1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 14 * <dgoeddel@trustedcs.com> 15 * Copyright (C) 2006 Hewlett-Packard Development Company, L.P. 16 * Paul Moore, <paul.moore@hp.com> 17 * 18 * This program is free software; you can redistribute it and/or modify 19 * it under the terms of the GNU General Public License version 2, 20 * as published by the Free Software Foundation. 21 */ 22 23 #include <linux/module.h> 24 #include <linux/init.h> 25 #include <linux/kernel.h> 26 #include <linux/ptrace.h> 27 #include <linux/errno.h> 28 #include <linux/sched.h> 29 #include <linux/security.h> 30 #include <linux/xattr.h> 31 #include <linux/capability.h> 32 #include <linux/unistd.h> 33 #include <linux/mm.h> 34 #include <linux/mman.h> 35 #include <linux/slab.h> 36 #include <linux/pagemap.h> 37 #include <linux/swap.h> 38 #include <linux/spinlock.h> 39 #include <linux/syscalls.h> 40 #include <linux/file.h> 41 #include <linux/namei.h> 42 #include <linux/mount.h> 43 #include <linux/ext2_fs.h> 44 #include <linux/proc_fs.h> 45 #include <linux/kd.h> 46 #include <linux/netfilter_ipv4.h> 47 #include <linux/netfilter_ipv6.h> 48 #include <linux/tty.h> 49 #include <net/icmp.h> 50 #include <net/ip.h> /* for sysctl_local_port_range[] */ 51 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 52 #include <asm/uaccess.h> 53 #include <asm/ioctls.h> 54 #include <linux/bitops.h> 55 #include <linux/interrupt.h> 56 #include <linux/netdevice.h> /* for network interface checks */ 57 #include <linux/netlink.h> 58 #include <linux/tcp.h> 59 #include <linux/udp.h> 60 #include <linux/dccp.h> 61 #include <linux/quota.h> 62 #include <linux/un.h> /* for Unix socket types */ 63 #include <net/af_unix.h> /* for Unix socket types */ 64 #include <linux/parser.h> 65 #include <linux/nfs_mount.h> 66 #include <net/ipv6.h> 67 #include <linux/hugetlb.h> 68 #include <linux/personality.h> 69 #include <linux/sysctl.h> 70 #include <linux/audit.h> 71 #include <linux/string.h> 72 #include <linux/selinux.h> 73 #include <linux/mutex.h> 74 75 #include "avc.h" 76 #include "objsec.h" 77 #include "netif.h" 78 #include "xfrm.h" 79 #include "netlabel.h" 80 81 #define XATTR_SELINUX_SUFFIX "selinux" 82 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX 83 84 extern unsigned int policydb_loaded_version; 85 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm); 86 extern int selinux_compat_net; 87 88 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 89 int selinux_enforcing = 0; 90 91 static int __init enforcing_setup(char *str) 92 { 93 selinux_enforcing = simple_strtol(str,NULL,0); 94 return 1; 95 } 96 __setup("enforcing=", enforcing_setup); 97 #endif 98 99 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 100 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 101 102 static int __init selinux_enabled_setup(char *str) 103 { 104 selinux_enabled = simple_strtol(str, NULL, 0); 105 return 1; 106 } 107 __setup("selinux=", selinux_enabled_setup); 108 #else 109 int selinux_enabled = 1; 110 #endif 111 112 /* Original (dummy) security module. */ 113 static struct security_operations *original_ops = NULL; 114 115 /* Minimal support for a secondary security module, 116 just to allow the use of the dummy or capability modules. 117 The owlsm module can alternatively be used as a secondary 118 module as long as CONFIG_OWLSM_FD is not enabled. */ 119 static struct security_operations *secondary_ops = NULL; 120 121 /* Lists of inode and superblock security structures initialized 122 before the policy was loaded. */ 123 static LIST_HEAD(superblock_security_head); 124 static DEFINE_SPINLOCK(sb_security_lock); 125 126 static struct kmem_cache *sel_inode_cache; 127 128 /* Return security context for a given sid or just the context 129 length if the buffer is null or length is 0 */ 130 static int selinux_getsecurity(u32 sid, void *buffer, size_t size) 131 { 132 char *context; 133 unsigned len; 134 int rc; 135 136 rc = security_sid_to_context(sid, &context, &len); 137 if (rc) 138 return rc; 139 140 if (!buffer || !size) 141 goto getsecurity_exit; 142 143 if (size < len) { 144 len = -ERANGE; 145 goto getsecurity_exit; 146 } 147 memcpy(buffer, context, len); 148 149 getsecurity_exit: 150 kfree(context); 151 return len; 152 } 153 154 /* Allocate and free functions for each kind of security blob. */ 155 156 static int task_alloc_security(struct task_struct *task) 157 { 158 struct task_security_struct *tsec; 159 160 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 161 if (!tsec) 162 return -ENOMEM; 163 164 tsec->task = task; 165 tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED; 166 task->security = tsec; 167 168 return 0; 169 } 170 171 static void task_free_security(struct task_struct *task) 172 { 173 struct task_security_struct *tsec = task->security; 174 task->security = NULL; 175 kfree(tsec); 176 } 177 178 static int inode_alloc_security(struct inode *inode) 179 { 180 struct task_security_struct *tsec = current->security; 181 struct inode_security_struct *isec; 182 183 isec = kmem_cache_zalloc(sel_inode_cache, GFP_KERNEL); 184 if (!isec) 185 return -ENOMEM; 186 187 mutex_init(&isec->lock); 188 INIT_LIST_HEAD(&isec->list); 189 isec->inode = inode; 190 isec->sid = SECINITSID_UNLABELED; 191 isec->sclass = SECCLASS_FILE; 192 isec->task_sid = tsec->sid; 193 inode->i_security = isec; 194 195 return 0; 196 } 197 198 static void inode_free_security(struct inode *inode) 199 { 200 struct inode_security_struct *isec = inode->i_security; 201 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 202 203 spin_lock(&sbsec->isec_lock); 204 if (!list_empty(&isec->list)) 205 list_del_init(&isec->list); 206 spin_unlock(&sbsec->isec_lock); 207 208 inode->i_security = NULL; 209 kmem_cache_free(sel_inode_cache, isec); 210 } 211 212 static int file_alloc_security(struct file *file) 213 { 214 struct task_security_struct *tsec = current->security; 215 struct file_security_struct *fsec; 216 217 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 218 if (!fsec) 219 return -ENOMEM; 220 221 fsec->file = file; 222 fsec->sid = tsec->sid; 223 fsec->fown_sid = tsec->sid; 224 file->f_security = fsec; 225 226 return 0; 227 } 228 229 static void file_free_security(struct file *file) 230 { 231 struct file_security_struct *fsec = file->f_security; 232 file->f_security = NULL; 233 kfree(fsec); 234 } 235 236 static int superblock_alloc_security(struct super_block *sb) 237 { 238 struct superblock_security_struct *sbsec; 239 240 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 241 if (!sbsec) 242 return -ENOMEM; 243 244 mutex_init(&sbsec->lock); 245 INIT_LIST_HEAD(&sbsec->list); 246 INIT_LIST_HEAD(&sbsec->isec_head); 247 spin_lock_init(&sbsec->isec_lock); 248 sbsec->sb = sb; 249 sbsec->sid = SECINITSID_UNLABELED; 250 sbsec->def_sid = SECINITSID_FILE; 251 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 252 sb->s_security = sbsec; 253 254 return 0; 255 } 256 257 static void superblock_free_security(struct super_block *sb) 258 { 259 struct superblock_security_struct *sbsec = sb->s_security; 260 261 spin_lock(&sb_security_lock); 262 if (!list_empty(&sbsec->list)) 263 list_del_init(&sbsec->list); 264 spin_unlock(&sb_security_lock); 265 266 sb->s_security = NULL; 267 kfree(sbsec); 268 } 269 270 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority) 271 { 272 struct sk_security_struct *ssec; 273 274 ssec = kzalloc(sizeof(*ssec), priority); 275 if (!ssec) 276 return -ENOMEM; 277 278 ssec->sk = sk; 279 ssec->peer_sid = SECINITSID_UNLABELED; 280 ssec->sid = SECINITSID_UNLABELED; 281 sk->sk_security = ssec; 282 283 selinux_netlbl_sk_security_init(ssec, family); 284 285 return 0; 286 } 287 288 static void sk_free_security(struct sock *sk) 289 { 290 struct sk_security_struct *ssec = sk->sk_security; 291 292 sk->sk_security = NULL; 293 kfree(ssec); 294 } 295 296 /* The security server must be initialized before 297 any labeling or access decisions can be provided. */ 298 extern int ss_initialized; 299 300 /* The file system's label must be initialized prior to use. */ 301 302 static char *labeling_behaviors[6] = { 303 "uses xattr", 304 "uses transition SIDs", 305 "uses task SIDs", 306 "uses genfs_contexts", 307 "not configured for labeling", 308 "uses mountpoint labeling", 309 }; 310 311 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 312 313 static inline int inode_doinit(struct inode *inode) 314 { 315 return inode_doinit_with_dentry(inode, NULL); 316 } 317 318 enum { 319 Opt_context = 1, 320 Opt_fscontext = 2, 321 Opt_defcontext = 4, 322 Opt_rootcontext = 8, 323 }; 324 325 static match_table_t tokens = { 326 {Opt_context, "context=%s"}, 327 {Opt_fscontext, "fscontext=%s"}, 328 {Opt_defcontext, "defcontext=%s"}, 329 {Opt_rootcontext, "rootcontext=%s"}, 330 }; 331 332 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 333 334 static int may_context_mount_sb_relabel(u32 sid, 335 struct superblock_security_struct *sbsec, 336 struct task_security_struct *tsec) 337 { 338 int rc; 339 340 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 341 FILESYSTEM__RELABELFROM, NULL); 342 if (rc) 343 return rc; 344 345 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 346 FILESYSTEM__RELABELTO, NULL); 347 return rc; 348 } 349 350 static int may_context_mount_inode_relabel(u32 sid, 351 struct superblock_security_struct *sbsec, 352 struct task_security_struct *tsec) 353 { 354 int rc; 355 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 356 FILESYSTEM__RELABELFROM, NULL); 357 if (rc) 358 return rc; 359 360 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 361 FILESYSTEM__ASSOCIATE, NULL); 362 return rc; 363 } 364 365 static int try_context_mount(struct super_block *sb, void *data) 366 { 367 char *context = NULL, *defcontext = NULL; 368 char *fscontext = NULL, *rootcontext = NULL; 369 const char *name; 370 u32 sid; 371 int alloc = 0, rc = 0, seen = 0; 372 struct task_security_struct *tsec = current->security; 373 struct superblock_security_struct *sbsec = sb->s_security; 374 375 if (!data) 376 goto out; 377 378 name = sb->s_type->name; 379 380 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) { 381 382 /* NFS we understand. */ 383 if (!strcmp(name, "nfs")) { 384 struct nfs_mount_data *d = data; 385 386 if (d->version < NFS_MOUNT_VERSION) 387 goto out; 388 389 if (d->context[0]) { 390 context = d->context; 391 seen |= Opt_context; 392 } 393 } else 394 goto out; 395 396 } else { 397 /* Standard string-based options. */ 398 char *p, *options = data; 399 400 while ((p = strsep(&options, "|")) != NULL) { 401 int token; 402 substring_t args[MAX_OPT_ARGS]; 403 404 if (!*p) 405 continue; 406 407 token = match_token(p, tokens, args); 408 409 switch (token) { 410 case Opt_context: 411 if (seen & (Opt_context|Opt_defcontext)) { 412 rc = -EINVAL; 413 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 414 goto out_free; 415 } 416 context = match_strdup(&args[0]); 417 if (!context) { 418 rc = -ENOMEM; 419 goto out_free; 420 } 421 if (!alloc) 422 alloc = 1; 423 seen |= Opt_context; 424 break; 425 426 case Opt_fscontext: 427 if (seen & Opt_fscontext) { 428 rc = -EINVAL; 429 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 430 goto out_free; 431 } 432 fscontext = match_strdup(&args[0]); 433 if (!fscontext) { 434 rc = -ENOMEM; 435 goto out_free; 436 } 437 if (!alloc) 438 alloc = 1; 439 seen |= Opt_fscontext; 440 break; 441 442 case Opt_rootcontext: 443 if (seen & Opt_rootcontext) { 444 rc = -EINVAL; 445 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 446 goto out_free; 447 } 448 rootcontext = match_strdup(&args[0]); 449 if (!rootcontext) { 450 rc = -ENOMEM; 451 goto out_free; 452 } 453 if (!alloc) 454 alloc = 1; 455 seen |= Opt_rootcontext; 456 break; 457 458 case Opt_defcontext: 459 if (sbsec->behavior != SECURITY_FS_USE_XATTR) { 460 rc = -EINVAL; 461 printk(KERN_WARNING "SELinux: " 462 "defcontext option is invalid " 463 "for this filesystem type\n"); 464 goto out_free; 465 } 466 if (seen & (Opt_context|Opt_defcontext)) { 467 rc = -EINVAL; 468 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 469 goto out_free; 470 } 471 defcontext = match_strdup(&args[0]); 472 if (!defcontext) { 473 rc = -ENOMEM; 474 goto out_free; 475 } 476 if (!alloc) 477 alloc = 1; 478 seen |= Opt_defcontext; 479 break; 480 481 default: 482 rc = -EINVAL; 483 printk(KERN_WARNING "SELinux: unknown mount " 484 "option\n"); 485 goto out_free; 486 487 } 488 } 489 } 490 491 if (!seen) 492 goto out; 493 494 /* sets the context of the superblock for the fs being mounted. */ 495 if (fscontext) { 496 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid); 497 if (rc) { 498 printk(KERN_WARNING "SELinux: security_context_to_sid" 499 "(%s) failed for (dev %s, type %s) errno=%d\n", 500 fscontext, sb->s_id, name, rc); 501 goto out_free; 502 } 503 504 rc = may_context_mount_sb_relabel(sid, sbsec, tsec); 505 if (rc) 506 goto out_free; 507 508 sbsec->sid = sid; 509 } 510 511 /* 512 * Switch to using mount point labeling behavior. 