xref: /linux/security/selinux/hooks.c (revision 94901b7a74d82bfd30420f1d9d00898278fdc8bf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Security-Enhanced Linux (SELinux) security module
4  *
5  *  This file contains the SELinux hook function implementations.
6  *
7  *  Authors:  Stephen Smalley, <stephen.smalley.work@gmail.com>
8  *	      Chris Vance, <cvance@nai.com>
9  *	      Wayne Salamon, <wsalamon@nai.com>
10  *	      James Morris <jmorris@redhat.com>
11  *
12  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14  *					   Eric Paris <eparis@redhat.com>
15  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  *			    <dgoeddel@trustedcs.com>
17  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18  *	Paul Moore <paul@paul-moore.com>
19  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
21  *  Copyright (C) 2016 Mellanox Technologies
22  */
23 
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/errno.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/task.h>
31 #include <linux/lsm_hooks.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/swap.h>
41 #include <linux/spinlock.h>
42 #include <linux/syscalls.h>
43 #include <linux/dcache.h>
44 #include <linux/file.h>
45 #include <linux/fdtable.h>
46 #include <linux/namei.h>
47 #include <linux/mount.h>
48 #include <linux/fs_context.h>
49 #include <linux/fs_parser.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>		/* for local_port_range[] */
55 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>	/* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/sctp.h>
70 #include <net/sctp/structs.h>
71 #include <linux/quota.h>
72 #include <linux/un.h>		/* for Unix socket types */
73 #include <net/af_unix.h>	/* for Unix socket types */
74 #include <linux/parser.h>
75 #include <linux/nfs_mount.h>
76 #include <net/ipv6.h>
77 #include <linux/hugetlb.h>
78 #include <linux/personality.h>
79 #include <linux/audit.h>
80 #include <linux/string.h>
81 #include <linux/mutex.h>
82 #include <linux/posix-timers.h>
83 #include <linux/syslog.h>
84 #include <linux/user_namespace.h>
85 #include <linux/export.h>
86 #include <linux/msg.h>
87 #include <linux/shm.h>
88 #include <uapi/linux/shm.h>
89 #include <linux/bpf.h>
90 #include <linux/kernfs.h>
91 #include <linux/stringhash.h>	/* for hashlen_string() */
92 #include <uapi/linux/mount.h>
93 #include <linux/fsnotify.h>
94 #include <linux/fanotify.h>
95 #include <linux/io_uring/cmd.h>
96 #include <uapi/linux/lsm.h>
97 
98 #include "avc.h"
99 #include "objsec.h"
100 #include "netif.h"
101 #include "netnode.h"
102 #include "netport.h"
103 #include "ibpkey.h"
104 #include "xfrm.h"
105 #include "netlabel.h"
106 #include "audit.h"
107 #include "avc_ss.h"
108 
109 #define SELINUX_INODE_INIT_XATTRS 1
110 
111 struct selinux_state selinux_state;
112 
113 /* SECMARK reference count */
114 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
115 
116 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
117 static int selinux_enforcing_boot __initdata;
118 
119 static int __init enforcing_setup(char *str)
120 {
121 	unsigned long enforcing;
122 	if (!kstrtoul(str, 0, &enforcing))
123 		selinux_enforcing_boot = enforcing ? 1 : 0;
124 	return 1;
125 }
126 __setup("enforcing=", enforcing_setup);
127 #else
128 #define selinux_enforcing_boot 1
129 #endif
130 
131 int selinux_enabled_boot __initdata = 1;
132 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
133 static int __init selinux_enabled_setup(char *str)
134 {
135 	unsigned long enabled;
136 	if (!kstrtoul(str, 0, &enabled))
137 		selinux_enabled_boot = enabled ? 1 : 0;
138 	return 1;
139 }
140 __setup("selinux=", selinux_enabled_setup);
141 #endif
142 
143 static int __init checkreqprot_setup(char *str)
144 {
145 	unsigned long checkreqprot;
146 
147 	if (!kstrtoul(str, 0, &checkreqprot)) {
148 		if (checkreqprot)
149 			pr_err("SELinux: checkreqprot set to 1 via kernel parameter.  This is no longer supported.\n");
150 	}
151 	return 1;
152 }
153 __setup("checkreqprot=", checkreqprot_setup);
154 
155 /**
156  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157  *
158  * Description:
159  * This function checks the SECMARK reference counter to see if any SECMARK
160  * targets are currently configured, if the reference counter is greater than
161  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
162  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
163  * policy capability is enabled, SECMARK is always considered enabled.
164  *
165  */
166 static int selinux_secmark_enabled(void)
167 {
168 	return (selinux_policycap_alwaysnetwork() ||
169 		atomic_read(&selinux_secmark_refcount));
170 }
171 
172 /**
173  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174  *
175  * Description:
176  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
177  * (1) if any are enabled or false (0) if neither are enabled.  If the
178  * always_check_network policy capability is enabled, peer labeling
179  * is always considered enabled.
180  *
181  */
182 static int selinux_peerlbl_enabled(void)
183 {
184 	return (selinux_policycap_alwaysnetwork() ||
185 		netlbl_enabled() || selinux_xfrm_enabled());
186 }
187 
188 static int selinux_netcache_avc_callback(u32 event)
189 {
190 	if (event == AVC_CALLBACK_RESET) {
191 		sel_netif_flush();
192 		sel_netnode_flush();
193 		sel_netport_flush();
194 		synchronize_net();
195 	}
196 	return 0;
197 }
198 
199 static int selinux_lsm_notifier_avc_callback(u32 event)
200 {
201 	if (event == AVC_CALLBACK_RESET) {
202 		sel_ib_pkey_flush();
203 		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 	}
205 
206 	return 0;
207 }
208 
209 /*
210  * initialise the security for the init task
211  */
212 static void cred_init_security(void)
213 {
214 	struct task_security_struct *tsec;
215 
216 	tsec = selinux_cred(unrcu_pointer(current->real_cred));
217 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
218 }
219 
220 /*
221  * get the security ID of a set of credentials
222  */
223 static inline u32 cred_sid(const struct cred *cred)
224 {
225 	const struct task_security_struct *tsec;
226 
227 	tsec = selinux_cred(cred);
228 	return tsec->sid;
229 }
230 
231 static void __ad_net_init(struct common_audit_data *ad,
232 			  struct lsm_network_audit *net,
233 			  int ifindex, struct sock *sk, u16 family)
234 {
235 	ad->type = LSM_AUDIT_DATA_NET;
236 	ad->u.net = net;
237 	net->netif = ifindex;
238 	net->sk = sk;
239 	net->family = family;
240 }
241 
242 static void ad_net_init_from_sk(struct common_audit_data *ad,
243 				struct lsm_network_audit *net,
244 				struct sock *sk)
245 {
246 	__ad_net_init(ad, net, 0, sk, 0);
247 }
248 
249 static void ad_net_init_from_iif(struct common_audit_data *ad,
250 				 struct lsm_network_audit *net,
251 				 int ifindex, u16 family)
252 {
253 	__ad_net_init(ad, net, ifindex, NULL, family);
254 }
255 
256 /*
257  * get the objective security ID of a task
258  */
259 static inline u32 task_sid_obj(const struct task_struct *task)
260 {
261 	u32 sid;
262 
263 	rcu_read_lock();
264 	sid = cred_sid(__task_cred(task));
265 	rcu_read_unlock();
266 	return sid;
267 }
268 
269 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
270 
271 /*
272  * Try reloading inode security labels that have been marked as invalid.  The
273  * @may_sleep parameter indicates when sleeping and thus reloading labels is
274  * allowed; when set to false, returns -ECHILD when the label is
275  * invalid.  The @dentry parameter should be set to a dentry of the inode.
276  */
277 static int __inode_security_revalidate(struct inode *inode,
278 				       struct dentry *dentry,
279 				       bool may_sleep)
280 {
281 	struct inode_security_struct *isec = selinux_inode(inode);
282 
283 	might_sleep_if(may_sleep);
284 
285 	/*
286 	 * The check of isec->initialized below is racy but
287 	 * inode_doinit_with_dentry() will recheck with
288 	 * isec->lock held.
289 	 */
290 	if (selinux_initialized() &&
291 	    data_race(isec->initialized != LABEL_INITIALIZED)) {
292 		if (!may_sleep)
293 			return -ECHILD;
294 
295 		/*
296 		 * Try reloading the inode security label.  This will fail if
297 		 * @opt_dentry is NULL and no dentry for this inode can be
298 		 * found; in that case, continue using the old label.
299 		 */
300 		inode_doinit_with_dentry(inode, dentry);
301 	}
302 	return 0;
303 }
304 
305 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
306 {
307 	return selinux_inode(inode);
308 }
309 
310 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
311 {
312 	int error;
313 
314 	error = __inode_security_revalidate(inode, NULL, !rcu);
315 	if (error)
316 		return ERR_PTR(error);
317 	return selinux_inode(inode);
318 }
319 
320 /*
321  * Get the security label of an inode.
322  */
323 static struct inode_security_struct *inode_security(struct inode *inode)
324 {
325 	__inode_security_revalidate(inode, NULL, true);
326 	return selinux_inode(inode);
327 }
328 
329 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
330 {
331 	struct inode *inode = d_backing_inode(dentry);
332 
333 	return selinux_inode(inode);
334 }
335 
336 /*
337  * Get the security label of a dentry's backing inode.
338  */
339 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
340 {
341 	struct inode *inode = d_backing_inode(dentry);
342 
343 	__inode_security_revalidate(inode, dentry, true);
344 	return selinux_inode(inode);
345 }
346 
347 static void inode_free_security(struct inode *inode)
348 {
349 	struct inode_security_struct *isec = selinux_inode(inode);
350 	struct superblock_security_struct *sbsec;
351 
352 	if (!isec)
353 		return;
354 	sbsec = selinux_superblock(inode->i_sb);
355 	/*
356 	 * As not all inode security structures are in a list, we check for
357 	 * empty list outside of the lock to make sure that we won't waste
358 	 * time taking a lock doing nothing.
359 	 *
360 	 * The list_del_init() function can be safely called more than once.
361 	 * It should not be possible for this function to be called with
362 	 * concurrent list_add(), but for better safety against future changes
363 	 * in the code, we use list_empty_careful() here.
364 	 */
365 	if (!list_empty_careful(&isec->list)) {
366 		spin_lock(&sbsec->isec_lock);
367 		list_del_init(&isec->list);
368 		spin_unlock(&sbsec->isec_lock);
369 	}
370 }
371 
372 struct selinux_mnt_opts {
373 	u32 fscontext_sid;
374 	u32 context_sid;
375 	u32 rootcontext_sid;
376 	u32 defcontext_sid;
377 };
378 
379 static void selinux_free_mnt_opts(void *mnt_opts)
380 {
381 	kfree(mnt_opts);
382 }
383 
384 enum {
385 	Opt_error = -1,
386 	Opt_context = 0,
387 	Opt_defcontext = 1,
388 	Opt_fscontext = 2,
389 	Opt_rootcontext = 3,
390 	Opt_seclabel = 4,
391 };
392 
393 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
394 static const struct {
395 	const char *name;
396 	int len;
397 	int opt;
398 	bool has_arg;
399 } tokens[] = {
400 	A(context, true),
401 	A(fscontext, true),
402 	A(defcontext, true),
403 	A(rootcontext, true),
404 	A(seclabel, false),
405 };
406 #undef A
407 
408 static int match_opt_prefix(char *s, int l, char **arg)
409 {
410 	int i;
411 
412 	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
413 		size_t len = tokens[i].len;
414 		if (len > l || memcmp(s, tokens[i].name, len))
415 			continue;
416 		if (tokens[i].has_arg) {
417 			if (len == l || s[len] != '=')
418 				continue;
419 			*arg = s + len + 1;
420 		} else if (len != l)
421 			continue;
422 		return tokens[i].opt;
423 	}
424 	return Opt_error;
425 }
426 
427 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
428 
429 static int may_context_mount_sb_relabel(u32 sid,
430 			struct superblock_security_struct *sbsec,
431 			const struct cred *cred)
432 {
433 	const struct task_security_struct *tsec = selinux_cred(cred);
434 	int rc;
435 
436 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
437 			  FILESYSTEM__RELABELFROM, NULL);
438 	if (rc)
439 		return rc;
440 
441 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
442 			  FILESYSTEM__RELABELTO, NULL);
443 	return rc;
444 }
445 
446 static int may_context_mount_inode_relabel(u32 sid,
447 			struct superblock_security_struct *sbsec,
448 			const struct cred *cred)
449 {
450 	const struct task_security_struct *tsec = selinux_cred(cred);
451 	int rc;
452 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
453 			  FILESYSTEM__RELABELFROM, NULL);
454 	if (rc)
455 		return rc;
456 
457 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
458 			  FILESYSTEM__ASSOCIATE, NULL);
459 	return rc;
460 }
461 
462 static int selinux_is_genfs_special_handling(struct super_block *sb)
463 {
464 	/* Special handling. Genfs but also in-core setxattr handler */
465 	return	!strcmp(sb->s_type->name, "sysfs") ||
466 		!strcmp(sb->s_type->name, "pstore") ||
467 		!strcmp(sb->s_type->name, "debugfs") ||
468 		!strcmp(sb->s_type->name, "tracefs") ||
469 		!strcmp(sb->s_type->name, "rootfs") ||
470 		(selinux_policycap_cgroupseclabel() &&
471 		 (!strcmp(sb->s_type->name, "cgroup") ||
472 		  !strcmp(sb->s_type->name, "cgroup2")));
473 }
474 
475 static int selinux_is_sblabel_mnt(struct super_block *sb)
476 {
477 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
478 
479 	/*
480 	 * IMPORTANT: Double-check logic in this function when adding a new
481 	 * SECURITY_FS_USE_* definition!
482 	 */
483 	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
484 
485 	switch (sbsec->behavior) {
486 	case SECURITY_FS_USE_XATTR:
487 	case SECURITY_FS_USE_TRANS:
488 	case SECURITY_FS_USE_TASK:
489 	case SECURITY_FS_USE_NATIVE:
490 		return 1;
491 
492 	case SECURITY_FS_USE_GENFS:
493 		return selinux_is_genfs_special_handling(sb);
494 
495 	/* Never allow relabeling on context mounts */
496 	case SECURITY_FS_USE_MNTPOINT:
497 	case SECURITY_FS_USE_NONE:
498 	default:
499 		return 0;
500 	}
501 }
502 
503 static int sb_check_xattr_support(struct super_block *sb)
504 {
505 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
506 	struct dentry *root = sb->s_root;
507 	struct inode *root_inode = d_backing_inode(root);
508 	u32 sid;
509 	int rc;
510 
511 	/*
512 	 * Make sure that the xattr handler exists and that no
513 	 * error other than -ENODATA is returned by getxattr on
514 	 * the root directory.  -ENODATA is ok, as this may be
515 	 * the first boot of the SELinux kernel before we have
516 	 * assigned xattr values to the filesystem.
517 	 */
518 	if (!(root_inode->i_opflags & IOP_XATTR)) {
519 		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
520 			sb->s_id, sb->s_type->name);
521 		goto fallback;
522 	}
523 
524 	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
525 	if (rc < 0 && rc != -ENODATA) {
526 		if (rc == -EOPNOTSUPP) {
527 			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
528 				sb->s_id, sb->s_type->name);
529 			goto fallback;
530 		} else {
531 			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
532 				sb->s_id, sb->s_type->name, -rc);
533 			return rc;
534 		}
535 	}
536 	return 0;
537 
538 fallback:
539 	/* No xattr support - try to fallback to genfs if possible. */
540 	rc = security_genfs_sid(sb->s_type->name, "/",
541 				SECCLASS_DIR, &sid);
542 	if (rc)
543 		return -EOPNOTSUPP;
544 
545 	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
546 		sb->s_id, sb->s_type->name);
547 	sbsec->behavior = SECURITY_FS_USE_GENFS;
548 	sbsec->sid = sid;
549 	return 0;
550 }
551 
552 static int sb_finish_set_opts(struct super_block *sb)
553 {
554 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
555 	struct dentry *root = sb->s_root;
556 	struct inode *root_inode = d_backing_inode(root);
557 	int rc = 0;
558 
559 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
560 		rc = sb_check_xattr_support(sb);
561 		if (rc)
562 			return rc;
563 	}
564 
565 	sbsec->flags |= SE_SBINITIALIZED;
566 
567 	/*
568 	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
569 	 * leave the flag untouched because sb_clone_mnt_opts might be handing
570 	 * us a superblock that needs the flag to be cleared.
571 	 */
572 	if (selinux_is_sblabel_mnt(sb))
573 		sbsec->flags |= SBLABEL_MNT;
574 	else
575 		sbsec->flags &= ~SBLABEL_MNT;
576 
577 	/* Initialize the root inode. */
578 	rc = inode_doinit_with_dentry(root_inode, root);
579 
580 	/* Initialize any other inodes associated with the superblock, e.g.
581 	   inodes created prior to initial policy load or inodes created
582 	   during get_sb by a pseudo filesystem that directly
583 	   populates itself. */
584 	spin_lock(&sbsec->isec_lock);
585 	while (!list_empty(&sbsec->isec_head)) {
586 		struct inode_security_struct *isec =
587 				list_first_entry(&sbsec->isec_head,
588 					   struct inode_security_struct, list);
589 		struct inode *inode = isec->inode;
590 		list_del_init(&isec->list);
591 		spin_unlock(&sbsec->isec_lock);
592 		inode = igrab(inode);
593 		if (inode) {
594 			if (!IS_PRIVATE(inode))
595 				inode_doinit_with_dentry(inode, NULL);
596 			iput(inode);
597 		}
598 		spin_lock(&sbsec->isec_lock);
599 	}
600 	spin_unlock(&sbsec->isec_lock);
601 	return rc;
602 }
603 
604 static int bad_option(struct superblock_security_struct *sbsec, char flag,
605 		      u32 old_sid, u32 new_sid)
606 {
607 	char mnt_flags = sbsec->flags & SE_MNTMASK;
608 
609 	/* check if the old mount command had the same options */
610 	if (sbsec->flags & SE_SBINITIALIZED)
611 		if (!(sbsec->flags & flag) ||
612 		    (old_sid != new_sid))
613 			return 1;
614 
615 	/* check if we were passed the same options twice,
616 	 * aka someone passed context=a,context=b
617 	 */
618 	if (!(sbsec->flags & SE_SBINITIALIZED))
619 		if (mnt_flags & flag)
620 			return 1;
621 	return 0;
622 }
623 
624 /*
625  * Allow filesystems with binary mount data to explicitly set mount point
626  * labeling information.
627  */
628 static int selinux_set_mnt_opts(struct super_block *sb,
629 				void *mnt_opts,
630 				unsigned long kern_flags,
631 				unsigned long *set_kern_flags)
632 {
633 	const struct cred *cred = current_cred();
634 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
635 	struct dentry *root = sb->s_root;
636 	struct selinux_mnt_opts *opts = mnt_opts;
637 	struct inode_security_struct *root_isec;
638 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
639 	u32 defcontext_sid = 0;
640 	int rc = 0;
641 
642 	/*
643 	 * Specifying internal flags without providing a place to
644 	 * place the results is not allowed
645 	 */
646 	if (kern_flags && !set_kern_flags)
647 		return -EINVAL;
648 
649 	mutex_lock(&sbsec->lock);
650 
651 	if (!selinux_initialized()) {
652 		if (!opts) {
653 			/* Defer initialization until selinux_complete_init,
654 			   after the initial policy is loaded and the security
655 			   server is ready to handle calls. */
656 			if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
657 				sbsec->flags |= SE_SBNATIVE;
658 				*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
659 			}
660 			goto out;
661 		}
662 		rc = -EINVAL;
663 		pr_warn("SELinux: Unable to set superblock options "
664 			"before the security server is initialized\n");
665 		goto out;
666 	}
667 
668 	/*
669 	 * Binary mount data FS will come through this function twice.  Once
670 	 * from an explicit call and once from the generic calls from the vfs.
671 	 * Since the generic VFS calls will not contain any security mount data
672 	 * we need to skip the double mount verification.
673 	 *
674 	 * This does open a hole in which we will not notice if the first
675 	 * mount using this sb set explicit options and a second mount using
676 	 * this sb does not set any security options.  (The first options
677 	 * will be used for both mounts)
678 	 */
679 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
680 	    && !opts)
681 		goto out;
682 
683 	root_isec = backing_inode_security_novalidate(root);
684 
685 	/*
686 	 * parse the mount options, check if they are valid sids.
687 	 * also check if someone is trying to mount the same sb more
688 	 * than once with different security options.
689 	 */
690 	if (opts) {
691 		if (opts->fscontext_sid) {
692 			fscontext_sid = opts->fscontext_sid;
693 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
694 					fscontext_sid))
695 				goto out_double_mount;
696 			sbsec->flags |= FSCONTEXT_MNT;
697 		}
698 		if (opts->context_sid) {
699 			context_sid = opts->context_sid;
700 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
701 					context_sid))
702 				goto out_double_mount;
703 			sbsec->flags |= CONTEXT_MNT;
704 		}
705 		if (opts->rootcontext_sid) {
706 			rootcontext_sid = opts->rootcontext_sid;
707 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
708 					rootcontext_sid))
709 				goto out_double_mount;
710 			sbsec->flags |= ROOTCONTEXT_MNT;
711 		}
712 		if (opts->defcontext_sid) {
713 			defcontext_sid = opts->defcontext_sid;
714 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
715 					defcontext_sid))
716 				goto out_double_mount;
717 			sbsec->flags |= DEFCONTEXT_MNT;
718 		}
719 	}
720 
721 	if (sbsec->flags & SE_SBINITIALIZED) {
722 		/* previously mounted with options, but not on this attempt? */
723 		if ((sbsec->flags & SE_MNTMASK) && !opts)
724 			goto out_double_mount;
725 		rc = 0;
726 		goto out;
727 	}
728 
729 	if (strcmp(sb->s_type->name, "proc") == 0)
730 		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
731 
732 	if (!strcmp(sb->s_type->name, "debugfs") ||
733 	    !strcmp(sb->s_type->name, "tracefs") ||
734 	    !strcmp(sb->s_type->name, "binder") ||
735 	    !strcmp(sb->s_type->name, "bpf") ||
736 	    !strcmp(sb->s_type->name, "pstore") ||
737 	    !strcmp(sb->s_type->name, "securityfs"))
738 		sbsec->flags |= SE_SBGENFS;
739 
740 	if (!strcmp(sb->s_type->name, "sysfs") ||
741 	    !strcmp(sb->s_type->name, "cgroup") ||
742 	    !strcmp(sb->s_type->name, "cgroup2"))
743 		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
744 
745 	if (!sbsec->behavior) {
746 		/*
747 		 * Determine the labeling behavior to use for this
748 		 * filesystem type.
749 		 */
750 		rc = security_fs_use(sb);
751 		if (rc) {
752 			pr_warn("%s: security_fs_use(%s) returned %d\n",
753 					__func__, sb->s_type->name, rc);
754 			goto out;
755 		}
756 	}
757 
758 	/*
759 	 * If this is a user namespace mount and the filesystem type is not
760 	 * explicitly whitelisted, then no contexts are allowed on the command
761 	 * line and security labels must be ignored.
762 	 */
763 	if (sb->s_user_ns != &init_user_ns &&
764 	    strcmp(sb->s_type->name, "tmpfs") &&
765 	    strcmp(sb->s_type->name, "ramfs") &&
766 	    strcmp(sb->s_type->name, "devpts") &&
767 	    strcmp(sb->s_type->name, "overlay")) {
768 		if (context_sid || fscontext_sid || rootcontext_sid ||
769 		    defcontext_sid) {
770 			rc = -EACCES;
771 			goto out;
772 		}
773 		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
774 			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
775 			rc = security_transition_sid(current_sid(),
776 						     current_sid(),
777 						     SECCLASS_FILE, NULL,
778 						     &sbsec->mntpoint_sid);
779 			if (rc)
780 				goto out;
781 		}
782 		goto out_set_opts;
783 	}
784 
785 	/* sets the context of the superblock for the fs being mounted. */
786 	if (fscontext_sid) {
787 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
788 		if (rc)
789 			goto out;
790 
791 		sbsec->sid = fscontext_sid;
792 	}
793 
794 	/*
795 	 * Switch to using mount point labeling behavior.
796 	 * sets the label used on all file below the mountpoint, and will set
797 	 * the superblock context if not already set.
798 	 */
799 	if (sbsec->flags & SE_SBNATIVE) {
800 		/*
801 		 * This means we are initializing a superblock that has been
802 		 * mounted before the SELinux was initialized and the
803 		 * filesystem requested native labeling. We had already
804 		 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags
805 		 * in the original mount attempt, so now we just need to set
806 		 * the SECURITY_FS_USE_NATIVE behavior.
807 		 */
808 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
809 	} else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
810 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
811 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
812 	}
813 
814 	if (context_sid) {
815 		if (!fscontext_sid) {
816 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
817 							  cred);
818 			if (rc)
819 				goto out;
820 			sbsec->sid = context_sid;
821 		} else {
822 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
823 							     cred);
824 			if (rc)
825 				goto out;
826 		}
827 		if (!rootcontext_sid)
828 			rootcontext_sid = context_sid;
829 
830 		sbsec->mntpoint_sid = context_sid;
831 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
832 	}
833 
834 	if (rootcontext_sid) {
835 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
836 						     cred);
837 		if (rc)
838 			goto out;
839 
840 		root_isec->sid = rootcontext_sid;
841 		root_isec->initialized = LABEL_INITIALIZED;
842 	}
843 
844 	if (defcontext_sid) {
845 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
846 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
847 			rc = -EINVAL;
848 			pr_warn("SELinux: defcontext option is "
849 			       "invalid for this filesystem type\n");
850 			goto out;
851 		}
852 
853 		if (defcontext_sid != sbsec->def_sid) {
854 			rc = may_context_mount_inode_relabel(defcontext_sid,
855 							     sbsec, cred);
856 			if (rc)
857 				goto out;
858 		}
859 
860 		sbsec->def_sid = defcontext_sid;
861 	}
862 
863 out_set_opts:
864 	rc = sb_finish_set_opts(sb);
865 out:
866 	mutex_unlock(&sbsec->lock);
867 	return rc;
868 out_double_mount:
869 	rc = -EINVAL;
870 	pr_warn("SELinux: mount invalid.  Same superblock, different "
871 	       "security settings for (dev %s, type %s)\n", sb->s_id,
872 	       sb->s_type->name);
873 	goto out;
874 }
875 
876 static int selinux_cmp_sb_context(const struct super_block *oldsb,
877 				    const struct super_block *newsb)
878 {
879 	struct superblock_security_struct *old = selinux_superblock(oldsb);
880 	struct superblock_security_struct *new = selinux_superblock(newsb);
881 	char oldflags = old->flags & SE_MNTMASK;
882 	char newflags = new->flags & SE_MNTMASK;
883 
884 	if (oldflags != newflags)
885 		goto mismatch;
886 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
887 		goto mismatch;
888 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
889 		goto mismatch;
890 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
891 		goto mismatch;
892 	if (oldflags & ROOTCONTEXT_MNT) {
893 		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
894 		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
895 		if (oldroot->sid != newroot->sid)
896 			goto mismatch;
897 	}
898 	return 0;
899 mismatch:
900 	pr_warn("SELinux: mount invalid.  Same superblock, "
901 			    "different security settings for (dev %s, "
902 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
903 	return -EBUSY;
904 }
905 
906 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
907 					struct super_block *newsb,
908 					unsigned long kern_flags,
909 					unsigned long *set_kern_flags)
910 {
911 	int rc = 0;
912 	const struct superblock_security_struct *oldsbsec =
913 						selinux_superblock(oldsb);
914 	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
915 
916 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
917 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
918 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
919 
920 	/*
921 	 * Specifying internal flags without providing a place to
922 	 * place the results is not allowed.
923 	 */
924 	if (kern_flags && !set_kern_flags)
925 		return -EINVAL;
926 
927 	mutex_lock(&newsbsec->lock);
928 
929 	/*
930 	 * if the parent was able to be mounted it clearly had no special lsm
931 	 * mount options.  thus we can safely deal with this superblock later
932 	 */
933 	if (!selinux_initialized()) {
934 		if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
935 			newsbsec->flags |= SE_SBNATIVE;
936 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
937 		}
938 		goto out;
939 	}
940 
941 	/* how can we clone if the old one wasn't set up?? */
942 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
943 
944 	/* if fs is reusing a sb, make sure that the contexts match */
945 	if (newsbsec->flags & SE_SBINITIALIZED) {
946 		mutex_unlock(&newsbsec->lock);
947 		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
948 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
949 		return selinux_cmp_sb_context(oldsb, newsb);
950 	}
951 
952 	newsbsec->flags = oldsbsec->flags;
953 
954 	newsbsec->sid = oldsbsec->sid;
955 	newsbsec->def_sid = oldsbsec->def_sid;
956 	newsbsec->behavior = oldsbsec->behavior;
957 
958 	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
959 		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
960 		rc = security_fs_use(newsb);
961 		if (rc)
962 			goto out;
963 	}
964 
965 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
966 		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
967 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
968 	}
969 
970 	if (set_context) {
971 		u32 sid = oldsbsec->mntpoint_sid;
972 
973 		if (!set_fscontext)
974 			newsbsec->sid = sid;
975 		if (!set_rootcontext) {
976 			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
977 			newisec->sid = sid;
978 		}
979 		newsbsec->mntpoint_sid = sid;
980 	}
981 	if (set_rootcontext) {
982 		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
983 		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
984 
985 		newisec->sid = oldisec->sid;
986 	}
987 
988 	sb_finish_set_opts(newsb);
989 out:
990 	mutex_unlock(&newsbsec->lock);
991 	return rc;
992 }
993 
994 /*
995  * NOTE: the caller is responsible for freeing the memory even if on error.
