1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Security-Enhanced Linux (SELinux) security module 4 * 5 * This file contains the SELinux hook function implementations. 6 * 7 * Authors: Stephen Smalley, <stephen.smalley.work@gmail.com> 8 * Chris Vance, <cvance@nai.com> 9 * Wayne Salamon, <wsalamon@nai.com> 10 * James Morris <jmorris@redhat.com> 11 * 12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 14 * Eric Paris <eparis@redhat.com> 15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 16 * <dgoeddel@trustedcs.com> 17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 18 * Paul Moore <paul@paul-moore.com> 19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 20 * Yuichi Nakamura <ynakam@hitachisoft.jp> 21 * Copyright (C) 2016 Mellanox Technologies 22 */ 23 24 #include <linux/init.h> 25 #include <linux/kd.h> 26 #include <linux/kernel.h> 27 #include <linux/kernel_read_file.h> 28 #include <linux/errno.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/task.h> 31 #include <linux/lsm_hooks.h> 32 #include <linux/xattr.h> 33 #include <linux/capability.h> 34 #include <linux/unistd.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/slab.h> 38 #include <linux/pagemap.h> 39 #include <linux/proc_fs.h> 40 #include <linux/swap.h> 41 #include <linux/spinlock.h> 42 #include <linux/syscalls.h> 43 #include <linux/dcache.h> 44 #include <linux/file.h> 45 #include <linux/fdtable.h> 46 #include <linux/namei.h> 47 #include <linux/mount.h> 48 #include <linux/fs_context.h> 49 #include <linux/fs_parser.h> 50 #include <linux/netfilter_ipv4.h> 51 #include <linux/netfilter_ipv6.h> 52 #include <linux/tty.h> 53 #include <net/icmp.h> 54 #include <net/ip.h> /* for local_port_range[] */ 55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 56 #include <net/inet_connection_sock.h> 57 #include <net/net_namespace.h> 58 #include <net/netlabel.h> 59 #include <linux/uaccess.h> 60 #include <asm/ioctls.h> 61 #include <linux/atomic.h> 62 #include <linux/bitops.h> 63 #include <linux/interrupt.h> 64 #include <linux/netdevice.h> /* for network interface checks */ 65 #include <net/netlink.h> 66 #include <linux/tcp.h> 67 #include <linux/udp.h> 68 #include <linux/dccp.h> 69 #include <linux/sctp.h> 70 #include <net/sctp/structs.h> 71 #include <linux/quota.h> 72 #include <linux/un.h> /* for Unix socket types */ 73 #include <net/af_unix.h> /* for Unix socket types */ 74 #include <linux/parser.h> 75 #include <linux/nfs_mount.h> 76 #include <net/ipv6.h> 77 #include <linux/hugetlb.h> 78 #include <linux/personality.h> 79 #include <linux/audit.h> 80 #include <linux/string.h> 81 #include <linux/mutex.h> 82 #include <linux/posix-timers.h> 83 #include <linux/syslog.h> 84 #include <linux/user_namespace.h> 85 #include <linux/export.h> 86 #include <linux/msg.h> 87 #include <linux/shm.h> 88 #include <uapi/linux/shm.h> 89 #include <linux/bpf.h> 90 #include <linux/kernfs.h> 91 #include <linux/stringhash.h> /* for hashlen_string() */ 92 #include <uapi/linux/mount.h> 93 #include <linux/fsnotify.h> 94 #include <linux/fanotify.h> 95 #include <linux/io_uring/cmd.h> 96 #include <uapi/linux/lsm.h> 97 98 #include "avc.h" 99 #include "objsec.h" 100 #include "netif.h" 101 #include "netnode.h" 102 #include "netport.h" 103 #include "ibpkey.h" 104 #include "xfrm.h" 105 #include "netlabel.h" 106 #include "audit.h" 107 #include "avc_ss.h" 108 109 #define SELINUX_INODE_INIT_XATTRS 1 110 111 struct selinux_state selinux_state; 112 113 /* SECMARK reference count */ 114 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 115 116 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 117 static int selinux_enforcing_boot __initdata; 118 119 static int __init enforcing_setup(char *str) 120 { 121 unsigned long enforcing; 122 if (!kstrtoul(str, 0, &enforcing)) 123 selinux_enforcing_boot = enforcing ? 1 : 0; 124 return 1; 125 } 126 __setup("enforcing=", enforcing_setup); 127 #else 128 #define selinux_enforcing_boot 1 129 #endif 130 131 int selinux_enabled_boot __initdata = 1; 132 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 133 static int __init selinux_enabled_setup(char *str) 134 { 135 unsigned long enabled; 136 if (!kstrtoul(str, 0, &enabled)) 137 selinux_enabled_boot = enabled ? 1 : 0; 138 return 1; 139 } 140 __setup("selinux=", selinux_enabled_setup); 141 #endif 142 143 static int __init checkreqprot_setup(char *str) 144 { 145 unsigned long checkreqprot; 146 147 if (!kstrtoul(str, 0, &checkreqprot)) { 148 if (checkreqprot) 149 pr_err("SELinux: checkreqprot set to 1 via kernel parameter. This is no longer supported.\n"); 150 } 151 return 1; 152 } 153 __setup("checkreqprot=", checkreqprot_setup); 154 155 /** 156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 157 * 158 * Description: 159 * This function checks the SECMARK reference counter to see if any SECMARK 160 * targets are currently configured, if the reference counter is greater than 161 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 162 * enabled, false (0) if SECMARK is disabled. If the always_check_network 163 * policy capability is enabled, SECMARK is always considered enabled. 164 * 165 */ 166 static int selinux_secmark_enabled(void) 167 { 168 return (selinux_policycap_alwaysnetwork() || 169 atomic_read(&selinux_secmark_refcount)); 170 } 171 172 /** 173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled 174 * 175 * Description: 176 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true 177 * (1) if any are enabled or false (0) if neither are enabled. If the 178 * always_check_network policy capability is enabled, peer labeling 179 * is always considered enabled. 180 * 181 */ 182 static int selinux_peerlbl_enabled(void) 183 { 184 return (selinux_policycap_alwaysnetwork() || 185 netlbl_enabled() || selinux_xfrm_enabled()); 186 } 187 188 static int selinux_netcache_avc_callback(u32 event) 189 { 190 if (event == AVC_CALLBACK_RESET) { 191 sel_netif_flush(); 192 sel_netnode_flush(); 193 sel_netport_flush(); 194 synchronize_net(); 195 } 196 return 0; 197 } 198 199 static int selinux_lsm_notifier_avc_callback(u32 event) 200 { 201 if (event == AVC_CALLBACK_RESET) { 202 sel_ib_pkey_flush(); 203 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL); 204 } 205 206 return 0; 207 } 208 209 /* 210 * initialise the security for the init task 211 */ 212 static void cred_init_security(void) 213 { 214 struct task_security_struct *tsec; 215 216 tsec = selinux_cred(unrcu_pointer(current->real_cred)); 217 tsec->osid = tsec->sid = SECINITSID_KERNEL; 218 } 219 220 /* 221 * get the security ID of a set of credentials 222 */ 223 static inline u32 cred_sid(const struct cred *cred) 224 { 225 const struct task_security_struct *tsec; 226 227 tsec = selinux_cred(cred); 228 return tsec->sid; 229 } 230 231 static void __ad_net_init(struct common_audit_data *ad, 232 struct lsm_network_audit *net, 233 int ifindex, struct sock *sk, u16 family) 234 { 235 ad->type = LSM_AUDIT_DATA_NET; 236 ad->u.net = net; 237 net->netif = ifindex; 238 net->sk = sk; 239 net->family = family; 240 } 241 242 static void ad_net_init_from_sk(struct common_audit_data *ad, 243 struct lsm_network_audit *net, 244 struct sock *sk) 245 { 246 __ad_net_init(ad, net, 0, sk, 0); 247 } 248 249 static void ad_net_init_from_iif(struct common_audit_data *ad, 250 struct lsm_network_audit *net, 251 int ifindex, u16 family) 252 { 253 __ad_net_init(ad, net, ifindex, NULL, family); 254 } 255 256 /* 257 * get the objective security ID of a task 258 */ 259 static inline u32 task_sid_obj(const struct task_struct *task) 260 { 261 u32 sid; 262 263 rcu_read_lock(); 264 sid = cred_sid(__task_cred(task)); 265 rcu_read_unlock(); 266 return sid; 267 } 268 269 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 270 271 /* 272 * Try reloading inode security labels that have been marked as invalid. The 273 * @may_sleep parameter indicates when sleeping and thus reloading labels is 274 * allowed; when set to false, returns -ECHILD when the label is 275 * invalid. The @dentry parameter should be set to a dentry of the inode. 276 */ 277 static int __inode_security_revalidate(struct inode *inode, 278 struct dentry *dentry, 279 bool may_sleep) 280 { 281 struct inode_security_struct *isec = selinux_inode(inode); 282 283 might_sleep_if(may_sleep); 284 285 /* 286 * The check of isec->initialized below is racy but 287 * inode_doinit_with_dentry() will recheck with 288 * isec->lock held. 289 */ 290 if (selinux_initialized() && 291 data_race(isec->initialized != LABEL_INITIALIZED)) { 292 if (!may_sleep) 293 return -ECHILD; 294 295 /* 296 * Try reloading the inode security label. This will fail if 297 * @opt_dentry is NULL and no dentry for this inode can be 298 * found; in that case, continue using the old label. 299 */ 300 inode_doinit_with_dentry(inode, dentry); 301 } 302 return 0; 303 } 304 305 static struct inode_security_struct *inode_security_novalidate(struct inode *inode) 306 { 307 return selinux_inode(inode); 308 } 309 310 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu) 311 { 312 int error; 313 314 error = __inode_security_revalidate(inode, NULL, !rcu); 315 if (error) 316 return ERR_PTR(error); 317 return selinux_inode(inode); 318 } 319 320 /* 321 * Get the security label of an inode. 322 */ 323 static struct inode_security_struct *inode_security(struct inode *inode) 324 { 325 __inode_security_revalidate(inode, NULL, true); 326 return selinux_inode(inode); 327 } 328 329 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry) 330 { 331 struct inode *inode = d_backing_inode(dentry); 332 333 return selinux_inode(inode); 334 } 335 336 /* 337 * Get the security label of a dentry's backing inode. 338 */ 339 static struct inode_security_struct *backing_inode_security(struct dentry *dentry) 340 { 341 struct inode *inode = d_backing_inode(dentry); 342 343 __inode_security_revalidate(inode, dentry, true); 344 return selinux_inode(inode); 345 } 346 347 static void inode_free_security(struct inode *inode) 348 { 349 struct inode_security_struct *isec = selinux_inode(inode); 350 struct superblock_security_struct *sbsec; 351 352 if (!isec) 353 return; 354 sbsec = selinux_superblock(inode->i_sb); 355 /* 356 * As not all inode security structures are in a list, we check for 357 * empty list outside of the lock to make sure that we won't waste 358 * time taking a lock doing nothing. 359 * 360 * The list_del_init() function can be safely called more than once. 361 * It should not be possible for this function to be called with 362 * concurrent list_add(), but for better safety against future changes 363 * in the code, we use list_empty_careful() here. 364 */ 365 if (!list_empty_careful(&isec->list)) { 366 spin_lock(&sbsec->isec_lock); 367 list_del_init(&isec->list); 368 spin_unlock(&sbsec->isec_lock); 369 } 370 } 371 372 struct selinux_mnt_opts { 373 u32 fscontext_sid; 374 u32 context_sid; 375 u32 rootcontext_sid; 376 u32 defcontext_sid; 377 }; 378 379 static void selinux_free_mnt_opts(void *mnt_opts) 380 { 381 kfree(mnt_opts); 382 } 383 384 enum { 385 Opt_error = -1, 386 Opt_context = 0, 387 Opt_defcontext = 1, 388 Opt_fscontext = 2, 389 Opt_rootcontext = 3, 390 Opt_seclabel = 4, 391 }; 392 393 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg} 394 static const struct { 395 const char *name; 396 int len; 397 int opt; 398 bool has_arg; 399 } tokens[] = { 400 A(context, true), 401 A(fscontext, true), 402 A(defcontext, true), 403 A(rootcontext, true), 404 A(seclabel, false), 405 }; 406 #undef A 407 408 static int match_opt_prefix(char *s, int l, char **arg) 409 { 410 int i; 411 412 for (i = 0; i < ARRAY_SIZE(tokens); i++) { 413 size_t len = tokens[i].len; 414 if (len > l || memcmp(s, tokens[i].name, len)) 415 continue; 416 if (tokens[i].has_arg) { 417 if (len == l || s[len] != '=') 418 continue; 419 *arg = s + len + 1; 420 } else if (len != l) 421 continue; 422 return tokens[i].opt; 423 } 424 return Opt_error; 425 } 426 427 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 428 429 static int may_context_mount_sb_relabel(u32 sid, 430 struct superblock_security_struct *sbsec, 431 const struct cred *cred) 432 { 433 const struct task_security_struct *tsec = selinux_cred(cred); 434 int rc; 435 436 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 437 FILESYSTEM__RELABELFROM, NULL); 438 if (rc) 439 return rc; 440 441 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 442 FILESYSTEM__RELABELTO, NULL); 443 return rc; 444 } 445 446 static int may_context_mount_inode_relabel(u32 sid, 447 struct superblock_security_struct *sbsec, 448 const struct cred *cred) 449 { 450 const struct task_security_struct *tsec = selinux_cred(cred); 451 int rc; 452 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 453 FILESYSTEM__RELABELFROM, NULL); 454 if (rc) 455 return rc; 456 457 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 458 FILESYSTEM__ASSOCIATE, NULL); 459 return rc; 460 } 461 462 static int selinux_is_genfs_special_handling(struct super_block *sb) 463 { 464 /* Special handling. Genfs but also in-core setxattr handler */ 465 return !strcmp(sb->s_type->name, "sysfs") || 466 !strcmp(sb->s_type->name, "pstore") || 467 !strcmp(sb->s_type->name, "debugfs") || 468 !strcmp(sb->s_type->name, "tracefs") || 469 !strcmp(sb->s_type->name, "rootfs") || 470 (selinux_policycap_cgroupseclabel() && 471 (!strcmp(sb->s_type->name, "cgroup") || 472 !strcmp(sb->s_type->name, "cgroup2"))); 473 } 474 475 static int selinux_is_sblabel_mnt(struct super_block *sb) 476 { 477 struct superblock_security_struct *sbsec = selinux_superblock(sb); 478 479 /* 480 * IMPORTANT: Double-check logic in this function when adding a new 481 * SECURITY_FS_USE_* definition! 482 */ 483 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7); 484 485 switch (sbsec->behavior) { 486 case SECURITY_FS_USE_XATTR: 487 case SECURITY_FS_USE_TRANS: 488 case SECURITY_FS_USE_TASK: 489 case SECURITY_FS_USE_NATIVE: 490 return 1; 491 492 case SECURITY_FS_USE_GENFS: 493 return selinux_is_genfs_special_handling(sb); 494 495 /* Never allow relabeling on context mounts */ 496 case SECURITY_FS_USE_MNTPOINT: 497 case SECURITY_FS_USE_NONE: 498 default: 499 return 0; 500 } 501 } 502 503 static int sb_check_xattr_support(struct super_block *sb) 504 { 505 struct superblock_security_struct *sbsec = selinux_superblock(sb); 506 struct dentry *root = sb->s_root; 507 struct inode *root_inode = d_backing_inode(root); 508 u32 sid; 509 int rc; 510 511 /* 512 * Make sure that the xattr handler exists and that no 513 * error other than -ENODATA is returned by getxattr on 514 * the root directory. -ENODATA is ok, as this may be 515 * the first boot of the SELinux kernel before we have 516 * assigned xattr values to the filesystem. 517 */ 518 if (!(root_inode->i_opflags & IOP_XATTR)) { 519 pr_warn("SELinux: (dev %s, type %s) has no xattr support\n", 520 sb->s_id, sb->s_type->name); 521 goto fallback; 522 } 523 524 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0); 525 if (rc < 0 && rc != -ENODATA) { 526 if (rc == -EOPNOTSUPP) { 527 pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n", 528 sb->s_id, sb->s_type->name); 529 goto fallback; 530 } else { 531 pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n", 532 sb->s_id, sb->s_type->name, -rc); 533 return rc; 534 } 535 } 536 return 0; 537 538 fallback: 539 /* No xattr support - try to fallback to genfs if possible. */ 540 rc = security_genfs_sid(sb->s_type->name, "/", 541 SECCLASS_DIR, &sid); 542 if (rc) 543 return -EOPNOTSUPP; 544 545 pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n", 546 sb->s_id, sb->s_type->name); 547 sbsec->behavior = SECURITY_FS_USE_GENFS; 548 sbsec->sid = sid; 549 return 0; 550 } 551 552 static int sb_finish_set_opts(struct super_block *sb) 553 { 554 struct superblock_security_struct *sbsec = selinux_superblock(sb); 555 struct dentry *root = sb->s_root; 556 struct inode *root_inode = d_backing_inode(root); 557 int rc = 0; 558 559 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 560 rc = sb_check_xattr_support(sb); 561 if (rc) 562 return rc; 563 } 564 565 sbsec->flags |= SE_SBINITIALIZED; 566 567 /* 568 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply 569 * leave the flag untouched because sb_clone_mnt_opts might be handing 570 * us a superblock that needs the flag to be cleared. 571 */ 572 if (selinux_is_sblabel_mnt(sb)) 573 sbsec->flags |= SBLABEL_MNT; 574 else 575 sbsec->flags &= ~SBLABEL_MNT; 576 577 /* Initialize the root inode. */ 578 rc = inode_doinit_with_dentry(root_inode, root); 579 580 /* Initialize any other inodes associated with the superblock, e.g. 581 inodes created prior to initial policy load or inodes created 582 during get_sb by a pseudo filesystem that directly 583 populates itself. */ 584 spin_lock(&sbsec->isec_lock); 585 while (!list_empty(&sbsec->isec_head)) { 586 struct inode_security_struct *isec = 587 list_first_entry(&sbsec->isec_head, 588 struct inode_security_struct, list); 589 struct inode *inode = isec->inode; 590 list_del_init(&isec->list); 591 spin_unlock(&sbsec->isec_lock); 592 inode = igrab(inode); 593 if (inode) { 594 if (!IS_PRIVATE(inode)) 595 inode_doinit_with_dentry(inode, NULL); 596 iput(inode); 597 } 598 spin_lock(&sbsec->isec_lock); 599 } 600 spin_unlock(&sbsec->isec_lock); 601 return rc; 602 } 603 604 static int bad_option(struct superblock_security_struct *sbsec, char flag, 605 u32 old_sid, u32 new_sid) 606 { 607 char mnt_flags = sbsec->flags & SE_MNTMASK; 608 609 /* check if the old mount command had the same options */ 610 if (sbsec->flags & SE_SBINITIALIZED) 611 if (!(sbsec->flags & flag) || 612 (old_sid != new_sid)) 613 return 1; 614 615 /* check if we were passed the same options twice, 616 * aka someone passed context=a,context=b 617 */ 618 if (!(sbsec->flags & SE_SBINITIALIZED)) 619 if (mnt_flags & flag) 620 return 1; 621 return 0; 622 } 623 624 /* 625 * Allow filesystems with binary mount data to explicitly set mount point 626 * labeling information. 627 */ 628 static int selinux_set_mnt_opts(struct super_block *sb, 629 void *mnt_opts, 630 unsigned long kern_flags, 631 unsigned long *set_kern_flags) 632 { 633 const struct cred *cred = current_cred(); 634 struct superblock_security_struct *sbsec = selinux_superblock(sb); 635 struct dentry *root = sb->s_root; 636 struct selinux_mnt_opts *opts = mnt_opts; 637 struct inode_security_struct *root_isec; 638 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 639 u32 defcontext_sid = 0; 640 int rc = 0; 641 642 /* 643 * Specifying internal flags without providing a place to 644 * place the results is not allowed 645 */ 646 if (kern_flags && !set_kern_flags) 647 return -EINVAL; 648 649 mutex_lock(&sbsec->lock); 650 651 if (!selinux_initialized()) { 652 if (!opts) { 653 /* Defer initialization until selinux_complete_init, 654 after the initial policy is loaded and the security 655 server is ready to handle calls. */ 656 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) { 657 sbsec->flags |= SE_SBNATIVE; 658 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 659 } 660 goto out; 661 } 662 rc = -EINVAL; 663 pr_warn("SELinux: Unable to set superblock options " 664 "before the security server is initialized\n"); 665 goto out; 666 } 667 668 /* 669 * Binary mount data FS will come through this function twice. Once 670 * from an explicit call and once from the generic calls from the vfs. 671 * Since the generic VFS calls will not contain any security mount data 672 * we need to skip the double mount verification. 673 * 674 * This does open a hole in which we will not notice if the first 675 * mount using this sb set explicit options and a second mount using 676 * this sb does not set any security options. (The first options 677 * will be used for both mounts) 678 */ 679 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 680 && !opts) 681 goto out; 682 683 root_isec = backing_inode_security_novalidate(root); 684 685 /* 686 * parse the mount options, check if they are valid sids. 687 * also check if someone is trying to mount the same sb more 688 * than once with different security options. 689 */ 690 if (opts) { 691 if (opts->fscontext_sid) { 692 fscontext_sid = opts->fscontext_sid; 693 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 694 fscontext_sid)) 695 goto out_double_mount; 696 sbsec->flags |= FSCONTEXT_MNT; 697 } 698 if (opts->context_sid) { 699 context_sid = opts->context_sid; 700 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 701 context_sid)) 702 goto out_double_mount; 703 sbsec->flags |= CONTEXT_MNT; 704 } 705 if (opts->rootcontext_sid) { 706 rootcontext_sid = opts->rootcontext_sid; 707 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 708 rootcontext_sid)) 709 goto out_double_mount; 710 sbsec->flags |= ROOTCONTEXT_MNT; 711 } 712 if (opts->defcontext_sid) { 713 defcontext_sid = opts->defcontext_sid; 714 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 715 defcontext_sid)) 716 goto out_double_mount; 717 sbsec->flags |= DEFCONTEXT_MNT; 718 } 719 } 720 721 if (sbsec->flags & SE_SBINITIALIZED) { 722 /* previously mounted with options, but not on this attempt? */ 723 if ((sbsec->flags & SE_MNTMASK) && !opts) 724 goto out_double_mount; 725 rc = 0; 726 goto out; 727 } 728 729 if (strcmp(sb->s_type->name, "proc") == 0) 730 sbsec->flags |= SE_SBPROC | SE_SBGENFS; 731 732 if (!strcmp(sb->s_type->name, "debugfs") || 733 !strcmp(sb->s_type->name, "tracefs") || 734 !strcmp(sb->s_type->name, "binder") || 735 !strcmp(sb->s_type->name, "bpf") || 736 !strcmp(sb->s_type->name, "pstore") || 737 !strcmp(sb->s_type->name, "securityfs")) 738 sbsec->flags |= SE_SBGENFS; 739 740 if (!strcmp(sb->s_type->name, "sysfs") || 741 !strcmp(sb->s_type->name, "cgroup") || 742 !strcmp(sb->s_type->name, "cgroup2")) 743 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR; 744 745 if (!sbsec->behavior) { 746 /* 747 * Determine the labeling behavior to use for this 748 * filesystem type. 749 */ 750 rc = security_fs_use(sb); 751 if (rc) { 752 pr_warn("%s: security_fs_use(%s) returned %d\n", 753 __func__, sb->s_type->name, rc); 754 goto out; 755 } 756 } 757 758 /* 759 * If this is a user namespace mount and the filesystem type is not 760 * explicitly whitelisted, then no contexts are allowed on the command 761 * line and security labels must be ignored. 762 */ 763 if (sb->s_user_ns != &init_user_ns && 764 strcmp(sb->s_type->name, "tmpfs") && 765 strcmp(sb->s_type->name, "ramfs") && 766 strcmp(sb->s_type->name, "devpts") && 767 strcmp(sb->s_type->name, "overlay")) { 768 if (context_sid || fscontext_sid || rootcontext_sid || 769 defcontext_sid) { 770 rc = -EACCES; 771 goto out; 772 } 773 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 774 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 775 rc = security_transition_sid(current_sid(), 776 current_sid(), 777 SECCLASS_FILE, NULL, 778 &sbsec->mntpoint_sid); 779 if (rc) 780 goto out; 781 } 782 goto out_set_opts; 783 } 784 785 /* sets the context of the superblock for the fs being mounted. */ 786 if (fscontext_sid) { 787 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 788 if (rc) 789 goto out; 790 791 sbsec->sid = fscontext_sid; 792 } 793 794 /* 795 * Switch to using mount point labeling behavior. 796 * sets the label used on all file below the mountpoint, and will set 797 * the superblock context if not already set. 798 */ 799 if (sbsec->flags & SE_SBNATIVE) { 800 /* 801 * This means we are initializing a superblock that has been 802 * mounted before the SELinux was initialized and the 803 * filesystem requested native labeling. We had already 804 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags 805 * in the original mount attempt, so now we just need to set 806 * the SECURITY_FS_USE_NATIVE behavior. 807 */ 808 sbsec->behavior = SECURITY_FS_USE_NATIVE; 809 } else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { 810 sbsec->behavior = SECURITY_FS_USE_NATIVE; 811 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 812 } 813 814 if (context_sid) { 815 if (!fscontext_sid) { 816 rc = may_context_mount_sb_relabel(context_sid, sbsec, 817 cred); 818 if (rc) 819 goto out; 820 sbsec->sid = context_sid; 821 } else { 822 rc = may_context_mount_inode_relabel(context_sid, sbsec, 823 cred); 824 if (rc) 825 goto out; 826 } 827 if (!rootcontext_sid) 828 rootcontext_sid = context_sid; 829 830 sbsec->mntpoint_sid = context_sid; 831 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 832 } 833 834 if (rootcontext_sid) { 835 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 836 cred); 837 if (rc) 838 goto out; 839 840 root_isec->sid = rootcontext_sid; 841 root_isec->initialized = LABEL_INITIALIZED; 842 } 843 844 if (defcontext_sid) { 845 if (sbsec->behavior != SECURITY_FS_USE_XATTR && 846 sbsec->behavior != SECURITY_FS_USE_NATIVE) { 847 rc = -EINVAL; 848 pr_warn("SELinux: defcontext option is " 849 "invalid for this filesystem type\n"); 850 goto out; 851 } 852 853 if (defcontext_sid != sbsec->def_sid) { 854 rc = may_context_mount_inode_relabel(defcontext_sid, 855 sbsec, cred); 856 if (rc) 857 goto out; 858 } 859 860 sbsec->def_sid = defcontext_sid; 861 } 862 863 out_set_opts: 864 rc = sb_finish_set_opts(sb); 865 out: 866 mutex_unlock(&sbsec->lock); 867 return rc; 868 out_double_mount: 869 rc = -EINVAL; 870 pr_warn("SELinux: mount invalid. Same superblock, different " 871 "security settings for (dev %s, type %s)\n", sb->s_id, 872 sb->s_type->name); 873 goto out; 874 } 875 876 static int selinux_cmp_sb_context(const struct super_block *oldsb, 877 const struct super_block *newsb) 878 { 879 struct superblock_security_struct *old = selinux_superblock(oldsb); 880 struct superblock_security_struct *new = selinux_superblock(newsb); 881 char oldflags = old->flags & SE_MNTMASK; 882 char newflags = new->flags & SE_MNTMASK; 883 884 if (oldflags != newflags) 885 goto mismatch; 886 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) 887 goto mismatch; 888 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) 889 goto mismatch; 890 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) 891 goto mismatch; 892 if (oldflags & ROOTCONTEXT_MNT) { 893 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root); 894 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root); 895 if (oldroot->sid != newroot->sid) 896 goto mismatch; 897 } 898 return 0; 899 mismatch: 900 pr_warn("SELinux: mount invalid. Same superblock, " 901 "different security settings for (dev %s, " 902 "type %s)\n", newsb->s_id, newsb->s_type->name); 903 return -EBUSY; 904 } 905 906 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 907 struct super_block *newsb, 908 unsigned long kern_flags, 909 unsigned long *set_kern_flags) 910 { 911 int rc = 0; 912 const struct superblock_security_struct *oldsbsec = 913 selinux_superblock(oldsb); 914 struct superblock_security_struct *newsbsec = selinux_superblock(newsb); 915 916 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 917 int set_context = (oldsbsec->flags & CONTEXT_MNT); 918 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 919 920 /* 921 * Specifying internal flags without providing a place to 922 * place the results is not allowed. 