_fd(fd);
2165 							fput(file);
2166 							continue;
2167 						}
2168 					}
2169 					fd_install(fd, devnull);
2170 				}
2171 				fput(file);
2172 			}
2173 		}
2174 		spin_lock(&files->file_lock);
2175 
2176 	}
2177 	spin_unlock(&files->file_lock);
2178 }
2179 
2180 /*
2181  * Prepare a process for imminent new credential changes due to exec
2182  */
2183 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2184 {
2185 	struct task_security_struct *new_tsec;
2186 	struct rlimit *rlim, *initrlim;
2187 	int rc, i;
2188 
2189 	new_tsec = bprm->cred->security;
2190 	if (new_tsec->sid == new_tsec->osid)
2191 		return;
2192 
2193 	/* Close files for which the new task SID is not authorized. */
2194 	flush_unauthorized_files(bprm->cred, current->files);
2195 
2196 	/* Always clear parent death signal on SID transitions. */
2197 	current->pdeath_signal = 0;
2198 
2199 	/* Check whether the new SID can inherit resource limits from the old
2200 	 * SID.  If not, reset all soft limits to the lower of the current
2201 	 * task's hard limit and the init task's soft limit.
2202 	 *
2203 	 * Note that the setting of hard limits (even to lower them) can be
2204 	 * controlled by the setrlimit check.  The inclusion of the init task's
2205 	 * soft limit into the computation is to avoid resetting soft limits
2206 	 * higher than the default soft limit for cases where the default is
2207 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2208 	 */
2209 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2210 			  PROCESS__RLIMITINH, NULL);
2211 	if (rc) {
2212 		/* protect against do_prlimit() */
2213 		task_lock(current);
2214 		for (i = 0; i < RLIM_NLIMITS; i++) {
2215 			rlim = current->signal->rlim + i;
2216 			initrlim = init_task.signal->rlim + i;
2217 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2218 		}
2219 		task_unlock(current);
2220 		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2221 	}
2222 }
2223 
2224 /*
2225  * Clean up the process immediately after the installation of new credentials
2226  * due to exec
2227  */
2228 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2229 {
2230 	const struct task_security_struct *tsec = current_security();
2231 	struct itimerval itimer;
2232 	u32 osid, sid;
2233 	int rc, i;
2234 
2235 	osid = tsec->osid;
2236 	sid = tsec->sid;
2237 
2238 	if (sid == osid)
2239 		return;
2240 
2241 	/* Check whether the new SID can inherit signal state from the old SID.
2242 	 * If not, clear itimers to avoid subsequent signal generation and
2243 	 * flush and unblock signals.
2244 	 *
2245 	 * This must occur _after_ the task SID has been updated so that any
2246 	 * kill done after the flush will be checked against the new SID.
2247 	 */
2248 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2249 	if (rc) {
2250 		memset(&itimer, 0, sizeof itimer);
2251 		for (i = 0; i < 3; i++)
2252 			do_setitimer(i, &itimer, NULL);
2253 		spin_lock_irq(&current->sighand->siglock);
2254 		if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2255 			__flush_signals(current);
2256 			flush_signal_handlers(current, 1);
2257 			sigemptyset(&current->blocked);
2258 		}
2259 		spin_unlock_irq(&current->sighand->siglock);
2260 	}
2261 
2262 	/* Wake up the parent if it is waiting so that it can recheck
2263 	 * wait permission to the new task SID. */
2264 	read_lock(&tasklist_lock);
2265 	__wake_up_parent(current, current->real_parent);
2266 	read_unlock(&tasklist_lock);
2267 }
2268 
2269 /* superblock security operations */
2270 
2271 static int selinux_sb_alloc_security(struct super_block *sb)
2272 {
2273 	return superblock_alloc_security(sb);
2274 }
2275 
2276 static void selinux_sb_free_security(struct super_block *sb)
2277 {
2278 	superblock_free_security(sb);
2279 }
2280 
2281 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2282 {
2283 	if (plen > olen)
2284 		return 0;
2285 
2286 	return !memcmp(prefix, option, plen);
2287 }
2288 
2289 static inline int selinux_option(char *option, int len)
2290 {
2291 	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2292 		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2293 		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2294 		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2295 		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2296 }
2297 
2298 static inline void take_option(char **to, char *from, int *first, int len)
2299 {
2300 	if (!*first) {
2301 		**to = ',';
2302 		*to += 1;
2303 	} else
2304 		*first = 0;
2305 	memcpy(*to, from, len);
2306 	*to += len;
2307 }
2308 
2309 static inline void take_selinux_option(char **to, char *from, int *first,
2310 				       int len)
2311 {
2312 	int current_size = 0;
2313 
2314 	if (!*first) {
2315 		**to = '|';
2316 		*to += 1;
2317 	} else
2318 		*first = 0;
2319 
2320 	while (current_size < len) {
2321 		if (*from != '"') {
2322 			**to = *from;
2323 			*to += 1;
2324 		}
2325 		from += 1;
2326 		current_size += 1;
2327 	}
2328 }
2329 
2330 static int selinux_sb_copy_data(char *orig, char *copy)
2331 {
2332 	int fnosec, fsec, rc = 0;
2333 	char *in_save, *in_curr, *in_end;
2334 	char *sec_curr, *nosec_save, *nosec;
2335 	int open_quote = 0;
2336 
2337 	in_curr = orig;
2338 	sec_curr = copy;
2339 
2340 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2341 	if (!nosec) {
2342 		rc = -ENOMEM;
2343 		goto out;
2344 	}
2345 
2346 	nosec_save = nosec;
2347 	fnosec = fsec = 1;
2348 	in_save = in_end = orig;
2349 
2350 	do {
2351 		if (*in_end == '"')
2352 			open_quote = !open_quote;
2353 		if ((*in_end == ',' && open_quote == 0) ||
2354 				*in_end == '\0') {
2355 			int len = in_end - in_curr;
2356 
2357 			if (selinux_option(in_curr, len))
2358 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2359 			else
2360 				take_option(&nosec, in_curr, &fnosec, len);
2361 
2362 			in_curr = in_end + 1;
2363 		}
2364 	} while (*in_end++);
2365 
2366 	strcpy(in_save, nosec_save);
2367 	free_page((unsigned long)nosec_save);
2368 out:
2369 	return rc;
2370 }
2371 
2372 static int selinux_sb_remount(struct super_block *sb, void *data)
2373 {
2374 	int rc, i, *flags;
2375 	struct security_mnt_opts opts;
2376 	char *secdata, **mount_options;
2377 	struct superblock_security_struct *sbsec = sb->s_security;
2378 
2379 	if (!(sbsec->flags & SE_SBINITIALIZED))
2380 		return 0;
2381 
2382 	if (!data)
2383 		return 0;
2384 
2385 	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2386 		return 0;
2387 
2388 	security_init_mnt_opts(&opts);
2389 	secdata = alloc_secdata();
2390 	if (!secdata)
2391 		return -ENOMEM;
2392 	rc = selinux_sb_copy_data(data, secdata);
2393 	if (rc)
2394 		goto out_free_secdata;
2395 
2396 	rc = selinux_parse_opts_str(secdata, &opts);
2397 	if (rc)
2398 		goto out_free_secdata;
2399 
2400 	mount_options = opts.mnt_opts;
2401 	flags = opts.mnt_opts_flags;
2402 
2403 	for (i = 0; i < opts.num_mnt_opts; i++) {
2404 		u32 sid;
2405 		size_t len;
2406 
2407 		if (flags[i] == SE_SBLABELSUPP)
2408 			continue;
2409 		len = strlen(mount_options[i]);
2410 		rc = security_context_to_sid(mount_options[i], len, &sid);
2411 		if (rc) {
2412 			printk(KERN_WARNING "SELinux: security_context_to_sid"
2413 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2414 			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2415 			goto out_free_opts;
2416 		}
2417 		rc = -EINVAL;
2418 		switch (flags[i]) {
2419 		case FSCONTEXT_MNT:
2420 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2421 				goto out_bad_option;
2422 			break;
2423 		case CONTEXT_MNT:
2424 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2425 				goto out_bad_option;
2426 			break;
2427 		case ROOTCONTEXT_MNT: {
2428 			struct inode_security_struct *root_isec;
2429 			root_isec = sb->s_root->d_inode->i_security;
2430 
2431 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2432 				goto out_bad_option;
2433 			break;
2434 		}
2435 		case DEFCONTEXT_MNT:
2436 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2437 				goto out_bad_option;
2438 			break;
2439 		default:
2440 			goto out_free_opts;
2441 		}
2442 	}
2443 
2444 	rc = 0;
2445 out_free_opts:
2446 	security_free_mnt_opts(&opts);
2447 out_free_secdata:
2448 	free_secdata(secdata);
2449 	return rc;
2450 out_bad_option:
2451 	printk(KERN_WARNING "SELinux: unable to change security options "
2452 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2453 	       sb->s_type->name);
2454 	goto out_free_opts;
2455 }
2456 
2457 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2458 {
2459 	const struct cred *cred = current_cred();
2460 	struct common_audit_data ad;
2461 	int rc;
2462 
2463 	rc = superblock_doinit(sb, data);
2464 	if (rc)
2465 		return rc;
2466 
2467 	/* Allow all mounts performed by the kernel */
2468 	if (flags & MS_KERNMOUNT)
2469 		return 0;
2470 
2471 	ad.type = LSM_AUDIT_DATA_DENTRY;
2472 	ad.u.dentry = sb->s_root;
2473 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2474 }
2475 
2476 static int selinux_sb_statfs(struct dentry *dentry)
2477 {
2478 	const struct cred *cred = current_cred();
2479 	struct common_audit_data ad;
2480 
2481 	ad.type = LSM_AUDIT_DATA_DENTRY;
2482 	ad.u.dentry = dentry->d_sb->s_root;
2483 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2484 }
2485 
2486 static int selinux_mount(char *dev_name,
2487 			 struct path *path,
2488 			 char *type,
2489 			 unsigned long flags,
2490 			 void *data)
2491 {
2492 	const struct cred *cred = current_cred();
2493 
2494 	if (flags & MS_REMOUNT)
2495 		return superblock_has_perm(cred, path->dentry->d_sb,
2496 					   FILESYSTEM__REMOUNT, NULL);
2497 	else
2498 		return path_has_perm(cred, path, FILE__MOUNTON);
2499 }
2500 
2501 static int selinux_umount(struct vfsmount *mnt, int flags)
2502 {
2503 	const struct cred *cred = current_cred();
2504 
2505 	return superblock_has_perm(cred, mnt->mnt_sb,
2506 				   FILESYSTEM__UNMOUNT, NULL);
2507 }
2508 
2509 /* inode security operations */
2510 
2511 static int selinux_inode_alloc_security(struct inode *inode)
2512 {
2513 	return inode_alloc_security(inode);
2514 }
2515 
2516 static void selinux_inode_free_security(struct inode *inode)
2517 {
2518 	inode_free_security(inode);
2519 }
2520 
2521 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2522 				       const struct qstr *qstr, char **name,
2523 				       void **value, size_t *len)
2524 {
2525 	const struct task_security_struct *tsec = current_security();
2526 	struct inode_security_struct *dsec;
2527 	struct superblock_security_struct *sbsec;
2528 	u32 sid, newsid, clen;
2529 	int rc;
2530 	char *namep = NULL, *context;
2531 
2532 	dsec = dir->i_security;
2533 	sbsec = dir->i_sb->s_security;
2534 
2535 	sid = tsec->sid;
2536 	newsid = tsec->create_sid;
2537 
2538 	if ((sbsec->flags & SE_SBINITIALIZED) &&
2539 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2540 		newsid = sbsec->mntpoint_sid;
2541 	else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2542 		rc = security_transition_sid(sid, dsec->sid,
2543 					     inode_mode_to_security_class(inode->i_mode),
2544 					     qstr, &newsid);
2545 		if (rc) {
2546 			printk(KERN_WARNING "%s:  "
2547 			       "security_transition_sid failed, rc=%d (dev=%s "
2548 			       "ino=%ld)\n",
2549 			       __func__,
2550 			       -rc, inode->i_sb->s_id, inode->i_ino);
2551 			return rc;
2552 		}
2553 	}
2554 
2555 	/* Possibly defer initialization to selinux_complete_init. */
2556 	if (sbsec->flags & SE_SBINITIALIZED) {
2557 		struct inode_security_struct *isec = inode->i_security;
2558 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2559 		isec->sid = newsid;
2560 		isec->initialized = 1;
2561 	}
2562 
2563 	if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2564 		return -EOPNOTSUPP;
2565 
2566 	if (name) {
2567 		namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2568 		if (!namep)
2569 			return -ENOMEM;
2570 		*name = namep;
2571 	}
2572 
2573 	if (value && len) {
2574 		rc = security_sid_to_context_force(newsid, &context, &clen);
2575 		if (rc) {
2576 			kfree(namep);
2577 			return rc;
2578 		}
2579 		*value = context;
2580 		*len = clen;
2581 	}
2582 
2583 	return 0;
2584 }
2585 
2586 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2587 {
2588 	return may_create(dir, dentry, SECCLASS_FILE);
2589 }
2590 
2591 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2592 {
2593 	return may_link(dir, old_dentry, MAY_LINK);
2594 }
2595 
2596 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2597 {
2598 	return may_link(dir, dentry, MAY_UNLINK);
2599 }
2600 
2601 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2602 {
2603 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2604 }
2605 
2606 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2607 {
2608 	return may_create(dir, dentry, SECCLASS_DIR);
2609 }
2610 
2611 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2612 {
2613 	return may_link(dir, dentry, MAY_RMDIR);
2614 }
2615 
2616 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2617 {
2618 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2619 }
2620 
2621 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2622 				struct inode *new_inode, struct dentry *new_dentry)
2623 {
2624 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2625 }
2626 
2627 static int selinux_inode_readlink(struct dentry *dentry)
2628 {
2629 	const struct cred *cred = current_cred();
2630 
2631 	return dentry_has_perm(cred, dentry, FILE__READ);
2632 }
2633 
2634 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2635 {
2636 	const struct cred *cred = current_cred();
2637 
2638 	return dentry_has_perm(cred, dentry, FILE__READ);
2639 }
2640 
2641 static noinline int audit_inode_permission(struct inode *inode,
2642 					   u32 perms, u32 audited, u32 denied,
2643 					   unsigned flags)
2644 {
2645 	struct common_audit_data ad;
2646 	struct inode_security_struct *isec = inode->i_security;
2647 	int rc;
2648 
2649 	ad.type = LSM_AUDIT_DATA_INODE;
2650 	ad.u.inode = inode;
2651 
2652 	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2653 			    audited, denied, &ad, flags);
2654 	if (rc)
2655 		return rc;
2656 	return 0;
2657 }
2658 
2659 static int selinux_inode_permission(struct inode *inode, int mask)
2660 {
2661 	const struct cred *cred = current_cred();
2662 	u32 perms;
2663 	bool from_access;
2664 	unsigned flags = mask & MAY_NOT_BLOCK;
2665 	struct inode_security_struct *isec;
2666 	u32 sid;
2667 	struct av_decision avd;
2668 	int rc, rc2;
2669 	u32 audited, denied;
2670 
2671 	from_access = mask & MAY_ACCESS;
2672 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2673 
2674 	/* No permission to check.  Existence test. */
2675 	if (!mask)
2676 		return 0;
2677 
2678 	validate_creds(cred);
2679 
2680 	if (unlikely(IS_PRIVATE(inode)))
2681 		return 0;
2682 
2683 	perms = file_mask_to_av(inode->i_mode, mask);
2684 
2685 	sid = cred_sid(cred);
2686 	isec = inode->i_security;
2687 
2688 	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2689 	audited = avc_audit_required(perms, &avd, rc,
2690 				     from_access ? FILE__AUDIT_ACCESS : 0,
2691 				     &denied);
2692 	if (likely(!audited))
2693 		return rc;
2694 
2695 	rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2696 	if (rc2)
2697 		return rc2;
2698 	return rc;
2699 }
2700 
2701 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2702 {
2703 	const struct cred *cred = current_cred();
2704 	unsigned int ia_valid = iattr->ia_valid;
2705 	__u32 av = FILE__WRITE;
2706 
2707 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2708 	if (ia_valid & ATTR_FORCE) {
2709 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2710 			      ATTR_FORCE);
2711 		if (!ia_valid)
2712 			return 0;
2713 	}
2714 
2715 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2716 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2717 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
2718 
2719 	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2720 		av |= FILE__OPEN;
2721 
2722 	return dentry_has_perm(cred, dentry, av);
2723 }
2724 
2725 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2726 {
2727 	const struct cred *cred = current_cred();
2728 	struct path path;
2729 
2730 	path.dentry = dentry;
2731 	path.mnt = mnt;
2732 
2733 	return path_has_perm(cred, &path, FILE__GETATTR);
2734 }
2735 
2736 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2737 {
2738 	const struct cred *cred = current_cred();
2739 
2740 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2741 		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2742 		if (!strcmp(name, XATTR_NAME_CAPS)) {
2743 			if (!capable(CAP_SETFCAP))
2744 				return -EPERM;
2745 		} else if (!capable(CAP_SYS_ADMIN)) {
2746 			/* A different attribute in the security namespace.