996  */
997 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
998 {
999 	struct selinux_mnt_opts *opts = *mnt_opts;
1000 	u32 *dst_sid;
1001 	int rc;
1002 
1003 	if (token == Opt_seclabel)
1004 		/* eaten and completely ignored */
1005 		return 0;
1006 	if (!s)
1007 		return -EINVAL;
1008 
1009 	if (!selinux_initialized()) {
1010 		pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
1011 		return -EINVAL;
1012 	}
1013 
1014 	if (!opts) {
1015 		opts = kzalloc(sizeof(*opts), GFP_KERNEL);
1016 		if (!opts)
1017 			return -ENOMEM;
1018 		*mnt_opts = opts;
1019 	}
1020 
1021 	switch (token) {
1022 	case Opt_context:
1023 		if (opts->context_sid || opts->defcontext_sid)
1024 			goto err;
1025 		dst_sid = &opts->context_sid;
1026 		break;
1027 	case Opt_fscontext:
1028 		if (opts->fscontext_sid)
1029 			goto err;
1030 		dst_sid = &opts->fscontext_sid;
1031 		break;
1032 	case Opt_rootcontext:
1033 		if (opts->rootcontext_sid)
1034 			goto err;
1035 		dst_sid = &opts->rootcontext_sid;
1036 		break;
1037 	case Opt_defcontext:
1038 		if (opts->context_sid || opts->defcontext_sid)
1039 			goto err;
1040 		dst_sid = &opts->defcontext_sid;
1041 		break;
1042 	default:
1043 		WARN_ON(1);
1044 		return -EINVAL;
1045 	}
1046 	rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL);
1047 	if (rc)
1048 		pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1049 			s, rc);
1050 	return rc;
1051 
1052 err:
1053 	pr_warn(SEL_MOUNT_FAIL_MSG);
1054 	return -EINVAL;
1055 }
1056 
1057 static int show_sid(struct seq_file *m, u32 sid)
1058 {
1059 	char *context = NULL;
1060 	u32 len;
1061 	int rc;
1062 
1063 	rc = security_sid_to_context(sid, &context, &len);
1064 	if (!rc) {
1065 		bool has_comma = strchr(context, ',');
1066 
1067 		seq_putc(m, '=');
1068 		if (has_comma)
1069 			seq_putc(m, '\"');
1070 		seq_escape(m, context, "\"\n\\");
1071 		if (has_comma)
1072 			seq_putc(m, '\"');
1073 	}
1074 	kfree(context);
1075 	return rc;
1076 }
1077 
1078 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1079 {
1080 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1081 	int rc;
1082 
1083 	if (!(sbsec->flags & SE_SBINITIALIZED))
1084 		return 0;
1085 
1086 	if (!selinux_initialized())
1087 		return 0;
1088 
1089 	if (sbsec->flags & FSCONTEXT_MNT) {
1090 		seq_putc(m, ',');
1091 		seq_puts(m, FSCONTEXT_STR);
1092 		rc = show_sid(m, sbsec->sid);
1093 		if (rc)
1094 			return rc;
1095 	}
1096 	if (sbsec->flags & CONTEXT_MNT) {
1097 		seq_putc(m, ',');
1098 		seq_puts(m, CONTEXT_STR);
1099 		rc = show_sid(m, sbsec->mntpoint_sid);
1100 		if (rc)
1101 			return rc;
1102 	}
1103 	if (sbsec->flags & DEFCONTEXT_MNT) {
1104 		seq_putc(m, ',');
1105 		seq_puts(m, DEFCONTEXT_STR);
1106 		rc = show_sid(m, sbsec->def_sid);
1107 		if (rc)
1108 			return rc;
1109 	}
1110 	if (sbsec->flags & ROOTCONTEXT_MNT) {
1111 		struct dentry *root = sb->s_root;
1112 		struct inode_security_struct *isec = backing_inode_security(root);
1113 		seq_putc(m, ',');
1114 		seq_puts(m, ROOTCONTEXT_STR);
1115 		rc = show_sid(m, isec->sid);
1116 		if (rc)
1117 			return rc;
1118 	}
1119 	if (sbsec->flags & SBLABEL_MNT) {
1120 		seq_putc(m, ',');
1121 		seq_puts(m, SECLABEL_STR);
1122 	}
1123 	return 0;
1124 }
1125 
1126 static inline u16 inode_mode_to_security_class(umode_t mode)
1127 {
1128 	switch (mode & S_IFMT) {
1129 	case S_IFSOCK:
1130 		return SECCLASS_SOCK_FILE;
1131 	case S_IFLNK:
1132 		return SECCLASS_LNK_FILE;
1133 	case S_IFREG:
1134 		return SECCLASS_FILE;
1135 	case S_IFBLK:
1136 		return SECCLASS_BLK_FILE;
1137 	case S_IFDIR:
1138 		return SECCLASS_DIR;
1139 	case S_IFCHR:
1140 		return SECCLASS_CHR_FILE;
1141 	case S_IFIFO:
1142 		return SECCLASS_FIFO_FILE;
1143 
1144 	}
1145 
1146 	return SECCLASS_FILE;
1147 }
1148 
1149 static inline int default_protocol_stream(int protocol)
1150 {
1151 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1152 		protocol == IPPROTO_MPTCP);
1153 }
1154 
1155 static inline int default_protocol_dgram(int protocol)
1156 {
1157 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1158 }
1159 
1160 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1161 {
1162 	bool extsockclass = selinux_policycap_extsockclass();
1163 
1164 	switch (family) {
1165 	case PF_UNIX:
1166 		switch (type) {
1167 		case SOCK_STREAM:
1168 		case SOCK_SEQPACKET:
1169 			return SECCLASS_UNIX_STREAM_SOCKET;
1170 		case SOCK_DGRAM:
1171 		case SOCK_RAW:
1172 			return SECCLASS_UNIX_DGRAM_SOCKET;
1173 		}
1174 		break;
1175 	case PF_INET:
1176 	case PF_INET6:
1177 		switch (type) {
1178 		case SOCK_STREAM:
1179 		case SOCK_SEQPACKET:
1180 			if (default_protocol_stream(protocol))
1181 				return SECCLASS_TCP_SOCKET;
1182 			else if (extsockclass && protocol == IPPROTO_SCTP)
1183 				return SECCLASS_SCTP_SOCKET;
1184 			else
1185 				return SECCLASS_RAWIP_SOCKET;
1186 		case SOCK_DGRAM:
1187 			if (default_protocol_dgram(protocol))
1188 				return SECCLASS_UDP_SOCKET;
1189 			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1190 						  protocol == IPPROTO_ICMPV6))
1191 				return SECCLASS_ICMP_SOCKET;
1192 			else
1193 				return SECCLASS_RAWIP_SOCKET;
1194 		case SOCK_DCCP:
1195 			return SECCLASS_DCCP_SOCKET;
1196 		default:
1197 			return SECCLASS_RAWIP_SOCKET;
1198 		}
1199 		break;
1200 	case PF_NETLINK:
1201 		switch (protocol) {
1202 		case NETLINK_ROUTE:
1203 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1204 		case NETLINK_SOCK_DIAG:
1205 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1206 		case NETLINK_NFLOG:
1207 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1208 		case NETLINK_XFRM:
1209 			return SECCLASS_NETLINK_XFRM_SOCKET;
1210 		case NETLINK_SELINUX:
1211 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1212 		case NETLINK_ISCSI:
1213 			return SECCLASS_NETLINK_ISCSI_SOCKET;
1214 		case NETLINK_AUDIT:
1215 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1216 		case NETLINK_FIB_LOOKUP:
1217 			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1218 		case NETLINK_CONNECTOR:
1219 			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1220 		case NETLINK_NETFILTER:
1221 			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1222 		case NETLINK_DNRTMSG:
1223 			return SECCLASS_NETLINK_DNRT_SOCKET;
1224 		case NETLINK_KOBJECT_UEVENT:
1225 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1226 		case NETLINK_GENERIC:
1227 			return SECCLASS_NETLINK_GENERIC_SOCKET;
1228 		case NETLINK_SCSITRANSPORT:
1229 			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1230 		case NETLINK_RDMA:
1231 			return SECCLASS_NETLINK_RDMA_SOCKET;
1232 		case NETLINK_CRYPTO:
1233 			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1234 		default:
1235 			return SECCLASS_NETLINK_SOCKET;
1236 		}
1237 	case PF_PACKET:
1238 		return SECCLASS_PACKET_SOCKET;
1239 	case PF_KEY:
1240 		return SECCLASS_KEY_SOCKET;
1241 	case PF_APPLETALK:
1242 		return SECCLASS_APPLETALK_SOCKET;
1243 	}
1244 
1245 	if (extsockclass) {
1246 		switch (family) {
1247 		case PF_AX25:
1248 			return SECCLASS_AX25_SOCKET;
1249 		case PF_IPX:
1250 			return SECCLASS_IPX_SOCKET;
1251 		case PF_NETROM:
1252 			return SECCLASS_NETROM_SOCKET;
1253 		case PF_ATMPVC:
1254 			return SECCLASS_ATMPVC_SOCKET;
1255 		case PF_X25:
1256 			return SECCLASS_X25_SOCKET;
1257 		case PF_ROSE:
1258 			return SECCLASS_ROSE_SOCKET;
1259 		case PF_DECnet:
1260 			return SECCLASS_DECNET_SOCKET;
1261 		case PF_ATMSVC:
1262 			return SECCLASS_ATMSVC_SOCKET;
1263 		case PF_RDS:
1264 			return SECCLASS_RDS_SOCKET;
1265 		case PF_IRDA:
1266 			return SECCLASS_IRDA_SOCKET;
1267 		case PF_PPPOX:
1268 			return SECCLASS_PPPOX_SOCKET;
1269 		case PF_LLC:
1270 			return SECCLASS_LLC_SOCKET;
1271 		case PF_CAN:
1272 			return SECCLASS_CAN_SOCKET;
1273 		case PF_TIPC:
1274 			return SECCLASS_TIPC_SOCKET;
1275 		case PF_BLUETOOTH:
1276 			return SECCLASS_BLUETOOTH_SOCKET;
1277 		case PF_IUCV:
1278 			return SECCLASS_IUCV_SOCKET;
1279 		case PF_RXRPC:
1280 			return SECCLASS_RXRPC_SOCKET;
1281 		case PF_ISDN:
1282 			return SECCLASS_ISDN_SOCKET;
1283 		case PF_PHONET:
1284 			return SECCLASS_PHONET_SOCKET;
1285 		case PF_IEEE802154:
1286 			return SECCLASS_IEEE802154_SOCKET;
1287 		case PF_CAIF:
1288 			return SECCLASS_CAIF_SOCKET;
1289 		case PF_ALG:
1290 			return SECCLASS_ALG_SOCKET;
1291 		case PF_NFC:
1292 			return SECCLASS_NFC_SOCKET;
1293 		case PF_VSOCK:
1294 			return SECCLASS_VSOCK_SOCKET;
1295 		case PF_KCM:
1296 			return SECCLASS_KCM_SOCKET;
1297 		case PF_QIPCRTR:
1298 			return SECCLASS_QIPCRTR_SOCKET;
1299 		case PF_SMC:
1300 			return SECCLASS_SMC_SOCKET;
1301 		case PF_XDP:
1302 			return SECCLASS_XDP_SOCKET;
1303 		case PF_MCTP:
1304 			return SECCLASS_MCTP_SOCKET;
1305 #if PF_MAX > 46
1306 #error New address family defined, please update this function.
1307 #endif
1308 		}
1309 	}
1310 
1311 	return SECCLASS_SOCKET;
1312 }
1313 
1314 static int selinux_genfs_get_sid(struct dentry *dentry,
1315 				 u16 tclass,
1316 				 u16 flags,
1317 				 u32 *sid)
1318 {
1319 	int rc;
1320 	struct super_block *sb = dentry->d_sb;
1321 	char *buffer, *path;
1322 
1323 	buffer = (char *)__get_free_page(GFP_KERNEL);
1324 	if (!buffer)
1325 		return -ENOMEM;
1326 
1327 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1328 	if (IS_ERR(path))
1329 		rc = PTR_ERR(path);
1330 	else {
1331 		if (flags & SE_SBPROC) {
1332 			/* each process gets a /proc/PID/ entry. Strip off the
1333 			 * PID part to get a valid selinux labeling.
1334 			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1335 			while (path[1] >= '0' && path[1] <= '9') {
1336 				path[1] = '/';
1337 				path++;
1338 			}
1339 		}
1340 		rc = security_genfs_sid(sb->s_type->name,
1341 					path, tclass, sid);
1342 		if (rc == -ENOENT) {
1343 			/* No match in policy, mark as unlabeled. */
1344 			*sid = SECINITSID_UNLABELED;
1345 			rc = 0;
1346 		}
1347 	}
1348 	free_page((unsigned long)buffer);
1349 	return rc;
1350 }
1351 
1352 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1353 				  u32 def_sid, u32 *sid)
1354 {
1355 #define INITCONTEXTLEN 255
1356 	char *context;
1357 	unsigned int len;
1358 	int rc;
1359 
1360 	len = INITCONTEXTLEN;
1361 	context = kmalloc(len + 1, GFP_NOFS);
1362 	if (!context)
1363 		return -ENOMEM;
1364 
1365 	context[len] = '\0';
1366 	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1367 	if (rc == -ERANGE) {
1368 		kfree(context);
1369 
1370 		/* Need a larger buffer.  Query for the right size. */
1371 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1372 		if (rc < 0)
1373 			return rc;
1374 
1375 		len = rc;
1376 		context = kmalloc(len + 1, GFP_NOFS);
1377 		if (!context)
1378 			return -ENOMEM;
1379 
1380 		context[len] = '\0';
1381 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1382 				    context, len);
1383 	}
1384 	if (rc < 0) {
1385 		kfree(context);
1386 		if (rc != -ENODATA) {
1387 			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1388 				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1389 			return rc;
1390 		}
1391 		*sid = def_sid;
1392 		return 0;
1393 	}
1394 
1395 	rc = security_context_to_sid_default(context, rc, sid,
1396 					     def_sid, GFP_NOFS);
1397 	if (rc) {
1398 		char *dev = inode->i_sb->s_id;
1399 		unsigned long ino = inode->i_ino;
1400 
1401 		if (rc == -EINVAL) {
1402 			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1403 					      ino, dev, context);
1404 		} else {
1405 			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1406 				__func__, context, -rc, dev, ino);
1407 		}
1408 	}
1409 	kfree(context);
1410 	return 0;
1411 }
1412 
1413 /* The inode's security attributes must be initialized before first use. */
1414 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1415 {
1416 	struct superblock_security_struct *sbsec = NULL;
1417 	struct inode_security_struct *isec = selinux_inode(inode);
1418 	u32 task_sid, sid = 0;
1419 	u16 sclass;
1420 	struct dentry *dentry;
1421 	int rc = 0;
1422 
1423 	if (isec->initialized == LABEL_INITIALIZED)
1424 		return 0;
1425 
1426 	spin_lock(&isec->lock);
1427 	if (isec->initialized == LABEL_INITIALIZED)
1428 		goto out_unlock;
1429 
1430 	if (isec->sclass == SECCLASS_FILE)
1431 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1432 
1433 	sbsec = selinux_superblock(inode->i_sb);
1434 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1435 		/* Defer initialization until selinux_complete_init,
1436 		   after the initial policy is loaded and the security
1437 		   server is ready to handle calls. */
1438 		spin_lock(&sbsec->isec_lock);
1439 		if (list_empty(&isec->list))
1440 			list_add(&isec->list, &sbsec->isec_head);
1441 		spin_unlock(&sbsec->isec_lock);
1442 		goto out_unlock;
1443 	}
1444 
1445 	sclass = isec->sclass;
1446 	task_sid = isec->task_sid;
1447 	sid = isec->sid;
1448 	isec->initialized = LABEL_PENDING;
1449 	spin_unlock(&isec->lock);
1450 
1451 	switch (sbsec->behavior) {
1452 	/*
1453 	 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels
1454 	 * via xattr when called from delayed_superblock_init().
1455 	 */
1456 	case SECURITY_FS_USE_NATIVE:
1457 	case SECURITY_FS_USE_XATTR:
1458 		if (!(inode->i_opflags & IOP_XATTR)) {
1459 			sid = sbsec->def_sid;
1460 			break;
1461 		}
1462 		/* Need a dentry, since the xattr API requires one.
1463 		   Life would be simpler if we could just pass the inode. */
1464 		if (opt_dentry) {
1465 			/* Called from d_instantiate or d_splice_alias. */
1466 			dentry = dget(opt_dentry);
1467 		} else {
1468 			/*
1469 			 * Called from selinux_complete_init, try to find a dentry.
1470 			 * Some filesystems really want a connected one, so try
1471 			 * that first.  We could split SECURITY_FS_USE_XATTR in
1472 			 * two, depending upon that...
1473 			 */
1474 			dentry = d_find_alias(inode);
1475 			if (!dentry)
1476 				dentry = d_find_any_alias(inode);
1477 		}
1478 		if (!dentry) {
1479 			/*
1480 			 * this is can be hit on boot when a file is accessed
1481 			 * before the policy is loaded.  When we load policy we
1482 			 * may find inodes that have no dentry on the
1483 			 * sbsec->isec_head list.  No reason to complain as these
1484 			 * will get fixed up the next time we go through
1485 			 * inode_doinit with a dentry, before these inodes could
1486 			 * be used again by userspace.
1487 			 */
1488 			goto out_invalid;
1489 		}
1490 
1491 		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1492 					    &sid);
1493 		dput(dentry);
1494 		if (rc)
1495 			goto out;
1496 		break;
1497 	case SECURITY_FS_USE_TASK:
1498 		sid = task_sid;
1499 		break;
1500 	case SECURITY_FS_USE_TRANS:
1501 		/* Default to the fs SID. */
1502 		sid = sbsec->sid;
1503 
1504 		/* Try to obtain a transition SID. */
1505 		rc = security_transition_sid(task_sid, sid,
1506 					     sclass, NULL, &sid);
1507 		if (rc)
1508 			goto out;
1509 		break;
1510 	case SECURITY_FS_USE_MNTPOINT:
1511 		sid = sbsec->mntpoint_sid;
1512 		break;
1513 	default:
1514 		/* Default to the fs superblock SID. */
1515 		sid = sbsec->sid;
1516 
1517 		if ((sbsec->flags & SE_SBGENFS) &&
1518 		     (!S_ISLNK(inode->i_mode) ||
1519 		      selinux_policycap_genfs_seclabel_symlinks())) {
1520 			/* We must have a dentry to determine the label on
1521 			 * procfs inodes */
1522 			if (opt_dentry) {
1523 				/* Called from d_instantiate or
1524 				 * d_splice_alias. */
1525 				dentry = dget(opt_dentry);
1526 			} else {
1527 				/* Called from selinux_complete_init, try to
1528 				 * find a dentry.  Some filesystems really want
1529 				 * a connected one, so try that first.
1530 				 */
1531 				dentry = d_find_alias(inode);
1532 				if (!dentry)
1533 					dentry = d_find_any_alias(inode);
1534 			}
1535 			/*
1536 			 * This can be hit on boot when a file is accessed
1537 			 * before the policy is loaded.  When we load policy we
1538 			 * may find inodes that have no dentry on the
1539 			 * sbsec->isec_head list.  No reason to complain as
1540 			 * these will get fixed up the next time we go through
1541 			 * inode_doinit() with a dentry, before these inodes
1542 			 * could be used again by userspace.
1543 			 */
1544 			if (!dentry)
1545 				goto out_invalid;
1546 			rc = selinux_genfs_get_sid(dentry, sclass,
1547 						   sbsec->flags, &sid);
1548 			if (rc) {
1549 				dput(dentry);
1550 				goto out;
1551 			}
1552 
1553 			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1554 			    (inode->i_opflags & IOP_XATTR)) {
1555 				rc = inode_doinit_use_xattr(inode, dentry,
1556 							    sid, &sid);
1557 				if (rc) {
1558 					dput(dentry);
1559 					goto out;
1560 				}
1561 			}
1562 			dput(dentry);
1563 		}
1564 		break;
1565 	}
1566 
1567 out:
1568 	spin_lock(&isec->lock);
1569 	if (isec->initialized == LABEL_PENDING) {
1570 		if (rc) {
1571 			isec->initialized = LABEL_INVALID;
1572 			goto out_unlock;
1573 		}
1574 		isec->initialized = LABEL_INITIALIZED;
1575 		isec->sid = sid;
1576 	}
1577 
1578 out_unlock:
1579 	spin_unlock(&isec->lock);
1580 	return rc;
1581 
1582 out_invalid:
1583 	spin_lock(&isec->lock);
1584 	if (isec->initialized == LABEL_PENDING) {
1585 		isec->initialized = LABEL_INVALID;
1586 		isec->sid = sid;
1587 	}
1588 	spin_unlock(&isec->lock);
1589 	return 0;
1590 }
1591 
1592 /* Convert a Linux signal to an access vector. */
1593 static inline u32 signal_to_av(int sig)
1594 {
1595 	u32 perm = 0;
1596 
1597 	switch (sig) {
1598 	case SIGCHLD:
1599 		/* Commonly granted from child to parent. */
1600 		perm = PROCESS__SIGCHLD;
1601 		break;
1602 	case SIGKILL:
1603 		/* Cannot be caught or ignored */
1604 		perm = PROCESS__SIGKILL;
1605 		break;
1606 	case SIGSTOP:
1607 		/* Cannot be caught or ignored */
1608 		perm = PROCESS__SIGSTOP;
1609 		break;
1610 	default:
1611 		/* All other signals. */
1612 		perm = PROCESS__SIGNAL;
1613 		break;
1614 	}
1615 
1616 	return perm;
1617 }
1618 
1619 #if CAP_LAST_CAP > 63
1620 #error Fix SELinux to handle capabilities > 63.
1621 #endif
1622 
1623 /* Check whether a task is allowed to use a capability. */
1624 static int cred_has_capability(const struct cred *cred,
1625 			       int cap, unsigned int opts, bool initns)
1626 {
1627 	struct common_audit_data ad;
1628 	struct av_decision avd;
1629 	u16 sclass;
1630 	u32 sid = cred_sid(cred);
1631 	u32 av = CAP_TO_MASK(cap);
1632 	int rc;
1633 
1634 	ad.type = LSM_AUDIT_DATA_CAP;
1635 	ad.u.cap = cap;
1636 
1637 	switch (CAP_TO_INDEX(cap)) {
1638 	case 0:
1639 		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1640 		break;
1641 	case 1:
1642 		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1643 		break;
1644 	default:
1645 		pr_err("SELinux:  out of range capability %d\n", cap);
1646 		BUG();
1647 		return -EINVAL;
1648 	}
1649 
1650 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1651 	if (!(opts & CAP_OPT_NOAUDIT)) {
1652 		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1653 		if (rc2)
1654 			return rc2;
1655 	}
1656 	return rc;
1657 }
1658 
1659 /* Check whether a task has a particular permission to an inode.
1660    The 'adp' parameter is optional and allows other audit
1661    data to be passed (e.g. the dentry). */
1662 static int inode_has_perm(const struct cred *cred,
1663 			  struct inode *inode,
1664 			  u32 perms,
1665 			  struct common_audit_data *adp)
1666 {
1667 	struct inode_security_struct *isec;
1668 	u32 sid;
1669 
1670 	if (unlikely(IS_PRIVATE(inode)))
1671 		return 0;
1672 
1673 	sid = cred_sid(cred);
1674 	isec = selinux_inode(inode);
1675 
1676 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1677 }
1678 
1679 /* Same as inode_has_perm, but pass explicit audit data containing
1680    the dentry to help the auditing code to more easily generate the
1681    pathname if needed. */
1682 static inline int dentry_has_perm(const struct cred *cred,
1683 				  struct dentry *dentry,
1684 				  u32 av)
1685 {
1686 	struct inode *inode = d_backing_inode(dentry);
1687 	struct common_audit_data ad;
1688 
1689 	ad.type = LSM_AUDIT_DATA_DENTRY;
1690 	ad.u.dentry = dentry;
1691 	__inode_security_revalidate(inode, dentry, true);
1692 	return inode_has_perm(cred, inode, av, &ad);
1693 }
1694 
1695 /* Same as inode_has_perm, but pass explicit audit data containing
1696    the path to help the auditing code to more easily generate the
1697    pathname if needed. */
1698 static inline int path_has_perm(const struct cred *cred,
1699 				const struct path *path,
1700 				u32 av)
1701 {
1702 	struct inode *inode = d_backing_inode(path->dentry);
1703 	struct common_audit_data ad;
1704 
1705 	ad.type = LSM_AUDIT_DATA_PATH;
1706 	ad.u.path = *path;
1707 	__inode_security_revalidate(inode, path->dentry, true);
1708 	return inode_has_perm(cred, inode, av, &ad);
1709 }
1710 
1711 /* Same as path_has_perm, but uses the inode from the file struct. */
1712 static inline int file_path_has_perm(const struct cred *cred,
1713 				     struct file *file,
1714 				     u32 av)
1715 {
1716 	struct common_audit_data ad;
1717 
1718 	ad.type = LSM_AUDIT_DATA_FILE;
1719 	ad.u.file = file;
1720 	return inode_has_perm(cred, file_inode(file), av, &ad);
1721 }
1722 
1723 #ifdef CONFIG_BPF_SYSCALL
1724 static int bpf_fd_pass(const struct file *file, u32 sid);
1725 #endif
1726 
1727 /* Check whether a task can use an open file descriptor to
1728    access an inode in a given way.  Check access to the
1729    descriptor itself, and then use dentry_has_perm to
1730    check a particular permission to the file.
1731    Access to the descriptor is implicitly granted if it
1732    has the same SID as the process.  If av is zero, then
1733    access to the file is not checked, e.g. for cases
1734    where only the descriptor is affected like seek. */
1735 static int file_has_perm(const struct cred *cred,
1736 			 struct file *file,
1737 			 u32 av)
1738 {
1739 	struct file_security_struct *fsec = selinux_file(file);
1740 	struct inode *inode = file_inode(file);
1741 	struct common_audit_data ad;
1742 	u32 sid = cred_sid(cred);
1743 	int rc;
1744 
1745 	ad.type = LSM_AUDIT_DATA_FILE;
1746 	ad.u.file = file;
1747 
1748 	if (sid != fsec->sid) {
1749 		rc = avc_has_perm(sid, fsec->sid,
1750 				  SECCLASS_FD,
1751 				  FD__USE,
1752 				  &ad);
1753 		if (rc)
1754 			goto out;
1755 	}
1756 
1757 #ifdef CONFIG_BPF_SYSCALL
1758 	rc = bpf_fd_pass(file, cred_sid(cred));
1759 	if (rc)
1760 		return rc;
1761 #endif
1762 
1763 	/* av is zero if only checking access to the descriptor. */
1764 	rc = 0;
1765 	if (av)
1766 		rc = inode_has_perm(cred, inode, av, &ad);
1767 
1768 out:
1769 	return rc;
1770 }
1771 
1772 /*
1773  * Determine the label for an inode that might be unioned.