923 */ 924 if (kern_flags && !set_kern_flags) 925 return -EINVAL; 926 927 mutex_lock(&newsbsec->lock); 928 929 /* 930 * if the parent was able to be mounted it clearly had no special lsm 931 * mount options. thus we can safely deal with this superblock later 932 */ 933 if (!selinux_initialized()) { 934 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) { 935 newsbsec->flags |= SE_SBNATIVE; 936 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 937 } 938 goto out; 939 } 940 941 /* how can we clone if the old one wasn't set up?? */ 942 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 943 944 /* if fs is reusing a sb, make sure that the contexts match */ 945 if (newsbsec->flags & SE_SBINITIALIZED) { 946 mutex_unlock(&newsbsec->lock); 947 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) 948 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 949 return selinux_cmp_sb_context(oldsb, newsb); 950 } 951 952 newsbsec->flags = oldsbsec->flags; 953 954 newsbsec->sid = oldsbsec->sid; 955 newsbsec->def_sid = oldsbsec->def_sid; 956 newsbsec->behavior = oldsbsec->behavior; 957 958 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE && 959 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) { 960 rc = security_fs_use(newsb); 961 if (rc) 962 goto out; 963 } 964 965 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) { 966 newsbsec->behavior = SECURITY_FS_USE_NATIVE; 967 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 968 } 969 970 if (set_context) { 971 u32 sid = oldsbsec->mntpoint_sid; 972 973 if (!set_fscontext) 974 newsbsec->sid = sid; 975 if (!set_rootcontext) { 976 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 977 newisec->sid = sid; 978 } 979 newsbsec->mntpoint_sid = sid; 980 } 981 if (set_rootcontext) { 982 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root); 983 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 984 985 newisec->sid = oldisec->sid; 986 } 987 988 sb_finish_set_opts(newsb); 989 out: 990 mutex_unlock(&newsbsec->lock); 991 return rc; 992 } 993 994 /* 995 * NOTE: the caller is responsible for freeing the memory even if on error. 996 */ 997 static int selinux_add_opt(int token, const char *s, void **mnt_opts) 998 { 999 struct selinux_mnt_opts *opts = *mnt_opts; 1000 u32 *dst_sid; 1001 int rc; 1002 1003 if (token == Opt_seclabel) 1004 /* eaten and completely ignored */ 1005 return 0; 1006 if (!s) 1007 return -EINVAL; 1008 1009 if (!selinux_initialized()) { 1010 pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n"); 1011 return -EINVAL; 1012 } 1013 1014 if (!opts) { 1015 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 1016 if (!opts) 1017 return -ENOMEM; 1018 *mnt_opts = opts; 1019 } 1020 1021 switch (token) { 1022 case Opt_context: 1023 if (opts->context_sid || opts->defcontext_sid) 1024 goto err; 1025 dst_sid = &opts->context_sid; 1026 break; 1027 case Opt_fscontext: 1028 if (opts->fscontext_sid) 1029 goto err; 1030 dst_sid = &opts->fscontext_sid; 1031 break; 1032 case Opt_rootcontext: 1033 if (opts->rootcontext_sid) 1034 goto err; 1035 dst_sid = &opts->rootcontext_sid; 1036 break; 1037 case Opt_defcontext: 1038 if (opts->context_sid || opts->defcontext_sid) 1039 goto err; 1040 dst_sid = &opts->defcontext_sid; 1041 break; 1042 default: 1043 WARN_ON(1); 1044 return -EINVAL; 1045 } 1046 rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL); 1047 if (rc) 1048 pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n", 1049 s, rc); 1050 return rc; 1051 1052 err: 1053 pr_warn(SEL_MOUNT_FAIL_MSG); 1054 return -EINVAL; 1055 } 1056 1057 static int show_sid(struct seq_file *m, u32 sid) 1058 { 1059 char *context = NULL; 1060 u32 len; 1061 int rc; 1062 1063 rc = security_sid_to_context(sid, &context, &len); 1064 if (!rc) { 1065 bool has_comma = strchr(context, ','); 1066 1067 seq_putc(m, '='); 1068 if (has_comma) 1069 seq_putc(m, '\"'); 1070 seq_escape(m, context, "\"\n\\"); 1071 if (has_comma) 1072 seq_putc(m, '\"'); 1073 } 1074 kfree(context); 1075 return rc; 1076 } 1077 1078 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1079 { 1080 struct superblock_security_struct *sbsec = selinux_superblock(sb); 1081 int rc; 1082 1083 if (!(sbsec->flags & SE_SBINITIALIZED)) 1084 return 0; 1085 1086 if (!selinux_initialized()) 1087 return 0; 1088 1089 if (sbsec->flags & FSCONTEXT_MNT) { 1090 seq_putc(m, ','); 1091 seq_puts(m, FSCONTEXT_STR); 1092 rc = show_sid(m, sbsec->sid); 1093 if (rc) 1094 return rc; 1095 } 1096 if (sbsec->flags & CONTEXT_MNT) { 1097 seq_putc(m, ','); 1098 seq_puts(m, CONTEXT_STR); 1099 rc = show_sid(m, sbsec->mntpoint_sid); 1100 if (rc) 1101 return rc; 1102 } 1103 if (sbsec->flags & DEFCONTEXT_MNT) { 1104 seq_putc(m, ','); 1105 seq_puts(m, DEFCONTEXT_STR); 1106 rc = show_sid(m, sbsec->def_sid); 1107 if (rc) 1108 return rc; 1109 } 1110 if (sbsec->flags & ROOTCONTEXT_MNT) { 1111 struct dentry *root = sb->s_root; 1112 struct inode_security_struct *isec = backing_inode_security(root); 1113 seq_putc(m, ','); 1114 seq_puts(m, ROOTCONTEXT_STR); 1115 rc = show_sid(m, isec->sid); 1116 if (rc) 1117 return rc; 1118 } 1119 if (sbsec->flags & SBLABEL_MNT) { 1120 seq_putc(m, ','); 1121 seq_puts(m, SECLABEL_STR); 1122 } 1123 return 0; 1124 } 1125 1126 static inline u16 inode_mode_to_security_class(umode_t mode) 1127 { 1128 switch (mode & S_IFMT) { 1129 case S_IFSOCK: 1130 return SECCLASS_SOCK_FILE; 1131 case S_IFLNK: 1132 return SECCLASS_LNK_FILE; 1133 case S_IFREG: 1134 return SECCLASS_FILE; 1135 case S_IFBLK: 1136 return SECCLASS_BLK_FILE; 1137 case S_IFDIR: 1138 return SECCLASS_DIR; 1139 case S_IFCHR: 1140 return SECCLASS_CHR_FILE; 1141 case S_IFIFO: 1142 return SECCLASS_FIFO_FILE; 1143 1144 } 1145 1146 return SECCLASS_FILE; 1147 } 1148 1149 static inline int default_protocol_stream(int protocol) 1150 { 1151 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP || 1152 protocol == IPPROTO_MPTCP); 1153 } 1154 1155 static inline int default_protocol_dgram(int protocol) 1156 { 1157 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1158 } 1159 1160 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1161 { 1162 bool extsockclass = selinux_policycap_extsockclass(); 1163 1164 switch (family) { 1165 case PF_UNIX: 1166 switch (type) { 1167 case SOCK_STREAM: 1168 case SOCK_SEQPACKET: 1169 return SECCLASS_UNIX_STREAM_SOCKET; 1170 case SOCK_DGRAM: 1171 case SOCK_RAW: 1172 return SECCLASS_UNIX_DGRAM_SOCKET; 1173 } 1174 break; 1175 case PF_INET: 1176 case PF_INET6: 1177 switch (type) { 1178 case SOCK_STREAM: 1179 case SOCK_SEQPACKET: 1180 if (default_protocol_stream(protocol)) 1181 return SECCLASS_TCP_SOCKET; 1182 else if (extsockclass && protocol == IPPROTO_SCTP) 1183 return SECCLASS_SCTP_SOCKET; 1184 else 1185 return SECCLASS_RAWIP_SOCKET; 1186 case SOCK_DGRAM: 1187 if (default_protocol_dgram(protocol)) 1188 return SECCLASS_UDP_SOCKET; 1189 else if (extsockclass && (protocol == IPPROTO_ICMP || 1190 protocol == IPPROTO_ICMPV6)) 1191 return SECCLASS_ICMP_SOCKET; 1192 else 1193 return SECCLASS_RAWIP_SOCKET; 1194 case SOCK_DCCP: 1195 return SECCLASS_DCCP_SOCKET; 1196 default: 1197 return SECCLASS_RAWIP_SOCKET; 1198 } 1199 break; 1200 case PF_NETLINK: 1201 switch (protocol) { 1202 case NETLINK_ROUTE: 1203 return SECCLASS_NETLINK_ROUTE_SOCKET; 1204 case NETLINK_SOCK_DIAG: 1205 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1206 case NETLINK_NFLOG: 1207 return SECCLASS_NETLINK_NFLOG_SOCKET; 1208 case NETLINK_XFRM: 1209 return SECCLASS_NETLINK_XFRM_SOCKET; 1210 case NETLINK_SELINUX: 1211 return SECCLASS_NETLINK_SELINUX_SOCKET; 1212 case NETLINK_ISCSI: 1213 return SECCLASS_NETLINK_ISCSI_SOCKET; 1214 case NETLINK_AUDIT: 1215 return SECCLASS_NETLINK_AUDIT_SOCKET; 1216 case NETLINK_FIB_LOOKUP: 1217 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET; 1218 case NETLINK_CONNECTOR: 1219 return SECCLASS_NETLINK_CONNECTOR_SOCKET; 1220 case NETLINK_NETFILTER: 1221 return SECCLASS_NETLINK_NETFILTER_SOCKET; 1222 case NETLINK_DNRTMSG: 1223 return SECCLASS_NETLINK_DNRT_SOCKET; 1224 case NETLINK_KOBJECT_UEVENT: 1225 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1226 case NETLINK_GENERIC: 1227 return SECCLASS_NETLINK_GENERIC_SOCKET; 1228 case NETLINK_SCSITRANSPORT: 1229 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET; 1230 case NETLINK_RDMA: 1231 return SECCLASS_NETLINK_RDMA_SOCKET; 1232 case NETLINK_CRYPTO: 1233 return SECCLASS_NETLINK_CRYPTO_SOCKET; 1234 default: 1235 return SECCLASS_NETLINK_SOCKET; 1236 } 1237 case PF_PACKET: 1238 return SECCLASS_PACKET_SOCKET; 1239 case PF_KEY: 1240 return SECCLASS_KEY_SOCKET; 1241 case PF_APPLETALK: 1242 return SECCLASS_APPLETALK_SOCKET; 1243 } 1244 1245 if (extsockclass) { 1246 switch (family) { 1247 case PF_AX25: 1248 return SECCLASS_AX25_SOCKET; 1249 case PF_IPX: 1250 return SECCLASS_IPX_SOCKET; 1251 case PF_NETROM: 1252 return SECCLASS_NETROM_SOCKET; 1253 case PF_ATMPVC: 1254 return SECCLASS_ATMPVC_SOCKET; 1255 case PF_X25: 1256 return SECCLASS_X25_SOCKET; 1257 case PF_ROSE: 1258 return SECCLASS_ROSE_SOCKET; 1259 case PF_DECnet: 1260 return SECCLASS_DECNET_SOCKET; 1261 case PF_ATMSVC: 1262 return SECCLASS_ATMSVC_SOCKET; 1263 case PF_RDS: 1264 return SECCLASS_RDS_SOCKET; 1265 case PF_IRDA: 1266 return SECCLASS_IRDA_SOCKET; 1267 case PF_PPPOX: 1268 return SECCLASS_PPPOX_SOCKET; 1269 case PF_LLC: 1270 return SECCLASS_LLC_SOCKET; 1271 case PF_CAN: 1272 return SECCLASS_CAN_SOCKET; 1273 case PF_TIPC: 1274 return SECCLASS_TIPC_SOCKET; 1275 case PF_BLUETOOTH: 1276 return SECCLASS_BLUETOOTH_SOCKET; 1277 case PF_IUCV: 1278 return SECCLASS_IUCV_SOCKET; 1279 case PF_RXRPC: 1280 return SECCLASS_RXRPC_SOCKET; 1281 case PF_ISDN: 1282 return SECCLASS_ISDN_SOCKET; 1283 case PF_PHONET: 1284 return SECCLASS_PHONET_SOCKET; 1285 case PF_IEEE802154: 1286 return SECCLASS_IEEE802154_SOCKET; 1287 case PF_CAIF: 1288 return SECCLASS_CAIF_SOCKET; 1289 case PF_ALG: 1290 return SECCLASS_ALG_SOCKET; 1291 case PF_NFC: 1292 return SECCLASS_NFC_SOCKET; 1293 case PF_VSOCK: 1294 return SECCLASS_VSOCK_SOCKET; 1295 case PF_KCM: 1296 return SECCLASS_KCM_SOCKET; 1297 case PF_QIPCRTR: 1298 return SECCLASS_QIPCRTR_SOCKET; 1299 case PF_SMC: 1300 return SECCLASS_SMC_SOCKET; 1301 case PF_XDP: 1302 return SECCLASS_XDP_SOCKET; 1303 case PF_MCTP: 1304 return SECCLASS_MCTP_SOCKET; 1305 #if PF_MAX > 46 1306 #error New address family defined, please update this function. 1307 #endif 1308 } 1309 } 1310 1311 return SECCLASS_SOCKET; 1312 } 1313 1314 static int selinux_genfs_get_sid(struct dentry *dentry, 1315 u16 tclass, 1316 u16 flags, 1317 u32 *sid) 1318 { 1319 int rc; 1320 struct super_block *sb = dentry->d_sb; 1321 char *buffer, *path; 1322 1323 buffer = (char *)__get_free_page(GFP_KERNEL); 1324 if (!buffer) 1325 return -ENOMEM; 1326 1327 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1328 if (IS_ERR(path)) 1329 rc = PTR_ERR(path); 1330 else { 1331 if (flags & SE_SBPROC) { 1332 /* each process gets a /proc/PID/ entry. Strip off the 1333 * PID part to get a valid selinux labeling. 1334 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1335 while (path[1] >= '0' && path[1] <= '9') { 1336 path[1] = '/'; 1337 path++; 1338 } 1339 } 1340 rc = security_genfs_sid(sb->s_type->name, 1341 path, tclass, sid); 1342 if (rc == -ENOENT) { 1343 /* No match in policy, mark as unlabeled. */ 1344 *sid = SECINITSID_UNLABELED; 1345 rc = 0; 1346 } 1347 } 1348 free_page((unsigned long)buffer); 1349 return rc; 1350 } 1351 1352 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry, 1353 u32 def_sid, u32 *sid) 1354 { 1355 #define INITCONTEXTLEN 255 1356 char *context; 1357 unsigned int len; 1358 int rc; 1359 1360 len = INITCONTEXTLEN; 1361 context = kmalloc(len + 1, GFP_NOFS); 1362 if (!context) 1363 return -ENOMEM; 1364 1365 context[len] = '\0'; 1366 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); 1367 if (rc == -ERANGE) { 1368 kfree(context); 1369 1370 /* Need a larger buffer. Query for the right size. */ 1371 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0); 1372 if (rc < 0) 1373 return rc; 1374 1375 len = rc; 1376 context = kmalloc(len + 1, GFP_NOFS); 1377 if (!context) 1378 return -ENOMEM; 1379 1380 context[len] = '\0'; 1381 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, 1382 context, len); 1383 } 1384 if (rc < 0) { 1385 kfree(context); 1386 if (rc != -ENODATA) { 1387 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n", 1388 __func__, -rc, inode->i_sb->s_id, inode->i_ino); 1389 return rc; 1390 } 1391 *sid = def_sid; 1392 return 0; 1393 } 1394 1395 rc = security_context_to_sid_default(context, rc, sid, 1396 def_sid, GFP_NOFS); 1397 if (rc) { 1398 char *dev = inode->i_sb->s_id; 1399 unsigned long ino = inode->i_ino; 1400 1401 if (rc == -EINVAL) { 1402 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n", 1403 ino, dev, context); 1404 } else { 1405 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n", 1406 __func__, context, -rc, dev, ino); 1407 } 1408 } 1409 kfree(context); 1410 return 0; 1411 } 1412 1413 /* The inode's security attributes must be initialized before first use. */ 1414 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1415 { 1416 struct superblock_security_struct *sbsec = NULL; 1417 struct inode_security_struct *isec = selinux_inode(inode); 1418 u32 task_sid, sid = 0; 1419 u16 sclass; 1420 struct dentry *dentry; 1421 int rc = 0; 1422 1423 if (isec->initialized == LABEL_INITIALIZED) 1424 return 0; 1425 1426 spin_lock(&isec->lock); 1427 if (isec->initialized == LABEL_INITIALIZED) 1428 goto out_unlock; 1429 1430 if (isec->sclass == SECCLASS_FILE) 1431 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1432 1433 sbsec = selinux_superblock(inode->i_sb); 1434 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1435 /* Defer initialization until selinux_complete_init, 1436 after the initial policy is loaded and the security 1437 server is ready to handle calls. */ 1438 spin_lock(&sbsec->isec_lock); 1439 if (list_empty(&isec->list)) 1440 list_add(&isec->list, &sbsec->isec_head); 1441 spin_unlock(&sbsec->isec_lock); 1442 goto out_unlock; 1443 } 1444 1445 sclass = isec->sclass; 1446 task_sid = isec->task_sid; 1447 sid = isec->sid; 1448 isec->initialized = LABEL_PENDING; 1449 spin_unlock(&isec->lock); 1450 1451 switch (sbsec->behavior) { 1452 /* 1453 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels 1454 * via xattr when called from delayed_superblock_init(). 1455 */ 1456 case SECURITY_FS_USE_NATIVE: 1457 case SECURITY_FS_USE_XATTR: 1458 if (!(inode->i_opflags & IOP_XATTR)) { 1459 sid = sbsec->def_sid; 1460 break; 1461 } 1462 /* Need a dentry, since the xattr API requires one. 1463 Life would be simpler if we could just pass the inode. */ 1464 if (opt_dentry) { 1465 /* Called from d_instantiate or d_splice_alias. */ 1466 dentry = dget(opt_dentry); 1467 } else { 1468 /* 1469 * Called from selinux_complete_init, try to find a dentry. 1470 * Some filesystems really want a connected one, so try 1471 * that first. We could split SECURITY_FS_USE_XATTR in 1472 * two, depending upon that... 1473 */ 1474 dentry = d_find_alias(inode); 1475 if (!dentry) 1476 dentry = d_find_any_alias(inode); 1477 } 1478 if (!dentry) { 1479 /* 1480 * this is can be hit on boot when a file is accessed 1481 * before the policy is loaded. When we load policy we 1482 * may find inodes that have no dentry on the 1483 * sbsec->isec_head list. No reason to complain as these 1484 * will get fixed up the next time we go through 1485 * inode_doinit with a dentry, before these inodes could 1486 * be used again by userspace. 1487 */ 1488 goto out_invalid; 1489 } 1490 1491 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid, 1492 &sid); 1493 dput(dentry); 1494 if (rc) 1495 goto out; 1496 break; 1497 case SECURITY_FS_USE_TASK: 1498 sid = task_sid; 1499 break; 1500 case SECURITY_FS_USE_TRANS: 1501 /* Default to the fs SID. */ 1502 sid = sbsec->sid; 1503 1504 /* Try to obtain a transition SID. */ 1505 rc = security_transition_sid(task_sid, sid, 1506 sclass, NULL, &sid); 1507 if (rc) 1508 goto out; 1509 break; 1510 case SECURITY_FS_USE_MNTPOINT: 1511 sid = sbsec->mntpoint_sid; 1512 break; 1513 default: 1514 /* Default to the fs superblock SID. */ 1515 sid = sbsec->sid; 1516 1517 if ((sbsec->flags & SE_SBGENFS) && 1518 (!S_ISLNK(inode->i_mode) || 1519 selinux_policycap_genfs_seclabel_symlinks())) { 1520 /* We must have a dentry to determine the label on 1521 * procfs inodes */ 1522 if (opt_dentry) { 1523 /* Called from d_instantiate or 1524 * d_splice_alias. */ 1525 dentry = dget(opt_dentry); 1526 } else { 1527 /* Called from selinux_complete_init, try to 1528 * find a dentry. Some filesystems really want 1529 * a connected one, so try that first. 1530 */ 1531 dentry = d_find_alias(inode); 1532 if (!dentry) 1533 dentry = d_find_any_alias(inode); 1534 } 1535 /* 1536 * This can be hit on boot when a file is accessed 1537 * before the policy is loaded. When we load policy we 1538 * may find inodes that have no dentry on the 1539 * sbsec->isec_head list. No reason to complain as 1540 * these will get fixed up the next time we go through 1541 * inode_doinit() with a dentry, before these inodes 1542 * could be used again by userspace. 1543 */ 1544 if (!dentry) 1545 goto out_invalid; 1546 rc = selinux_genfs_get_sid(dentry, sclass, 1547 sbsec->flags, &sid); 1548 if (rc) { 1549 dput(dentry); 1550 goto out; 1551 } 1552 1553 if ((sbsec->flags & SE_SBGENFS_XATTR) && 1554 (inode->i_opflags & IOP_XATTR)) { 1555 rc = inode_doinit_use_xattr(inode, dentry, 1556 sid, &sid); 1557 if (rc) { 1558 dput(dentry); 1559 goto out; 1560 } 1561 } 1562 dput(dentry); 1563 } 1564 break; 1565 } 1566 1567 out: 1568 spin_lock(&isec->lock); 1569 if (isec->initialized == LABEL_PENDING) { 1570 if (rc) { 1571 isec->initialized = LABEL_INVALID; 1572 goto out_unlock; 1573 } 1574 isec->initialized = LABEL_INITIALIZED; 1575 isec->sid = sid; 1576 } 1577 1578 out_unlock: 1579 spin_unlock(&isec->lock); 1580 return rc; 1581 1582 out_invalid: 1583 spin_lock(&isec->lock); 1584 if (isec->initialized == LABEL_PENDING) { 1585 isec->initialized = LABEL_INVALID; 1586 isec->sid = sid; 1587 } 1588 spin_unlock(&isec->lock); 1589 return 0; 1590 } 1591 1592 /* Convert a Linux signal to an access vector. */ 1593 static inline u32 signal_to_av(int sig) 1594 { 1595 u32 perm = 0; 1596 1597 switch (sig) { 1598 case SIGCHLD: 1599 /* Commonly granted from child to parent. */ 1600 perm = PROCESS__SIGCHLD; 1601 break; 1602 case SIGKILL: 1603 /* Cannot be caught or ignored */ 1604 perm = PROCESS__SIGKILL; 1605 break; 1606 case SIGSTOP: 1607 /* Cannot be caught or ignored */ 1608 perm = PROCESS__SIGSTOP; 1609 break; 1610 default: 1611 /* All other signals. */ 1612 perm = PROCESS__SIGNAL; 1613 break; 1614 } 1615 1616 return perm; 1617 } 1618 1619 #if CAP_LAST_CAP > 63 1620 #error Fix SELinux to handle capabilities > 63. 1621 #endif 1622 1623 /* Check whether a task is allowed to use a capability. */ 1624 static int cred_has_capability(const struct cred *cred, 1625 int cap, unsigned int opts, bool initns) 1626 { 1627 struct common_audit_data ad; 1628 struct av_decision avd; 1629 u16 sclass; 1630 u32 sid = cred_sid(cred); 1631 u32 av = CAP_TO_MASK(cap); 1632 int rc; 1633 1634 ad.type = LSM_AUDIT_DATA_CAP; 1635 ad.u.cap = cap; 1636 1637 switch (CAP_TO_INDEX(cap)) { 1638 case 0: 1639 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS; 1640 break; 1641 case 1: 1642 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS; 1643 break; 1644 default: 1645 pr_err("SELinux: out of range capability %d\n", cap); 1646 BUG(); 1647 return -EINVAL; 1648 } 1649 1650 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1651 if (!(opts & CAP_OPT_NOAUDIT)) { 1652 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad); 1653 if (rc2) 1654 return rc2; 1655 } 1656 return rc; 1657 } 1658 1659 /* Check whether a task has a particular permission to an inode. 1660 The 'adp' parameter is optional and allows other audit 1661 data to be passed (e.g. the dentry). */ 1662 static int inode_has_perm(const struct cred *cred, 1663 struct inode *inode, 1664 u32 perms, 1665 struct common_audit_data *adp) 1666 { 1667 struct inode_security_struct *isec; 1668 u32 sid; 1669 1670 if (unlikely(IS_PRIVATE(inode))) 1671 return 0; 1672 1673 sid = cred_sid(cred); 1674 isec = selinux_inode(inode); 1675 1676 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp); 1677 } 1678 1679 /* Same as inode_has_perm, but pass explicit audit data containing 1680 the dentry to help the auditing code to more easily generate the 1681 pathname if needed. */ 1682 static inline int dentry_has_perm(const struct cred *cred, 1683 struct dentry *dentry, 1684 u32 av) 1685 { 1686 struct inode *inode = d_backing_inode(dentry); 1687 struct common_audit_data ad; 1688 1689 ad.type = LSM_AUDIT_DATA_DENTRY; 1690 ad.u.dentry = dentry; 1691 __inode_security_revalidate(inode, dentry, true); 1692 return inode_has_perm(cred, inode, av, &ad); 1693 } 1694 1695 /* Same as inode_has_perm, but pass explicit audit data containing 1696 the path to help the auditing code to more easily generate the 1697 pathname if needed. */ 1698 static inline int path_has_perm(const struct cred *cred, 1699 const struct path *path, 1700 u32 av) 1701 { 1702 struct inode *inode = d_backing_inode(path->dentry); 1703 struct common_audit_data ad; 1704 1705 ad.type = LSM_AUDIT_DATA_PATH; 1706 ad.u.path = *path; 1707 __inode_security_revalidate(inode, path->dentry, true); 1708 return inode_has_perm(cred, inode, av, &ad); 1709 } 1710 1711 /* Same as path_has_perm, but uses the inode from the file struct. */ 1712 static inline int file_path_has_perm(const struct cred *cred, 1713 struct file *file, 1714 u32 av) 1715 { 1716 struct common_audit_data ad; 1717 1718 ad.type = LSM_AUDIT_DATA_FILE; 1719 ad.u.file = file; 1720 return inode_has_perm(cred, file_inode(file), av, &ad); 1721 } 1722 1723 #ifdef CONFIG_BPF_SYSCALL 1724 static int bpf_fd_pass(const struct file *file, u32 sid); 1725 #endif 1726 1727 /* Check whether a task can use an open file descriptor to 1728 access an inode in a given way. Check access to the 1729 descriptor itself, and then use dentry_has_perm to 1730 check a particular permission to the file. 1731 Access to the descriptor is implicitly granted if it 1732 has the same SID as the process. If av is zero, then 1733 access to the file is not checked, e.g. for cases 1734 where only the descriptor is affected like seek. */ 1735 static int file_has_perm(const struct cred *cred, 1736 struct file *file, 1737 u32 av) 1738 { 1739 struct file_security_struct *fsec = selinux_file(file); 1740 struct inode *inode = file_inode(file); 1741 struct common_audit_data ad; 1742 u32 sid = cred_sid(cred); 1743 int rc; 1744 1745 ad.type = LSM_AUDIT_DATA_FILE; 1746 ad.u.file = file; 1747 1748 if (sid != fsec->sid) { 1749 rc = avc_has_perm(sid, fsec->sid, 1750 SECCLASS_FD, 1751 FD__USE, 1752 &ad); 1753 if (rc) 1754 goto out; 1755 } 1756 1757 #ifdef CONFIG_BPF_SYSCALL 1758 rc = bpf_fd_pass(file, cred_sid(cred)); 1759 if (rc) 1760 return rc; 1761 #endif 1762 1763 /* av is zero if only checking access to the descriptor. */ 1764 rc = 0; 1765 if (av) 1766 rc = inode_has_perm(cred, inode, av, &ad); 1767 1768 out: 1769 return rc; 1770 } 1771 1772 /* 1773 * Determine the label for an inode that might be unioned. 1774 */ 1775 static int 1776 selinux_determine_inode_label(const struct task_security_struct *tsec, 1777 struct inode *dir, 1778 const struct qstr *name, u16 tclass, 1779 u32 *_new_isid) 1780 { 1781 const struct superblock_security_struct *sbsec = 1782 selinux_superblock(dir->i_sb); 1783 1784 if ((sbsec->flags & SE_SBINITIALIZED) && 1785 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) { 1786 *_new_isid = sbsec->mntpoint_sid; 1787 } else if ((sbsec->flags & SBLABEL_MNT) && 1788 tsec->create_sid) { 1789 *_new_isid = tsec->create_sid; 1790 } else { 1791 const struct inode_security_struct *dsec = inode_security(dir); 1792 return security_transition_sid(tsec->sid, 1793 dsec->sid, tclass, 1794 name, _new_isid); 1795 } 1796 1797 return 0; 1798 } 1799 1800 /* Check whether a task can create a file. */ 1801 static int may_create(struct inode *dir, 1802 struct dentry *dentry, 1803 u16 tclass) 1804 { 1805 const struct task_security_struct *tsec = selinux_cred(current_cred()); 1806 struct inode_security_struct *dsec; 1807 struct superblock_security_struct *sbsec; 1808 u32 sid, newsid; 1809 struct common_audit_data ad; 1810 int rc; 1811 1812 dsec = inode_security(dir); 1813 sbsec = selinux_superblock(dir->i_sb); 1814 1815 sid = tsec->sid; 1816 1817 ad.type = LSM_AUDIT_DATA_DENTRY; 1818 ad.u.dentry = dentry; 1819 1820 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1821 DIR__ADD_NAME | DIR__SEARCH, 1822 &ad); 1823 if (rc) 1824 return rc; 1825 1826 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass, 1827 &newsid); 1828 if (rc) 1829 return rc; 1830 1831 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1832 if (rc) 1833 return rc; 1834 1835 return avc_has_perm(newsid, sbsec->sid, 1836 SECCLASS_FILESYSTEM, 1837 FILESYSTEM__ASSOCIATE, &ad); 1838 } 1839 1840 #define MAY_LINK 0 1841 #define MAY_UNLINK 1 1842 #define MAY_RMDIR 2 1843 1844 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1845 static int may_link(struct inode *dir, 1846 struct dentry *dentry, 1847 int kind) 1848 1849 { 1850 struct inode_security_struct *dsec, *isec; 1851 struct common_audit_data ad; 1852 u32 sid = current_sid(); 1853 u32 av; 1854 int rc; 1855 1856 dsec = inode_security(dir); 1857 isec = backing_inode_security(dentry); 1858 1859 ad.type = LSM_AUDIT_DATA_DENTRY; 1860 ad.u.dentry = dentry; 1861 1862 av = DIR__SEARCH; 1863 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1864 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1865 if (rc) 1866 return rc; 1867 1868 switch (kind) { 1869 case MAY_LINK: 1870 av = FILE__LINK; 1871 break; 1872 case MAY_UNLINK: 1873 av = FILE__UNLINK; 1874 break; 1875 case MAY_RMDIR: 1876 av = DIR__RMDIR; 1877 break; 1878 default: 1879 pr_warn("SELinux: %s: unrecognized kind %d\n", 1880 __func__, kind); 1881 return 0; 1882 } 1883 1884 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1885 return rc; 1886 } 1887 1888 static inline int may_rename(struct inode *old_dir, 1889 struct dentry *old_dentry, 1890 struct inode *new_dir, 1891 struct dentry *new_dentry) 1892 { 1893 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1894 struct common_audit_data ad; 1895 u32 sid = current_sid(); 1896 u32 av; 1897 int old_is_dir, new_is_dir; 1898 int rc; 1899 1900 old_dsec = inode_security(old_dir); 1901 old_isec = backing_inode_security(old_dentry); 1902 old_is_dir = d_is_dir(old_dentry); 1903 new_dsec = inode_security(new_dir); 1904 1905 ad.type = LSM_AUDIT_DATA_DENTRY; 1906 1907 ad.u.dentry = old_dentry; 1908 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1909 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1910 if (rc) 1911 return rc; 1912 rc = avc_has_perm(sid, old_isec->sid, 1913 old_isec->sclass, FILE__RENAME, &ad); 1914 if (rc) 1915 return rc; 1916 if (old_is_dir && new_dir != old_dir) { 1917 rc = avc_has_perm(sid, old_isec->sid, 1918 old_isec->sclass, DIR__REPARENT, &ad); 1919 if (rc) 1920 return rc; 1921 } 1922 1923 ad.u.dentry = new_dentry; 1924 av = DIR__ADD_NAME | DIR__SEARCH; 1925 if (d_is_positive(new_dentry)) 1926 av |= DIR__REMOVE_NAME; 1927 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1928 if (rc) 1929 return rc; 1930 if (d_is_positive(new_dentry)) { 1931 new_isec = backing_inode_security(new_dentry); 1932 new_is_dir = d_is_dir(new_dentry); 1933 rc = avc_has_perm(sid, new_isec->sid, 1934 new_isec->sclass, 1935 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1936 if (rc) 1937 return rc; 1938 } 1939 1940 return 0; 1941 } 1942 1943 /* Check whether a task can perform a filesystem operation. */ 1944 static int superblock_has_perm(const struct cred *cred, 1945 const struct super_block *sb, 1946 u32 perms, 1947 struct common_audit_data *ad) 1948 { 1949 struct superblock_security_struct *sbsec; 1950 u32 sid = cred_sid(cred); 1951 1952 sbsec = selinux_superblock(sb); 1953 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1954 } 1955 1956 /* Convert a Linux mode and permission mask to an access vector. */ 1957 static inline u32 file_mask_to_av(int mode, int mask) 1958 { 1959 u32 av = 0; 1960 1961 if (!S_ISDIR(mode)) { 1962 if (mask & MAY_EXEC) 1963 av |= FILE__EXECUTE; 1964 if (mask & MAY_READ) 1965 av |= FILE__READ; 1966 1967 if (mask & MAY_APPEND) 1968 av |= FILE__APPEND; 1969 else if (mask & MAY_WRITE) 1970 av |= FILE__WRITE; 1971 1972 } else { 1973 if (mask & MAY_EXEC) 1974 av |= DIR__SEARCH; 1975 if (mask & MAY_WRITE) 1976 av |= DIR__WRITE; 1977 if (mask & MAY_READ) 1978 av |= DIR__READ; 1979 } 1980 1981 return av; 1982 } 1983 1984 /* Convert a Linux file to an access vector. */ 1985 static inline u32 file_to_av(const struct file *file) 1986 { 1987 u32 av = 0; 1988 1989 if (file->f_mode & FMODE_READ) 1990 av |= FILE__READ; 1991 if (file->f_mode & FMODE_WRITE) { 1992 if (file->f_flags & O_APPEND) 1993 av |= FILE__APPEND; 1994 else 1995 av |= FILE__WRITE; 1996 } 1997 if (!av) { 1998 /* 1999 * Special file opened with flags 3 for ioctl-only use. 2000 */ 2001 av = FILE__IOCTL; 2002 } 2003 2004 return av; 2005 } 2006 2007 /* 2008 * Convert a file to an access vector and include the correct 2009 * open permission. 