2747 			   Restrict to administrator. */
2748 			return -EPERM;
2749 		}
2750 	}
2751 
2752 	/* Not an attribute we recognize, so just check the
2753 	   ordinary setattr permission. */
2754 	return dentry_has_perm(cred, dentry, FILE__SETATTR);
2755 }
2756 
2757 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2758 				  const void *value, size_t size, int flags)
2759 {
2760 	struct inode *inode = dentry->d_inode;
2761 	struct inode_security_struct *isec = inode->i_security;
2762 	struct superblock_security_struct *sbsec;
2763 	struct common_audit_data ad;
2764 	u32 newsid, sid = current_sid();
2765 	int rc = 0;
2766 
2767 	if (strcmp(name, XATTR_NAME_SELINUX))
2768 		return selinux_inode_setotherxattr(dentry, name);
2769 
2770 	sbsec = inode->i_sb->s_security;
2771 	if (!(sbsec->flags & SE_SBLABELSUPP))
2772 		return -EOPNOTSUPP;
2773 
2774 	if (!inode_owner_or_capable(inode))
2775 		return -EPERM;
2776 
2777 	ad.type = LSM_AUDIT_DATA_DENTRY;
2778 	ad.u.dentry = dentry;
2779 
2780 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
2781 			  FILE__RELABELFROM, &ad);
2782 	if (rc)
2783 		return rc;
2784 
2785 	rc = security_context_to_sid(value, size, &newsid);
2786 	if (rc == -EINVAL) {
2787 		if (!capable(CAP_MAC_ADMIN)) {
2788 			struct audit_buffer *ab;
2789 			size_t audit_size;
2790 			const char *str;
2791 
2792 			/* We strip a nul only if it is at the end, otherwise the
2793 			 * context contains a nul and we should audit that */
2794 			if (value) {
2795 				str = value;
2796 				if (str[size - 1] == '\0')
2797 					audit_size = size - 1;
2798 				else
2799 					audit_size = size;
2800 			} else {
2801 				str = "";
2802 				audit_size = 0;
2803 			}
2804 			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2805 			audit_log_format(ab, "op=setxattr invalid_context=");
2806 			audit_log_n_untrustedstring(ab, value, audit_size);
2807 			audit_log_end(ab);
2808 
2809 			return rc;
2810 		}
2811 		rc = security_context_to_sid_force(value, size, &newsid);
2812 	}
2813 	if (rc)
2814 		return rc;
2815 
2816 	rc = avc_has_perm(sid, newsid, isec->sclass,
2817 			  FILE__RELABELTO, &ad);
2818 	if (rc)
2819 		return rc;
2820 
2821 	rc = security_validate_transition(isec->sid, newsid, sid,
2822 					  isec->sclass);
2823 	if (rc)
2824 		return rc;
2825 
2826 	return avc_has_perm(newsid,
2827 			    sbsec->sid,
2828 			    SECCLASS_FILESYSTEM,
2829 			    FILESYSTEM__ASSOCIATE,
2830 			    &ad);
2831 }
2832 
2833 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2834 					const void *value, size_t size,
2835 					int flags)
2836 {
2837 	struct inode *inode = dentry->d_inode;
2838 	struct inode_security_struct *isec = inode->i_security;
2839 	u32 newsid;
2840 	int rc;
2841 
2842 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2843 		/* Not an attribute we recognize, so nothing to do. */
2844 		return;
2845 	}
2846 
2847 	rc = security_context_to_sid_force(value, size, &newsid);
2848 	if (rc) {
2849 		printk(KERN_ERR "SELinux:  unable to map context to SID"
2850 		       "for (%s, %lu), rc=%d\n",
2851 		       inode->i_sb->s_id, inode->i_ino, -rc);
2852 		return;
2853 	}
2854 
2855 	isec->sid = newsid;
2856 	return;
2857 }
2858 
2859 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2860 {
2861 	const struct cred *cred = current_cred();
2862 
2863 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2864 }
2865 
2866 static int selinux_inode_listxattr(struct dentry *dentry)
2867 {
2868 	const struct cred *cred = current_cred();
2869 
2870 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2871 }
2872 
2873 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2874 {
2875 	if (strcmp(name, XATTR_NAME_SELINUX))
2876 		return selinux_inode_setotherxattr(dentry, name);
2877 
2878 	/* No one is allowed to remove a SELinux security label.
2879 	   You can change the label, but all data must be labeled. */
2880 	return -EACCES;
2881 }
2882 
2883 /*
2884  * Copy the inode security context value to the user.
2885  *
2886  * Permission check is handled by selinux_inode_getxattr hook.
2887  */
2888 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2889 {
2890 	u32 size;
2891 	int error;
2892 	char *context = NULL;
2893 	struct inode_security_struct *isec = inode->i_security;
2894 
2895 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2896 		return -EOPNOTSUPP;
2897 
2898 	/*
2899 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
2900 	 * value even if it is not defined by current policy; otherwise,
2901 	 * use the in-core value under current policy.
2902 	 * Use the non-auditing forms of the permission checks since
2903 	 * getxattr may be called by unprivileged processes commonly
2904 	 * and lack of permission just means that we fall back to the
2905 	 * in-core context value, not a denial.
2906 	 */
2907 	error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2908 				SECURITY_CAP_NOAUDIT);
2909 	if (!error)
2910 		error = security_sid_to_context_force(isec->sid, &context,
2911 						      &size);
2912 	else
2913 		error = security_sid_to_context(isec->sid, &context, &size);
2914 	if (error)
2915 		return error;
2916 	error = size;
2917 	if (alloc) {
2918 		*buffer = context;
2919 		goto out_nofree;
2920 	}
2921 	kfree(context);
2922 out_nofree:
2923 	return error;
2924 }
2925 
2926 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2927 				     const void *value, size_t size, int flags)
2928 {
2929 	struct inode_security_struct *isec = inode->i_security;
2930 	u32 newsid;
2931 	int rc;
2932 
2933 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2934 		return -EOPNOTSUPP;
2935 
2936 	if (!value || !size)
2937 		return -EACCES;
2938 
2939 	rc = security_context_to_sid((void *)value, size, &newsid);
2940 	if (rc)
2941 		return rc;
2942 
2943 	isec->sid = newsid;
2944 	isec->initialized = 1;
2945 	return 0;
2946 }
2947 
2948 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2949 {
2950 	const int len = sizeof(XATTR_NAME_SELINUX);
2951 	if (buffer && len <= buffer_size)
2952 		memcpy(buffer, XATTR_NAME_SELINUX, len);
2953 	return len;
2954 }
2955 
2956 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2957 {
2958 	struct inode_security_struct *isec = inode->i_security;
2959 	*secid = isec->sid;
2960 }
2961 
2962 /* file security operations */
2963 
2964 static int selinux_revalidate_file_permission(struct file *file, int mask)
2965 {
2966 	const struct cred *cred = current_cred();
2967 	struct inode *inode = file->f_path.dentry->d_inode;
2968 
2969 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2970 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2971 		mask |= MAY_APPEND;
2972 
2973 	return file_has_perm(cred, file,
2974 			     file_mask_to_av(inode->i_mode, mask));
2975 }
2976 
2977 static int selinux_file_permission(struct file *file, int mask)
2978 {
2979 	struct inode *inode = file->f_path.dentry->d_inode;
2980 	struct file_security_struct *fsec = file->f_security;
2981 	struct inode_security_struct *isec = inode->i_security;
2982 	u32 sid = current_sid();
2983 
2984 	if (!mask)
2985 		/* No permission to check.  Existence test. */
2986 		return 0;
2987 
2988 	if (sid == fsec->sid && fsec->isid == isec->sid &&
2989 	    fsec->pseqno == avc_policy_seqno())
2990 		/* No change since file_open check. */
2991 		return 0;
2992 
2993 	return selinux_revalidate_file_permission(file, mask);
2994 }
2995 
2996 static int selinux_file_alloc_security(struct file *file)
2997 {
2998 	return file_alloc_security(file);
2999 }
3000 
3001 static void selinux_file_free_security(struct file *file)
3002 {
3003 	file_free_security(file);
3004 }
3005 
3006 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3007 			      unsigned long arg)
3008 {
3009 	const struct cred *cred = current_cred();
3010 	int error = 0;
3011 
3012 	switch (cmd) {
3013 	case FIONREAD:
3014 	/* fall through */
3015 	case FIBMAP:
3016 	/* fall through */
3017 	case FIGETBSZ:
3018 	/* fall through */
3019 	case FS_IOC_GETFLAGS:
3020 	/* fall through */
3021 	case FS_IOC_GETVERSION:
3022 		error = file_has_perm(cred, file, FILE__GETATTR);
3023 		break;
3024 
3025 	case FS_IOC_SETFLAGS:
3026 	/* fall through */
3027 	case FS_IOC_SETVERSION:
3028 		error = file_has_perm(cred, file, FILE__SETATTR);
3029 		break;
3030 
3031 	/* sys_ioctl() checks */
3032 	case FIONBIO:
3033 	/* fall through */
3034 	case FIOASYNC:
3035 		error = file_has_perm(cred, file, 0);
3036 		break;
3037 
3038 	case KDSKBENT:
3039 	case KDSKBSENT:
3040 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3041 					    SECURITY_CAP_AUDIT);
3042 		break;
3043 
3044 	/* default case assumes that the command will go
3045 	 * to the file's ioctl() function.
3046 	 */
3047 	default:
3048 		error = file_has_perm(cred, file, FILE__IOCTL);
3049 	}
3050 	return error;
3051 }
3052 
3053 static int default_noexec;
3054 
3055 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3056 {
3057 	const struct cred *cred = current_cred();
3058 	int rc = 0;
3059 
3060 	if (default_noexec &&
3061 	    (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3062 		/*
3063 		 * We are making executable an anonymous mapping or a
3064 		 * private file mapping that will also be writable.
3065 		 * This has an additional check.
3066 		 */
3067 		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3068 		if (rc)
3069 			goto error;
3070 	}
3071 
3072 	if (file) {
3073 		/* read access is always possible with a mapping */
3074 		u32 av = FILE__READ;
3075 
3076 		/* write access only matters if the mapping is shared */
3077 		if (shared && (prot & PROT_WRITE))
3078 			av |= FILE__WRITE;
3079 
3080 		if (prot & PROT_EXEC)
3081 			av |= FILE__EXECUTE;
3082 
3083 		return file_has_perm(cred, file, av);
3084 	}
3085 
3086 error:
3087 	return rc;
3088 }
3089 
3090 static int selinux_mmap_addr(unsigned long addr)
3091 {
3092 	int rc = 0;
3093 	u32 sid = current_sid();
3094 
3095 	/*
3096 	 * notice that we are intentionally putting the SELinux check before
3097 	 * the secondary cap_file_mmap check.  This is such a likely attempt
3098 	 * at bad behaviour/exploit that we always want to get the AVC, even
3099 	 * if DAC would have also denied the operation.