1774  */
1775 static int
1776 selinux_determine_inode_label(const struct task_security_struct *tsec,
1777 				 struct inode *dir,
1778 				 const struct qstr *name, u16 tclass,
1779 				 u32 *_new_isid)
1780 {
1781 	const struct superblock_security_struct *sbsec =
1782 						selinux_superblock(dir->i_sb);
1783 
1784 	if ((sbsec->flags & SE_SBINITIALIZED) &&
1785 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1786 		*_new_isid = sbsec->mntpoint_sid;
1787 	} else if ((sbsec->flags & SBLABEL_MNT) &&
1788 		   tsec->create_sid) {
1789 		*_new_isid = tsec->create_sid;
1790 	} else {
1791 		const struct inode_security_struct *dsec = inode_security(dir);
1792 		return security_transition_sid(tsec->sid,
1793 					       dsec->sid, tclass,
1794 					       name, _new_isid);
1795 	}
1796 
1797 	return 0;
1798 }
1799 
1800 /* Check whether a task can create a file. */
1801 static int may_create(struct inode *dir,
1802 		      struct dentry *dentry,
1803 		      u16 tclass)
1804 {
1805 	const struct task_security_struct *tsec = selinux_cred(current_cred());
1806 	struct inode_security_struct *dsec;
1807 	struct superblock_security_struct *sbsec;
1808 	u32 sid, newsid;
1809 	struct common_audit_data ad;
1810 	int rc;
1811 
1812 	dsec = inode_security(dir);
1813 	sbsec = selinux_superblock(dir->i_sb);
1814 
1815 	sid = tsec->sid;
1816 
1817 	ad.type = LSM_AUDIT_DATA_DENTRY;
1818 	ad.u.dentry = dentry;
1819 
1820 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1821 			  DIR__ADD_NAME | DIR__SEARCH,
1822 			  &ad);
1823 	if (rc)
1824 		return rc;
1825 
1826 	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1827 					   &newsid);
1828 	if (rc)
1829 		return rc;
1830 
1831 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1832 	if (rc)
1833 		return rc;
1834 
1835 	return avc_has_perm(newsid, sbsec->sid,
1836 			    SECCLASS_FILESYSTEM,
1837 			    FILESYSTEM__ASSOCIATE, &ad);
1838 }
1839 
1840 #define MAY_LINK	0
1841 #define MAY_UNLINK	1
1842 #define MAY_RMDIR	2
1843 
1844 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1845 static int may_link(struct inode *dir,
1846 		    struct dentry *dentry,
1847 		    int kind)
1848 
1849 {
1850 	struct inode_security_struct *dsec, *isec;
1851 	struct common_audit_data ad;
1852 	u32 sid = current_sid();
1853 	u32 av;
1854 	int rc;
1855 
1856 	dsec = inode_security(dir);
1857 	isec = backing_inode_security(dentry);
1858 
1859 	ad.type = LSM_AUDIT_DATA_DENTRY;
1860 	ad.u.dentry = dentry;
1861 
1862 	av = DIR__SEARCH;
1863 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1864 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1865 	if (rc)
1866 		return rc;
1867 
1868 	switch (kind) {
1869 	case MAY_LINK:
1870 		av = FILE__LINK;
1871 		break;
1872 	case MAY_UNLINK:
1873 		av = FILE__UNLINK;
1874 		break;
1875 	case MAY_RMDIR:
1876 		av = DIR__RMDIR;
1877 		break;
1878 	default:
1879 		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1880 			__func__, kind);
1881 		return 0;
1882 	}
1883 
1884 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1885 	return rc;
1886 }
1887 
1888 static inline int may_rename(struct inode *old_dir,
1889 			     struct dentry *old_dentry,
1890 			     struct inode *new_dir,
1891 			     struct dentry *new_dentry)
1892 {
1893 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1894 	struct common_audit_data ad;
1895 	u32 sid = current_sid();
1896 	u32 av;
1897 	int old_is_dir, new_is_dir;
1898 	int rc;
1899 
1900 	old_dsec = inode_security(old_dir);
1901 	old_isec = backing_inode_security(old_dentry);
1902 	old_is_dir = d_is_dir(old_dentry);
1903 	new_dsec = inode_security(new_dir);
1904 
1905 	ad.type = LSM_AUDIT_DATA_DENTRY;
1906 
1907 	ad.u.dentry = old_dentry;
1908 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1909 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1910 	if (rc)
1911 		return rc;
1912 	rc = avc_has_perm(sid, old_isec->sid,
1913 			  old_isec->sclass, FILE__RENAME, &ad);
1914 	if (rc)
1915 		return rc;
1916 	if (old_is_dir && new_dir != old_dir) {
1917 		rc = avc_has_perm(sid, old_isec->sid,
1918 				  old_isec->sclass, DIR__REPARENT, &ad);
1919 		if (rc)
1920 			return rc;
1921 	}
1922 
1923 	ad.u.dentry = new_dentry;
1924 	av = DIR__ADD_NAME | DIR__SEARCH;
1925 	if (d_is_positive(new_dentry))
1926 		av |= DIR__REMOVE_NAME;
1927 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1928 	if (rc)
1929 		return rc;
1930 	if (d_is_positive(new_dentry)) {
1931 		new_isec = backing_inode_security(new_dentry);
1932 		new_is_dir = d_is_dir(new_dentry);
1933 		rc = avc_has_perm(sid, new_isec->sid,
1934 				  new_isec->sclass,
1935 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1936 		if (rc)
1937 			return rc;
1938 	}
1939 
1940 	return 0;
1941 }
1942 
1943 /* Check whether a task can perform a filesystem operation. */
1944 static int superblock_has_perm(const struct cred *cred,
1945 			       const struct super_block *sb,
1946 			       u32 perms,
1947 			       struct common_audit_data *ad)
1948 {
1949 	struct superblock_security_struct *sbsec;
1950 	u32 sid = cred_sid(cred);
1951 
1952 	sbsec = selinux_superblock(sb);
1953 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1954 }
1955 
1956 /* Convert a Linux mode and permission mask to an access vector. */
1957 static inline u32 file_mask_to_av(int mode, int mask)
1958 {
1959 	u32 av = 0;
1960 
1961 	if (!S_ISDIR(mode)) {
1962 		if (mask & MAY_EXEC)
1963 			av |= FILE__EXECUTE;
1964 		if (mask & MAY_READ)
1965 			av |= FILE__READ;
1966 
1967 		if (mask & MAY_APPEND)
1968 			av |= FILE__APPEND;
1969 		else if (mask & MAY_WRITE)
1970 			av |= FILE__WRITE;
1971 
1972 	} else {
1973 		if (mask & MAY_EXEC)
1974 			av |= DIR__SEARCH;
1975 		if (mask & MAY_WRITE)
1976 			av |= DIR__WRITE;
1977 		if (mask & MAY_READ)
1978 			av |= DIR__READ;
1979 	}
1980 
1981 	return av;
1982 }
1983 
1984 /* Convert a Linux file to an access vector. */
1985 static inline u32 file_to_av(const struct file *file)
1986 {
1987 	u32 av = 0;
1988 
1989 	if (file->f_mode & FMODE_READ)
1990 		av |= FILE__READ;
1991 	if (file->f_mode & FMODE_WRITE) {
1992 		if (file->f_flags & O_APPEND)
1993 			av |= FILE__APPEND;
1994 		else
1995 			av |= FILE__WRITE;
1996 	}
1997 	if (!av) {
1998 		/*
1999 		 * Special file opened with flags 3 for ioctl-only use.
2000 		 */
2001 		av = FILE__IOCTL;
2002 	}
2003 
2004 	return av;
2005 }
2006 
2007 /*
2008  * Convert a file to an access vector and include the correct
2009  * open permission.
2010  */
2011 static inline u32 open_file_to_av(struct file *file)
2012 {
2013 	u32 av = file_to_av(file);
2014 	struct inode *inode = file_inode(file);
2015 
2016 	if (selinux_policycap_openperm() &&
2017 	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2018 		av |= FILE__OPEN;
2019 
2020 	return av;
2021 }
2022 
2023 /* Hook functions begin here. */
2024 
2025 static int selinux_binder_set_context_mgr(const struct cred *mgr)
2026 {
2027 	return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER,
2028 			    BINDER__SET_CONTEXT_MGR, NULL);
2029 }
2030 
2031 static int selinux_binder_transaction(const struct cred *from,
2032 				      const struct cred *to)
2033 {
2034 	u32 mysid = current_sid();
2035 	u32 fromsid = cred_sid(from);
2036 	u32 tosid = cred_sid(to);
2037 	int rc;
2038 
2039 	if (mysid != fromsid) {
2040 		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2041 				  BINDER__IMPERSONATE, NULL);
2042 		if (rc)
2043 			return rc;
2044 	}
2045 
2046 	return avc_has_perm(fromsid, tosid,
2047 			    SECCLASS_BINDER, BINDER__CALL, NULL);
2048 }
2049 
2050 static int selinux_binder_transfer_binder(const struct cred *from,
2051 					  const struct cred *to)
2052 {
2053 	return avc_has_perm(cred_sid(from), cred_sid(to),
2054 			    SECCLASS_BINDER, BINDER__TRANSFER,
2055 			    NULL);
2056 }
2057 
2058 static int selinux_binder_transfer_file(const struct cred *from,
2059 					const struct cred *to,
2060 					const struct file *file)
2061 {
2062 	u32 sid = cred_sid(to);
2063 	struct file_security_struct *fsec = selinux_file(file);
2064 	struct dentry *dentry = file->f_path.dentry;
2065 	struct inode_security_struct *isec;
2066 	struct common_audit_data ad;
2067 	int rc;
2068 
2069 	ad.type = LSM_AUDIT_DATA_PATH;
2070 	ad.u.path = file->f_path;
2071 
2072 	if (sid != fsec->sid) {
2073 		rc = avc_has_perm(sid, fsec->sid,
2074 				  SECCLASS_FD,
2075 				  FD__USE,
2076 				  &ad);
2077 		if (rc)
2078 			return rc;
2079 	}
2080 
2081 #ifdef CONFIG_BPF_SYSCALL
2082 	rc = bpf_fd_pass(file, sid);
2083 	if (rc)
2084 		return rc;
2085 #endif
2086 
2087 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2088 		return 0;
2089 
2090 	isec = backing_inode_security(dentry);
2091 	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2092 			    &ad);
2093 }
2094 
2095 static int selinux_ptrace_access_check(struct task_struct *child,
2096 				       unsigned int mode)
2097 {
2098 	u32 sid = current_sid();
2099 	u32 csid = task_sid_obj(child);
2100 
2101 	if (mode & PTRACE_MODE_READ)
2102 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ,
2103 				NULL);
2104 
2105 	return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE,
2106 			NULL);
2107 }
2108 
2109 static int selinux_ptrace_traceme(struct task_struct *parent)
2110 {
2111 	return avc_has_perm(task_sid_obj(parent), task_sid_obj(current),
2112 			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2113 }
2114 
2115 static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective,
2116 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2117 {
2118 	return avc_has_perm(current_sid(), task_sid_obj(target),
2119 			SECCLASS_PROCESS, PROCESS__GETCAP, NULL);
2120 }
2121 
2122 static int selinux_capset(struct cred *new, const struct cred *old,
2123 			  const kernel_cap_t *effective,
2124 			  const kernel_cap_t *inheritable,
2125 			  const kernel_cap_t *permitted)
2126 {
2127 	return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2128 			    PROCESS__SETCAP, NULL);
2129 }
2130 
2131 /*
2132  * (This comment used to live with the selinux_task_setuid hook,
2133  * which was removed).
2134  *
2135  * Since setuid only affects the current process, and since the SELinux
2136  * controls are not based on the Linux identity attributes, SELinux does not
2137  * need to control this operation.  However, SELinux does control the use of
2138  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2139  */
2140 
2141 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2142 			   int cap, unsigned int opts)
2143 {
2144 	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2145 }
2146 
2147 static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb)
2148 {
2149 	const struct cred *cred = current_cred();
2150 	int rc = 0;
2151 
2152 	if (!sb)
2153 		return 0;
2154 
2155 	switch (cmds) {
2156 	case Q_SYNC:
2157 	case Q_QUOTAON:
2158 	case Q_QUOTAOFF:
2159 	case Q_SETINFO:
2160 	case Q_SETQUOTA:
2161 	case Q_XQUOTAOFF:
2162 	case Q_XQUOTAON:
2163 	case Q_XSETQLIM:
2164 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2165 		break;
2166 	case Q_GETFMT:
2167 	case Q_GETINFO:
2168 	case Q_GETQUOTA:
2169 	case Q_XGETQUOTA:
2170 	case Q_XGETQSTAT:
2171 	case Q_XGETQSTATV:
2172 	case Q_XGETNEXTQUOTA:
2173 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2174 		break;
2175 	default:
2176 		rc = 0;  /* let the kernel handle invalid cmds */
2177 		break;
2178 	}
2179 	return rc;
2180 }
2181 
2182 static int selinux_quota_on(struct dentry *dentry)
2183 {
2184 	const struct cred *cred = current_cred();
2185 
2186 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2187 }
2188 
2189 static int selinux_syslog(int type)
2190 {
2191 	switch (type) {
2192 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2193 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2194 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2195 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2196 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2197 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2198 	/* Set level of messages printed to console */
2199 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2200 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2201 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2202 				    NULL);
2203 	}
2204 	/* All other syslog types */
2205 	return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2206 			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2207 }
2208 
2209 /*
2210  * Check permission for allocating a new virtual mapping. Returns
2211  * 0 if permission is granted, negative error code if not.
2212  *
2213  * Do not audit the selinux permission check, as this is applied to all
2214  * processes that allocate mappings.
2215  */
2216 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2217 {
2218 	return cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2219 				   CAP_OPT_NOAUDIT, true);
2220 }
2221 
2222 /* binprm security operations */
2223 
2224 static u32 ptrace_parent_sid(void)
2225 {
2226 	u32 sid = 0;
2227 	struct task_struct *tracer;
2228 
2229 	rcu_read_lock();
2230 	tracer = ptrace_parent(current);
2231 	if (tracer)
2232 		sid = task_sid_obj(tracer);
2233 	rcu_read_unlock();
2234 
2235 	return sid;
2236 }
2237 
2238 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2239 			    const struct task_security_struct *old_tsec,
2240 			    const struct task_security_struct *new_tsec)
2241 {
2242 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2243 	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2244 	int rc;
2245 	u32 av;
2246 
2247 	if (!nnp && !nosuid)
2248 		return 0; /* neither NNP nor nosuid */
2249 
2250 	if (new_tsec->sid == old_tsec->sid)
2251 		return 0; /* No change in credentials */
2252 
2253 	/*
2254 	 * If the policy enables the nnp_nosuid_transition policy capability,
2255 	 * then we permit transitions under NNP or nosuid if the
2256 	 * policy allows the corresponding permission between
2257 	 * the old and new contexts.
2258 	 */
2259 	if (selinux_policycap_nnp_nosuid_transition()) {
2260 		av = 0;
2261 		if (nnp)
2262 			av |= PROCESS2__NNP_TRANSITION;
2263 		if (nosuid)
2264 			av |= PROCESS2__NOSUID_TRANSITION;
2265 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2266 				  SECCLASS_PROCESS2, av, NULL);
2267 		if (!rc)
2268 			return 0;
2269 	}
2270 
2271 	/*
2272 	 * We also permit NNP or nosuid transitions to bounded SIDs,
2273 	 * i.e. SIDs that are guaranteed to only be allowed a subset
2274 	 * of the permissions of the current SID.
2275 	 */
2276 	rc = security_bounded_transition(old_tsec->sid,
2277 					 new_tsec->sid);
2278 	if (!rc)
2279 		return 0;
2280 
2281 	/*
2282 	 * On failure, preserve the errno values for NNP vs nosuid.
2283 	 * NNP:  Operation not permitted for caller.
2284 	 * nosuid:  Permission denied to file.
2285 	 */
2286 	if (nnp)
2287 		return -EPERM;
2288 	return -EACCES;
2289 }
2290 
2291 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2292 {
2293 	const struct task_security_struct *old_tsec;
2294 	struct task_security_struct *new_tsec;
2295 	struct inode_security_struct *isec;
2296 	struct common_audit_data ad;
2297 	struct inode *inode = file_inode(bprm->file);
2298 	int rc;
2299 
2300 	/* SELinux context only depends on initial program or script and not
2301 	 * the script interpreter */
2302 
2303 	old_tsec = selinux_cred(current_cred());
2304 	new_tsec = selinux_cred(bprm->cred);
2305 	isec = inode_security(inode);
2306 
2307 	/* Default to the current task SID. */
2308 	new_tsec->sid = old_tsec->sid;
2309 	new_tsec->osid = old_tsec->sid;
2310 
2311 	/* Reset fs, key, and sock SIDs on execve. */
2312 	new_tsec->create_sid = 0;
2313 	new_tsec->keycreate_sid = 0;
2314 	new_tsec->sockcreate_sid = 0;
2315 
2316 	/*
2317 	 * Before policy is loaded, label any task outside kernel space
2318 	 * as SECINITSID_INIT, so that any userspace tasks surviving from
2319 	 * early boot end up with a label different from SECINITSID_KERNEL
2320 	 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL).
2321 	 */
2322 	if (!selinux_initialized()) {
2323 		new_tsec->sid = SECINITSID_INIT;
2324 		/* also clear the exec_sid just in case */
2325 		new_tsec->exec_sid = 0;
2326 		return 0;
2327 	}
2328 
2329 	if (old_tsec->exec_sid) {
2330 		new_tsec->sid = old_tsec->exec_sid;
2331 		/* Reset exec SID on execve. */
2332 		new_tsec->exec_sid = 0;
2333 
2334 		/* Fail on NNP or nosuid if not an allowed transition. */
2335 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2336 		if (rc)
2337 			return rc;
2338 	} else {
2339 		/* Check for a default transition on this program. */
2340 		rc = security_transition_sid(old_tsec->sid,
2341 					     isec->sid, SECCLASS_PROCESS, NULL,
2342 					     &new_tsec->sid);
2343 		if (rc)
2344 			return rc;
2345 
2346 		/*
2347 		 * Fallback to old SID on NNP or nosuid if not an allowed
2348 		 * transition.
2349 		 */
2350 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2351 		if (rc)
2352 			new_tsec->sid = old_tsec->sid;
2353 	}
2354 
2355 	ad.type = LSM_AUDIT_DATA_FILE;
2356 	ad.u.file = bprm->file;
2357 
2358 	if (new_tsec->sid == old_tsec->sid) {
2359 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2360 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2361 		if (rc)
2362 			return rc;
2363 	} else {
2364 		/* Check permissions for the transition. */
2365 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2366 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2367 		if (rc)
2368 			return rc;
2369 
2370 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2371 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2372 		if (rc)
2373 			return rc;
2374 
2375 		/* Check for shared state */
2376 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2377 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2378 					  SECCLASS_PROCESS, PROCESS__SHARE,
2379 					  NULL);
2380 			if (rc)
2381 				return -EPERM;
2382 		}
2383 
2384 		/* Make sure that anyone attempting to ptrace over a task that
2385 		 * changes its SID has the appropriate permit */
2386 		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2387 			u32 ptsid = ptrace_parent_sid();
2388 			if (ptsid != 0) {
2389 				rc = avc_has_perm(ptsid, new_tsec->sid,
2390 						  SECCLASS_PROCESS,
2391 						  PROCESS__PTRACE, NULL);
2392 				if (rc)
2393 					return -EPERM;
2394 			}
2395 		}
2396 
2397 		/* Clear any possibly unsafe personality bits on exec: */
2398 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2399 
2400 		/* Enable secure mode for SIDs transitions unless
2401 		   the noatsecure permission is granted between
2402 		   the two SIDs, i.e. ahp returns 0. */
2403 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2404 				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2405 				  NULL);
2406 		bprm->secureexec |= !!rc;
2407 	}
2408 
2409 	return 0;
2410 }
2411 
2412 static int match_file(const void *p, struct file *file, unsigned fd)
2413 {
2414 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2415 }
2416 
2417 /* Derived from fs/exec.c:flush_old_files. */
2418 static inline void flush_unauthorized_files(const struct cred *cred,
2419 					    struct files_struct *files)
2420 {
2421 	struct file *file, *devnull = NULL;
2422 	struct tty_struct *tty;
2423 	int drop_tty = 0;
2424 	unsigned n;
2425 
2426 	tty = get_current_tty();
2427 	if (tty) {
2428 		spin_lock(&tty->files_lock);
2429 		if (!list_empty(&tty->tty_files)) {
2430 			struct tty_file_private *file_priv;
2431 
2432 			/* Revalidate access to controlling tty.
2433 			   Use file_path_has_perm on the tty path directly
2434 			   rather than using file_has_perm, as this particular
2435 			   open file may belong to another process and we are
2436 			   only interested in the inode-based check here. */
2437 			file_priv = list_first_entry(&tty->tty_files,
2438 						struct tty_file_private, list);
2439 			file = file_priv->file;
2440 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2441 				drop_tty = 1;
2442 		}
2443 		spin_unlock(&tty->files_lock);
2444 		tty_kref_put(tty);
2445 	}
2446 	/* Reset controlling tty. */
2447 	if (drop_tty)
2448 		no_tty();
2449 
2450 	/* Revalidate access to inherited open files. */
2451 	n = iterate_fd(files, 0, match_file, cred);
2452 	if (!n) /* none found? */
2453 		return;
2454 
2455 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2456 	if (IS_ERR(devnull))
2457 		devnull = NULL;
2458 	/* replace all the matching ones with this */
2459 	do {
2460 		replace_fd(n - 1, devnull, 0);
2461 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2462 	if (devnull)
2463 		fput(devnull);
2464 }
2465 
2466 /*
2467  * Prepare a process for imminent new credential changes due to exec
2468  */
2469 static void selinux_bprm_committing_creds(const struct linux_binprm *bprm)
2470 {
2471 	struct task_security_struct *new_tsec;
2472 	struct rlimit *rlim, *initrlim;
2473 	int rc, i;
2474 
2475 	new_tsec = selinux_cred(bprm->cred);
2476 	if (new_tsec->sid == new_tsec->osid)
2477 		return;
2478 
2479 	/* Close files for which the new task SID is not authorized. */
2480 	flush_unauthorized_files(bprm->cred, current->files);
2481 
2482 	/* Always clear parent death signal on SID transitions. */
2483 	current->pdeath_signal = 0;
2484 
2485 	/* Check whether the new SID can inherit resource limits from the old
2486 	 * SID.  If not, reset all soft limits to the lower of the current
2487 	 * task's hard limit and the init task's soft limit.
2488 	 *
2489 	 * Note that the setting of hard limits (even to lower them) can be
2490 	 * controlled by the setrlimit check.  The inclusion of the init task's
2491 	 * soft limit into the computation is to avoid resetting soft limits
2492 	 * higher than the default soft limit for cases where the default is
2493 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2494 	 */
2495 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2496 			  PROCESS__RLIMITINH, NULL);
2497 	if (rc) {
2498 		/* protect against do_prlimit() */
2499 		task_lock(current);
2500 		for (i = 0; i < RLIM_NLIMITS; i++) {
2501 			rlim = current->signal->rlim + i;
2502 			initrlim = init_task.signal->rlim + i;
2503 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2504 		}
2505 		task_unlock(current);
2506 		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2507 			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2508 	}
2509 }
2510 
2511 /*
2512  * Clean up the process immediately after the installation of new credentials
2513  * due to exec
2514  */
2515 static void selinux_bprm_committed_creds(const struct linux_binprm *bprm)
2516 {
2517 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2518 	u32 osid, sid;
2519 	int rc;
2520 
2521 	osid = tsec->osid;
2522 	sid = tsec->sid;
2523 
2524 	if (sid == osid)
2525 		return;
2526 
2527 	/* Check whether the new SID can inherit signal state from the old SID.
2528 	 * If not, clear itimers to avoid subsequent signal generation and
2529 	 * flush and unblock signals.
2530 	 *
2531 	 * This must occur _after_ the task SID has been updated so that any
2532 	 * kill done after the flush will be checked against the new SID.
2533 	 */
2534 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2535 	if (rc) {
2536 		clear_itimer();
2537 
2538 		spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2539 		if (!fatal_signal_pending(current)) {
2540 			flush_sigqueue(&current->pending);
2541 			flush_sigqueue(&current->signal->shared_pending);
2542 			flush_signal_handlers(current, 1);
2543 			sigemptyset(&current->blocked);
2544 			recalc_sigpending();
2545 		}
2546 		spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2547 	}
2548 
2549 	/* Wake up the parent if it is waiting so that it can recheck
2550 	 * wait permission to the new task SID. */
2551 	read_lock(&tasklist_lock);
2552 	__wake_up_parent(current, unrcu_pointer(current->real_parent));
2553 	read_unlock(&tasklist_lock);
2554 }
2555 
2556 /* superblock security operations */
2557 
2558 static int selinux_sb_alloc_security(struct super_block *sb)
2559 {
2560 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2561 
2562 	mutex_init(&sbsec->lock);
2563 	INIT_LIST_HEAD(&sbsec->isec_head);
2564 	spin_lock_init(&sbsec->isec_lock);
2565 	sbsec->sid = SECINITSID_UNLABELED;
2566 	sbsec->def_sid = SECINITSID_FILE;
2567 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2568 
2569 	return 0;
2570 }
2571 
2572 static inline int opt_len(const char *s)
2573 {
2574 	bool open_quote = false;
2575 	int len;
2576 	char c;
2577 
2578 	for (len = 0; (c = s[len]) != '\0'; len++) {
2579 		if (c == '"')
2580 			open_quote = !open_quote;
2581 		if (c == ',' && !open_quote)
2582 			break;
2583 	}
2584 	return len;
2585 }
2586 
2587 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2588 {
2589 	char *from = options;
2590 	char *to = options;
2591 	bool first = true;
2592 	int rc;
2593 
2594 	while (1) {
2595 		int len = opt_len(from);
2596 		int token;
2597 		char *arg = NULL;
2598 
2599 		token = match_opt_prefix(from, len, &arg);
2600 
2601 		if (token != Opt_error) {
2602 			char *p, *q;
2603 
2604 			/* strip quotes */
2605 			if (arg) {
2606 				for (p = q = arg; p < from + len; p++) {
2607 					char c = *p;
2608 					if (c != '"')
2609 						*q++ = c;
2610 				}
2611 				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2612 				if (!arg) {
2613 					rc = -ENOMEM;
2614 					goto free_opt;
2615 				}
2616 			}
2617 			rc = selinux_add_opt(token, arg, mnt_opts);
2618 			kfree(arg);
2619 			arg = NULL;
2620 			if (unlikely(rc)) {
2621 				goto free_opt;
2622 			}
2623 		} else {
2624 			if (!first) {	// copy with preceding comma
2625 				from--;
2626 				len++;
2627 			}
2628 			if (to != from)
2629 				memmove(to, from, len);
2630 			to += len;
2631 			first = false;
2632 		}
2633 		if (!from[len])
2634 			break;
2635 		from += len + 1;
2636 	}
2637 	*to = '\0';
2638 	return 0;
2639 
2640 free_opt:
2641 	if (*mnt_opts) {
2642 		selinux_free_mnt_opts(*mnt_opts);
2643 		*mnt_opts = NULL;
2644 	}
2645 	return rc;
2646 }
2647 
2648 static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2649 {
2650 	struct selinux_mnt_opts *opts = mnt_opts;
2651 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2652 
2653 	/*
2654 	 * Superblock not initialized (i.e. no options) - reject if any
2655 	 * options specified, otherwise accept.
2656 	 */
2657 	if (!(sbsec->flags & SE_SBINITIALIZED))
2658 		return opts ? 1 : 0;
2659 
2660 	/*
2661 	 * Superblock initialized and no options specified - reject if
2662 	 * superblock has any options set, otherwise accept.
2663 	 */
2664 	if (!opts)
2665 		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2666 
2667 	if (opts->fscontext_sid) {
2668 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2669 			       opts->fscontext_sid))
2670 			return 1;
2671 	}
2672 	if (opts->context_sid) {
2673 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2674 			       opts->context_sid))
2675 			return 1;
2676 	}
2677 	if (opts->rootcontext_sid) {
2678 		struct inode_security_struct *root_isec;
2679 
2680 		root_isec = backing_inode_security(sb->s_root);
2681 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2682 			       opts->rootcontext_sid))
2683 			return 1;
2684 	}
2685 	if (opts->defcontext_sid) {
2686 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2687 			       opts->defcontext_sid))
2688 			return 1;
2689 	}
2690 	return 0;
2691 }
2692 
2693 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2694 {
2695 	struct selinux_mnt_opts *opts = mnt_opts;
2696 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2697 
2698 	if (!(sbsec->flags & SE_SBINITIALIZED))
2699 		return 0;
2700 
2701 	if (!opts)
2702 		return 0;
2703 
2704 	if (opts->fscontext_sid) {
2705 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2706 			       opts->fscontext_sid))
2707 			goto out_bad_option;
2708 	}
2709 	if (opts->context_sid) {
2710 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2711 			       opts->context_sid))
2712 			goto out_bad_option;
2713 	}
2714 	if (opts->rootcontext_sid) {
2715 		struct inode_security_struct *root_isec;
2716 		root_isec = backing_inode_security(sb->s_root);
2717 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2718 			       opts->rootcontext_sid))
2719 			goto out_bad_option;
2720 	}
2721 	if (opts->defcontext_sid) {
2722 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2723 			       opts->defcontext_sid))
2724 			goto out_bad_option;
2725 	}
2726 	return 0;
2727 
2728 out_bad_option:
2729 	pr_warn("SELinux: unable to change security options "
2730 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2731 	       sb->s_type->name);
2732 	return -EINVAL;
2733 }
2734 
2735 static int selinux_sb_kern_mount(const struct super_block *sb)
2736 {
2737 	const struct cred *cred = current_cred();
2738 	struct common_audit_data ad;
2739 
2740 	ad.type = LSM_AUDIT_DATA_DENTRY;
2741 	ad.u.dentry = sb->s_root;
2742 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2743 }
2744 
2745 static int selinux_sb_statfs(struct dentry *dentry)
2746 {
2747 	const struct cred *cred = current_cred();
2748 	struct common_audit_data ad;
2749 
2750 	ad.type = LSM_AUDIT_DATA_DENTRY;
2751 	ad.u.dentry = dentry->d_sb->s_root;
2752 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2753 }
2754 
2755 static int selinux_mount(const char *dev_name,
2756 			 const struct path *path,
2757 			 const char *type,
2758 			 unsigned long flags,
2759 			 void *data)
2760 {
2761 	const struct cred *cred = current_cred();
2762 
2763 	if (flags & MS_REMOUNT)
2764 		return superblock_has_perm(cred, path->dentry->d_sb,
2765 					   FILESYSTEM__REMOUNT, NULL);
2766 	else
2767 		return path_has_perm(cred, path, FILE__MOUNTON);
2768 }
2769 
2770 static int selinux_move_mount(const struct path *from_path,
2771 			      const struct path *to_path)
2772 {
2773 	const struct cred *cred = current_cred();
2774 
2775 	return path_has_perm(cred, to_path, FILE__MOUNTON);
2776 }
2777 
2778 static int selinux_umount(struct vfsmount *mnt, int flags)
2779 {
2780 	const struct cred *cred = current_cred();
2781 
2782 	return superblock_has_perm(cred, mnt->mnt_sb,
2783 				   FILESYSTEM__UNMOUNT, NULL);
2784 }
2785 
2786 static int selinux_fs_context_submount(struct fs_context *fc,
2787 				   struct super_block *reference)
2788 {
2789 	const struct superblock_security_struct *sbsec = selinux_superblock(reference);
2790 	struct selinux_mnt_opts *opts;
2791 
2792 	/*
2793 	 * Ensure that fc->security remains NULL when no options are set
2794 	 * as expected by selinux_set_mnt_opts().