2010 */ 2011 static inline u32 open_file_to_av(struct file *file) 2012 { 2013 u32 av = file_to_av(file); 2014 struct inode *inode = file_inode(file); 2015 2016 if (selinux_policycap_openperm() && 2017 inode->i_sb->s_magic != SOCKFS_MAGIC) 2018 av |= FILE__OPEN; 2019 2020 return av; 2021 } 2022 2023 /* Hook functions begin here. */ 2024 2025 static int selinux_binder_set_context_mgr(const struct cred *mgr) 2026 { 2027 return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER, 2028 BINDER__SET_CONTEXT_MGR, NULL); 2029 } 2030 2031 static int selinux_binder_transaction(const struct cred *from, 2032 const struct cred *to) 2033 { 2034 u32 mysid = current_sid(); 2035 u32 fromsid = cred_sid(from); 2036 u32 tosid = cred_sid(to); 2037 int rc; 2038 2039 if (mysid != fromsid) { 2040 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER, 2041 BINDER__IMPERSONATE, NULL); 2042 if (rc) 2043 return rc; 2044 } 2045 2046 return avc_has_perm(fromsid, tosid, 2047 SECCLASS_BINDER, BINDER__CALL, NULL); 2048 } 2049 2050 static int selinux_binder_transfer_binder(const struct cred *from, 2051 const struct cred *to) 2052 { 2053 return avc_has_perm(cred_sid(from), cred_sid(to), 2054 SECCLASS_BINDER, BINDER__TRANSFER, 2055 NULL); 2056 } 2057 2058 static int selinux_binder_transfer_file(const struct cred *from, 2059 const struct cred *to, 2060 const struct file *file) 2061 { 2062 u32 sid = cred_sid(to); 2063 struct file_security_struct *fsec = selinux_file(file); 2064 struct dentry *dentry = file->f_path.dentry; 2065 struct inode_security_struct *isec; 2066 struct common_audit_data ad; 2067 int rc; 2068 2069 ad.type = LSM_AUDIT_DATA_PATH; 2070 ad.u.path = file->f_path; 2071 2072 if (sid != fsec->sid) { 2073 rc = avc_has_perm(sid, fsec->sid, 2074 SECCLASS_FD, 2075 FD__USE, 2076 &ad); 2077 if (rc) 2078 return rc; 2079 } 2080 2081 #ifdef CONFIG_BPF_SYSCALL 2082 rc = bpf_fd_pass(file, sid); 2083 if (rc) 2084 return rc; 2085 #endif 2086 2087 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2088 return 0; 2089 2090 isec = backing_inode_security(dentry); 2091 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file), 2092 &ad); 2093 } 2094 2095 static int selinux_ptrace_access_check(struct task_struct *child, 2096 unsigned int mode) 2097 { 2098 u32 sid = current_sid(); 2099 u32 csid = task_sid_obj(child); 2100 2101 if (mode & PTRACE_MODE_READ) 2102 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, 2103 NULL); 2104 2105 return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, 2106 NULL); 2107 } 2108 2109 static int selinux_ptrace_traceme(struct task_struct *parent) 2110 { 2111 return avc_has_perm(task_sid_obj(parent), task_sid_obj(current), 2112 SECCLASS_PROCESS, PROCESS__PTRACE, NULL); 2113 } 2114 2115 static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective, 2116 kernel_cap_t *inheritable, kernel_cap_t *permitted) 2117 { 2118 return avc_has_perm(current_sid(), task_sid_obj(target), 2119 SECCLASS_PROCESS, PROCESS__GETCAP, NULL); 2120 } 2121 2122 static int selinux_capset(struct cred *new, const struct cred *old, 2123 const kernel_cap_t *effective, 2124 const kernel_cap_t *inheritable, 2125 const kernel_cap_t *permitted) 2126 { 2127 return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS, 2128 PROCESS__SETCAP, NULL); 2129 } 2130 2131 /* 2132 * (This comment used to live with the selinux_task_setuid hook, 2133 * which was removed). 2134 * 2135 * Since setuid only affects the current process, and since the SELinux 2136 * controls are not based on the Linux identity attributes, SELinux does not 2137 * need to control this operation. However, SELinux does control the use of 2138 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 2139 */ 2140 2141 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 2142 int cap, unsigned int opts) 2143 { 2144 return cred_has_capability(cred, cap, opts, ns == &init_user_ns); 2145 } 2146 2147 static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb) 2148 { 2149 const struct cred *cred = current_cred(); 2150 int rc = 0; 2151 2152 if (!sb) 2153 return 0; 2154 2155 switch (cmds) { 2156 case Q_SYNC: 2157 case Q_QUOTAON: 2158 case Q_QUOTAOFF: 2159 case Q_SETINFO: 2160 case Q_SETQUOTA: 2161 case Q_XQUOTAOFF: 2162 case Q_XQUOTAON: 2163 case Q_XSETQLIM: 2164 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2165 break; 2166 case Q_GETFMT: 2167 case Q_GETINFO: 2168 case Q_GETQUOTA: 2169 case Q_XGETQUOTA: 2170 case Q_XGETQSTAT: 2171 case Q_XGETQSTATV: 2172 case Q_XGETNEXTQUOTA: 2173 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2174 break; 2175 default: 2176 rc = 0; /* let the kernel handle invalid cmds */ 2177 break; 2178 } 2179 return rc; 2180 } 2181 2182 static int selinux_quota_on(struct dentry *dentry) 2183 { 2184 const struct cred *cred = current_cred(); 2185 2186 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 2187 } 2188 2189 static int selinux_syslog(int type) 2190 { 2191 switch (type) { 2192 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2193 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2194 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 2195 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL); 2196 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2197 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2198 /* Set level of messages printed to console */ 2199 case SYSLOG_ACTION_CONSOLE_LEVEL: 2200 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 2201 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE, 2202 NULL); 2203 } 2204 /* All other syslog types */ 2205 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 2206 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL); 2207 } 2208 2209 /* 2210 * Check permission for allocating a new virtual mapping. Returns 2211 * 0 if permission is granted, negative error code if not. 2212 * 2213 * Do not audit the selinux permission check, as this is applied to all 2214 * processes that allocate mappings. 2215 */ 2216 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2217 { 2218 return cred_has_capability(current_cred(), CAP_SYS_ADMIN, 2219 CAP_OPT_NOAUDIT, true); 2220 } 2221 2222 /* binprm security operations */ 2223 2224 static u32 ptrace_parent_sid(void) 2225 { 2226 u32 sid = 0; 2227 struct task_struct *tracer; 2228 2229 rcu_read_lock(); 2230 tracer = ptrace_parent(current); 2231 if (tracer) 2232 sid = task_sid_obj(tracer); 2233 rcu_read_unlock(); 2234 2235 return sid; 2236 } 2237 2238 static int check_nnp_nosuid(const struct linux_binprm *bprm, 2239 const struct task_security_struct *old_tsec, 2240 const struct task_security_struct *new_tsec) 2241 { 2242 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); 2243 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt); 2244 int rc; 2245 u32 av; 2246 2247 if (!nnp && !nosuid) 2248 return 0; /* neither NNP nor nosuid */ 2249 2250 if (new_tsec->sid == old_tsec->sid) 2251 return 0; /* No change in credentials */ 2252 2253 /* 2254 * If the policy enables the nnp_nosuid_transition policy capability, 2255 * then we permit transitions under NNP or nosuid if the 2256 * policy allows the corresponding permission between 2257 * the old and new contexts. 2258 */ 2259 if (selinux_policycap_nnp_nosuid_transition()) { 2260 av = 0; 2261 if (nnp) 2262 av |= PROCESS2__NNP_TRANSITION; 2263 if (nosuid) 2264 av |= PROCESS2__NOSUID_TRANSITION; 2265 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2266 SECCLASS_PROCESS2, av, NULL); 2267 if (!rc) 2268 return 0; 2269 } 2270 2271 /* 2272 * We also permit NNP or nosuid transitions to bounded SIDs, 2273 * i.e. SIDs that are guaranteed to only be allowed a subset 2274 * of the permissions of the current SID. 2275 */ 2276 rc = security_bounded_transition(old_tsec->sid, 2277 new_tsec->sid); 2278 if (!rc) 2279 return 0; 2280 2281 /* 2282 * On failure, preserve the errno values for NNP vs nosuid. 2283 * NNP: Operation not permitted for caller. 2284 * nosuid: Permission denied to file. 2285 */ 2286 if (nnp) 2287 return -EPERM; 2288 return -EACCES; 2289 } 2290 2291 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm) 2292 { 2293 const struct task_security_struct *old_tsec; 2294 struct task_security_struct *new_tsec; 2295 struct inode_security_struct *isec; 2296 struct common_audit_data ad; 2297 struct inode *inode = file_inode(bprm->file); 2298 int rc; 2299 2300 /* SELinux context only depends on initial program or script and not 2301 * the script interpreter */ 2302 2303 old_tsec = selinux_cred(current_cred()); 2304 new_tsec = selinux_cred(bprm->cred); 2305 isec = inode_security(inode); 2306 2307 /* Default to the current task SID. */ 2308 new_tsec->sid = old_tsec->sid; 2309 new_tsec->osid = old_tsec->sid; 2310 2311 /* Reset fs, key, and sock SIDs on execve. */ 2312 new_tsec->create_sid = 0; 2313 new_tsec->keycreate_sid = 0; 2314 new_tsec->sockcreate_sid = 0; 2315 2316 /* 2317 * Before policy is loaded, label any task outside kernel space 2318 * as SECINITSID_INIT, so that any userspace tasks surviving from 2319 * early boot end up with a label different from SECINITSID_KERNEL 2320 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL). 2321 */ 2322 if (!selinux_initialized()) { 2323 new_tsec->sid = SECINITSID_INIT; 2324 /* also clear the exec_sid just in case */ 2325 new_tsec->exec_sid = 0; 2326 return 0; 2327 } 2328 2329 if (old_tsec->exec_sid) { 2330 new_tsec->sid = old_tsec->exec_sid; 2331 /* Reset exec SID on execve. */ 2332 new_tsec->exec_sid = 0; 2333 2334 /* Fail on NNP or nosuid if not an allowed transition. */ 2335 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2336 if (rc) 2337 return rc; 2338 } else { 2339 /* Check for a default transition on this program. */ 2340 rc = security_transition_sid(old_tsec->sid, 2341 isec->sid, SECCLASS_PROCESS, NULL, 2342 &new_tsec->sid); 2343 if (rc) 2344 return rc; 2345 2346 /* 2347 * Fallback to old SID on NNP or nosuid if not an allowed 2348 * transition. 2349 */ 2350 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2351 if (rc) 2352 new_tsec->sid = old_tsec->sid; 2353 } 2354 2355 ad.type = LSM_AUDIT_DATA_FILE; 2356 ad.u.file = bprm->file; 2357 2358 if (new_tsec->sid == old_tsec->sid) { 2359 rc = avc_has_perm(old_tsec->sid, isec->sid, 2360 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2361 if (rc) 2362 return rc; 2363 } else { 2364 /* Check permissions for the transition. */ 2365 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2366 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2367 if (rc) 2368 return rc; 2369 2370 rc = avc_has_perm(new_tsec->sid, isec->sid, 2371 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2372 if (rc) 2373 return rc; 2374 2375 /* Check for shared state */ 2376 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2377 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2378 SECCLASS_PROCESS, PROCESS__SHARE, 2379 NULL); 2380 if (rc) 2381 return -EPERM; 2382 } 2383 2384 /* Make sure that anyone attempting to ptrace over a task that 2385 * changes its SID has the appropriate permit */ 2386 if (bprm->unsafe & LSM_UNSAFE_PTRACE) { 2387 u32 ptsid = ptrace_parent_sid(); 2388 if (ptsid != 0) { 2389 rc = avc_has_perm(ptsid, new_tsec->sid, 2390 SECCLASS_PROCESS, 2391 PROCESS__PTRACE, NULL); 2392 if (rc) 2393 return -EPERM; 2394 } 2395 } 2396 2397 /* Clear any possibly unsafe personality bits on exec: */ 2398 bprm->per_clear |= PER_CLEAR_ON_SETID; 2399 2400 /* Enable secure mode for SIDs transitions unless 2401 the noatsecure permission is granted between 2402 the two SIDs, i.e. ahp returns 0. */ 2403 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2404 SECCLASS_PROCESS, PROCESS__NOATSECURE, 2405 NULL); 2406 bprm->secureexec |= !!rc; 2407 } 2408 2409 return 0; 2410 } 2411 2412 static int match_file(const void *p, struct file *file, unsigned fd) 2413 { 2414 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; 2415 } 2416 2417 /* Derived from fs/exec.c:flush_old_files. */ 2418 static inline void flush_unauthorized_files(const struct cred *cred, 2419 struct files_struct *files) 2420 { 2421 struct file *file, *devnull = NULL; 2422 struct tty_struct *tty; 2423 int drop_tty = 0; 2424 unsigned n; 2425 2426 tty = get_current_tty(); 2427 if (tty) { 2428 spin_lock(&tty->files_lock); 2429 if (!list_empty(&tty->tty_files)) { 2430 struct tty_file_private *file_priv; 2431 2432 /* Revalidate access to controlling tty. 2433 Use file_path_has_perm on the tty path directly 2434 rather than using file_has_perm, as this particular 2435 open file may belong to another process and we are 2436 only interested in the inode-based check here. */ 2437 file_priv = list_first_entry(&tty->tty_files, 2438 struct tty_file_private, list); 2439 file = file_priv->file; 2440 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) 2441 drop_tty = 1; 2442 } 2443 spin_unlock(&tty->files_lock); 2444 tty_kref_put(tty); 2445 } 2446 /* Reset controlling tty. */ 2447 if (drop_tty) 2448 no_tty(); 2449 2450 /* Revalidate access to inherited open files. */ 2451 n = iterate_fd(files, 0, match_file, cred); 2452 if (!n) /* none found? */ 2453 return; 2454 2455 devnull = dentry_open(&selinux_null, O_RDWR, cred); 2456 if (IS_ERR(devnull)) 2457 devnull = NULL; 2458 /* replace all the matching ones with this */ 2459 do { 2460 replace_fd(n - 1, devnull, 0); 2461 } while ((n = iterate_fd(files, n, match_file, cred)) != 0); 2462 if (devnull) 2463 fput(devnull); 2464 } 2465 2466 /* 2467 * Prepare a process for imminent new credential changes due to exec 2468 */ 2469 static void selinux_bprm_committing_creds(const struct linux_binprm *bprm) 2470 { 2471 struct task_security_struct *new_tsec; 2472 struct rlimit *rlim, *initrlim; 2473 int rc, i; 2474 2475 new_tsec = selinux_cred(bprm->cred); 2476 if (new_tsec->sid == new_tsec->osid) 2477 return; 2478 2479 /* Close files for which the new task SID is not authorized. */ 2480 flush_unauthorized_files(bprm->cred, current->files); 2481 2482 /* Always clear parent death signal on SID transitions. */ 2483 current->pdeath_signal = 0; 2484 2485 /* Check whether the new SID can inherit resource limits from the old 2486 * SID. If not, reset all soft limits to the lower of the current 2487 * task's hard limit and the init task's soft limit. 2488 * 2489 * Note that the setting of hard limits (even to lower them) can be 2490 * controlled by the setrlimit check. The inclusion of the init task's 2491 * soft limit into the computation is to avoid resetting soft limits 2492 * higher than the default soft limit for cases where the default is 2493 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2494 */ 2495 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2496 PROCESS__RLIMITINH, NULL); 2497 if (rc) { 2498 /* protect against do_prlimit() */ 2499 task_lock(current); 2500 for (i = 0; i < RLIM_NLIMITS; i++) { 2501 rlim = current->signal->rlim + i; 2502 initrlim = init_task.signal->rlim + i; 2503 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2504 } 2505 task_unlock(current); 2506 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 2507 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2508 } 2509 } 2510 2511 /* 2512 * Clean up the process immediately after the installation of new credentials 2513 * due to exec 2514 */ 2515 static void selinux_bprm_committed_creds(const struct linux_binprm *bprm) 2516 { 2517 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2518 u32 osid, sid; 2519 int rc; 2520 2521 osid = tsec->osid; 2522 sid = tsec->sid; 2523 2524 if (sid == osid) 2525 return; 2526 2527 /* Check whether the new SID can inherit signal state from the old SID. 2528 * If not, clear itimers to avoid subsequent signal generation and 2529 * flush and unblock signals. 2530 * 2531 * This must occur _after_ the task SID has been updated so that any 2532 * kill done after the flush will be checked against the new SID. 2533 */ 2534 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2535 if (rc) { 2536 clear_itimer(); 2537 2538 spin_lock_irq(&unrcu_pointer(current->sighand)->siglock); 2539 if (!fatal_signal_pending(current)) { 2540 flush_sigqueue(¤t->pending); 2541 flush_sigqueue(¤t->signal->shared_pending); 2542 flush_signal_handlers(current, 1); 2543 sigemptyset(¤t->blocked); 2544 recalc_sigpending(); 2545 } 2546 spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock); 2547 } 2548 2549 /* Wake up the parent if it is waiting so that it can recheck 2550 * wait permission to the new task SID. */ 2551 read_lock(&tasklist_lock); 2552 __wake_up_parent(current, unrcu_pointer(current->real_parent)); 2553 read_unlock(&tasklist_lock); 2554 } 2555 2556 /* superblock security operations */ 2557 2558 static int selinux_sb_alloc_security(struct super_block *sb) 2559 { 2560 struct superblock_security_struct *sbsec = selinux_superblock(sb); 2561 2562 mutex_init(&sbsec->lock); 2563 INIT_LIST_HEAD(&sbsec->isec_head); 2564 spin_lock_init(&sbsec->isec_lock); 2565 sbsec->sid = SECINITSID_UNLABELED; 2566 sbsec->def_sid = SECINITSID_FILE; 2567 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 2568 2569 return 0; 2570 } 2571 2572 static inline int opt_len(const char *s) 2573 { 2574 bool open_quote = false; 2575 int len; 2576 char c; 2577 2578 for (len = 0; (c = s[len]) != '\0'; len++) { 2579 if (c == '"') 2580 open_quote = !open_quote; 2581 if (c == ',' && !open_quote) 2582 break; 2583 } 2584 return len; 2585 } 2586 2587 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts) 2588 { 2589 char *from = options; 2590 char *to = options; 2591 bool first = true; 2592 int rc; 2593 2594 while (1) { 2595 int len = opt_len(from); 2596 int token; 2597 char *arg = NULL; 2598 2599 token = match_opt_prefix(from, len, &arg); 2600 2601 if (token != Opt_error) { 2602 char *p, *q; 2603 2604 /* strip quotes */ 2605 if (arg) { 2606 for (p = q = arg; p < from + len; p++) { 2607 char c = *p; 2608 if (c != '"') 2609 *q++ = c; 2610 } 2611 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL); 2612 if (!arg) { 2613 rc = -ENOMEM; 2614 goto free_opt; 2615 } 2616 } 2617 rc = selinux_add_opt(token, arg, mnt_opts); 2618 kfree(arg); 2619 arg = NULL; 2620 if (unlikely(rc)) { 2621 goto free_opt; 2622 } 2623 } else { 2624 if (!first) { // copy with preceding comma 2625 from--; 2626 len++; 2627 } 2628 if (to != from) 2629 memmove(to, from, len); 2630 to += len; 2631 first = false; 2632 } 2633 if (!from[len]) 2634 break; 2635 from += len + 1; 2636 } 2637 *to = '\0'; 2638 return 0; 2639 2640 free_opt: 2641 if (*mnt_opts) { 2642 selinux_free_mnt_opts(*mnt_opts); 2643 *mnt_opts = NULL; 2644 } 2645 return rc; 2646 } 2647 2648 static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts) 2649 { 2650 struct selinux_mnt_opts *opts = mnt_opts; 2651 struct superblock_security_struct *sbsec = selinux_superblock(sb); 2652 2653 /* 2654 * Superblock not initialized (i.e. no options) - reject if any 2655 * options specified, otherwise accept. 2656 */ 2657 if (!(sbsec->flags & SE_SBINITIALIZED)) 2658 return opts ? 1 : 0; 2659 2660 /* 2661 * Superblock initialized and no options specified - reject if 2662 * superblock has any options set, otherwise accept. 2663 */ 2664 if (!opts) 2665 return (sbsec->flags & SE_MNTMASK) ? 1 : 0; 2666 2667 if (opts->fscontext_sid) { 2668 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 2669 opts->fscontext_sid)) 2670 return 1; 2671 } 2672 if (opts->context_sid) { 2673 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 2674 opts->context_sid)) 2675 return 1; 2676 } 2677 if (opts->rootcontext_sid) { 2678 struct inode_security_struct *root_isec; 2679 2680 root_isec = backing_inode_security(sb->s_root); 2681 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 2682 opts->rootcontext_sid)) 2683 return 1; 2684 } 2685 if (opts->defcontext_sid) { 2686 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 2687 opts->defcontext_sid)) 2688 return 1; 2689 } 2690 return 0; 2691 } 2692 2693 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts) 2694 { 2695 struct selinux_mnt_opts *opts = mnt_opts; 2696 struct superblock_security_struct *sbsec = selinux_superblock(sb); 2697 2698 if (!(sbsec->flags & SE_SBINITIALIZED)) 2699 return 0; 2700 2701 if (!opts) 2702 return 0; 2703 2704 if (opts->fscontext_sid) { 2705 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 2706 opts->fscontext_sid)) 2707 goto out_bad_option; 2708 } 2709 if (opts->context_sid) { 2710 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 2711 opts->context_sid)) 2712 goto out_bad_option; 2713 } 2714 if (opts->rootcontext_sid) { 2715 struct inode_security_struct *root_isec; 2716 root_isec = backing_inode_security(sb->s_root); 2717 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 2718 opts->rootcontext_sid)) 2719 goto out_bad_option; 2720 } 2721 if (opts->defcontext_sid) { 2722 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 2723 opts->defcontext_sid)) 2724 goto out_bad_option; 2725 } 2726 return 0; 2727 2728 out_bad_option: 2729 pr_warn("SELinux: unable to change security options " 2730 "during remount (dev %s, type=%s)\n", sb->s_id, 2731 sb->s_type->name); 2732 return -EINVAL; 2733 } 2734 2735 static int selinux_sb_kern_mount(const struct super_block *sb) 2736 { 2737 const struct cred *cred = current_cred(); 2738 struct common_audit_data ad; 2739 2740 ad.type = LSM_AUDIT_DATA_DENTRY; 2741 ad.u.dentry = sb->s_root; 2742 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2743 } 2744 2745 static int selinux_sb_statfs(struct dentry *dentry) 2746 { 2747 const struct cred *cred = current_cred(); 2748 struct common_audit_data ad; 2749 2750 ad.type = LSM_AUDIT_DATA_DENTRY; 2751 ad.u.dentry = dentry->d_sb->s_root; 2752 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2753 } 2754 2755 static int selinux_mount(const char *dev_name, 2756 const struct path *path, 2757 const char *type, 2758 unsigned long flags, 2759 void *data) 2760 { 2761 const struct cred *cred = current_cred(); 2762 2763 if (flags & MS_REMOUNT) 2764 return superblock_has_perm(cred, path->dentry->d_sb, 2765 FILESYSTEM__REMOUNT, NULL); 2766 else 2767 return path_has_perm(cred, path, FILE__MOUNTON); 2768 } 2769 2770 static int selinux_move_mount(const struct path *from_path, 2771 const struct path *to_path) 2772 { 2773 const struct cred *cred = current_cred(); 2774 2775 return path_has_perm(cred, to_path, FILE__MOUNTON); 2776 } 2777 2778 static int selinux_umount(struct vfsmount *mnt, int flags) 2779 { 2780 const struct cred *cred = current_cred(); 2781 2782 return superblock_has_perm(cred, mnt->mnt_sb, 2783 FILESYSTEM__UNMOUNT, NULL); 2784 } 2785 2786 static int selinux_fs_context_submount(struct fs_context *fc, 2787 struct super_block *reference) 2788 { 2789 const struct superblock_security_struct *sbsec = selinux_superblock(reference); 2790 struct selinux_mnt_opts *opts; 2791 2792 /* 2793 * Ensure that fc->security remains NULL when no options are set 2794 * as expected by selinux_set_mnt_opts(). 2795 */ 2796 if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT))) 2797 return 0; 2798 2799 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 2800 if (!opts) 2801 return -ENOMEM; 2802 2803 if (sbsec->flags & FSCONTEXT_MNT) 2804 opts->fscontext_sid = sbsec->sid; 2805 if (sbsec->flags & CONTEXT_MNT) 2806 opts->context_sid = sbsec->mntpoint_sid; 2807 if (sbsec->flags & DEFCONTEXT_MNT) 2808 opts->defcontext_sid = sbsec->def_sid; 2809 fc->security = opts; 2810 return 0; 2811 } 2812 2813 static int selinux_fs_context_dup(struct fs_context *fc, 2814 struct fs_context *src_fc) 2815 { 2816 const struct selinux_mnt_opts *src = src_fc->security; 2817 2818 if (!src) 2819 return 0; 2820 2821 fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL); 2822 return fc->security ? 0 : -ENOMEM; 2823 } 2824 2825 static const struct fs_parameter_spec selinux_fs_parameters[] = { 2826 fsparam_string(CONTEXT_STR, Opt_context), 2827 fsparam_string(DEFCONTEXT_STR, Opt_defcontext), 2828 fsparam_string(FSCONTEXT_STR, Opt_fscontext), 2829 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext), 2830 fsparam_flag (SECLABEL_STR, Opt_seclabel), 2831 {} 2832 }; 2833 2834 static int selinux_fs_context_parse_param(struct fs_context *fc, 2835 struct fs_parameter *param) 2836 { 2837 struct fs_parse_result result; 2838 int opt; 2839 2840 opt = fs_parse(fc, selinux_fs_parameters, param, &result); 2841 if (opt < 0) 2842 return opt; 2843 2844 return selinux_add_opt(opt, param->string, &fc->security); 2845 } 2846 2847 /* inode security operations */ 2848 2849 static int selinux_inode_alloc_security(struct inode *inode) 2850 { 2851 struct inode_security_struct *isec = selinux_inode(inode); 2852 u32 sid = current_sid(); 2853 2854 spin_lock_init(&isec->lock); 2855 INIT_LIST_HEAD(&isec->list); 2856 isec->inode = inode; 2857 isec->sid = SECINITSID_UNLABELED; 2858 isec->sclass = SECCLASS_FILE; 2859 isec->task_sid = sid; 2860 isec->initialized = LABEL_INVALID; 2861 2862 return 0; 2863 } 2864 2865 static void selinux_inode_free_security(struct inode *inode) 2866 { 2867 inode_free_security(inode); 2868 } 2869 2870 static int selinux_dentry_init_security(struct dentry *dentry, int mode, 2871 const struct qstr *name, 2872 const char **xattr_name, void **ctx, 2873 u32 *ctxlen) 2874 { 2875 u32 newsid; 2876 int rc; 2877 2878 rc = selinux_determine_inode_label(selinux_cred(current_cred()), 2879 d_inode(dentry->d_parent), name, 2880 inode_mode_to_security_class(mode), 2881 &newsid); 2882 if (rc) 2883 return rc; 2884 2885 if (xattr_name) 2886 *xattr_name = XATTR_NAME_SELINUX; 2887 2888 return security_sid_to_context(newsid, (char **)ctx, 2889 ctxlen); 2890 } 2891 2892 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode, 2893 struct qstr *name, 2894 const struct cred *old, 2895 struct cred *new) 2896 { 2897 u32 newsid; 2898 int rc; 2899 struct task_security_struct *tsec; 2900 2901 rc = selinux_determine_inode_label(selinux_cred(old), 2902 d_inode(dentry->d_parent), name, 2903 inode_mode_to_security_class(mode), 2904 &newsid); 2905 if (rc) 2906 return rc; 2907 2908 tsec = selinux_cred(new); 2909 tsec->create_sid = newsid; 2910 return 0; 2911 } 2912 2913 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2914 const struct qstr *qstr, 2915 struct xattr *xattrs, int *xattr_count) 2916 { 2917 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2918 struct superblock_security_struct *sbsec; 2919 struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count); 2920 u32 newsid, clen; 2921 u16 newsclass; 2922 int rc; 2923 char *context; 2924 2925 sbsec = selinux_superblock(dir->i_sb); 2926 2927 newsid = tsec->create_sid; 2928 newsclass = inode_mode_to_security_class(inode->i_mode); 2929 rc = selinux_determine_inode_label(tsec, dir, qstr, newsclass, &newsid); 2930 if (rc) 2931 return rc; 2932 2933 /* Possibly defer initialization to selinux_complete_init. */ 2934 if (sbsec->flags & SE_SBINITIALIZED) { 2935 struct inode_security_struct *isec = selinux_inode(inode); 2936 isec->sclass = newsclass; 2937 isec->sid = newsid; 2938 isec->initialized = LABEL_INITIALIZED; 2939 } 2940 2941 if (!selinux_initialized() || 2942 !