513 * sets the label used on all file below the mountpoint, and will set 514 * the superblock context if not already set. 515 */ 516 if (context) { 517 rc = security_context_to_sid(context, strlen(context), &sid); 518 if (rc) { 519 printk(KERN_WARNING "SELinux: security_context_to_sid" 520 "(%s) failed for (dev %s, type %s) errno=%d\n", 521 context, sb->s_id, name, rc); 522 goto out_free; 523 } 524 525 if (!fscontext) { 526 rc = may_context_mount_sb_relabel(sid, sbsec, tsec); 527 if (rc) 528 goto out_free; 529 sbsec->sid = sid; 530 } else { 531 rc = may_context_mount_inode_relabel(sid, sbsec, tsec); 532 if (rc) 533 goto out_free; 534 } 535 sbsec->mntpoint_sid = sid; 536 537 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 538 } 539 540 if (rootcontext) { 541 struct inode *inode = sb->s_root->d_inode; 542 struct inode_security_struct *isec = inode->i_security; 543 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid); 544 if (rc) { 545 printk(KERN_WARNING "SELinux: security_context_to_sid" 546 "(%s) failed for (dev %s, type %s) errno=%d\n", 547 rootcontext, sb->s_id, name, rc); 548 goto out_free; 549 } 550 551 rc = may_context_mount_inode_relabel(sid, sbsec, tsec); 552 if (rc) 553 goto out_free; 554 555 isec->sid = sid; 556 isec->initialized = 1; 557 } 558 559 if (defcontext) { 560 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid); 561 if (rc) { 562 printk(KERN_WARNING "SELinux: security_context_to_sid" 563 "(%s) failed for (dev %s, type %s) errno=%d\n", 564 defcontext, sb->s_id, name, rc); 565 goto out_free; 566 } 567 568 if (sid == sbsec->def_sid) 569 goto out_free; 570 571 rc = may_context_mount_inode_relabel(sid, sbsec, tsec); 572 if (rc) 573 goto out_free; 574 575 sbsec->def_sid = sid; 576 } 577 578 out_free: 579 if (alloc) { 580 kfree(context); 581 kfree(defcontext); 582 kfree(fscontext); 583 kfree(rootcontext); 584 } 585 out: 586 return rc; 587 } 588 589 static int superblock_doinit(struct super_block *sb, void *data) 590 { 591 struct superblock_security_struct *sbsec = sb->s_security; 592 struct dentry *root = sb->s_root; 593 struct inode *inode = root->d_inode; 594 int rc = 0; 595 596 mutex_lock(&sbsec->lock); 597 if (sbsec->initialized) 598 goto out; 599 600 if (!ss_initialized) { 601 /* Defer initialization until selinux_complete_init, 602 after the initial policy is loaded and the security 603 server is ready to handle calls. */ 604 spin_lock(&sb_security_lock); 605 if (list_empty(&sbsec->list)) 606 list_add(&sbsec->list, &superblock_security_head); 607 spin_unlock(&sb_security_lock); 608 goto out; 609 } 610 611 /* Determine the labeling behavior to use for this filesystem type. */ 612 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid); 613 if (rc) { 614 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n", 615 __FUNCTION__, sb->s_type->name, rc); 616 goto out; 617 } 618 619 rc = try_context_mount(sb, data); 620 if (rc) 621 goto out; 622 623 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 624 /* Make sure that the xattr handler exists and that no 625 error other than -ENODATA is returned by getxattr on 626 the root directory. -ENODATA is ok, as this may be 627 the first boot of the SELinux kernel before we have 628 assigned xattr values to the filesystem. */ 629 if (!inode->i_op->getxattr) { 630 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 631 "xattr support\n", sb->s_id, sb->s_type->name); 632 rc = -EOPNOTSUPP; 633 goto out; 634 } 635 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 636 if (rc < 0 && rc != -ENODATA) { 637 if (rc == -EOPNOTSUPP) 638 printk(KERN_WARNING "SELinux: (dev %s, type " 639 "%s) has no security xattr handler\n", 640 sb->s_id, sb->s_type->name); 641 else 642 printk(KERN_WARNING "SELinux: (dev %s, type " 643 "%s) getxattr errno %d\n", sb->s_id, 644 sb->s_type->name, -rc); 645 goto out; 646 } 647 } 648 649 if (strcmp(sb->s_type->name, "proc") == 0) 650 sbsec->proc = 1; 651 652 sbsec->initialized = 1; 653 654 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) { 655 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 656 sb->s_id, sb->s_type->name); 657 } 658 else { 659 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n", 660 sb->s_id, sb->s_type->name, 661 labeling_behaviors[sbsec->behavior-1]); 662 } 663 664 /* Initialize the root inode. */ 665 rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root); 666 667 /* Initialize any other inodes associated with the superblock, e.g. 668 inodes created prior to initial policy load or inodes created 669 during get_sb by a pseudo filesystem that directly 670 populates itself. */ 671 spin_lock(&sbsec->isec_lock); 672 next_inode: 673 if (!list_empty(&sbsec->isec_head)) { 674 struct inode_security_struct *isec = 675 list_entry(sbsec->isec_head.next, 676 struct inode_security_struct, list); 677 struct inode *inode = isec->inode; 678 spin_unlock(&sbsec->isec_lock); 679 inode = igrab(inode); 680 if (inode) { 681 if (!IS_PRIVATE (inode)) 682 inode_doinit(inode); 683 iput(inode); 684 } 685 spin_lock(&sbsec->isec_lock); 686 list_del_init(&isec->list); 687 goto next_inode; 688 } 689 spin_unlock(&sbsec->isec_lock); 690 out: 691 mutex_unlock(&sbsec->lock); 692 return rc; 693 } 694 695 static inline u16 inode_mode_to_security_class(umode_t mode) 696 { 697 switch (mode & S_IFMT) { 698 case S_IFSOCK: 699 return SECCLASS_SOCK_FILE; 700 case S_IFLNK: 701 return SECCLASS_LNK_FILE; 702 case S_IFREG: 703 return SECCLASS_FILE; 704 case S_IFBLK: 705 return SECCLASS_BLK_FILE; 706 case S_IFDIR: 707 return SECCLASS_DIR; 708 case S_IFCHR: 709 return SECCLASS_CHR_FILE; 710 case S_IFIFO: 711 return SECCLASS_FIFO_FILE; 712 713 } 714 715 return SECCLASS_FILE; 716 } 717 718 static inline int default_protocol_stream(int protocol) 719 { 720 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 721 } 722 723 static inline int default_protocol_dgram(int protocol) 724 { 725 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 726 } 727 728 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 729 { 730 switch (family) { 731 case PF_UNIX: 732 switch (type) { 733 case SOCK_STREAM: 734 case SOCK_SEQPACKET: 735 return SECCLASS_UNIX_STREAM_SOCKET; 736 case SOCK_DGRAM: 737 return SECCLASS_UNIX_DGRAM_SOCKET; 738 } 739 break; 740 case PF_INET: 741 case PF_INET6: 742 switch (type) { 743 case SOCK_STREAM: 744 if (default_protocol_stream(protocol)) 745 return SECCLASS_TCP_SOCKET; 746 else 747 return SECCLASS_RAWIP_SOCKET; 748 case SOCK_DGRAM: 749 if (default_protocol_dgram(protocol)) 750 return SECCLASS_UDP_SOCKET; 751 else 752 return SECCLASS_RAWIP_SOCKET; 753 case SOCK_DCCP: 754 return SECCLASS_DCCP_SOCKET; 755 default: 756 return SECCLASS_RAWIP_SOCKET; 757 } 758 break; 759 case PF_NETLINK: 760 switch (protocol) { 761 case NETLINK_ROUTE: 762 return SECCLASS_NETLINK_ROUTE_SOCKET; 763 case NETLINK_FIREWALL: 764 return SECCLASS_NETLINK_FIREWALL_SOCKET; 765 case NETLINK_INET_DIAG: 766 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 767 case NETLINK_NFLOG: 768 return SECCLASS_NETLINK_NFLOG_SOCKET; 769 case NETLINK_XFRM: 770 return SECCLASS_NETLINK_XFRM_SOCKET; 771 case NETLINK_SELINUX: 772 return SECCLASS_NETLINK_SELINUX_SOCKET; 773 case NETLINK_AUDIT: 774 return SECCLASS_NETLINK_AUDIT_SOCKET; 775 case NETLINK_IP6_FW: 776 return SECCLASS_NETLINK_IP6FW_SOCKET; 777 case NETLINK_DNRTMSG: 778 return SECCLASS_NETLINK_DNRT_SOCKET; 779 case NETLINK_KOBJECT_UEVENT: 780 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 781 default: 782 return SECCLASS_NETLINK_SOCKET; 783 } 784 case PF_PACKET: 785 return SECCLASS_PACKET_SOCKET; 786 case PF_KEY: 787 return SECCLASS_KEY_SOCKET; 788 case PF_APPLETALK: 789 return SECCLASS_APPLETALK_SOCKET; 790 } 791 792 return SECCLASS_SOCKET; 793 } 794 795 #ifdef CONFIG_PROC_FS 796 static int selinux_proc_get_sid(struct proc_dir_entry *de, 797 u16 tclass, 798 u32 *sid) 799 { 800 int buflen, rc; 801 char *buffer, *path, *end; 802 803 buffer = (char*)__get_free_page(GFP_KERNEL); 804 if (!buffer) 805 return -ENOMEM; 806 807 buflen = PAGE_SIZE; 808 end = buffer+buflen; 809 *--end = '\0'; 810 buflen--; 811 path = end-1; 812 *path = '/'; 813 while (de && de != de->parent) { 814 buflen -= de->namelen + 1; 815 if (buflen < 0) 816 break; 817 end -= de->namelen; 818 memcpy(end, de->name, de->namelen); 819 *--end = '/'; 820 path = end; 821 de = de->parent; 822 } 823 rc = security_genfs_sid("proc", path, tclass, sid); 824 free_page((unsigned long)buffer); 825 return rc; 826 } 827 #else 828 static int selinux_proc_get_sid(struct proc_dir_entry *de, 829 u16 tclass, 830 u32 *sid) 831 { 832 return -EINVAL; 833 } 834 #endif 835 836 /* The inode's security attributes must be initialized before first use. */ 837 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 838 { 839 struct superblock_security_struct *sbsec = NULL; 840 struct inode_security_struct *isec = inode->i_security; 841 u32 sid; 842 struct dentry *dentry; 843 #define INITCONTEXTLEN 255 844 char *context = NULL; 845 unsigned len = 0; 846 int rc = 0; 847 848 if (isec->initialized) 849 goto out; 850 851 mutex_lock(&isec->lock); 852 if (isec->initialized) 853 goto out_unlock; 854 855 sbsec = inode->i_sb->s_security; 856 if (!sbsec->initialized) { 857 /* Defer initialization until selinux_complete_init, 858 after the initial policy is loaded and the security 859 server is ready to handle calls. */ 860 spin_lock(&sbsec->isec_lock); 861 if (list_empty(&isec->list)) 862 list_add(&isec->list, &sbsec->isec_head); 863 spin_unlock(&sbsec->isec_lock); 864 goto out_unlock; 865 } 866 867 switch (sbsec->behavior) { 868 case SECURITY_FS_USE_XATTR: 869 if (!inode->i_op->getxattr) { 870 isec->sid = sbsec->def_sid; 871 break; 872 } 873 874 /* Need a dentry, since the xattr API requires one. 875 Life would be simpler if we could just pass the inode. */ 876 if (opt_dentry) { 877 /* Called from d_instantiate or d_splice_alias. */ 878 dentry = dget(opt_dentry); 879 } else { 880 /* Called from selinux_complete_init, try to find a dentry. */ 881 dentry = d_find_alias(inode); 882 } 883 if (!dentry) { 884 printk(KERN_WARNING "%s: no dentry for dev=%s " 885 "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id, 886 inode->i_ino); 887 goto out_unlock; 888 } 889 890 len = INITCONTEXTLEN; 891 context = kmalloc(len, GFP_KERNEL); 892 if (!context) { 893 rc = -ENOMEM; 894 dput(dentry); 895 goto out_unlock; 896 } 897 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 898 context, len); 899 if (rc == -ERANGE) { 900 /* Need a larger buffer. Query for the right size. */ 901 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 902 NULL, 0); 903 if (rc < 0) { 904 dput(dentry); 905 goto out_unlock; 906 } 907 kfree(context); 908 len = rc; 909 context = kmalloc(len, GFP_KERNEL); 910 if (!context) { 911 rc = -ENOMEM; 912 dput(dentry); 913 goto out_unlock; 914 } 915 rc = inode->i_op->getxattr(dentry, 916 XATTR_NAME_SELINUX, 917 context, len); 918 } 919 dput(dentry); 920 if (rc < 0) { 921 if (rc != -ENODATA) { 922 printk(KERN_WARNING "%s: getxattr returned " 923 "%d for dev=%s ino=%ld\n", __FUNCTION__, 924 -rc, inode->i_sb->s_id, inode->i_ino); 925 kfree(context); 926 goto out_unlock; 927 } 928 /* Map ENODATA to the default file SID */ 929 sid = sbsec->def_sid; 930 rc = 0; 931 } else { 932 rc = security_context_to_sid_default(context, rc, &sid, 933 sbsec->def_sid); 934 if (rc) { 935 printk(KERN_WARNING "%s: context_to_sid(%s) " 936 "returned %d for dev=%s ino=%ld\n", 937 __FUNCTION__, context, -rc, 938 inode->i_sb->s_id, inode->i_ino); 939 kfree(context); 940 /* Leave with the unlabeled SID */ 941 rc = 0; 942 break; 943 } 944 } 945 kfree(context); 946 isec->sid = sid; 947 break; 948 case SECURITY_FS_USE_TASK: 949 isec->sid = isec->task_sid; 950 break; 951 case SECURITY_FS_USE_TRANS: 952 /* Default to the fs SID. */ 953 isec->sid = sbsec->sid; 954 955 /* Try to obtain a transition SID. */ 956 isec->sclass = inode_mode_to_security_class(inode->i_mode); 957 rc = security_transition_sid(isec->task_sid, 958 sbsec->sid, 959 isec->sclass, 960 &sid); 961 if (rc) 962 goto out_unlock; 963 isec->sid = sid; 964 break; 965 case SECURITY_FS_USE_MNTPOINT: 966 isec->sid = sbsec->mntpoint_sid; 967 break; 968 default: 969 /* Default to the fs superblock SID. */ 970 isec->sid = sbsec->sid; 971 972 if (sbsec->proc) { 973 struct proc_inode *proci = PROC_I(inode); 974 if (proci->pde) { 975 isec->sclass = inode_mode_to_security_class(inode->i_mode); 976 rc = selinux_proc_get_sid(proci->pde, 977 isec->sclass, 978 &sid); 979 if (rc) 980 goto out_unlock; 981 isec->sid = sid; 982 } 983 } 984 break; 985 } 986 987 isec->initialized = 1; 988 989 out_unlock: 990 mutex_unlock(&isec->lock); 991 out: 992 if (isec->sclass == SECCLASS_FILE) 993 isec->sclass = inode_mode_to_security_class(inode->i_mode); 994 return rc; 995 } 996 997 /* Convert a Linux signal to an access vector. */ 998 static inline u32 signal_to_av(int sig) 999 { 1000 u32 perm = 0; 1001 1002 switch (sig) { 1003 case SIGCHLD: 1004 /* Commonly granted from child to parent. */ 1005 perm = PROCESS__SIGCHLD; 1006 break; 1007 case SIGKILL: 1008 /* Cannot be caught or ignored */ 1009 perm = PROCESS__SIGKILL; 1010 break; 1011 case SIGSTOP: 1012 /* Cannot be caught or ignored */ 1013 perm = PROCESS__SIGSTOP; 1014 break; 1015 default: 1016 /* All other signals. */ 1017 perm = PROCESS__SIGNAL; 1018 break; 1019 } 1020 1021 return perm; 1022 } 1023 1024 /* Check permission betweeen a pair of tasks, e.g. signal checks, 1025 fork check, ptrace check, etc. */ 1026 static int task_has_perm(struct task_struct *tsk1, 1027 struct task_struct *tsk2, 1028 u32 perms) 1029 { 1030 struct task_security_struct *tsec1, *tsec2; 1031 1032 tsec1 = tsk1->security; 1033 tsec2 = tsk2->security; 1034 return avc_has_perm(tsec1->sid, tsec2->sid, 1035 SECCLASS_PROCESS, perms, NULL); 1036 } 1037 1038 /* Check whether a task is allowed to use a capability. */ 1039 static int task_has_capability(struct task_struct *tsk, 1040 int cap) 1041 { 1042 struct task_security_struct *tsec; 1043 struct avc_audit_data ad; 1044 1045 tsec = tsk->security; 1046 1047 AVC_AUDIT_DATA_INIT(&ad,CAP); 1048 ad.tsk = tsk; 1049 ad.u.cap = cap; 1050 1051 return avc_has_perm(tsec->sid, tsec->sid, 1052 SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad); 1053 } 1054 1055 /* Check whether a task is allowed to use a system operation. */ 1056 static int task_has_system(struct task_struct *tsk, 1057 u32 perms) 1058 { 1059 struct task_security_struct *tsec; 1060 1061 tsec = tsk->security; 1062 1063 return avc_has_perm(tsec->sid, SECINITSID_KERNEL, 1064 SECCLASS_SYSTEM, perms, NULL); 1065 } 1066 1067 /* Check whether a task has a particular permission to an inode. 