2795 	 */
2796 	if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT)))
2797 		return 0;
2798 
2799 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
2800 	if (!opts)
2801 		return -ENOMEM;
2802 
2803 	if (sbsec->flags & FSCONTEXT_MNT)
2804 		opts->fscontext_sid = sbsec->sid;
2805 	if (sbsec->flags & CONTEXT_MNT)
2806 		opts->context_sid = sbsec->mntpoint_sid;
2807 	if (sbsec->flags & DEFCONTEXT_MNT)
2808 		opts->defcontext_sid = sbsec->def_sid;
2809 	fc->security = opts;
2810 	return 0;
2811 }
2812 
2813 static int selinux_fs_context_dup(struct fs_context *fc,
2814 				  struct fs_context *src_fc)
2815 {
2816 	const struct selinux_mnt_opts *src = src_fc->security;
2817 
2818 	if (!src)
2819 		return 0;
2820 
2821 	fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2822 	return fc->security ? 0 : -ENOMEM;
2823 }
2824 
2825 static const struct fs_parameter_spec selinux_fs_parameters[] = {
2826 	fsparam_string(CONTEXT_STR,	Opt_context),
2827 	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2828 	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2829 	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2830 	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2831 	{}
2832 };
2833 
2834 static int selinux_fs_context_parse_param(struct fs_context *fc,
2835 					  struct fs_parameter *param)
2836 {
2837 	struct fs_parse_result result;
2838 	int opt;
2839 
2840 	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2841 	if (opt < 0)
2842 		return opt;
2843 
2844 	return selinux_add_opt(opt, param->string, &fc->security);
2845 }
2846 
2847 /* inode security operations */
2848 
2849 static int selinux_inode_alloc_security(struct inode *inode)
2850 {
2851 	struct inode_security_struct *isec = selinux_inode(inode);
2852 	u32 sid = current_sid();
2853 
2854 	spin_lock_init(&isec->lock);
2855 	INIT_LIST_HEAD(&isec->list);
2856 	isec->inode = inode;
2857 	isec->sid = SECINITSID_UNLABELED;
2858 	isec->sclass = SECCLASS_FILE;
2859 	isec->task_sid = sid;
2860 	isec->initialized = LABEL_INVALID;
2861 
2862 	return 0;
2863 }
2864 
2865 static void selinux_inode_free_security(struct inode *inode)
2866 {
2867 	inode_free_security(inode);
2868 }
2869 
2870 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2871 					const struct qstr *name,
2872 					const char **xattr_name, void **ctx,
2873 					u32 *ctxlen)
2874 {
2875 	u32 newsid;
2876 	int rc;
2877 
2878 	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2879 					   d_inode(dentry->d_parent), name,
2880 					   inode_mode_to_security_class(mode),
2881 					   &newsid);
2882 	if (rc)
2883 		return rc;
2884 
2885 	if (xattr_name)
2886 		*xattr_name = XATTR_NAME_SELINUX;
2887 
2888 	return security_sid_to_context(newsid, (char **)ctx,
2889 				       ctxlen);
2890 }
2891 
2892 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2893 					  struct qstr *name,
2894 					  const struct cred *old,
2895 					  struct cred *new)
2896 {
2897 	u32 newsid;
2898 	int rc;
2899 	struct task_security_struct *tsec;
2900 
2901 	rc = selinux_determine_inode_label(selinux_cred(old),
2902 					   d_inode(dentry->d_parent), name,
2903 					   inode_mode_to_security_class(mode),
2904 					   &newsid);
2905 	if (rc)
2906 		return rc;
2907 
2908 	tsec = selinux_cred(new);
2909 	tsec->create_sid = newsid;
2910 	return 0;
2911 }
2912 
2913 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2914 				       const struct qstr *qstr,
2915 				       struct xattr *xattrs, int *xattr_count)
2916 {
2917 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2918 	struct superblock_security_struct *sbsec;
2919 	struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count);
2920 	u32 newsid, clen;
2921 	u16 newsclass;
2922 	int rc;
2923 	char *context;
2924 
2925 	sbsec = selinux_superblock(dir->i_sb);
2926 
2927 	newsid = tsec->create_sid;
2928 	newsclass = inode_mode_to_security_class(inode->i_mode);
2929 	rc = selinux_determine_inode_label(tsec, dir, qstr, newsclass, &newsid);
2930 	if (rc)
2931 		return rc;
2932 
2933 	/* Possibly defer initialization to selinux_complete_init. */
2934 	if (sbsec->flags & SE_SBINITIALIZED) {
2935 		struct inode_security_struct *isec = selinux_inode(inode);
2936 		isec->sclass = newsclass;
2937 		isec->sid = newsid;
2938 		isec->initialized = LABEL_INITIALIZED;
2939 	}
2940 
2941 	if (!selinux_initialized() ||
2942 	    !(sbsec->flags & SBLABEL_MNT))
2943 		return -EOPNOTSUPP;
2944 
2945 	if (xattr) {
2946 		rc = security_sid_to_context_force(newsid,
2947 						   &context, &clen);
2948 		if (rc)
2949 			return rc;
2950 		xattr->value = context;
2951 		xattr->value_len = clen;
2952 		xattr->name = XATTR_SELINUX_SUFFIX;
2953 	}
2954 
2955 	return 0;
2956 }
2957 
2958 static int selinux_inode_init_security_anon(struct inode *inode,
2959 					    const struct qstr *name,
2960 					    const struct inode *context_inode)
2961 {
2962 	u32 sid = current_sid();
2963 	struct common_audit_data ad;
2964 	struct inode_security_struct *isec;
2965 	int rc;
2966 
2967 	if (unlikely(!selinux_initialized()))
2968 		return 0;
2969 
2970 	isec = selinux_inode(inode);
2971 
2972 	/*
2973 	 * We only get here once per ephemeral inode.  The inode has
2974 	 * been initialized via inode_alloc_security but is otherwise
2975 	 * untouched.
2976 	 */
2977 
2978 	if (context_inode) {
2979 		struct inode_security_struct *context_isec =
2980 			selinux_inode(context_inode);
2981 		if (context_isec->initialized != LABEL_INITIALIZED) {
2982 			pr_err("SELinux:  context_inode is not initialized\n");
2983 			return -EACCES;
2984 		}
2985 
2986 		isec->sclass = context_isec->sclass;
2987 		isec->sid = context_isec->sid;
2988 	} else {
2989 		isec->sclass = SECCLASS_ANON_INODE;
2990 		rc = security_transition_sid(
2991 			sid, sid,
2992 			isec->sclass, name, &isec->sid);
2993 		if (rc)
2994 			return rc;
2995 	}
2996 
2997 	isec->initialized = LABEL_INITIALIZED;
2998 	/*
2999 	 * Now that we've initialized security, check whether we're
3000 	 * allowed to actually create this type of anonymous inode.
3001 	 */
3002 
3003 	ad.type = LSM_AUDIT_DATA_ANONINODE;
3004 	ad.u.anonclass = name ? (const char *)name->name : "?";
3005 
3006 	return avc_has_perm(sid,
3007 			    isec->sid,
3008 			    isec->sclass,
3009 			    FILE__CREATE,
3010 			    &ad);
3011 }
3012 
3013 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3014 {
3015 	return may_create(dir, dentry, SECCLASS_FILE);
3016 }
3017 
3018 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3019 {
3020 	return may_link(dir, old_dentry, MAY_LINK);
3021 }
3022 
3023 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3024 {
3025 	return may_link(dir, dentry, MAY_UNLINK);
3026 }
3027 
3028 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3029 {
3030 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3031 }
3032 
3033 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3034 {
3035 	return may_create(dir, dentry, SECCLASS_DIR);
3036 }
3037 
3038 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3039 {
3040 	return may_link(dir, dentry, MAY_RMDIR);
3041 }
3042 
3043 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3044 {
3045 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3046 }
3047 
3048 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3049 				struct inode *new_inode, struct dentry *new_dentry)
3050 {
3051 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3052 }
3053 
3054 static int selinux_inode_readlink(struct dentry *dentry)
3055 {
3056 	const struct cred *cred = current_cred();
3057 
3058 	return dentry_has_perm(cred, dentry, FILE__READ);
3059 }
3060 
3061 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3062 				     bool rcu)
3063 {
3064 	struct common_audit_data ad;
3065 	struct inode_security_struct *isec;
3066 	u32 sid = current_sid();
3067 
3068 	ad.type = LSM_AUDIT_DATA_DENTRY;
3069 	ad.u.dentry = dentry;
3070 	isec = inode_security_rcu(inode, rcu);
3071 	if (IS_ERR(isec))
3072 		return PTR_ERR(isec);
3073 
3074 	return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad);
3075 }
3076 
3077 static noinline int audit_inode_permission(struct inode *inode,
3078 					   u32 perms, u32 audited, u32 denied,
3079 					   int result)
3080 {
3081 	struct common_audit_data ad;
3082 	struct inode_security_struct *isec = selinux_inode(inode);
3083 
3084 	ad.type = LSM_AUDIT_DATA_INODE;
3085 	ad.u.inode = inode;
3086 
3087 	return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3088 			    audited, denied, result, &ad);
3089 }
3090 
3091 static int selinux_inode_permission(struct inode *inode, int mask)
3092 {
3093 	u32 perms;
3094 	bool from_access;
3095 	bool no_block = mask & MAY_NOT_BLOCK;
3096 	struct inode_security_struct *isec;
3097 	u32 sid = current_sid();
3098 	struct av_decision avd;
3099 	int rc, rc2;
3100 	u32 audited, denied;
3101 
3102 	from_access = mask & MAY_ACCESS;
3103 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3104 
3105 	/* No permission to check.  Existence test. */
3106 	if (!mask)
3107 		return 0;
3108 
3109 	if (unlikely(IS_PRIVATE(inode)))
3110 		return 0;
3111 
3112 	perms = file_mask_to_av(inode->i_mode, mask);
3113 
3114 	isec = inode_security_rcu(inode, no_block);
3115 	if (IS_ERR(isec))
3116 		return PTR_ERR(isec);
3117 
3118 	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0,
3119 				  &avd);
3120 	audited = avc_audit_required(perms, &avd, rc,
3121 				     from_access ? FILE__AUDIT_ACCESS : 0,
3122 				     &denied);
3123 	if (likely(!audited))
3124 		return rc;
3125 
3126 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3127 	if (rc2)
3128 		return rc2;
3129 	return rc;
3130 }
3131 
3132 static int selinux_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3133 				 struct iattr *iattr)
3134 {
3135 	const struct cred *cred = current_cred();
3136 	struct inode *inode = d_backing_inode(dentry);
3137 	unsigned int ia_valid = iattr->ia_valid;
3138 	__u32 av = FILE__WRITE;
3139 
3140 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3141 	if (ia_valid & ATTR_FORCE) {
3142 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3143 			      ATTR_FORCE);
3144 		if (!ia_valid)
3145 			return 0;
3146 	}
3147 
3148 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3149 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3150 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3151 
3152 	if (selinux_policycap_openperm() &&
3153 	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3154 	    (ia_valid & ATTR_SIZE) &&
3155 	    !(ia_valid & ATTR_FILE))
3156 		av |= FILE__OPEN;
3157 
3158 	return dentry_has_perm(cred, dentry, av);
3159 }
3160 
3161 static int selinux_inode_getattr(const struct path *path)
3162 {
3163 	return path_has_perm(current_cred(), path, FILE__GETATTR);
3164 }
3165 
3166 static bool has_cap_mac_admin(bool audit)
3167 {
3168 	const struct cred *cred = current_cred();
3169 	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3170 
3171 	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3172 		return false;
3173 	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3174 		return false;
3175 	return true;
3176 }
3177 
3178 /**
3179  * selinux_inode_xattr_skipcap - Skip the xattr capability checks?
3180  * @name: name of the xattr
3181  *
3182  * Returns 1 to indicate that SELinux "owns" the access control rights to xattrs
3183  * named @name; the LSM layer should avoid enforcing any traditional
3184  * capability based access controls on this xattr.  Returns 0 to indicate that
3185  * SELinux does not "own" the access control rights to xattrs named @name and is
3186  * deferring to the LSM layer for further access controls, including capability
3187  * based controls.
3188  */
3189 static int selinux_inode_xattr_skipcap(const char *name)
3190 {
3191 	/* require capability check if not a selinux xattr */
3192 	return !strcmp(name, XATTR_NAME_SELINUX);
3193 }
3194 
3195 static int selinux_inode_setxattr(struct mnt_idmap *idmap,
3196 				  struct dentry *dentry, const char *name,
3197 				  const void *value, size_t size, int flags)
3198 {
3199 	struct inode *inode = d_backing_inode(dentry);
3200 	struct inode_security_struct *isec;
3201 	struct superblock_security_struct *sbsec;
3202 	struct common_audit_data ad;
3203 	u32 newsid, sid = current_sid();
3204 	int rc = 0;
3205 
3206 	/* if not a selinux xattr, only check the ordinary setattr perm */
3207 	if (strcmp(name, XATTR_NAME_SELINUX))
3208 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3209 
3210 	if (!selinux_initialized())
3211 		return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM);
3212 
3213 	sbsec = selinux_superblock(inode->i_sb);
3214 	if (!(sbsec->flags & SBLABEL_MNT))
3215 		return -EOPNOTSUPP;
3216 
3217 	if (!inode_owner_or_capable(idmap, inode))
3218 		return -EPERM;
3219 
3220 	ad.type = LSM_AUDIT_DATA_DENTRY;
3221 	ad.u.dentry = dentry;
3222 
3223 	isec = backing_inode_security(dentry);
3224 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
3225 			  FILE__RELABELFROM, &ad);
3226 	if (rc)
3227 		return rc;
3228 
3229 	rc = security_context_to_sid(value, size, &newsid,
3230 				     GFP_KERNEL);
3231 	if (rc == -EINVAL) {
3232 		if (!has_cap_mac_admin(true)) {
3233 			struct audit_buffer *ab;
3234 			size_t audit_size;
3235 
3236 			/* We strip a nul only if it is at the end, otherwise the
3237 			 * context contains a nul and we should audit that */
3238 			if (value) {
3239 				const char *str = value;
3240 
3241 				if (str[size - 1] == '\0')
3242 					audit_size = size - 1;
3243 				else
3244 					audit_size = size;
3245 			} else {
3246 				audit_size = 0;
3247 			}
3248 			ab = audit_log_start(audit_context(),
3249 					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3250 			if (!ab)
3251 				return rc;
3252 			audit_log_format(ab, "op=setxattr invalid_context=");
3253 			audit_log_n_untrustedstring(ab, value, audit_size);
3254 			audit_log_end(ab);
3255 
3256 			return rc;
3257 		}
3258 		rc = security_context_to_sid_force(value,
3259 						   size, &newsid);
3260 	}
3261 	if (rc)
3262 		return rc;
3263 
3264 	rc = avc_has_perm(sid, newsid, isec->sclass,
3265 			  FILE__RELABELTO, &ad);
3266 	if (rc)
3267 		return rc;
3268 
3269 	rc = security_validate_transition(isec->sid, newsid,
3270 					  sid, isec->sclass);
3271 	if (rc)
3272 		return rc;
3273 
3274 	return avc_has_perm(newsid,
3275 			    sbsec->sid,
3276 			    SECCLASS_FILESYSTEM,
3277 			    FILESYSTEM__ASSOCIATE,
3278 			    &ad);
3279 }
3280 
3281 static int selinux_inode_set_acl(struct mnt_idmap *idmap,
3282 				 struct dentry *dentry, const char *acl_name,
3283 				 struct posix_acl *kacl)
3284 {
3285 	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3286 }
3287 
3288 static int selinux_inode_get_acl(struct mnt_idmap *idmap,
3289 				 struct dentry *dentry, const char *acl_name)
3290 {
3291 	return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3292 }
3293 
3294 static int selinux_inode_remove_acl(struct mnt_idmap *idmap,
3295 				    struct dentry *dentry, const char *acl_name)
3296 {
3297 	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3298 }
3299 
3300 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3301 					const void *value, size_t size,
3302 					int flags)
3303 {
3304 	struct inode *inode = d_backing_inode(dentry);
3305 	struct inode_security_struct *isec;
3306 	u32 newsid;
3307 	int rc;
3308 
3309 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3310 		/* Not an attribute we recognize, so nothing to do. */
3311 		return;
3312 	}
3313 
3314 	if (!selinux_initialized()) {
3315 		/* If we haven't even been initialized, then we can't validate
3316 		 * against a policy, so leave the label as invalid. It may
3317 		 * resolve to a valid label on the next revalidation try if
3318 		 * we've since initialized.
3319 		 */
3320 		return;
3321 	}
3322 
3323 	rc = security_context_to_sid_force(value, size,
3324 					   &newsid);
3325 	if (rc) {
3326 		pr_err("SELinux:  unable to map context to SID"
3327 		       "for (%s, %lu), rc=%d\n",
3328 		       inode->i_sb->s_id, inode->i_ino, -rc);
3329 		return;
3330 	}
3331 
3332 	isec = backing_inode_security(dentry);
3333 	spin_lock(&isec->lock);
3334 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3335 	isec->sid = newsid;
3336 	isec->initialized = LABEL_INITIALIZED;
3337 	spin_unlock(&isec->lock);
3338 }
3339 
3340 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3341 {
3342 	const struct cred *cred = current_cred();
3343 
3344 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3345 }
3346 
3347 static int selinux_inode_listxattr(struct dentry *dentry)
3348 {
3349 	const struct cred *cred = current_cred();
3350 
3351 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3352 }
3353 
3354 static int selinux_inode_removexattr(struct mnt_idmap *idmap,
3355 				     struct dentry *dentry, const char *name)
3356 {
3357 	/* if not a selinux xattr, only check the ordinary setattr perm */
3358 	if (strcmp(name, XATTR_NAME_SELINUX))
3359 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3360 
3361 	if (!selinux_initialized())
3362 		return 0;
3363 
3364 	/* No one is allowed to remove a SELinux security label.
3365 	   You can change the label, but all data must be labeled. */
3366 	return -EACCES;
3367 }
3368 
3369 static int selinux_path_notify(const struct path *path, u64 mask,
3370 						unsigned int obj_type)
3371 {
3372 	int ret;
3373 	u32 perm;
3374 
3375 	struct common_audit_data ad;
3376 
3377 	ad.type = LSM_AUDIT_DATA_PATH;
3378 	ad.u.path = *path;
3379 
3380 	/*
3381 	 * Set permission needed based on the type of mark being set.
3382 	 * Performs an additional check for sb watches.
3383 	 */
3384 	switch (obj_type) {
3385 	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3386 		perm = FILE__WATCH_MOUNT;
3387 		break;
3388 	case FSNOTIFY_OBJ_TYPE_SB:
3389 		perm = FILE__WATCH_SB;
3390 		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3391 						FILESYSTEM__WATCH, &ad);
3392 		if (ret)
3393 			return ret;
3394 		break;
3395 	case FSNOTIFY_OBJ_TYPE_INODE:
3396 		perm = FILE__WATCH;
3397 		break;
3398 	default:
3399 		return -EINVAL;
3400 	}
3401 
3402 	/* blocking watches require the file:watch_with_perm permission */
3403 	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3404 		perm |= FILE__WATCH_WITH_PERM;
3405 
3406 	/* watches on read-like events need the file:watch_reads permission */
3407 	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3408 		perm |= FILE__WATCH_READS;
3409 
3410 	return path_has_perm(current_cred(), path, perm);
3411 }
3412 
3413 /*
3414  * Copy the inode security context value to the user.
3415  *
3416  * Permission check is handled by selinux_inode_getxattr hook.
3417  */
3418 static int selinux_inode_getsecurity(struct mnt_idmap *idmap,
3419 				     struct inode *inode, const char *name,
3420 				     void **buffer, bool alloc)
3421 {
3422 	u32 size;
3423 	int error;
3424 	char *context = NULL;
3425 	struct inode_security_struct *isec;
3426 
3427 	/*
3428 	 * If we're not initialized yet, then we can't validate contexts, so
3429 	 * just let vfs_getxattr fall back to using the on-disk xattr.
3430 	 */
3431 	if (!selinux_initialized() ||
3432 	    strcmp(name, XATTR_SELINUX_SUFFIX))
3433 		return -EOPNOTSUPP;
3434 
3435 	/*
3436 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3437 	 * value even if it is not defined by current policy; otherwise,
3438 	 * use the in-core value under current policy.
3439 	 * Use the non-auditing forms of the permission checks since
3440 	 * getxattr may be called by unprivileged processes commonly
3441 	 * and lack of permission just means that we fall back to the
3442 	 * in-core context value, not a denial.
3443 	 */
3444 	isec = inode_security(inode);
3445 	if (has_cap_mac_admin(false))
3446 		error = security_sid_to_context_force(isec->sid, &context,
3447 						      &size);
3448 	else
3449 		error = security_sid_to_context(isec->sid,
3450 						&context, &size);
3451 	if (error)
3452 		return error;
3453 	error = size;
3454 	if (alloc) {
3455 		*buffer = context;
3456 		goto out_nofree;
3457 	}
3458 	kfree(context);
3459 out_nofree:
3460 	return error;
3461 }
3462 
3463 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3464 				     const void *value, size_t size, int flags)
3465 {
3466 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3467 	struct superblock_security_struct *sbsec;
3468 	u32 newsid;
3469 	int rc;
3470 
3471 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3472 		return -EOPNOTSUPP;
3473 
3474 	sbsec = selinux_superblock(inode->i_sb);
3475 	if (!(sbsec->flags & SBLABEL_MNT))
3476 		return -EOPNOTSUPP;
3477 
3478 	if (!value || !size)
3479 		return -EACCES;
3480 
3481 	rc = security_context_to_sid(value, size, &newsid,
3482 				     GFP_KERNEL);
3483 	if (rc)
3484 		return rc;
3485 
3486 	spin_lock(&isec->lock);
3487 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3488 	isec->sid = newsid;
3489 	isec->initialized = LABEL_INITIALIZED;
3490 	spin_unlock(&isec->lock);
3491 	return 0;
3492 }
3493 
3494 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3495 {
3496 	const int len = sizeof(XATTR_NAME_SELINUX);
3497 
3498 	if (!selinux_initialized())
3499 		return 0;
3500 
3501 	if (buffer && len <= buffer_size)
3502 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3503 	return len;
3504 }
3505 
3506 static void selinux_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop)
3507 {
3508 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3509 
3510 	prop->selinux.secid = isec->sid;
3511 }
3512 
3513 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3514 {
3515 	struct lsm_prop prop;
3516 	struct task_security_struct *tsec;
3517 	struct cred *new_creds = *new;
3518 
3519 	if (new_creds == NULL) {
3520 		new_creds = prepare_creds();
3521 		if (!new_creds)
3522 			return -ENOMEM;
3523 	}
3524 
3525 	tsec = selinux_cred(new_creds);
3526 	/* Get label from overlay inode and set it in create_sid */
3527 	selinux_inode_getlsmprop(d_inode(src), &prop);
3528 	tsec->create_sid = prop.selinux.secid;
3529 	*new = new_creds;
3530 	return 0;
3531 }
3532 
3533 static int selinux_inode_copy_up_xattr(struct dentry *dentry, const char *name)
3534 {
3535 	/* The copy_up hook above sets the initial context on an inode, but we
3536 	 * don't then want to overwrite it by blindly copying all the lower
3537 	 * xattrs up.  Instead, filter out SELinux-related xattrs following
3538 	 * policy load.
3539 	 */
3540 	if (selinux_initialized() && !strcmp(name, XATTR_NAME_SELINUX))
3541 		return -ECANCELED; /* Discard */
3542 	/*
3543 	 * Any other attribute apart from SELINUX is not claimed, supported
3544 	 * by selinux.
3545 	 */
3546 	return -EOPNOTSUPP;
3547 }
3548 
3549 /* kernfs node operations */
3550 
3551 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3552 					struct kernfs_node *kn)
3553 {
3554 	const struct task_security_struct *tsec = selinux_cred(current_cred());
3555 	u32 parent_sid, newsid, clen;
3556 	int rc;
3557 	char *context;
3558 
3559 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3560 	if (rc == -ENODATA)
3561 		return 0;
3562 	else if (rc < 0)
3563 		return rc;
3564 
3565 	clen = (u32)rc;
3566 	context = kmalloc(clen, GFP_KERNEL);
3567 	if (!context)
3568 		return -ENOMEM;
3569 
3570 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3571 	if (rc < 0) {
3572 		kfree(context);
3573 		return rc;
3574 	}
3575 
3576 	rc = security_context_to_sid(context, clen, &parent_sid,
3577 				     GFP_KERNEL);
3578 	kfree(context);
3579 	if (rc)
3580 		return rc;
3581 
3582 	if (tsec->create_sid) {
3583 		newsid = tsec->create_sid;
3584 	} else {
3585 		u16 secclass = inode_mode_to_security_class(kn->mode);
3586 		struct qstr q;
3587 
3588 		q.name = kn->name;
3589 		q.hash_len = hashlen_string(kn_dir, kn->name);
3590 
3591 		rc = security_transition_sid(tsec->sid,
3592 					     parent_sid, secclass, &q,
3593 					     &newsid);
3594 		if (rc)
3595 			return rc;
3596 	}
3597 
3598 	rc = security_sid_to_context_force(newsid,
3599 					   &context, &clen);
3600 	if (rc)
3601 		return rc;
3602 
3603 	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3604 			      XATTR_CREATE);
3605 	kfree(context);
3606 	return rc;
3607 }
3608 
3609 
3610 /* file security operations */
3611 
3612 static int selinux_revalidate_file_permission(struct file *file, int mask)
3613 {
3614 	const struct cred *cred = current_cred();
3615 	struct inode *inode = file_inode(file);
3616 
3617 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3618 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3619 		mask |= MAY_APPEND;
3620 
3621 	return file_has_perm(cred, file,
3622 			     file_mask_to_av(inode->i_mode, mask));
3623 }
3624 
3625 static int selinux_file_permission(struct file *file, int mask)
3626 {
3627 	struct inode *inode = file_inode(file);
3628 	struct file_security_struct *fsec = selinux_file(file);
3629 	struct inode_security_struct *isec;
3630 	u32 sid = current_sid();
3631 
3632 	if (!mask)
3633 		/* No permission to check.  Existence test. */
3634 		return 0;
3635 
3636 	isec = inode_security(inode);
3637 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3638 	    fsec->pseqno == avc_policy_seqno())
3639 		/* No change since file_open check. */
3640 		return 0;
3641 
3642 	return selinux_revalidate_file_permission(file, mask);
3643 }
3644 
3645 static int selinux_file_alloc_security(struct file *file)
3646 {
3647 	struct file_security_struct *fsec = selinux_file(file);
3648 	u32 sid = current_sid();
3649 
3650 	fsec->sid = sid;
3651 	fsec->fown_sid = sid;
3652 
3653 	return 0;
3654 }
3655 
3656 /*
3657  * Check whether a task has the ioctl permission and cmd
3658  * operation to an inode.
3659  */
3660 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3661 		u32 requested, u16 cmd)
3662 {
3663 	struct common_audit_data ad;
3664 	struct file_security_struct *fsec = selinux_file(file);
3665 	struct inode *inode = file_inode(file);
3666 	struct inode_security_struct *isec;
3667 	struct lsm_ioctlop_audit ioctl;
3668 	u32 ssid = cred_sid(cred);
3669 	int rc;
3670 	u8 driver = cmd >> 8;
3671 	u8 xperm = cmd & 0xff;
3672 
3673 	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3674 	ad.u.op = &ioctl;
3675 	ad.u.op->cmd = cmd;
3676 	ad.u.op->path = file->f_path;
3677 
3678 	if (ssid != fsec->sid) {
3679 		rc = avc_has_perm(ssid, fsec->sid,
3680 				SECCLASS_FD,
3681 				FD__USE,
3682 				&ad);
3683 		if (rc)
3684 			goto out;
3685 	}
3686 
3687 	if (unlikely(IS_PRIVATE(inode)))
3688 		return 0;
3689 
3690 	isec = inode_security(inode);
3691 	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3692 				    requested, driver, xperm, &ad);
3693 out:
3694 	return rc;
3695 }
3696 
3697 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3698 			      unsigned long arg)
3699 {
3700 	const struct cred *cred = current_cred();
3701 	int error = 0;
3702 
3703 	switch (cmd) {
3704 	case FIONREAD:
3705 	case FIBMAP:
3706 	case FIGETBSZ:
3707 	case FS_IOC_GETFLAGS:
3708 	case FS_IOC_GETVERSION:
3709 		error = file_has_perm(cred, file, FILE__GETATTR);
3710 		break;
3711 
3712 	case FS_IOC_SETFLAGS:
3713 	case FS_IOC_SETVERSION:
3714 		error = file_has_perm(cred, file, FILE__SETATTR);
3715 		break;
3716 
3717 	/* sys_ioctl() checks */
3718 	case FIONBIO:
3719 	case FIOASYNC:
3720 		error = file_has_perm(cred, file, 0);
3721 		break;
3722 
3723 	case KDSKBENT:
3724 	case KDSKBSENT:
3725 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3726 					    CAP_OPT_NONE, true);
3727 		break;
3728 
3729 	case FIOCLEX:
3730 	case FIONCLEX:
3731 		if (!selinux_policycap_ioctl_skip_cloexec())
3732 			error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3733 		break;
3734 
3735 	/* default case assumes that the command will go
3736 	 * to the file's ioctl() function.