(sbsec->flags & SBLABEL_MNT)) 2943 return -EOPNOTSUPP; 2944 2945 if (xattr) { 2946 rc = security_sid_to_context_force(newsid, 2947 &context, &clen); 2948 if (rc) 2949 return rc; 2950 xattr->value = context; 2951 xattr->value_len = clen; 2952 xattr->name = XATTR_SELINUX_SUFFIX; 2953 } 2954 2955 return 0; 2956 } 2957 2958 static int selinux_inode_init_security_anon(struct inode *inode, 2959 const struct qstr *name, 2960 const struct inode *context_inode) 2961 { 2962 u32 sid = current_sid(); 2963 struct common_audit_data ad; 2964 struct inode_security_struct *isec; 2965 int rc; 2966 2967 if (unlikely(!selinux_initialized())) 2968 return 0; 2969 2970 isec = selinux_inode(inode); 2971 2972 /* 2973 * We only get here once per ephemeral inode. The inode has 2974 * been initialized via inode_alloc_security but is otherwise 2975 * untouched. 2976 */ 2977 2978 if (context_inode) { 2979 struct inode_security_struct *context_isec = 2980 selinux_inode(context_inode); 2981 if (context_isec->initialized != LABEL_INITIALIZED) { 2982 pr_err("SELinux: context_inode is not initialized\n"); 2983 return -EACCES; 2984 } 2985 2986 isec->sclass = context_isec->sclass; 2987 isec->sid = context_isec->sid; 2988 } else { 2989 isec->sclass = SECCLASS_ANON_INODE; 2990 rc = security_transition_sid( 2991 sid, sid, 2992 isec->sclass, name, &isec->sid); 2993 if (rc) 2994 return rc; 2995 } 2996 2997 isec->initialized = LABEL_INITIALIZED; 2998 /* 2999 * Now that we've initialized security, check whether we're 3000 * allowed to actually create this type of anonymous inode. 3001 */ 3002 3003 ad.type = LSM_AUDIT_DATA_ANONINODE; 3004 ad.u.anonclass = name ? (const char *)name->name : "?"; 3005 3006 return avc_has_perm(sid, 3007 isec->sid, 3008 isec->sclass, 3009 FILE__CREATE, 3010 &ad); 3011 } 3012 3013 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 3014 { 3015 return may_create(dir, dentry, SECCLASS_FILE); 3016 } 3017 3018 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 3019 { 3020 return may_link(dir, old_dentry, MAY_LINK); 3021 } 3022 3023 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 3024 { 3025 return may_link(dir, dentry, MAY_UNLINK); 3026 } 3027 3028 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 3029 { 3030 return may_create(dir, dentry, SECCLASS_LNK_FILE); 3031 } 3032 3033 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 3034 { 3035 return may_create(dir, dentry, SECCLASS_DIR); 3036 } 3037 3038 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 3039 { 3040 return may_link(dir, dentry, MAY_RMDIR); 3041 } 3042 3043 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3044 { 3045 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 3046 } 3047 3048 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 3049 struct inode *new_inode, struct dentry *new_dentry) 3050 { 3051 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 3052 } 3053 3054 static int selinux_inode_readlink(struct dentry *dentry) 3055 { 3056 const struct cred *cred = current_cred(); 3057 3058 return dentry_has_perm(cred, dentry, FILE__READ); 3059 } 3060 3061 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode, 3062 bool rcu) 3063 { 3064 struct common_audit_data ad; 3065 struct inode_security_struct *isec; 3066 u32 sid = current_sid(); 3067 3068 ad.type = LSM_AUDIT_DATA_DENTRY; 3069 ad.u.dentry = dentry; 3070 isec = inode_security_rcu(inode, rcu); 3071 if (IS_ERR(isec)) 3072 return PTR_ERR(isec); 3073 3074 return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad); 3075 } 3076 3077 static noinline int audit_inode_permission(struct inode *inode, 3078 u32 perms, u32 audited, u32 denied, 3079 int result) 3080 { 3081 struct common_audit_data ad; 3082 struct inode_security_struct *isec = selinux_inode(inode); 3083 3084 ad.type = LSM_AUDIT_DATA_INODE; 3085 ad.u.inode = inode; 3086 3087 return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms, 3088 audited, denied, result, &ad); 3089 } 3090 3091 static int selinux_inode_permission(struct inode *inode, int mask) 3092 { 3093 u32 perms; 3094 bool from_access; 3095 bool no_block = mask & MAY_NOT_BLOCK; 3096 struct inode_security_struct *isec; 3097 u32 sid = current_sid(); 3098 struct av_decision avd; 3099 int rc, rc2; 3100 u32 audited, denied; 3101 3102 from_access = mask & MAY_ACCESS; 3103 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 3104 3105 /* No permission to check. Existence test. */ 3106 if (!mask) 3107 return 0; 3108 3109 if (unlikely(IS_PRIVATE(inode))) 3110 return 0; 3111 3112 perms = file_mask_to_av(inode->i_mode, mask); 3113 3114 isec = inode_security_rcu(inode, no_block); 3115 if (IS_ERR(isec)) 3116 return PTR_ERR(isec); 3117 3118 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, 3119 &avd); 3120 audited = avc_audit_required(perms, &avd, rc, 3121 from_access ? FILE__AUDIT_ACCESS : 0, 3122 &denied); 3123 if (likely(!audited)) 3124 return rc; 3125 3126 rc2 = audit_inode_permission(inode, perms, audited, denied, rc); 3127 if (rc2) 3128 return rc2; 3129 return rc; 3130 } 3131 3132 static int selinux_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 3133 struct iattr *iattr) 3134 { 3135 const struct cred *cred = current_cred(); 3136 struct inode *inode = d_backing_inode(dentry); 3137 unsigned int ia_valid = iattr->ia_valid; 3138 __u32 av = FILE__WRITE; 3139 3140 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 3141 if (ia_valid & ATTR_FORCE) { 3142 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 3143 ATTR_FORCE); 3144 if (!ia_valid) 3145 return 0; 3146 } 3147 3148 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 3149 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 3150 return dentry_has_perm(cred, dentry, FILE__SETATTR); 3151 3152 if (selinux_policycap_openperm() && 3153 inode->i_sb->s_magic != SOCKFS_MAGIC && 3154 (ia_valid & ATTR_SIZE) && 3155 !(ia_valid & ATTR_FILE)) 3156 av |= FILE__OPEN; 3157 3158 return dentry_has_perm(cred, dentry, av); 3159 } 3160 3161 static int selinux_inode_getattr(const struct path *path) 3162 { 3163 return path_has_perm(current_cred(), path, FILE__GETATTR); 3164 } 3165 3166 static bool has_cap_mac_admin(bool audit) 3167 { 3168 const struct cred *cred = current_cred(); 3169 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT; 3170 3171 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts)) 3172 return false; 3173 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true)) 3174 return false; 3175 return true; 3176 } 3177 3178 /** 3179 * selinux_inode_xattr_skipcap - Skip the xattr capability checks? 3180 * @name: name of the xattr 3181 * 3182 * Returns 1 to indicate that SELinux "owns" the access control rights to xattrs 3183 * named @name; the LSM layer should avoid enforcing any traditional 3184 * capability based access controls on this xattr. Returns 0 to indicate that 3185 * SELinux does not "own" the access control rights to xattrs named @name and is 3186 * deferring to the LSM layer for further access controls, including capability 3187 * based controls. 3188 */ 3189 static int selinux_inode_xattr_skipcap(const char *name) 3190 { 3191 /* require capability check if not a selinux xattr */ 3192 return !strcmp(name, XATTR_NAME_SELINUX); 3193 } 3194 3195 static int selinux_inode_setxattr(struct mnt_idmap *idmap, 3196 struct dentry *dentry, const char *name, 3197 const void *value, size_t size, int flags) 3198 { 3199 struct inode *inode = d_backing_inode(dentry); 3200 struct inode_security_struct *isec; 3201 struct superblock_security_struct *sbsec; 3202 struct common_audit_data ad; 3203 u32 newsid, sid = current_sid(); 3204 int rc = 0; 3205 3206 /* if not a selinux xattr, only check the ordinary setattr perm */ 3207 if (strcmp(name, XATTR_NAME_SELINUX)) 3208 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3209 3210 if (!selinux_initialized()) 3211 return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM); 3212 3213 sbsec = selinux_superblock(inode->i_sb); 3214 if (!(sbsec->flags & SBLABEL_MNT)) 3215 return -EOPNOTSUPP; 3216 3217 if (!inode_owner_or_capable(idmap, inode)) 3218 return -EPERM; 3219 3220 ad.type = LSM_AUDIT_DATA_DENTRY; 3221 ad.u.dentry = dentry; 3222 3223 isec = backing_inode_security(dentry); 3224 rc = avc_has_perm(sid, isec->sid, isec->sclass, 3225 FILE__RELABELFROM, &ad); 3226 if (rc) 3227 return rc; 3228 3229 rc = security_context_to_sid(value, size, &newsid, 3230 GFP_KERNEL); 3231 if (rc == -EINVAL) { 3232 if (!has_cap_mac_admin(true)) { 3233 struct audit_buffer *ab; 3234 size_t audit_size; 3235 3236 /* We strip a nul only if it is at the end, otherwise the 3237 * context contains a nul and we should audit that */ 3238 if (value) { 3239 const char *str = value; 3240 3241 if (str[size - 1] == '\0') 3242 audit_size = size - 1; 3243 else 3244 audit_size = size; 3245 } else { 3246 audit_size = 0; 3247 } 3248 ab = audit_log_start(audit_context(), 3249 GFP_ATOMIC, AUDIT_SELINUX_ERR); 3250 if (!ab) 3251 return rc; 3252 audit_log_format(ab, "op=setxattr invalid_context="); 3253 audit_log_n_untrustedstring(ab, value, audit_size); 3254 audit_log_end(ab); 3255 3256 return rc; 3257 } 3258 rc = security_context_to_sid_force(value, 3259 size, &newsid); 3260 } 3261 if (rc) 3262 return rc; 3263 3264 rc = avc_has_perm(sid, newsid, isec->sclass, 3265 FILE__RELABELTO, &ad); 3266 if (rc) 3267 return rc; 3268 3269 rc = security_validate_transition(isec->sid, newsid, 3270 sid, isec->sclass); 3271 if (rc) 3272 return rc; 3273 3274 return avc_has_perm(newsid, 3275 sbsec->sid, 3276 SECCLASS_FILESYSTEM, 3277 FILESYSTEM__ASSOCIATE, 3278 &ad); 3279 } 3280 3281 static int selinux_inode_set_acl(struct mnt_idmap *idmap, 3282 struct dentry *dentry, const char *acl_name, 3283 struct posix_acl *kacl) 3284 { 3285 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3286 } 3287 3288 static int selinux_inode_get_acl(struct mnt_idmap *idmap, 3289 struct dentry *dentry, const char *acl_name) 3290 { 3291 return dentry_has_perm(current_cred(), dentry, FILE__GETATTR); 3292 } 3293 3294 static int selinux_inode_remove_acl(struct mnt_idmap *idmap, 3295 struct dentry *dentry, const char *acl_name) 3296 { 3297 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3298 } 3299 3300 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 3301 const void *value, size_t size, 3302 int flags) 3303 { 3304 struct inode *inode = d_backing_inode(dentry); 3305 struct inode_security_struct *isec; 3306 u32 newsid; 3307 int rc; 3308 3309 if (strcmp(name, XATTR_NAME_SELINUX)) { 3310 /* Not an attribute we recognize, so nothing to do. */ 3311 return; 3312 } 3313 3314 if (!selinux_initialized()) { 3315 /* If we haven't even been initialized, then we can't validate 3316 * against a policy, so leave the label as invalid. It may 3317 * resolve to a valid label on the next revalidation try if 3318 * we've since initialized. 3319 */ 3320 return; 3321 } 3322 3323 rc = security_context_to_sid_force(value, size, 3324 &newsid); 3325 if (rc) { 3326 pr_err("SELinux: unable to map context to SID" 3327 "for (%s, %lu), rc=%d\n", 3328 inode->i_sb->s_id, inode->i_ino, -rc); 3329 return; 3330 } 3331 3332 isec = backing_inode_security(dentry); 3333 spin_lock(&isec->lock); 3334 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3335 isec->sid = newsid; 3336 isec->initialized = LABEL_INITIALIZED; 3337 spin_unlock(&isec->lock); 3338 } 3339 3340 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 3341 { 3342 const struct cred *cred = current_cred(); 3343 3344 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3345 } 3346 3347 static int selinux_inode_listxattr(struct dentry *dentry) 3348 { 3349 const struct cred *cred = current_cred(); 3350 3351 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3352 } 3353 3354 static int selinux_inode_removexattr(struct mnt_idmap *idmap, 3355 struct dentry *dentry, const char *name) 3356 { 3357 /* if not a selinux xattr, only check the ordinary setattr perm */ 3358 if (strcmp(name, XATTR_NAME_SELINUX)) 3359 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3360 3361 if (!selinux_initialized()) 3362 return 0; 3363 3364 /* No one is allowed to remove a SELinux security label. 3365 You can change the label, but all data must be labeled. */ 3366 return -EACCES; 3367 } 3368 3369 static int selinux_path_notify(const struct path *path, u64 mask, 3370 unsigned int obj_type) 3371 { 3372 int ret; 3373 u32 perm; 3374 3375 struct common_audit_data ad; 3376 3377 ad.type = LSM_AUDIT_DATA_PATH; 3378 ad.u.path = *path; 3379 3380 /* 3381 * Set permission needed based on the type of mark being set. 3382 * Performs an additional check for sb watches. 3383 */ 3384 switch (obj_type) { 3385 case FSNOTIFY_OBJ_TYPE_VFSMOUNT: 3386 perm = FILE__WATCH_MOUNT; 3387 break; 3388 case FSNOTIFY_OBJ_TYPE_SB: 3389 perm = FILE__WATCH_SB; 3390 ret = superblock_has_perm(current_cred(), path->dentry->d_sb, 3391 FILESYSTEM__WATCH, &ad); 3392 if (ret) 3393 return ret; 3394 break; 3395 case FSNOTIFY_OBJ_TYPE_INODE: 3396 perm = FILE__WATCH; 3397 break; 3398 default: 3399 return -EINVAL; 3400 } 3401 3402 /* blocking watches require the file:watch_with_perm permission */ 3403 if (mask & (ALL_FSNOTIFY_PERM_EVENTS)) 3404 perm |= FILE__WATCH_WITH_PERM; 3405 3406 /* watches on read-like events need the file:watch_reads permission */ 3407 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE)) 3408 perm |= FILE__WATCH_READS; 3409 3410 return path_has_perm(current_cred(), path, perm); 3411 } 3412 3413 /* 3414 * Copy the inode security context value to the user. 3415 * 3416 * Permission check is handled by selinux_inode_getxattr hook. 3417 */ 3418 static int selinux_inode_getsecurity(struct mnt_idmap *idmap, 3419 struct inode *inode, const char *name, 3420 void **buffer, bool alloc) 3421 { 3422 u32 size; 3423 int error; 3424 char *context = NULL; 3425 struct inode_security_struct *isec; 3426 3427 /* 3428 * If we're not initialized yet, then we can't validate contexts, so 3429 * just let vfs_getxattr fall back to using the on-disk xattr. 3430 */ 3431 if (!selinux_initialized() || 3432 strcmp(name, XATTR_SELINUX_SUFFIX)) 3433 return -EOPNOTSUPP; 3434 3435 /* 3436 * If the caller has CAP_MAC_ADMIN, then get the raw context 3437 * value even if it is not defined by current policy; otherwise, 3438 * use the in-core value under current policy. 3439 * Use the non-auditing forms of the permission checks since 3440 * getxattr may be called by unprivileged processes commonly 3441 * and lack of permission just means that we fall back to the 3442 * in-core context value, not a denial. 3443 */ 3444 isec = inode_security(inode); 3445 if (has_cap_mac_admin(false)) 3446 error = security_sid_to_context_force(isec->sid, &context, 3447 &size); 3448 else 3449 error = security_sid_to_context(isec->sid, 3450 &context, &size); 3451 if (error) 3452 return error; 3453 error = size; 3454 if (alloc) { 3455 *buffer = context; 3456 goto out_nofree; 3457 } 3458 kfree(context); 3459 out_nofree: 3460 return error; 3461 } 3462 3463 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 3464 const void *value, size_t size, int flags) 3465 { 3466 struct inode_security_struct *isec = inode_security_novalidate(inode); 3467 struct superblock_security_struct *sbsec; 3468 u32 newsid; 3469 int rc; 3470 3471 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3472 return -EOPNOTSUPP; 3473 3474 sbsec = selinux_superblock(inode->i_sb); 3475 if (!(sbsec->flags & SBLABEL_MNT)) 3476 return -EOPNOTSUPP; 3477 3478 if (!value || !size) 3479 return -EACCES; 3480 3481 rc = security_context_to_sid(value, size, &newsid, 3482 GFP_KERNEL); 3483 if (rc) 3484 return rc; 3485 3486 spin_lock(&isec->lock); 3487 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3488 isec->sid = newsid; 3489 isec->initialized = LABEL_INITIALIZED; 3490 spin_unlock(&isec->lock); 3491 return 0; 3492 } 3493 3494 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 3495 { 3496 const int len = sizeof(XATTR_NAME_SELINUX); 3497 3498 if (!selinux_initialized()) 3499 return 0; 3500 3501 if (buffer && len <= buffer_size) 3502 memcpy(buffer, XATTR_NAME_SELINUX, len); 3503 return len; 3504 } 3505 3506 static void selinux_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop) 3507 { 3508 struct inode_security_struct *isec = inode_security_novalidate(inode); 3509 3510 prop->selinux.secid = isec->sid; 3511 } 3512 3513 static int selinux_inode_copy_up(struct dentry *src, struct cred **new) 3514 { 3515 struct lsm_prop prop; 3516 struct task_security_struct *tsec; 3517 struct cred *new_creds = *new; 3518 3519 if (new_creds == NULL) { 3520 new_creds = prepare_creds(); 3521 if (!new_creds) 3522 return -ENOMEM; 3523 } 3524 3525 tsec = selinux_cred(new_creds); 3526 /* Get label from overlay inode and set it in create_sid */ 3527 selinux_inode_getlsmprop(d_inode(src), &prop); 3528 tsec->create_sid = prop.selinux.secid; 3529 *new = new_creds; 3530 return 0; 3531 } 3532 3533 static int selinux_inode_copy_up_xattr(struct dentry *dentry, const char *name) 3534 { 3535 /* The copy_up hook above sets the initial context on an inode, but we 3536 * don't then want to overwrite it by blindly copying all the lower 3537 * xattrs up. Instead, filter out SELinux-related xattrs following 3538 * policy load. 3539 */ 3540 if (selinux_initialized() && !strcmp(name, XATTR_NAME_SELINUX)) 3541 return -ECANCELED; /* Discard */ 3542 /* 3543 * Any other attribute apart from SELINUX is not claimed, supported 3544 * by selinux. 3545 */ 3546 return -EOPNOTSUPP; 3547 } 3548 3549 /* kernfs node operations */ 3550 3551 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir, 3552 struct kernfs_node *kn) 3553 { 3554 const struct task_security_struct *tsec = selinux_cred(current_cred()); 3555 u32 parent_sid, newsid, clen; 3556 int rc; 3557 char *context; 3558 3559 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0); 3560 if (rc == -ENODATA) 3561 return 0; 3562 else if (rc < 0) 3563 return rc; 3564 3565 clen = (u32)rc; 3566 context = kmalloc(clen, GFP_KERNEL); 3567 if (!context) 3568 return -ENOMEM; 3569 3570 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen); 3571 if (rc < 0) { 3572 kfree(context); 3573 return rc; 3574 } 3575 3576 rc = security_context_to_sid(context, clen, &parent_sid, 3577 GFP_KERNEL); 3578 kfree(context); 3579 if (rc) 3580 return rc; 3581 3582 if (tsec->create_sid) { 3583 newsid = tsec->create_sid; 3584 } else { 3585 u16 secclass = inode_mode_to_security_class(kn->mode); 3586 struct qstr q; 3587 3588 q.name = kn->name; 3589 q.hash_len = hashlen_string(kn_dir, kn->name); 3590 3591 rc = security_transition_sid(tsec->sid, 3592 parent_sid, secclass, &q, 3593 &newsid); 3594 if (rc) 3595 return rc; 3596 } 3597 3598 rc = security_sid_to_context_force(newsid, 3599 &context, &clen); 3600 if (rc) 3601 return rc; 3602 3603 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen, 3604 XATTR_CREATE); 3605 kfree(context); 3606 return rc; 3607 } 3608 3609 3610 /* file security operations */ 3611 3612 static int selinux_revalidate_file_permission(struct file *file, int mask) 3613 { 3614 const struct cred *cred = current_cred(); 3615 struct inode *inode = file_inode(file); 3616 3617 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 3618 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 3619 mask |= MAY_APPEND; 3620 3621 return file_has_perm(cred, file, 3622 file_mask_to_av(inode->i_mode, mask)); 3623 } 3624 3625 static int selinux_file_permission(struct file *file, int mask) 3626 { 3627 struct inode *inode = file_inode(file); 3628 struct file_security_struct *fsec = selinux_file(file); 3629 struct inode_security_struct *isec; 3630 u32 sid = current_sid(); 3631 3632 if (!mask) 3633 /* No permission to check. Existence test. */ 3634 return 0; 3635 3636 isec = inode_security(inode); 3637 if (sid == fsec->sid && fsec->isid == isec->sid && 3638 fsec->pseqno == avc_policy_seqno()) 3639 /* No change since file_open check. */ 3640 return 0; 3641 3642 return selinux_revalidate_file_permission(file, mask); 3643 } 3644 3645 static int selinux_file_alloc_security(struct file *file) 3646 { 3647 struct file_security_struct *fsec = selinux_file(file); 3648 u32 sid = current_sid(); 3649 3650 fsec->sid = sid; 3651 fsec->fown_sid = sid; 3652 3653 return 0; 3654 } 3655 3656 /* 3657 * Check whether a task has the ioctl permission and cmd 3658 * operation to an inode. 3659 */ 3660 static int ioctl_has_perm(const struct cred *cred, struct file *file, 3661 u32 requested, u16 cmd) 3662 { 3663 struct common_audit_data ad; 3664 struct file_security_struct *fsec = selinux_file(file); 3665 struct inode *inode = file_inode(file); 3666 struct inode_security_struct *isec; 3667 struct lsm_ioctlop_audit ioctl; 3668 u32 ssid = cred_sid(cred); 3669 int rc; 3670 u8 driver = cmd >> 8; 3671 u8 xperm = cmd & 0xff; 3672 3673 ad.type = LSM_AUDIT_DATA_IOCTL_OP; 3674 ad.u.op = &ioctl; 3675 ad.u.op->cmd = cmd; 3676 ad.u.op->path = file->f_path; 3677 3678 if (ssid != fsec->sid) { 3679 rc = avc_has_perm(ssid, fsec->sid, 3680 SECCLASS_FD, 3681 FD__USE, 3682 &ad); 3683 if (rc) 3684 goto out; 3685 } 3686 3687 if (unlikely(IS_PRIVATE(inode))) 3688 return 0; 3689 3690 isec = inode_security(inode); 3691 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass, 3692 requested, driver, xperm, &ad); 3693 out: 3694 return rc; 3695 } 3696 3697 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3698 unsigned long arg) 3699 { 3700 const struct cred *cred = current_cred(); 3701 int error = 0; 3702 3703 switch (cmd) { 3704 case FIONREAD: 3705 case FIBMAP: 3706 case FIGETBSZ: 3707 case FS_IOC_GETFLAGS: 3708 case FS_IOC_GETVERSION: 3709 error = file_has_perm(cred, file, FILE__GETATTR); 3710 break; 3711 3712 case FS_IOC_SETFLAGS: 3713 case FS_IOC_SETVERSION: 3714 error = file_has_perm(cred, file, FILE__SETATTR); 3715 break; 3716 3717 /* sys_ioctl() checks */ 3718 case FIONBIO: 3719 case FIOASYNC: 3720 error = file_has_perm(cred, file, 0); 3721 break; 3722 3723 case KDSKBENT: 3724 case KDSKBSENT: 3725 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3726 CAP_OPT_NONE, true); 3727 break; 3728 3729 case FIOCLEX: 3730 case FIONCLEX: 3731 if (!selinux_policycap_ioctl_skip_cloexec()) 3732 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); 3733 break; 3734 3735 /* default case assumes that the command will go 3736 * to the file's ioctl() function. 3737 */ 3738 default: 3739 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); 3740 } 3741 return error; 3742 } 3743 3744 static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd, 3745 unsigned long arg) 3746 { 3747 /* 3748 * If we are in a 64-bit kernel running 32-bit userspace, we need to 3749 * make sure we don't compare 32-bit flags to 64-bit flags. 3750 */ 3751 switch (cmd) { 3752 case FS_IOC32_GETFLAGS: 3753 cmd = FS_IOC_GETFLAGS; 3754 break; 3755 case FS_IOC32_SETFLAGS: 3756 cmd = FS_IOC_SETFLAGS; 3757 break; 3758 case FS_IOC32_GETVERSION: 3759 cmd = FS_IOC_GETVERSION; 3760 break; 3761 case FS_IOC32_SETVERSION: 3762 cmd = FS_IOC_SETVERSION; 3763 break; 3764 default: 3765 break; 3766 } 3767 3768 return selinux_file_ioctl(file, cmd, arg); 3769 } 3770 3771 static int default_noexec __ro_after_init; 3772 3773 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3774 { 3775 const struct cred *cred = current_cred(); 3776 u32 sid = cred_sid(cred); 3777 int rc = 0; 3778 3779 if (default_noexec && 3780 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) || 3781 (!shared && (prot & PROT_WRITE)))) { 3782 /* 3783 * We are making executable an anonymous mapping or a 3784 * private file mapping that will also be writable. 3785 * This has an additional check. 3786 */ 3787 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS, 3788 PROCESS__EXECMEM, NULL); 3789 if (rc) 3790 goto error; 3791 } 3792 3793 if (file) { 3794 /* read access is always possible with a mapping */ 3795 u32 av = FILE__READ; 3796 3797 /* write access only matters if the mapping is shared */ 3798 if (shared && (prot & PROT_WRITE)) 3799 av |= FILE__WRITE; 3800 3801 if (prot & PROT_EXEC) 3802 av |= FILE__EXECUTE; 3803 3804 return file_has_perm(cred, file, av); 3805 } 3806 3807 error: 3808 return rc; 3809 } 3810 3811 static int selinux_mmap_addr(unsigned long addr) 3812 { 3813 int rc = 0; 3814 3815 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3816 u32 sid = current_sid(); 3817 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3818 MEMPROTECT__MMAP_ZERO, NULL); 3819 } 3820 3821 return rc; 3822 } 3823 3824 static int selinux_mmap_file(struct file *file, 3825 unsigned long reqprot __always_unused, 3826 unsigned long prot, unsigned long flags) 3827 { 3828 struct common_audit_data ad; 3829 int rc; 3830 3831 if (file) { 3832 ad.type = LSM_AUDIT_DATA_FILE; 3833 ad.u.file = file; 3834 rc = inode_has_perm(current_cred(), file_inode(file), 3835 FILE__MAP, &ad); 3836 if (rc) 3837 return rc; 3838 } 3839 3840 return file_map_prot_check(file, prot, 3841 (flags & MAP_TYPE) == MAP_SHARED); 3842 } 3843 3844 static int selinux_file_mprotect(struct vm_area_struct *vma, 3845 unsigned long reqprot __always_unused, 3846 unsigned long prot) 3847 { 3848 const struct cred *cred = current_cred(); 3849 u32 sid = cred_sid(cred); 3850 3851 if (default_noexec && 3852 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3853 int rc = 0; 3854 /* 3855 * We don't use the vma_is_initial_heap() helper as it has 3856 * a history of problems and is currently broken on systems 3857 * where there is no heap, e.g. brk == start_brk. Before 3858 * replacing the conditional below with vma_is_initial_heap(), 3859 * or something similar, please ensure that the logic is the 3860 * same as what we have below or you have tested every possible 3861 * corner case you can think to test. 3862 */ 3863 if (vma->vm_start >= vma->vm_mm->start_brk && 3864 vma->vm_end <= vma->vm_mm->brk) { 3865 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS, 3866 PROCESS__EXECHEAP, NULL); 3867 } else if (!vma->vm_file && (vma_is_initial_stack(vma) || 3868 vma_is_stack_for_current(vma))) { 3869 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS, 3870 PROCESS__EXECSTACK, NULL); 3871 } else if (vma->vm_file && vma->anon_vma) { 3872 /* 3873 * We are making executable a file mapping that has 3874 * had some COW done. Since pages might have been 3875 * written, check ability to execute the possibly 3876 * modified content. This typically should only 3877 * occur for text relocations. 