1068 The 'adp' parameter is optional and allows other audit 1069 data to be passed (e.g. the dentry). */ 1070 static int inode_has_perm(struct task_struct *tsk, 1071 struct inode *inode, 1072 u32 perms, 1073 struct avc_audit_data *adp) 1074 { 1075 struct task_security_struct *tsec; 1076 struct inode_security_struct *isec; 1077 struct avc_audit_data ad; 1078 1079 if (unlikely (IS_PRIVATE (inode))) 1080 return 0; 1081 1082 tsec = tsk->security; 1083 isec = inode->i_security; 1084 1085 if (!adp) { 1086 adp = &ad; 1087 AVC_AUDIT_DATA_INIT(&ad, FS); 1088 ad.u.fs.inode = inode; 1089 } 1090 1091 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp); 1092 } 1093 1094 /* Same as inode_has_perm, but pass explicit audit data containing 1095 the dentry to help the auditing code to more easily generate the 1096 pathname if needed. */ 1097 static inline int dentry_has_perm(struct task_struct *tsk, 1098 struct vfsmount *mnt, 1099 struct dentry *dentry, 1100 u32 av) 1101 { 1102 struct inode *inode = dentry->d_inode; 1103 struct avc_audit_data ad; 1104 AVC_AUDIT_DATA_INIT(&ad,FS); 1105 ad.u.fs.mnt = mnt; 1106 ad.u.fs.dentry = dentry; 1107 return inode_has_perm(tsk, inode, av, &ad); 1108 } 1109 1110 /* Check whether a task can use an open file descriptor to 1111 access an inode in a given way. Check access to the 1112 descriptor itself, and then use dentry_has_perm to 1113 check a particular permission to the file. 1114 Access to the descriptor is implicitly granted if it 1115 has the same SID as the process. If av is zero, then 1116 access to the file is not checked, e.g. for cases 1117 where only the descriptor is affected like seek. */ 1118 static int file_has_perm(struct task_struct *tsk, 1119 struct file *file, 1120 u32 av) 1121 { 1122 struct task_security_struct *tsec = tsk->security; 1123 struct file_security_struct *fsec = file->f_security; 1124 struct vfsmount *mnt = file->f_path.mnt; 1125 struct dentry *dentry = file->f_path.dentry; 1126 struct inode *inode = dentry->d_inode; 1127 struct avc_audit_data ad; 1128 int rc; 1129 1130 AVC_AUDIT_DATA_INIT(&ad, FS); 1131 ad.u.fs.mnt = mnt; 1132 ad.u.fs.dentry = dentry; 1133 1134 if (tsec->sid != fsec->sid) { 1135 rc = avc_has_perm(tsec->sid, fsec->sid, 1136 SECCLASS_FD, 1137 FD__USE, 1138 &ad); 1139 if (rc) 1140 return rc; 1141 } 1142 1143 /* av is zero if only checking access to the descriptor. */ 1144 if (av) 1145 return inode_has_perm(tsk, inode, av, &ad); 1146 1147 return 0; 1148 } 1149 1150 /* Check whether a task can create a file. */ 1151 static int may_create(struct inode *dir, 1152 struct dentry *dentry, 1153 u16 tclass) 1154 { 1155 struct task_security_struct *tsec; 1156 struct inode_security_struct *dsec; 1157 struct superblock_security_struct *sbsec; 1158 u32 newsid; 1159 struct avc_audit_data ad; 1160 int rc; 1161 1162 tsec = current->security; 1163 dsec = dir->i_security; 1164 sbsec = dir->i_sb->s_security; 1165 1166 AVC_AUDIT_DATA_INIT(&ad, FS); 1167 ad.u.fs.dentry = dentry; 1168 1169 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, 1170 DIR__ADD_NAME | DIR__SEARCH, 1171 &ad); 1172 if (rc) 1173 return rc; 1174 1175 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 1176 newsid = tsec->create_sid; 1177 } else { 1178 rc = security_transition_sid(tsec->sid, dsec->sid, tclass, 1179 &newsid); 1180 if (rc) 1181 return rc; 1182 } 1183 1184 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad); 1185 if (rc) 1186 return rc; 1187 1188 return avc_has_perm(newsid, sbsec->sid, 1189 SECCLASS_FILESYSTEM, 1190 FILESYSTEM__ASSOCIATE, &ad); 1191 } 1192 1193 /* Check whether a task can create a key. */ 1194 static int may_create_key(u32 ksid, 1195 struct task_struct *ctx) 1196 { 1197 struct task_security_struct *tsec; 1198 1199 tsec = ctx->security; 1200 1201 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1202 } 1203 1204 #define MAY_LINK 0 1205 #define MAY_UNLINK 1 1206 #define MAY_RMDIR 2 1207 1208 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1209 static int may_link(struct inode *dir, 1210 struct dentry *dentry, 1211 int kind) 1212 1213 { 1214 struct task_security_struct *tsec; 1215 struct inode_security_struct *dsec, *isec; 1216 struct avc_audit_data ad; 1217 u32 av; 1218 int rc; 1219 1220 tsec = current->security; 1221 dsec = dir->i_security; 1222 isec = dentry->d_inode->i_security; 1223 1224 AVC_AUDIT_DATA_INIT(&ad, FS); 1225 ad.u.fs.dentry = dentry; 1226 1227 av = DIR__SEARCH; 1228 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1229 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad); 1230 if (rc) 1231 return rc; 1232 1233 switch (kind) { 1234 case MAY_LINK: 1235 av = FILE__LINK; 1236 break; 1237 case MAY_UNLINK: 1238 av = FILE__UNLINK; 1239 break; 1240 case MAY_RMDIR: 1241 av = DIR__RMDIR; 1242 break; 1243 default: 1244 printk(KERN_WARNING "may_link: unrecognized kind %d\n", kind); 1245 return 0; 1246 } 1247 1248 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad); 1249 return rc; 1250 } 1251 1252 static inline int may_rename(struct inode *old_dir, 1253 struct dentry *old_dentry, 1254 struct inode *new_dir, 1255 struct dentry *new_dentry) 1256 { 1257 struct task_security_struct *tsec; 1258 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1259 struct avc_audit_data ad; 1260 u32 av; 1261 int old_is_dir, new_is_dir; 1262 int rc; 1263 1264 tsec = current->security; 1265 old_dsec = old_dir->i_security; 1266 old_isec = old_dentry->d_inode->i_security; 1267 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 1268 new_dsec = new_dir->i_security; 1269 1270 AVC_AUDIT_DATA_INIT(&ad, FS); 1271 1272 ad.u.fs.dentry = old_dentry; 1273 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR, 1274 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1275 if (rc) 1276 return rc; 1277 rc = avc_has_perm(tsec->sid, old_isec->sid, 1278 old_isec->sclass, FILE__RENAME, &ad); 1279 if (rc) 1280 return rc; 1281 if (old_is_dir && new_dir != old_dir) { 1282 rc = avc_has_perm(tsec->sid, old_isec->sid, 1283 old_isec->sclass, DIR__REPARENT, &ad); 1284 if (rc) 1285 return rc; 1286 } 1287 1288 ad.u.fs.dentry = new_dentry; 1289 av = DIR__ADD_NAME | DIR__SEARCH; 1290 if (new_dentry->d_inode) 1291 av |= DIR__REMOVE_NAME; 1292 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1293 if (rc) 1294 return rc; 1295 if (new_dentry->d_inode) { 1296 new_isec = new_dentry->d_inode->i_security; 1297 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode); 1298 rc = avc_has_perm(tsec->sid, new_isec->sid, 1299 new_isec->sclass, 1300 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1301 if (rc) 1302 return rc; 1303 } 1304 1305 return 0; 1306 } 1307 1308 /* Check whether a task can perform a filesystem operation. */ 1309 static int superblock_has_perm(struct task_struct *tsk, 1310 struct super_block *sb, 1311 u32 perms, 1312 struct avc_audit_data *ad) 1313 { 1314 struct task_security_struct *tsec; 1315 struct superblock_security_struct *sbsec; 1316 1317 tsec = tsk->security; 1318 sbsec = sb->s_security; 1319 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 1320 perms, ad); 1321 } 1322 1323 /* Convert a Linux mode and permission mask to an access vector. */ 1324 static inline u32 file_mask_to_av(int mode, int mask) 1325 { 1326 u32 av = 0; 1327 1328 if ((mode & S_IFMT) != S_IFDIR) { 1329 if (mask & MAY_EXEC) 1330 av |= FILE__EXECUTE; 1331 if (mask & MAY_READ) 1332 av |= FILE__READ; 1333 1334 if (mask & MAY_APPEND) 1335 av |= FILE__APPEND; 1336 else if (mask & MAY_WRITE) 1337 av |= FILE__WRITE; 1338 1339 } else { 1340 if (mask & MAY_EXEC) 1341 av |= DIR__SEARCH; 1342 if (mask & MAY_WRITE) 1343 av |= DIR__WRITE; 1344 if (mask & MAY_READ) 1345 av |= DIR__READ; 1346 } 1347 1348 return av; 1349 } 1350 1351 /* Convert a Linux file to an access vector. */ 1352 static inline u32 file_to_av(struct file *file) 1353 { 1354 u32 av = 0; 1355 1356 if (file->f_mode & FMODE_READ) 1357 av |= FILE__READ; 1358 if (file->f_mode & FMODE_WRITE) { 1359 if (file->f_flags & O_APPEND) 1360 av |= FILE__APPEND; 1361 else 1362 av |= FILE__WRITE; 1363 } 1364 1365 return av; 1366 } 1367 1368 /* Hook functions begin here. */ 1369 1370 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child) 1371 { 1372 struct task_security_struct *psec = parent->security; 1373 struct task_security_struct *csec = child->security; 1374 int rc; 1375 1376 rc = secondary_ops->ptrace(parent,child); 1377 if (rc) 1378 return rc; 1379 1380 rc = task_has_perm(parent, child, PROCESS__PTRACE); 1381 /* Save the SID of the tracing process for later use in apply_creds. */ 1382 if (!(child->ptrace & PT_PTRACED) && !rc) 1383 csec->ptrace_sid = psec->sid; 1384 return rc; 1385 } 1386 1387 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 1388 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1389 { 1390 int error; 1391 1392 error = task_has_perm(current, target, PROCESS__GETCAP); 1393 if (error) 1394 return error; 1395 1396 return secondary_ops->capget(target, effective, inheritable, permitted); 1397 } 1398 1399 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective, 1400 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1401 { 1402 int error; 1403 1404 error = secondary_ops->capset_check(target, effective, inheritable, permitted); 1405 if (error) 1406 return error; 1407 1408 return task_has_perm(current, target, PROCESS__SETCAP); 1409 } 1410 1411 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective, 1412 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1413 { 1414 secondary_ops->capset_set(target, effective, inheritable, permitted); 1415 } 1416 1417 static int selinux_capable(struct task_struct *tsk, int cap) 1418 { 1419 int rc; 1420 1421 rc = secondary_ops->capable(tsk, cap); 1422 if (rc) 1423 return rc; 1424 1425 return task_has_capability(tsk,cap); 1426 } 1427 1428 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid) 1429 { 1430 int buflen, rc; 1431 char *buffer, *path, *end; 1432 1433 rc = -ENOMEM; 1434 buffer = (char*)__get_free_page(GFP_KERNEL); 1435 if (!buffer) 1436 goto out; 1437 1438 buflen = PAGE_SIZE; 1439 end = buffer+buflen; 1440 *--end = '\0'; 1441 buflen--; 1442 path = end-1; 1443 *path = '/'; 1444 while (table) { 1445 const char *name = table->procname; 1446 size_t namelen = strlen(name); 1447 buflen -= namelen + 1; 1448 if (buflen < 0) 1449 goto out_free; 1450 end -= namelen; 1451 memcpy(end, name, namelen); 1452 *--end = '/'; 1453 path = end; 1454 table = table->parent; 1455 } 1456 buflen -= 4; 1457 if (buflen < 0) 1458 goto out_free; 1459 end -= 4; 1460 memcpy(end, "/sys", 4); 1461 path = end; 1462 rc = security_genfs_sid("proc", path, tclass, sid); 1463 out_free: 1464 free_page((unsigned long)buffer); 1465 out: 1466 return rc; 1467 } 1468 1469 static int selinux_sysctl(ctl_table *table, int op) 1470 { 1471 int error = 0; 1472 u32 av; 1473 struct task_security_struct *tsec; 1474 u32 tsid; 1475 int rc; 1476 1477 rc = secondary_ops->sysctl(table, op); 1478 if (rc) 1479 return rc; 1480 1481 tsec = current->security; 1482 1483 rc = selinux_sysctl_get_sid(table, (op == 0001) ? 