3737 	 */
3738 	default:
3739 		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3740 	}
3741 	return error;
3742 }
3743 
3744 static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd,
3745 			      unsigned long arg)
3746 {
3747 	/*
3748 	 * If we are in a 64-bit kernel running 32-bit userspace, we need to
3749 	 * make sure we don't compare 32-bit flags to 64-bit flags.
3750 	 */
3751 	switch (cmd) {
3752 	case FS_IOC32_GETFLAGS:
3753 		cmd = FS_IOC_GETFLAGS;
3754 		break;
3755 	case FS_IOC32_SETFLAGS:
3756 		cmd = FS_IOC_SETFLAGS;
3757 		break;
3758 	case FS_IOC32_GETVERSION:
3759 		cmd = FS_IOC_GETVERSION;
3760 		break;
3761 	case FS_IOC32_SETVERSION:
3762 		cmd = FS_IOC_SETVERSION;
3763 		break;
3764 	default:
3765 		break;
3766 	}
3767 
3768 	return selinux_file_ioctl(file, cmd, arg);
3769 }
3770 
3771 static int default_noexec __ro_after_init;
3772 
3773 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3774 {
3775 	const struct cred *cred = current_cred();
3776 	u32 sid = cred_sid(cred);
3777 	int rc = 0;
3778 
3779 	if (default_noexec &&
3780 	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3781 				   (!shared && (prot & PROT_WRITE)))) {
3782 		/*
3783 		 * We are making executable an anonymous mapping or a
3784 		 * private file mapping that will also be writable.
3785 		 * This has an additional check.
3786 		 */
3787 		rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3788 				  PROCESS__EXECMEM, NULL);
3789 		if (rc)
3790 			goto error;
3791 	}
3792 
3793 	if (file) {
3794 		/* read access is always possible with a mapping */
3795 		u32 av = FILE__READ;
3796 
3797 		/* write access only matters if the mapping is shared */
3798 		if (shared && (prot & PROT_WRITE))
3799 			av |= FILE__WRITE;
3800 
3801 		if (prot & PROT_EXEC)
3802 			av |= FILE__EXECUTE;
3803 
3804 		return file_has_perm(cred, file, av);
3805 	}
3806 
3807 error:
3808 	return rc;
3809 }
3810 
3811 static int selinux_mmap_addr(unsigned long addr)
3812 {
3813 	int rc = 0;
3814 
3815 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3816 		u32 sid = current_sid();
3817 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3818 				  MEMPROTECT__MMAP_ZERO, NULL);
3819 	}
3820 
3821 	return rc;
3822 }
3823 
3824 static int selinux_mmap_file(struct file *file,
3825 			     unsigned long reqprot __always_unused,
3826 			     unsigned long prot, unsigned long flags)
3827 {
3828 	struct common_audit_data ad;
3829 	int rc;
3830 
3831 	if (file) {
3832 		ad.type = LSM_AUDIT_DATA_FILE;
3833 		ad.u.file = file;
3834 		rc = inode_has_perm(current_cred(), file_inode(file),
3835 				    FILE__MAP, &ad);
3836 		if (rc)
3837 			return rc;
3838 	}
3839 
3840 	return file_map_prot_check(file, prot,
3841 				   (flags & MAP_TYPE) == MAP_SHARED);
3842 }
3843 
3844 static int selinux_file_mprotect(struct vm_area_struct *vma,
3845 				 unsigned long reqprot __always_unused,
3846 				 unsigned long prot)
3847 {
3848 	const struct cred *cred = current_cred();
3849 	u32 sid = cred_sid(cred);
3850 
3851 	if (default_noexec &&
3852 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3853 		int rc = 0;
3854 		/*
3855 		 * We don't use the vma_is_initial_heap() helper as it has
3856 		 * a history of problems and is currently broken on systems
3857 		 * where there is no heap, e.g. brk == start_brk.  Before
3858 		 * replacing the conditional below with vma_is_initial_heap(),
3859 		 * or something similar, please ensure that the logic is the
3860 		 * same as what we have below or you have tested every possible
3861 		 * corner case you can think to test.
3862 		 */
3863 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3864 		    vma->vm_end <= vma->vm_mm->brk) {
3865 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3866 					  PROCESS__EXECHEAP, NULL);
3867 		} else if (!vma->vm_file && (vma_is_initial_stack(vma) ||
3868 			    vma_is_stack_for_current(vma))) {
3869 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3870 					  PROCESS__EXECSTACK, NULL);
3871 		} else if (vma->vm_file && vma->anon_vma) {
3872 			/*
3873 			 * We are making executable a file mapping that has
3874 			 * had some COW done. Since pages might have been
3875 			 * written, check ability to execute the possibly
3876 			 * modified content.  This typically should only
3877 			 * occur for text relocations.
3878 			 */
3879 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3880 		}
3881 		if (rc)
3882 			return rc;
3883 	}
3884 
3885 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3886 }
3887 
3888 static int selinux_file_lock(struct file *file, unsigned int cmd)
3889 {
3890 	const struct cred *cred = current_cred();
3891 
3892 	return file_has_perm(cred, file, FILE__LOCK);
3893 }
3894 
3895 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3896 			      unsigned long arg)
3897 {
3898 	const struct cred *cred = current_cred();
3899 	int err = 0;
3900 
3901 	switch (cmd) {
3902 	case F_SETFL:
3903 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3904 			err = file_has_perm(cred, file, FILE__WRITE);
3905 			break;
3906 		}
3907 		fallthrough;
3908 	case F_SETOWN:
3909 	case F_SETSIG:
3910 	case F_GETFL:
3911 	case F_GETOWN:
3912 	case F_GETSIG:
3913 	case F_GETOWNER_UIDS:
3914 		/* Just check FD__USE permission */
3915 		err = file_has_perm(cred, file, 0);
3916 		break;
3917 	case F_GETLK:
3918 	case F_SETLK:
3919 	case F_SETLKW:
3920 	case F_OFD_GETLK:
3921 	case F_OFD_SETLK:
3922 	case F_OFD_SETLKW:
3923 #if BITS_PER_LONG == 32
3924 	case F_GETLK64:
3925 	case F_SETLK64:
3926 	case F_SETLKW64:
3927 #endif
3928 		err = file_has_perm(cred, file, FILE__LOCK);
3929 		break;
3930 	}
3931 
3932 	return err;
3933 }
3934 
3935 static void selinux_file_set_fowner(struct file *file)
3936 {
3937 	struct file_security_struct *fsec;
3938 
3939 	fsec = selinux_file(file);
3940 	fsec->fown_sid = current_sid();
3941 }
3942 
3943 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3944 				       struct fown_struct *fown, int signum)
3945 {
3946 	struct file *file;
3947 	u32 sid = task_sid_obj(tsk);
3948 	u32 perm;
3949 	struct file_security_struct *fsec;
3950 
3951 	/* struct fown_struct is never outside the context of a struct file */
3952 	file = fown->file;
3953 
3954 	fsec = selinux_file(file);
3955 
3956 	if (!signum)
3957 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3958 	else
3959 		perm = signal_to_av(signum);
3960 
3961 	return avc_has_perm(fsec->fown_sid, sid,
3962 			    SECCLASS_PROCESS, perm, NULL);
3963 }
3964 
3965 static int selinux_file_receive(struct file *file)
3966 {
3967 	const struct cred *cred = current_cred();
3968 
3969 	return file_has_perm(cred, file, file_to_av(file));
3970 }
3971 
3972 static int selinux_file_open(struct file *file)
3973 {
3974 	struct file_security_struct *fsec;
3975 	struct inode_security_struct *isec;
3976 
3977 	fsec = selinux_file(file);
3978 	isec = inode_security(file_inode(file));
3979 	/*
3980 	 * Save inode label and policy sequence number
3981 	 * at open-time so that selinux_file_permission
3982 	 * can determine whether revalidation is necessary.
3983 	 * Task label is already saved in the file security
3984 	 * struct as its SID.
3985 	 */
3986 	fsec->isid = isec->sid;
3987 	fsec->pseqno = avc_policy_seqno();
3988 	/*
3989 	 * Since the inode label or policy seqno may have changed
3990 	 * between the selinux_inode_permission check and the saving
3991 	 * of state above, recheck that access is still permitted.
3992 	 * Otherwise, access might never be revalidated against the
3993 	 * new inode label or new policy.
3994 	 * This check is not redundant - do not remove.
3995 	 */
3996 	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3997 }
3998 
3999 /* task security operations */
4000 
4001 static int selinux_task_alloc(struct task_struct *task,
4002 			      unsigned long clone_flags)
4003 {
4004 	u32 sid = current_sid();
4005 
4006 	return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
4007 }
4008 
4009 /*
4010  * prepare a new set of credentials for modification
4011  */
4012 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4013 				gfp_t gfp)
4014 {
4015 	const struct task_security_struct *old_tsec = selinux_cred(old);
4016 	struct task_security_struct *tsec = selinux_cred(new);
4017 
4018 	*tsec = *old_tsec;
4019 	return 0;
4020 }
4021 
4022 /*
4023  * transfer the SELinux data to a blank set of creds
4024  */
4025 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4026 {
4027 	const struct task_security_struct *old_tsec = selinux_cred(old);
4028 	struct task_security_struct *tsec = selinux_cred(new);
4029 
4030 	*tsec = *old_tsec;
4031 }
4032 
4033 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4034 {
4035 	*secid = cred_sid(c);
4036 }
4037 
4038 static void selinux_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop)
4039 {
4040 	prop->selinux.secid = cred_sid(c);
4041 }
4042 
4043 /*
4044  * set the security data for a kernel service
4045  * - all the creation contexts are set to unlabelled
4046  */
4047 static int selinux_kernel_act_as(struct cred *new, u32 secid)
4048 {
4049 	struct task_security_struct *tsec = selinux_cred(new);
4050 	u32 sid = current_sid();
4051 	int ret;
4052 
4053 	ret = avc_has_perm(sid, secid,
4054 			   SECCLASS_KERNEL_SERVICE,
4055 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
4056 			   NULL);
4057 	if (ret == 0) {
4058 		tsec->sid = secid;
4059 		tsec->create_sid = 0;
4060 		tsec->keycreate_sid = 0;
4061 		tsec->sockcreate_sid = 0;
4062 	}
4063 	return ret;
4064 }
4065 
4066 /*
4067  * set the file creation context in a security record to the same as the
4068  * objective context of the specified inode
4069  */
4070 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4071 {
4072 	struct inode_security_struct *isec = inode_security(inode);
4073 	struct task_security_struct *tsec = selinux_cred(new);
4074 	u32 sid = current_sid();
4075 	int ret;
4076 
4077 	ret = avc_has_perm(sid, isec->sid,
4078 			   SECCLASS_KERNEL_SERVICE,
4079 			   KERNEL_SERVICE__CREATE_FILES_AS,
4080 			   NULL);
4081 
4082 	if (ret == 0)
4083 		tsec->create_sid = isec->sid;
4084 	return ret;
4085 }
4086 
4087 static int selinux_kernel_module_request(char *kmod_name)
4088 {
4089 	struct common_audit_data ad;
4090 
4091 	ad.type = LSM_AUDIT_DATA_KMOD;
4092 	ad.u.kmod_name = kmod_name;
4093 
4094 	return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4095 			    SYSTEM__MODULE_REQUEST, &ad);
4096 }
4097 
4098 static int selinux_kernel_module_from_file(struct file *file)
4099 {
4100 	struct common_audit_data ad;
4101 	struct inode_security_struct *isec;
4102 	struct file_security_struct *fsec;
4103 	u32 sid = current_sid();
4104 	int rc;
4105 
4106 	/* init_module */
4107 	if (file == NULL)
4108 		return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
4109 					SYSTEM__MODULE_LOAD, NULL);
4110 
4111 	/* finit_module */
4112 
4113 	ad.type = LSM_AUDIT_DATA_FILE;
4114 	ad.u.file = file;
4115 
4116 	fsec = selinux_file(file);
4117 	if (sid != fsec->sid) {
4118 		rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4119 		if (rc)
4120 			return rc;
4121 	}
4122 
4123 	isec = inode_security(file_inode(file));
4124 	return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
4125 				SYSTEM__MODULE_LOAD, &ad);
4126 }
4127 
4128 static int selinux_kernel_read_file(struct file *file,
4129 				    enum kernel_read_file_id id,
4130 				    bool contents)
4131 {
4132 	int rc = 0;
4133 
4134 	switch (id) {
4135 	case READING_MODULE:
4136 		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4137 		break;
4138 	default:
4139 		break;
4140 	}
4141 
4142 	return rc;
4143 }
4144 
4145 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4146 {
4147 	int rc = 0;
4148 
4149 	switch (id) {
4150 	case LOADING_MODULE:
4151 		rc = selinux_kernel_module_from_file(NULL);
4152 		break;
4153 	default:
4154 		break;
4155 	}
4156 
4157 	return rc;
4158 }
4159 
4160 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4161 {
4162 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4163 			    PROCESS__SETPGID, NULL);
4164 }
4165 
4166 static int selinux_task_getpgid(struct task_struct *p)
4167 {
4168 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4169 			    PROCESS__GETPGID, NULL);
4170 }
4171 
4172 static int selinux_task_getsid(struct task_struct *p)
4173 {
4174 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4175 			    PROCESS__GETSESSION, NULL);
4176 }
4177 
4178 static void selinux_current_getlsmprop_subj(struct lsm_prop *prop)
4179 {
4180 	prop->selinux.secid = current_sid();
4181 }
4182 
4183 static void selinux_task_getlsmprop_obj(struct task_struct *p,
4184 					struct lsm_prop *prop)
4185 {
4186 	prop->selinux.secid = task_sid_obj(p);
4187 }
4188 
4189 static int selinux_task_setnice(struct task_struct *p, int nice)
4190 {
4191 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4192 			    PROCESS__SETSCHED, NULL);
4193 }
4194 
4195 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4196 {
4197 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4198 			    PROCESS__SETSCHED, NULL);
4199 }
4200 
4201 static int selinux_task_getioprio(struct task_struct *p)
4202 {
4203 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4204 			    PROCESS__GETSCHED, NULL);
4205 }
4206 
4207 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4208 				unsigned int flags)
4209 {
4210 	u32 av = 0;
4211 
4212 	if (!flags)
4213 		return 0;
4214 	if (flags & LSM_PRLIMIT_WRITE)
4215 		av |= PROCESS__SETRLIMIT;
4216 	if (flags & LSM_PRLIMIT_READ)
4217 		av |= PROCESS__GETRLIMIT;
4218 	return avc_has_perm(cred_sid(cred), cred_sid(tcred),
4219 			    SECCLASS_PROCESS, av, NULL);
4220 }
4221 
4222 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4223 		struct rlimit *new_rlim)
4224 {
4225 	struct rlimit *old_rlim = p->signal->rlim + resource;
4226 
4227 	/* Control the ability to change the hard limit (whether
4228 	   lowering or raising it), so that the hard limit can
4229 	   later be used as a safe reset point for the soft limit
4230 	   upon context transitions.  See selinux_bprm_committing_creds. */
4231 	if (old_rlim->rlim_max != new_rlim->rlim_max)
4232 		return avc_has_perm(current_sid(), task_sid_obj(p),
4233 				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4234 
4235 	return 0;
4236 }
4237 
4238 static int selinux_task_setscheduler(struct task_struct *p)
4239 {
4240 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4241 			    PROCESS__SETSCHED, NULL);
4242 }
4243 
4244 static int selinux_task_getscheduler(struct task_struct *p)
4245 {
4246 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4247 			    PROCESS__GETSCHED, NULL);
4248 }
4249 
4250 static int selinux_task_movememory(struct task_struct *p)
4251 {
4252 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4253 			    PROCESS__SETSCHED, NULL);
4254 }
4255 
4256 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4257 				int sig, const struct cred *cred)
4258 {
4259 	u32 secid;
4260 	u32 perm;
4261 
4262 	if (!sig)
4263 		perm = PROCESS__SIGNULL; /* null signal; existence test */
4264 	else
4265 		perm = signal_to_av(sig);
4266 	if (!cred)
4267 		secid = current_sid();
4268 	else
4269 		secid = cred_sid(cred);
4270 	return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4271 }
4272 
4273 static void selinux_task_to_inode(struct task_struct *p,
4274 				  struct inode *inode)
4275 {
4276 	struct inode_security_struct *isec = selinux_inode(inode);
4277 	u32 sid = task_sid_obj(p);
4278 
4279 	spin_lock(&isec->lock);
4280 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4281 	isec->sid = sid;
4282 	isec->initialized = LABEL_INITIALIZED;
4283 	spin_unlock(&isec->lock);
4284 }
4285 
4286 static int selinux_userns_create(const struct cred *cred)
4287 {
4288 	u32 sid = current_sid();
4289 
4290 	return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE,
4291 			USER_NAMESPACE__CREATE, NULL);
4292 }
4293 
4294 /* Returns error only if unable to parse addresses */
4295 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4296 			struct common_audit_data *ad, u8 *proto)
4297 {
4298 	int offset, ihlen, ret = -EINVAL;
4299 	struct iphdr _iph, *ih;
4300 
4301 	offset = skb_network_offset(skb);
4302 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4303 	if (ih == NULL)
4304 		goto out;
4305 
4306 	ihlen = ih->ihl * 4;
4307 	if (ihlen < sizeof(_iph))
4308 		goto out;
4309 
4310 	ad->u.net->v4info.saddr = ih->saddr;
4311 	ad->u.net->v4info.daddr = ih->daddr;
4312 	ret = 0;
4313 
4314 	if (proto)
4315 		*proto = ih->protocol;
4316 
4317 	switch (ih->protocol) {
4318 	case IPPROTO_TCP: {
4319 		struct tcphdr _tcph, *th;
4320 
4321 		if (ntohs(ih->frag_off) & IP_OFFSET)
4322 			break;
4323 
4324 		offset += ihlen;
4325 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4326 		if (th == NULL)
4327 			break;
4328 
4329 		ad->u.net->sport = th->source;
4330 		ad->u.net->dport = th->dest;
4331 		break;
4332 	}
4333 
4334 	case IPPROTO_UDP: {
4335 		struct udphdr _udph, *uh;
4336 
4337 		if (ntohs(ih->frag_off) & IP_OFFSET)
4338 			break;
4339 
4340 		offset += ihlen;
4341 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4342 		if (uh == NULL)
4343 			break;
4344 
4345 		ad->u.net->sport = uh->source;
4346 		ad->u.net->dport = uh->dest;
4347 		break;
4348 	}
4349 
4350 	case IPPROTO_DCCP: {
4351 		struct dccp_hdr _dccph, *dh;
4352 
4353 		if (ntohs(ih->frag_off) & IP_OFFSET)
4354 			break;
4355 
4356 		offset += ihlen;
4357 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4358 		if (dh == NULL)
4359 			break;
4360 
4361 		ad->u.net->sport = dh->dccph_sport;
4362 		ad->u.net->dport = dh->dccph_dport;
4363 		break;
4364 	}
4365 
4366 #if IS_ENABLED(CONFIG_IP_SCTP)
4367 	case IPPROTO_SCTP: {
4368 		struct sctphdr _sctph, *sh;
4369 
4370 		if (ntohs(ih->frag_off) & IP_OFFSET)
4371 			break;
4372 
4373 		offset += ihlen;
4374 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4375 		if (sh == NULL)
4376 			break;
4377 
4378 		ad->u.net->sport = sh->source;
4379 		ad->u.net->dport = sh->dest;
4380 		break;
4381 	}
4382 #endif
4383 	default:
4384 		break;
4385 	}
4386 out:
4387 	return ret;
4388 }
4389 
4390 #if IS_ENABLED(CONFIG_IPV6)
4391 
4392 /* Returns error only if unable to parse addresses */
4393 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4394 			struct common_audit_data *ad, u8 *proto)
4395 {
4396 	u8 nexthdr;
4397 	int ret = -EINVAL, offset;
4398 	struct ipv6hdr _ipv6h, *ip6;
4399 	__be16 frag_off;
4400 
4401 	offset = skb_network_offset(skb);
4402 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4403 	if (ip6 == NULL)
4404 		goto out;
4405 
4406 	ad->u.net->v6info.saddr = ip6->saddr;
4407 	ad->u.net->v6info.daddr = ip6->daddr;
4408 	ret = 0;
4409 
4410 	nexthdr = ip6->nexthdr;
4411 	offset += sizeof(_ipv6h);
4412 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4413 	if (offset < 0)
4414 		goto out;
4415 
4416 	if (proto)
4417 		*proto = nexthdr;
4418 
4419 	switch (nexthdr) {
4420 	case IPPROTO_TCP: {
4421 		struct tcphdr _tcph, *th;
4422 
4423 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4424 		if (th == NULL)
4425 			break;
4426 
4427 		ad->u.net->sport = th->source;
4428 		ad->u.net->dport = th->dest;
4429 		break;
4430 	}
4431 
4432 	case IPPROTO_UDP: {
4433 		struct udphdr _udph, *uh;
4434 
4435 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4436 		if (uh == NULL)
4437 			break;
4438 
4439 		ad->u.net->sport = uh->source;
4440 		ad->u.net->dport = uh->dest;
4441 		break;
4442 	}
4443 
4444 	case IPPROTO_DCCP: {
4445 		struct dccp_hdr _dccph, *dh;
4446 
4447 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4448 		if (dh == NULL)
4449 			break;
4450 
4451 		ad->u.net->sport = dh->dccph_sport;
4452 		ad->u.net->dport = dh->dccph_dport;
4453 		break;
4454 	}
4455 
4456 #if IS_ENABLED(CONFIG_IP_SCTP)
4457 	case IPPROTO_SCTP: {
4458 		struct sctphdr _sctph, *sh;
4459 
4460 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4461 		if (sh == NULL)
4462 			break;
4463 
4464 		ad->u.net->sport = sh->source;
4465 		ad->u.net->dport = sh->dest;
4466 		break;
4467 	}
4468 #endif
4469 	/* includes fragments */
4470 	default:
4471 		break;
4472 	}
4473 out:
4474 	return ret;
4475 }
4476 
4477 #endif /* IPV6 */
4478 
4479 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4480 			     char **_addrp, int src, u8 *proto)
4481 {
4482 	char *addrp;
4483 	int ret;
4484 
4485 	switch (ad->u.net->family) {
4486 	case PF_INET:
4487 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4488 		if (ret)
4489 			goto parse_error;
4490 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4491 				       &ad->u.net->v4info.daddr);
4492 		goto okay;
4493 
4494 #if IS_ENABLED(CONFIG_IPV6)
4495 	case PF_INET6:
4496 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4497 		if (ret)
4498 			goto parse_error;
4499 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4500 				       &ad->u.net->v6info.daddr);
4501 		goto okay;
4502 #endif	/* IPV6 */
4503 	default:
4504 		addrp = NULL;
4505 		goto okay;
4506 	}
4507 
4508 parse_error:
4509 	pr_warn(
4510 	       "SELinux: failure in selinux_parse_skb(),"
4511 	       " unable to parse packet\n");
4512 	return ret;
4513 
4514 okay:
4515 	if (_addrp)
4516 		*_addrp = addrp;
4517 	return 0;
4518 }
4519 
4520 /**
4521  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4522  * @skb: the packet
4523  * @family: protocol family
4524  * @sid: the packet's peer label SID
4525  *
4526  * Description:
4527  * Check the various different forms of network peer labeling and determine
4528  * the peer label/SID for the packet; most of the magic actually occurs in
4529  * the security server function security_net_peersid_cmp().  The function
4530  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4531  * or -EACCES if @sid is invalid due to inconsistencies with the different
4532  * peer labels.
4533  *
4534  */
4535 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4536 {
4537 	int err;
4538 	u32 xfrm_sid;
4539 	u32 nlbl_sid;
4540 	u32 nlbl_type;
4541 
4542 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4543 	if (unlikely(err))
4544 		return -EACCES;
4545 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4546 	if (unlikely(err))
4547 		return -EACCES;
4548 
4549 	err = security_net_peersid_resolve(nlbl_sid,
4550 					   nlbl_type, xfrm_sid, sid);
4551 	if (unlikely(err)) {
4552 		pr_warn(
4553 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4554 		       " unable to determine packet's peer label\n");
4555 		return -EACCES;
4556 	}
4557 
4558 	return 0;
4559 }
4560 
4561 /**
4562  * selinux_conn_sid - Determine the child socket label for a connection
4563  * @sk_sid: the parent socket's SID
4564  * @skb_sid: the packet's SID
4565  * @conn_sid: the resulting connection SID
4566  *
4567  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4568  * combined with the MLS information from @skb_sid in order to create
4569  * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4570  * of @sk_sid.  Returns zero on success, negative values on failure.
4571  *
4572  */
4573 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4574 {
4575 	int err = 0;
4576 
4577 	if (skb_sid != SECSID_NULL)
4578 		err = security_sid_mls_copy(sk_sid, skb_sid,
4579 					    conn_sid);
4580 	else
4581 		*conn_sid = sk_sid;
4582 
4583 	return err;
4584 }
4585 
4586 /* socket security operations */
4587 
4588 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4589 				 u16 secclass, u32 *socksid)
4590 {
4591 	if (tsec->sockcreate_sid > SECSID_NULL) {
4592 		*socksid = tsec->sockcreate_sid;
4593 		return 0;
4594 	}
4595 
4596 	return security_transition_sid(tsec->sid, tsec->sid,
4597 				       secclass, NULL, socksid);
4598 }
4599 
4600 static bool sock_skip_has_perm(u32 sid)
4601 {
4602 	if (sid == SECINITSID_KERNEL)
4603 		return true;
4604 
4605 	/*
4606 	 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that
4607 	 * inherited the kernel context from early boot used to be skipped
4608 	 * here, so preserve that behavior unless the capability is set.
4609 	 *
4610 	 * By setting the capability the policy signals that it is ready
4611 	 * for this quirk to be fixed. Note that sockets created by a kernel
4612 	 * thread or a usermode helper executed without a transition will
4613 	 * still be skipped in this check regardless of the policycap
4614 	 * setting.
4615 	 */
4616 	if (!selinux_policycap_userspace_initial_context() &&
4617 	    sid == SECINITSID_INIT)
4618 		return true;
4619 	return false;
4620 }
4621 
4622 
4623 static int sock_has_perm(struct sock *sk, u32 perms)
4624 {
4625 	struct sk_security_struct *sksec = sk->sk_security;
4626 	struct common_audit_data ad;
4627 	struct lsm_network_audit net;
4628 
4629 	if (sock_skip_has_perm(sksec->sid))
4630 		return 0;
4631 
4632 	ad_net_init_from_sk(&ad, &net, sk);
4633 
4634 	return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
4635 			    &ad);
4636 }
4637 
4638 static int selinux_socket_create(int family, int type,
4639 				 int protocol, int kern)
4640 {
4641 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4642 	u32 newsid;
4643 	u16 secclass;
4644 	int rc;
4645 
4646 	if (kern)
4647 		return 0;
4648 
4649 	secclass = socket_type_to_security_class(family, type, protocol);
4650 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4651 	if (rc)
4652 		return rc;
4653 
4654 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4655 }
4656 
4657 static int selinux_socket_post_create(struct socket *sock, int family,
4658 				      int type, int protocol, int kern)
4659 {
4660 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4661 	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4662 	struct sk_security_struct *sksec;
4663 	u16 sclass = socket_type_to_security_class(family, type, protocol);
4664 	u32 sid = SECINITSID_KERNEL;
4665 	int err = 0;
4666 
4667 	if (!kern) {
4668 		err = socket_sockcreate_sid(tsec, sclass, &sid);
4669 		if (err)
4670 			return err;
4671 	}
4672 
4673 	isec->sclass = sclass;
4674 	isec->sid = sid;
4675 	isec->initialized = LABEL_INITIALIZED;
4676 
4677 	if (sock->sk) {
4678 		sksec = selinux_sock(sock->sk);
4679 		sksec->sclass = sclass;
4680 		sksec->sid = sid;
4681 		/* Allows detection of the first association on this socket */
4682 		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4683 			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4684 
4685 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4686 	}
4687 
4688 	return err;
4689 }
4690 
4691 static int selinux_socket_socketpair(struct socket *socka,
4692 				     struct socket *sockb)
4693 {
4694 	struct sk_security_struct *sksec_a = selinux_sock(socka->sk);
4695 	struct sk_security_struct *sksec_b = selinux_sock(sockb->sk);
4696 
4697 	sksec_a->peer_sid = sksec_b->sid;
4698 	sksec_b->peer_sid = sksec_a->sid;
4699 
4700 	return 0;
4701 }
4702 
4703 /* Range of port numbers used to automatically bind.