3878 */ 3879 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3880 } 3881 if (rc) 3882 return rc; 3883 } 3884 3885 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3886 } 3887 3888 static int selinux_file_lock(struct file *file, unsigned int cmd) 3889 { 3890 const struct cred *cred = current_cred(); 3891 3892 return file_has_perm(cred, file, FILE__LOCK); 3893 } 3894 3895 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3896 unsigned long arg) 3897 { 3898 const struct cred *cred = current_cred(); 3899 int err = 0; 3900 3901 switch (cmd) { 3902 case F_SETFL: 3903 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3904 err = file_has_perm(cred, file, FILE__WRITE); 3905 break; 3906 } 3907 fallthrough; 3908 case F_SETOWN: 3909 case F_SETSIG: 3910 case F_GETFL: 3911 case F_GETOWN: 3912 case F_GETSIG: 3913 case F_GETOWNER_UIDS: 3914 /* Just check FD__USE permission */ 3915 err = file_has_perm(cred, file, 0); 3916 break; 3917 case F_GETLK: 3918 case F_SETLK: 3919 case F_SETLKW: 3920 case F_OFD_GETLK: 3921 case F_OFD_SETLK: 3922 case F_OFD_SETLKW: 3923 #if BITS_PER_LONG == 32 3924 case F_GETLK64: 3925 case F_SETLK64: 3926 case F_SETLKW64: 3927 #endif 3928 err = file_has_perm(cred, file, FILE__LOCK); 3929 break; 3930 } 3931 3932 return err; 3933 } 3934 3935 static void selinux_file_set_fowner(struct file *file) 3936 { 3937 struct file_security_struct *fsec; 3938 3939 fsec = selinux_file(file); 3940 fsec->fown_sid = current_sid(); 3941 } 3942 3943 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3944 struct fown_struct *fown, int signum) 3945 { 3946 struct file *file; 3947 u32 sid = task_sid_obj(tsk); 3948 u32 perm; 3949 struct file_security_struct *fsec; 3950 3951 /* struct fown_struct is never outside the context of a struct file */ 3952 file = fown->file; 3953 3954 fsec = selinux_file(file); 3955 3956 if (!signum) 3957 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3958 else 3959 perm = signal_to_av(signum); 3960 3961 return avc_has_perm(fsec->fown_sid, sid, 3962 SECCLASS_PROCESS, perm, NULL); 3963 } 3964 3965 static int selinux_file_receive(struct file *file) 3966 { 3967 const struct cred *cred = current_cred(); 3968 3969 return file_has_perm(cred, file, file_to_av(file)); 3970 } 3971 3972 static int selinux_file_open(struct file *file) 3973 { 3974 struct file_security_struct *fsec; 3975 struct inode_security_struct *isec; 3976 3977 fsec = selinux_file(file); 3978 isec = inode_security(file_inode(file)); 3979 /* 3980 * Save inode label and policy sequence number 3981 * at open-time so that selinux_file_permission 3982 * can determine whether revalidation is necessary. 3983 * Task label is already saved in the file security 3984 * struct as its SID. 3985 */ 3986 fsec->isid = isec->sid; 3987 fsec->pseqno = avc_policy_seqno(); 3988 /* 3989 * Since the inode label or policy seqno may have changed 3990 * between the selinux_inode_permission check and the saving 3991 * of state above, recheck that access is still permitted. 3992 * Otherwise, access might never be revalidated against the 3993 * new inode label or new policy. 3994 * This check is not redundant - do not remove. 3995 */ 3996 return file_path_has_perm(file->f_cred, file, open_file_to_av(file)); 3997 } 3998 3999 /* task security operations */ 4000 4001 static int selinux_task_alloc(struct task_struct *task, 4002 unsigned long clone_flags) 4003 { 4004 u32 sid = current_sid(); 4005 4006 return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL); 4007 } 4008 4009 /* 4010 * prepare a new set of credentials for modification 4011 */ 4012 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 4013 gfp_t gfp) 4014 { 4015 const struct task_security_struct *old_tsec = selinux_cred(old); 4016 struct task_security_struct *tsec = selinux_cred(new); 4017 4018 *tsec = *old_tsec; 4019 return 0; 4020 } 4021 4022 /* 4023 * transfer the SELinux data to a blank set of creds 4024 */ 4025 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 4026 { 4027 const struct task_security_struct *old_tsec = selinux_cred(old); 4028 struct task_security_struct *tsec = selinux_cred(new); 4029 4030 *tsec = *old_tsec; 4031 } 4032 4033 static void selinux_cred_getsecid(const struct cred *c, u32 *secid) 4034 { 4035 *secid = cred_sid(c); 4036 } 4037 4038 static void selinux_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop) 4039 { 4040 prop->selinux.secid = cred_sid(c); 4041 } 4042 4043 /* 4044 * set the security data for a kernel service 4045 * - all the creation contexts are set to unlabelled 4046 */ 4047 static int selinux_kernel_act_as(struct cred *new, u32 secid) 4048 { 4049 struct task_security_struct *tsec = selinux_cred(new); 4050 u32 sid = current_sid(); 4051 int ret; 4052 4053 ret = avc_has_perm(sid, secid, 4054 SECCLASS_KERNEL_SERVICE, 4055 KERNEL_SERVICE__USE_AS_OVERRIDE, 4056 NULL); 4057 if (ret == 0) { 4058 tsec->sid = secid; 4059 tsec->create_sid = 0; 4060 tsec->keycreate_sid = 0; 4061 tsec->sockcreate_sid = 0; 4062 } 4063 return ret; 4064 } 4065 4066 /* 4067 * set the file creation context in a security record to the same as the 4068 * objective context of the specified inode 4069 */ 4070 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 4071 { 4072 struct inode_security_struct *isec = inode_security(inode); 4073 struct task_security_struct *tsec = selinux_cred(new); 4074 u32 sid = current_sid(); 4075 int ret; 4076 4077 ret = avc_has_perm(sid, isec->sid, 4078 SECCLASS_KERNEL_SERVICE, 4079 KERNEL_SERVICE__CREATE_FILES_AS, 4080 NULL); 4081 4082 if (ret == 0) 4083 tsec->create_sid = isec->sid; 4084 return ret; 4085 } 4086 4087 static int selinux_kernel_module_request(char *kmod_name) 4088 { 4089 struct common_audit_data ad; 4090 4091 ad.type = LSM_AUDIT_DATA_KMOD; 4092 ad.u.kmod_name = kmod_name; 4093 4094 return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, 4095 SYSTEM__MODULE_REQUEST, &ad); 4096 } 4097 4098 static int selinux_kernel_module_from_file(struct file *file) 4099 { 4100 struct common_audit_data ad; 4101 struct inode_security_struct *isec; 4102 struct file_security_struct *fsec; 4103 u32 sid = current_sid(); 4104 int rc; 4105 4106 /* init_module */ 4107 if (file == NULL) 4108 return avc_has_perm(sid, sid, SECCLASS_SYSTEM, 4109 SYSTEM__MODULE_LOAD, NULL); 4110 4111 /* finit_module */ 4112 4113 ad.type = LSM_AUDIT_DATA_FILE; 4114 ad.u.file = file; 4115 4116 fsec = selinux_file(file); 4117 if (sid != fsec->sid) { 4118 rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); 4119 if (rc) 4120 return rc; 4121 } 4122 4123 isec = inode_security(file_inode(file)); 4124 return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM, 4125 SYSTEM__MODULE_LOAD, &ad); 4126 } 4127 4128 static int selinux_kernel_read_file(struct file *file, 4129 enum kernel_read_file_id id, 4130 bool contents) 4131 { 4132 int rc = 0; 4133 4134 switch (id) { 4135 case READING_MODULE: 4136 rc = selinux_kernel_module_from_file(contents ? file : NULL); 4137 break; 4138 default: 4139 break; 4140 } 4141 4142 return rc; 4143 } 4144 4145 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents) 4146 { 4147 int rc = 0; 4148 4149 switch (id) { 4150 case LOADING_MODULE: 4151 rc = selinux_kernel_module_from_file(NULL); 4152 break; 4153 default: 4154 break; 4155 } 4156 4157 return rc; 4158 } 4159 4160 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 4161 { 4162 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4163 PROCESS__SETPGID, NULL); 4164 } 4165 4166 static int selinux_task_getpgid(struct task_struct *p) 4167 { 4168 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4169 PROCESS__GETPGID, NULL); 4170 } 4171 4172 static int selinux_task_getsid(struct task_struct *p) 4173 { 4174 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4175 PROCESS__GETSESSION, NULL); 4176 } 4177 4178 static void selinux_current_getlsmprop_subj(struct lsm_prop *prop) 4179 { 4180 prop->selinux.secid = current_sid(); 4181 } 4182 4183 static void selinux_task_getlsmprop_obj(struct task_struct *p, 4184 struct lsm_prop *prop) 4185 { 4186 prop->selinux.secid = task_sid_obj(p); 4187 } 4188 4189 static int selinux_task_setnice(struct task_struct *p, int nice) 4190 { 4191 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4192 PROCESS__SETSCHED, NULL); 4193 } 4194 4195 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 4196 { 4197 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4198 PROCESS__SETSCHED, NULL); 4199 } 4200 4201 static int selinux_task_getioprio(struct task_struct *p) 4202 { 4203 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4204 PROCESS__GETSCHED, NULL); 4205 } 4206 4207 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred, 4208 unsigned int flags) 4209 { 4210 u32 av = 0; 4211 4212 if (!flags) 4213 return 0; 4214 if (flags & LSM_PRLIMIT_WRITE) 4215 av |= PROCESS__SETRLIMIT; 4216 if (flags & LSM_PRLIMIT_READ) 4217 av |= PROCESS__GETRLIMIT; 4218 return avc_has_perm(cred_sid(cred), cred_sid(tcred), 4219 SECCLASS_PROCESS, av, NULL); 4220 } 4221 4222 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 4223 struct rlimit *new_rlim) 4224 { 4225 struct rlimit *old_rlim = p->signal->rlim + resource; 4226 4227 /* Control the ability to change the hard limit (whether 4228 lowering or raising it), so that the hard limit can 4229 later be used as a safe reset point for the soft limit 4230 upon context transitions. See selinux_bprm_committing_creds. */ 4231 if (old_rlim->rlim_max != new_rlim->rlim_max) 4232 return avc_has_perm(current_sid(), task_sid_obj(p), 4233 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL); 4234 4235 return 0; 4236 } 4237 4238 static int selinux_task_setscheduler(struct task_struct *p) 4239 { 4240 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4241 PROCESS__SETSCHED, NULL); 4242 } 4243 4244 static int selinux_task_getscheduler(struct task_struct *p) 4245 { 4246 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4247 PROCESS__GETSCHED, NULL); 4248 } 4249 4250 static int selinux_task_movememory(struct task_struct *p) 4251 { 4252 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4253 PROCESS__SETSCHED, NULL); 4254 } 4255 4256 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info, 4257 int sig, const struct cred *cred) 4258 { 4259 u32 secid; 4260 u32 perm; 4261 4262 if (!sig) 4263 perm = PROCESS__SIGNULL; /* null signal; existence test */ 4264 else 4265 perm = signal_to_av(sig); 4266 if (!cred) 4267 secid = current_sid(); 4268 else 4269 secid = cred_sid(cred); 4270 return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL); 4271 } 4272 4273 static void selinux_task_to_inode(struct task_struct *p, 4274 struct inode *inode) 4275 { 4276 struct inode_security_struct *isec = selinux_inode(inode); 4277 u32 sid = task_sid_obj(p); 4278 4279 spin_lock(&isec->lock); 4280 isec->sclass = inode_mode_to_security_class(inode->i_mode); 4281 isec->sid = sid; 4282 isec->initialized = LABEL_INITIALIZED; 4283 spin_unlock(&isec->lock); 4284 } 4285 4286 static int selinux_userns_create(const struct cred *cred) 4287 { 4288 u32 sid = current_sid(); 4289 4290 return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE, 4291 USER_NAMESPACE__CREATE, NULL); 4292 } 4293 4294 /* Returns error only if unable to parse addresses */ 4295 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 4296 struct common_audit_data *ad, u8 *proto) 4297 { 4298 int offset, ihlen, ret = -EINVAL; 4299 struct iphdr _iph, *ih; 4300 4301 offset = skb_network_offset(skb); 4302 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 4303 if (ih == NULL) 4304 goto out; 4305 4306 ihlen = ih->ihl * 4; 4307 if (ihlen < sizeof(_iph)) 4308 goto out; 4309 4310 ad->u.net->v4info.saddr = ih->saddr; 4311 ad->u.net->v4info.daddr = ih->daddr; 4312 ret = 0; 4313 4314 if (proto) 4315 *proto = ih->protocol; 4316 4317 switch (ih->protocol) { 4318 case IPPROTO_TCP: { 4319 struct tcphdr _tcph, *th; 4320 4321 if (ntohs(ih->frag_off) & IP_OFFSET) 4322 break; 4323 4324 offset += ihlen; 4325 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4326 if (th == NULL) 4327 break; 4328 4329 ad->u.net->sport = th->source; 4330 ad->u.net->dport = th->dest; 4331 break; 4332 } 4333 4334 case IPPROTO_UDP: { 4335 struct udphdr _udph, *uh; 4336 4337 if (ntohs(ih->frag_off) & IP_OFFSET) 4338 break; 4339 4340 offset += ihlen; 4341 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4342 if (uh == NULL) 4343 break; 4344 4345 ad->u.net->sport = uh->source; 4346 ad->u.net->dport = uh->dest; 4347 break; 4348 } 4349 4350 case IPPROTO_DCCP: { 4351 struct dccp_hdr _dccph, *dh; 4352 4353 if (ntohs(ih->frag_off) & IP_OFFSET) 4354 break; 4355 4356 offset += ihlen; 4357 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4358 if (dh == NULL) 4359 break; 4360 4361 ad->u.net->sport = dh->dccph_sport; 4362 ad->u.net->dport = dh->dccph_dport; 4363 break; 4364 } 4365 4366 #if IS_ENABLED(CONFIG_IP_SCTP) 4367 case IPPROTO_SCTP: { 4368 struct sctphdr _sctph, *sh; 4369 4370 if (ntohs(ih->frag_off) & IP_OFFSET) 4371 break; 4372 4373 offset += ihlen; 4374 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4375 if (sh == NULL) 4376 break; 4377 4378 ad->u.net->sport = sh->source; 4379 ad->u.net->dport = sh->dest; 4380 break; 4381 } 4382 #endif 4383 default: 4384 break; 4385 } 4386 out: 4387 return ret; 4388 } 4389 4390 #if IS_ENABLED(CONFIG_IPV6) 4391 4392 /* Returns error only if unable to parse addresses */ 4393 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 4394 struct common_audit_data *ad, u8 *proto) 4395 { 4396 u8 nexthdr; 4397 int ret = -EINVAL, offset; 4398 struct ipv6hdr _ipv6h, *ip6; 4399 __be16 frag_off; 4400 4401 offset = skb_network_offset(skb); 4402 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 4403 if (ip6 == NULL) 4404 goto out; 4405 4406 ad->u.net->v6info.saddr = ip6->saddr; 4407 ad->u.net->v6info.daddr = ip6->daddr; 4408 ret = 0; 4409 4410 nexthdr = ip6->nexthdr; 4411 offset += sizeof(_ipv6h); 4412 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 4413 if (offset < 0) 4414 goto out; 4415 4416 if (proto) 4417 *proto = nexthdr; 4418 4419 switch (nexthdr) { 4420 case IPPROTO_TCP: { 4421 struct tcphdr _tcph, *th; 4422 4423 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4424 if (th == NULL) 4425 break; 4426 4427 ad->u.net->sport = th->source; 4428 ad->u.net->dport = th->dest; 4429 break; 4430 } 4431 4432 case IPPROTO_UDP: { 4433 struct udphdr _udph, *uh; 4434 4435 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4436 if (uh == NULL) 4437 break; 4438 4439 ad->u.net->sport = uh->source; 4440 ad->u.net->dport = uh->dest; 4441 break; 4442 } 4443 4444 case IPPROTO_DCCP: { 4445 struct dccp_hdr _dccph, *dh; 4446 4447 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4448 if (dh == NULL) 4449 break; 4450 4451 ad->u.net->sport = dh->dccph_sport; 4452 ad->u.net->dport = dh->dccph_dport; 4453 break; 4454 } 4455 4456 #if IS_ENABLED(CONFIG_IP_SCTP) 4457 case IPPROTO_SCTP: { 4458 struct sctphdr _sctph, *sh; 4459 4460 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4461 if (sh == NULL) 4462 break; 4463 4464 ad->u.net->sport = sh->source; 4465 ad->u.net->dport = sh->dest; 4466 break; 4467 } 4468 #endif 4469 /* includes fragments */ 4470 default: 4471 break; 4472 } 4473 out: 4474 return ret; 4475 } 4476 4477 #endif /* IPV6 */ 4478 4479 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 4480 char **_addrp, int src, u8 *proto) 4481 { 4482 char *addrp; 4483 int ret; 4484 4485 switch (ad->u.net->family) { 4486 case PF_INET: 4487 ret = selinux_parse_skb_ipv4(skb, ad, proto); 4488 if (ret) 4489 goto parse_error; 4490 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 4491 &ad->u.net->v4info.daddr); 4492 goto okay; 4493 4494 #if IS_ENABLED(CONFIG_IPV6) 4495 case PF_INET6: 4496 ret = selinux_parse_skb_ipv6(skb, ad, proto); 4497 if (ret) 4498 goto parse_error; 4499 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 4500 &ad->u.net->v6info.daddr); 4501 goto okay; 4502 #endif /* IPV6 */ 4503 default: 4504 addrp = NULL; 4505 goto okay; 4506 } 4507 4508 parse_error: 4509 pr_warn( 4510 "SELinux: failure in selinux_parse_skb()," 4511 " unable to parse packet\n"); 4512 return ret; 4513 4514 okay: 4515 if (_addrp) 4516 *_addrp = addrp; 4517 return 0; 4518 } 4519 4520 /** 4521 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 4522 * @skb: the packet 4523 * @family: protocol family 4524 * @sid: the packet's peer label SID 4525 * 4526 * Description: 4527 * Check the various different forms of network peer labeling and determine 4528 * the peer label/SID for the packet; most of the magic actually occurs in 4529 * the security server function security_net_peersid_cmp(). The function 4530 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 4531 * or -EACCES if @sid is invalid due to inconsistencies with the different 4532 * peer labels. 4533 * 4534 */ 4535 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 4536 { 4537 int err; 4538 u32 xfrm_sid; 4539 u32 nlbl_sid; 4540 u32 nlbl_type; 4541 4542 err = selinux_xfrm_skb_sid(skb, &xfrm_sid); 4543 if (unlikely(err)) 4544 return -EACCES; 4545 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 4546 if (unlikely(err)) 4547 return -EACCES; 4548 4549 err = security_net_peersid_resolve(nlbl_sid, 4550 nlbl_type, xfrm_sid, sid); 4551 if (unlikely(err)) { 4552 pr_warn( 4553 "SELinux: failure in selinux_skb_peerlbl_sid()," 4554 " unable to determine packet's peer label\n"); 4555 return -EACCES; 4556 } 4557 4558 return 0; 4559 } 4560 4561 /** 4562 * selinux_conn_sid - Determine the child socket label for a connection 4563 * @sk_sid: the parent socket's SID 4564 * @skb_sid: the packet's SID 4565 * @conn_sid: the resulting connection SID 4566 * 4567 * If @skb_sid is valid then the user:role:type information from @sk_sid is 4568 * combined with the MLS information from @skb_sid in order to create 4569 * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy 4570 * of @sk_sid. Returns zero on success, negative values on failure. 4571 * 4572 */ 4573 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) 4574 { 4575 int err = 0; 4576 4577 if (skb_sid != SECSID_NULL) 4578 err = security_sid_mls_copy(sk_sid, skb_sid, 4579 conn_sid); 4580 else 4581 *conn_sid = sk_sid; 4582 4583 return err; 4584 } 4585 4586 /* socket security operations */ 4587 4588 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 4589 u16 secclass, u32 *socksid) 4590 { 4591 if (tsec->sockcreate_sid > SECSID_NULL) { 4592 *socksid = tsec->sockcreate_sid; 4593 return 0; 4594 } 4595 4596 return security_transition_sid(tsec->sid, tsec->sid, 4597 secclass, NULL, socksid); 4598 } 4599 4600 static bool sock_skip_has_perm(u32 sid) 4601 { 4602 if (sid == SECINITSID_KERNEL) 4603 return true; 4604 4605 /* 4606 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that 4607 * inherited the kernel context from early boot used to be skipped 4608 * here, so preserve that behavior unless the capability is set. 4609 * 4610 * By setting the capability the policy signals that it is ready 4611 * for this quirk to be fixed. Note that sockets created by a kernel 4612 * thread or a usermode helper executed without a transition will 4613 * still be skipped in this check regardless of the policycap 4614 * setting. 4615 */ 4616 if (!selinux_policycap_userspace_initial_context() && 4617 sid == SECINITSID_INIT) 4618 return true; 4619 return false; 4620 } 4621 4622 4623 static int sock_has_perm(struct sock *sk, u32 perms) 4624 { 4625 struct sk_security_struct *sksec = sk->sk_security; 4626 struct common_audit_data ad; 4627 struct lsm_network_audit net; 4628 4629 if (sock_skip_has_perm(sksec->sid)) 4630 return 0; 4631 4632 ad_net_init_from_sk(&ad, &net, sk); 4633 4634 return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms, 4635 &ad); 4636 } 4637 4638 static int selinux_socket_create(int family, int type, 4639 int protocol, int kern) 4640 { 4641 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4642 u32 newsid; 4643 u16 secclass; 4644 int rc; 4645 4646 if (kern) 4647 return 0; 4648 4649 secclass = socket_type_to_security_class(family, type, protocol); 4650 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 4651 if (rc) 4652 return rc; 4653 4654 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 4655 } 4656 4657 static int selinux_socket_post_create(struct socket *sock, int family, 4658 int type, int protocol, int kern) 4659 { 4660 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4661 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock)); 4662 struct sk_security_struct *sksec; 4663 u16 sclass = socket_type_to_security_class(family, type, protocol); 4664 u32 sid = SECINITSID_KERNEL; 4665 int err = 0; 4666 4667 if (!kern) { 4668 err = socket_sockcreate_sid(tsec, sclass, &sid); 4669 if (err) 4670 return err; 4671 } 4672 4673 isec->sclass = sclass; 4674 isec->sid = sid; 4675 isec->initialized = LABEL_INITIALIZED; 4676 4677 if (sock->sk) { 4678 sksec = selinux_sock(sock->sk); 4679 sksec->sclass = sclass; 4680 sksec->sid = sid; 4681 /* Allows detection of the first association on this socket */ 4682 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4683 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET; 4684 4685 err = selinux_netlbl_socket_post_create(sock->sk, family); 4686 } 4687 4688 return err; 4689 } 4690 4691 static int selinux_socket_socketpair(struct socket *socka, 4692 struct socket *sockb) 4693 { 4694 struct sk_security_struct *sksec_a = selinux_sock(socka->sk); 4695 struct sk_security_struct *sksec_b = selinux_sock(sockb->sk); 4696 4697 sksec_a->peer_sid = sksec_b->sid; 4698 sksec_b->peer_sid = sksec_a->sid; 4699 4700 return 0; 4701 } 4702 4703 /* Range of port numbers used to automatically bind. 4704 Need to determine whether we should perform a name_bind 4705 permission check between the socket and the port number. */ 4706 4707 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 4708 { 4709 struct sock *sk = sock->sk; 4710 struct sk_security_struct *sksec = selinux_sock(sk); 4711 u16 family; 4712 int err; 4713 4714 err = sock_has_perm(sk, SOCKET__BIND); 4715 if (err) 4716 goto out; 4717 4718 /* If PF_INET or PF_INET6, check name_bind permission for the port. */ 4719 family = sk->sk_family; 4720 if (family == PF_INET || family == PF_INET6) { 4721 char *addrp; 4722 struct common_audit_data ad; 4723 struct lsm_network_audit net = {0,}; 4724 struct sockaddr_in *addr4 = NULL; 4725 struct sockaddr_in6 *addr6 = NULL; 4726 u16 family_sa; 4727 unsigned short snum; 4728 u32 sid, node_perm; 4729 4730 /* 4731 * sctp_bindx(3) calls via selinux_sctp_bind_connect() 4732 * that validates multiple binding addresses. Because of this 4733 * need to check address->sa_family as it is possible to have 4734 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4735 */ 4736 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4737 return -EINVAL; 4738 family_sa = address->sa_family; 4739 switch (family_sa) { 4740 case AF_UNSPEC: 4741 case AF_INET: 4742 if (addrlen < sizeof(struct sockaddr_in)) 4743 return -EINVAL; 4744 addr4 = (struct sockaddr_in *)address; 4745 if (family_sa == AF_UNSPEC) { 4746 if (family == PF_INET6) { 4747 /* Length check from inet6_bind_sk() */ 4748 if (addrlen < SIN6_LEN_RFC2133) 4749 return -EINVAL; 4750 /* Family check from __inet6_bind() */ 4751 goto err_af; 4752 } 4753 /* see __inet_bind(), we only want to allow 4754 * AF_UNSPEC if the address is INADDR_ANY 4755 */ 4756 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY)) 4757 goto err_af; 4758 family_sa = AF_INET; 4759 } 4760 snum = ntohs(addr4->sin_port); 4761 addrp = (char *)&addr4->sin_addr.s_addr; 4762 break; 4763 case AF_INET6: 4764 if (addrlen < SIN6_LEN_RFC2133) 4765 return -EINVAL; 4766 addr6 = (struct sockaddr_in6 *)address; 4767 snum = ntohs(addr6->sin6_port); 4768 addrp = (char *)&addr6->sin6_addr.s6_addr; 4769 break; 4770 default: 4771 goto err_af; 4772 } 4773 4774 ad.type = LSM_AUDIT_DATA_NET; 4775 ad.u.net = &net; 4776 ad.u.net->sport = htons(snum); 4777 ad.u.net->family = family_sa; 4778 4779 if (snum) { 4780 int low, high; 4781 4782 inet_get_local_port_range(sock_net(sk), &low, &high); 4783 4784 if (inet_port_requires_bind_service(sock_net(sk), snum) || 4785 snum < low || snum > high) { 4786 err = sel_netport_sid(sk->sk_protocol, 4787 snum, &sid); 4788 if (err) 4789 goto out; 4790 err = avc_has_perm(sksec->sid, sid, 4791 sksec->sclass, 4792 SOCKET__NAME_BIND, &ad); 4793 if (err) 4794 goto out; 4795 } 4796 } 4797 4798 switch (sksec->sclass) { 4799 case SECCLASS_TCP_SOCKET: 4800 node_perm = TCP_SOCKET__NODE_BIND; 4801 break; 4802 4803 case SECCLASS_UDP_SOCKET: 4804 node_perm = UDP_SOCKET__NODE_BIND; 4805 break; 4806 4807 case SECCLASS_DCCP_SOCKET: 4808 node_perm = DCCP_SOCKET__NODE_BIND; 4809 break; 4810 4811 case SECCLASS_SCTP_SOCKET: 4812 node_perm = SCTP_SOCKET__NODE_BIND; 4813 break; 4814 4815 default: 4816 node_perm = RAWIP_SOCKET__NODE_BIND; 4817 break; 4818 } 4819 4820 err = sel_netnode_sid(addrp, family_sa, &sid); 4821 if (err) 4822 goto out; 4823 4824 if (family_sa == AF_INET) 4825 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 4826 else 4827 ad.u.net->v6info.saddr = addr6->sin6_addr; 4828 4829 err = avc_has_perm(sksec->sid, sid, 4830 sksec->sclass, node_perm, &ad); 4831 if (err) 4832 goto out; 4833 } 4834 out: 4835 return err; 4836 err_af: 4837 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */ 4838 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4839 return -EINVAL; 4840 return -EAFNOSUPPORT; 4841 } 4842 4843 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3) 4844 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst 4845 */ 4846 static int selinux_socket_connect_helper(struct socket *sock, 4847 struct sockaddr *address, int addrlen) 4848 { 4849 struct sock *sk = sock->sk; 4850 struct sk_security_struct *sksec = selinux_sock(sk); 4851 int err; 4852 4853 err = sock_has_perm(sk, SOCKET__CONNECT); 4854 if (err) 4855 return err; 4856 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4857 return -EINVAL; 4858 4859 /* connect(AF_UNSPEC) has special handling, as it is a documented 4860 * way to disconnect the socket 4861 */ 4862 if (address->sa_family == AF_UNSPEC) 4863 return 0; 4864 4865 /* 4866 * If a TCP, DCCP or SCTP socket, check name_connect permission 4867 * for the port. 4868 */ 4869 if (sksec->sclass == SECCLASS_TCP_SOCKET || 4870 sksec->sclass == SECCLASS_DCCP_SOCKET || 4871 sksec->sclass == SECCLASS_SCTP_SOCKET) { 4872 struct common_audit_data ad; 4873 struct lsm_network_audit net = {0,}; 4874 struct sockaddr_in *addr4 = NULL; 4875 struct sockaddr_in6 *addr6 = NULL; 4876 unsigned short snum; 4877 u32 sid, perm; 4878 4879 /* sctp_connectx(3) calls via selinux_sctp_bind_connect() 4880 * that validates multiple connect addresses. Because of this 4881 * need to check address->sa_family as it is possible to have 4882 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4883 */ 4884 switch (address->sa_family) { 4885 case AF_INET: 4886 addr4 = (struct sockaddr_in *)address; 4887 if (addrlen < sizeof(struct sockaddr_in)) 4888 return -EINVAL; 4889 snum = ntohs(addr4->sin_port); 4890 break; 4891 case AF_INET6: 4892 addr6 = (struct sockaddr_in6 *)address; 4893 if (addrlen < SIN6_LEN_RFC2133) 4894 return -EINVAL; 4895 snum = ntohs(addr6->sin6_port); 4896 break; 4897 default: 4898 /* Note that SCTP services expect -EINVAL, whereas 4899 * others expect -EAFNOSUPPORT. 