1484 SECCLASS_DIR : SECCLASS_FILE, &tsid); 1485 if (rc) { 1486 /* Default to the well-defined sysctl SID. */ 1487 tsid = SECINITSID_SYSCTL; 1488 } 1489 1490 /* The op values are "defined" in sysctl.c, thereby creating 1491 * a bad coupling between this module and sysctl.c */ 1492 if(op == 001) { 1493 error = avc_has_perm(tsec->sid, tsid, 1494 SECCLASS_DIR, DIR__SEARCH, NULL); 1495 } else { 1496 av = 0; 1497 if (op & 004) 1498 av |= FILE__READ; 1499 if (op & 002) 1500 av |= FILE__WRITE; 1501 if (av) 1502 error = avc_has_perm(tsec->sid, tsid, 1503 SECCLASS_FILE, av, NULL); 1504 } 1505 1506 return error; 1507 } 1508 1509 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 1510 { 1511 int rc = 0; 1512 1513 if (!sb) 1514 return 0; 1515 1516 switch (cmds) { 1517 case Q_SYNC: 1518 case Q_QUOTAON: 1519 case Q_QUOTAOFF: 1520 case Q_SETINFO: 1521 case Q_SETQUOTA: 1522 rc = superblock_has_perm(current, 1523 sb, 1524 FILESYSTEM__QUOTAMOD, NULL); 1525 break; 1526 case Q_GETFMT: 1527 case Q_GETINFO: 1528 case Q_GETQUOTA: 1529 rc = superblock_has_perm(current, 1530 sb, 1531 FILESYSTEM__QUOTAGET, NULL); 1532 break; 1533 default: 1534 rc = 0; /* let the kernel handle invalid cmds */ 1535 break; 1536 } 1537 return rc; 1538 } 1539 1540 static int selinux_quota_on(struct dentry *dentry) 1541 { 1542 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON); 1543 } 1544 1545 static int selinux_syslog(int type) 1546 { 1547 int rc; 1548 1549 rc = secondary_ops->syslog(type); 1550 if (rc) 1551 return rc; 1552 1553 switch (type) { 1554 case 3: /* Read last kernel messages */ 1555 case 10: /* Return size of the log buffer */ 1556 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 1557 break; 1558 case 6: /* Disable logging to console */ 1559 case 7: /* Enable logging to console */ 1560 case 8: /* Set level of messages printed to console */ 1561 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 1562 break; 1563 case 0: /* Close log */ 1564 case 1: /* Open log */ 1565 case 2: /* Read from log */ 1566 case 4: /* Read/clear last kernel messages */ 1567 case 5: /* Clear ring buffer */ 1568 default: 1569 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 1570 break; 1571 } 1572 return rc; 1573 } 1574 1575 /* 1576 * Check that a process has enough memory to allocate a new virtual 1577 * mapping. 0 means there is enough memory for the allocation to 1578 * succeed and -ENOMEM implies there is not. 1579 * 1580 * Note that secondary_ops->capable and task_has_perm_noaudit return 0 1581 * if the capability is granted, but __vm_enough_memory requires 1 if 1582 * the capability is granted. 1583 * 1584 * Do not audit the selinux permission check, as this is applied to all 1585 * processes that allocate mappings. 1586 */ 1587 static int selinux_vm_enough_memory(long pages) 1588 { 1589 int rc, cap_sys_admin = 0; 1590 struct task_security_struct *tsec = current->security; 1591 1592 rc = secondary_ops->capable(current, CAP_SYS_ADMIN); 1593 if (rc == 0) 1594 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid, 1595 SECCLASS_CAPABILITY, 1596 CAP_TO_MASK(CAP_SYS_ADMIN), 1597 0, 1598 NULL); 1599 1600 if (rc == 0) 1601 cap_sys_admin = 1; 1602 1603 return __vm_enough_memory(pages, cap_sys_admin); 1604 } 1605 1606 /* binprm security operations */ 1607 1608 static int selinux_bprm_alloc_security(struct linux_binprm *bprm) 1609 { 1610 struct bprm_security_struct *bsec; 1611 1612 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL); 1613 if (!bsec) 1614 return -ENOMEM; 1615 1616 bsec->bprm = bprm; 1617 bsec->sid = SECINITSID_UNLABELED; 1618 bsec->set = 0; 1619 1620 bprm->security = bsec; 1621 return 0; 1622 } 1623 1624 static int selinux_bprm_set_security(struct linux_binprm *bprm) 1625 { 1626 struct task_security_struct *tsec; 1627 struct inode *inode = bprm->file->f_path.dentry->d_inode; 1628 struct inode_security_struct *isec; 1629 struct bprm_security_struct *bsec; 1630 u32 newsid; 1631 struct avc_audit_data ad; 1632 int rc; 1633 1634 rc = secondary_ops->bprm_set_security(bprm); 1635 if (rc) 1636 return rc; 1637 1638 bsec = bprm->security; 1639 1640 if (bsec->set) 1641 return 0; 1642 1643 tsec = current->security; 1644 isec = inode->i_security; 1645 1646 /* Default to the current task SID. */ 1647 bsec->sid = tsec->sid; 1648 1649 /* Reset fs, key, and sock SIDs on execve. */ 1650 tsec->create_sid = 0; 1651 tsec->keycreate_sid = 0; 1652 tsec->sockcreate_sid = 0; 1653 1654 if (tsec->exec_sid) { 1655 newsid = tsec->exec_sid; 1656 /* Reset exec SID on execve. */ 1657 tsec->exec_sid = 0; 1658 } else { 1659 /* Check for a default transition on this program. */ 1660 rc = security_transition_sid(tsec->sid, isec->sid, 1661 SECCLASS_PROCESS, &newsid); 1662 if (rc) 1663 return rc; 1664 } 1665 1666 AVC_AUDIT_DATA_INIT(&ad, FS); 1667 ad.u.fs.mnt = bprm->file->f_path.mnt; 1668 ad.u.fs.dentry = bprm->file->f_path.dentry; 1669 1670 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) 1671 newsid = tsec->sid; 1672 1673 if (tsec->sid == newsid) { 1674 rc = avc_has_perm(tsec->sid, isec->sid, 1675 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 1676 if (rc) 1677 return rc; 1678 } else { 1679 /* Check permissions for the transition. */ 1680 rc = avc_has_perm(tsec->sid, newsid, 1681 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 1682 if (rc) 1683 return rc; 1684 1685 rc = avc_has_perm(newsid, isec->sid, 1686 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 1687 if (rc) 1688 return rc; 1689 1690 /* Clear any possibly unsafe personality bits on exec: */ 1691 current->personality &= ~PER_CLEAR_ON_SETID; 1692 1693 /* Set the security field to the new SID. */ 1694 bsec->sid = newsid; 1695 } 1696 1697 bsec->set = 1; 1698 return 0; 1699 } 1700 1701 static int selinux_bprm_check_security (struct linux_binprm *bprm) 1702 { 1703 return secondary_ops->bprm_check_security(bprm); 1704 } 1705 1706 1707 static int selinux_bprm_secureexec (struct linux_binprm *bprm) 1708 { 1709 struct task_security_struct *tsec = current->security; 1710 int atsecure = 0; 1711 1712 if (tsec->osid != tsec->sid) { 1713 /* Enable secure mode for SIDs transitions unless 1714 the noatsecure permission is granted between 1715 the two SIDs, i.e. ahp returns 0. */ 1716 atsecure = avc_has_perm(tsec->osid, tsec->sid, 1717 SECCLASS_PROCESS, 1718 PROCESS__NOATSECURE, NULL); 1719 } 1720 1721 return (atsecure || secondary_ops->bprm_secureexec(bprm)); 1722 } 1723 1724 static void selinux_bprm_free_security(struct linux_binprm *bprm) 1725 { 1726 kfree(bprm->security); 1727 bprm->security = NULL; 1728 } 1729 1730 extern struct vfsmount *selinuxfs_mount; 1731 extern struct dentry *selinux_null; 1732 1733 /* Derived from fs/exec.c:flush_old_files. */ 1734 static inline void flush_unauthorized_files(struct files_struct * files) 1735 { 1736 struct avc_audit_data ad; 1737 struct file *file, *devnull = NULL; 1738 struct tty_struct *tty; 1739 struct fdtable *fdt; 1740 long j = -1; 1741 int drop_tty = 0; 1742 1743 mutex_lock(&tty_mutex); 1744 tty = get_current_tty(); 1745 if (tty) { 1746 file_list_lock(); 1747 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list); 1748 if (file) { 1749 /* Revalidate access to controlling tty. 1750 Use inode_has_perm on the tty inode directly rather 1751 than using file_has_perm, as this particular open 1752 file may belong to another process and we are only 1753 interested in the inode-based check here. */ 1754 struct inode *inode = file->f_path.dentry->d_inode; 1755 if (inode_has_perm(current, inode, 1756 FILE__READ | FILE__WRITE, NULL)) { 1757 drop_tty = 1; 1758 } 1759 } 1760 file_list_unlock(); 1761 } 1762 mutex_unlock(&tty_mutex); 1763 /* Reset controlling tty. */ 1764 if (drop_tty) 1765 no_tty(); 1766 1767 /* Revalidate access to inherited open files. */ 1768 1769 AVC_AUDIT_DATA_INIT(&ad,FS); 1770 1771 spin_lock(&files->file_lock); 1772 for (;;) { 1773 unsigned long set, i; 1774 int fd; 1775 1776 j++; 1777 i = j * __NFDBITS; 1778 fdt = files_fdtable(files); 1779 if (i >= fdt->max_fds) 1780 break; 1781 set = fdt->open_fds->fds_bits[j]; 1782 if (!set) 1783 continue; 1784 spin_unlock(&files->file_lock); 1785 for ( ; set ; i++,set >>= 1) { 1786 if (set & 1) { 1787 file = fget(i); 1788 if (!file) 1789 continue; 1790 if (file_has_perm(current, 1791 file, 1792 file_to_av(file))) { 1793 sys_close(i); 1794 fd = get_unused_fd(); 1795 if (fd != i) { 1796 if (fd >= 0) 1797 put_unused_fd(fd); 1798 fput(file); 1799 continue; 1800 } 1801 if (devnull) { 1802 get_file(devnull); 1803 } else { 1804 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR); 1805 if (IS_ERR(devnull)) { 1806 devnull = NULL; 1807 put_unused_fd(fd); 1808 fput(file); 1809 continue; 1810 } 1811 } 1812 fd_install(fd, devnull); 1813 } 1814 fput(file); 1815 } 1816 } 1817 spin_lock(&files->file_lock); 1818 1819 } 1820 spin_unlock(&files->file_lock); 1821 } 1822 1823 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 1824 { 1825 struct task_security_struct *tsec; 1826 struct bprm_security_struct *bsec; 1827 u32 sid; 1828 int rc; 1829 1830 secondary_ops->bprm_apply_creds(bprm, unsafe); 1831 1832 tsec = current->security; 1833 1834 bsec = bprm->security; 1835 sid = bsec->sid; 1836 1837 tsec->osid = tsec->sid; 1838 bsec->unsafe = 0; 1839 if (tsec->sid != sid) { 1840 /* Check for shared state. If not ok, leave SID 1841 unchanged and kill. */ 1842 if (unsafe & LSM_UNSAFE_SHARE) { 1843 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 1844 PROCESS__SHARE, NULL); 1845 if (rc) { 1846 bsec->unsafe = 1; 1847 return; 1848 } 1849 } 1850 1851 /* Check for ptracing, and update the task SID if ok. 1852 Otherwise, leave SID unchanged and kill. */ 1853 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 1854 rc = avc_has_perm(tsec->ptrace_sid, sid, 1855 SECCLASS_PROCESS, PROCESS__PTRACE, 1856 NULL); 1857 if (rc) { 1858 bsec->unsafe = 1; 1859 return; 1860 } 1861 } 1862 tsec->sid = sid; 1863 } 1864 } 1865 1866 /* 1867 * called after apply_creds without the task lock held 1868 */ 1869 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm) 1870 { 1871 struct task_security_struct *tsec; 1872 struct rlimit *rlim, *initrlim; 1873 struct itimerval itimer; 1874 struct bprm_security_struct *bsec; 1875 int rc, i; 1876 1877 tsec = current->security; 1878 bsec = bprm->security; 1879 1880 if (bsec->unsafe) { 1881 force_sig_specific(SIGKILL, current); 1882 return; 1883 } 1884 if (tsec->osid == tsec->sid) 1885 return; 1886 1887 /* Close files for which the new task SID is not authorized. */ 1888 flush_unauthorized_files(current->files); 1889 1890 /* Check whether the new SID can inherit signal state 1891 from the old SID. If not, clear itimers to avoid 1892 subsequent signal generation and flush and unblock 1893 signals. This must occur _after_ the task SID has 1894 been updated so that any kill done after the flush 1895 will be checked against the new SID. */ 1896 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS, 1897 PROCESS__SIGINH, NULL); 1898 if (rc) { 1899 memset(&itimer, 0, sizeof itimer); 1900 for (i = 0; i < 3; i++) 1901 do_setitimer(i, &itimer, NULL); 1902 flush_signals(current); 1903 spin_lock_irq(¤t->sighand->siglock); 1904 flush_signal_handlers(current, 1); 1905 sigemptyset(¤t->blocked); 1906 recalc_sigpending(); 1907 spin_unlock_irq(¤t->sighand->siglock); 1908 } 1909 1910 /* Check whether the new SID can inherit resource limits 1911 from the old SID. If not, reset all soft limits to 1912 the lower of the current task's hard limit and the init 1913 task's soft limit. Note that the setting of hard limits 1914 (even to lower them) can be controlled by the setrlimit 1915 check. The inclusion of the init task's soft limit into 1916 the computation is to avoid resetting soft limits higher 1917 than the default soft limit for cases where the default 1918 is lower than the hard limit, e.g. RLIMIT_CORE or 1919 RLIMIT_STACK.*/ 1920 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS, 1921 PROCESS__RLIMITINH, NULL); 1922 if (rc) { 1923 for (i = 0; i < RLIM_NLIMITS; i++) { 1924 rlim = current->signal->rlim + i; 1925 initrlim = init_task.signal->rlim+i; 1926 rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur); 1927 } 1928 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { 1929 /* 1930 * This will cause RLIMIT_CPU calculations 1931 * to be refigured. 1932 */ 1933 current->it_prof_expires = jiffies_to_cputime(1); 1934 } 1935 } 1936 1937 /* Wake up the parent if it is waiting so that it can 1938 recheck wait permission to the new task SID. */ 1939 wake_up_interruptible(¤t->parent->signal->wait_chldexit); 1940 } 1941 1942 /* superblock security operations */ 1943 1944 static int selinux_sb_alloc_security(struct super_block *sb) 1945 { 1946 return superblock_alloc_security(sb); 1947 } 1948 1949 static void selinux_sb_free_security(struct super_block *sb) 1950 { 1951 superblock_free_security(sb); 1952 } 1953 1954 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 1955 { 1956 if (plen > olen) 1957 return 0; 1958 1959 return !memcmp(prefix, option, plen); 1960 } 1961 1962 static inline int selinux_option(char *option, int len) 1963 { 1964 return (match_prefix("context=", sizeof("context=")-1, option, len) || 1965 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) || 1966 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) || 1967 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len)); 1968 } 1969 1970 static inline void take_option(char **to, char *from, int *first, int len) 1971 { 1972 if (!*first) { 1973 **to = ','; 1974 *to += 1; 1975 } else 1976 *first = 0; 1977 memcpy(*to, from, len); 1978 *to += len; 1979 } 1980 1981 static inline void take_selinux_option(char **to, char *from, int *first, 1982 int len) 1983 { 1984 int current_size = 0; 1985 1986 if (!