4704    Need to determine whether we should perform a name_bind
4705    permission check between the socket and the port number. */
4706 
4707 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4708 {
4709 	struct sock *sk = sock->sk;
4710 	struct sk_security_struct *sksec = selinux_sock(sk);
4711 	u16 family;
4712 	int err;
4713 
4714 	err = sock_has_perm(sk, SOCKET__BIND);
4715 	if (err)
4716 		goto out;
4717 
4718 	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4719 	family = sk->sk_family;
4720 	if (family == PF_INET || family == PF_INET6) {
4721 		char *addrp;
4722 		struct common_audit_data ad;
4723 		struct lsm_network_audit net = {0,};
4724 		struct sockaddr_in *addr4 = NULL;
4725 		struct sockaddr_in6 *addr6 = NULL;
4726 		u16 family_sa;
4727 		unsigned short snum;
4728 		u32 sid, node_perm;
4729 
4730 		/*
4731 		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4732 		 * that validates multiple binding addresses. Because of this
4733 		 * need to check address->sa_family as it is possible to have
4734 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4735 		 */
4736 		if (addrlen < offsetofend(struct sockaddr, sa_family))
4737 			return -EINVAL;
4738 		family_sa = address->sa_family;
4739 		switch (family_sa) {
4740 		case AF_UNSPEC:
4741 		case AF_INET:
4742 			if (addrlen < sizeof(struct sockaddr_in))
4743 				return -EINVAL;
4744 			addr4 = (struct sockaddr_in *)address;
4745 			if (family_sa == AF_UNSPEC) {
4746 				if (family == PF_INET6) {
4747 					/* Length check from inet6_bind_sk() */
4748 					if (addrlen < SIN6_LEN_RFC2133)
4749 						return -EINVAL;
4750 					/* Family check from __inet6_bind() */
4751 					goto err_af;
4752 				}
4753 				/* see __inet_bind(), we only want to allow
4754 				 * AF_UNSPEC if the address is INADDR_ANY
4755 				 */
4756 				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4757 					goto err_af;
4758 				family_sa = AF_INET;
4759 			}
4760 			snum = ntohs(addr4->sin_port);
4761 			addrp = (char *)&addr4->sin_addr.s_addr;
4762 			break;
4763 		case AF_INET6:
4764 			if (addrlen < SIN6_LEN_RFC2133)
4765 				return -EINVAL;
4766 			addr6 = (struct sockaddr_in6 *)address;
4767 			snum = ntohs(addr6->sin6_port);
4768 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4769 			break;
4770 		default:
4771 			goto err_af;
4772 		}
4773 
4774 		ad.type = LSM_AUDIT_DATA_NET;
4775 		ad.u.net = &net;
4776 		ad.u.net->sport = htons(snum);
4777 		ad.u.net->family = family_sa;
4778 
4779 		if (snum) {
4780 			int low, high;
4781 
4782 			inet_get_local_port_range(sock_net(sk), &low, &high);
4783 
4784 			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4785 			    snum < low || snum > high) {
4786 				err = sel_netport_sid(sk->sk_protocol,
4787 						      snum, &sid);
4788 				if (err)
4789 					goto out;
4790 				err = avc_has_perm(sksec->sid, sid,
4791 						   sksec->sclass,
4792 						   SOCKET__NAME_BIND, &ad);
4793 				if (err)
4794 					goto out;
4795 			}
4796 		}
4797 
4798 		switch (sksec->sclass) {
4799 		case SECCLASS_TCP_SOCKET:
4800 			node_perm = TCP_SOCKET__NODE_BIND;
4801 			break;
4802 
4803 		case SECCLASS_UDP_SOCKET:
4804 			node_perm = UDP_SOCKET__NODE_BIND;
4805 			break;
4806 
4807 		case SECCLASS_DCCP_SOCKET:
4808 			node_perm = DCCP_SOCKET__NODE_BIND;
4809 			break;
4810 
4811 		case SECCLASS_SCTP_SOCKET:
4812 			node_perm = SCTP_SOCKET__NODE_BIND;
4813 			break;
4814 
4815 		default:
4816 			node_perm = RAWIP_SOCKET__NODE_BIND;
4817 			break;
4818 		}
4819 
4820 		err = sel_netnode_sid(addrp, family_sa, &sid);
4821 		if (err)
4822 			goto out;
4823 
4824 		if (family_sa == AF_INET)
4825 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4826 		else
4827 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4828 
4829 		err = avc_has_perm(sksec->sid, sid,
4830 				   sksec->sclass, node_perm, &ad);
4831 		if (err)
4832 			goto out;
4833 	}
4834 out:
4835 	return err;
4836 err_af:
4837 	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4838 	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4839 		return -EINVAL;
4840 	return -EAFNOSUPPORT;
4841 }
4842 
4843 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4844  * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4845  */
4846 static int selinux_socket_connect_helper(struct socket *sock,
4847 					 struct sockaddr *address, int addrlen)
4848 {
4849 	struct sock *sk = sock->sk;
4850 	struct sk_security_struct *sksec = selinux_sock(sk);
4851 	int err;
4852 
4853 	err = sock_has_perm(sk, SOCKET__CONNECT);
4854 	if (err)
4855 		return err;
4856 	if (addrlen < offsetofend(struct sockaddr, sa_family))
4857 		return -EINVAL;
4858 
4859 	/* connect(AF_UNSPEC) has special handling, as it is a documented
4860 	 * way to disconnect the socket
4861 	 */
4862 	if (address->sa_family == AF_UNSPEC)
4863 		return 0;
4864 
4865 	/*
4866 	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4867 	 * for the port.
4868 	 */
4869 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4870 	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4871 	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4872 		struct common_audit_data ad;
4873 		struct lsm_network_audit net = {0,};
4874 		struct sockaddr_in *addr4 = NULL;
4875 		struct sockaddr_in6 *addr6 = NULL;
4876 		unsigned short snum;
4877 		u32 sid, perm;
4878 
4879 		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4880 		 * that validates multiple connect addresses. Because of this
4881 		 * need to check address->sa_family as it is possible to have
4882 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4883 		 */
4884 		switch (address->sa_family) {
4885 		case AF_INET:
4886 			addr4 = (struct sockaddr_in *)address;
4887 			if (addrlen < sizeof(struct sockaddr_in))
4888 				return -EINVAL;
4889 			snum = ntohs(addr4->sin_port);
4890 			break;
4891 		case AF_INET6:
4892 			addr6 = (struct sockaddr_in6 *)address;
4893 			if (addrlen < SIN6_LEN_RFC2133)
4894 				return -EINVAL;
4895 			snum = ntohs(addr6->sin6_port);
4896 			break;
4897 		default:
4898 			/* Note that SCTP services expect -EINVAL, whereas
4899 			 * others expect -EAFNOSUPPORT.
4900 			 */
4901 			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4902 				return -EINVAL;
4903 			else
4904 				return -EAFNOSUPPORT;
4905 		}
4906 
4907 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4908 		if (err)
4909 			return err;
4910 
4911 		switch (sksec->sclass) {
4912 		case SECCLASS_TCP_SOCKET:
4913 			perm = TCP_SOCKET__NAME_CONNECT;
4914 			break;
4915 		case SECCLASS_DCCP_SOCKET:
4916 			perm = DCCP_SOCKET__NAME_CONNECT;
4917 			break;
4918 		case SECCLASS_SCTP_SOCKET:
4919 			perm = SCTP_SOCKET__NAME_CONNECT;
4920 			break;
4921 		}
4922 
4923 		ad.type = LSM_AUDIT_DATA_NET;
4924 		ad.u.net = &net;
4925 		ad.u.net->dport = htons(snum);
4926 		ad.u.net->family = address->sa_family;
4927 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4928 		if (err)
4929 			return err;
4930 	}
4931 
4932 	return 0;
4933 }
4934 
4935 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4936 static int selinux_socket_connect(struct socket *sock,
4937 				  struct sockaddr *address, int addrlen)
4938 {
4939 	int err;
4940 	struct sock *sk = sock->sk;
4941 
4942 	err = selinux_socket_connect_helper(sock, address, addrlen);
4943 	if (err)
4944 		return err;
4945 
4946 	return selinux_netlbl_socket_connect(sk, address);
4947 }
4948 
4949 static int selinux_socket_listen(struct socket *sock, int backlog)
4950 {
4951 	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4952 }
4953 
4954 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4955 {
4956 	int err;
4957 	struct inode_security_struct *isec;
4958 	struct inode_security_struct *newisec;
4959 	u16 sclass;
4960 	u32 sid;
4961 
4962 	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4963 	if (err)
4964 		return err;
4965 
4966 	isec = inode_security_novalidate(SOCK_INODE(sock));
4967 	spin_lock(&isec->lock);
4968 	sclass = isec->sclass;
4969 	sid = isec->sid;
4970 	spin_unlock(&isec->lock);
4971 
4972 	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4973 	newisec->sclass = sclass;
4974 	newisec->sid = sid;
4975 	newisec->initialized = LABEL_INITIALIZED;
4976 
4977 	return 0;
4978 }
4979 
4980 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4981 				  int size)
4982 {
4983 	return sock_has_perm(sock->sk, SOCKET__WRITE);
4984 }
4985 
4986 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4987 				  int size, int flags)
4988 {
4989 	return sock_has_perm(sock->sk, SOCKET__READ);
4990 }
4991 
4992 static int selinux_socket_getsockname(struct socket *sock)
4993 {
4994 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4995 }
4996 
4997 static int selinux_socket_getpeername(struct socket *sock)
4998 {
4999 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
5000 }
5001 
5002 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
5003 {
5004 	int err;
5005 
5006 	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
5007 	if (err)
5008 		return err;
5009 
5010 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
5011 }
5012 
5013 static int selinux_socket_getsockopt(struct socket *sock, int level,
5014 				     int optname)
5015 {
5016 	return sock_has_perm(sock->sk, SOCKET__GETOPT);
5017 }
5018 
5019 static int selinux_socket_shutdown(struct socket *sock, int how)
5020 {
5021 	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
5022 }
5023 
5024 static int selinux_socket_unix_stream_connect(struct sock *sock,
5025 					      struct sock *other,
5026 					      struct sock *newsk)
5027 {
5028 	struct sk_security_struct *sksec_sock = selinux_sock(sock);
5029 	struct sk_security_struct *sksec_other = selinux_sock(other);
5030 	struct sk_security_struct *sksec_new = selinux_sock(newsk);
5031 	struct common_audit_data ad;
5032 	struct lsm_network_audit net;
5033 	int err;
5034 
5035 	ad_net_init_from_sk(&ad, &net, other);
5036 
5037 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
5038 			   sksec_other->sclass,
5039 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5040 	if (err)
5041 		return err;
5042 
5043 	/* server child socket */
5044 	sksec_new->peer_sid = sksec_sock->sid;
5045 	err = security_sid_mls_copy(sksec_other->sid,
5046 				    sksec_sock->sid, &sksec_new->sid);
5047 	if (err)
5048 		return err;
5049 
5050 	/* connecting socket */
5051 	sksec_sock->peer_sid = sksec_new->sid;
5052 
5053 	return 0;
5054 }
5055 
5056 static int selinux_socket_unix_may_send(struct socket *sock,
5057 					struct socket *other)
5058 {
5059 	struct sk_security_struct *ssec = selinux_sock(sock->sk);
5060 	struct sk_security_struct *osec = selinux_sock(other->sk);
5061 	struct common_audit_data ad;
5062 	struct lsm_network_audit net;
5063 
5064 	ad_net_init_from_sk(&ad, &net, other->sk);
5065 
5066 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5067 			    &ad);
5068 }
5069 
5070 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5071 				    char *addrp, u16 family, u32 peer_sid,
5072 				    struct common_audit_data *ad)
5073 {
5074 	int err;
5075 	u32 if_sid;
5076 	u32 node_sid;
5077 
5078 	err = sel_netif_sid(ns, ifindex, &if_sid);
5079 	if (err)
5080 		return err;
5081 	err = avc_has_perm(peer_sid, if_sid,
5082 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5083 	if (err)
5084 		return err;
5085 
5086 	err = sel_netnode_sid(addrp, family, &node_sid);
5087 	if (err)
5088 		return err;
5089 	return avc_has_perm(peer_sid, node_sid,
5090 			    SECCLASS_NODE, NODE__RECVFROM, ad);
5091 }
5092 
5093 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5094 				       u16 family)
5095 {
5096 	int err = 0;
5097 	struct sk_security_struct *sksec = selinux_sock(sk);
5098 	u32 sk_sid = sksec->sid;
5099 	struct common_audit_data ad;
5100 	struct lsm_network_audit net;
5101 	char *addrp;
5102 
5103 	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5104 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5105 	if (err)
5106 		return err;
5107 
5108 	if (selinux_secmark_enabled()) {
5109 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5110 				   PACKET__RECV, &ad);
5111 		if (err)
5112 			return err;
5113 	}
5114 
5115 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5116 	if (err)
5117 		return err;
5118 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5119 
5120 	return err;
5121 }
5122 
5123 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5124 {
5125 	int err, peerlbl_active, secmark_active;
5126 	struct sk_security_struct *sksec = selinux_sock(sk);
5127 	u16 family = sk->sk_family;
5128 	u32 sk_sid = sksec->sid;
5129 	struct common_audit_data ad;
5130 	struct lsm_network_audit net;
5131 	char *addrp;
5132 
5133 	if (family != PF_INET && family != PF_INET6)
5134 		return 0;
5135 
5136 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5137 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5138 		family = PF_INET;
5139 
5140 	/* If any sort of compatibility mode is enabled then handoff processing
5141 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5142 	 * special handling.  We do this in an attempt to keep this function
5143 	 * as fast and as clean as possible. */
5144 	if (!selinux_policycap_netpeer())
5145 		return selinux_sock_rcv_skb_compat(sk, skb, family);
5146 
5147 	secmark_active = selinux_secmark_enabled();
5148 	peerlbl_active = selinux_peerlbl_enabled();
5149 	if (!secmark_active && !peerlbl_active)
5150 		return 0;
5151 
5152 	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5153 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5154 	if (err)
5155 		return err;
5156 
5157 	if (peerlbl_active) {
5158 		u32 peer_sid;
5159 
5160 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5161 		if (err)
5162 			return err;
5163 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5164 					       addrp, family, peer_sid, &ad);
5165 		if (err) {
5166 			selinux_netlbl_err(skb, family, err, 0);
5167 			return err;
5168 		}
5169 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
5170 				   PEER__RECV, &ad);
5171 		if (err) {
5172 			selinux_netlbl_err(skb, family, err, 0);
5173 			return err;
5174 		}
5175 	}
5176 
5177 	if (secmark_active) {
5178 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5179 				   PACKET__RECV, &ad);
5180 		if (err)
5181 			return err;
5182 	}
5183 
5184 	return err;
5185 }
5186 
5187 static int selinux_socket_getpeersec_stream(struct socket *sock,
5188 					    sockptr_t optval, sockptr_t optlen,
5189 					    unsigned int len)
5190 {
5191 	int err = 0;
5192 	char *scontext = NULL;
5193 	u32 scontext_len;
5194 	struct sk_security_struct *sksec = selinux_sock(sock->sk);
5195 	u32 peer_sid = SECSID_NULL;
5196 
5197 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5198 	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5199 	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5200 		peer_sid = sksec->peer_sid;
5201 	if (peer_sid == SECSID_NULL)
5202 		return -ENOPROTOOPT;
5203 
5204 	err = security_sid_to_context(peer_sid, &scontext,
5205 				      &scontext_len);
5206 	if (err)
5207 		return err;
5208 	if (scontext_len > len) {
5209 		err = -ERANGE;
5210 		goto out_len;
5211 	}
5212 
5213 	if (copy_to_sockptr(optval, scontext, scontext_len))
5214 		err = -EFAULT;
5215 out_len:
5216 	if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5217 		err = -EFAULT;
5218 	kfree(scontext);
5219 	return err;
5220 }
5221 
5222 static int selinux_socket_getpeersec_dgram(struct socket *sock,
5223 					   struct sk_buff *skb, u32 *secid)
5224 {
5225 	u32 peer_secid = SECSID_NULL;
5226 	u16 family;
5227 
5228 	if (skb && skb->protocol == htons(ETH_P_IP))
5229 		family = PF_INET;
5230 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5231 		family = PF_INET6;
5232 	else if (sock)
5233 		family = sock->sk->sk_family;
5234 	else {
5235 		*secid = SECSID_NULL;
5236 		return -EINVAL;
5237 	}
5238 
5239 	if (sock && family == PF_UNIX) {
5240 		struct inode_security_struct *isec;
5241 		isec = inode_security_novalidate(SOCK_INODE(sock));
5242 		peer_secid = isec->sid;
5243 	} else if (skb)
5244 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5245 
5246 	*secid = peer_secid;
5247 	if (peer_secid == SECSID_NULL)
5248 		return -ENOPROTOOPT;
5249 	return 0;
5250 }
5251 
5252 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5253 {
5254 	struct sk_security_struct *sksec = selinux_sock(sk);
5255 
5256 	sksec->peer_sid = SECINITSID_UNLABELED;
5257 	sksec->sid = SECINITSID_UNLABELED;
5258 	sksec->sclass = SECCLASS_SOCKET;
5259 	selinux_netlbl_sk_security_reset(sksec);
5260 
5261 	return 0;
5262 }
5263 
5264 static void selinux_sk_free_security(struct sock *sk)
5265 {
5266 	struct sk_security_struct *sksec = selinux_sock(sk);
5267 
5268 	selinux_netlbl_sk_security_free(sksec);
5269 }
5270 
5271 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5272 {
5273 	struct sk_security_struct *sksec = selinux_sock(sk);
5274 	struct sk_security_struct *newsksec = selinux_sock(newsk);
5275 
5276 	newsksec->sid = sksec->sid;
5277 	newsksec->peer_sid = sksec->peer_sid;
5278 	newsksec->sclass = sksec->sclass;
5279 
5280 	selinux_netlbl_sk_security_reset(newsksec);
5281 }
5282 
5283 static void selinux_sk_getsecid(const struct sock *sk, u32 *secid)
5284 {
5285 	if (!sk)
5286 		*secid = SECINITSID_ANY_SOCKET;
5287 	else {
5288 		const struct sk_security_struct *sksec = selinux_sock(sk);
5289 
5290 		*secid = sksec->sid;
5291 	}
5292 }
5293 
5294 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5295 {
5296 	struct inode_security_struct *isec =
5297 		inode_security_novalidate(SOCK_INODE(parent));
5298 	struct sk_security_struct *sksec = selinux_sock(sk);
5299 
5300 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5301 	    sk->sk_family == PF_UNIX)
5302 		isec->sid = sksec->sid;
5303 	sksec->sclass = isec->sclass;
5304 }
5305 
5306 /*
5307  * Determines peer_secid for the asoc and updates socket's peer label
5308  * if it's the first association on the socket.
5309  */
5310 static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5311 					  struct sk_buff *skb)
5312 {
5313 	struct sock *sk = asoc->base.sk;
5314 	u16 family = sk->sk_family;
5315 	struct sk_security_struct *sksec = selinux_sock(sk);
5316 	struct common_audit_data ad;
5317 	struct lsm_network_audit net;
5318 	int err;
5319 
5320 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5321 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5322 		family = PF_INET;
5323 
5324 	if (selinux_peerlbl_enabled()) {
5325 		asoc->peer_secid = SECSID_NULL;
5326 
5327 		/* This will return peer_sid = SECSID_NULL if there are
5328 		 * no peer labels, see security_net_peersid_resolve().
5329 		 */
5330 		err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5331 		if (err)
5332 			return err;
5333 
5334 		if (asoc->peer_secid == SECSID_NULL)
5335 			asoc->peer_secid = SECINITSID_UNLABELED;
5336 	} else {
5337 		asoc->peer_secid = SECINITSID_UNLABELED;
5338 	}
5339 
5340 	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5341 		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5342 
5343 		/* Here as first association on socket. As the peer SID
5344 		 * was allowed by peer recv (and the netif/node checks),
5345 		 * then it is approved by policy and used as the primary
5346 		 * peer SID for getpeercon(3).
5347 		 */
5348 		sksec->peer_sid = asoc->peer_secid;
5349 	} else if (sksec->peer_sid != asoc->peer_secid) {
5350 		/* Other association peer SIDs are checked to enforce
5351 		 * consistency among the peer SIDs.
5352 		 */
5353 		ad_net_init_from_sk(&ad, &net, asoc->base.sk);
5354 		err = avc_has_perm(sksec->peer_sid, asoc->peer_secid,
5355 				   sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5356 				   &ad);
5357 		if (err)
5358 			return err;
5359 	}
5360 	return 0;
5361 }
5362 
5363 /* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5364  * happens on an incoming connect(2), sctp_connectx(3) or
5365  * sctp_sendmsg(3) (with no association already present).
5366  */
5367 static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5368 				      struct sk_buff *skb)
5369 {
5370 	struct sk_security_struct *sksec = selinux_sock(asoc->base.sk);
5371 	u32 conn_sid;
5372 	int err;
5373 
5374 	if (!selinux_policycap_extsockclass())
5375 		return 0;
5376 
5377 	err = selinux_sctp_process_new_assoc(asoc, skb);
5378 	if (err)
5379 		return err;
5380 
5381 	/* Compute the MLS component for the connection and store
5382 	 * the information in asoc. This will be used by SCTP TCP type
5383 	 * sockets and peeled off connections as they cause a new
5384 	 * socket to be generated. selinux_sctp_sk_clone() will then
5385 	 * plug this into the new socket.
5386 	 */
5387 	err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5388 	if (err)
5389 		return err;
5390 
5391 	asoc->secid = conn_sid;
5392 
5393 	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5394 	return selinux_netlbl_sctp_assoc_request(asoc, skb);
5395 }
5396 
5397 /* Called when SCTP receives a COOKIE ACK chunk as the final
5398  * response to an association request (initited by us).
5399  */
5400 static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5401 					  struct sk_buff *skb)
5402 {
5403 	struct sk_security_struct *sksec = selinux_sock(asoc->base.sk);
5404 
5405 	if (!selinux_policycap_extsockclass())
5406 		return 0;
5407 
5408 	/* Inherit secid from the parent socket - this will be picked up
5409 	 * by selinux_sctp_sk_clone() if the association gets peeled off
5410 	 * into a new socket.
5411 	 */
5412 	asoc->secid = sksec->sid;
5413 
5414 	return selinux_sctp_process_new_assoc(asoc, skb);
5415 }
5416 
5417 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5418  * based on their @optname.
5419  */
5420 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5421 				     struct sockaddr *address,
5422 				     int addrlen)
5423 {
5424 	int len, err = 0, walk_size = 0;
5425 	void *addr_buf;
5426 	struct sockaddr *addr;
5427 	struct socket *sock;
5428 
5429 	if (!selinux_policycap_extsockclass())
5430 		return 0;
5431 
5432 	/* Process one or more addresses that may be IPv4 or IPv6 */
5433 	sock = sk->sk_socket;
5434 	addr_buf = address;
5435 
5436 	while (walk_size < addrlen) {
5437 		if (walk_size + sizeof(sa_family_t) > addrlen)
5438 			return -EINVAL;
5439 
5440 		addr = addr_buf;
5441 		switch (addr->sa_family) {
5442 		case AF_UNSPEC:
5443 		case AF_INET:
5444 			len = sizeof(struct sockaddr_in);
5445 			break;
5446 		case AF_INET6:
5447 			len = sizeof(struct sockaddr_in6);
5448 			break;
5449 		default:
5450 			return -EINVAL;
5451 		}
5452 
5453 		if (walk_size + len > addrlen)
5454 			return -EINVAL;
5455 
5456 		err = -EINVAL;
5457 		switch (optname) {
5458 		/* Bind checks */
5459 		case SCTP_PRIMARY_ADDR:
5460 		case SCTP_SET_PEER_PRIMARY_ADDR:
5461 		case SCTP_SOCKOPT_BINDX_ADD:
5462 			err = selinux_socket_bind(sock, addr, len);
5463 			break;
5464 		/* Connect checks */
5465 		case SCTP_SOCKOPT_CONNECTX:
5466 		case SCTP_PARAM_SET_PRIMARY:
5467 		case SCTP_PARAM_ADD_IP:
5468 		case SCTP_SENDMSG_CONNECT:
5469 			err = selinux_socket_connect_helper(sock, addr, len);
5470 			if (err)
5471 				return err;
5472 
5473 			/* As selinux_sctp_bind_connect() is called by the
5474 			 * SCTP protocol layer, the socket is already locked,
5475 			 * therefore selinux_netlbl_socket_connect_locked()
5476 			 * is called here. The situations handled are:
5477 			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5478 			 * whenever a new IP address is added or when a new
5479 			 * primary address is selected.
5480 			 * Note that an SCTP connect(2) call happens before
5481 			 * the SCTP protocol layer and is handled via
5482 			 * selinux_socket_connect().
5483 			 */
5484 			err = selinux_netlbl_socket_connect_locked(sk, addr);
5485 			break;
5486 		}
5487 
5488 		if (err)
5489 			return err;
5490 
5491 		addr_buf += len;
5492 		walk_size += len;
5493 	}
5494 
5495 	return 0;
5496 }
5497 
5498 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5499 static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5500 				  struct sock *newsk)
5501 {
5502 	struct sk_security_struct *sksec = selinux_sock(sk);
5503 	struct sk_security_struct *newsksec = selinux_sock(newsk);
5504 
5505 	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5506 	 * the non-sctp clone version.
5507 	 */
5508 	if (!selinux_policycap_extsockclass())
5509 		return selinux_sk_clone_security(sk, newsk);
5510 
5511 	newsksec->sid = asoc->secid;
5512 	newsksec->peer_sid = asoc->peer_secid;
5513 	newsksec->sclass = sksec->sclass;
5514 	selinux_netlbl_sctp_sk_clone(sk, newsk);
5515 }
5516 
5517 static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5518 {
5519 	struct sk_security_struct *ssksec = selinux_sock(ssk);
5520 	struct sk_security_struct *sksec = selinux_sock(sk);
5521 
5522 	ssksec->sclass = sksec->sclass;
5523 	ssksec->sid = sksec->sid;
5524 
5525 	/* replace the existing subflow label deleting the existing one
5526 	 * and re-recreating a new label using the updated context
5527 	 */
5528 	selinux_netlbl_sk_security_free(ssksec);
5529 	return selinux_netlbl_socket_post_create(ssk, ssk->sk_family);
5530 }
5531 
5532 static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5533 				     struct request_sock *req)
5534 {
5535 	struct sk_security_struct *sksec = selinux_sock(sk);
5536 	int err;
5537 	u16 family = req->rsk_ops->family;
5538 	u32 connsid;
5539 	u32 peersid;
5540 
5541 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5542 	if (err)
5543 		return err;
5544 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5545 	if (err)
5546 		return err;
5547 	req->secid = connsid;
5548 	req->peer_secid = peersid;
5549 
5550 	return selinux_netlbl_inet_conn_request(req, family);
5551 }
5552 
5553 static void selinux_inet_csk_clone(struct sock *newsk,
5554 				   const struct request_sock *req)
5555 {
5556 	struct sk_security_struct *newsksec = selinux_sock(newsk);
5557 
5558 	newsksec->sid = req->secid;
5559 	newsksec->peer_sid = req->peer_secid;
5560 	/* NOTE: Ideally, we should also get the isec->sid for the
5561 	   new socket in sync, but we don't have the isec available yet.