3100 	 */
3101 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3102 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3103 				  MEMPROTECT__MMAP_ZERO, NULL);
3104 		if (rc)
3105 			return rc;
3106 	}
3107 
3108 	/* do DAC check on address space usage */
3109 	return cap_mmap_addr(addr);
3110 }
3111 
3112 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3113 			     unsigned long prot, unsigned long flags)
3114 {
3115 	if (selinux_checkreqprot)
3116 		prot = reqprot;
3117 
3118 	return file_map_prot_check(file, prot,
3119 				   (flags & MAP_TYPE) == MAP_SHARED);
3120 }
3121 
3122 static int selinux_file_mprotect(struct vm_area_struct *vma,
3123 				 unsigned long reqprot,
3124 				 unsigned long prot)
3125 {
3126 	const struct cred *cred = current_cred();
3127 
3128 	if (selinux_checkreqprot)
3129 		prot = reqprot;
3130 
3131 	if (default_noexec &&
3132 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3133 		int rc = 0;
3134 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3135 		    vma->vm_end <= vma->vm_mm->brk) {
3136 			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3137 		} else if (!vma->vm_file &&
3138 			   vma->vm_start <= vma->vm_mm->start_stack &&
3139 			   vma->vm_end >= vma->vm_mm->start_stack) {
3140 			rc = current_has_perm(current, PROCESS__EXECSTACK);
3141 		} else if (vma->vm_file && vma->anon_vma) {
3142 			/*
3143 			 * We are making executable a file mapping that has
3144 			 * had some COW done. Since pages might have been
3145 			 * written, check ability to execute the possibly
3146 			 * modified content.  This typically should only
3147 			 * occur for text relocations.
3148 			 */
3149 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3150 		}
3151 		if (rc)
3152 			return rc;
3153 	}
3154 
3155 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3156 }
3157 
3158 static int selinux_file_lock(struct file *file, unsigned int cmd)
3159 {
3160 	const struct cred *cred = current_cred();
3161 
3162 	return file_has_perm(cred, file, FILE__LOCK);
3163 }
3164 
3165 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3166 			      unsigned long arg)
3167 {
3168 	const struct cred *cred = current_cred();
3169 	int err = 0;
3170 
3171 	switch (cmd) {
3172 	case F_SETFL:
3173 		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3174 			err = -EINVAL;
3175 			break;
3176 		}
3177 
3178 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3179 			err = file_has_perm(cred, file, FILE__WRITE);
3180 			break;
3181 		}
3182 		/* fall through */
3183 	case F_SETOWN:
3184 	case F_SETSIG:
3185 	case F_GETFL:
3186 	case F_GETOWN:
3187 	case F_GETSIG:
3188 	case F_GETOWNER_UIDS:
3189 		/* Just check FD__USE permission */
3190 		err = file_has_perm(cred, file, 0);
3191 		break;
3192 	case F_GETLK:
3193 	case F_SETLK:
3194 	case F_SETLKW:
3195 #if BITS_PER_LONG == 32
3196 	case F_GETLK64:
3197 	case F_SETLK64:
3198 	case F_SETLKW64:
3199 #endif
3200 		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3201 			err = -EINVAL;
3202 			break;
3203 		}
3204 		err = file_has_perm(cred, file, FILE__LOCK);
3205 		break;
3206 	}
3207 
3208 	return err;
3209 }
3210 
3211 static int selinux_file_set_fowner(struct file *file)
3212 {
3213 	struct file_security_struct *fsec;
3214 
3215 	fsec = file->f_security;
3216 	fsec->fown_sid = current_sid();
3217 
3218 	return 0;
3219 }
3220 
3221 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3222 				       struct fown_struct *fown, int signum)
3223 {
3224 	struct file *file;
3225 	u32 sid = task_sid(tsk);
3226 	u32 perm;
3227 	struct file_security_struct *fsec;
3228 
3229 	/* struct fown_struct is never outside the context of a struct file */
3230 	file = container_of(fown, struct file, f_owner);
3231 
3232 	fsec = file->f_security;
3233 
3234 	if (!signum)
3235 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3236 	else
3237 		perm = signal_to_av(signum);
3238 
3239 	return avc_has_perm(fsec->fown_sid, sid,
3240 			    SECCLASS_PROCESS, perm, NULL);
3241 }
3242 
3243 static int selinux_file_receive(struct file *file)
3244 {
3245 	const struct cred *cred = current_cred();
3246 
3247 	return file_has_perm(cred, file, file_to_av(file));
3248 }
3249 
3250 static int selinux_file_open(struct file *file, const struct cred *cred)
3251 {
3252 	struct file_security_struct *fsec;
3253 	struct inode_security_struct *isec;
3254 
3255 	fsec = file->f_security;
3256 	isec = file->f_path.dentry->d_inode->i_security;
3257 	/*
3258 	 * Save inode label and policy sequence number
3259 	 * at open-time so that selinux_file_permission
3260 	 * can determine whether revalidation is necessary.
3261 	 * Task label is already saved in the file security
3262 	 * struct as its SID.
3263 	 */
3264 	fsec->isid = isec->sid;
3265 	fsec->pseqno = avc_policy_seqno();
3266 	/*
3267 	 * Since the inode label or policy seqno may have changed
3268 	 * between the selinux_inode_permission check and the saving
3269 	 * of state above, recheck that access is still permitted.
3270 	 * Otherwise, access might never be revalidated against the
3271 	 * new inode label or new policy.
3272 	 * This check is not redundant - do not remove.
3273 	 */
3274 	return path_has_perm(cred, &file->f_path, open_file_to_av(file));
3275 }
3276 
3277 /* task security operations */
3278 
3279 static int selinux_task_create(unsigned long clone_flags)
3280 {
3281 	return current_has_perm(current, PROCESS__FORK);
3282 }
3283 
3284 /*
3285  * allocate the SELinux part of blank credentials
3286  */
3287 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3288 {
3289 	struct task_security_struct *tsec;
3290 
3291 	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3292 	if (!tsec)
3293 		return -ENOMEM;
3294 
3295 	cred->security = tsec;
3296 	return 0;
3297 }
3298 
3299 /*
3300  * detach and free the LSM part of a set of credentials
3301  */
3302 static void selinux_cred_free(struct cred *cred)
3303 {
3304 	struct task_security_struct *tsec = cred->security;
3305 
3306 	/*
3307 	 * cred->security == NULL if security_cred_alloc_blank() or
3308 	 * security_prepare_creds() returned an error.
3309 	 */
3310 	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3311 	cred->security = (void *) 0x7UL;
3312 	kfree(tsec);
3313 }
3314 
3315 /*
3316  * prepare a new set of credentials for modification
3317  */
3318 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3319 				gfp_t gfp)
3320 {
3321 	const struct task_security_struct *old_tsec;
3322 	struct task_security_struct *tsec;
3323 
3324 	old_tsec = old->security;
3325 
3326 	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3327 	if (!tsec)
3328 		return -ENOMEM;
3329 
3330 	new->security = tsec;
3331 	return 0;
3332 }
3333 
3334 /*
3335  * transfer the SELinux data to a blank set of creds
3336  */
3337 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3338 {
3339 	const struct task_security_struct *old_tsec = old->security;
3340 	struct task_security_struct *tsec = new->security;
3341 
3342 	*tsec = *old_tsec;
3343 }
3344 
3345 /*
3346  * set the security data for a kernel service
3347  * - all the creation contexts are set to unlabelled
3348  */
3349 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3350 {
3351 	struct task_security_struct *tsec = new->security;
3352 	u32 sid = current_sid();
3353 	int ret;
3354 
3355 	ret = avc_has_perm(sid, secid,
3356 			   SECCLASS_KERNEL_SERVICE,
3357 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3358 			   NULL);
3359 	if (ret == 0) {
3360 		tsec->sid = secid;
3361 		tsec->create_sid = 0;
3362 		tsec->keycreate_sid = 0;
3363 		tsec->sockcreate_sid = 0;
3364 	}
3365 	return ret;
3366 }
3367 
3368 /*
3369  * set the file creation context in a security record to the same as the
3370  * objective context of the specified inode
3371  */
3372 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3373 {
3374 	struct inode_security_struct *isec = inode->i_security;
3375 	struct task_security_struct *tsec = new->security;
3376 	u32 sid = current_sid();
3377 	int ret;
3378 
3379 	ret = avc_has_perm(sid, isec->sid,
3380 			   SECCLASS_KERNEL_SERVICE,
3381 			   KERNEL_SERVICE__CREATE_FILES_AS,
3382 			   NULL);
3383 
3384 	if (ret == 0)
3385 		tsec->create_sid = isec->sid;
3386 	return ret;
3387 }
3388 
3389 static int selinux_kernel_module_request(char *kmod_name)
3390 {
3391 	u32 sid;
3392 	struct common_audit_data ad;
3393 
3394 	sid = task_sid(current);
3395 
3396 	ad.type = LSM_AUDIT_DATA_KMOD;
3397 	ad.u.kmod_name = kmod_name;
3398 
3399 	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3400 			    SYSTEM__MODULE_REQUEST, &ad);
3401 }
3402 
3403 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3404 {
3405 	return current_has_perm(p, PROCESS__SETPGID);
3406 }
3407 
3408 static int selinux_task_getpgid(struct task_struct *p)
3409 {
3410 	return current_has_perm(p, PROCESS__GETPGID);
3411 }
3412 
3413 static int selinux_task_getsid(struct task_struct *p)
3414 {
3415 	return current_has_perm(p, PROCESS__GETSESSION);
3416 }
3417 
3418 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3419 {
3420 	*secid = task_sid(p);
3421 }
3422 
3423 static int selinux_task_setnice(struct task_struct *p, int nice)
3424 {
3425 	int rc;
3426 
3427 	rc = cap_task_setnice(p, nice);
3428 	if (rc)
3429 		return rc;
3430 
3431 	return current_has_perm(p, PROCESS__SETSCHED);
3432 }
3433 
3434 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3435 {
3436 	int rc;
3437 
3438 	rc = cap_task_setioprio(p, ioprio);
3439 	if (rc)
3440 		return rc;
3441 
3442 	return current_has_perm(p, PROCESS__SETSCHED);
3443 }
3444 
3445 static int selinux_task_getioprio(struct task_struct *p)
3446 {
3447 	return current_has_perm(p, PROCESS__GETSCHED);
3448 }
3449 
3450 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3451 		struct rlimit *new_rlim)
3452 {
3453 	struct rlimit *old_rlim = p->signal->rlim + resource;
3454 
3455 	/* Control the ability to change the hard limit (whether
3456 	   lowering or raising it), so that the hard limit can
3457 	   later be used as a safe reset point for the soft limit
3458 	   upon context transitions.  See selinux_bprm_committing_creds. */
3459 	if (old_rlim->rlim_max != new_rlim->rlim_max)
3460 		return current_has_perm(p, PROCESS__SETRLIMIT);
3461 
3462 	return 0;
3463 }
3464 
3465 static int selinux_task_setscheduler(struct task_struct *p)
3466 {
3467 	int rc;
3468 
3469 	rc = cap_task_setscheduler(p);
3470 	if (rc)
3471 		return rc;
3472 
3473 	return current_has_perm(p, PROCESS__SETSCHED);
3474 }
3475 
3476 static int selinux_task_getscheduler(struct task_struct *p)
3477 {
3478 	return current_has_perm(p, PROCESS__GETSCHED);
3479 }
3480 
3481 static int selinux_task_movememory(struct task_struct *p)
3482 {
3483 	return current_has_perm(p, PROCESS__SETSCHED);
3484 }
3485 
3486 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3487 				int sig, u32 secid)
3488 {
3489 	u32 perm;
3490 	int rc;
3491 
3492 	if (!sig)
3493 		perm = PROCESS__SIGNULL; /* null signal; existence test */
3494 	else
3495 		perm = signal_to_av(sig);
3496 	if (secid)
3497 		rc = avc_has_perm(secid, task_sid(p),
3498 				  SECCLASS_PROCESS, perm, NULL);
3499 	else
3500 		rc = current_has_perm(p, perm);
3501 	return rc;
3502 }
3503 
3504 static int selinux_task_wait(struct task_struct *p)
3505 {
3506 	return task_has_perm(p, current, PROCESS__SIGCHLD);
3507 }
3508 
3509 static void selinux_task_to_inode(struct task_struct *p,
3510 				  struct inode *inode)
3511 {
3512 	struct inode_security_struct *isec = inode->i_security;
3513 	u32 sid = task_sid(p);
3514 
3515 	isec->sid = sid;
3516 	isec->initialized = 1;
3517 }
3518 
3519 /* Returns error only if unable to parse addresses */
3520 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3521 			struct common_audit_data *ad, u8 *proto)
3522 {
3523 	int offset, ihlen, ret = -EINVAL;
3524 	struct iphdr _iph, *ih;
3525 
3526 	offset = skb_network_offset(skb);
3527 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3528 	if (ih == NULL)
3529 		goto out;
3530 
3531 	ihlen = ih->ihl * 4;
3532 	if (ihlen < sizeof(_iph))
3533 		goto out;
3534 
3535 	ad->u.net->v4info.saddr = ih->saddr;
3536 	ad->u.net->v4info.daddr = ih->daddr;
3537 	ret = 0;
3538 
3539 	if (proto)
3540 		*proto = ih->protocol;
3541 
3542 	switch (ih->protocol) {
3543 	case IPPROTO_TCP: {
3544 		struct tcphdr _tcph, *th;
3545 
3546 		if (ntohs(ih->frag_off) & IP_OFFSET)
3547 			break;
3548 
3549 		offset += ihlen;
3550 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3551 		if (th == NULL)
3552 			break;
3553 
3554 		ad->u.net->sport = th->source;
3555 		ad->u.net->dport = th->dest;
3556 		break;
3557 	}
3558 
3559 	case IPPROTO_UDP: {
3560 		struct udphdr _udph, *uh;
3561 
3562 		if (ntohs(ih->frag_off) & IP_OFFSET)
3563 			break;
3564 
3565 		offset += ihlen;
3566 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3567 		if (uh == NULL)
3568 			break;
3569 
3570 		ad->u.net->sport = uh->source;
3571 		ad->u.net->dport = uh->dest;
3572 		break;
3573 	}
3574 
3575 	case IPPROTO_DCCP: {
3576 		struct dccp_hdr _dccph, *dh;
3577 
3578 		if (ntohs(ih->frag_off) & IP_OFFSET)
3579 			break;
3580 
3581 		offset += ihlen;
3582 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3583 		if (dh == NULL)
3584 			break;
3585 
3586 		ad->u.net->sport = dh->dccph_sport;
3587 		ad->u.net->dport = dh->dccph_dport;
3588 		break;
3589 	}
3590 
3591 	default:
3592 		break;
3593 	}
3594 out:
3595 	return ret;
3596 }
3597 
3598 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3599 
3600 /* Returns error only if unable to parse addresses */
3601 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3602 			struct common_audit_data *ad, u8 *proto)
3603 {
3604 	u8 nexthdr;
3605 	int ret = -EINVAL, offset;
3606 	struct ipv6hdr _ipv6h, *ip6;
3607 	__be16 frag_off;
3608 
3609 	offset = skb_network_offset(skb);
3610 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3611 	if (ip6 == NULL)
3612 		goto out;
3613 
3614 	ad->u.net->v6info.saddr = ip6->saddr;
3615 	ad->u.net->v6info.daddr = ip6->daddr;
3616 	ret = 0;
3617 
3618 	nexthdr = ip6->nexthdr;
3619 	offset += sizeof(_ipv6h);
3620 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3621 	if (offset < 0)
3622 		goto out;
3623 
3624 	if (proto)
3625 		*proto = nexthdr;
3626 
3627 	switch (nexthdr) {
3628 	case IPPROTO_TCP: {
3629 		struct tcphdr _tcph, *th;
3630 
3631 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3632 		if (th == NULL)
3633 			break;
3634 
3635 		ad->u.net->sport = th->source;
3636 		ad->u.net->dport = th->dest;
3637 		break;
3638 	}
3639 
3640 	case IPPROTO_UDP: {
3641 		struct udphdr _udph, *uh;
3642 
3643 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3644 		if (uh == NULL)
3645 			break;
3646 
3647 		ad->u.net->sport = uh->source;
3648 		ad->u.net->dport = uh->dest;
3649 		break;
3650 	}
3651 
3652 	case IPPROTO_DCCP: {
3653 		struct dccp_hdr _dccph, *dh;
3654 
3655 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3656 		if (dh == NULL)
3657 			break;
3658 
3659 		ad->u.net->sport = dh->dccph_sport;
3660 		ad->u.net->dport = dh->dccph_dport;
3661 		break;
3662 	}
3663 
3664 	/* includes fragments */
3665 	default:
3666 		break;
3667 	}
3668 out:
3669 	return ret;
3670 }
3671 
3672 #endif /* IPV6 */
3673 
3674 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3675 			     char **_addrp, int src, u8 *proto)
3676 {
3677 	char *addrp;
3678 	int ret;
3679 
3680 	switch (ad->u.net->family) {
3681 	case PF_INET:
3682 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3683 		if (ret)
3684 			goto parse_error;
3685 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3686 				       &ad->u.net->v4info.daddr);
3687 		goto okay;
3688 
3689 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3690 	case PF_INET6:
3691 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3692 		if (ret)
3693 			goto parse_error;
3694 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3695 				       &ad->u.net->v6info.daddr);
3696 		goto okay;
3697 #endif	/* IPV6 */
3698 	default:
3699 		addrp = NULL;
3700 		goto okay;
3701 	}
3702 
3703 parse_error:
3704 	printk(KERN_WARNING
3705 	       "SELinux: failure in selinux_parse_skb(),"
3706 	       " unable to parse packet\n");
3707 	return ret;
3708 
3709 okay:
3710 	if (_addrp)
3711 		*_addrp = addrp;
3712 	return 0;
3713 }
3714 
3715 /**
3716  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3717  * @skb: the packet
3718  * @family: protocol family
3719  * @sid: the packet's peer label SID
3720  *
3721  * Description:
3722  * Check the various different forms of network peer labeling and determine
3723  * the peer label/SID for the packet; most of the magic actually occurs in
3724  * the security server function security_net_peersid_cmp().  The function
3725  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3726  * or -EACCES if @sid is invalid due to inconsistencies with the different
3727  * peer labels.