*first) { 1987 **to = '|'; 1988 *to += 1; 1989 } 1990 else 1991 *first = 0; 1992 1993 while (current_size < len) { 1994 if (*from != '"') { 1995 **to = *from; 1996 *to += 1; 1997 } 1998 from += 1; 1999 current_size += 1; 2000 } 2001 } 2002 2003 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy) 2004 { 2005 int fnosec, fsec, rc = 0; 2006 char *in_save, *in_curr, *in_end; 2007 char *sec_curr, *nosec_save, *nosec; 2008 int open_quote = 0; 2009 2010 in_curr = orig; 2011 sec_curr = copy; 2012 2013 /* Binary mount data: just copy */ 2014 if (type->fs_flags & FS_BINARY_MOUNTDATA) { 2015 copy_page(sec_curr, in_curr); 2016 goto out; 2017 } 2018 2019 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2020 if (!nosec) { 2021 rc = -ENOMEM; 2022 goto out; 2023 } 2024 2025 nosec_save = nosec; 2026 fnosec = fsec = 1; 2027 in_save = in_end = orig; 2028 2029 do { 2030 if (*in_end == '"') 2031 open_quote = !open_quote; 2032 if ((*in_end == ',' && open_quote == 0) || 2033 *in_end == '\0') { 2034 int len = in_end - in_curr; 2035 2036 if (selinux_option(in_curr, len)) 2037 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2038 else 2039 take_option(&nosec, in_curr, &fnosec, len); 2040 2041 in_curr = in_end + 1; 2042 } 2043 } while (*in_end++); 2044 2045 strcpy(in_save, nosec_save); 2046 free_page((unsigned long)nosec_save); 2047 out: 2048 return rc; 2049 } 2050 2051 static int selinux_sb_kern_mount(struct super_block *sb, void *data) 2052 { 2053 struct avc_audit_data ad; 2054 int rc; 2055 2056 rc = superblock_doinit(sb, data); 2057 if (rc) 2058 return rc; 2059 2060 AVC_AUDIT_DATA_INIT(&ad,FS); 2061 ad.u.fs.dentry = sb->s_root; 2062 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad); 2063 } 2064 2065 static int selinux_sb_statfs(struct dentry *dentry) 2066 { 2067 struct avc_audit_data ad; 2068 2069 AVC_AUDIT_DATA_INIT(&ad,FS); 2070 ad.u.fs.dentry = dentry->d_sb->s_root; 2071 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2072 } 2073 2074 static int selinux_mount(char * dev_name, 2075 struct nameidata *nd, 2076 char * type, 2077 unsigned long flags, 2078 void * data) 2079 { 2080 int rc; 2081 2082 rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data); 2083 if (rc) 2084 return rc; 2085 2086 if (flags & MS_REMOUNT) 2087 return superblock_has_perm(current, nd->mnt->mnt_sb, 2088 FILESYSTEM__REMOUNT, NULL); 2089 else 2090 return dentry_has_perm(current, nd->mnt, nd->dentry, 2091 FILE__MOUNTON); 2092 } 2093 2094 static int selinux_umount(struct vfsmount *mnt, int flags) 2095 { 2096 int rc; 2097 2098 rc = secondary_ops->sb_umount(mnt, flags); 2099 if (rc) 2100 return rc; 2101 2102 return superblock_has_perm(current,mnt->mnt_sb, 2103 FILESYSTEM__UNMOUNT,NULL); 2104 } 2105 2106 /* inode security operations */ 2107 2108 static int selinux_inode_alloc_security(struct inode *inode) 2109 { 2110 return inode_alloc_security(inode); 2111 } 2112 2113 static void selinux_inode_free_security(struct inode *inode) 2114 { 2115 inode_free_security(inode); 2116 } 2117 2118 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2119 char **name, void **value, 2120 size_t *len) 2121 { 2122 struct task_security_struct *tsec; 2123 struct inode_security_struct *dsec; 2124 struct superblock_security_struct *sbsec; 2125 u32 newsid, clen; 2126 int rc; 2127 char *namep = NULL, *context; 2128 2129 tsec = current->security; 2130 dsec = dir->i_security; 2131 sbsec = dir->i_sb->s_security; 2132 2133 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 2134 newsid = tsec->create_sid; 2135 } else { 2136 rc = security_transition_sid(tsec->sid, dsec->sid, 2137 inode_mode_to_security_class(inode->i_mode), 2138 &newsid); 2139 if (rc) { 2140 printk(KERN_WARNING "%s: " 2141 "security_transition_sid failed, rc=%d (dev=%s " 2142 "ino=%ld)\n", 2143 __FUNCTION__, 2144 -rc, inode->i_sb->s_id, inode->i_ino); 2145 return rc; 2146 } 2147 } 2148 2149 /* Possibly defer initialization to selinux_complete_init. */ 2150 if (sbsec->initialized) { 2151 struct inode_security_struct *isec = inode->i_security; 2152 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2153 isec->sid = newsid; 2154 isec->initialized = 1; 2155 } 2156 2157 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT) 2158 return -EOPNOTSUPP; 2159 2160 if (name) { 2161 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL); 2162 if (!namep) 2163 return -ENOMEM; 2164 *name = namep; 2165 } 2166 2167 if (value && len) { 2168 rc = security_sid_to_context(newsid, &context, &clen); 2169 if (rc) { 2170 kfree(namep); 2171 return rc; 2172 } 2173 *value = context; 2174 *len = clen; 2175 } 2176 2177 return 0; 2178 } 2179 2180 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask) 2181 { 2182 return may_create(dir, dentry, SECCLASS_FILE); 2183 } 2184 2185 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2186 { 2187 int rc; 2188 2189 rc = secondary_ops->inode_link(old_dentry,dir,new_dentry); 2190 if (rc) 2191 return rc; 2192 return may_link(dir, old_dentry, MAY_LINK); 2193 } 2194 2195 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2196 { 2197 int rc; 2198 2199 rc = secondary_ops->inode_unlink(dir, dentry); 2200 if (rc) 2201 return rc; 2202 return may_link(dir, dentry, MAY_UNLINK); 2203 } 2204 2205 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2206 { 2207 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2208 } 2209 2210 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask) 2211 { 2212 return may_create(dir, dentry, SECCLASS_DIR); 2213 } 2214 2215 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2216 { 2217 return may_link(dir, dentry, MAY_RMDIR); 2218 } 2219 2220 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2221 { 2222 int rc; 2223 2224 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev); 2225 if (rc) 2226 return rc; 2227 2228 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2229 } 2230 2231 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2232 struct inode *new_inode, struct dentry *new_dentry) 2233 { 2234 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2235 } 2236 2237 static int selinux_inode_readlink(struct dentry *dentry) 2238 { 2239 return dentry_has_perm(current, NULL, dentry, FILE__READ); 2240 } 2241 2242 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2243 { 2244 int rc; 2245 2246 rc = secondary_ops->inode_follow_link(dentry,nameidata); 2247 if (rc) 2248 return rc; 2249 return dentry_has_perm(current, NULL, dentry, FILE__READ); 2250 } 2251 2252 static int selinux_inode_permission(struct inode *inode, int mask, 2253 struct nameidata *nd) 2254 { 2255 int rc; 2256 2257 rc = secondary_ops->inode_permission(inode, mask, nd); 2258 if (rc) 2259 return rc; 2260 2261 if (!mask) { 2262 /* No permission to check. Existence test. */ 2263 return 0; 2264 } 2265 2266 return inode_has_perm(current, inode, 2267 file_mask_to_av(inode->i_mode, mask), NULL); 2268 } 2269 2270 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2271 { 2272 int rc; 2273 2274 rc = secondary_ops->inode_setattr(dentry, iattr); 2275 if (rc) 2276 return rc; 2277 2278 if (iattr->ia_valid & ATTR_FORCE) 2279 return 0; 2280 2281 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2282 ATTR_ATIME_SET | ATTR_MTIME_SET)) 2283 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2284 2285 return dentry_has_perm(current, NULL, dentry, FILE__WRITE); 2286 } 2287 2288 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 2289 { 2290 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR); 2291 } 2292 2293 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags) 2294 { 2295 struct task_security_struct *tsec = current->security; 2296 struct inode *inode = dentry->d_inode; 2297 struct inode_security_struct *isec = inode->i_security; 2298 struct superblock_security_struct *sbsec; 2299 struct avc_audit_data ad; 2300 u32 newsid; 2301 int rc = 0; 2302 2303 if (strcmp(name, XATTR_NAME_SELINUX)) { 2304 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2305 sizeof XATTR_SECURITY_PREFIX - 1) && 2306 !capable(CAP_SYS_ADMIN)) { 2307 /* A different attribute in the security namespace. 2308 Restrict to administrator. */ 2309 return -EPERM; 2310 } 2311 2312 /* Not an attribute we recognize, so just check the 2313 ordinary setattr permission. */ 2314 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2315 } 2316 2317 sbsec = inode->i_sb->s_security; 2318 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT) 2319 return -EOPNOTSUPP; 2320 2321 if (!is_owner_or_cap(inode)) 2322 return -EPERM; 2323 2324 AVC_AUDIT_DATA_INIT(&ad,FS); 2325 ad.u.fs.dentry = dentry; 2326 2327 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, 2328 FILE__RELABELFROM, &ad); 2329 if (rc) 2330 return rc; 2331 2332 rc = security_context_to_sid(value, size, &newsid); 2333 if (rc) 2334 return rc; 2335 2336 rc = avc_has_perm(tsec->sid, newsid, isec->sclass, 2337 FILE__RELABELTO, &ad); 2338 if (rc) 2339 return rc; 2340 2341 rc = security_validate_transition(isec->sid, newsid, tsec->sid, 2342 isec->sclass); 2343 if (rc) 2344 return rc; 2345 2346 return avc_has_perm(newsid, 2347 sbsec->sid, 2348 SECCLASS_FILESYSTEM, 2349 FILESYSTEM__ASSOCIATE, 2350 &ad); 2351 } 2352 2353 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name, 2354 void *value, size_t size, int flags) 2355 { 2356 struct inode *inode = dentry->d_inode; 2357 struct inode_security_struct *isec = inode->i_security; 2358 u32 newsid; 2359 int rc; 2360 2361 if (strcmp(name, XATTR_NAME_SELINUX)) { 2362 /* Not an attribute we recognize, so nothing to do. */ 2363 return; 2364 } 2365 2366 rc = security_context_to_sid(value, size, &newsid); 2367 if (rc) { 2368 printk(KERN_WARNING "%s: unable to obtain SID for context " 2369 "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc); 2370 return; 2371 } 2372 2373 isec->sid = newsid; 2374 return; 2375 } 2376 2377 static int selinux_inode_getxattr (struct dentry *dentry, char *name) 2378 { 2379 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR); 2380 } 2381 2382 static int selinux_inode_listxattr (struct dentry *dentry) 2383 { 2384 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR); 2385 } 2386 2387 static int selinux_inode_removexattr (struct dentry *dentry, char *name) 2388 { 2389 if (strcmp(name, XATTR_NAME_SELINUX)) { 2390 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2391 sizeof XATTR_SECURITY_PREFIX - 1) && 2392 !capable(CAP_SYS_ADMIN)) { 2393 /* A different attribute in the security namespace. 2394 Restrict to administrator. */ 2395 return -EPERM; 2396 } 2397 2398 /* Not an attribute we recognize, so just check the 2399 ordinary setattr permission. Might want a separate 2400 permission for removexattr. */ 2401 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2402 } 2403 2404 /* No one is allowed to remove a SELinux security label. 2405 You can change the label, but all data must be labeled. */ 2406 return -EACCES; 2407 } 2408 2409 static const char *selinux_inode_xattr_getsuffix(void) 2410 { 2411 return XATTR_SELINUX_SUFFIX; 2412 } 2413 2414 /* 2415 * Copy the in-core inode security context value to the user. If the 2416 * getxattr() prior to this succeeded, check to see if we need to 2417 * canonicalize the value to be finally returned to the user. 2418 * 2419 * Permission check is handled by selinux_inode_getxattr hook. 2420 */ 2421 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) 2422 { 2423 struct inode_security_struct *isec = inode->i_security; 2424 2425 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2426 return -EOPNOTSUPP; 2427 2428 return selinux_getsecurity(isec->sid, buffer, size); 2429 } 2430 2431 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 2432 const void *value, size_t size, int flags) 2433 { 2434 struct inode_security_struct *isec = inode->i_security; 2435 u32 newsid; 2436 int rc; 2437 2438 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2439 return -EOPNOTSUPP; 2440 2441 if (!value || !size) 2442 return -EACCES; 2443 2444 rc = security_context_to_sid((void*)value, size, &newsid); 2445 if (rc) 2446 return rc; 2447 2448 isec->sid = newsid; 2449 return 0; 2450 } 2451 2452 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2453 { 2454 const int len = sizeof(XATTR_NAME_SELINUX); 2455 if (buffer && len <= buffer_size) 2456 memcpy(buffer, XATTR_NAME_SELINUX, len); 2457 return len; 2458 } 2459 2460 /* file security operations */ 2461 2462 static int selinux_file_permission(struct file *file, int mask) 2463 { 2464 int rc; 2465 struct inode *inode = file->f_path.dentry->d_inode; 2466 2467 if (!mask) { 2468 /* No permission to check. Existence test. */ 2469 return 0; 2470 } 2471 2472 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 2473 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 2474 mask |= MAY_APPEND; 2475 2476 rc = file_has_perm(current, file, 2477 file_mask_to_av(inode->i_mode, mask)); 2478 if (rc) 2479 return rc; 2480 2481 return selinux_netlbl_inode_permission(inode, mask); 2482 } 2483 2484 static int selinux_file_alloc_security(struct file *file) 2485 { 2486 return file_alloc_security(file); 2487 } 2488 2489 static void selinux_file_free_security(struct file *file) 2490 { 2491 file_free_security(file); 2492 } 2493 2494 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 2495 unsigned long arg) 2496 { 2497 int error = 0; 2498 2499 switch (cmd) { 2500 case FIONREAD: 2501 /* fall through */ 2502 case FIBMAP: 2503 /* fall through */ 2504 case FIGETBSZ: 2505 /* fall through */ 2506 case EXT2_IOC_GETFLAGS: 2507 /* fall through */ 2508 case EXT2_IOC_GETVERSION: 2509 error = file_has_perm(current, file, FILE__GETATTR); 2510 break; 2511 2512 case EXT2_IOC_SETFLAGS: 2513 /* fall through */ 2514 case EXT2_IOC_SETVERSION: 2515 error = file_has_perm(current, file, FILE__SETATTR); 2516 break; 2517 2518 /* sys_ioctl() checks */ 2519 case FIONBIO: 2520 /* fall through */ 2521 case FIOASYNC: 2522 error = file_has_perm(current, file, 0); 2523 break; 2524 2525 case KDSKBENT: 2526 case KDSKBSENT: 2527 error = task_has_capability(current,CAP_SYS_TTY_CONFIG); 2528 break; 2529 2530 /* default case assumes that the command will go 2531 * to the file's ioctl() function. 