5562 	   So we will wait until sock_graft to do it, by which
5563 	   time it will have been created and available. */
5564 
5565 	/* We don't need to take any sort of lock here as we are the only
5566 	 * thread with access to newsksec */
5567 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5568 }
5569 
5570 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5571 {
5572 	u16 family = sk->sk_family;
5573 	struct sk_security_struct *sksec = selinux_sock(sk);
5574 
5575 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5576 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5577 		family = PF_INET;
5578 
5579 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5580 }
5581 
5582 static int selinux_secmark_relabel_packet(u32 sid)
5583 {
5584 	return avc_has_perm(current_sid(), sid, SECCLASS_PACKET, PACKET__RELABELTO,
5585 			    NULL);
5586 }
5587 
5588 static void selinux_secmark_refcount_inc(void)
5589 {
5590 	atomic_inc(&selinux_secmark_refcount);
5591 }
5592 
5593 static void selinux_secmark_refcount_dec(void)
5594 {
5595 	atomic_dec(&selinux_secmark_refcount);
5596 }
5597 
5598 static void selinux_req_classify_flow(const struct request_sock *req,
5599 				      struct flowi_common *flic)
5600 {
5601 	flic->flowic_secid = req->secid;
5602 }
5603 
5604 static int selinux_tun_dev_alloc_security(void *security)
5605 {
5606 	struct tun_security_struct *tunsec = selinux_tun_dev(security);
5607 
5608 	tunsec->sid = current_sid();
5609 	return 0;
5610 }
5611 
5612 static int selinux_tun_dev_create(void)
5613 {
5614 	u32 sid = current_sid();
5615 
5616 	/* we aren't taking into account the "sockcreate" SID since the socket
5617 	 * that is being created here is not a socket in the traditional sense,
5618 	 * instead it is a private sock, accessible only to the kernel, and
5619 	 * representing a wide range of network traffic spanning multiple
5620 	 * connections unlike traditional sockets - check the TUN driver to
5621 	 * get a better understanding of why this socket is special */
5622 
5623 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5624 			    NULL);
5625 }
5626 
5627 static int selinux_tun_dev_attach_queue(void *security)
5628 {
5629 	struct tun_security_struct *tunsec = selinux_tun_dev(security);
5630 
5631 	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5632 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5633 }
5634 
5635 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5636 {
5637 	struct tun_security_struct *tunsec = selinux_tun_dev(security);
5638 	struct sk_security_struct *sksec = selinux_sock(sk);
5639 
5640 	/* we don't currently perform any NetLabel based labeling here and it
5641 	 * isn't clear that we would want to do so anyway; while we could apply
5642 	 * labeling without the support of the TUN user the resulting labeled
5643 	 * traffic from the other end of the connection would almost certainly
5644 	 * cause confusion to the TUN user that had no idea network labeling
5645 	 * protocols were being used */
5646 
5647 	sksec->sid = tunsec->sid;
5648 	sksec->sclass = SECCLASS_TUN_SOCKET;
5649 
5650 	return 0;
5651 }
5652 
5653 static int selinux_tun_dev_open(void *security)
5654 {
5655 	struct tun_security_struct *tunsec = selinux_tun_dev(security);
5656 	u32 sid = current_sid();
5657 	int err;
5658 
5659 	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5660 			   TUN_SOCKET__RELABELFROM, NULL);
5661 	if (err)
5662 		return err;
5663 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5664 			   TUN_SOCKET__RELABELTO, NULL);
5665 	if (err)
5666 		return err;
5667 	tunsec->sid = sid;
5668 
5669 	return 0;
5670 }
5671 
5672 #ifdef CONFIG_NETFILTER
5673 
5674 static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5675 				       const struct nf_hook_state *state)
5676 {
5677 	int ifindex;
5678 	u16 family;
5679 	char *addrp;
5680 	u32 peer_sid;
5681 	struct common_audit_data ad;
5682 	struct lsm_network_audit net;
5683 	int secmark_active, peerlbl_active;
5684 
5685 	if (!selinux_policycap_netpeer())
5686 		return NF_ACCEPT;
5687 
5688 	secmark_active = selinux_secmark_enabled();
5689 	peerlbl_active = selinux_peerlbl_enabled();
5690 	if (!secmark_active && !peerlbl_active)
5691 		return NF_ACCEPT;
5692 
5693 	family = state->pf;
5694 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5695 		return NF_DROP;
5696 
5697 	ifindex = state->in->ifindex;
5698 	ad_net_init_from_iif(&ad, &net, ifindex, family);
5699 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5700 		return NF_DROP;
5701 
5702 	if (peerlbl_active) {
5703 		int err;
5704 
5705 		err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5706 					       addrp, family, peer_sid, &ad);
5707 		if (err) {
5708 			selinux_netlbl_err(skb, family, err, 1);
5709 			return NF_DROP;
5710 		}
5711 	}
5712 
5713 	if (secmark_active)
5714 		if (avc_has_perm(peer_sid, skb->secmark,
5715 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5716 			return NF_DROP;
5717 
5718 	if (netlbl_enabled())
5719 		/* we do this in the FORWARD path and not the POST_ROUTING
5720 		 * path because we want to make sure we apply the necessary
5721 		 * labeling before IPsec is applied so we can leverage AH
5722 		 * protection */
5723 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5724 			return NF_DROP;
5725 
5726 	return NF_ACCEPT;
5727 }
5728 
5729 static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5730 				      const struct nf_hook_state *state)
5731 {
5732 	struct sock *sk;
5733 	u32 sid;
5734 
5735 	if (!netlbl_enabled())
5736 		return NF_ACCEPT;
5737 
5738 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5739 	 * because we want to make sure we apply the necessary labeling
5740 	 * before IPsec is applied so we can leverage AH protection */
5741 	sk = sk_to_full_sk(skb->sk);
5742 	if (sk) {
5743 		struct sk_security_struct *sksec;
5744 
5745 		if (sk_listener(sk))
5746 			/* if the socket is the listening state then this
5747 			 * packet is a SYN-ACK packet which means it needs to
5748 			 * be labeled based on the connection/request_sock and
5749 			 * not the parent socket.  unfortunately, we can't
5750 			 * lookup the request_sock yet as it isn't queued on
5751 			 * the parent socket until after the SYN-ACK is sent.
5752 			 * the "solution" is to simply pass the packet as-is
5753 			 * as any IP option based labeling should be copied
5754 			 * from the initial connection request (in the IP
5755 			 * layer).  it is far from ideal, but until we get a
5756 			 * security label in the packet itself this is the
5757 			 * best we can do. */
5758 			return NF_ACCEPT;
5759 
5760 		/* standard practice, label using the parent socket */
5761 		sksec = selinux_sock(sk);
5762 		sid = sksec->sid;
5763 	} else
5764 		sid = SECINITSID_KERNEL;
5765 	if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5766 		return NF_DROP;
5767 
5768 	return NF_ACCEPT;
5769 }
5770 
5771 
5772 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5773 					const struct nf_hook_state *state)
5774 {
5775 	struct sock *sk;
5776 	struct sk_security_struct *sksec;
5777 	struct common_audit_data ad;
5778 	struct lsm_network_audit net;
5779 	u8 proto = 0;
5780 
5781 	sk = skb_to_full_sk(skb);
5782 	if (sk == NULL)
5783 		return NF_ACCEPT;
5784 	sksec = selinux_sock(sk);
5785 
5786 	ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf);
5787 	if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5788 		return NF_DROP;
5789 
5790 	if (selinux_secmark_enabled())
5791 		if (avc_has_perm(sksec->sid, skb->secmark,
5792 				 SECCLASS_PACKET, PACKET__SEND, &ad))
5793 			return NF_DROP_ERR(-ECONNREFUSED);
5794 
5795 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5796 		return NF_DROP_ERR(-ECONNREFUSED);
5797 
5798 	return NF_ACCEPT;
5799 }
5800 
5801 static unsigned int selinux_ip_postroute(void *priv,
5802 					 struct sk_buff *skb,
5803 					 const struct nf_hook_state *state)
5804 {
5805 	u16 family;
5806 	u32 secmark_perm;
5807 	u32 peer_sid;
5808 	int ifindex;
5809 	struct sock *sk;
5810 	struct common_audit_data ad;
5811 	struct lsm_network_audit net;
5812 	char *addrp;
5813 	int secmark_active, peerlbl_active;
5814 
5815 	/* If any sort of compatibility mode is enabled then handoff processing
5816 	 * to the selinux_ip_postroute_compat() function to deal with the
5817 	 * special handling.  We do this in an attempt to keep this function
5818 	 * as fast and as clean as possible. */
5819 	if (!selinux_policycap_netpeer())
5820 		return selinux_ip_postroute_compat(skb, state);
5821 
5822 	secmark_active = selinux_secmark_enabled();
5823 	peerlbl_active = selinux_peerlbl_enabled();
5824 	if (!secmark_active && !peerlbl_active)
5825 		return NF_ACCEPT;
5826 
5827 	sk = skb_to_full_sk(skb);
5828 
5829 #ifdef CONFIG_XFRM
5830 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5831 	 * packet transformation so allow the packet to pass without any checks
5832 	 * since we'll have another chance to perform access control checks
5833 	 * when the packet is on it's final way out.
5834 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5835 	 *       is NULL, in this case go ahead and apply access control.
5836 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5837 	 *       TCP listening state we cannot wait until the XFRM processing
5838 	 *       is done as we will miss out on the SA label if we do;
5839 	 *       unfortunately, this means more work, but it is only once per
5840 	 *       connection. */
5841 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5842 	    !(sk && sk_listener(sk)))
5843 		return NF_ACCEPT;
5844 #endif
5845 
5846 	family = state->pf;
5847 	if (sk == NULL) {
5848 		/* Without an associated socket the packet is either coming
5849 		 * from the kernel or it is being forwarded; check the packet
5850 		 * to determine which and if the packet is being forwarded
5851 		 * query the packet directly to determine the security label. */
5852 		if (skb->skb_iif) {
5853 			secmark_perm = PACKET__FORWARD_OUT;
5854 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5855 				return NF_DROP;
5856 		} else {
5857 			secmark_perm = PACKET__SEND;
5858 			peer_sid = SECINITSID_KERNEL;
5859 		}
5860 	} else if (sk_listener(sk)) {
5861 		/* Locally generated packet but the associated socket is in the
5862 		 * listening state which means this is a SYN-ACK packet.  In
5863 		 * this particular case the correct security label is assigned
5864 		 * to the connection/request_sock but unfortunately we can't
5865 		 * query the request_sock as it isn't queued on the parent
5866 		 * socket until after the SYN-ACK packet is sent; the only
5867 		 * viable choice is to regenerate the label like we do in
5868 		 * selinux_inet_conn_request().  See also selinux_ip_output()
5869 		 * for similar problems. */
5870 		u32 skb_sid;
5871 		struct sk_security_struct *sksec;
5872 
5873 		sksec = selinux_sock(sk);
5874 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5875 			return NF_DROP;
5876 		/* At this point, if the returned skb peerlbl is SECSID_NULL
5877 		 * and the packet has been through at least one XFRM
5878 		 * transformation then we must be dealing with the "final"
5879 		 * form of labeled IPsec packet; since we've already applied
5880 		 * all of our access controls on this packet we can safely
5881 		 * pass the packet. */
5882 		if (skb_sid == SECSID_NULL) {
5883 			switch (family) {
5884 			case PF_INET:
5885 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5886 					return NF_ACCEPT;
5887 				break;
5888 			case PF_INET6:
5889 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5890 					return NF_ACCEPT;
5891 				break;
5892 			default:
5893 				return NF_DROP_ERR(-ECONNREFUSED);
5894 			}
5895 		}
5896 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5897 			return NF_DROP;
5898 		secmark_perm = PACKET__SEND;
5899 	} else {
5900 		/* Locally generated packet, fetch the security label from the
5901 		 * associated socket. */
5902 		struct sk_security_struct *sksec = selinux_sock(sk);
5903 		peer_sid = sksec->sid;
5904 		secmark_perm = PACKET__SEND;
5905 	}
5906 
5907 	ifindex = state->out->ifindex;
5908 	ad_net_init_from_iif(&ad, &net, ifindex, family);
5909 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5910 		return NF_DROP;
5911 
5912 	if (secmark_active)
5913 		if (avc_has_perm(peer_sid, skb->secmark,
5914 				 SECCLASS_PACKET, secmark_perm, &ad))
5915 			return NF_DROP_ERR(-ECONNREFUSED);
5916 
5917 	if (peerlbl_active) {
5918 		u32 if_sid;
5919 		u32 node_sid;
5920 
5921 		if (sel_netif_sid(state->net, ifindex, &if_sid))
5922 			return NF_DROP;
5923 		if (avc_has_perm(peer_sid, if_sid,
5924 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5925 			return NF_DROP_ERR(-ECONNREFUSED);
5926 
5927 		if (sel_netnode_sid(addrp, family, &node_sid))
5928 			return NF_DROP;
5929 		if (avc_has_perm(peer_sid, node_sid,
5930 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5931 			return NF_DROP_ERR(-ECONNREFUSED);
5932 	}
5933 
5934 	return NF_ACCEPT;
5935 }
5936 #endif	/* CONFIG_NETFILTER */
5937 
5938 static int nlmsg_sock_has_extended_perms(struct sock *sk, u32 perms, u16 nlmsg_type)
5939 {
5940 	struct sk_security_struct *sksec = sk->sk_security;
5941 	struct common_audit_data ad;
5942 	struct lsm_network_audit net;
5943 	u8 driver;
5944 	u8 xperm;
5945 
5946 	if (sock_skip_has_perm(sksec->sid))
5947 		return 0;
5948 
5949 	ad_net_init_from_sk(&ad, &net, sk);
5950 
5951 	driver = nlmsg_type >> 8;
5952 	xperm = nlmsg_type & 0xff;
5953 
5954 	return avc_has_extended_perms(current_sid(), sksec->sid, sksec->sclass,
5955 			perms, driver, xperm, &ad);
5956 }
5957 
5958 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5959 {
5960 	int rc = 0;
5961 	unsigned int msg_len;
5962 	unsigned int data_len = skb->len;
5963 	unsigned char *data = skb->data;
5964 	struct nlmsghdr *nlh;
5965 	struct sk_security_struct *sksec = selinux_sock(sk);
5966 	u16 sclass = sksec->sclass;
5967 	u32 perm;
5968 
5969 	while (data_len >= nlmsg_total_size(0)) {
5970 		nlh = (struct nlmsghdr *)data;
5971 
5972 		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5973 		 *       users which means we can't reject skb's with bogus
5974 		 *       length fields; our solution is to follow what
5975 		 *       netlink_rcv_skb() does and simply skip processing at
5976 		 *       messages with length fields that are clearly junk
5977 		 */
5978 		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5979 			return 0;
5980 
5981 		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5982 		if (rc == 0) {
5983 			if (selinux_policycap_netlink_xperm()) {
5984 				rc = nlmsg_sock_has_extended_perms(
5985 					sk, perm, nlh->nlmsg_type);
5986 			} else {
5987 				rc = sock_has_perm(sk, perm);
5988 			}
5989 			if (rc)
5990 				return rc;
5991 		} else if (rc == -EINVAL) {
5992 			/* -EINVAL is a missing msg/perm mapping */
5993 			pr_warn_ratelimited("SELinux: unrecognized netlink"
5994 				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5995 				" pid=%d comm=%s\n",
5996 				sk->sk_protocol, nlh->nlmsg_type,
5997 				secclass_map[sclass - 1].name,
5998 				task_pid_nr(current), current->comm);
5999 			if (enforcing_enabled() &&
6000 			    !security_get_allow_unknown())
6001 				return rc;
6002 			rc = 0;
6003 		} else if (rc == -ENOENT) {
6004 			/* -ENOENT is a missing socket/class mapping, ignore */
6005 			rc = 0;
6006 		} else {
6007 			return rc;
6008 		}
6009 
6010 		/* move to the next message after applying netlink padding */
6011 		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
6012 		if (msg_len >= data_len)
6013 			return 0;
6014 		data_len -= msg_len;
6015 		data += msg_len;
6016 	}
6017 
6018 	return rc;
6019 }
6020 
6021 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
6022 {
6023 	isec->sclass = sclass;
6024 	isec->sid = current_sid();
6025 }
6026 
6027 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6028 			u32 perms)
6029 {
6030 	struct ipc_security_struct *isec;
6031 	struct common_audit_data ad;
6032 	u32 sid = current_sid();
6033 
6034 	isec = selinux_ipc(ipc_perms);
6035 
6036 	ad.type = LSM_AUDIT_DATA_IPC;
6037 	ad.u.ipc_id = ipc_perms->key;
6038 
6039 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
6040 }
6041 
6042 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6043 {
6044 	struct msg_security_struct *msec;
6045 
6046 	msec = selinux_msg_msg(msg);
6047 	msec->sid = SECINITSID_UNLABELED;
6048 
6049 	return 0;
6050 }
6051 
6052 /* message queue security operations */
6053 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6054 {
6055 	struct ipc_security_struct *isec;
6056 	struct common_audit_data ad;
6057 	u32 sid = current_sid();
6058 
6059 	isec = selinux_ipc(msq);
6060 	ipc_init_security(isec, SECCLASS_MSGQ);
6061 
6062 	ad.type = LSM_AUDIT_DATA_IPC;
6063 	ad.u.ipc_id = msq->key;
6064 
6065 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6066 			    MSGQ__CREATE, &ad);
6067 }
6068 
6069 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6070 {
6071 	struct ipc_security_struct *isec;
6072 	struct common_audit_data ad;
6073 	u32 sid = current_sid();
6074 
6075 	isec = selinux_ipc(msq);
6076 
6077 	ad.type = LSM_AUDIT_DATA_IPC;
6078 	ad.u.ipc_id = msq->key;
6079 
6080 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6081 			    MSGQ__ASSOCIATE, &ad);
6082 }
6083 
6084 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6085 {
6086 	u32 perms;
6087 
6088 	switch (cmd) {
6089 	case IPC_INFO:
6090 	case MSG_INFO:
6091 		/* No specific object, just general system-wide information. */
6092 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6093 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6094 	case IPC_STAT:
6095 	case MSG_STAT:
6096 	case MSG_STAT_ANY:
6097 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6098 		break;
6099 	case IPC_SET:
6100 		perms = MSGQ__SETATTR;
6101 		break;
6102 	case IPC_RMID:
6103 		perms = MSGQ__DESTROY;
6104 		break;
6105 	default:
6106 		return 0;
6107 	}
6108 
6109 	return ipc_has_perm(msq, perms);
6110 }
6111 
6112 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6113 {
6114 	struct ipc_security_struct *isec;
6115 	struct msg_security_struct *msec;
6116 	struct common_audit_data ad;
6117 	u32 sid = current_sid();
6118 	int rc;
6119 
6120 	isec = selinux_ipc(msq);
6121 	msec = selinux_msg_msg(msg);
6122 
6123 	/*
6124 	 * First time through, need to assign label to the message
6125 	 */
6126 	if (msec->sid == SECINITSID_UNLABELED) {
6127 		/*
6128 		 * Compute new sid based on current process and
6129 		 * message queue this message will be stored in
6130 		 */
6131 		rc = security_transition_sid(sid, isec->sid,
6132 					     SECCLASS_MSG, NULL, &msec->sid);
6133 		if (rc)
6134 			return rc;
6135 	}
6136 
6137 	ad.type = LSM_AUDIT_DATA_IPC;
6138 	ad.u.ipc_id = msq->key;
6139 
6140 	/* Can this process write to the queue? */
6141 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6142 			  MSGQ__WRITE, &ad);
6143 	if (!rc)
6144 		/* Can this process send the message */
6145 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
6146 				  MSG__SEND, &ad);
6147 	if (!rc)
6148 		/* Can the message be put in the queue? */
6149 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
6150 				  MSGQ__ENQUEUE, &ad);
6151 
6152 	return rc;
6153 }
6154 
6155 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6156 				    struct task_struct *target,
6157 				    long type, int mode)
6158 {
6159 	struct ipc_security_struct *isec;
6160 	struct msg_security_struct *msec;
6161 	struct common_audit_data ad;
6162 	u32 sid = task_sid_obj(target);
6163 	int rc;
6164 
6165 	isec = selinux_ipc(msq);
6166 	msec = selinux_msg_msg(msg);
6167 
6168 	ad.type = LSM_AUDIT_DATA_IPC;
6169 	ad.u.ipc_id = msq->key;
6170 
6171 	rc = avc_has_perm(sid, isec->sid,
6172 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6173 	if (!rc)
6174 		rc = avc_has_perm(sid, msec->sid,
6175 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6176 	return rc;
6177 }
6178 
6179 /* Shared Memory security operations */
6180 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6181 {
6182 	struct ipc_security_struct *isec;
6183 	struct common_audit_data ad;
6184 	u32 sid = current_sid();
6185 
6186 	isec = selinux_ipc(shp);
6187 	ipc_init_security(isec, SECCLASS_SHM);
6188 
6189 	ad.type = LSM_AUDIT_DATA_IPC;
6190 	ad.u.ipc_id = shp->key;
6191 
6192 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6193 			    SHM__CREATE, &ad);
6194 }
6195 
6196 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6197 {
6198 	struct ipc_security_struct *isec;
6199 	struct common_audit_data ad;
6200 	u32 sid = current_sid();
6201 
6202 	isec = selinux_ipc(shp);
6203 
6204 	ad.type = LSM_AUDIT_DATA_IPC;
6205 	ad.u.ipc_id = shp->key;
6206 
6207 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6208 			    SHM__ASSOCIATE, &ad);
6209 }
6210 
6211 /* Note, at this point, shp is locked down */
6212 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6213 {
6214 	u32 perms;
6215 
6216 	switch (cmd) {
6217 	case IPC_INFO:
6218 	case SHM_INFO:
6219 		/* No specific object, just general system-wide information. */
6220 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6221 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6222 	case IPC_STAT:
6223 	case SHM_STAT:
6224 	case SHM_STAT_ANY:
6225 		perms = SHM__GETATTR | SHM__ASSOCIATE;
6226 		break;
6227 	case IPC_SET:
6228 		perms = SHM__SETATTR;
6229 		break;
6230 	case SHM_LOCK:
6231 	case SHM_UNLOCK:
6232 		perms = SHM__LOCK;
6233 		break;
6234 	case IPC_RMID:
6235 		perms = SHM__DESTROY;
6236 		break;
6237 	default:
6238 		return 0;
6239 	}
6240 
6241 	return ipc_has_perm(shp, perms);
6242 }
6243 
6244 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6245 			     char __user *shmaddr, int shmflg)
6246 {
6247 	u32 perms;
6248 
6249 	if (shmflg & SHM_RDONLY)
6250 		perms = SHM__READ;
6251 	else
6252 		perms = SHM__READ | SHM__WRITE;
6253 
6254 	return ipc_has_perm(shp, perms);
6255 }
6256 
6257 /* Semaphore security operations */
6258 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6259 {
6260 	struct ipc_security_struct *isec;
6261 	struct common_audit_data ad;
6262 	u32 sid = current_sid();
6263 
6264 	isec = selinux_ipc(sma);
6265 	ipc_init_security(isec, SECCLASS_SEM);
6266 
6267 	ad.type = LSM_AUDIT_DATA_IPC;
6268 	ad.u.ipc_id = sma->key;
6269 
6270 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6271 			    SEM__CREATE, &ad);
6272 }
6273 
6274 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6275 {
6276 	struct ipc_security_struct *isec;
6277 	struct common_audit_data ad;
6278 	u32 sid = current_sid();
6279 
6280 	isec = selinux_ipc(sma);
6281 
6282 	ad.type = LSM_AUDIT_DATA_IPC;
6283 	ad.u.ipc_id = sma->key;
6284 
6285 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6286 			    SEM__ASSOCIATE, &ad);
6287 }
6288 
6289 /* Note, at this point, sma is locked down */
6290 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6291 {
6292 	int err;
6293 	u32 perms;
6294 
6295 	switch (cmd) {
6296 	case IPC_INFO:
6297 	case SEM_INFO:
6298 		/* No specific object, just general system-wide information. */
6299 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6300 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6301 	case GETPID:
6302 	case GETNCNT:
6303 	case GETZCNT:
6304 		perms = SEM__GETATTR;
6305 		break;
6306 	case GETVAL:
6307 	case GETALL:
6308 		perms = SEM__READ;
6309 		break;
6310 	case SETVAL:
6311 	case SETALL:
6312 		perms = SEM__WRITE;
6313 		break;
6314 	case IPC_RMID:
6315 		perms = SEM__DESTROY;
6316 		break;
6317 	case IPC_SET:
6318 		perms = SEM__SETATTR;
6319 		break;
6320 	case IPC_STAT:
6321 	case SEM_STAT:
6322 	case SEM_STAT_ANY:
6323 		perms = SEM__GETATTR | SEM__ASSOCIATE;
6324 		break;
6325 	default:
6326 		return 0;
6327 	}
6328 
6329 	err = ipc_has_perm(sma, perms);
6330 	return err;
6331 }
6332 
6333 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6334 			     struct sembuf *sops, unsigned nsops, int alter)
6335 {
6336 	u32 perms;
6337 
6338 	if (alter)
6339 		perms = SEM__READ | SEM__WRITE;
6340 	else
6341 		perms = SEM__READ;
6342 
6343 	return ipc_has_perm(sma, perms);
6344 }
6345 
6346 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6347 {
6348 	u32 av = 0;
6349 
6350 	av = 0;
6351 	if (flag & S_IRUGO)
6352 		av |= IPC__UNIX_READ;
6353 	if (flag & S_IWUGO)
6354 		av |= IPC__UNIX_WRITE;
6355 
6356 	if (av == 0)
6357 		return 0;
6358 
6359 	return ipc_has_perm(ipcp, av);
6360 }
6361 
6362 static void selinux_ipc_getlsmprop(struct kern_ipc_perm *ipcp,
6363 				   struct lsm_prop *prop)
6364 {
6365 	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6366 	prop->selinux.secid = isec->sid;
6367 }
6368 
6369 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6370 {
6371 	if (inode)
6372 		inode_doinit_with_dentry(inode, dentry);
6373 }
6374 
6375 static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p,
6376 			       char **value)
6377 {
6378 	const struct task_security_struct *tsec;
6379 	int error;
6380 	u32 sid;
6381 	u32 len;
6382 
6383 	rcu_read_lock();
6384 	tsec = selinux_cred(__task_cred(p));
6385 	if (p != current) {
6386 		error = avc_has_perm(current_sid(), tsec->sid,
6387 				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6388 		if (error)
6389 			goto err_unlock;
6390 	}
6391 	switch (attr) {
6392 	case LSM_ATTR_CURRENT:
6393 		sid = tsec->sid;
6394 		break;
6395 	case LSM_ATTR_PREV:
6396 		sid = tsec->osid;
6397 		break;
6398 	case LSM_ATTR_EXEC:
6399 		sid = tsec->exec_sid;
6400 		break;
6401 	case LSM_ATTR_FSCREATE:
6402 		sid = tsec->create_sid;
6403 		break;
6404 	case LSM_ATTR_KEYCREATE:
6405 		sid = tsec->keycreate_sid;
6406 		break;
6407 	case LSM_ATTR_SOCKCREATE:
6408 		sid = tsec->sockcreate_sid;
6409 		break;
6410 	default:
6411 		error = -EOPNOTSUPP;
6412 		goto err_unlock;
6413 	}
6414 	rcu_read_unlock();
6415 
6416 	if (sid == SECSID_NULL) {
6417 		*value = NULL;
6418 		return 0;
6419 	}
6420 
6421 	error = security_sid_to_context(sid, value, &len);
6422 	if (error)
6423 		return error;
6424 	return len;
6425 
6426 err_unlock:
6427 	rcu_read_unlock();
6428 	return error;
6429 }
6430 
6431 static int selinux_lsm_setattr(u64 attr, void *value, size_t size)
6432 {
6433 	struct task_security_struct *tsec;
6434 	struct cred *new;
6435 	u32 mysid = current_sid(), sid = 0, ptsid;
6436 	int error;
6437 	char *str = value;
6438 
6439 	/*
6440 	 * Basic control over ability to set these attributes at all.
6441 	 */
6442 	switch (attr) {
6443 	case LSM_ATTR_EXEC:
6444 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6445 				     PROCESS__SETEXEC, NULL);
6446 		break;
6447 	case LSM_ATTR_FSCREATE:
6448 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6449 				     PROCESS__SETFSCREATE, NULL);
6450 		break;
6451 	case LSM_ATTR_KEYCREATE:
6452 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6453 				     PROCESS__SETKEYCREATE, NULL);
6454 		break;
6455 	case LSM_ATTR_SOCKCREATE:
6456 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6457 				     PROCESS__SETSOCKCREATE, NULL);
6458 		break;
6459 	case LSM_ATTR_CURRENT:
6460 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6461 				     PROCESS__SETCURRENT, NULL);
6462 		break;
6463 	default:
6464 		error = -EOPNOTSUPP;
6465 		break;
6466 	}
6467 	if (error)
6468 		return error;
6469 
6470 	/* Obtain a SID for the context, if one was specified. */
6471 	if (size && str[0] && str[0] != '\n') {
6472 		if (str[size-1] == '\n') {
6473 			str[size-1] = 0;
6474 			size--;
6475 		}
6476 		error = security_context_to_sid(value, size,
6477 						&sid, GFP_KERNEL);
6478 		if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) {
6479 			if (!has_cap_mac_admin(true)) {
6480 				struct audit_buffer *ab;
6481 				size_t audit_size;
6482 
6483 				/* We strip a nul only if it is at the end,
6484 				 * otherwise the context contains a nul and
6485 				 * we should audit that */
6486 				if (str[size - 1] == '\0')
6487 					audit_size = size - 1;
6488 				else
6489 					audit_size = size;
6490 				ab = audit_log_start(audit_context(),
6491 						     GFP_ATOMIC,
6492 						     AUDIT_SELINUX_ERR);
6493 				if (!ab)
6494 					return error;
6495 				audit_log_format(ab, "op=fscreate invalid_context=");
6496 				audit_log_n_untrustedstring(ab, value,
6497 							    audit_size);
6498 				audit_log_end(ab);
6499 
6500 				return error;
6501 			}
6502 			error = security_context_to_sid_force(value, size,
6503 							&sid);
6504 		}
6505 		if (error)
6506 			return error;
6507 	}
6508 
6509 	new = prepare_creds();
6510 	if (!new)
6511 		return -ENOMEM;
6512 
6513 	/* Permission checking based on the specified context is
6514 	   performed during the actual operation (execve,
6515 	   open/mkdir/...), when we know the full context of the
6516 	   operation.  See selinux_bprm_creds_for_exec for the execve
6517 	   checks and may_create for the file creation checks. The
6518 	   operation will then fail if the context is not permitted. */
6519 	tsec = selinux_cred(new);
6520 	if (attr == LSM_ATTR_EXEC) {
6521 		tsec->exec_sid = sid;
6522 	} else if (attr == LSM_ATTR_FSCREATE) {
6523 		tsec->create_sid = sid;
6524 	} else if (attr == LSM_ATTR_KEYCREATE) {
6525 		if (sid) {
6526 			error = avc_has_perm(mysid, sid,
6527 					     SECCLASS_KEY, KEY__CREATE, NULL);
6528 			if (error)
6529 				goto abort_change;
6530 		}
6531 		tsec->keycreate_sid = sid;
6532 	} else if (attr == LSM_ATTR_SOCKCREATE) {
6533 		tsec->sockcreate_sid = sid;
6534 	} else if (attr == LSM_ATTR_CURRENT) {
6535 		error = -EINVAL;
6536 		if (sid == 0)
6537 			goto abort_change;
6538 
6539 		if (!current_is_single_threaded()) {
6540 			error = security_bounded_transition(tsec->sid, sid);
6541 			if (error)
6542 				goto abort_change;
6543 		}
6544 
6545 		/* Check permissions for the transition. */
6546 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
6547 				     PROCESS__DYNTRANSITION, NULL);
6548 		if (error)
6549 			goto abort_change;
6550 
6551 		/* Check for ptracing, and update the task SID if ok.