3728  *
3729  */
3730 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3731 {
3732 	int err;
3733 	u32 xfrm_sid;
3734 	u32 nlbl_sid;
3735 	u32 nlbl_type;
3736 
3737 	selinux_skb_xfrm_sid(skb, &xfrm_sid);
3738 	selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3739 
3740 	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3741 	if (unlikely(err)) {
3742 		printk(KERN_WARNING
3743 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3744 		       " unable to determine packet's peer label\n");
3745 		return -EACCES;
3746 	}
3747 
3748 	return 0;
3749 }
3750 
3751 /* socket security operations */
3752 
3753 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3754 				 u16 secclass, u32 *socksid)
3755 {
3756 	if (tsec->sockcreate_sid > SECSID_NULL) {
3757 		*socksid = tsec->sockcreate_sid;
3758 		return 0;
3759 	}
3760 
3761 	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3762 				       socksid);
3763 }
3764 
3765 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3766 {
3767 	struct sk_security_struct *sksec = sk->sk_security;
3768 	struct common_audit_data ad;
3769 	struct lsm_network_audit net = {0,};
3770 	u32 tsid = task_sid(task);
3771 
3772 	if (sksec->sid == SECINITSID_KERNEL)
3773 		return 0;
3774 
3775 	ad.type = LSM_AUDIT_DATA_NET;
3776 	ad.u.net = &net;
3777 	ad.u.net->sk = sk;
3778 
3779 	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3780 }
3781 
3782 static int selinux_socket_create(int family, int type,
3783 				 int protocol, int kern)
3784 {
3785 	const struct task_security_struct *tsec = current_security();
3786 	u32 newsid;
3787 	u16 secclass;
3788 	int rc;
3789 
3790 	if (kern)
3791 		return 0;
3792 
3793 	secclass = socket_type_to_security_class(family, type, protocol);
3794 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3795 	if (rc)
3796 		return rc;
3797 
3798 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3799 }
3800 
3801 static int selinux_socket_post_create(struct socket *sock, int family,
3802 				      int type, int protocol, int kern)
3803 {
3804 	const struct task_security_struct *tsec = current_security();
3805 	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3806 	struct sk_security_struct *sksec;
3807 	int err = 0;
3808 
3809 	isec->sclass = socket_type_to_security_class(family, type, protocol);
3810 
3811 	if (kern)
3812 		isec->sid = SECINITSID_KERNEL;
3813 	else {
3814 		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3815 		if (err)
3816 			return err;
3817 	}
3818 
3819 	isec->initialized = 1;
3820 
3821 	if (sock->sk) {
3822 		sksec = sock->sk->sk_security;
3823 		sksec->sid = isec->sid;
3824 		sksec->sclass = isec->sclass;
3825 		err = selinux_netlbl_socket_post_create(sock->sk, family);
3826 	}
3827 
3828 	return err;
3829 }
3830 
3831 /* Range of port numbers used to automatically bind.
3832    Need to determine whether we should perform a name_bind
3833    permission check between the socket and the port number. */
3834 
3835 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3836 {
3837 	struct sock *sk = sock->sk;
3838 	u16 family;
3839 	int err;
3840 
3841 	err = sock_has_perm(current, sk, SOCKET__BIND);
3842 	if (err)
3843 		goto out;
3844 
3845 	/*
3846 	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3847 	 * Multiple address binding for SCTP is not supported yet: we just
3848 	 * check the first address now.
3849 	 */
3850 	family = sk->sk_family;
3851 	if (family == PF_INET || family == PF_INET6) {
3852 		char *addrp;
3853 		struct sk_security_struct *sksec = sk->sk_security;
3854 		struct common_audit_data ad;
3855 		struct lsm_network_audit net = {0,};
3856 		struct sockaddr_in *addr4 = NULL;
3857 		struct sockaddr_in6 *addr6 = NULL;
3858 		unsigned short snum;
3859 		u32 sid, node_perm;
3860 
3861 		if (family == PF_INET) {
3862 			addr4 = (struct sockaddr_in *)address;
3863 			snum = ntohs(addr4->sin_port);
3864 			addrp = (char *)&addr4->sin_addr.s_addr;
3865 		} else {
3866 			addr6 = (struct sockaddr_in6 *)address;
3867 			snum = ntohs(addr6->sin6_port);
3868 			addrp = (char *)&addr6->sin6_addr.s6_addr;
3869 		}
3870 
3871 		if (snum) {
3872 			int low, high;
3873 
3874 			inet_get_local_port_range(&low, &high);
3875 
3876 			if (snum < max(PROT_SOCK, low) || snum > high) {
3877 				err = sel_netport_sid(sk->sk_protocol,
3878 						      snum, &sid);
3879 				if (err)
3880 					goto out;
3881 				ad.type = LSM_AUDIT_DATA_NET;
3882 				ad.u.net = &net;
3883 				ad.u.net->sport = htons(snum);
3884 				ad.u.net->family = family;
3885 				err = avc_has_perm(sksec->sid, sid,
3886 						   sksec->sclass,
3887 						   SOCKET__NAME_BIND, &ad);
3888 				if (err)
3889 					goto out;
3890 			}
3891 		}
3892 
3893 		switch (sksec->sclass) {
3894 		case SECCLASS_TCP_SOCKET:
3895 			node_perm = TCP_SOCKET__NODE_BIND;
3896 			break;
3897 
3898 		case SECCLASS_UDP_SOCKET:
3899 			node_perm = UDP_SOCKET__NODE_BIND;
3900 			break;
3901 
3902 		case SECCLASS_DCCP_SOCKET:
3903 			node_perm = DCCP_SOCKET__NODE_BIND;
3904 			break;
3905 
3906 		default:
3907 			node_perm = RAWIP_SOCKET__NODE_BIND;
3908 			break;
3909 		}
3910 
3911 		err = sel_netnode_sid(addrp, family, &sid);
3912 		if (err)
3913 			goto out;
3914 
3915 		ad.type = LSM_AUDIT_DATA_NET;
3916 		ad.u.net = &net;
3917 		ad.u.net->sport = htons(snum);
3918 		ad.u.net->family = family;
3919 
3920 		if (family == PF_INET)
3921 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3922 		else
3923 			ad.u.net->v6info.saddr = addr6->sin6_addr;
3924 
3925 		err = avc_has_perm(sksec->sid, sid,
3926 				   sksec->sclass, node_perm, &ad);
3927 		if (err)
3928 			goto out;
3929 	}
3930 out:
3931 	return err;
3932 }
3933 
3934 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3935 {
3936 	struct sock *sk = sock->sk;
3937 	struct sk_security_struct *sksec = sk->sk_security;
3938 	int err;
3939 
3940 	err = sock_has_perm(current, sk, SOCKET__CONNECT);
3941 	if (err)
3942 		return err;
3943 
3944 	/*
3945 	 * If a TCP or DCCP socket, check name_connect permission for the port.