2532 */ 2533 default: 2534 error = file_has_perm(current, file, FILE__IOCTL); 2535 2536 } 2537 return error; 2538 } 2539 2540 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 2541 { 2542 #ifndef CONFIG_PPC32 2543 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 2544 /* 2545 * We are making executable an anonymous mapping or a 2546 * private file mapping that will also be writable. 2547 * This has an additional check. 2548 */ 2549 int rc = task_has_perm(current, current, PROCESS__EXECMEM); 2550 if (rc) 2551 return rc; 2552 } 2553 #endif 2554 2555 if (file) { 2556 /* read access is always possible with a mapping */ 2557 u32 av = FILE__READ; 2558 2559 /* write access only matters if the mapping is shared */ 2560 if (shared && (prot & PROT_WRITE)) 2561 av |= FILE__WRITE; 2562 2563 if (prot & PROT_EXEC) 2564 av |= FILE__EXECUTE; 2565 2566 return file_has_perm(current, file, av); 2567 } 2568 return 0; 2569 } 2570 2571 static int selinux_file_mmap(struct file *file, unsigned long reqprot, 2572 unsigned long prot, unsigned long flags, 2573 unsigned long addr, unsigned long addr_only) 2574 { 2575 int rc = 0; 2576 u32 sid = ((struct task_security_struct*)(current->security))->sid; 2577 2578 if (addr < mmap_min_addr) 2579 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 2580 MEMPROTECT__MMAP_ZERO, NULL); 2581 if (rc || addr_only) 2582 return rc; 2583 2584 if (selinux_checkreqprot) 2585 prot = reqprot; 2586 2587 return file_map_prot_check(file, prot, 2588 (flags & MAP_TYPE) == MAP_SHARED); 2589 } 2590 2591 static int selinux_file_mprotect(struct vm_area_struct *vma, 2592 unsigned long reqprot, 2593 unsigned long prot) 2594 { 2595 int rc; 2596 2597 rc = secondary_ops->file_mprotect(vma, reqprot, prot); 2598 if (rc) 2599 return rc; 2600 2601 if (selinux_checkreqprot) 2602 prot = reqprot; 2603 2604 #ifndef CONFIG_PPC32 2605 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 2606 rc = 0; 2607 if (vma->vm_start >= vma->vm_mm->start_brk && 2608 vma->vm_end <= vma->vm_mm->brk) { 2609 rc = task_has_perm(current, current, 2610 PROCESS__EXECHEAP); 2611 } else if (!vma->vm_file && 2612 vma->vm_start <= vma->vm_mm->start_stack && 2613 vma->vm_end >= vma->vm_mm->start_stack) { 2614 rc = task_has_perm(current, current, PROCESS__EXECSTACK); 2615 } else if (vma->vm_file && vma->anon_vma) { 2616 /* 2617 * We are making executable a file mapping that has 2618 * had some COW done. Since pages might have been 2619 * written, check ability to execute the possibly 2620 * modified content. This typically should only 2621 * occur for text relocations. 2622 */ 2623 rc = file_has_perm(current, vma->vm_file, 2624 FILE__EXECMOD); 2625 } 2626 if (rc) 2627 return rc; 2628 } 2629 #endif 2630 2631 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 2632 } 2633 2634 static int selinux_file_lock(struct file *file, unsigned int cmd) 2635 { 2636 return file_has_perm(current, file, FILE__LOCK); 2637 } 2638 2639 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 2640 unsigned long arg) 2641 { 2642 int err = 0; 2643 2644 switch (cmd) { 2645 case F_SETFL: 2646 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 2647 err = -EINVAL; 2648 break; 2649 } 2650 2651 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 2652 err = file_has_perm(current, file,FILE__WRITE); 2653 break; 2654 } 2655 /* fall through */ 2656 case F_SETOWN: 2657 case F_SETSIG: 2658 case F_GETFL: 2659 case F_GETOWN: 2660 case F_GETSIG: 2661 /* Just check FD__USE permission */ 2662 err = file_has_perm(current, file, 0); 2663 break; 2664 case F_GETLK: 2665 case F_SETLK: 2666 case F_SETLKW: 2667 #if BITS_PER_LONG == 32 2668 case F_GETLK64: 2669 case F_SETLK64: 2670 case F_SETLKW64: 2671 #endif 2672 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 2673 err = -EINVAL; 2674 break; 2675 } 2676 err = file_has_perm(current, file, FILE__LOCK); 2677 break; 2678 } 2679 2680 return err; 2681 } 2682 2683 static int selinux_file_set_fowner(struct file *file) 2684 { 2685 struct task_security_struct *tsec; 2686 struct file_security_struct *fsec; 2687 2688 tsec = current->security; 2689 fsec = file->f_security; 2690 fsec->fown_sid = tsec->sid; 2691 2692 return 0; 2693 } 2694 2695 static int selinux_file_send_sigiotask(struct task_struct *tsk, 2696 struct fown_struct *fown, int signum) 2697 { 2698 struct file *file; 2699 u32 perm; 2700 struct task_security_struct *tsec; 2701 struct file_security_struct *fsec; 2702 2703 /* struct fown_struct is never outside the context of a struct file */ 2704 file = container_of(fown, struct file, f_owner); 2705 2706 tsec = tsk->security; 2707 fsec = file->f_security; 2708 2709 if (!signum) 2710 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 2711 else 2712 perm = signal_to_av(signum); 2713 2714 return avc_has_perm(fsec->fown_sid, tsec->sid, 2715 SECCLASS_PROCESS, perm, NULL); 2716 } 2717 2718 static int selinux_file_receive(struct file *file) 2719 { 2720 return file_has_perm(current, file, file_to_av(file)); 2721 } 2722 2723 /* task security operations */ 2724 2725 static int selinux_task_create(unsigned long clone_flags) 2726 { 2727 int rc; 2728 2729 rc = secondary_ops->task_create(clone_flags); 2730 if (rc) 2731 return rc; 2732 2733 return task_has_perm(current, current, PROCESS__FORK); 2734 } 2735 2736 static int selinux_task_alloc_security(struct task_struct *tsk) 2737 { 2738 struct task_security_struct *tsec1, *tsec2; 2739 int rc; 2740 2741 tsec1 = current->security; 2742 2743 rc = task_alloc_security(tsk); 2744 if (rc) 2745 return rc; 2746 tsec2 = tsk->security; 2747 2748 tsec2->osid = tsec1->osid; 2749 tsec2->sid = tsec1->sid; 2750 2751 /* Retain the exec, fs, key, and sock SIDs across fork */ 2752 tsec2->exec_sid = tsec1->exec_sid; 2753 tsec2->create_sid = tsec1->create_sid; 2754 tsec2->keycreate_sid = tsec1->keycreate_sid; 2755 tsec2->sockcreate_sid = tsec1->sockcreate_sid; 2756 2757 /* Retain ptracer SID across fork, if any. 2758 This will be reset by the ptrace hook upon any 2759 subsequent ptrace_attach operations. */ 2760 tsec2->ptrace_sid = tsec1->ptrace_sid; 2761 2762 return 0; 2763 } 2764 2765 static void selinux_task_free_security(struct task_struct *tsk) 2766 { 2767 task_free_security(tsk); 2768 } 2769 2770 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 2771 { 2772 /* Since setuid only affects the current process, and 2773 since the SELinux controls are not based on the Linux 2774 identity attributes, SELinux does not need to control 2775 this operation. However, SELinux does control the use 2776 of the CAP_SETUID and CAP_SETGID capabilities using the 2777 capable hook. */ 2778 return 0; 2779 } 2780 2781 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 2782 { 2783 return secondary_ops->task_post_setuid(id0,id1,id2,flags); 2784 } 2785 2786 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 2787 { 2788 /* See the comment for setuid above. */ 2789 return 0; 2790 } 2791 2792 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 2793 { 2794 return task_has_perm(current, p, PROCESS__SETPGID); 2795 } 2796 2797 static int selinux_task_getpgid(struct task_struct *p) 2798 { 2799 return task_has_perm(current, p, PROCESS__GETPGID); 2800 } 2801 2802 static int selinux_task_getsid(struct task_struct *p) 2803 { 2804 return task_has_perm(current, p, PROCESS__GETSESSION); 2805 } 2806 2807 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 2808 { 2809 selinux_get_task_sid(p, secid); 2810 } 2811 2812 static int selinux_task_setgroups(struct group_info *group_info) 2813 { 2814 /* See the comment for setuid above. */ 2815 return 0; 2816 } 2817 2818 static int selinux_task_setnice(struct task_struct *p, int nice) 2819 { 2820 int rc; 2821 2822 rc = secondary_ops->task_setnice(p, nice); 2823 if (rc) 2824 return rc; 2825 2826 return task_has_perm(current,p, PROCESS__SETSCHED); 2827 } 2828 2829 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 2830 { 2831 return task_has_perm(current, p, PROCESS__SETSCHED); 2832 } 2833 2834 static int selinux_task_getioprio(struct task_struct *p) 2835 { 2836 return task_has_perm(current, p, PROCESS__GETSCHED); 2837 } 2838 2839 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 2840 { 2841 struct rlimit *old_rlim = current->signal->rlim + resource; 2842 int rc; 2843 2844 rc = secondary_ops->task_setrlimit(resource, new_rlim); 2845 if (rc) 2846 return rc; 2847 2848 /* Control the ability to change the hard limit (whether 2849 lowering or raising it), so that the hard limit can 2850 later be used as a safe reset point for the soft limit 2851 upon context transitions. See selinux_bprm_apply_creds. */ 2852 if (old_rlim->rlim_max != new_rlim->rlim_max) 2853 return task_has_perm(current, current, PROCESS__SETRLIMIT); 2854 2855 return 0; 2856 } 2857 2858 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp) 2859 { 2860 return task_has_perm(current, p, PROCESS__SETSCHED); 2861 } 2862 2863 static int selinux_task_getscheduler(struct task_struct *p) 2864 { 2865 return task_has_perm(current, p, PROCESS__GETSCHED); 2866 } 2867 2868 static int selinux_task_movememory(struct task_struct *p) 2869 { 2870 return task_has_perm(current, p, PROCESS__SETSCHED); 2871 } 2872 2873 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 2874 int sig, u32 secid) 2875 { 2876 u32 perm; 2877 int rc; 2878 struct task_security_struct *tsec; 2879 2880 rc = secondary_ops->task_kill(p, info, sig, secid); 2881 if (rc) 2882 return rc; 2883 2884 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info))) 2885 return 0; 2886 2887 if (!sig) 2888 perm = PROCESS__SIGNULL; /* null signal; existence test */ 2889 else 2890 perm = signal_to_av(sig); 2891 tsec = p->security; 2892 if (secid) 2893 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL); 2894 else 2895 rc = task_has_perm(current, p, perm); 2896 return rc; 2897 } 2898 2899 static int selinux_task_prctl(int option, 2900 unsigned long arg2, 2901 unsigned long arg3, 2902 unsigned long arg4, 2903 unsigned long arg5) 2904 { 2905 /* The current prctl operations do not appear to require 2906 any SELinux controls since they merely observe or modify 2907 the state of the current process. */ 2908 return 0; 2909 } 2910 2911 static int selinux_task_wait(struct task_struct *p) 2912 { 2913 u32 perm; 2914 2915 perm = signal_to_av(p->exit_signal); 2916 2917 return task_has_perm(p, current, perm); 2918 } 2919 2920 static void selinux_task_reparent_to_init(struct task_struct *p) 2921 { 2922 struct task_security_struct *tsec; 2923 2924 secondary_ops->task_reparent_to_init(p); 2925 2926 tsec = p->security; 2927 tsec->osid = tsec->sid; 2928 tsec->sid = SECINITSID_KERNEL; 2929 return; 2930 } 2931 2932 static void selinux_task_to_inode(struct task_struct *p, 2933 struct inode *inode) 2934 { 2935 struct task_security_struct *tsec = p->security; 2936 struct inode_security_struct *isec = inode->i_security; 2937 2938 isec->sid = tsec->sid; 2939 isec->initialized = 1; 2940 return; 2941 } 2942 2943 /* Returns error only if unable to parse addresses */ 2944 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 2945 struct avc_audit_data *ad, u8 *proto) 2946 { 2947 int offset, ihlen, ret = -EINVAL; 2948 struct iphdr _iph, *ih; 2949 2950 offset = skb_network_offset(skb); 2951 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 2952 if (ih == NULL) 2953 goto out; 2954 2955 ihlen = ih->ihl * 4; 2956 if (ihlen < sizeof(_iph)) 2957 goto out; 2958 2959 ad->u.net.v4info.saddr = ih->saddr; 2960 ad->u.net.v4info.daddr = ih->daddr; 2961 ret = 0; 2962 2963 if (proto) 2964 *proto = ih->protocol; 2965 2966 switch (ih->protocol) { 2967 case IPPROTO_TCP: { 2968 struct tcphdr _tcph, *th; 2969 2970 if (ntohs(ih->frag_off) & IP_OFFSET) 2971 break; 2972 2973 offset += ihlen; 2974 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 2975 if (th == NULL) 2976 break; 2977 2978 ad->u.net.sport = th->source; 2979 ad->u.net.dport = th->dest; 2980 break; 2981 } 2982 2983 case IPPROTO_UDP: { 2984 struct udphdr _udph, *uh; 2985 2986 if (ntohs(ih->frag_off) & IP_OFFSET) 2987 break; 2988 2989 offset += ihlen; 2990 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 2991 if (uh == NULL) 2992 break; 2993 2994 ad->u.net.sport = uh->source; 2995 ad->u.net.dport = uh->dest; 2996 break; 2997 } 2998 2999 case IPPROTO_DCCP: { 3000 struct dccp_hdr _dccph, *dh; 3001 3002 if (ntohs(ih->frag_off) & IP_OFFSET) 3003 break; 3004 3005 offset += ihlen; 3006 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3007 if (dh == NULL) 3008 break; 3009 3010 ad->u.net.sport = dh->dccph_sport; 3011 ad->u.net.dport = dh->dccph_dport; 3012 break; 3013 } 3014 3015 default: 3016 break; 3017 } 3018 out: 3019 return ret; 3020 } 3021 3022 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3023 3024 /* Returns error only if unable to parse addresses */ 3025 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3026 struct avc_audit_data *ad, u8 *proto) 3027 { 3028 u8 nexthdr; 3029 int ret = -EINVAL, offset; 3030 struct ipv6hdr _ipv6h, *ip6; 3031 3032 