6552 		   Otherwise, leave SID unchanged and fail. */
6553 		ptsid = ptrace_parent_sid();
6554 		if (ptsid != 0) {
6555 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
6556 					     PROCESS__PTRACE, NULL);
6557 			if (error)
6558 				goto abort_change;
6559 		}
6560 
6561 		tsec->sid = sid;
6562 	} else {
6563 		error = -EINVAL;
6564 		goto abort_change;
6565 	}
6566 
6567 	commit_creds(new);
6568 	return size;
6569 
6570 abort_change:
6571 	abort_creds(new);
6572 	return error;
6573 }
6574 
6575 /**
6576  * selinux_getselfattr - Get SELinux current task attributes
6577  * @attr: the requested attribute
6578  * @ctx: buffer to receive the result
6579  * @size: buffer size (input), buffer size used (output)
6580  * @flags: unused
6581  *
6582  * Fill the passed user space @ctx with the details of the requested
6583  * attribute.
6584  *
6585  * Returns the number of attributes on success, an error code otherwise.
6586  * There will only ever be one attribute.
6587  */
6588 static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx,
6589 			       u32 *size, u32 flags)
6590 {
6591 	int rc;
6592 	char *val = NULL;
6593 	int val_len;
6594 
6595 	val_len = selinux_lsm_getattr(attr, current, &val);
6596 	if (val_len < 0)
6597 		return val_len;
6598 	rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0);
6599 	kfree(val);
6600 	return (!rc ? 1 : rc);
6601 }
6602 
6603 static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx,
6604 			       u32 size, u32 flags)
6605 {
6606 	int rc;
6607 
6608 	rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len);
6609 	if (rc > 0)
6610 		return 0;
6611 	return rc;
6612 }
6613 
6614 static int selinux_getprocattr(struct task_struct *p,
6615 			       const char *name, char **value)
6616 {
6617 	unsigned int attr = lsm_name_to_attr(name);
6618 	int rc;
6619 
6620 	if (attr) {
6621 		rc = selinux_lsm_getattr(attr, p, value);
6622 		if (rc != -EOPNOTSUPP)
6623 			return rc;
6624 	}
6625 
6626 	return -EINVAL;
6627 }
6628 
6629 static int selinux_setprocattr(const char *name, void *value, size_t size)
6630 {
6631 	int attr = lsm_name_to_attr(name);
6632 
6633 	if (attr)
6634 		return selinux_lsm_setattr(attr, value, size);
6635 	return -EINVAL;
6636 }
6637 
6638 static int selinux_ismaclabel(const char *name)
6639 {
6640 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6641 }
6642 
6643 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6644 {
6645 	return security_sid_to_context(secid, secdata, seclen);
6646 }
6647 
6648 static int selinux_lsmprop_to_secctx(struct lsm_prop *prop, char **secdata,
6649 				     u32 *seclen)
6650 {
6651 	return selinux_secid_to_secctx(prop->selinux.secid, secdata, seclen);
6652 }
6653 
6654 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6655 {
6656 	return security_context_to_sid(secdata, seclen,
6657 				       secid, GFP_KERNEL);
6658 }
6659 
6660 static void selinux_release_secctx(char *secdata, u32 seclen)
6661 {
6662 	kfree(secdata);
6663 }
6664 
6665 static void selinux_inode_invalidate_secctx(struct inode *inode)
6666 {
6667 	struct inode_security_struct *isec = selinux_inode(inode);
6668 
6669 	spin_lock(&isec->lock);
6670 	isec->initialized = LABEL_INVALID;
6671 	spin_unlock(&isec->lock);
6672 }
6673 
6674 /*
6675  *	called with inode->i_mutex locked
6676  */
6677 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6678 {
6679 	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6680 					   ctx, ctxlen, 0);
6681 	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6682 	return rc == -EOPNOTSUPP ? 0 : rc;
6683 }
6684 
6685 /*
6686  *	called with inode->i_mutex locked
6687  */
6688 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6689 {
6690 	return __vfs_setxattr_locked(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX,
6691 				     ctx, ctxlen, 0, NULL);
6692 }
6693 
6694 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6695 {
6696 	int len = 0;
6697 	len = selinux_inode_getsecurity(&nop_mnt_idmap, inode,
6698 					XATTR_SELINUX_SUFFIX, ctx, true);
6699 	if (len < 0)
6700 		return len;
6701 	*ctxlen = len;
6702 	return 0;
6703 }
6704 #ifdef CONFIG_KEYS
6705 
6706 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6707 			     unsigned long flags)
6708 {
6709 	const struct task_security_struct *tsec;
6710 	struct key_security_struct *ksec = selinux_key(k);
6711 
6712 	tsec = selinux_cred(cred);
6713 	if (tsec->keycreate_sid)
6714 		ksec->sid = tsec->keycreate_sid;
6715 	else
6716 		ksec->sid = tsec->sid;
6717 
6718 	return 0;
6719 }
6720 
6721 static int selinux_key_permission(key_ref_t key_ref,
6722 				  const struct cred *cred,
6723 				  enum key_need_perm need_perm)
6724 {
6725 	struct key *key;
6726 	struct key_security_struct *ksec;
6727 	u32 perm, sid;
6728 
6729 	switch (need_perm) {
6730 	case KEY_NEED_VIEW:
6731 		perm = KEY__VIEW;
6732 		break;
6733 	case KEY_NEED_READ:
6734 		perm = KEY__READ;
6735 		break;
6736 	case KEY_NEED_WRITE:
6737 		perm = KEY__WRITE;
6738 		break;
6739 	case KEY_NEED_SEARCH:
6740 		perm = KEY__SEARCH;
6741 		break;
6742 	case KEY_NEED_LINK:
6743 		perm = KEY__LINK;
6744 		break;
6745 	case KEY_NEED_SETATTR:
6746 		perm = KEY__SETATTR;
6747 		break;
6748 	case KEY_NEED_UNLINK:
6749 	case KEY_SYSADMIN_OVERRIDE:
6750 	case KEY_AUTHTOKEN_OVERRIDE:
6751 	case KEY_DEFER_PERM_CHECK:
6752 		return 0;
6753 	default:
6754 		WARN_ON(1);
6755 		return -EPERM;
6756 
6757 	}
6758 
6759 	sid = cred_sid(cred);
6760 	key = key_ref_to_ptr(key_ref);
6761 	ksec = selinux_key(key);
6762 
6763 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6764 }
6765 
6766 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6767 {
6768 	struct key_security_struct *ksec = selinux_key(key);
6769 	char *context = NULL;
6770 	unsigned len;
6771 	int rc;
6772 
6773 	rc = security_sid_to_context(ksec->sid,
6774 				     &context, &len);
6775 	if (!rc)
6776 		rc = len;
6777 	*_buffer = context;
6778 	return rc;
6779 }
6780 
6781 #ifdef CONFIG_KEY_NOTIFICATIONS
6782 static int selinux_watch_key(struct key *key)
6783 {
6784 	struct key_security_struct *ksec = selinux_key(key);
6785 	u32 sid = current_sid();
6786 
6787 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6788 }
6789 #endif
6790 #endif
6791 
6792 #ifdef CONFIG_SECURITY_INFINIBAND
6793 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6794 {
6795 	struct common_audit_data ad;
6796 	int err;
6797 	u32 sid = 0;
6798 	struct ib_security_struct *sec = ib_sec;
6799 	struct lsm_ibpkey_audit ibpkey;
6800 
6801 	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6802 	if (err)
6803 		return err;
6804 
6805 	ad.type = LSM_AUDIT_DATA_IBPKEY;
6806 	ibpkey.subnet_prefix = subnet_prefix;
6807 	ibpkey.pkey = pkey_val;
6808 	ad.u.ibpkey = &ibpkey;
6809 	return avc_has_perm(sec->sid, sid,
6810 			    SECCLASS_INFINIBAND_PKEY,
6811 			    INFINIBAND_PKEY__ACCESS, &ad);
6812 }
6813 
6814 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6815 					    u8 port_num)
6816 {
6817 	struct common_audit_data ad;
6818 	int err;
6819 	u32 sid = 0;
6820 	struct ib_security_struct *sec = ib_sec;
6821 	struct lsm_ibendport_audit ibendport;
6822 
6823 	err = security_ib_endport_sid(dev_name, port_num,
6824 				      &sid);
6825 
6826 	if (err)
6827 		return err;
6828 
6829 	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6830 	ibendport.dev_name = dev_name;
6831 	ibendport.port = port_num;
6832 	ad.u.ibendport = &ibendport;
6833 	return avc_has_perm(sec->sid, sid,
6834 			    SECCLASS_INFINIBAND_ENDPORT,
6835 			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6836 }
6837 
6838 static int selinux_ib_alloc_security(void *ib_sec)
6839 {
6840 	struct ib_security_struct *sec = selinux_ib(ib_sec);
6841 
6842 	sec->sid = current_sid();
6843 	return 0;
6844 }
6845 #endif
6846 
6847 #ifdef CONFIG_BPF_SYSCALL
6848 static int selinux_bpf(int cmd, union bpf_attr *attr,
6849 				     unsigned int size)
6850 {
6851 	u32 sid = current_sid();
6852 	int ret;
6853 
6854 	switch (cmd) {
6855 	case BPF_MAP_CREATE:
6856 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6857 				   NULL);
6858 		break;
6859 	case BPF_PROG_LOAD:
6860 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6861 				   NULL);
6862 		break;
6863 	default:
6864 		ret = 0;
6865 		break;
6866 	}
6867 
6868 	return ret;
6869 }
6870 
6871 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6872 {
6873 	u32 av = 0;
6874 
6875 	if (fmode & FMODE_READ)
6876 		av |= BPF__MAP_READ;
6877 	if (fmode & FMODE_WRITE)
6878 		av |= BPF__MAP_WRITE;
6879 	return av;
6880 }
6881 
6882 /* This function will check the file pass through unix socket or binder to see
6883  * if it is a bpf related object. And apply corresponding checks on the bpf
6884  * object based on the type. The bpf maps and programs, not like other files and
6885  * socket, are using a shared anonymous inode inside the kernel as their inode.
6886  * So checking that inode cannot identify if the process have privilege to
6887  * access the bpf object and that's why we have to add this additional check in
6888  * selinux_file_receive and selinux_binder_transfer_files.
6889  */
6890 static int bpf_fd_pass(const struct file *file, u32 sid)
6891 {
6892 	struct bpf_security_struct *bpfsec;
6893 	struct bpf_prog *prog;
6894 	struct bpf_map *map;
6895 	int ret;
6896 
6897 	if (file->f_op == &bpf_map_fops) {
6898 		map = file->private_data;
6899 		bpfsec = map->security;
6900 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6901 				   bpf_map_fmode_to_av(file->f_mode), NULL);
6902 		if (ret)
6903 			return ret;
6904 	} else if (file->f_op == &bpf_prog_fops) {
6905 		prog = file->private_data;
6906 		bpfsec = prog->aux->security;
6907 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6908 				   BPF__PROG_RUN, NULL);
6909 		if (ret)
6910 			return ret;
6911 	}
6912 	return 0;
6913 }
6914 
6915 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6916 {
6917 	u32 sid = current_sid();
6918 	struct bpf_security_struct *bpfsec;
6919 
6920 	bpfsec = map->security;
6921 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6922 			    bpf_map_fmode_to_av(fmode), NULL);
6923 }
6924 
6925 static int selinux_bpf_prog(struct bpf_prog *prog)
6926 {
6927 	u32 sid = current_sid();
6928 	struct bpf_security_struct *bpfsec;
6929 
6930 	bpfsec = prog->aux->security;
6931 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6932 			    BPF__PROG_RUN, NULL);
6933 }
6934 
6935 static int selinux_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
6936 				  struct bpf_token *token)
6937 {
6938 	struct bpf_security_struct *bpfsec;
6939 
6940 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6941 	if (!bpfsec)
6942 		return -ENOMEM;
6943 
6944 	bpfsec->sid = current_sid();
6945 	map->security = bpfsec;
6946 
6947 	return 0;
6948 }
6949 
6950 static void selinux_bpf_map_free(struct bpf_map *map)
6951 {
6952 	struct bpf_security_struct *bpfsec = map->security;
6953 
6954 	map->security = NULL;
6955 	kfree(bpfsec);
6956 }
6957 
6958 static int selinux_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
6959 				 struct bpf_token *token)
6960 {
6961 	struct bpf_security_struct *bpfsec;
6962 
6963 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6964 	if (!bpfsec)
6965 		return -ENOMEM;
6966 
6967 	bpfsec->sid = current_sid();
6968 	prog->aux->security = bpfsec;
6969 
6970 	return 0;
6971 }
6972 
6973 static void selinux_bpf_prog_free(struct bpf_prog *prog)
6974 {
6975 	struct bpf_security_struct *bpfsec = prog->aux->security;
6976 
6977 	prog->aux->security = NULL;
6978 	kfree(bpfsec);
6979 }
6980 
6981 static int selinux_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
6982 				    const struct path *path)
6983 {
6984 	struct bpf_security_struct *bpfsec;
6985 
6986 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6987 	if (!bpfsec)
6988 		return -ENOMEM;
6989 
6990 	bpfsec->sid = current_sid();
6991 	token->security = bpfsec;
6992 
6993 	return 0;
6994 }
6995 
6996 static void selinux_bpf_token_free(struct bpf_token *token)
6997 {
6998 	struct bpf_security_struct *bpfsec = token->security;
6999 
7000 	token->security = NULL;
7001 	kfree(bpfsec);
7002 }
7003 #endif
7004 
7005 struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = {
7006 	.lbs_cred = sizeof(struct task_security_struct),
7007 	.lbs_file = sizeof(struct file_security_struct),
7008 	.lbs_inode = sizeof(struct inode_security_struct),
7009 	.lbs_ipc = sizeof(struct ipc_security_struct),
7010 	.lbs_key = sizeof(struct key_security_struct),
7011 	.lbs_msg_msg = sizeof(struct msg_security_struct),
7012 #ifdef CONFIG_PERF_EVENTS
7013 	.lbs_perf_event = sizeof(struct perf_event_security_struct),
7014 #endif
7015 	.lbs_sock = sizeof(struct sk_security_struct),
7016 	.lbs_superblock = sizeof(struct superblock_security_struct),
7017 	.lbs_xattr_count = SELINUX_INODE_INIT_XATTRS,
7018 	.lbs_tun_dev = sizeof(struct tun_security_struct),
7019 	.lbs_ib = sizeof(struct ib_security_struct),
7020 };
7021 
7022 #ifdef CONFIG_PERF_EVENTS
7023 static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7024 {
7025 	u32 requested, sid = current_sid();
7026 
7027 	if (type == PERF_SECURITY_OPEN)
7028 		requested = PERF_EVENT__OPEN;
7029 	else if (type == PERF_SECURITY_CPU)
7030 		requested = PERF_EVENT__CPU;
7031 	else if (type == PERF_SECURITY_KERNEL)
7032 		requested = PERF_EVENT__KERNEL;
7033 	else if (type == PERF_SECURITY_TRACEPOINT)
7034 		requested = PERF_EVENT__TRACEPOINT;
7035 	else
7036 		return -EINVAL;
7037 
7038 	return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT,
7039 			    requested, NULL);
7040 }
7041 
7042 static int selinux_perf_event_alloc(struct perf_event *event)
7043 {
7044 	struct perf_event_security_struct *perfsec;
7045 
7046 	perfsec = selinux_perf_event(event->security);
7047 	perfsec->sid = current_sid();
7048 
7049 	return 0;
7050 }
7051 
7052 static int selinux_perf_event_read(struct perf_event *event)
7053 {
7054 	struct perf_event_security_struct *perfsec = event->security;
7055 	u32 sid = current_sid();
7056 
7057 	return avc_has_perm(sid, perfsec->sid,
7058 			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7059 }
7060 
7061 static int selinux_perf_event_write(struct perf_event *event)
7062 {
7063 	struct perf_event_security_struct *perfsec = event->security;
7064 	u32 sid = current_sid();
7065 
7066 	return avc_has_perm(sid, perfsec->sid,
7067 			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7068 }
7069 #endif
7070 
7071 #ifdef CONFIG_IO_URING
7072 /**
7073  * selinux_uring_override_creds - check the requested cred override
7074  * @new: the target creds
7075  *
7076  * Check to see if the current task is allowed to override it's credentials
7077  * to service an io_uring operation.
7078  */
7079 static int selinux_uring_override_creds(const struct cred *new)
7080 {
7081 	return avc_has_perm(current_sid(), cred_sid(new),
7082 			    SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
7083 }
7084 
7085 /**
7086  * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7087  *
7088  * Check to see if the current task is allowed to create a new io_uring
7089  * kernel polling thread.
7090  */
7091 static int selinux_uring_sqpoll(void)
7092 {
7093 	u32 sid = current_sid();
7094 
7095 	return avc_has_perm(sid, sid,
7096 			    SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7097 }
7098 
7099 /**
7100  * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7101  * @ioucmd: the io_uring command structure
7102  *
7103  * Check to see if the current domain is allowed to execute an
7104  * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7105  *
7106  */
7107 static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7108 {
7109 	struct file *file = ioucmd->file;
7110 	struct inode *inode = file_inode(file);
7111 	struct inode_security_struct *isec = selinux_inode(inode);
7112 	struct common_audit_data ad;
7113 
7114 	ad.type = LSM_AUDIT_DATA_FILE;
7115 	ad.u.file = file;
7116 
7117 	return avc_has_perm(current_sid(), isec->sid,
7118 			    SECCLASS_IO_URING, IO_URING__CMD, &ad);
7119 }
7120 #endif /* CONFIG_IO_URING */
7121 
7122 static const struct lsm_id selinux_lsmid = {
7123 	.name = "selinux",
7124 	.id = LSM_ID_SELINUX,
7125 };
7126 
7127 /*
7128  * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7129  * 1. any hooks that don't belong to (2.) or (3.) below,
7130  * 2. hooks that both access structures allocated by other hooks, and allocate
7131  *    structures that can be later accessed by other hooks (mostly "cloning"
7132  *    hooks),
7133  * 3. hooks that only allocate structures that can be later accessed by other
7134  *    hooks ("allocating" hooks).
7135  *
7136  * Please follow block comment delimiters in the list to keep this order.
7137  */
7138 static struct security_hook_list selinux_hooks[] __ro_after_init = {
7139 	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7140 	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7141 	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7142 	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7143 
7144 	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7145 	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7146 	LSM_HOOK_INIT(capget, selinux_capget),
7147 	LSM_HOOK_INIT(capset, selinux_capset),
7148 	LSM_HOOK_INIT(capable, selinux_capable),
7149 	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7150 	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7151 	LSM_HOOK_INIT(syslog, selinux_syslog),
7152 	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7153 
7154 	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7155 
7156 	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7157 	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7158 	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7159 
7160 	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7161 	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7162 	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7163 	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7164 	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7165 	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7166 	LSM_HOOK_INIT(sb_mount, selinux_mount),
7167 	LSM_HOOK_INIT(sb_umount, selinux_umount),
7168 	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7169 	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7170 
7171 	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7172 
7173 	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7174 	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7175 
7176 	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7177 	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7178 	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7179 	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7180 	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7181 	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7182 	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7183 	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7184 	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7185 	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7186 	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7187 	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7188 	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7189 	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7190 	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7191 	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7192 	LSM_HOOK_INIT(inode_xattr_skipcap, selinux_inode_xattr_skipcap),
7193 	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7194 	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7195 	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7196 	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7197 	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7198 	LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7199 	LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7200 	LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7201 	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7202 	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7203 	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7204 	LSM_HOOK_INIT(inode_getlsmprop, selinux_inode_getlsmprop),
7205 	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7206 	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7207 	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7208 
7209 	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7210 
7211 	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7212 	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7213 	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7214 	LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat),
7215 	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7216 	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7217 	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7218 	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7219 	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7220 	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7221 	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7222 	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7223 
7224 	LSM_HOOK_INIT(file_open, selinux_file_open),
7225 
7226 	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7227 	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7228 	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7229 	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7230 	LSM_HOOK_INIT(cred_getlsmprop, selinux_cred_getlsmprop),
7231 	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7232 	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7233 	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7234 	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7235 	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7236 	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7237 	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7238 	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7239 	LSM_HOOK_INIT(current_getlsmprop_subj, selinux_current_getlsmprop_subj),
7240 	LSM_HOOK_INIT(task_getlsmprop_obj, selinux_task_getlsmprop_obj),
7241 	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7242 	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7243 	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7244 	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7245 	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7246 	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7247 	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7248 	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7249 	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7250 	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7251 	LSM_HOOK_INIT(userns_create, selinux_userns_create),
7252 
7253 	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7254 	LSM_HOOK_INIT(ipc_getlsmprop, selinux_ipc_getlsmprop),
7255 
7256 	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7257 	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7258 	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7259 	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7260 
7261 	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7262 	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7263 	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7264 
7265 	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7266 	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7267 	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7268 
7269 	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7270 
7271 	LSM_HOOK_INIT(getselfattr, selinux_getselfattr),
7272 	LSM_HOOK_INIT(setselfattr, selinux_setselfattr),
7273 	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7274 	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7275 
7276 	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7277 	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7278 	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7279 	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7280 	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7281 	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7282 
7283 	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7284 	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7285 
7286 	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7287 	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7288 	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7289 	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7290 	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7291 	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7292 	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7293 	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7294 	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7295 	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7296 	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7297 	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7298 	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7299 	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7300 	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7301 	LSM_HOOK_INIT(socket_getpeersec_stream,
7302 			selinux_socket_getpeersec_stream),
7303 	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7304 	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7305 	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7306 	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7307 	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7308 	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7309 	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7310 	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7311 	LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7312 	LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow),
7313 	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7314 	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7315 	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7316 	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7317 	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7318 	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7319 	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7320 	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7321 	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7322 	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7323 	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7324 #ifdef CONFIG_SECURITY_INFINIBAND
7325 	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7326 	LSM_HOOK_INIT(ib_endport_manage_subnet,
7327 		      selinux_ib_endport_manage_subnet),
7328 #endif
7329 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7330 	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7331 	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7332 	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7333 	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7334 	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7335 	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7336 			selinux_xfrm_state_pol_flow_match),
7337 	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7338 #endif
7339 
7340 #ifdef CONFIG_KEYS
7341 	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7342 	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7343 #ifdef CONFIG_KEY_NOTIFICATIONS
7344 	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7345 #endif
7346 #endif
7347 
7348 #ifdef CONFIG_AUDIT
7349 	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7350 	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7351 	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7352 #endif
7353 
7354 #ifdef CONFIG_BPF_SYSCALL
7355 	LSM_HOOK_INIT(bpf, selinux_bpf),
7356 	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7357 	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7358 	LSM_HOOK_INIT(bpf_map_free, selinux_bpf_map_free),
7359 	LSM_HOOK_INIT(bpf_prog_free, selinux_bpf_prog_free),
7360 	LSM_HOOK_INIT(bpf_token_free, selinux_bpf_token_free),
7361 #endif
7362 
7363 #ifdef CONFIG_PERF_EVENTS
7364 	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7365 	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7366 	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7367 #endif
7368 
7369 #ifdef CONFIG_IO_URING
7370 	LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7371 	LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7372 	LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7373 #endif
7374 
7375 	/*
7376 	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7377 	 */
7378 	LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount),
7379 	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7380 	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7381 	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7382 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7383 	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7384 #endif
7385 
7386 	/*
7387 	 * PUT "ALLOCATING" HOOKS HERE
7388 	 */
7389 	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7390 	LSM_HOOK_INIT(msg_queue_alloc_security,
7391 		      selinux_msg_queue_alloc_security),
7392 	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7393 	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7394 	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7395 	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7396 	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7397 	LSM_HOOK_INIT(lsmprop_to_secctx, selinux_lsmprop_to_secctx),
7398 	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7399 	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7400 	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7401 #ifdef CONFIG_SECURITY_INFINIBAND
7402 	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7403 #endif
7404 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7405 	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7406 	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7407 	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7408 		      selinux_xfrm_state_alloc_acquire),
7409 #endif
7410 #ifdef CONFIG_KEYS
7411 	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7412 #endif
7413 #ifdef CONFIG_AUDIT
7414 	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7415 #endif
7416 #ifdef CONFIG_BPF_SYSCALL
7417 	LSM_HOOK_INIT(bpf_map_create, selinux_bpf_map_create),
7418 	LSM_HOOK_INIT(bpf_prog_load, selinux_bpf_prog_load),
7419 	LSM_HOOK_INIT(bpf_token_create, selinux_bpf_token_create),
7420 #endif
7421 #ifdef CONFIG_PERF_EVENTS
7422 	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7423 #endif
7424 };
7425 
7426 static __init int selinux_init(void)
7427 {
7428 	pr_info("SELinux:  Initializing.\n");
7429 
7430 	memset(&selinux_state, 0, sizeof(selinux_state));
7431 	enforcing_set(selinux_enforcing_boot);
7432 	selinux_avc_init();
7433 	mutex_init(&selinux_state.status_lock);
7434 	mutex_init(&selinux_state.policy_mutex);
7435 
7436 	/* Set the security state for the initial task. */
7437 	cred_init_security();
7438 
7439 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7440 	if (!default_noexec)
7441 		pr_notice("SELinux:  virtual memory is executable by default\n");
7442 
7443 	avc_init();
7444 
7445 	avtab_cache_init();
7446 
7447 	ebitmap_cache_init();
7448 
7449 	hashtab_cache_init();
7450 
7451 	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks),
7452 			   &selinux_lsmid);
7453 
7454 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7455 		panic("SELinux: Unable to register AVC netcache callback\n");
7456 
7457 	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7458 		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7459 
7460 	if (selinux_enforcing_boot)
7461 		pr_debug("SELinux:  Starting in enforcing mode\n");
7462 	else
7463 		pr_debug("SELinux:  Starting in permissive mode\n");
7464 
7465 	fs_validate_description("selinux", selinux_fs_parameters);
7466 
7467 	return 0;
7468 }
7469 
7470 static void delayed_superblock_init(struct super_block *sb, void *unused)
7471 {
7472 	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7473 }
7474 
7475 void selinux_complete_init(void)
7476 {
7477 	pr_debug("SELinux:  Completing initialization.\n");
7478 
7479 	/* Set up any superblocks initialized prior to the policy load. */
7480 	pr_debug("SELinux:  Setting up existing superblocks.\n");
7481 	iterate_supers(delayed_superblock_init, NULL);
7482 }
7483 
7484 /* SELinux requires early initialization in order to label
7485    all processes and objects when they are created. */
7486 DEFINE_LSM(selinux) = {
7487 	.name = "selinux",
7488 	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7489 	.enabled = &selinux_enabled_boot,
7490 	.blobs = &selinux_blob_sizes,
7491 	.init = selinux_init,
7492 };
7493 
7494 #if defined(CONFIG_NETFILTER)
7495 static const struct nf_hook_ops selinux_nf_ops[] = {
7496 	{
7497 		.hook =		selinux_ip_postroute,
7498 		.pf =		NFPROTO_IPV4,
7499 		.hooknum =	NF_INET_POST_ROUTING,
7500 		.priority =	NF_IP_PRI_SELINUX_LAST,
7501 	},
7502 	{
7503 		.hook =		selinux_ip_forward,
7504 		.pf =		NFPROTO_IPV4,
7505 		.hooknum =	NF_INET_FORWARD,
7506 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7507 	},
7508 	{
7509 		.hook =		selinux_ip_output,
7510 		.pf =		NFPROTO_IPV4,
7511 		.hooknum =	NF_INET_LOCAL_OUT,
7512 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7513 	},
7514 #if IS_ENABLED(CONFIG_IPV6)
7515 	{
7516 		.hook =		selinux_ip_postroute,
7517 		.pf =		NFPROTO_IPV6,
7518 		.hooknum =	NF_INET_POST_ROUTING,
7519 		.priority =	NF_IP6_PRI_SELINUX_LAST,
7520 	},
7521 	{
7522 		.hook =		selinux_ip_forward,
7523 		.pf =		NFPROTO_IPV6,
7524 		.hooknum =	NF_INET_FORWARD,
7525 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7526 	},
7527 	{
7528 		.hook =		selinux_ip_output,
7529 		.pf =		NFPROTO_IPV6,
7530 		.hooknum =	NF_INET_LOCAL_OUT,
7531 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7532 	},
7533 #endif	/* IPV6 */
7534 };
7535 
7536 static int __net_init selinux_nf_register(struct net *net)
7537 {
7538 	return nf_register_net_hooks(net, selinux_nf_ops,
7539 				     ARRAY_SIZE(selinux_nf_ops));
7540 }
7541 
7542 static void __net_exit selinux_nf_unregister(struct net *net)
7543 {
7544 	nf_unregister_net_hooks(net, selinux_nf_ops,
7545 				ARRAY_SIZE(selinux_nf_ops));
7546 }
7547 
7548 static struct pernet_operations selinux_net_ops = {
7549 	.init = selinux_nf_register,
7550 	.exit = selinux_nf_unregister,
7551 };
7552 
7553 static int __init selinux_nf_ip_init(void)
7554 {
7555 	int err;
7556 
7557 	if (!selinux_enabled_boot)
7558 		return 0;
7559 
7560 	pr_debug("SELinux:  Registering netfilter hooks\n");
7561 
7562 	err = register_pernet_subsys(&selinux_net_ops);
7563 	if (err)
7564 		panic("SELinux: register_pernet_subsys: error %d\n", err);
7565 
7566 	return 0;
7567 }
7568 __initcall(selinux_nf_ip_init);
7569 #endif /* CONFIG_NETFILTER */
7570