4900 */ 4901 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4902 return -EINVAL; 4903 else 4904 return -EAFNOSUPPORT; 4905 } 4906 4907 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 4908 if (err) 4909 return err; 4910 4911 switch (sksec->sclass) { 4912 case SECCLASS_TCP_SOCKET: 4913 perm = TCP_SOCKET__NAME_CONNECT; 4914 break; 4915 case SECCLASS_DCCP_SOCKET: 4916 perm = DCCP_SOCKET__NAME_CONNECT; 4917 break; 4918 case SECCLASS_SCTP_SOCKET: 4919 perm = SCTP_SOCKET__NAME_CONNECT; 4920 break; 4921 } 4922 4923 ad.type = LSM_AUDIT_DATA_NET; 4924 ad.u.net = &net; 4925 ad.u.net->dport = htons(snum); 4926 ad.u.net->family = address->sa_family; 4927 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad); 4928 if (err) 4929 return err; 4930 } 4931 4932 return 0; 4933 } 4934 4935 /* Supports connect(2), see comments in selinux_socket_connect_helper() */ 4936 static int selinux_socket_connect(struct socket *sock, 4937 struct sockaddr *address, int addrlen) 4938 { 4939 int err; 4940 struct sock *sk = sock->sk; 4941 4942 err = selinux_socket_connect_helper(sock, address, addrlen); 4943 if (err) 4944 return err; 4945 4946 return selinux_netlbl_socket_connect(sk, address); 4947 } 4948 4949 static int selinux_socket_listen(struct socket *sock, int backlog) 4950 { 4951 return sock_has_perm(sock->sk, SOCKET__LISTEN); 4952 } 4953 4954 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 4955 { 4956 int err; 4957 struct inode_security_struct *isec; 4958 struct inode_security_struct *newisec; 4959 u16 sclass; 4960 u32 sid; 4961 4962 err = sock_has_perm(sock->sk, SOCKET__ACCEPT); 4963 if (err) 4964 return err; 4965 4966 isec = inode_security_novalidate(SOCK_INODE(sock)); 4967 spin_lock(&isec->lock); 4968 sclass = isec->sclass; 4969 sid = isec->sid; 4970 spin_unlock(&isec->lock); 4971 4972 newisec = inode_security_novalidate(SOCK_INODE(newsock)); 4973 newisec->sclass = sclass; 4974 newisec->sid = sid; 4975 newisec->initialized = LABEL_INITIALIZED; 4976 4977 return 0; 4978 } 4979 4980 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4981 int size) 4982 { 4983 return sock_has_perm(sock->sk, SOCKET__WRITE); 4984 } 4985 4986 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4987 int size, int flags) 4988 { 4989 return sock_has_perm(sock->sk, SOCKET__READ); 4990 } 4991 4992 static int selinux_socket_getsockname(struct socket *sock) 4993 { 4994 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4995 } 4996 4997 static int selinux_socket_getpeername(struct socket *sock) 4998 { 4999 return sock_has_perm(sock->sk, SOCKET__GETATTR); 5000 } 5001 5002 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 5003 { 5004 int err; 5005 5006 err = sock_has_perm(sock->sk, SOCKET__SETOPT); 5007 if (err) 5008 return err; 5009 5010 return selinux_netlbl_socket_setsockopt(sock, level, optname); 5011 } 5012 5013 static int selinux_socket_getsockopt(struct socket *sock, int level, 5014 int optname) 5015 { 5016 return sock_has_perm(sock->sk, SOCKET__GETOPT); 5017 } 5018 5019 static int selinux_socket_shutdown(struct socket *sock, int how) 5020 { 5021 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN); 5022 } 5023 5024 static int selinux_socket_unix_stream_connect(struct sock *sock, 5025 struct sock *other, 5026 struct sock *newsk) 5027 { 5028 struct sk_security_struct *sksec_sock = selinux_sock(sock); 5029 struct sk_security_struct *sksec_other = selinux_sock(other); 5030 struct sk_security_struct *sksec_new = selinux_sock(newsk); 5031 struct common_audit_data ad; 5032 struct lsm_network_audit net; 5033 int err; 5034 5035 ad_net_init_from_sk(&ad, &net, other); 5036 5037 err = avc_has_perm(sksec_sock->sid, sksec_other->sid, 5038 sksec_other->sclass, 5039 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 5040 if (err) 5041 return err; 5042 5043 /* server child socket */ 5044 sksec_new->peer_sid = sksec_sock->sid; 5045 err = security_sid_mls_copy(sksec_other->sid, 5046 sksec_sock->sid, &sksec_new->sid); 5047 if (err) 5048 return err; 5049 5050 /* connecting socket */ 5051 sksec_sock->peer_sid = sksec_new->sid; 5052 5053 return 0; 5054 } 5055 5056 static int selinux_socket_unix_may_send(struct socket *sock, 5057 struct socket *other) 5058 { 5059 struct sk_security_struct *ssec = selinux_sock(sock->sk); 5060 struct sk_security_struct *osec = selinux_sock(other->sk); 5061 struct common_audit_data ad; 5062 struct lsm_network_audit net; 5063 5064 ad_net_init_from_sk(&ad, &net, other->sk); 5065 5066 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 5067 &ad); 5068 } 5069 5070 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, 5071 char *addrp, u16 family, u32 peer_sid, 5072 struct common_audit_data *ad) 5073 { 5074 int err; 5075 u32 if_sid; 5076 u32 node_sid; 5077 5078 err = sel_netif_sid(ns, ifindex, &if_sid); 5079 if (err) 5080 return err; 5081 err = avc_has_perm(peer_sid, if_sid, 5082 SECCLASS_NETIF, NETIF__INGRESS, ad); 5083 if (err) 5084 return err; 5085 5086 err = sel_netnode_sid(addrp, family, &node_sid); 5087 if (err) 5088 return err; 5089 return avc_has_perm(peer_sid, node_sid, 5090 SECCLASS_NODE, NODE__RECVFROM, ad); 5091 } 5092 5093 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 5094 u16 family) 5095 { 5096 int err = 0; 5097 struct sk_security_struct *sksec = selinux_sock(sk); 5098 u32 sk_sid = sksec->sid; 5099 struct common_audit_data ad; 5100 struct lsm_network_audit net; 5101 char *addrp; 5102 5103 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family); 5104 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 5105 if (err) 5106 return err; 5107 5108 if (selinux_secmark_enabled()) { 5109 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 5110 PACKET__RECV, &ad); 5111 if (err) 5112 return err; 5113 } 5114 5115 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 5116 if (err) 5117 return err; 5118 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 5119 5120 return err; 5121 } 5122 5123 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 5124 { 5125 int err, peerlbl_active, secmark_active; 5126 struct sk_security_struct *sksec = selinux_sock(sk); 5127 u16 family = sk->sk_family; 5128 u32 sk_sid = sksec->sid; 5129 struct common_audit_data ad; 5130 struct lsm_network_audit net; 5131 char *addrp; 5132 5133 if (family != PF_INET && family != PF_INET6) 5134 return 0; 5135 5136 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 5137 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5138 family = PF_INET; 5139 5140 /* If any sort of compatibility mode is enabled then handoff processing 5141 * to the selinux_sock_rcv_skb_compat() function to deal with the 5142 * special handling. We do this in an attempt to keep this function 5143 * as fast and as clean as possible. */ 5144 if (!selinux_policycap_netpeer()) 5145 return selinux_sock_rcv_skb_compat(sk, skb, family); 5146 5147 secmark_active = selinux_secmark_enabled(); 5148 peerlbl_active = selinux_peerlbl_enabled(); 5149 if (!secmark_active && !peerlbl_active) 5150 return 0; 5151 5152 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family); 5153 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 5154 if (err) 5155 return err; 5156 5157 if (peerlbl_active) { 5158 u32 peer_sid; 5159 5160 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 5161 if (err) 5162 return err; 5163 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, 5164 addrp, family, peer_sid, &ad); 5165 if (err) { 5166 selinux_netlbl_err(skb, family, err, 0); 5167 return err; 5168 } 5169 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 5170 PEER__RECV, &ad); 5171 if (err) { 5172 selinux_netlbl_err(skb, family, err, 0); 5173 return err; 5174 } 5175 } 5176 5177 if (secmark_active) { 5178 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 5179 PACKET__RECV, &ad); 5180 if (err) 5181 return err; 5182 } 5183 5184 return err; 5185 } 5186 5187 static int selinux_socket_getpeersec_stream(struct socket *sock, 5188 sockptr_t optval, sockptr_t optlen, 5189 unsigned int len) 5190 { 5191 int err = 0; 5192 char *scontext = NULL; 5193 u32 scontext_len; 5194 struct sk_security_struct *sksec = selinux_sock(sock->sk); 5195 u32 peer_sid = SECSID_NULL; 5196 5197 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 5198 sksec->sclass == SECCLASS_TCP_SOCKET || 5199 sksec->sclass == SECCLASS_SCTP_SOCKET) 5200 peer_sid = sksec->peer_sid; 5201 if (peer_sid == SECSID_NULL) 5202 return -ENOPROTOOPT; 5203 5204 err = security_sid_to_context(peer_sid, &scontext, 5205 &scontext_len); 5206 if (err) 5207 return err; 5208 if (scontext_len > len) { 5209 err = -ERANGE; 5210 goto out_len; 5211 } 5212 5213 if (copy_to_sockptr(optval, scontext, scontext_len)) 5214 err = -EFAULT; 5215 out_len: 5216 if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len))) 5217 err = -EFAULT; 5218 kfree(scontext); 5219 return err; 5220 } 5221 5222 static int selinux_socket_getpeersec_dgram(struct socket *sock, 5223 struct sk_buff *skb, u32 *secid) 5224 { 5225 u32 peer_secid = SECSID_NULL; 5226 u16 family; 5227 5228 if (skb && skb->protocol == htons(ETH_P_IP)) 5229 family = PF_INET; 5230 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 5231 family = PF_INET6; 5232 else if (sock) 5233 family = sock->sk->sk_family; 5234 else { 5235 *secid = SECSID_NULL; 5236 return -EINVAL; 5237 } 5238 5239 if (sock && family == PF_UNIX) { 5240 struct inode_security_struct *isec; 5241 isec = inode_security_novalidate(SOCK_INODE(sock)); 5242 peer_secid = isec->sid; 5243 } else if (skb) 5244 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 5245 5246 *secid = peer_secid; 5247 if (peer_secid == SECSID_NULL) 5248 return -ENOPROTOOPT; 5249 return 0; 5250 } 5251 5252 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 5253 { 5254 struct sk_security_struct *sksec = selinux_sock(sk); 5255 5256 sksec->peer_sid = SECINITSID_UNLABELED; 5257 sksec->sid = SECINITSID_UNLABELED; 5258 sksec->sclass = SECCLASS_SOCKET; 5259 selinux_netlbl_sk_security_reset(sksec); 5260 5261 return 0; 5262 } 5263 5264 static void selinux_sk_free_security(struct sock *sk) 5265 { 5266 struct sk_security_struct *sksec = selinux_sock(sk); 5267 5268 selinux_netlbl_sk_security_free(sksec); 5269 } 5270 5271 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 5272 { 5273 struct sk_security_struct *sksec = selinux_sock(sk); 5274 struct sk_security_struct *newsksec = selinux_sock(newsk); 5275 5276 newsksec->sid = sksec->sid; 5277 newsksec->peer_sid = sksec->peer_sid; 5278 newsksec->sclass = sksec->sclass; 5279 5280 selinux_netlbl_sk_security_reset(newsksec); 5281 } 5282 5283 static void selinux_sk_getsecid(const struct sock *sk, u32 *secid) 5284 { 5285 if (!sk) 5286 *secid = SECINITSID_ANY_SOCKET; 5287 else { 5288 const struct sk_security_struct *sksec = selinux_sock(sk); 5289 5290 *secid = sksec->sid; 5291 } 5292 } 5293 5294 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 5295 { 5296 struct inode_security_struct *isec = 5297 inode_security_novalidate(SOCK_INODE(parent)); 5298 struct sk_security_struct *sksec = selinux_sock(sk); 5299 5300 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 5301 sk->sk_family == PF_UNIX) 5302 isec->sid = sksec->sid; 5303 sksec->sclass = isec->sclass; 5304 } 5305 5306 /* 5307 * Determines peer_secid for the asoc and updates socket's peer label 5308 * if it's the first association on the socket. 5309 */ 5310 static int selinux_sctp_process_new_assoc(struct sctp_association *asoc, 5311 struct sk_buff *skb) 5312 { 5313 struct sock *sk = asoc->base.sk; 5314 u16 family = sk->sk_family; 5315 struct sk_security_struct *sksec = selinux_sock(sk); 5316 struct common_audit_data ad; 5317 struct lsm_network_audit net; 5318 int err; 5319 5320 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 5321 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5322 family = PF_INET; 5323 5324 if (selinux_peerlbl_enabled()) { 5325 asoc->peer_secid = SECSID_NULL; 5326 5327 /* This will return peer_sid = SECSID_NULL if there are 5328 * no peer labels, see security_net_peersid_resolve(). 5329 */ 5330 err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid); 5331 if (err) 5332 return err; 5333 5334 if (asoc->peer_secid == SECSID_NULL) 5335 asoc->peer_secid = SECINITSID_UNLABELED; 5336 } else { 5337 asoc->peer_secid = SECINITSID_UNLABELED; 5338 } 5339 5340 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) { 5341 sksec->sctp_assoc_state = SCTP_ASSOC_SET; 5342 5343 /* Here as first association on socket. As the peer SID 5344 * was allowed by peer recv (and the netif/node checks), 5345 * then it is approved by policy and used as the primary 5346 * peer SID for getpeercon(3). 5347 */ 5348 sksec->peer_sid = asoc->peer_secid; 5349 } else if (sksec->peer_sid != asoc->peer_secid) { 5350 /* Other association peer SIDs are checked to enforce 5351 * consistency among the peer SIDs. 5352 */ 5353 ad_net_init_from_sk(&ad, &net, asoc->base.sk); 5354 err = avc_has_perm(sksec->peer_sid, asoc->peer_secid, 5355 sksec->sclass, SCTP_SOCKET__ASSOCIATION, 5356 &ad); 5357 if (err) 5358 return err; 5359 } 5360 return 0; 5361 } 5362 5363 /* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This 5364 * happens on an incoming connect(2), sctp_connectx(3) or 5365 * sctp_sendmsg(3) (with no association already present). 5366 */ 5367 static int selinux_sctp_assoc_request(struct sctp_association *asoc, 5368 struct sk_buff *skb) 5369 { 5370 struct sk_security_struct *sksec = selinux_sock(asoc->base.sk); 5371 u32 conn_sid; 5372 int err; 5373 5374 if (!selinux_policycap_extsockclass()) 5375 return 0; 5376 5377 err = selinux_sctp_process_new_assoc(asoc, skb); 5378 if (err) 5379 return err; 5380 5381 /* Compute the MLS component for the connection and store 5382 * the information in asoc. This will be used by SCTP TCP type 5383 * sockets and peeled off connections as they cause a new 5384 * socket to be generated. selinux_sctp_sk_clone() will then 5385 * plug this into the new socket. 5386 */ 5387 err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid); 5388 if (err) 5389 return err; 5390 5391 asoc->secid = conn_sid; 5392 5393 /* Set any NetLabel labels including CIPSO/CALIPSO options. */ 5394 return selinux_netlbl_sctp_assoc_request(asoc, skb); 5395 } 5396 5397 /* Called when SCTP receives a COOKIE ACK chunk as the final 5398 * response to an association request (initited by us). 5399 */ 5400 static int selinux_sctp_assoc_established(struct sctp_association *asoc, 5401 struct sk_buff *skb) 5402 { 5403 struct sk_security_struct *sksec = selinux_sock(asoc->base.sk); 5404 5405 if (!selinux_policycap_extsockclass()) 5406 return 0; 5407 5408 /* Inherit secid from the parent socket - this will be picked up 5409 * by selinux_sctp_sk_clone() if the association gets peeled off 5410 * into a new socket. 5411 */ 5412 asoc->secid = sksec->sid; 5413 5414 return selinux_sctp_process_new_assoc(asoc, skb); 5415 } 5416 5417 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting 5418 * based on their @optname. 5419 */ 5420 static int selinux_sctp_bind_connect(struct sock *sk, int optname, 5421 struct sockaddr *address, 5422 int addrlen) 5423 { 5424 int len, err = 0, walk_size = 0; 5425 void *addr_buf; 5426 struct sockaddr *addr; 5427 struct socket *sock; 5428 5429 if (!selinux_policycap_extsockclass()) 5430 return 0; 5431 5432 /* Process one or more addresses that may be IPv4 or IPv6 */ 5433 sock = sk->sk_socket; 5434 addr_buf = address; 5435 5436 while (walk_size < addrlen) { 5437 if (walk_size + sizeof(sa_family_t) > addrlen) 5438 return -EINVAL; 5439 5440 addr = addr_buf; 5441 switch (addr->sa_family) { 5442 case AF_UNSPEC: 5443 case AF_INET: 5444 len = sizeof(struct sockaddr_in); 5445 break; 5446 case AF_INET6: 5447 len = sizeof(struct sockaddr_in6); 5448 break; 5449 default: 5450 return -EINVAL; 5451 } 5452 5453 if (walk_size + len > addrlen) 5454 return -EINVAL; 5455 5456 err = -EINVAL; 5457 switch (optname) { 5458 /* Bind checks */ 5459 case SCTP_PRIMARY_ADDR: 5460 case SCTP_SET_PEER_PRIMARY_ADDR: 5461 case SCTP_SOCKOPT_BINDX_ADD: 5462 err = selinux_socket_bind(sock, addr, len); 5463 break; 5464 /* Connect checks */ 5465 case SCTP_SOCKOPT_CONNECTX: 5466 case SCTP_PARAM_SET_PRIMARY: 5467 case SCTP_PARAM_ADD_IP: 5468 case SCTP_SENDMSG_CONNECT: 5469 err = selinux_socket_connect_helper(sock, addr, len); 5470 if (err) 5471 return err; 5472 5473 /* As selinux_sctp_bind_connect() is called by the 5474 * SCTP protocol layer, the socket is already locked, 5475 * therefore selinux_netlbl_socket_connect_locked() 5476 * is called here. The situations handled are: 5477 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2), 5478 * whenever a new IP address is added or when a new 5479 * primary address is selected. 5480 * Note that an SCTP connect(2) call happens before 5481 * the SCTP protocol layer and is handled via 5482 * selinux_socket_connect(). 5483 */ 5484 err = selinux_netlbl_socket_connect_locked(sk, addr); 5485 break; 5486 } 5487 5488 if (err) 5489 return err; 5490 5491 addr_buf += len; 5492 walk_size += len; 5493 } 5494 5495 return 0; 5496 } 5497 5498 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */ 5499 static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 5500 struct sock *newsk) 5501 { 5502 struct sk_security_struct *sksec = selinux_sock(sk); 5503 struct sk_security_struct *newsksec = selinux_sock(newsk); 5504 5505 /* If policy does not support SECCLASS_SCTP_SOCKET then call 5506 * the non-sctp clone version. 5507 */ 5508 if (!selinux_policycap_extsockclass()) 5509 return selinux_sk_clone_security(sk, newsk); 5510 5511 newsksec->sid = asoc->secid; 5512 newsksec->peer_sid = asoc->peer_secid; 5513 newsksec->sclass = sksec->sclass; 5514 selinux_netlbl_sctp_sk_clone(sk, newsk); 5515 } 5516 5517 static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk) 5518 { 5519 struct sk_security_struct *ssksec = selinux_sock(ssk); 5520 struct sk_security_struct *sksec = selinux_sock(sk); 5521 5522 ssksec->sclass = sksec->sclass; 5523 ssksec->sid = sksec->sid; 5524 5525 /* replace the existing subflow label deleting the existing one 5526 * and re-recreating a new label using the updated context 5527 */ 5528 selinux_netlbl_sk_security_free(ssksec); 5529 return selinux_netlbl_socket_post_create(ssk, ssk->sk_family); 5530 } 5531 5532 static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb, 5533 struct request_sock *req) 5534 { 5535 struct sk_security_struct *sksec = selinux_sock(sk); 5536 int err; 5537 u16 family = req->rsk_ops->family; 5538 u32 connsid; 5539 u32 peersid; 5540 5541 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 5542 if (err) 5543 return err; 5544 err = selinux_conn_sid(sksec->sid, peersid, &connsid); 5545 if (err) 5546 return err; 5547 req->secid = connsid; 5548 req->peer_secid = peersid; 5549 5550 return selinux_netlbl_inet_conn_request(req, family); 5551 } 5552 5553 static void selinux_inet_csk_clone(struct sock *newsk, 5554 const struct request_sock *req) 5555 { 5556 struct sk_security_struct *newsksec = selinux_sock(newsk); 5557 5558 newsksec->sid = req->secid; 5559 newsksec->peer_sid = req->peer_secid; 5560 /* NOTE: Ideally, we should also get the isec->sid for the 5561 new socket in sync, but we don't have the isec available yet. 5562 So we will wait until sock_graft to do it, by which 5563 time it will have been created and available. */ 5564 5565 /* We don't need to take any sort of lock here as we are the only 5566 * thread with access to newsksec */ 5567 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 5568 } 5569 5570 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 5571 { 5572 u16 family = sk->sk_family; 5573 struct sk_security_struct *sksec = selinux_sock(sk); 5574 5575 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 5576 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5577 family = PF_INET; 5578 5579 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 5580 } 5581 5582 static int selinux_secmark_relabel_packet(u32 sid) 5583 { 5584 return avc_has_perm(current_sid(), sid, SECCLASS_PACKET, PACKET__RELABELTO, 5585 NULL); 5586 } 5587 5588 static void selinux_secmark_refcount_inc(void) 5589 { 5590 atomic_inc(&selinux_secmark_refcount); 5591 } 5592 5593 static void selinux_secmark_refcount_dec(void) 5594 { 5595 atomic_dec(&selinux_secmark_refcount); 5596 } 5597 5598 static void selinux_req_classify_flow(const struct request_sock *req, 5599 struct flowi_common *flic) 5600 { 5601 flic->flowic_secid = req->secid; 5602 } 5603 5604 static int selinux_tun_dev_alloc_security(void *security) 5605 { 5606 struct tun_security_struct *tunsec = selinux_tun_dev(security); 5607 5608 tunsec->sid = current_sid(); 5609 return 0; 5610 } 5611 5612 static int selinux_tun_dev_create(void) 5613 { 5614 u32 sid = current_sid(); 5615 5616 /* we aren't taking into account the "sockcreate" SID since the socket 5617 * that is being created here is not a socket in the traditional sense, 5618 * instead it is a private sock, accessible only to the kernel, and 5619 * representing a wide range of network traffic spanning multiple 5620 * connections unlike traditional sockets - check the TUN driver to 5621 * get a better understanding of why this socket is special */ 5622 5623 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 5624 NULL); 5625 } 5626 5627 static int selinux_tun_dev_attach_queue(void *security) 5628 { 5629 struct tun_security_struct *tunsec = selinux_tun_dev(security); 5630 5631 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, 5632 TUN_SOCKET__ATTACH_QUEUE, NULL); 5633 } 5634 5635 static int selinux_tun_dev_attach(struct sock *sk, void *security) 5636 { 5637 struct tun_security_struct *tunsec = selinux_tun_dev(security); 5638 struct sk_security_struct *sksec = selinux_sock(sk); 5639 5640 /* we don't currently perform any NetLabel based labeling here and it 5641 * isn't clear that we would want to do so anyway; while we could apply 5642 * labeling without the support of the TUN user the resulting labeled 5643 * traffic from the other end of the connection would almost certainly 5644 * cause confusion to the TUN user that had no idea network labeling 5645 * protocols were being used */ 5646 5647 sksec->sid = tunsec->sid; 5648 sksec->sclass = SECCLASS_TUN_SOCKET; 5649 5650 return 0; 5651 } 5652 5653 static int selinux_tun_dev_open(void *security) 5654 { 5655 struct tun_security_struct *tunsec = selinux_tun_dev(security); 5656 u32 sid = current_sid(); 5657 int err; 5658 5659 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET, 5660 TUN_SOCKET__RELABELFROM, NULL); 5661 if (err) 5662 return err; 5663 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, 5664 TUN_SOCKET__RELABELTO, NULL); 5665 if (err) 5666 return err; 5667 tunsec->sid = sid; 5668 5669 return 0; 5670 } 5671 5672 #ifdef CONFIG_NETFILTER 5673 5674 static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb, 5675 const struct nf_hook_state *state) 5676 { 5677 int ifindex; 5678 u16 family; 5679 char *addrp; 5680 u32 peer_sid; 5681 struct common_audit_data ad; 5682 struct lsm_network_audit net; 5683 int secmark_active, peerlbl_active; 5684 5685 if (!selinux_policycap_netpeer()) 5686 return NF_ACCEPT; 5687 5688 secmark_active = selinux_secmark_enabled(); 5689 peerlbl_active = selinux_peerlbl_enabled(); 5690 if (!secmark_active && !peerlbl_active) 5691 return NF_ACCEPT; 5692 5693 family = state->pf; 5694 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 5695 return NF_DROP; 5696 5697 ifindex = state->in->ifindex; 5698 ad_net_init_from_iif(&ad, &net, ifindex, family); 5699 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 5700 return NF_DROP; 5701 5702 if (peerlbl_active) { 5703 int err; 5704 5705 err = selinux_inet_sys_rcv_skb(state->net, ifindex, 5706 addrp, family, peer_sid, &ad); 5707 if (err) { 5708 selinux_netlbl_err(skb, family, err, 1); 5709 return NF_DROP; 5710 } 5711 } 5712 5713 if (secmark_active) 5714 if (avc_has_perm(peer_sid, skb->secmark, 5715 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 5716 return NF_DROP; 5717 5718 if (netlbl_enabled()) 5719 /* we do this in the FORWARD path and not the POST_ROUTING 5720 * path because we want to make sure we apply the necessary 5721 * labeling before IPsec is applied so we can leverage AH 5722 * protection */ 5723 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 5724 return NF_DROP; 5725 5726 return NF_ACCEPT; 5727 } 5728 5729 static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb, 5730 const struct nf_hook_state *state) 5731 { 5732 struct sock *sk; 5733 u32 sid; 5734 5735 if (!netlbl_enabled()) 5736 return NF_ACCEPT; 5737 5738 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 5739 * because we want to make sure we apply the necessary labeling 5740 * before IPsec is applied so we can leverage AH protection */ 5741 sk = sk_to_full_sk(skb->sk); 5742 if (sk) { 5743 struct sk_security_struct *sksec; 5744 5745 if (sk_listener(sk)) 5746 /* if the socket is the listening state then this 5747 * packet is a SYN-ACK packet which means it needs to 5748 * be labeled based on the connection/request_sock and 5749 * not the parent socket. unfortunately, we can't 5750 * lookup the request_sock yet as it isn't queued on 5751 * the parent socket until after the SYN-ACK is sent. 5752 * the "solution" is to simply pass the packet as-is 5753 * as any IP option based labeling should be copied 5754 * from the initial connection request (in the IP 5755 * layer). it is far from ideal, but until we get a 5756 * security label in the packet itself this is the 5757 * best we can do. */ 5758 return NF_ACCEPT; 5759 5760 /* standard practice, label using the parent socket */ 5761 sksec = selinux_sock(sk); 5762 sid = sksec->sid; 5763 } else 5764 sid = SECINITSID_KERNEL; 5765 if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0) 5766 return NF_DROP; 5767 5768 return NF_ACCEPT; 5769 } 5770 5771 5772 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 5773 const struct nf_hook_state *state) 5774 { 5775 struct sock *sk; 5776 struct sk_security_struct *sksec; 5777 struct common_audit_data ad; 5778 struct lsm_network_audit net; 5779 u8 proto = 0; 5780 5781 sk = skb_to_full_sk(skb); 5782 if (sk == NULL) 5783 return NF_ACCEPT; 5784 sksec = selinux_sock(sk); 5785 5786 ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf); 5787 if (selinux_parse_skb(skb, &ad, NULL, 0, &proto)) 5788 return NF_DROP; 5789 5790 if (selinux_secmark_enabled()) 5791 if (avc_has_perm(sksec->sid, skb->secmark, 5792 SECCLASS_PACKET, PACKET__SEND, &ad)) 5793 return NF_DROP_ERR(-ECONNREFUSED); 5794 5795 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 5796 return NF_DROP_ERR(-ECONNREFUSED); 5797 5798 return NF_ACCEPT; 5799 } 5800 5801 static unsigned int selinux_ip_postroute(void *priv, 5802 struct sk_buff *skb, 5803 const struct nf_hook_state *state) 5804 { 5805 u16 family; 5806 u32 secmark_perm; 5807 u32 peer_sid; 5808 int ifindex; 5809 struct sock *sk; 5810 struct common_audit_data ad; 5811 struct lsm_network_audit net; 5812 char *addrp; 5813 int secmark_active, peerlbl_active; 5814 5815 /* If any sort of compatibility mode is enabled then handoff processing 5816 * to the selinux_ip_postroute_compat() function to deal with the 5817 * special handling. We do this in an attempt to keep this function 5818 * as fast and as clean as possible. */ 5819 if (!selinux_policycap_netpeer()) 5820 return selinux_ip_postroute_compat(skb, state); 5821 5822 secmark_active = selinux_secmark_enabled(); 5823 peerlbl_active = selinux_peerlbl_enabled(); 5824 if (!secmark_active && !peerlbl_active) 5825 return NF_ACCEPT; 5826 5827 sk = skb_to_full_sk(skb); 5828 5829 #ifdef CONFIG_XFRM 5830 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 5831 * packet transformation so allow the packet to pass without any checks 5832 * since we'll have another chance to perform access control checks 5833 * when the packet is on it's final way out. 5834 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 5835 * is NULL, in this case go ahead and apply access control. 