3946 	 */
3947 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3948 	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
3949 		struct common_audit_data ad;
3950 		struct lsm_network_audit net = {0,};
3951 		struct sockaddr_in *addr4 = NULL;
3952 		struct sockaddr_in6 *addr6 = NULL;
3953 		unsigned short snum;
3954 		u32 sid, perm;
3955 
3956 		if (sk->sk_family == PF_INET) {
3957 			addr4 = (struct sockaddr_in *)address;
3958 			if (addrlen < sizeof(struct sockaddr_in))
3959 				return -EINVAL;
3960 			snum = ntohs(addr4->sin_port);
3961 		} else {
3962 			addr6 = (struct sockaddr_in6 *)address;
3963 			if (addrlen < SIN6_LEN_RFC2133)
3964 				return -EINVAL;
3965 			snum = ntohs(addr6->sin6_port);
3966 		}
3967 
3968 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3969 		if (err)
3970 			goto out;
3971 
3972 		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3973 		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3974 
3975 		ad.type = LSM_AUDIT_DATA_NET;
3976 		ad.u.net = &net;
3977 		ad.u.net->dport = htons(snum);
3978 		ad.u.net->family = sk->sk_family;
3979 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3980 		if (err)
3981 			goto out;
3982 	}
3983 
3984 	err = selinux_netlbl_socket_connect(sk, address);
3985 
3986 out:
3987 	return err;
3988 }
3989 
3990 static int selinux_socket_listen(struct socket *sock, int backlog)
3991 {
3992 	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3993 }
3994 
3995 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3996 {
3997 	int err;
3998 	struct inode_security_struct *isec;
3999 	struct inode_security_struct *newisec;
4000 
4001 	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4002 	if (err)
4003 		return err;
4004 
4005 	newisec = SOCK_INODE(newsock)->i_security;
4006 
4007 	isec = SOCK_INODE(sock)->i_security;
4008 	newisec->sclass = isec->sclass;
4009 	newisec->sid = isec->sid;
4010 	newisec->initialized = 1;
4011 
4012 	return 0;
4013 }
4014 
4015 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4016 				  int size)
4017 {
4018 	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4019 }
4020 
4021 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4022 				  int size, int flags)
4023 {
4024 	return sock_has_perm(current, sock->sk, SOCKET__READ);
4025 }
4026 
4027 static int selinux_socket_getsockname(struct socket *sock)
4028 {
4029 	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4030 }
4031 
4032 static int selinux_socket_getpeername(struct socket *sock)
4033 {
4034 	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4035 }
4036 
4037 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4038 {
4039 	int err;
4040 
4041 	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4042 	if (err)
4043 		return err;
4044 
4045 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4046 }
4047 
4048 static int selinux_socket_getsockopt(struct socket *sock, int level,
4049 				     int optname)
4050 {
4051 	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4052 }
4053 
4054 static int selinux_socket_shutdown(struct socket *sock, int how)
4055 {
4056 	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4057 }
4058 
4059 static int selinux_socket_unix_stream_connect(struct sock *sock,
4060 					      struct sock *other,
4061 					      struct sock *newsk)
4062 {
4063 	struct sk_security_struct *sksec_sock = sock->sk_security;
4064 	struct sk_security_struct *sksec_other = other->sk_security;
4065 	struct sk_security_struct *sksec_new = newsk->sk_security;
4066 	struct common_audit_data ad;
4067 	struct lsm_network_audit net = {0,};
4068 	int err;
4069 
4070 	ad.type = LSM_AUDIT_DATA_NET;
4071 	ad.u.net = &net;
4072 	ad.u.net->sk = other;
4073 
4074 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4075 			   sksec_other->sclass,
4076 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4077 	if (err)
4078 		return err;
4079 
4080 	/* server child socket */
4081 	sksec_new->peer_sid = sksec_sock->sid;
4082 	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4083 				    &sksec_new->sid);
4084 	if (err)
4085 		return err;
4086 
4087 	/* connecting socket */
4088 	sksec_sock->peer_sid = sksec_new->sid;
4089 
4090 	return 0;
4091 }
4092 
4093 static int selinux_socket_unix_may_send(struct socket *sock,
4094 					struct socket *other)
4095 {
4096 	struct sk_security_struct *ssec = sock->sk->sk_security;
4097 	struct sk_security_struct *osec = other->sk->sk_security;
4098 	struct common_audit_data ad;
4099 	struct lsm_network_audit net = {0,};
4100 
4101 	ad.type = LSM_AUDIT_DATA_NET;
4102 	ad.u.net = &net;
4103 	ad.u.net->sk = other->sk;
4104 
4105 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4106 			    &ad);
4107 }
4108 
4109 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4110 				    u32 peer_sid,
4111 				    struct common_audit_data *ad)
4112 {
4113 	int err;
4114 	u32 if_sid;
4115 	u32 node_sid;
4116 
4117 	err = sel_netif_sid(ifindex, &if_sid);
4118 	if (err)
4119 		return err;
4120 	err = avc_has_perm(peer_sid, if_sid,
4121 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4122 	if (err)
4123 		return err;
4124 
4125 	err = sel_netnode_sid(addrp, family, &node_sid);
4126 	if (err)
4127 		return err;
4128 	return avc_has_perm(peer_sid, node_sid,
4129 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4130 }
4131 
4132 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4133 				       u16 family)
4134 {
4135 	int err = 0;
4136 	struct sk_security_struct *sksec = sk->sk_security;
4137 	u32 sk_sid = sksec->sid;
4138 	struct common_audit_data ad;
4139 	struct lsm_network_audit net = {0,};
4140 	char *addrp;
4141 
4142 	ad.type = LSM_AUDIT_DATA_NET;
4143 	ad.u.net = &net;
4144 	ad.u.net->netif = skb->skb_iif;
4145 	ad.u.net->family = family;
4146 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4147 	if (err)
4148 		return err;
4149 
4150 	if (selinux_secmark_enabled()) {
4151 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4152 				   PACKET__RECV, &ad);
4153 		if (err)
4154 			return err;
4155 	}
4156 
4157 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4158 	if (err)
4159 		return err;
4160 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4161 
4162 	return err;
4163 }
4164 
4165 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4166 {
4167 	int err;
4168 	struct sk_security_struct *sksec = sk->sk_security;
4169 	u16 family = sk->sk_family;
4170 	u32 sk_sid = sksec->sid;
4171 	struct common_audit_data ad;
4172 	struct lsm_network_audit net = {0,};
4173 	char *addrp;
4174 	u8 secmark_active;
4175 	u8 peerlbl_active;
4176 
4177 	if (family != PF_INET && family != PF_INET6)
4178 		return 0;
4179 
4180 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4181 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4182 		family = PF_INET;
4183 
4184 	/* If any sort of compatibility mode is enabled then handoff processing
4185 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4186 	 * special handling.  We do this in an attempt to keep this function
4187 	 * as fast and as clean as possible. */
4188 	if (!selinux_policycap_netpeer)
4189 		return selinux_sock_rcv_skb_compat(sk, skb, family);
4190 
4191 	secmark_active = selinux_secmark_enabled();
4192 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4193 	if (!secmark_active && !peerlbl_active)
4194 		return 0;
4195 
4196 	ad.type = LSM_AUDIT_DATA_NET;
4197 	ad.u.net = &net;
4198 	ad.u.net->netif = skb->skb_iif;
4199 	ad.u.net->family = family;
4200 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4201 	if (err)
4202 		return err;
4203 
4204 	if (peerlbl_active) {
4205 		u32 peer_sid;
4206 
4207 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4208 		if (err)
4209 			return err;
4210 		err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4211 					       peer_sid, &ad);
4212 		if (err) {
4213 			selinux_netlbl_err(skb, err, 0);
4214 			return err;
4215 		}
4216 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4217 				   PEER__RECV, &ad);
4218 		if (err)
4219 			selinux_netlbl_err(skb, err, 0);
4220 	}
4221 
4222 	if (secmark_active) {
4223 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4224 				   PACKET__RECV, &ad);
4225 		if (err)
4226 			return err;
4227 	}
4228 
4229 	return err;
4230 }
4231 
4232 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4233 					    int __user *optlen, unsigned len)
4234 {
4235 	int err = 0;
4236 	char *scontext;
4237 	u32 scontext_len;
4238 	struct sk_security_struct *sksec = sock->sk->sk_security;
4239 	u32 peer_sid = SECSID_NULL;
4240 
4241 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4242 	    sksec->sclass == SECCLASS_TCP_SOCKET)
4243 		peer_sid = sksec->peer_sid;
4244 	if (peer_sid == SECSID_NULL)
4245 		return -ENOPROTOOPT;
4246 
4247 	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4248 	if (err)
4249 		return err;
4250 
4251 	if (scontext_len > len) {
4252 		err = -ERANGE;
4253 		goto out_len;
4254 	}
4255 
4256 	if (copy_to_user(optval, scontext, scontext_len))
4257 		err = -EFAULT;
4258 
4259 out_len:
4260 	if (put_user(scontext_len, optlen))
4261 		err = -EFAULT;
4262 	kfree(scontext);
4263 	return err;
4264 }
4265 
4266 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4267 {
4268 	u32 peer_secid = SECSID_NULL;
4269 	u16 family;
4270 
4271 	if (skb && skb->protocol == htons(ETH_P_IP))
4272 		family = PF_INET;
4273 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4274 		family = PF_INET6;
4275 	else if (sock)
4276 		family = sock->sk->sk_family;
4277 	else
4278 		goto out;
4279 
4280 	if (sock && family == PF_UNIX)
4281 		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4282 	else if (skb)
4283 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4284 
4285 out:
4286 	*secid = peer_secid;
4287 	if (peer_secid == SECSID_NULL)
4288 		return -EINVAL;
4289 	return 0;
4290 }
4291 
4292 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4293 {
4294 	struct sk_security_struct *sksec;
4295 
4296 	sksec = kzalloc(sizeof(*sksec), priority);
4297 	if (!sksec)
4298 		return -ENOMEM;
4299 
4300 	sksec->peer_sid = SECINITSID_UNLABELED;
4301 	sksec->sid = SECINITSID_UNLABELED;
4302 	selinux_netlbl_sk_security_reset(sksec);
4303 	sk->sk_security = sksec;
4304 
4305 	return 0;
4306 }
4307 
4308 static void selinux_sk_free_security(struct sock *sk)
4309 {
4310 	struct sk_security_struct *sksec = sk->sk_security;
4311 
4312 	sk->sk_security = NULL;
4313 	selinux_netlbl_sk_security_free(sksec);
4314 	kfree(sksec);
4315 }
4316 
4317 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4318 {
4319 	struct sk_security_struct *sksec = sk->sk_security;
4320 	struct sk_security_struct *newsksec = newsk->sk_security;
4321 
4322 	newsksec->sid = sksec->sid;
4323 	newsksec->peer_sid = sksec->peer_sid;
4324 	newsksec->sclass = sksec->sclass;
4325 
4326 	selinux_netlbl_sk_security_reset(newsksec);
4327 }
4328 
4329 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4330 {
4331 	if (!sk)
4332 		*secid = SECINITSID_ANY_SOCKET;
4333 	else {
4334 		struct sk_security_struct *sksec = sk->sk_security;