5836 * NOTE: if this is a local socket (skb->sk != NULL) that is in the 5837 * TCP listening state we cannot wait until the XFRM processing 5838 * is done as we will miss out on the SA label if we do; 5839 * unfortunately, this means more work, but it is only once per 5840 * connection. */ 5841 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && 5842 !(sk && sk_listener(sk))) 5843 return NF_ACCEPT; 5844 #endif 5845 5846 family = state->pf; 5847 if (sk == NULL) { 5848 /* Without an associated socket the packet is either coming 5849 * from the kernel or it is being forwarded; check the packet 5850 * to determine which and if the packet is being forwarded 5851 * query the packet directly to determine the security label. */ 5852 if (skb->skb_iif) { 5853 secmark_perm = PACKET__FORWARD_OUT; 5854 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 5855 return NF_DROP; 5856 } else { 5857 secmark_perm = PACKET__SEND; 5858 peer_sid = SECINITSID_KERNEL; 5859 } 5860 } else if (sk_listener(sk)) { 5861 /* Locally generated packet but the associated socket is in the 5862 * listening state which means this is a SYN-ACK packet. In 5863 * this particular case the correct security label is assigned 5864 * to the connection/request_sock but unfortunately we can't 5865 * query the request_sock as it isn't queued on the parent 5866 * socket until after the SYN-ACK packet is sent; the only 5867 * viable choice is to regenerate the label like we do in 5868 * selinux_inet_conn_request(). See also selinux_ip_output() 5869 * for similar problems. */ 5870 u32 skb_sid; 5871 struct sk_security_struct *sksec; 5872 5873 sksec = selinux_sock(sk); 5874 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) 5875 return NF_DROP; 5876 /* At this point, if the returned skb peerlbl is SECSID_NULL 5877 * and the packet has been through at least one XFRM 5878 * transformation then we must be dealing with the "final" 5879 * form of labeled IPsec packet; since we've already applied 5880 * all of our access controls on this packet we can safely 5881 * pass the packet. */ 5882 if (skb_sid == SECSID_NULL) { 5883 switch (family) { 5884 case PF_INET: 5885 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 5886 return NF_ACCEPT; 5887 break; 5888 case PF_INET6: 5889 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 5890 return NF_ACCEPT; 5891 break; 5892 default: 5893 return NF_DROP_ERR(-ECONNREFUSED); 5894 } 5895 } 5896 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) 5897 return NF_DROP; 5898 secmark_perm = PACKET__SEND; 5899 } else { 5900 /* Locally generated packet, fetch the security label from the 5901 * associated socket. */ 5902 struct sk_security_struct *sksec = selinux_sock(sk); 5903 peer_sid = sksec->sid; 5904 secmark_perm = PACKET__SEND; 5905 } 5906 5907 ifindex = state->out->ifindex; 5908 ad_net_init_from_iif(&ad, &net, ifindex, family); 5909 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 5910 return NF_DROP; 5911 5912 if (secmark_active) 5913 if (avc_has_perm(peer_sid, skb->secmark, 5914 SECCLASS_PACKET, secmark_perm, &ad)) 5915 return NF_DROP_ERR(-ECONNREFUSED); 5916 5917 if (peerlbl_active) { 5918 u32 if_sid; 5919 u32 node_sid; 5920 5921 if (sel_netif_sid(state->net, ifindex, &if_sid)) 5922 return NF_DROP; 5923 if (avc_has_perm(peer_sid, if_sid, 5924 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 5925 return NF_DROP_ERR(-ECONNREFUSED); 5926 5927 if (sel_netnode_sid(addrp, family, &node_sid)) 5928 return NF_DROP; 5929 if (avc_has_perm(peer_sid, node_sid, 5930 SECCLASS_NODE, NODE__SENDTO, &ad)) 5931 return NF_DROP_ERR(-ECONNREFUSED); 5932 } 5933 5934 return NF_ACCEPT; 5935 } 5936 #endif /* CONFIG_NETFILTER */ 5937 5938 static int nlmsg_sock_has_extended_perms(struct sock *sk, u32 perms, u16 nlmsg_type) 5939 { 5940 struct sk_security_struct *sksec = sk->sk_security; 5941 struct common_audit_data ad; 5942 struct lsm_network_audit net; 5943 u8 driver; 5944 u8 xperm; 5945 5946 if (sock_skip_has_perm(sksec->sid)) 5947 return 0; 5948 5949 ad_net_init_from_sk(&ad, &net, sk); 5950 5951 driver = nlmsg_type >> 8; 5952 xperm = nlmsg_type & 0xff; 5953 5954 return avc_has_extended_perms(current_sid(), sksec->sid, sksec->sclass, 5955 perms, driver, xperm, &ad); 5956 } 5957 5958 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 5959 { 5960 int rc = 0; 5961 unsigned int msg_len; 5962 unsigned int data_len = skb->len; 5963 unsigned char *data = skb->data; 5964 struct nlmsghdr *nlh; 5965 struct sk_security_struct *sksec = selinux_sock(sk); 5966 u16 sclass = sksec->sclass; 5967 u32 perm; 5968 5969 while (data_len >= nlmsg_total_size(0)) { 5970 nlh = (struct nlmsghdr *)data; 5971 5972 /* NOTE: the nlmsg_len field isn't reliably set by some netlink 5973 * users which means we can't reject skb's with bogus 5974 * length fields; our solution is to follow what 5975 * netlink_rcv_skb() does and simply skip processing at 5976 * messages with length fields that are clearly junk 5977 */ 5978 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len) 5979 return 0; 5980 5981 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm); 5982 if (rc == 0) { 5983 if (selinux_policycap_netlink_xperm()) { 5984 rc = nlmsg_sock_has_extended_perms( 5985 sk, perm, nlh->nlmsg_type); 5986 } else { 5987 rc = sock_has_perm(sk, perm); 5988 } 5989 if (rc) 5990 return rc; 5991 } else if (rc == -EINVAL) { 5992 /* -EINVAL is a missing msg/perm mapping */ 5993 pr_warn_ratelimited("SELinux: unrecognized netlink" 5994 " message: protocol=%hu nlmsg_type=%hu sclass=%s" 5995 " pid=%d comm=%s\n", 5996 sk->sk_protocol, nlh->nlmsg_type, 5997 secclass_map[sclass - 1].name, 5998 task_pid_nr(current), current->comm); 5999 if (enforcing_enabled() && 6000 !security_get_allow_unknown()) 6001 return rc; 6002 rc = 0; 6003 } else if (rc == -ENOENT) { 6004 /* -ENOENT is a missing socket/class mapping, ignore */ 6005 rc = 0; 6006 } else { 6007 return rc; 6008 } 6009 6010 /* move to the next message after applying netlink padding */ 6011 msg_len = NLMSG_ALIGN(nlh->nlmsg_len); 6012 if (msg_len >= data_len) 6013 return 0; 6014 data_len -= msg_len; 6015 data += msg_len; 6016 } 6017 6018 return rc; 6019 } 6020 6021 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass) 6022 { 6023 isec->sclass = sclass; 6024 isec->sid = current_sid(); 6025 } 6026 6027 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 6028 u32 perms) 6029 { 6030 struct ipc_security_struct *isec; 6031 struct common_audit_data ad; 6032 u32 sid = current_sid(); 6033 6034 isec = selinux_ipc(ipc_perms); 6035 6036 ad.type = LSM_AUDIT_DATA_IPC; 6037 ad.u.ipc_id = ipc_perms->key; 6038 6039 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 6040 } 6041 6042 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 6043 { 6044 struct msg_security_struct *msec; 6045 6046 msec = selinux_msg_msg(msg); 6047 msec->sid = SECINITSID_UNLABELED; 6048 6049 return 0; 6050 } 6051 6052 /* message queue security operations */ 6053 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq) 6054 { 6055 struct ipc_security_struct *isec; 6056 struct common_audit_data ad; 6057 u32 sid = current_sid(); 6058 6059 isec = selinux_ipc(msq); 6060 ipc_init_security(isec, SECCLASS_MSGQ); 6061 6062 ad.type = LSM_AUDIT_DATA_IPC; 6063 ad.u.ipc_id = msq->key; 6064 6065 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 6066 MSGQ__CREATE, &ad); 6067 } 6068 6069 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 6070 { 6071 struct ipc_security_struct *isec; 6072 struct common_audit_data ad; 6073 u32 sid = current_sid(); 6074 6075 isec = selinux_ipc(msq); 6076 6077 ad.type = LSM_AUDIT_DATA_IPC; 6078 ad.u.ipc_id = msq->key; 6079 6080 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 6081 MSGQ__ASSOCIATE, &ad); 6082 } 6083 6084 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 6085 { 6086 u32 perms; 6087 6088 switch (cmd) { 6089 case IPC_INFO: 6090 case MSG_INFO: 6091 /* No specific object, just general system-wide information. */ 6092 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 6093 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6094 case IPC_STAT: 6095 case MSG_STAT: 6096 case MSG_STAT_ANY: 6097 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 6098 break; 6099 case IPC_SET: 6100 perms = MSGQ__SETATTR; 6101 break; 6102 case IPC_RMID: 6103 perms = MSGQ__DESTROY; 6104 break; 6105 default: 6106 return 0; 6107 } 6108 6109 return ipc_has_perm(msq, perms); 6110 } 6111 6112 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg) 6113 { 6114 struct ipc_security_struct *isec; 6115 struct msg_security_struct *msec; 6116 struct common_audit_data ad; 6117 u32 sid = current_sid(); 6118 int rc; 6119 6120 isec = selinux_ipc(msq); 6121 msec = selinux_msg_msg(msg); 6122 6123 /* 6124 * First time through, need to assign label to the message 6125 */ 6126 if (msec->sid == SECINITSID_UNLABELED) { 6127 /* 6128 * Compute new sid based on current process and 6129 * message queue this message will be stored in 6130 */ 6131 rc = security_transition_sid(sid, isec->sid, 6132 SECCLASS_MSG, NULL, &msec->sid); 6133 if (rc) 6134 return rc; 6135 } 6136 6137 ad.type = LSM_AUDIT_DATA_IPC; 6138 ad.u.ipc_id = msq->key; 6139 6140 /* Can this process write to the queue? */ 6141 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 6142 MSGQ__WRITE, &ad); 6143 if (!rc) 6144 /* Can this process send the message */ 6145 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 6146 MSG__SEND, &ad); 6147 if (!rc) 6148 /* Can the message be put in the queue? */ 6149 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 6150 MSGQ__ENQUEUE, &ad); 6151 6152 return rc; 6153 } 6154 6155 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 6156 struct task_struct *target, 6157 long type, int mode) 6158 { 6159 struct ipc_security_struct *isec; 6160 struct msg_security_struct *msec; 6161 struct common_audit_data ad; 6162 u32 sid = task_sid_obj(target); 6163 int rc; 6164 6165 isec = selinux_ipc(msq); 6166 msec = selinux_msg_msg(msg); 6167 6168 ad.type = LSM_AUDIT_DATA_IPC; 6169 ad.u.ipc_id = msq->key; 6170 6171 rc = avc_has_perm(sid, isec->sid, 6172 SECCLASS_MSGQ, MSGQ__READ, &ad); 6173 if (!rc) 6174 rc = avc_has_perm(sid, msec->sid, 6175 SECCLASS_MSG, MSG__RECEIVE, &ad); 6176 return rc; 6177 } 6178 6179 /* Shared Memory security operations */ 6180 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp) 6181 { 6182 struct ipc_security_struct *isec; 6183 struct common_audit_data ad; 6184 u32 sid = current_sid(); 6185 6186 isec = selinux_ipc(shp); 6187 ipc_init_security(isec, SECCLASS_SHM); 6188 6189 ad.type = LSM_AUDIT_DATA_IPC; 6190 ad.u.ipc_id = shp->key; 6191 6192 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 6193 SHM__CREATE, &ad); 6194 } 6195 6196 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg) 6197 { 6198 struct ipc_security_struct *isec; 6199 struct common_audit_data ad; 6200 u32 sid = current_sid(); 6201 6202 isec = selinux_ipc(shp); 6203 6204 ad.type = LSM_AUDIT_DATA_IPC; 6205 ad.u.ipc_id = shp->key; 6206 6207 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 6208 SHM__ASSOCIATE, &ad); 6209 } 6210 6211 /* Note, at this point, shp is locked down */ 6212 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 6213 { 6214 u32 perms; 6215 6216 switch (cmd) { 6217 case IPC_INFO: 6218 case SHM_INFO: 6219 /* No specific object, just general system-wide information. */ 6220 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 6221 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6222 case IPC_STAT: 6223 case SHM_STAT: 6224 case SHM_STAT_ANY: 6225 perms = SHM__GETATTR | SHM__ASSOCIATE; 6226 break; 6227 case IPC_SET: 6228 perms = SHM__SETATTR; 6229 break; 6230 case SHM_LOCK: 6231 case SHM_UNLOCK: 6232 perms = SHM__LOCK; 6233 break; 6234 case IPC_RMID: 6235 perms = SHM__DESTROY; 6236 break; 6237 default: 6238 return 0; 6239 } 6240 6241 return ipc_has_perm(shp, perms); 6242 } 6243 6244 static int selinux_shm_shmat(struct kern_ipc_perm *shp, 6245 char __user *shmaddr, int shmflg) 6246 { 6247 u32 perms; 6248 6249 if (shmflg & SHM_RDONLY) 6250 perms = SHM__READ; 6251 else 6252 perms = SHM__READ | SHM__WRITE; 6253 6254 return ipc_has_perm(shp, perms); 6255 } 6256 6257 /* Semaphore security operations */ 6258 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma) 6259 { 6260 struct ipc_security_struct *isec; 6261 struct common_audit_data ad; 6262 u32 sid = current_sid(); 6263 6264 isec = selinux_ipc(sma); 6265 ipc_init_security(isec, SECCLASS_SEM); 6266 6267 ad.type = LSM_AUDIT_DATA_IPC; 6268 ad.u.ipc_id = sma->key; 6269 6270 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 6271 SEM__CREATE, &ad); 6272 } 6273 6274 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg) 6275 { 6276 struct ipc_security_struct *isec; 6277 struct common_audit_data ad; 6278 u32 sid = current_sid(); 6279 6280 isec = selinux_ipc(sma); 6281 6282 ad.type = LSM_AUDIT_DATA_IPC; 6283 ad.u.ipc_id = sma->key; 6284 6285 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 6286 SEM__ASSOCIATE, &ad); 6287 } 6288 6289 /* Note, at this point, sma is locked down */ 6290 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd) 6291 { 6292 int err; 6293 u32 perms; 6294 6295 switch (cmd) { 6296 case IPC_INFO: 6297 case SEM_INFO: 6298 /* No specific object, just general system-wide information. */ 6299 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 6300 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6301 case GETPID: 6302 case GETNCNT: 6303 case GETZCNT: 6304 perms = SEM__GETATTR; 6305 break; 6306 case GETVAL: 6307 case GETALL: 6308 perms = SEM__READ; 6309 break; 6310 case SETVAL: 6311 case SETALL: 6312 perms = SEM__WRITE; 6313 break; 6314 case IPC_RMID: 6315 perms = SEM__DESTROY; 6316 break; 6317 case IPC_SET: 6318 perms = SEM__SETATTR; 6319 break; 6320 case IPC_STAT: 6321 case SEM_STAT: 6322 case SEM_STAT_ANY: 6323 perms = SEM__GETATTR | SEM__ASSOCIATE; 6324 break; 6325 default: 6326 return 0; 6327 } 6328 6329 err = ipc_has_perm(sma, perms); 6330 return err; 6331 } 6332 6333 static int selinux_sem_semop(struct kern_ipc_perm *sma, 6334 struct sembuf *sops, unsigned nsops, int alter) 6335 { 6336 u32 perms; 6337 6338 if (alter) 6339 perms = SEM__READ | SEM__WRITE; 6340 else 6341 perms = SEM__READ; 6342 6343 return ipc_has_perm(sma, perms); 6344 } 6345 6346 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 6347 { 6348 u32 av = 0; 6349 6350 av = 0; 6351 if (flag & S_IRUGO) 6352 av |= IPC__UNIX_READ; 6353 if (flag & S_IWUGO) 6354 av |= IPC__UNIX_WRITE; 6355 6356 if (av == 0) 6357 return 0; 6358 6359 return ipc_has_perm(ipcp, av); 6360 } 6361 6362 static void selinux_ipc_getlsmprop(struct kern_ipc_perm *ipcp, 6363 struct lsm_prop *prop) 6364 { 6365 struct ipc_security_struct *isec = selinux_ipc(ipcp); 6366 prop->selinux.secid = isec->sid; 6367 } 6368 6369 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 6370 { 6371 if (inode) 6372 inode_doinit_with_dentry(inode, dentry); 6373 } 6374 6375 static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p, 6376 char **value) 6377 { 6378 const struct task_security_struct *tsec; 6379 int error; 6380 u32 sid; 6381 u32 len; 6382 6383 rcu_read_lock(); 6384 tsec = selinux_cred(__task_cred(p)); 6385 if (p != current) { 6386 error = avc_has_perm(current_sid(), tsec->sid, 6387 SECCLASS_PROCESS, PROCESS__GETATTR, NULL); 6388 if (error) 6389 goto err_unlock; 6390 } 6391 switch (attr) { 6392 case LSM_ATTR_CURRENT: 6393 sid = tsec->sid; 6394 break; 6395 case LSM_ATTR_PREV: 6396 sid = tsec->osid; 6397 break; 6398 case LSM_ATTR_EXEC: 6399 sid = tsec->exec_sid; 6400 break; 6401 case LSM_ATTR_FSCREATE: 6402 sid = tsec->create_sid; 6403 break; 6404 case LSM_ATTR_KEYCREATE: 6405 sid = tsec->keycreate_sid; 6406 break; 6407 case LSM_ATTR_SOCKCREATE: 6408 sid = tsec->sockcreate_sid; 6409 break; 6410 default: 6411 error = -EOPNOTSUPP; 6412 goto err_unlock; 6413 } 6414 rcu_read_unlock(); 6415 6416 if (sid == SECSID_NULL) { 6417 *value = NULL; 6418 return 0; 6419 } 6420 6421 error = security_sid_to_context(sid, value, &len); 6422 if (error) 6423 return error; 6424 return len; 6425 6426 err_unlock: 6427 rcu_read_unlock(); 6428 return error; 6429 } 6430 6431 static int selinux_lsm_setattr(u64 attr, void *value, size_t size) 6432 { 6433 struct task_security_struct *tsec; 6434 struct cred *new; 6435 u32 mysid = current_sid(), sid = 0, ptsid; 6436 int error; 6437 char *str = value; 6438 6439 /* 6440 * Basic control over ability to set these attributes at all. 6441 */ 6442 switch (attr) { 6443 case LSM_ATTR_EXEC: 6444 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6445 PROCESS__SETEXEC, NULL); 6446 break; 6447 case LSM_ATTR_FSCREATE: 6448 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6449 PROCESS__SETFSCREATE, NULL); 6450 break; 6451 case LSM_ATTR_KEYCREATE: 6452 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6453 PROCESS__SETKEYCREATE, NULL); 6454 break; 6455 case LSM_ATTR_SOCKCREATE: 6456 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6457 PROCESS__SETSOCKCREATE, NULL); 6458 break; 6459 case LSM_ATTR_CURRENT: 6460 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6461 PROCESS__SETCURRENT, NULL); 6462 break; 6463 default: 6464 error = -EOPNOTSUPP; 6465 break; 6466 } 6467 if (error) 6468 return error; 6469 6470 /* Obtain a SID for the context, if one was specified. */ 6471 if (size && str[0] && str[0] != '\n') { 6472 if (str[size-1] == '\n') { 6473 str[size-1] = 0; 6474 size--; 6475 } 6476 error = security_context_to_sid(value, size, 6477 &sid, GFP_KERNEL); 6478 if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) { 6479 if (!has_cap_mac_admin(true)) { 6480 struct audit_buffer *ab; 6481 size_t audit_size; 6482 6483 /* We strip a nul only if it is at the end, 6484 * otherwise the context contains a nul and 6485 * we should audit that */ 6486 if (str[size - 1] == '\0') 6487 audit_size = size - 1; 6488 else 6489 audit_size = size; 6490 ab = audit_log_start(audit_context(), 6491 GFP_ATOMIC, 6492 AUDIT_SELINUX_ERR); 6493 if (!ab) 6494 return error; 6495 audit_log_format(ab, "op=fscreate invalid_context="); 6496 audit_log_n_untrustedstring(ab, value, 6497 audit_size); 6498 audit_log_end(ab); 6499 6500 return error; 6501 } 6502 error = security_context_to_sid_force(value, size, 6503 &sid); 6504 } 6505 if (error) 6506 return error; 6507 } 6508 6509 new = prepare_creds(); 6510 if (!new) 6511 return -ENOMEM; 6512 6513 /* Permission checking based on the specified context is 6514 performed during the actual operation (execve, 6515 open/mkdir/...), when we know the full context of the 6516 operation. See selinux_bprm_creds_for_exec for the execve 6517 checks and may_create for the file creation checks. The 6518 operation will then fail if the context is not permitted. */ 6519 tsec = selinux_cred(new); 6520 if (attr == LSM_ATTR_EXEC) { 6521 tsec->exec_sid = sid; 6522 } else if (attr == LSM_ATTR_FSCREATE) { 6523 tsec->create_sid = sid; 6524 } else if (attr == LSM_ATTR_KEYCREATE) { 6525 if (sid) { 6526 error = avc_has_perm(mysid, sid, 6527 SECCLASS_KEY, KEY__CREATE, NULL); 6528 if (error) 6529 goto abort_change; 6530 } 6531 tsec->keycreate_sid = sid; 6532 } else if (attr == LSM_ATTR_SOCKCREATE) { 6533 tsec->sockcreate_sid = sid; 6534 } else if (attr == LSM_ATTR_CURRENT) { 6535 error = -EINVAL; 6536 if (sid == 0) 6537 goto abort_change; 6538 6539 if (!current_is_single_threaded()) { 6540 error = security_bounded_transition(tsec->sid, sid); 6541 if (error) 6542 goto abort_change; 6543 } 6544 6545 /* Check permissions for the transition. */ 6546 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 6547 PROCESS__DYNTRANSITION, NULL); 6548 if (error) 6549 goto abort_change; 6550 6551 /* Check for ptracing, and update the task SID if ok. 6552 Otherwise, leave SID unchanged and fail. */ 6553 ptsid = ptrace_parent_sid(); 6554 if (ptsid != 0) { 6555 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 6556 PROCESS__PTRACE, NULL); 6557 if (error) 6558 goto abort_change; 6559 } 6560 6561 tsec->sid = sid; 6562 } else { 6563 error = -EINVAL; 6564 goto abort_change; 6565 } 6566 6567 commit_creds(new); 6568 return size; 6569 6570 abort_change: 6571 abort_creds(new); 6572 return error; 6573 } 6574 6575 /** 6576 * selinux_getselfattr - Get SELinux current task attributes 6577 * @attr: the requested attribute 6578 * @ctx: buffer to receive the result 6579 * @size: buffer size (input), buffer size used (output) 6580 * @flags: unused 6581 * 6582 * Fill the passed user space @ctx with the details of the requested 6583 * attribute. 6584 * 6585 * Returns the number of attributes on success, an error code otherwise. 6586 * There will only ever be one attribute. 6587 */ 6588 static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx, 6589 u32 *size, u32 flags) 6590 { 6591 int rc; 6592 char *val = NULL; 6593 int val_len; 6594 6595 val_len = selinux_lsm_getattr(attr, current, &val); 6596 if (val_len < 0) 6597 return val_len; 6598 rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0); 6599 kfree(val); 6600 return (!rc ? 1 : rc); 6601 } 6602 6603 static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx, 6604 u32 size, u32 flags) 6605 { 6606 int rc; 6607 6608 rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len); 6609 if (rc > 0) 6610 return 0; 6611 return rc; 6612 } 6613 6614 static int selinux_getprocattr(struct task_struct *p, 6615 const char *name, char **value) 6616 { 6617 unsigned int attr = lsm_name_to_attr(name); 6618 int rc; 6619 6620 if (attr) { 6621 rc = selinux_lsm_getattr(attr, p, value); 6622 if (rc != -EOPNOTSUPP) 6623 return rc; 6624 } 6625 6626 return -EINVAL; 6627 } 6628 6629 static int selinux_setprocattr(const char *name, void *value, size_t size) 6630 { 6631 int attr = lsm_name_to_attr(name); 6632 6633 if (attr) 6634 return selinux_lsm_setattr(attr, value, size); 6635 return -EINVAL; 6636 } 6637 6638 static int selinux_ismaclabel(const char *name) 6639 { 6640 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); 6641 } 6642 6643 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 6644 { 6645 return security_sid_to_context(secid, secdata, seclen); 6646 } 6647 6648 static int selinux_lsmprop_to_secctx(struct lsm_prop *prop, char **secdata, 6649 u32 *seclen) 6650 { 6651 return selinux_secid_to_secctx(prop->selinux.secid, secdata, seclen); 6652 } 6653 6654 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 6655 { 6656 return security_context_to_sid(secdata, seclen, 6657 secid, GFP_KERNEL); 6658 } 6659 6660 static void selinux_release_secctx(char *secdata, u32 seclen) 6661 { 6662 kfree(secdata); 6663 } 6664 6665 static void selinux_inode_invalidate_secctx(struct inode *inode) 6666 { 6667 struct inode_security_struct *isec = selinux_inode(inode); 6668 6669 spin_lock(&isec->lock); 6670 isec->initialized = LABEL_INVALID; 6671 spin_unlock(&isec->lock); 6672 } 6673 6674 /* 6675 * called with inode->i_mutex locked 6676 */ 6677 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 6678 { 6679 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, 6680 ctx, ctxlen, 0); 6681 /* Do not return error when suppressing label (SBLABEL_MNT not set). */ 6682 return rc == -EOPNOTSUPP ? 0 : rc; 6683 } 6684 6685 /* 6686 * called with inode->i_mutex locked 6687 */ 6688 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 6689 { 6690 return __vfs_setxattr_locked(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX, 6691 ctx, ctxlen, 0, NULL); 6692 } 6693 6694 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 6695 { 6696 int len = 0; 6697 len = selinux_inode_getsecurity(&nop_mnt_idmap, inode, 6698 XATTR_SELINUX_SUFFIX, ctx, true); 6699 if (len < 0) 6700 return len; 6701 *ctxlen = len; 6702 return 0; 6703 } 6704 #ifdef CONFIG_KEYS 6705 6706 static int selinux_key_alloc(struct key *k, const struct cred *cred, 6707 unsigned long flags) 6708 { 6709 const struct task_security_struct *tsec; 6710 struct key_security_struct *ksec = selinux_key(k); 6711 6712 tsec = selinux_cred(cred); 6713 if (tsec->keycreate_sid) 6714 ksec->sid = tsec->keycreate_sid; 6715 else 6716 ksec->sid = tsec->sid; 6717 6718 return 0; 6719 } 6720 6721 static int selinux_key_permission(key_ref_t key_ref, 6722 const struct cred *cred, 6723 enum key_need_perm need_perm) 6724 { 6725 struct key *key; 6726 struct key_security_struct *ksec; 6727 u32 perm, sid; 6728 6729 switch (need_perm) { 6730 case KEY_NEED_VIEW: 6731 perm = KEY__VIEW; 6732 break; 6733 case KEY_NEED_READ: 6734 perm = KEY__READ; 6735 break; 6736 case KEY_NEED_WRITE: 6737 perm = KEY__WRITE; 6738 break; 6739 case KEY_NEED_SEARCH: 6740 perm = KEY__SEARCH; 6741 break; 6742 case KEY_NEED_LINK: 6743 perm = KEY__LINK; 6744 break; 6745 case KEY_NEED_SETATTR: 6746 perm = KEY__SETATTR; 6747 break; 6748 case KEY_NEED_UNLINK: 6749 case KEY_SYSADMIN_OVERRIDE: 6750 case KEY_AUTHTOKEN_OVERRIDE: 6751 case KEY_DEFER_PERM_CHECK: 6752 return 0; 6753 default: 6754 WARN_ON(1); 6755 return -EPERM; 6756 6757 } 6758 6759 sid = cred_sid(cred); 6760 key = key_ref_to_ptr(key_ref); 6761 ksec = selinux_key(key); 6762 6763 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 6764 } 6765 6766 static int selinux_key_getsecurity(struct key *key, char **_buffer) 6767 { 6768 struct key_security_struct *ksec = selinux_key(key); 6769 char *context = NULL; 6770 unsigned len; 6771 int rc; 6772 6773 rc = security_sid_to_context(ksec->sid, 6774 &context, &len); 6775 if (!rc) 6776 rc = len; 6777 *_buffer = context; 6778 return rc; 6779 } 6780 6781 #ifdef CONFIG_KEY_NOTIFICATIONS 6782 static int selinux_watch_key(struct key *key) 6783 { 6784 struct key_security_struct *ksec = selinux_key(key); 6785 u32 sid = current_sid(); 6786 6787 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL); 6788 } 6789 #endif 6790 #endif 6791 6792 #ifdef CONFIG_SECURITY_INFINIBAND 6793 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val) 6794 { 6795 struct common_audit_data ad; 6796 int err; 6797 u32 sid = 0; 6798 struct ib_security_struct *sec = ib_sec; 6799 struct lsm_ibpkey_audit ibpkey; 6800 6801 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid); 6802 if (err) 6803 return err; 6804 6805 ad.type = LSM_AUDIT_DATA_IBPKEY; 6806 ibpkey.subnet_prefix = subnet_prefix; 6807 ibpkey.pkey = pkey_val; 6808 ad.u.ibpkey = &ibpkey; 6809 return avc_has_perm(sec->sid, sid, 6810 SECCLASS_INFINIBAND_PKEY, 6811 INFINIBAND_PKEY__ACCESS, &ad); 6812 } 6813 6814 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name, 6815 u8 port_num) 6816 { 6817 struct common_audit_data ad; 6818 int err; 6819 u32 sid = 0; 6820 struct ib_security_struct *sec = ib_sec; 6821 struct lsm_ibendport_audit ibendport; 6822 6823 err = security_ib_endport_sid(dev_name, port_num, 6824 &sid); 6825 6826 if (err) 6827 return err; 6828 6829 ad.type = LSM_AUDIT_DATA_IBENDPORT; 6830 ibendport.dev_name = dev_name; 6831 ibendport.port = port_num; 6832 ad.u.ibendport = &ibendport; 6833 return avc_has_perm(sec->sid, sid, 6834 SECCLASS_INFINIBAND_ENDPORT, 6835 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad); 6836 } 6837 6838 static int selinux_ib_alloc_security(void *ib_sec) 6839 { 6840 struct ib_security_struct *sec = selinux_ib(ib_sec); 6841 6842 sec->sid = current_sid(); 6843 return 0; 6844 } 6845 #endif 6846 6847 #ifdef CONFIG_BPF_SYSCALL 6848 static int selinux_bpf(int cmd, union bpf_attr *attr, 6849 unsigned int size) 6850 { 6851 u32 sid = current_sid(); 6852 int ret; 6853 6854 switch (cmd) { 6855 case BPF_MAP_CREATE: 6856 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE, 6857 NULL); 6858 break; 6859 case BPF_PROG_LOAD: 6860 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD, 6861 NULL); 6862 break; 6863 default: 6864 ret = 0; 6865 break; 6866 } 6867 6868 return ret; 6869 } 6870 6871 static u32 bpf_map_fmode_to_av(fmode_t fmode) 6872 { 6873 u32 av = 0; 6874 6875 if (fmode & FMODE_READ) 6876 av |= BPF__MAP_READ; 6877 if (fmode & FMODE_WRITE) 6878 av |= BPF__MAP_WRITE; 6879 return av; 6880 } 6881 6882 /* This function will check the file pass through unix socket or binder to see 6883 * if it is a bpf related object. And apply corresponding checks on the bpf 6884 * object based on the type. The bpf maps and programs, not like other files and 6885 * socket, are using a shared anonymous inode inside the kernel as their inode. 6886 * So checking that inode cannot identify if the process have privilege to 6887 * access the bpf object and that's why we have to add this additional check in 6888 * selinux_file_receive and selinux_binder_transfer_files. 6889 */ 6890 static int bpf_fd_pass(const struct file *file, u32 sid) 6891 { 6892 struct bpf_security_struct *bpfsec; 6893 struct bpf_prog *prog; 6894 struct bpf_map *map; 6895 int ret; 6896 6897 if (file->f_op == &bpf_map_fops) { 6898 map = file->private_data; 6899 bpfsec = map->security; 6900 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6901 bpf_map_fmode_to_av(file->f_mode), NULL); 6902 if (ret) 6903 return ret; 6904 } else if (file->f_op == &bpf_prog_fops) { 6905 prog = file->private_data; 6906 bpfsec = prog->aux->security; 6907 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6908 BPF__PROG_RUN, NULL); 6909 if (ret) 6910 return ret; 6911 } 6912 return 0; 6913 } 6914 6915 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode) 6916 { 6917 u32 sid = current_sid(); 6918 struct bpf_security_struct *bpfsec; 6919 6920 bpfsec = map->security; 6921 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6922 bpf_map_fmode_to_av(fmode), NULL); 6923 } 6924 6925 static int selinux_bpf_prog(struct bpf_prog *prog) 6926 { 6927 u32 sid = current_sid(); 6928 struct bpf_security_struct *bpfsec; 6929 6930 bpfsec = prog->aux->security; 6931 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6932 BPF__PROG_RUN, NULL); 6933 } 6934 6935 static int selinux_bpf_map_create(struct bpf_map *map, union bpf_attr *attr, 6936 struct bpf_token *token) 6937 { 6938 struct bpf_security_struct *bpfsec; 6939 6940 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6941 if (!bpfsec) 6942 return -ENOMEM; 6943 6944 bpfsec->sid = current_sid(); 6945 map->security = bpfsec; 6946 6947 return 0; 6948 } 6949 6950 static void selinux_bpf_map_free(struct bpf_map *map) 6951 { 6952 struct bpf_security_struct *bpfsec = map->security; 6953 6954 map->security = NULL; 6955 kfree(bpfsec); 6956 } 6957 6958 static int selinux_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr, 6959 struct bpf_token *token) 6960 { 6961 struct bpf_security_struct *bpfsec; 6962 6963 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6964 if (!bpfsec) 6965 return -ENOMEM; 6966 6967 bpfsec->sid = current_sid(); 6968 prog->aux->security = bpfsec; 6969 6970 return 0; 6971 } 6972 6973 static void selinux_bpf_prog_free(struct bpf_prog *prog) 6974 { 6975 struct bpf_security_struct *bpfsec = prog->aux->security; 6976 6977 prog->aux->security = NULL; 6978 kfree(bpfsec); 6979 } 6980 6981 static int selinux_bpf_token_create(struct bpf_token *token, union bpf_attr *attr, 6982 const struct path *path) 6983 { 6984 struct bpf_security_struct *bpfsec; 6985 6986 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6987 if (!bpfsec) 6988 return -ENOMEM; 6989 6990 bpfsec->sid = current_sid(); 6991 token->security = bpfsec; 6992 6993 return 0; 6994 } 6995 6996 static void selinux_bpf_token_free(struct bpf_token *token) 6997 { 6998 struct bpf_security_struct *bpfsec = token->security; 6999 7000 token->security = NULL; 7001 kfree(bpfsec); 7002 } 7003 #endif 7004 7005 struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = { 7006 .lbs_cred = sizeof(struct task_security_struct), 7007 .lbs_file = sizeof(struct file_security_struct), 7008 .lbs_inode = sizeof(struct inode_security_struct), 7009 .lbs_ipc = sizeof(struct ipc_security_struct), 7010 .lbs_key = sizeof(struct key_security_struct), 7011 .lbs_msg_msg = sizeof(struct msg_security_struct), 7012 #ifdef CONFIG_PERF_EVENTS 7013 .lbs_perf_event = sizeof(struct perf_event_security_struct), 7014 #endif 7015 .lbs_sock = sizeof(struct sk_security_struct), 7016 .lbs_superblock = sizeof(struct superblock_security_struct), 7017 .lbs_xattr_count = SELINUX_INODE_INIT_XATTRS, 7018 .lbs_tun_dev = sizeof(struct tun_security_struct), 7019 .lbs_ib = sizeof(struct ib_security_struct), 7020 }; 7021 7022 #ifdef CONFIG_PERF_EVENTS 7023 static int selinux_perf_event_open(struct perf_event_attr *attr, int type) 7024 { 7025 u32 requested, sid = current_sid(); 7026 7027 if (type == PERF_SECURITY_OPEN) 7028 requested = PERF_EVENT__OPEN; 7029 else if (type == PERF_SECURITY_CPU) 7030 requested = PERF_EVENT__CPU; 7031 else if (type == PERF_SECURITY_KERNEL) 7032 requested = PERF_EVENT__KERNEL; 7033 else if (type == PERF_SECURITY_TRACEPOINT) 7034 requested = PERF_EVENT__TRACEPOINT; 7035 else 7036 return -EINVAL; 7037 7038 return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT, 7039 requested, NULL); 7040 } 7041 7042 static int selinux_perf_event_alloc(struct perf_event *event) 7043 { 7044 struct perf_event_security_struct *perfsec; 7045 7046 perfsec = selinux_perf_event(event->security); 7047 perfsec->sid = current_sid(); 7048 7049 return 0; 7050 } 7051 7052 static int selinux_perf_event_read(struct perf_event *event) 7053 { 7054 struct perf_event_security_struct *perfsec = event->security; 7055 u32 sid = current_sid(); 7056 7057 return avc_has_perm(sid, perfsec->sid, 7058 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL); 7059 } 7060 7061 static int selinux_perf_event_write(struct perf_event *event) 7062 { 7063 struct perf_event_security_struct *perfsec = event->security; 7064 u32 sid = current_sid(); 7065 7066 return avc_has_perm(sid, perfsec->sid, 7067 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL); 7068 } 7069 #endif 7070 7071 #ifdef CONFIG_IO_URING 7072 /** 7073 * selinux_uring_override_creds - check the requested cred override 7074 * @new: the target creds 7075 * 7076 * Check to see if the current task is allowed to override it's credentials 7077 * to service an io_uring operation. 7078 */ 7079 static int selinux_uring_override_creds(const struct cred *new) 7080 { 7081 return avc_has_perm(current_sid(), cred_sid(new), 7082 SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL); 7083 } 7084 7085 /** 7086 * selinux_uring_sqpoll - check if a io_uring polling thread can be created 7087 * 7088 * Check to see if the current task is allowed to create a new io_uring 7089 * kernel polling thread. 7090 */ 7091 static int selinux_uring_sqpoll(void) 7092 { 7093 u32 sid = current_sid(); 7094 7095 return avc_has_perm(sid, sid, 7096 SECCLASS_IO_URING, IO_URING__SQPOLL, NULL); 7097 } 7098 7099 /** 7100 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed 7101 * @ioucmd: the io_uring command structure 7102 * 7103 * Check to see if the current domain is allowed to execute an 7104 * IORING_OP_URING_CMD against the device/file specified in @ioucmd. 7105 * 7106 */ 7107 static int selinux_uring_cmd(struct io_uring_cmd *ioucmd) 7108 { 7109 struct file *file = ioucmd->file; 7110 struct inode *inode = file_inode(file); 7111 struct inode_security_struct *isec = selinux_inode(inode); 7112 struct common_audit_data ad; 7113 7114 ad.type = LSM_AUDIT_DATA_FILE; 7115 ad.u.file = file; 7116 7117 return avc_has_perm(current_sid(), isec->sid, 7118 SECCLASS_IO_URING, IO_URING__CMD, &ad); 7119 } 7120 #endif /* CONFIG_IO_URING */ 7121 7122 static const struct lsm_id selinux_lsmid = { 7123 .name = "selinux", 7124 .id = LSM_ID_SELINUX, 7125 }; 7126 7127 /* 7128 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order: 7129 * 1. any hooks that don't belong to (2.) or (3.) below, 7130 * 2. hooks that both access structures allocated by other hooks, and allocate 7131 * structures that can be later accessed by other hooks (mostly "cloning" 7132 * hooks), 7133 * 3. hooks that only allocate structures that can be later accessed by other 7134 * hooks ("allocating" hooks). 7135 * 7136 * Please follow block comment delimiters in the list to keep this order. 7137 */ 7138 static struct security_hook_list selinux_hooks[] __ro_after_init = { 7139 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr), 7140 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction), 7141 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder), 7142 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file), 7143 7144 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check), 7145 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme), 7146 LSM_HOOK_INIT(capget, selinux_capget), 7147 LSM_HOOK_INIT(capset, selinux_capset), 7148 LSM_HOOK_INIT(capable, selinux_capable), 7149 LSM_HOOK_INIT(quotactl, selinux_quotactl), 7150 LSM_HOOK_INIT(quota_on, selinux_quota_on), 7151 LSM_HOOK_INIT(syslog, selinux_syslog), 7152 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory), 7153 7154 LSM_HOOK_INIT(netlink_send, selinux_netlink_send), 7155 7156 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec), 7157 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds), 7158 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds), 7159 7160 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts), 7161 LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat), 7162 LSM_HOOK_INIT(sb_remount, selinux_sb_remount), 7163 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount), 7164 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options), 7165 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs), 7166 LSM_HOOK_INIT(sb_mount, selinux_mount), 7167 LSM_HOOK_INIT(sb_umount, selinux_umount), 7168 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts), 7169 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts), 7170 7171 LSM_HOOK_INIT(move_mount, selinux_move_mount), 7172 7173 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security), 7174 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as), 7175 7176 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security), 7177 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security), 7178 LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon), 7179 LSM_HOOK_INIT(inode_create, selinux_inode_create), 7180 LSM_HOOK_INIT(inode_link, selinux_inode_link), 7181 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink), 7182 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink), 7183 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir), 7184 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir), 7185 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod), 7186 LSM_HOOK_INIT(inode_rename, selinux_inode_rename), 7187 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink), 7188 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link), 7189 LSM_HOOK_INIT(inode_permission, selinux_inode_permission), 7190 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr), 7191 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr), 7192 LSM_HOOK_INIT(inode_xattr_skipcap, selinux_inode_xattr_skipcap), 7193 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr), 7194 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr), 7195 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr), 7196 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr), 7197 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr), 7198 LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl), 7199 LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl), 7200 LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl), 7201 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity), 7202 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity), 7203 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity), 7204 LSM_HOOK_INIT(inode_getlsmprop, selinux_inode_getlsmprop), 7205 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up), 7206 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr), 7207 LSM_HOOK_INIT(path_notify, selinux_path_notify), 7208 7209 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security), 7210 7211 LSM_HOOK_INIT(file_permission, selinux_file_permission), 7212 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security), 7213 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl), 7214 LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat), 7215 LSM_HOOK_INIT(mmap_file, selinux_mmap_file), 7216 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr), 7217 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect), 7218 LSM_HOOK_INIT(file_lock, selinux_file_lock), 7219 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl), 7220 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner), 7221 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask), 7222 LSM_HOOK_INIT(file_receive, selinux_file_receive), 7223 7224 LSM_HOOK_INIT(file_open, selinux_file_open), 7225 7226 LSM_HOOK_INIT(task_alloc, selinux_task_alloc), 7227 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare), 7228 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer), 7229 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid), 7230 LSM_HOOK_INIT(cred_getlsmprop, selinux_cred_getlsmprop), 7231 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as), 7232 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as), 7233 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request), 7234 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data), 7235 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file), 7236 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid), 7237 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid), 7238 LSM_HOOK_INIT(task_getsid, selinux_task_getsid), 7239 LSM_HOOK_INIT(current_getlsmprop_subj, selinux_current_getlsmprop_subj), 7240 LSM_HOOK_INIT(task_getlsmprop_obj, selinux_task_getlsmprop_obj), 7241 LSM_HOOK_INIT(task_setnice, selinux_task_setnice), 7242 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio), 7243 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio), 7244 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit), 7245 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit), 7246 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler), 7247 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler), 7248 LSM_HOOK_INIT(task_movememory, selinux_task_movememory), 7249 LSM_HOOK_INIT(task_kill, selinux_task_kill), 7250 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode), 7251 LSM_HOOK_INIT(userns_create, selinux_userns_create), 7252 7253 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission), 7254 LSM_HOOK_INIT(ipc_getlsmprop, selinux_ipc_getlsmprop), 7255 7256 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate), 7257 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl), 7258 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd), 7259 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv), 7260 7261 LSM_HOOK_INIT(shm_associate, selinux_shm_associate), 7262 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl), 7263 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat), 7264 7265 LSM_HOOK_INIT(sem_associate, selinux_sem_associate), 7266 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl), 7267 LSM_HOOK_INIT(sem_semop, selinux_sem_semop), 7268 7269 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate), 7270 7271 LSM_HOOK_INIT(getselfattr, selinux_getselfattr), 7272 LSM_HOOK_INIT(setselfattr, selinux_setselfattr), 7273 LSM_HOOK_INIT(getprocattr, selinux_getprocattr), 7274 LSM_HOOK_INIT(setprocattr, selinux_setprocattr), 7275 7276 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel), 7277 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid), 7278 LSM_HOOK_INIT(release_secctx, selinux_release_secctx), 7279 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx), 7280 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx), 7281 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx), 7282 7283 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect), 7284 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send), 7285 7286 LSM_HOOK_INIT(socket_create, selinux_socket_create), 7287 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create), 7288 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair), 7289 LSM_HOOK_INIT(socket_bind, selinux_socket_bind), 7290 LSM_HOOK_INIT(socket_connect, selinux_socket_connect), 7291 LSM_HOOK_INIT(socket_listen, selinux_socket_listen), 7292 LSM_HOOK_INIT(socket_accept, selinux_socket_accept), 7293 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg), 7294 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg), 7295 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname), 7296 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername), 7297 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt), 7298 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt), 7299 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown), 7300 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb), 7301 LSM_HOOK_INIT(socket_getpeersec_stream, 7302 selinux_socket_getpeersec_stream), 7303 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram), 7304 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security), 7305 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security), 7306 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid), 7307 LSM_HOOK_INIT(sock_graft, selinux_sock_graft), 7308 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request), 7309 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone), 7310 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect), 7311 LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established), 7312 LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow), 7313 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request), 7314 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone), 7315 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established), 7316 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet), 7317 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc), 7318 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec), 7319 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow), 7320 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create), 7321 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue), 7322 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach), 7323 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open), 7324 #ifdef CONFIG_SECURITY_INFINIBAND 7325 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access), 7326 LSM_HOOK_INIT(ib_endport_manage_subnet, 7327 selinux_ib_endport_manage_subnet), 7328 #endif 7329 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7330 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free), 7331 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete), 7332 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free), 7333 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete), 7334 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup), 7335 LSM_HOOK_INIT(xfrm_state_pol_flow_match, 7336 selinux_xfrm_state_pol_flow_match), 7337 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session), 7338 #endif 7339 7340 #ifdef CONFIG_KEYS 7341 LSM_HOOK_INIT(key_permission, selinux_key_permission), 7342 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity), 7343 #ifdef CONFIG_KEY_NOTIFICATIONS 7344 LSM_HOOK_INIT(watch_key, selinux_watch_key), 7345 #endif 7346 #endif 7347 7348 #ifdef CONFIG_AUDIT 7349 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known), 7350 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match), 7351 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free), 7352 #endif 7353 7354 #ifdef CONFIG_BPF_SYSCALL 7355 LSM_HOOK_INIT(bpf, selinux_bpf), 7356 LSM_HOOK_INIT(bpf_map, selinux_bpf_map), 7357 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog), 7358 LSM_HOOK_INIT(bpf_map_free, selinux_bpf_map_free), 7359 LSM_HOOK_INIT(bpf_prog_free, selinux_bpf_prog_free), 7360 LSM_HOOK_INIT(bpf_token_free, selinux_bpf_token_free), 7361 #endif 7362 7363 #ifdef CONFIG_PERF_EVENTS 7364 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open), 7365 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read), 7366 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write), 7367 #endif 7368 7369 #ifdef CONFIG_IO_URING 7370 LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds), 7371 LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll), 7372 LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd), 7373 #endif 7374 7375 /* 7376 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE 7377 */ 7378 LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount), 7379 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup), 7380 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param), 7381 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts), 7382 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7383 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone), 7384 #endif 7385 7386 /* 7387 * PUT "ALLOCATING" HOOKS HERE 7388 */ 7389 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security), 7390 LSM_HOOK_INIT(msg_queue_alloc_security, 7391 selinux_msg_queue_alloc_security), 7392 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security), 7393 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security), 7394 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security), 7395 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security), 7396 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx), 7397 LSM_HOOK_INIT(lsmprop_to_secctx, selinux_lsmprop_to_secctx), 7398 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx), 7399 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security), 7400 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security), 7401 #ifdef CONFIG_SECURITY_INFINIBAND 7402 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security), 7403 #endif 7404 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7405 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc), 7406 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc), 7407 LSM_HOOK_INIT(xfrm_state_alloc_acquire, 7408 selinux_xfrm_state_alloc_acquire), 7409 #endif 7410 #ifdef CONFIG_KEYS 7411 LSM_HOOK_INIT(key_alloc, selinux_key_alloc), 7412 #endif 7413 #ifdef CONFIG_AUDIT 7414 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init), 7415 #endif 7416 #ifdef CONFIG_BPF_SYSCALL 7417 LSM_HOOK_INIT(bpf_map_create, selinux_bpf_map_create), 7418 LSM_HOOK_INIT(bpf_prog_load, selinux_bpf_prog_load), 7419 LSM_HOOK_INIT(bpf_token_create, selinux_bpf_token_create), 7420 #endif 7421 #ifdef CONFIG_PERF_EVENTS 7422 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc), 7423 #endif 7424 }; 7425 7426 static __init int selinux_init(void) 7427 { 7428 pr_info("SELinux: Initializing.\n"); 7429 7430 memset(&selinux_state, 0, sizeof(selinux_state)); 7431 enforcing_set(selinux_enforcing_boot); 7432 selinux_avc_init(); 7433 mutex_init(&selinux_state.status_lock); 7434 mutex_init(&selinux_state.policy_mutex); 7435 7436 /* Set the security state for the initial task. */ 7437 cred_init_security(); 7438 7439 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 7440 if (!default_noexec) 7441 pr_notice("SELinux: virtual memory is executable by default\n"); 7442 7443 avc_init(); 7444 7445 avtab_cache_init(); 7446 7447 ebitmap_cache_init(); 7448 7449 hashtab_cache_init(); 7450 7451 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), 7452 &selinux_lsmid); 7453 7454 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) 7455 panic("SELinux: Unable to register AVC netcache callback\n"); 7456 7457 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET)) 7458 panic("SELinux: Unable to register AVC LSM notifier callback\n"); 7459 7460 if (selinux_enforcing_boot) 7461 pr_debug("SELinux: Starting in enforcing mode\n"); 7462 else 7463 pr_debug("SELinux: Starting in permissive mode\n"); 7464 7465 fs_validate_description("selinux", selinux_fs_parameters); 7466 7467 return 0; 7468 } 7469 7470 static void delayed_superblock_init(struct super_block *sb, void *unused) 7471 { 7472 selinux_set_mnt_opts(sb, NULL, 0, NULL); 7473 } 7474 7475 void selinux_complete_init(void) 7476 { 7477 pr_debug("SELinux: Completing initialization.\n"); 7478 7479 /* Set up any superblocks initialized prior to the policy load. */ 7480 pr_debug("SELinux: Setting up existing superblocks.\n"); 7481 iterate_supers(delayed_superblock_init, NULL); 7482 } 7483 7484 /* SELinux requires early initialization in order to label 7485 all processes and objects when they are created. */ 7486 DEFINE_LSM(selinux) = { 7487 .name = "selinux", 7488 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE, 7489 .enabled = &selinux_enabled_boot, 7490 .blobs = &selinux_blob_sizes, 7491 .init = selinux_init, 7492 }; 7493 7494 #if defined(CONFIG_NETFILTER) 7495 static const struct nf_hook_ops selinux_nf_ops[] = { 7496 { 7497 .hook = selinux_ip_postroute, 7498 .pf = NFPROTO_IPV4, 7499 .hooknum = NF_INET_POST_ROUTING, 7500 .priority = NF_IP_PRI_SELINUX_LAST, 7501 }, 7502 { 7503 .hook = selinux_ip_forward, 7504 .pf = NFPROTO_IPV4, 7505 .hooknum = NF_INET_FORWARD, 7506 .priority = NF_IP_PRI_SELINUX_FIRST, 7507 }, 7508 { 7509 .hook = selinux_ip_output, 7510 .pf = NFPROTO_IPV4, 7511 .hooknum = NF_INET_LOCAL_OUT, 7512 .priority = NF_IP_PRI_SELINUX_FIRST, 7513 }, 7514 #if IS_ENABLED(CONFIG_IPV6) 7515 { 7516 .hook = selinux_ip_postroute, 7517 .pf = NFPROTO_IPV6, 7518 .hooknum = NF_INET_POST_ROUTING, 7519 .priority = NF_IP6_PRI_SELINUX_LAST, 7520 }, 7521 { 7522 .hook = selinux_ip_forward, 7523 .pf = NFPROTO_IPV6, 7524 .hooknum = NF_INET_FORWARD, 7525 .priority = NF_IP6_PRI_SELINUX_FIRST, 7526 }, 7527 { 7528 .hook = selinux_ip_output, 7529 .pf = NFPROTO_IPV6, 7530 .hooknum = NF_INET_LOCAL_OUT, 7531 .priority = NF_IP6_PRI_SELINUX_FIRST, 7532 }, 7533 #endif /* IPV6 */ 7534 }; 7535 7536 static int __net_init selinux_nf_register(struct net *net) 7537 { 7538 return nf_register_net_hooks(net, selinux_nf_ops, 7539 ARRAY_SIZE(selinux_nf_ops)); 7540 } 7541 7542 static void __net_exit selinux_nf_unregister(struct net *net) 7543 { 7544 nf_unregister_net_hooks(net, selinux_nf_ops, 7545 ARRAY_SIZE(selinux_nf_ops)); 7546 } 7547 7548 static struct pernet_operations selinux_net_ops = { 7549 .init = selinux_nf_register, 7550 .exit = selinux_nf_unregister, 7551 }; 7552 7553 static int __init selinux_nf_ip_init(void) 7554 { 7555 int err; 7556 7557 if (!selinux_enabled_boot) 7558 return 0; 7559 7560 pr_debug("SELinux: Registering netfilter hooks\n"); 7561 7562 err = register_pernet_subsys(&selinux_net_ops); 7563 if (err) 7564 panic("SELinux: register_pernet_subsys: error %d\n", err); 7565 7566 return 0; 7567 } 7568 __initcall(selinux_nf_ip_init); 7569 #endif /* CONFIG_NETFILTER */ 7570