4335 
4336 		*secid = sksec->sid;
4337 	}
4338 }
4339 
4340 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4341 {
4342 	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4343 	struct sk_security_struct *sksec = sk->sk_security;
4344 
4345 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4346 	    sk->sk_family == PF_UNIX)
4347 		isec->sid = sksec->sid;
4348 	sksec->sclass = isec->sclass;
4349 }
4350 
4351 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4352 				     struct request_sock *req)
4353 {
4354 	struct sk_security_struct *sksec = sk->sk_security;
4355 	int err;
4356 	u16 family = sk->sk_family;
4357 	u32 newsid;
4358 	u32 peersid;
4359 
4360 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4361 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4362 		family = PF_INET;
4363 
4364 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4365 	if (err)
4366 		return err;
4367 	if (peersid == SECSID_NULL) {
4368 		req->secid = sksec->sid;
4369 		req->peer_secid = SECSID_NULL;
4370 	} else {
4371 		err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4372 		if (err)
4373 			return err;
4374 		req->secid = newsid;
4375 		req->peer_secid = peersid;
4376 	}
4377 
4378 	return selinux_netlbl_inet_conn_request(req, family);
4379 }
4380 
4381 static void selinux_inet_csk_clone(struct sock *newsk,
4382 				   const struct request_sock *req)
4383 {
4384 	struct sk_security_struct *newsksec = newsk->sk_security;
4385 
4386 	newsksec->sid = req->secid;
4387 	newsksec->peer_sid = req->peer_secid;
4388 	/* NOTE: Ideally, we should also get the isec->sid for the
4389 	   new socket in sync, but we don't have the isec available yet.
4390 	   So we will wait until sock_graft to do it, by which
4391 	   time it will have been created and available. */
4392 
4393 	/* We don't need to take any sort of lock here as we are the only
4394 	 * thread with access to newsksec */
4395 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4396 }
4397 
4398 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4399 {
4400 	u16 family = sk->sk_family;
4401 	struct sk_security_struct *sksec = sk->sk_security;
4402 
4403 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4404 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4405 		family = PF_INET;
4406 
4407 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4408 }
4409 
4410 static int selinux_secmark_relabel_packet(u32 sid)
4411 {
4412 	const struct task_security_struct *__tsec;
4413 	u32 tsid;
4414 
4415 	__tsec = current_security();
4416 	tsid = __tsec->sid;
4417 
4418 	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4419 }
4420 
4421 static void selinux_secmark_refcount_inc(void)
4422 {
4423 	atomic_inc(&selinux_secmark_refcount);
4424 }
4425 
4426 static void selinux_secmark_refcount_dec(void)
4427 {
4428 	atomic_dec(&selinux_secmark_refcount);
4429 }
4430 
4431 static void selinux_req_classify_flow(const struct request_sock *req,
4432 				      struct flowi *fl)
4433 {
4434 	fl->flowi_secid = req->secid;
4435 }
4436 
4437 static int selinux_tun_dev_create(void)
4438 {
4439 	u32 sid = current_sid();
4440 
4441 	/* we aren't taking into account the "sockcreate" SID since the socket
4442 	 * that is being created here is not a socket in the traditional sense,
4443 	 * instead it is a private sock, accessible only to the kernel, and
4444 	 * representing a wide range of network traffic spanning multiple
4445 	 * connections unlike traditional sockets - check the TUN driver to
4446 	 * get a better understanding of why this socket is special */
4447 
4448 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4449 			    NULL);
4450 }
4451 
4452 static void selinux_tun_dev_post_create(struct sock *sk)
4453 {
4454 	struct sk_security_struct *sksec = sk->sk_security;
4455 
4456 	/* we don't currently perform any NetLabel based labeling here and it
4457 	 * isn't clear that we would want to do so anyway; while we could apply
4458 	 * labeling without the support of the TUN user the resulting labeled
4459 	 * traffic from the other end of the connection would almost certainly
4460 	 * cause confusion to the TUN user that had no idea network labeling
4461 	 * protocols were being used */
4462 
4463 	/* see the comments in selinux_tun_dev_create() about why we don't use
4464 	 * the sockcreate SID here */
4465 
4466 	sksec->sid = current_sid();
4467 	sksec->sclass = SECCLASS_TUN_SOCKET;
4468 }
4469 
4470 static int selinux_tun_dev_attach(struct sock *sk)
4471 {
4472 	struct sk_security_struct *sksec = sk->sk_security;
4473 	u32 sid = current_sid();
4474 	int err;
4475 
4476 	err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4477 			   TUN_SOCKET__RELABELFROM, NULL);
4478 	if (err)
4479 		return err;
4480 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4481 			   TUN_SOCKET__RELABELTO, NULL);
4482 	if (err)
4483 		return err;
4484 
4485 	sksec->sid = sid;
4486 
4487 	return 0;
4488 }
4489 
4490 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4491 {
4492 	int err = 0;
4493 	u32 perm;
4494 	struct nlmsghdr *nlh;
4495 	struct sk_security_struct *sksec = sk->sk_security;
4496 
4497 	if (skb->len < NLMSG_SPACE(0)) {
4498 		err = -EINVAL;
4499 		goto out;
4500 	}
4501 	nlh = nlmsg_hdr(skb);
4502 
4503 	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4504 	if (err) {
4505 		if (err == -EINVAL) {
4506 			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4507 				  "SELinux:  unrecognized netlink message"
4508 				  " type=%hu for sclass=%hu\n",
4509 				  nlh->nlmsg_type, sksec->sclass);
4510 			if (!selinux_enforcing || security_get_allow_unknown())
4511 				err = 0;
4512 		}
4513 
4514 		/* Ignore */
4515 		if (err == -ENOENT)
4516 			err = 0;
4517 		goto out;
4518 	}
4519 
4520 	err = sock_has_perm(current, sk, perm);
4521 out:
4522 	return err;
4523 }
4524 
4525 #ifdef CONFIG_NETFILTER
4526 
4527 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4528 				       u16 family)
4529 {
4530 	int err;
4531 	char *addrp;
4532 	u32 peer_sid;
4533 	struct common_audit_data ad;
4534 	struct lsm_network_audit net = {0,};
4535 	u8 secmark_active;
4536 	u8 netlbl_active;
4537 	u8 peerlbl_active;
4538 
4539 	if (!selinux_policycap_netpeer)
4540 		return NF_ACCEPT;
4541 
4542 	secmark_active = selinux_secmark_enabled();
4543 	netlbl_active = netlbl_enabled();
4544 	peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4545 	if (!secmark_active && !peerlbl_active)
4546 		return NF_ACCEPT;
4547 
4548 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4549 		return NF_DROP;
4550 
4551 	ad.type = LSM_AUDIT_DATA_NET;
4552 	ad.u.net = &net;
4553 	ad.u.net->netif = ifindex;
4554 	ad.u.net->family = family;
4555 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4556 		return NF_DROP;
4557 
4558 	if (peerlbl_active) {
4559 		err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4560 					       peer_sid, &ad);
4561 		if (err) {
4562 			selinux_netlbl_err(skb, err, 1);
4563 			return NF_DROP;
4564 		}
4565 	}
4566 
4567 	if (secmark_active)
4568 		if (avc_has_perm(peer_sid, skb->secmark,
4569 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4570 			return NF_DROP;
4571 
4572 	if (netlbl_active)
4573 		/* we do this in the FORWARD path and not the POST_ROUTING
4574 		 * path because we want to make sure we apply the necessary
4575 		 * labeling before IPsec is applied so we can leverage AH
4576 		 * protection */
4577 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4578 			return NF_DROP;
4579 
4580 	return NF_ACCEPT;
4581 }
4582 
4583 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4584 					 struct sk_buff *skb,
4585 					 const struct net_device *in,
4586 					 const struct net_device *out,
4587 					 int (*okfn)(struct sk_buff *))
4588 {
4589 	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4590 }
4591 
4592 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4593 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4594 					 struct sk_buff *skb,
4595 					 const struct net_device *in,
4596 					 const struct net_device *out,
4597 					 int (*okfn)(struct sk_buff *))
4598 {
4599 	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4600 }
4601 #endif	/* IPV6 */
4602 
4603 static unsigned int selinux_ip_output(struct sk_buff *skb,
4604 				      u16 family)
4605 {
4606 	u32 sid;
4607 
4608 	if (!netlbl_enabled())
4609 		return NF_ACCEPT;
4610 
4611 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4612 	 * because we want to make sure we apply the necessary labeling
4613 	 * before IPsec is applied so we can leverage AH protection */
4614 	if (skb->sk) {
4615 		struct sk_security_struct *sksec = skb->sk->sk_security;
4616 		sid = sksec->sid;
4617 	} else
4618 		sid = SECINITSID_KERNEL;
4619 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4620 		return NF_DROP;
4621 
4622 	return NF_ACCEPT;
4623 }
4624 
4625 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4626 					struct sk_buff *skb,
4627 					const struct net_device *in,
4628 					const struct net_device *out,
4629 					int (*okfn)(struct sk_buff *))
4630 {
4631 	return selinux_ip_output(skb, PF_INET);
4632 }
4633 
4634 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4635 						int ifindex,
4636 						u16 family)
4637 {
4638 	struct sock *sk = skb->sk;
4639 	struct sk_security_struct *sksec;
4640 	struct common_audit_data ad;
4641 	struct lsm_network_audit net = {0,};
4642 	char *addrp;
4643 	u8 proto;
4644 
4645 	if (sk == NULL)
4646 		return NF_ACCEPT;
4647 	sksec = sk->sk_security;
4648 
4649 	ad.type = LSM_AUDIT_DATA_NET;
4650 	ad.u.net = &net;
4651 	ad.u.net->netif = ifindex;
4652 	ad.u.net->family = family;
4653 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4654 		return NF_DROP;
4655 
4656 	if (selinux_secmark_enabled())
4657 		if (avc_has_perm(sksec->sid, skb->secmark,
4658 				 SECCLASS_PACKET, PACKET__SEND, &ad))
4659 			return NF_DROP_ERR(-ECONNREFUSED);
4660 
4661 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4662 		return NF_DROP_ERR(-ECONNREFUSED);
4663 
4664 	return NF_ACCEPT;
4665 }
4666 
4667 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4668 					 u16 family)
4669 {
4670 	u32 secmark_perm;
4671 	u32 peer_sid;
4672 	struct sock *sk;
4673 	struct common_audit_data ad;
4674 	struct lsm_network_audit net = {0,};
4675 	char *addrp;
4676 	u8 secmark_active;
4677 	u8 peerlbl_active;
4678 
4679 	/* If any sort of compatibility mode is enabled then handoff processing
4680 	 * to the selinux_ip_postroute_compat() function to deal with the
4681 	 * special handling.  We do this in an attempt to keep this function
4682 	 * as fast and as clean as possible. */
4683 	if (!selinux_policycap_netpeer)
4684 		return selinux_ip_postroute_compat(skb, ifindex, family);
4685 #ifdef CONFIG_XFRM
4686 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4687 	 * packet transformation so allow the packet to pass without any checks
4688 	 * since we'll have another chance to perform access control checks
4689 	 * when the packet is on it's final way out.
4690 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4691 	 *       is NULL, in this case go ahead and apply access control. */
4692 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4693 		return NF_ACCEPT;
4694 #endif
4695 	secmark_active = selinux_secmark_enabled();
4696 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4697 	if (!secmark_active && !peerlbl_active)
4698 		return NF_ACCEPT;
4699 
4700 	/* if the packet is being forwarded then get the peer label from the
4701 	 * packet itself; otherwise check to see if it is from a local
4702 	 * application or the kernel, if from an application get the peer label
4703 	 * from the sending socket, otherwise use the kernel's sid */
4704 	sk = skb->sk;
4705 	if (sk == NULL) {
4706 		if (skb->skb_iif) {
4707 			secmark_perm = PACKET__FORWARD_OUT;
4708 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4709 				return NF_DROP;
4710 		} else {
4711 			secmark_perm = PACKET__SEND;
4712 			peer_sid = SECINITSID_KERNEL;
4713 		}
4714 	} else {
4715 		struct sk_security_struct *sksec = sk->sk_security;
4716 		peer_sid = sksec->sid;
4717 		secmark_perm = PACKET__SEND;
4718 	}
4719 
4720 	ad.type = LSM_AUDIT_DATA_NET;
4721 	ad.u.net = &net;
4722 	ad.u.net->netif = ifindex;
4723 	ad.u.net->family = family;
4724 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4725 		return NF_DROP;
4726 
4727 	if (secmark_active)
4728 		if (avc_has_perm(peer_sid, skb->secmark,
4729 				 SECCLASS_PACKET, secmark_perm, &ad))
4730 			return NF_DROP_ERR(-ECONNREFUSED);
4731 
4732 	if (peerlbl_active) {
4733 		u32 if_sid;
4734 		u32 node_sid;
4735 
4736 		if (sel_netif_sid(ifindex, &if_sid))
4737 			return NF_DROP;
4738 		if (avc_has_perm(peer_sid, if_sid,
4739 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4740 			return NF_DROP_ERR(-ECONNREFUSED);
4741 
4742 		if (sel_netnode_sid(addrp, family, &node_sid))
4743 			return NF_DROP;
4744 		if (avc_has_perm(peer_sid, node_sid,
4745 				 SECCLASS_NODE, NODE__SENDTO, &ad))
4746 			return NF_DROP_ERR(-ECONNREFUSED);
4747 	}
4748 
4749 	return NF_ACCEPT;
4750 }
4751 
4752 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4753 					   struct sk_buff *skb,
4754 					   const struct net_device *in,
4755 					   const struct net_device *out,
4756 					   int (*okfn)(struct sk_buff *))
4757 {
4758 	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4759 }
4760 
4761 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4762 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4763 					   struct sk_buff *skb,
4764 					   const struct net_device *in,
4765 					   const struct net_device *out,
4766 					   int (*okfn)(struct sk_buff *))
4767 {
4768 	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4769 }
4770 #endif	/* IPV6 */
4771 
4772 #endif	/* CONFIG_NETFILTER */
4773 
4774 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4775 {
4776 	int err;
4777 
4778 	err = cap_netlink_send(sk, skb);
4779 	if (err)
4780 		return err;
4781 
4782 	return selinux_nlmsg_perm(sk, skb);
4783 }
4784 
4785 static int ipc_alloc_security(struct task_struct *task,
4786 			      struct kern_ipc_perm *perm,
4787 			      u16 sclass)
4788 {
4789 	struct ipc_security_struct *isec;
4790 	u32 sid;
4791 
4792 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4793 	if (!isec)
4794 		return -ENOMEM;
4795 
4796 	sid = task_sid(task);
4797 	isec->sclass = sclass;
4798 	isec->sid = sid;
4799 	perm->security = isec;
4800 
4801 	return 0;
4802 }
4803 
4804 static void ipc_free_security(struct kern_ipc_perm *perm)
4805 {
4806 	struct ipc_security_struct *isec = perm->security;
4807 	perm->security = NULL;
4808 	kfree(isec);
4809 }
4810 
4811 static int msg_msg_alloc_security(struct msg_msg *msg)
4812 {
4813 	struct msg_security_struct *msec;
4814 
4815 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4816 	if (!msec)
4817 		return -ENOMEM;
4818 
4819 	msec->sid = SECINITSID_UNLABELED;
4820 	msg->security = msec;
4821 
4822 	return 0;
4823 }
4824 
4825 static void msg_msg_free_security(struct msg_msg *msg)
4826 {
4827 	struct msg_security_struct *msec = msg->security;
4828 
4829 	msg->security = NULL;
4830 	kfree(msec);
4831 }
4832 
4833 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4834 			u32 perms)
4835 {
4836 	struct ipc_security_struct *isec;
4837 	struct common_audit_data ad;
4838 	u32 sid = current_sid();
4839 
4840 	isec = ipc_perms->security;
4841 
4842 	ad.type = LSM_AUDIT_DATA_IPC;
4843 	ad.u.ipc_id = ipc_perms->key;
4844 
4845 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4846 }
4847 
4848 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4849 {
4850 	return msg_msg_alloc_security(msg);
4851 }
4852 
4853 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4854 {
4855 	msg_msg_free_security(msg);
4856 }
4857 
4858 /* message queue security operations */
4859 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4860 {
4861 	struct ipc_security_struct *isec;
4862 	struct common_audit_data ad;
4863 	u32 sid = current_sid();
4864 	int rc;
4865 
4866 	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4867 	if (rc)
4868 		return rc;
4869 
4870 	isec = msq->q_perm.security;
4871 
4872 	ad.type = LSM_AUDIT_DATA_IPC;
4873 	ad.u.ipc_id = msq->q_perm.key;
4874 
4875 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4876 			  MSGQ__CREATE, &ad);
4877 	if (rc) {
4878 		ipc_free_security(&msq->q_perm);
4879 		return rc;
4880 	}
4881 	return 0;
4882 }
4883 
4884 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4885 {
4886 	ipc_free_security(&msq->q_perm);
4887 }
4888 
4889 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4890 {
4891 	struct ipc_security_struct *isec;
4892 	struct common_audit_data ad;
4893 	u32 sid = current_sid();
4894 
4895 	isec = msq->q_perm.security;
4896 
4897 	ad.type = LSM_AUDIT_DATA_IPC;
4898 	ad.u.ipc_id = msq->q_perm.key;
4899 
4900 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4901 			    MSGQ__ASSOCIATE, &ad);
4902 }
4903 
4904 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4905 {
4906 	int err;
4907 	int perms;
4908 
4909 	switch (cmd) {
4910 	case IPC_INFO:
4911 	case MSG_INFO:
4912 		/* No specific object, just general system-wide information. */
4913 		return task_has_system(current, SYSTEM__IPC_INFO);
4914 	case IPC_STAT:
4915 	case MSG_STAT:
4916 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4917 		break;
4918 	case IPC_SET:
4919 		perms = MSGQ__SETATTR;
4920 		break;
4921 	case IPC_RMID:
4922 		perms = MSGQ__DESTROY;
4923 		break;
4924 	default:
4925 		return 0;
4926 	}
4927 
4928 	err = ipc_has_perm(&msq->q_perm, perms);
4929 	return err;
4930 }
4931 
4932 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4933 {
4934 	struct ipc_security_struct *isec;
4935 	struct msg_security_struct *msec;
4936 	struct common_audit_data ad;
4937 	u32 sid = current_sid();
4938 	int rc;
4939 
4940 	isec = msq->q_perm.security;
4941 	msec = msg->security;
4942 
4943 	/*
4944 	 * First time through, need to assign label to the message
4945 	 */
4946 	if (msec->sid == SECINITSID_UNLABELED) {
4947 		/*
4948 		 * Compute new sid based on current process and
4949 		 * message queue this message will be stored in
4950 		 */
4951 		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4952 					     NULL, &msec->sid);
4953 		if (rc)
4954 			return rc;
4955 	}
4956 
4957 	ad.type = LSM_AUDIT_DATA_IPC;
4958 	ad.u.ipc_id = msq->q_perm.key;
4959 
4960 	/* Can this process write to the queue? */
4961 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4962 			  MSGQ__WRITE, &ad);
4963 	if (!rc)
4964 		/* Can this process send the message */
4965 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4966 				  MSG__SEND, &ad);
4967 	if (!rc)
4968 		/* Can the message be put in the queue? */
4969 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4970 				  MSGQ__ENQUEUE, &ad);
4971 
4972 	return rc;
4973 }
4974 
4975 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4976 				    struct task_struct *target,
4977 				    long type, int mode)
4978 {
4979 	struct ipc_security_struct *isec;
4980 	struct msg_security_struct *msec;
4981 	struct common_audit_data ad;
4982 	u32 sid = task_sid(target);
4983 	int rc;
4984 
4985 	isec = msq->q_perm.security;
4986 	msec = msg->security;
4987 
4988 	ad.type = LSM_AUDIT_DATA_IPC;
4989 	ad.u.ipc_id = msq->q_perm.key;
4990 
4991 	rc = avc_has_perm(sid, isec->sid,
4992 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
4993 	if (!rc)
4994 		rc = avc_has_perm(sid, msec->sid,
4995 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
4996 	return rc;
4997 }
4998 
4999 /* Shared Memory security operations */
5000 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5001 {
5002 	struct ipc_security_struct *isec;
5003 	struct common_audit_data ad;
5004 	u32 sid = current_sid();
5005 	int rc;
5006 
5007 	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5008 	if (rc)
5009 		return rc;
5010 
5011 	isec = shp->shm_perm.security;
5012 
5013 	ad.type = LSM_AUDIT_DATA_IPC;
5014 	ad.u.ipc_id = shp->shm_perm.key;
5015 
5016 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5017 			  SHM__CREATE, &ad);
5018 	if (rc) {
5019 		ipc_free_security(&shp->shm_perm);
5020 		return rc;
5021 	}
5022 	return 0;
5023 }
5024 
5025 static void selinux_shm_free_security(struct shmid_kernel *shp)
5026 {
5027 	ipc_free_security(&shp->shm_perm);
5028 }
5029 
5030 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5031 {
5032 	struct ipc_security_struct *isec;
5033 	struct common_audit_data ad;
5034 	u32 sid = current_sid();
5035 
5036 	isec = shp->shm_perm.security;
5037 
5038 	ad.type = LSM_AUDIT_DATA_IPC;
5039 	ad.u.ipc_id = shp->shm_perm.key;
5040 
5041 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5042 			    SHM__ASSOCIATE, &ad);
5043 }
5044 
5045 /* Note, at this point, shp is locked down */
5046 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5047 {
5048 	int perms;
5049 	int err;
5050 
5051 	switch (cmd) {
5052 	case IPC_INFO:
5053 	case SHM_INFO:
5054 		/* No specific object, just general system-wide information. */
5055 		return task_has_system(current, SYSTEM__IPC_INFO);
5056 	case IPC_STAT:
5057 	case SHM_STAT:
5058 		perms = SHM__GETATTR | SHM__ASSOCIATE;
5059 		break;
5060 	case IPC_SET:
5061 		perms = SHM__SETATTR;
5062 		break;
5063 	case SHM_LOCK:
5064 	case SHM_UNLOCK:
5065 		perms = SHM__LOCK;
5066 		break;
5067 	case IPC_RMID:
5068 		perms = SHM__DESTROY;
5069 		break;
5070 	default:
5071 		return 0;
5072 	}
5073 
5074 	err = ipc_has_perm(&shp->shm_perm, perms);
5075 	return err;
5076 }
5077 
5078 static int selinux_shm_shmat(struct shmid_kernel *shp,
5079 			     char __user *shmaddr, int shmflg)
5080 {
5081 	u32 perms;
5082 
5083 	if (shmflg & SHM_RDONLY)
5084 		perms = SHM__READ;
5085 	else
5086 		perms = SHM__READ | SHM__WRITE;
5087 
5088 	return ipc_has_perm(&shp->shm_perm, perms);
5089 }
5090 
5091 /* Semaphore security operations */
5092 static int selinux_sem_alloc_security(struct sem_array *sma)
5093 {
5094 	struct ipc_security_struct *isec;
5095 	struct common_audit_data ad;
5096 	u32 sid = current_sid();
5097 	int rc;
5098 
5099 	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5100 	if (rc)
5101 		return rc;
5102 
5103 	isec = sma->sem_perm.security;
5104 
5105 	ad.type = LSM_AUDIT_DATA_IPC;
5106 	ad.u.ipc_id = sma->sem_perm.key;
5107 
5108 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5109 			  SEM__CREATE, &ad);
5110 	if (rc) {
5111 		ipc_free_security(&sma->sem_perm);
5112 		return rc;
5113 	}
5114 	return 0;
5115 }
5116 
5117 static void selinux_sem_free_security(struct sem_array *sma)
5118 {
5119 	ipc_free_security(&sma->sem_perm);
5120 }
5121 
5122 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5123 {
5124 	struct ipc_security_struct *isec;
5125 	struct common_audit_data ad;
5126 	u32 sid = current_sid();
5127 
5128 	isec = sma->sem_perm.security;
5129 
5130 	ad.type = LSM_AUDIT_DATA_IPC;
5131 	ad.u.ipc_id = sma->sem_perm.key;
5132 
5133 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5134 			    SEM__ASSOCIATE, &ad);
5135 }
5136 
5137 /* Note, at this point, sma is locked down */
5138 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5139 {
5140 	int err;
5141 	u32 perms;
5142 
5143 	switch (cmd) {
5144 	case IPC_INFO:
5145 	case SEM_INFO:
5146 		/* No specific object, just general system-wide information. */
5147 		return task_has_system(current, SYSTEM__IPC_INFO);
5148 	case GETPID:
5149 	case GETNCNT:
5150 	case GETZCNT:
5151 		perms = SEM__GETATTR;
5152 		break;
5153 	case GETVAL:
5154 	case GETALL:
5155 		perms = SEM__READ;
5156 		break;
5157 	case SETVAL:
5158 	case SETALL:
5159 		perms = SEM__WRITE;
5160 		break;
5161 	case IPC_RMID:
5162 		perms = SEM__DESTROY;
5163 		break;
5164 	case IPC_SET:
5165 		perms = SEM__SETATTR;
5166 		break;
5167 	case IPC_STAT:
5168 	case SEM_STAT:
5169 		perms = SEM__GETATTR | SEM__ASSOCIATE;
5170 		break;
5171 	default:
5172 		return 0;
5173 	}
5174 
5175 	err = ipc_has_perm(&sma->sem_perm, perms);
5176 	return err;
5177 }
5178 
5179 static int selinux_sem_semop(struct sem_array *sma,
5180 			     struct sembuf *sops, unsigned nsops, int alter)
5181 {
5182 	u32 perms;
5183 
5184 	if (alter)
5185 		perms = SEM__READ | SEM__WRITE;
5186 	else
5187 		perms = SEM__READ;
5188 
5189 	return ipc_has_perm(&sma->sem_perm, perms);
5190 }
5191 
5192 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5193 {
5194 	u32 av = 0;
5195 
5196 	av = 0;
5197 	if (flag & S_IRUGO)
5198 		av |= IPC__UNIX_READ;
5199 	if (flag & S_IWUGO)
5200 		av |= IPC__UNIX_WRITE;
5201 
5202 	if (av == 0)
5203 		return 0;
5204 
5205 	return ipc_has_perm(ipcp, av);
5206 }
5207 
5208 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5209 {
5210 	struct ipc_security_struct *isec = ipcp->security;
5211 	*secid = isec->sid;
5212 }
5213 
5214 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5215 {
5216 	if (inode)
5217 		inode_doinit_with_dentry(inode, dentry);
5218 }
5219 
5220 static int selinux_getprocattr(struct task_struct *p,
5221 			       char *name, char **value)
5222 {
5223 	const struct task_security_struct *__tsec;
5224 	u32 sid;
5225 	int error;
5226 	unsigned len;
5227 
5228 	if (current != p) {
5229 		error = current_has_perm(p, PROCESS__GETATTR);
5230 		if (error)
5231 			return error;
5232 	}
5233 
5234 	rcu_read_lock();
5235 	__tsec = __task_cred(p)->security;
5236 
5237 	if (!strcmp(name, "current"))
5238 		sid = __tsec->sid;
5239 	else if (!strcmp(name, "prev"))
5240 		sid = __tsec->osid;
5241 	else if (!strcmp(name, "exec"))
5242 		sid = __tsec->exec_sid;
5243 	else if (!strcmp(name, "fscreate"))
5244 		sid = __tsec->create_sid;
5245 	else if (!strcmp(name, "keycreate"))
5246 		sid = __tsec->keycreate_sid;
5247 	else if (!strcmp(name, "sockcreate"))
5248 		sid = __tsec->sockcreate_sid;
5249 	else
5250 		goto invalid;
5251 	rcu_read_unlock();
5252 
5253 	if (!sid)
5254 		return 0;
5255 
5256 	error = security_sid_to_context(sid, value, &len);
5257 	if (error)
5258 		return error;
5259 	return len;
5260 
5261 invalid:
5262 	rcu_read_unlock();
5263 	return -EINVAL;
5264 }
5265 
5266 static int selinux_setprocattr(struct task_struct *p,
5267 			       char *name, void *value, size_t size)
5268 {
5269 	struct task_security_struct *tsec;
5270 	struct task_struct *tracer;
5271 	struct cred *new;
5272 	u32 sid = 0, ptsid;
5273 	int error;
5274 	char *str = value;
5275 
5276 	if (current != p) {
5277 		/* SELinux only allows a process to change its own
5278 		   security attributes. */
5279 		return -EACCES;
5280 	}
5281 
5282 	/*
5283 	 * Basic control over ability to set these attributes at all.
5284 	 * current == p, but we'll pass them separately in case the
5285 	 * above restriction is ever removed.
5286 	 */
5287 	if (!strcmp(name, "exec"))
5288 		error = current_has_perm(p, PROCESS__SETEXEC);
5289 	else if (!strcmp(name, "fscreate"))
5290 		error = current_has_perm(p, PROCESS__SETFSCREATE);
5291 	else if (!strcmp(name, "keycreate"))
5292 		error = current_has_perm(p, PROCESS__SETKEYCREATE);
5293 	else if (!strcmp(name, "sockcreate"))
5294 		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5295 	else if (!strcmp(name, "current"))
5296 		error = current_has_perm(p, PROCESS__SETCURRENT);
5297 	else
5298 		error = -EINVAL;
5299 	if (error)
5300 		return error;
5301 
5302 	/* Obtain a SID for the context, if one was specified. */
5303 	if (size && str[1] && str[1] != '\n') {
5304 		if (str[size-1] == '\n') {
5305 			str[size-1] = 0;
5306 			size--;
5307 		}
5308 		error = security_context_to_sid(value, size, &sid);
5309 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5310 			if (!capable(CAP_MAC_ADMIN)) {
5311 				struct audit_buffer *ab;
5312 				size_t audit_size;
5313 
5314 				/* We strip a nul only if it is at the end, otherwise the
5315 				 * context contains a nul and we should audit that */
5316 				if (str[size - 1] == '\0')
5317 					audit_size = size - 1;
5318 				else
5319 					audit_size = size;
5320 				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5321 				audit_log_format(ab, "op=fscreate invalid_context=");
5322 				audit_log_n_untrustedstring(ab, value, audit_size);
5323 				audit_log_end(ab);
5324 
5325 				return error;
5326 			}
5327 			error = security_context_to_sid_force(value, size,
5328 							      &sid);
5329 		}
5330 		if (error)
5331 			return error;
5332 	}
5333 
5334 	new = prepare_creds();
5335 	if (!new)
5336 		return -ENOMEM;
5337 
5338 	/* Permission checking based on the specified context is
5339 	   performed during the actual operation (execve,
5340 	   open/mkdir/...), when we know the full context of the
5341 	   operation.  See selinux_bprm_set_creds for the execve
5342 	   checks and may_create for the file creation checks. The
5343 	   operation will then fail if the context is not permitted. */
5344 	tsec = new->security;
5345 	if (!strcmp(name, "exec")) {
5346 		tsec->exec_sid = sid;
5347 	} else if (!strcmp(name, "fscreate")) {
5348 		tsec->create_sid = sid;
5349 	} else if (!strcmp(name, "keycreate")) {
5350 		error = may_create_key(sid, p);
5351 		if (error)
5352 			goto abort_change;
5353 		tsec->keycreate_sid = sid;
5354 	} else if (!strcmp(name, "sockcreate")) {
5355 		tsec->sockcreate_sid = sid;
5356 	} else if (!strcmp(name, "current")) {
5357 		error = -EINVAL;
5358 		if (sid == 0)
5359 			goto abort_change;
5360 
5361 		/* Only allow single threaded processes to change context */
5362 		error = -EPERM;
5363 		if (!current_is_single_threaded()) {
5364 			error = security_bounded_transition(tsec->sid, sid);
5365 			if (error)
5366 				goto abort_change;
5367 		}
5368 
5369 		/* Check permissions for the transition. */
5370 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5371 				     PROCESS__DYNTRANSITION, NULL);
5372 		if (error)
5373 			goto abort_change;
5374 
5375 		/* Check for ptracing, and update the task SID if ok.
5376 		   Otherwise, leave SID unchanged and fail. */
5377 		ptsid = 0;
5378 		task_lock(p);
5379 		tracer = ptrace_parent(p);
5380 		if (tracer)
5381 			ptsid = task_sid(tracer);
5382 		task_unlock(p);
5383 
5384 		if (tracer) {
5385 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5386 					     PROCESS__PTRACE, NULL);
5387 			if (error)
5388 				goto abort_change;
5389 		}
5390 
5391 		tsec->sid = sid;
5392 	} else {
5393 		error = -EINVAL;
5394 		goto abort_change;
5395 	}
5396 
5397 	commit_creds(new);
5398 	return size;
5399 
5400 abort_change:
5401 	abort_creds(new);
5402 	return error;
5403 }
5404 
5405 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5406 {
5407 	return security_sid_to_context(secid, secdata, seclen);
5408 }
5409 
5410 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5411 {
5412 	return security_context_to_sid(secdata, seclen, secid);
5413 }
5414 
5415 static void selinux_release_secctx(char *secdata, u32 seclen)
5416 {
5417 	kfree(secdata);
5418 }
5419 
5420 /*
5421  *	called with inode->i_mutex locked
5422  */
5423 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5424 {
5425 	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5426 }
5427 
5428 /*
5429  *	called with inode->i_mutex locked
5430  */
5431 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5432 {
5433 	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5434 }
5435 
5436 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5437 {
5438 	int len = 0;
5439 	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5440 						ctx, true);
5441 	if (len < 0)
5442 		return len;
5443 	*ctxlen = len;
5444 	return 0;
5445 }
5446 #ifdef CONFIG_KEYS
5447 
5448 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5449 			     unsigned long flags)
5450 {
5451 	const struct task_security_struct *tsec;
5452 	struct key_security_struct *ksec;
5453 
5454 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5455 	if (!ksec)
5456 		return -ENOMEM;
5457 
5458 	tsec = cred->security;
5459 	if (tsec->keycreate_sid)
5460 		ksec->sid = tsec->keycreate_sid;
5461 	else
5462 		ksec->sid = tsec->sid;
5463 
5464 	k->security = ksec;
5465 	return 0;
5466 }
5467 
5468 static void selinux_key_free(struct key *k)
5469 {
5470 	struct key_security_struct *ksec = k->security;
5471 
5472 	k->security = NULL;
5473 	kfree(ksec);
5474 }
5475 
5476 static int selinux_key_permission(key_ref_t key_ref,
5477 				  const struct cred *cred,
5478 				  key_perm_t perm)
5479 {
5480 	struct key *key;
5481 	struct key_security_struct *ksec;
5482 	u32 sid;
5483 
5484 	/* if no specific permissions are requested, we skip the
5485 	   permission check. No serious, additional covert channels
5486 	   appear to be created. */
5487 	if (perm == 0)
5488 		return 0;
5489 
5490 	sid = cred_sid(cred);
5491 
5492 	key = key_ref_to_ptr(key_ref);
5493 	ksec = key->security;
5494 
5495 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5496 }
5497 
5498 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5499 {
5500 	struct key_security_struct *ksec = key->security;
5501 	char *context = NULL;
5502 	unsigned len;
5503 	int rc;
5504 
5505 	rc = security_sid_to_context(ksec->sid, &context, &len);
5506 	if (!rc)
5507 		rc = len;
5508 	*_buffer = context;
5509 	return rc;
5510 }
5511 
5512 #endif
5513 
5514 static struct security_operations selinux_ops = {
5515 	.name =				"selinux",
5516 
5517 	.ptrace_access_check =		selinux_ptrace_access_check,
5518 	.ptrace_traceme =		selinux_ptrace_traceme,
5519 	.capget =			selinux_capget,
5520 	.capset =			selinux_capset,
5521 	.capable =			selinux_capable,
5522 	.quotactl =			selinux_quotactl,
5523 	.quota_on =			selinux_quota_on,
5524 	.syslog =			selinux_syslog,
5525 	.vm_enough_memory =		selinux_vm_enough_memory,
5526 
5527 	.netlink_send =			selinux_netlink_send,
5528 
5529 	.bprm_set_creds =		selinux_bprm_set_creds,
5530 	.bprm_committing_creds =	selinux_bprm_committing_creds,
5531 	.bprm_committed_creds =		selinux_bprm_committed_creds,
5532 	.bprm_secureexec =		selinux_bprm_secureexec,
5533 
5534 	.sb_alloc_security =		selinux_sb_alloc_security,
5535 	.sb_free_security =		selinux_sb_free_security,
5536 	.sb_copy_data =			selinux_sb_copy_data,
5537 	.sb_remount =			selinux_sb_remount,
5538 	.sb_kern_mount =		selinux_sb_kern_mount,
5539 	.sb_show_options =		selinux_sb_show_options,
5540 	.sb_statfs =			selinux_sb_statfs,
5541 	.sb_mount =			selinux_mount,
5542 	.sb_umount =			selinux_umount,
5543 	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5544 	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5545 	.sb_parse_opts_str = 		selinux_parse_opts_str,
5546 
5547 
5548 	.inode_alloc_security =		selinux_inode_alloc_security,
5549 	.inode_free_security =		selinux_inode_free_security,
5550 	.inode_init_security =		selinux_inode_init_security,
5551 	.inode_create =			selinux_inode_create,
5552 	.inode_link =			selinux_inode_link,
5553 	.inode_unlink =			selinux_inode_unlink,
5554 	.inode_symlink =		selinux_inode_symlink,
5555 	.inode_mkdir =			selinux_inode_mkdir,
5556 	.inode_rmdir =			selinux_inode_rmdir,
5557 	.inode_mknod =			selinux_inode_mknod,
5558 	.inode_rename =			selinux_inode_rename,
5559 	.inode_readlink =		selinux_inode_readlink,
5560 	.inode_follow_link =		selinux_inode_follow_link,
5561 	.inode_permission =		selinux_inode_permission,
5562 	.inode_setattr =		selinux_inode_setattr,
5563 	.inode_getattr =		selinux_inode_getattr,
5564 	.inode_setxattr =		selinux_inode_setxattr,
5565 	.inode_post_setxattr =		selinux_inode_post_setxattr,
5566 	.inode_getxattr =		selinux_inode_getxattr,
5567 	.inode_listxattr =		selinux_inode_listxattr,
5568 	.inode_removexattr =		selinux_inode_removexattr,
5569 	.inode_getsecurity =		selinux_inode_getsecurity,
5570 	.inode_setsecurity =		selinux_inode_setsecurity,
5571 	.inode_listsecurity =		selinux_inode_listsecurity,
5572 	.inode_getsecid =		selinux_inode_getsecid,
5573 
5574 	.file_permission =		selinux_file_permission,
5575 	.file_alloc_security =		selinux_file_alloc_security,
5576 	.file_free_security =		selinux_file_free_security,
5577 	.file_ioctl =			selinux_file_ioctl,
5578 	.mmap_file =			selinux_mmap_file,
5579 	.mmap_addr =			selinux_mmap_addr,
5580 	.file_mprotect =		selinux_file_mprotect,
5581 	.file_lock =			selinux_file_lock,
5582 	.file_fcntl =			selinux_file_fcntl,
5583 	.file_set_fowner =		selinux_file_set_fowner,
5584 	.file_send_sigiotask =		selinux_file_send_sigiotask,
5585 	.file_receive =			selinux_file_receive,
5586 
5587 	.file_open =			selinux_file_open,
5588 
5589 	.task_create =			selinux_task_create,
5590 	.cred_alloc_blank =		selinux_cred_alloc_blank,
5591 	.cred_free =			selinux_cred_free,
5592 	.cred_prepare =			selinux_cred_prepare,
5593 	.cred_transfer =		selinux_cred_transfer,
5594 	.kernel_act_as =		selinux_kernel_act_as,
5595 	.kernel_create_files_as =	selinux_kernel_create_files_as,
5596 	.kernel_module_request =	selinux_kernel_module_request,
5597 	.task_setpgid =			selinux_task_setpgid,
5598 	.task_getpgid =			selinux_task_getpgid,
5599 	.task_getsid =			selinux_task_getsid,
5600 	.task_getsecid =		selinux_task_getsecid,
5601 	.task_setnice =			selinux_task_setnice,
5602 	.task_setioprio =		selinux_task_setioprio,
5603 	.task_getioprio =		selinux_task_getioprio,
5604 	.task_setrlimit =		selinux_task_setrlimit,
5605 	.task_setscheduler =		selinux_task_setscheduler,
5606 	.task_getscheduler =		selinux_task_getscheduler,
5607 	.task_movememory =		selinux_task_movememory,
5608 	.task_kill =			selinux_task_kill,
5609 	.task_wait =			selinux_task_wait,
5610 	.task_to_inode =		selinux_task_to_inode,
5611 
5612 	.ipc_permission =		selinux_ipc_permission,
5613 	.ipc_getsecid =			selinux_ipc_getsecid,
5614 
5615 	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5616 	.msg_msg_free_security =	selinux_msg_msg_free_security,
5617 
5618 	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5619 	.msg_queue_free_security =	selinux_msg_queue_free_security,
5620 	.msg_queue_associate =		selinux_msg_queue_associate,
5621 	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5622 	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5623 	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5624 
5625 	.shm_alloc_security =		selinux_shm_alloc_security,
5626 	.shm_free_security =		selinux_shm_free_security,
5627 	.shm_associate =		selinux_shm_associate,
5628 	.shm_shmctl =			selinux_shm_shmctl,
5629 	.shm_shmat =			selinux_shm_shmat,
5630 
5631 	.sem_alloc_security =		selinux_sem_alloc_security,
5632 	.sem_free_security =		selinux_sem_free_security,
5633 	.sem_associate =		selinux_sem_associate,
5634 	.sem_semctl =			selinux_sem_semctl,
5635 	.sem_semop =			selinux_sem_semop,
5636 
5637 	.d_instantiate =		selinux_d_instantiate,
5638 
5639 	.getprocattr =			selinux_getprocattr,
5640 	.setprocattr =			selinux_setprocattr,
5641 
5642 	.secid_to_secctx =		selinux_secid_to_secctx,
5643 	.secctx_to_secid =		selinux_secctx_to_secid,
5644 	.release_secctx =		selinux_release_secctx,
5645 	.inode_notifysecctx =		selinux_inode_notifysecctx,
5646 	.inode_setsecctx =		selinux_inode_setsecctx,
5647 	.inode_getsecctx =		selinux_inode_getsecctx,
5648 
5649 	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5650 	.unix_may_send =		selinux_socket_unix_may_send,
5651 
5652 	.socket_create =		selinux_socket_create,
5653 	.socket_post_create =		selinux_socket_post_create,
5654 	.socket_bind =			selinux_socket_bind,
5655 	.socket_connect =		selinux_socket_connect,
5656 	.socket_listen =		selinux_socket_listen,
5657 	.socket_accept =		selinux_socket_accept,
5658 	.socket_sendmsg =		selinux_socket_sendmsg,
5659 	.socket_recvmsg =		selinux_socket_recvmsg,
5660 	.socket_getsockname =		selinux_socket_getsockname,
5661 	.socket_getpeername =		selinux_socket_getpeername,
5662 	.socket_getsockopt =		selinux_socket_getsockopt,
5663 	.socket_setsockopt =		selinux_socket_setsockopt,
5664 	.socket_shutdown =		selinux_socket_shutdown,
5665 	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5666 	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5667 	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5668 	.sk_alloc_security =		selinux_sk_alloc_security,
5669 	.sk_free_security =		selinux_sk_free_security,
5670 	.sk_clone_security =		selinux_sk_clone_security,
5671 	.sk_getsecid =			selinux_sk_getsecid,
5672 	.sock_graft =			selinux_sock_graft,
5673 	.inet_conn_request =		selinux_inet_conn_request,
5674 	.inet_csk_clone =		selinux_inet_csk_clone,
5675 	.inet_conn_established =	selinux_inet_conn_established,
5676 	.secmark_relabel_packet =	selinux_secmark_relabel_packet,
5677 	.secmark_refcount_inc =		selinux_secmark_refcount_inc,
5678 	.secmark_refcount_dec =		selinux_secmark_refcount_dec,
5679 	.req_classify_flow =		selinux_req_classify_flow,
5680 	.tun_dev_create =		selinux_tun_dev_create,
5681 	.tun_dev_post_create = 		selinux_tun_dev_post_create,
5682 	.tun_dev_attach =		selinux_tun_dev_attach,
5683 
5684 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5685 	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5686 	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5687 	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5688 	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5689 	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
5690 	.xfrm_state_free_security =	selinux_xfrm_state_free,
5691 	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5692 	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5693 	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5694 	.xfrm_decode_session =		selinux_xfrm_decode_session,
5695 #endif
5696 
5697 #ifdef CONFIG_KEYS
5698 	.key_alloc =			selinux_key_alloc,
5699 	.key_free =			selinux_key_free,
5700 	.key_permission =		selinux_key_permission,
5701 	.key_getsecurity =		selinux_key_getsecurity,
5702 #endif
5703 
5704 #ifdef CONFIG_AUDIT
5705 	.audit_rule_init =		selinux_audit_rule_init,
5706 	.audit_rule_known =		selinux_audit_rule_known,
5707 	.audit_rule_match =		selinux_audit_rule_match,
5708 	.audit_rule_free =		selinux_audit_rule_free,
5709 #endif
5710 };
5711 
5712 static __init int selinux_init(void)
5713 {
5714 	if (!security_module_enable(&selinux_ops)) {
5715 		selinux_enabled = 0;
5716 		return 0;
5717 	}
5718 
5719 	if (!selinux_enabled) {
5720 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5721 		return 0;
5722 	}
5723 
5724 	printk(KERN_INFO "SELinux:  Initializing.\n");
5725 
5726 	/* Set the security state for the initial task. */
5727 	cred_init_security();
5728 
5729 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5730 
5731 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5732 					    sizeof(struct inode_security_struct),
5733 					    0, SLAB_PANIC, NULL);
5734 	avc_init();
5735 
5736 	if (register_security(&selinux_ops))
5737 		panic("SELinux: Unable to register with kernel.\n");
5738 
5739 	if (selinux_enforcing)
5740 		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5741 	else
5742 		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5743 
5744 	return 0;
5745 }
5746 
5747 static void delayed_superblock_init(struct super_block *sb, void *unused)
5748 {
5749 	superblock_doinit(sb, NULL);
5750 }
5751 
5752 void selinux_complete_init(void)
5753 {
5754 	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5755 
5756 	/* Set up any superblocks initialized prior to the policy load. */
5757 	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5758 	iterate_supers(delayed_superblock_init, NULL);
5759 }
5760 
5761 /* SELinux requires early initialization in order to label
5762    all processes and objects when they are created. */
5763 security_initcall(selinux_init);
5764 
5765 #if defined(CONFIG_NETFILTER)
5766 
5767 static struct nf_hook_ops selinux_ipv4_ops[] = {
5768 	{
5769 		.hook =		selinux_ipv4_postroute,
5770 		.owner =	THIS_MODULE,
5771 		.pf =		NFPROTO_IPV4,
5772 		.hooknum =	NF_INET_POST_ROUTING,
5773 		.priority =	NF_IP_PRI_SELINUX_LAST,
5774 	},
5775 	{
5776 		.hook =		selinux_ipv4_forward,
5777 		.owner =	THIS_MODULE,
5778 		.pf =		NFPROTO_IPV4,
5779 		.hooknum =	NF_INET_FORWARD,
5780 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5781 	},
5782 	{
5783 		.hook =		selinux_ipv4_output,
5784 		.owner =	THIS_MODULE,
5785 		.pf =		NFPROTO_IPV4,
5786 		.hooknum =	NF_INET_LOCAL_OUT,
5787 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5788 	}
5789 };
5790 
5791 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5792 
5793 static struct nf_hook_ops selinux_ipv6_ops[] = {
5794 	{
5795 		.hook =		selinux_ipv6_postroute,
5796 		.owner =	THIS_MODULE,
5797 		.pf =		NFPROTO_IPV6,
5798 		.hooknum =	NF_INET_POST_ROUTING,
5799 		.priority =	NF_IP6_PRI_SELINUX_LAST,
5800 	},
5801 	{
5802 		.hook =		selinux_ipv6_forward,
5803 		.owner =	THIS_MODULE,
5804 		.pf =		NFPROTO_IPV6,
5805 		.hooknum =	NF_INET_FORWARD,
5806 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
5807 	}
5808 };
5809 
5810 #endif	/* IPV6 */
5811 
5812 static int __init selinux_nf_ip_init(void)
5813 {
5814 	int err = 0;
5815 
5816 	if (!selinux_enabled)
5817 		goto out;
5818 
5819 	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5820 
5821 	err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5822 	if (err)
5823 		panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5824 
5825 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5826 	err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5827 	if (err)
5828 		panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5829 #endif	/* IPV6 */
5830 
5831 out:
5832 	return err;
5833 }
5834 
5835 __initcall(selinux_nf_ip_init);
5836 
5837 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5838 static void selinux_nf_ip_exit(void)
5839 {
5840 	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5841 
5842 	nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5843 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5844 	nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5845 #endif	/* IPV6 */
5846 }
5847 #endif
5848 
5849 #else /* CONFIG_NETFILTER */
5850 
5851 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5852 #define selinux_nf_ip_exit()
5853 #endif
5854 
5855 #endif /* CONFIG_NETFILTER */
5856 
5857 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5858 static int selinux_disabled;
5859 
5860 int selinux_disable(void)
5861 {
5862 	if (ss_initialized) {
5863 		/* Not permitted after initial policy load. */
5864 		return -EINVAL;
5865 	}
5866 
5867 	if (selinux_disabled) {
5868 		/* Only do this once. */
5869 		return -EINVAL;
5870 	}
5871 
5872 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5873 
5874 	selinux_disabled = 1;
5875 	selinux_enabled = 0;
5876 
5877 	reset_security_ops();
5878 
5879 	/* Try to destroy the avc node cache */
5880 	avc_disable();
5881 
5882 	/* Unregister netfilter hooks. */
5883 	selinux_nf_ip_exit();
5884 
5885 	/* Unregister selinuxfs. */
5886 	exit_sel_fs();
5887 
5888 	return 0;
5889 }
5890 #endif
5891