offset = skb_network_offset(skb); 3033 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3034 if (ip6 == NULL) 3035 goto out; 3036 3037 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr); 3038 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr); 3039 ret = 0; 3040 3041 nexthdr = ip6->nexthdr; 3042 offset += sizeof(_ipv6h); 3043 offset = ipv6_skip_exthdr(skb, offset, &nexthdr); 3044 if (offset < 0) 3045 goto out; 3046 3047 if (proto) 3048 *proto = nexthdr; 3049 3050 switch (nexthdr) { 3051 case IPPROTO_TCP: { 3052 struct tcphdr _tcph, *th; 3053 3054 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3055 if (th == NULL) 3056 break; 3057 3058 ad->u.net.sport = th->source; 3059 ad->u.net.dport = th->dest; 3060 break; 3061 } 3062 3063 case IPPROTO_UDP: { 3064 struct udphdr _udph, *uh; 3065 3066 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3067 if (uh == NULL) 3068 break; 3069 3070 ad->u.net.sport = uh->source; 3071 ad->u.net.dport = uh->dest; 3072 break; 3073 } 3074 3075 case IPPROTO_DCCP: { 3076 struct dccp_hdr _dccph, *dh; 3077 3078 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3079 if (dh == NULL) 3080 break; 3081 3082 ad->u.net.sport = dh->dccph_sport; 3083 ad->u.net.dport = dh->dccph_dport; 3084 break; 3085 } 3086 3087 /* includes fragments */ 3088 default: 3089 break; 3090 } 3091 out: 3092 return ret; 3093 } 3094 3095 #endif /* IPV6 */ 3096 3097 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad, 3098 char **addrp, int *len, int src, u8 *proto) 3099 { 3100 int ret = 0; 3101 3102 switch (ad->u.net.family) { 3103 case PF_INET: 3104 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3105 if (ret || !addrp) 3106 break; 3107 *len = 4; 3108 *addrp = (char *)(src ? &ad->u.net.v4info.saddr : 3109 &ad->u.net.v4info.daddr); 3110 break; 3111 3112 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3113 case PF_INET6: 3114 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3115 if (ret || !addrp) 3116 break; 3117 *len = 16; 3118 *addrp = (char *)(src ? &ad->u.net.v6info.saddr : 3119 &ad->u.net.v6info.daddr); 3120 break; 3121 #endif /* IPV6 */ 3122 default: 3123 break; 3124 } 3125 3126 return ret; 3127 } 3128 3129 /** 3130 * selinux_skb_extlbl_sid - Determine the external label of a packet 3131 * @skb: the packet 3132 * @base_sid: the SELinux SID to use as a context for MLS only external labels 3133 * @sid: the packet's SID 3134 * 3135 * Description: 3136 * Check the various different forms of external packet labeling and determine 3137 * the external SID for the packet. 3138 * 3139 */ 3140 static void selinux_skb_extlbl_sid(struct sk_buff *skb, 3141 u32 base_sid, 3142 u32 *sid) 3143 { 3144 u32 xfrm_sid; 3145 u32 nlbl_sid; 3146 3147 selinux_skb_xfrm_sid(skb, &xfrm_sid); 3148 if (selinux_netlbl_skbuff_getsid(skb, 3149 (xfrm_sid == SECSID_NULL ? 3150 base_sid : xfrm_sid), 3151 &nlbl_sid) != 0) 3152 nlbl_sid = SECSID_NULL; 3153 3154 *sid = (nlbl_sid == SECSID_NULL ? xfrm_sid : nlbl_sid); 3155 } 3156 3157 /* socket security operations */ 3158 static int socket_has_perm(struct task_struct *task, struct socket *sock, 3159 u32 perms) 3160 { 3161 struct inode_security_struct *isec; 3162 struct task_security_struct *tsec; 3163 struct avc_audit_data ad; 3164 int err = 0; 3165 3166 tsec = task->security; 3167 isec = SOCK_INODE(sock)->i_security; 3168 3169 if (isec->sid == SECINITSID_KERNEL) 3170 goto out; 3171 3172 AVC_AUDIT_DATA_INIT(&ad,NET); 3173 ad.u.net.sk = sock->sk; 3174 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad); 3175 3176 out: 3177 return err; 3178 } 3179 3180 static int selinux_socket_create(int family, int type, 3181 int protocol, int kern) 3182 { 3183 int err = 0; 3184 struct task_security_struct *tsec; 3185 u32 newsid; 3186 3187 if (kern) 3188 goto out; 3189 3190 tsec = current->security; 3191 newsid = tsec->sockcreate_sid ? : tsec->sid; 3192 err = avc_has_perm(tsec->sid, newsid, 3193 socket_type_to_security_class(family, type, 3194 protocol), SOCKET__CREATE, NULL); 3195 3196 out: 3197 return err; 3198 } 3199 3200 static int selinux_socket_post_create(struct socket *sock, int family, 3201 int type, int protocol, int kern) 3202 { 3203 int err = 0; 3204 struct inode_security_struct *isec; 3205 struct task_security_struct *tsec; 3206 struct sk_security_struct *sksec; 3207 u32 newsid; 3208 3209 isec = SOCK_INODE(sock)->i_security; 3210 3211 tsec = current->security; 3212 newsid = tsec->sockcreate_sid ? : tsec->sid; 3213 isec->sclass = socket_type_to_security_class(family, type, protocol); 3214 isec->sid = kern ? SECINITSID_KERNEL : newsid; 3215 isec->initialized = 1; 3216 3217 if (sock->sk) { 3218 sksec = sock->sk->sk_security; 3219 sksec->sid = isec->sid; 3220 err = selinux_netlbl_socket_post_create(sock); 3221 } 3222 3223 return err; 3224 } 3225 3226 /* Range of port numbers used to automatically bind. 3227 Need to determine whether we should perform a name_bind 3228 permission check between the socket and the port number. */ 3229 #define ip_local_port_range_0 sysctl_local_port_range[0] 3230 #define ip_local_port_range_1 sysctl_local_port_range[1] 3231 3232 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 3233 { 3234 u16 family; 3235 int err; 3236 3237 err = socket_has_perm(current, sock, SOCKET__BIND); 3238 if (err) 3239 goto out; 3240 3241 /* 3242 * If PF_INET or PF_INET6, check name_bind permission for the port. 3243 * Multiple address binding for SCTP is not supported yet: we just 3244 * check the first address now. 3245 */ 3246 family = sock->sk->sk_family; 3247 if (family == PF_INET || family == PF_INET6) { 3248 char *addrp; 3249 struct inode_security_struct *isec; 3250 struct task_security_struct *tsec; 3251 struct avc_audit_data ad; 3252 struct sockaddr_in *addr4 = NULL; 3253 struct sockaddr_in6 *addr6 = NULL; 3254 unsigned short snum; 3255 struct sock *sk = sock->sk; 3256 u32 sid, node_perm, addrlen; 3257 3258 tsec = current->security; 3259 isec = SOCK_INODE(sock)->i_security; 3260 3261 if (family == PF_INET) { 3262 addr4 = (struct sockaddr_in *)address; 3263 snum = ntohs(addr4->sin_port); 3264 addrlen = sizeof(addr4->sin_addr.s_addr); 3265 addrp = (char *)&addr4->sin_addr.s_addr; 3266 } else { 3267 addr6 = (struct sockaddr_in6 *)address; 3268 snum = ntohs(addr6->sin6_port); 3269 addrlen = sizeof(addr6->sin6_addr.s6_addr); 3270 addrp = (char *)&addr6->sin6_addr.s6_addr; 3271 } 3272 3273 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) || 3274 snum > ip_local_port_range_1)) { 3275 err = security_port_sid(sk->sk_family, sk->sk_type, 3276 sk->sk_protocol, snum, &sid); 3277 if (err) 3278 goto out; 3279 AVC_AUDIT_DATA_INIT(&ad,NET); 3280 ad.u.net.sport = htons(snum); 3281 ad.u.net.family = family; 3282 err = avc_has_perm(isec->sid, sid, 3283 isec->sclass, 3284 SOCKET__NAME_BIND, &ad); 3285 if (err) 3286 goto out; 3287 } 3288 3289 switch(isec->sclass) { 3290 case SECCLASS_TCP_SOCKET: 3291 node_perm = TCP_SOCKET__NODE_BIND; 3292 break; 3293 3294 case SECCLASS_UDP_SOCKET: 3295 node_perm = UDP_SOCKET__NODE_BIND; 3296 break; 3297 3298 case SECCLASS_DCCP_SOCKET: 3299 node_perm = DCCP_SOCKET__NODE_BIND; 3300 break; 3301 3302 default: 3303 node_perm = RAWIP_SOCKET__NODE_BIND; 3304 break; 3305 } 3306 3307 err = security_node_sid(family, addrp, addrlen, &sid); 3308 if (err) 3309 goto out; 3310 3311 AVC_AUDIT_DATA_INIT(&ad,NET); 3312 ad.u.net.sport = htons(snum); 3313 ad.u.net.family = family; 3314 3315 if (family == PF_INET) 3316 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr; 3317 else 3318 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr); 3319 3320 err = avc_has_perm(isec->sid, sid, 3321 isec->sclass, node_perm, &ad); 3322 if (err) 3323 goto out; 3324 } 3325 out: 3326 return err; 3327 } 3328 3329 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 3330 { 3331 struct inode_security_struct *isec; 3332 int err; 3333 3334 err = socket_has_perm(current, sock, SOCKET__CONNECT); 3335 if (err) 3336 return err; 3337 3338 /* 3339 * If a TCP or DCCP socket, check name_connect permission for the port. 3340 */ 3341 isec = SOCK_INODE(sock)->i_security; 3342 if (isec->sclass == SECCLASS_TCP_SOCKET || 3343 isec->sclass == SECCLASS_DCCP_SOCKET) { 3344 struct sock *sk = sock->sk; 3345 struct avc_audit_data ad; 3346 struct sockaddr_in *addr4 = NULL; 3347 struct sockaddr_in6 *addr6 = NULL; 3348 unsigned short snum; 3349 u32 sid, perm; 3350 3351 if (sk->sk_family == PF_INET) { 3352 addr4 = (struct sockaddr_in *)address; 3353 if (addrlen < sizeof(struct sockaddr_in)) 3354 return -EINVAL; 3355 snum = ntohs(addr4->sin_port); 3356 } else { 3357 addr6 = (struct sockaddr_in6 *)address; 3358 if (addrlen < SIN6_LEN_RFC2133) 3359 return -EINVAL; 3360 snum = ntohs(addr6->sin6_port); 3361 } 3362 3363 err = security_port_sid(sk->sk_family, sk->sk_type, 3364 sk->sk_protocol, snum, &sid); 3365 if (err) 3366 goto out; 3367 3368 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ? 3369 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 3370 3371 AVC_AUDIT_DATA_INIT(&ad,NET); 3372 ad.u.net.dport = htons(snum); 3373 ad.u.net.family = sk->sk_family; 3374 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad); 3375 if (err) 3376 goto out; 3377 } 3378 3379 out: 3380 return err; 3381 } 3382 3383 static int selinux_socket_listen(struct socket *sock, int backlog) 3384 { 3385 return socket_has_perm(current, sock, SOCKET__LISTEN); 3386 } 3387 3388 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 3389 { 3390 int err; 3391 struct inode_security_struct *isec; 3392 struct inode_security_struct *newisec; 3393 3394 err = socket_has_perm(current, sock, SOCKET__ACCEPT); 3395 if (err) 3396 return err; 3397 3398 newisec = SOCK_INODE(newsock)->i_security; 3399 3400 isec = SOCK_INODE(sock)->i_security; 3401 newisec->sclass = isec->sclass; 3402 newisec->sid = isec->sid; 3403 newisec->initialized = 1; 3404 3405 return 0; 3406 } 3407 3408 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 3409 int size) 3410 { 3411 int rc; 3412 3413 rc = socket_has_perm(current, sock, SOCKET__WRITE); 3414 if (rc) 3415 return rc; 3416 3417 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE); 3418 } 3419 3420 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 3421 int size, int flags) 3422 { 3423 return socket_has_perm(current, sock, SOCKET__READ); 3424 } 3425 3426 static int selinux_socket_getsockname(struct socket *sock) 3427 { 3428 return socket_has_perm(current, sock, SOCKET__GETATTR); 3429 } 3430 3431 static int selinux_socket_getpeername(struct socket *sock) 3432 { 3433 return socket_has_perm(current, sock, SOCKET__GETATTR); 3434 } 3435 3436 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname) 3437 { 3438 int err; 3439 3440 err = socket_has_perm(current, sock, SOCKET__SETOPT); 3441 if (err) 3442 return err; 3443 3444 return selinux_netlbl_socket_setsockopt(sock, level, optname); 3445 } 3446 3447 static int selinux_socket_getsockopt(struct socket *sock, int level, 3448 int optname) 3449 { 3450 return socket_has_perm(current, sock, SOCKET__GETOPT); 3451 } 3452 3453 static int selinux_socket_shutdown(struct socket *sock, int how) 3454 { 3455 return socket_has_perm(current, sock, SOCKET__SHUTDOWN); 3456 } 3457 3458 static int selinux_socket_unix_stream_connect(struct socket *sock, 3459 struct socket *other, 3460 struct sock *newsk) 3461 { 3462 struct sk_security_struct *ssec; 3463 struct inode_security_struct *isec; 3464 struct inode_security_struct *other_isec; 3465 struct avc_audit_data ad; 3466 int err; 3467 3468 err = secondary_ops->unix_stream_connect(sock, other, newsk); 3469 if (err) 3470 return err; 3471 3472 isec = SOCK_INODE(sock)->i_security; 3473 other_isec = SOCK_INODE(other)->i_security; 3474 3475 AVC_AUDIT_DATA_INIT(&ad,NET); 3476 ad.u.net.sk = other->sk; 3477 3478 err = avc_has_perm(isec->sid, other_isec->sid, 3479 isec->sclass, 3480 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 3481 if (err) 3482 return err; 3483 3484 /* connecting socket */ 3485 ssec = sock->sk->sk_security; 3486 ssec->peer_sid = other_isec->sid; 3487 3488 /* server child socket */ 3489 ssec = newsk->sk_security; 3490 ssec->peer_sid = isec->sid; 3491 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid); 3492 3493 return err; 3494 } 3495 3496 static int selinux_socket_unix_may_send(struct socket *sock, 3497 struct socket *other) 3498 { 3499 struct inode_security_struct *isec; 3500 struct inode_security_struct *other_isec; 3501 struct avc_audit_data ad; 3502 int err; 3503 3504 isec = SOCK_INODE(sock)->i_security; 3505 other_isec = SOCK_INODE(other)->i_security; 3506 3507 AVC_AUDIT_DATA_INIT(&ad,NET); 3508 ad.u.net.sk = other->sk; 3509 3510 err = avc_has_perm(isec->sid, other_isec->sid, 3511 isec->sclass, SOCKET__SENDTO, &ad); 3512 if (err) 3513 return err; 3514 3515 return 0; 3516 } 3517 3518 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 3519 struct avc_audit_data *ad, u16 family, char *addrp, int len) 3520 { 3521 int err = 0; 3522 u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0; 3523 struct socket *sock; 3524 u16 sock_class = 0; 3525 u32 sock_sid = 0; 3526 3527 read_lock_bh(&sk->sk_callback_lock); 3528 sock = sk->sk_socket; 3529 if (sock) { 3530 struct inode *inode; 3531 inode = SOCK_INODE(sock); 3532 if (inode) { 3533 struct inode_security_struct *isec; 3534 isec = inode->i_security; 3535 sock_sid = isec->sid; 3536 sock_class = isec->sclass; 3537 } 3538 } 3539 read_unlock_bh(&sk->sk_callback_lock); 3540 if (!sock_sid) 3541 goto out; 3542 3543 if (!skb->dev) 3544 goto out; 3545 3546 err = sel_netif_sids(skb->dev, &if_sid, NULL); 3547 if (err) 3548 goto out; 3549 3550 switch (sock_class) { 3551 case SECCLASS_UDP_SOCKET: 3552 netif_perm = NETIF__UDP_RECV; 3553 node_perm = NODE__UDP_RECV; 3554 recv_perm = UDP_SOCKET__RECV_MSG; 3555 break; 3556 3557 case SECCLASS_TCP_SOCKET: 3558 netif_perm = NETIF__TCP_RECV; 3559 node_perm = NODE__TCP_RECV; 3560 recv_perm = TCP_SOCKET__RECV_MSG; 3561 break; 3562 3563 case SECCLASS_DCCP_SOCKET: 3564 netif_perm = NETIF__DCCP_RECV; 3565 node_perm = NODE__DCCP_RECV; 3566 recv_perm = DCCP_SOCKET__RECV_MSG; 3567 break; 3568 3569 default: 3570 netif_perm = NETIF__RAWIP_RECV; 3571 node_perm = NODE__RAWIP_RECV; 3572 break; 3573 } 3574 3575 err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad); 3576 if (err) 3577 goto out; 3578 3579 err = security_node_sid(family, addrp, len, &node_sid); 3580 if (err) 3581 goto out; 3582 3583 err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad); 3584 if (err) 3585 goto out; 3586 3587 if (recv_perm) { 3588 u32 port_sid; 3589 3590 err = security_port_sid(sk->sk_family, sk->sk_type, 3591 sk->sk_protocol, ntohs(ad->u.net.sport), 3592 &port_sid); 3593 if (err) 3594 goto out; 3595 3596 err = avc_has_perm(sock_sid, port_sid, 3597 sock_class, recv_perm, ad); 3598 } 3599 3600 out: 3601 return err; 3602 } 3603 3604 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 3605 { 3606 u16 family; 3607 char *addrp; 3608 int len, err = 0; 3609 struct avc_audit_data ad; 3610 struct sk_security_struct *sksec = sk->sk_security; 3611 3612 family = sk->sk_family; 3613 if (family != PF_INET && family != PF_INET6) 3614 goto out; 3615 3616 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 3617 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 3618 family = PF_INET; 3619 3620 AVC_AUDIT_DATA_INIT(&ad, NET); 3621 ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]"; 3622 ad.u.net.family = family; 3623 3624 err = selinux_parse_skb(skb, &ad, &addrp, &len, 1, NULL); 3625 if (err) 3626 goto out; 3627 3628 if (selinux_compat_net) 3629 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family, 3630 addrp, len); 3631 else 3632 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET, 3633 PACKET__RECV, &ad); 3634 if (err) 3635 goto out; 3636 3637 err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad); 3638 if (err) 3639 goto out; 3640 3641 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 3642 out: 3643 return err; 3644 } 3645 3646 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 3647 int __user *optlen, unsigned len) 3648 { 3649 int err = 0; 3650 char *scontext; 3651 u32 scontext_len; 3652 struct sk_security_struct *ssec; 3653 struct inode_security_struct *isec; 3654 u32 peer_sid = SECSID_NULL; 3655 3656 isec = SOCK_INODE(sock)->i_security; 3657 3658 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 3659 isec->sclass == SECCLASS_TCP_SOCKET) { 3660 ssec = sock->sk->sk_security; 3661 peer_sid = ssec->peer_sid; 3662 } 3663 if (peer_sid == SECSID_NULL) { 3664 err = -ENOPROTOOPT; 3665 goto out; 3666 } 3667 3668 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 3669 3670 if (err) 3671 goto out; 3672 3673 if (scontext_len > len) { 3674 err = -ERANGE; 3675 goto out_len; 3676 } 3677 3678 if (copy_to_user(optval, scontext, scontext_len)) 3679 err = -EFAULT; 3680 3681 out_len: 3682 if (put_user(scontext_len, optlen)) 3683 err = -EFAULT; 3684 3685 kfree(scontext); 3686 out: 3687 return err; 3688 } 3689 3690 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 3691 { 3692 u32 peer_secid = SECSID_NULL; 3693 int err = 0; 3694 3695 if (sock && sock->sk->sk_family == PF_UNIX) 3696 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid); 3697 else if (skb) 3698 selinux_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &peer_secid); 3699 3700 if (peer_secid == SECSID_NULL) 3701 err = -EINVAL; 3702 *secid = peer_secid; 3703 3704 return err; 3705 } 3706 3707 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 3708 { 3709 return sk_alloc_security(sk, family, priority); 3710 } 3711 3712 static void selinux_sk_free_security(struct sock *sk) 3713 { 3714 sk_free_security(sk); 3715 } 3716 3717 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 3718 { 3719 struct sk_security_struct *ssec = sk->sk_security; 3720 struct sk_security_struct *newssec = newsk->sk_security; 3721 3722 newssec->sid = ssec->sid; 3723 newssec->peer_sid = ssec->peer_sid; 3724 3725 selinux_netlbl_sk_security_clone(ssec, newssec); 3726 } 3727 3728 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 3729 { 3730 if (!sk) 3731 *secid = SECINITSID_ANY_SOCKET; 3732 else { 3733 struct sk_security_struct *sksec = sk->sk_security; 3734 3735 *secid = sksec->sid; 3736 } 3737 } 3738 3739 static void selinux_sock_graft(struct sock* sk, struct socket *parent) 3740 { 3741 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 3742 struct sk_security_struct *sksec = sk->sk_security; 3743 3744 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 3745 sk->sk_family == PF_UNIX) 3746 isec->sid = sksec->sid; 3747 3748 selinux_netlbl_sock_graft(sk, parent); 3749 } 3750 3751 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 3752 struct request_sock *req) 3753 { 3754 struct sk_security_struct *sksec = sk->sk_security; 3755 int err; 3756 u32 newsid; 3757 u32 peersid; 3758 3759 selinux_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &peersid); 3760 if (peersid == SECSID_NULL) { 3761 req->secid = sksec->sid; 3762 req->peer_secid = SECSID_NULL; 3763 return 0; 3764 } 3765 3766 err = security_sid_mls_copy(sksec->sid, peersid, &newsid); 3767 if (err) 3768 return err; 3769 3770 req->secid = newsid; 3771 req->peer_secid = peersid; 3772 return 0; 3773 } 3774 3775 static void selinux_inet_csk_clone(struct sock *newsk, 3776 const struct request_sock *req) 3777 { 3778 struct sk_security_struct *newsksec = newsk->sk_security; 3779 3780 newsksec->sid = req->secid; 3781 newsksec->peer_sid = req->peer_secid; 3782 /* NOTE: Ideally, we should also get the isec->sid for the 3783 new socket in sync, but we don't have the isec available yet. 3784 So we will wait until sock_graft to do it, by which 3785 time it will have been created and available. */ 3786 3787 /* We don't need to take any sort of lock here as we are the only 3788 * thread with access to newsksec */ 3789 selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family); 3790 } 3791 3792 static void selinux_inet_conn_established(struct sock *sk, 3793 struct sk_buff *skb) 3794 { 3795 struct sk_security_struct *sksec = sk->sk_security; 3796 3797 selinux_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &sksec->peer_sid); 3798 } 3799 3800 static void selinux_req_classify_flow(const struct request_sock *req, 3801 struct flowi *fl) 3802 { 3803 fl->secid = req->secid; 3804 } 3805 3806 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 3807 { 3808 int err = 0; 3809 u32 perm; 3810 struct nlmsghdr *nlh; 3811 struct socket *sock = sk->sk_socket; 3812 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 3813 3814 if (skb->len < NLMSG_SPACE(0)) { 3815 err = -EINVAL; 3816 goto out; 3817 } 3818 nlh = nlmsg_hdr(skb); 3819 3820 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm); 3821 if (err) { 3822 if (err == -EINVAL) { 3823 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR, 3824 "SELinux: unrecognized netlink message" 3825 " type=%hu for sclass=%hu\n", 3826 nlh->nlmsg_type, isec->sclass); 3827 if (!selinux_enforcing) 3828 err = 0; 3829 } 3830 3831 /* Ignore */ 3832 if (err == -ENOENT) 3833 err = 0; 3834 goto out; 3835 } 3836 3837 err = socket_has_perm(current, sock, perm); 3838 out: 3839 return err; 3840 } 3841 3842 #ifdef CONFIG_NETFILTER 3843 3844 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev, 3845 struct avc_audit_data *ad, 3846 u16 family, char *addrp, int len) 3847 { 3848 int err = 0; 3849 u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0; 3850 struct socket *sock; 3851 struct inode *inode; 3852 struct inode_security_struct *isec; 3853 3854 sock = sk->sk_socket; 3855 if (!sock) 3856 goto out; 3857 3858 inode = SOCK_INODE(sock); 3859 if (!inode) 3860 goto out; 3861 3862 isec = inode->i_security; 3863 3864 err = sel_netif_sids(dev, &if_sid, NULL); 3865 if (err) 3866 goto out; 3867 3868 switch (isec->sclass) { 3869 case SECCLASS_UDP_SOCKET: 3870 netif_perm = NETIF__UDP_SEND; 3871 node_perm = NODE__UDP_SEND; 3872 send_perm = UDP_SOCKET__SEND_MSG; 3873 break; 3874 3875 case SECCLASS_TCP_SOCKET: 3876 netif_perm = NETIF__TCP_SEND; 3877 node_perm = NODE__TCP_SEND; 3878 send_perm = TCP_SOCKET__SEND_MSG; 3879 break; 3880 3881 case SECCLASS_DCCP_SOCKET: 3882 netif_perm = NETIF__DCCP_SEND; 3883 node_perm = NODE__DCCP_SEND; 3884 send_perm = DCCP_SOCKET__SEND_MSG; 3885 break; 3886 3887 default: 3888 netif_perm = NETIF__RAWIP_SEND; 3889 node_perm = NODE__RAWIP_SEND; 3890 break; 3891 } 3892 3893 err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad); 3894 if (err) 3895 goto out; 3896 3897 err = security_node_sid(family, addrp, len, &node_sid); 3898 if (err) 3899 goto out; 3900 3901 err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad); 3902 if (err) 3903 goto out; 3904 3905 if (send_perm) { 3906 u32 port_sid; 3907 3908 err = security_port_sid(sk->sk_family, 3909 sk->sk_type, 3910 sk->sk_protocol, 3911 ntohs(ad->u.net.dport), 3912 &port_sid); 3913 if (err) 3914 goto out; 3915 3916 err = avc_has_perm(isec->sid, port_sid, isec->sclass, 3917 send_perm, ad); 3918 } 3919 out: 3920 return err; 3921 } 3922 3923 static unsigned int selinux_ip_postroute_last(unsigned int hooknum, 3924 struct sk_buff **pskb, 3925 const struct net_device *in, 3926 const struct net_device *out, 3927 int (*okfn)(struct sk_buff *), 3928 u16 family) 3929 { 3930 char *addrp; 3931 int len, err = 0; 3932 struct sock *sk; 3933 struct sk_buff *skb = *pskb; 3934 struct avc_audit_data ad; 3935 struct net_device *dev = (struct net_device *)out; 3936 struct sk_security_struct *sksec; 3937 u8 proto; 3938 3939 sk = skb->sk; 3940 if (!sk) 3941 goto out; 3942 3943 sksec = sk->sk_security; 3944 3945 AVC_AUDIT_DATA_INIT(&ad, NET); 3946 ad.u.net.netif = dev->name; 3947 ad.u.net.family = family; 3948 3949 err = selinux_parse_skb(skb, &ad, &addrp, &len, 0, &proto); 3950 if (err) 3951 goto out; 3952 3953 if (selinux_compat_net) 3954 err = selinux_ip_postroute_last_compat(sk, dev, &ad, 3955 family, addrp, len); 3956 else 3957 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET, 3958 PACKET__SEND, &ad); 3959 3960 if (err) 3961 goto out; 3962 3963 err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto); 3964 out: 3965 return err ? NF_DROP : NF_ACCEPT; 3966 } 3967 3968 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum, 3969 struct sk_buff **pskb, 3970 const struct net_device *in, 3971 const struct net_device *out, 3972 int (*okfn)(struct sk_buff *)) 3973 { 3974 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET); 3975 } 3976 3977 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3978 3979 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum, 3980 struct sk_buff **pskb, 3981 const struct net_device *in, 3982 const struct net_device *out, 3983 int (*okfn)(struct sk_buff *)) 3984 { 3985 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6); 3986 } 3987 3988 #endif /* IPV6 */ 3989 3990 #endif /* CONFIG_NETFILTER */ 3991 3992 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 3993 { 3994 int err; 3995 3996 err = secondary_ops->netlink_send(sk, skb); 3997 if (err) 3998 return err; 3999 4000 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS) 4001 err = selinux_nlmsg_perm(sk, skb); 4002 4003 return err; 4004 } 4005 4006 static int selinux_netlink_recv(struct sk_buff *skb, int capability) 4007 { 4008 int err; 4009 struct avc_audit_data ad; 4010 4011 err = secondary_ops->netlink_recv(skb, capability); 4012 if (err) 4013 return err; 4014 4015 AVC_AUDIT_DATA_INIT(&ad, CAP); 4016 ad.u.cap = capability; 4017 4018 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid, 4019 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad); 4020 } 4021 4022 static int ipc_alloc_security(struct task_struct *task, 4023 struct kern_ipc_perm *perm, 4024 u16 sclass) 4025 { 4026 struct task_security_struct *tsec = task->security; 4027 struct ipc_security_struct *isec; 4028 4029 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 4030 if (!isec) 4031 return -ENOMEM; 4032 4033 isec->sclass = sclass; 4034 isec->ipc_perm = perm; 4035 isec->sid = tsec->sid; 4036 perm->security = isec; 4037 4038 return 0; 4039 } 4040 4041 static void ipc_free_security(struct kern_ipc_perm *perm) 4042 { 4043 struct ipc_security_struct *isec = perm->security; 4044 perm->security = NULL; 4045 kfree(isec); 4046 } 4047 4048 static int msg_msg_alloc_security(struct msg_msg *msg) 4049 { 4050 struct msg_security_struct *msec; 4051 4052 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 4053 if (!msec) 4054 return -ENOMEM; 4055 4056 msec->msg = msg; 4057 msec->sid = SECINITSID_UNLABELED; 4058 msg->security = msec; 4059 4060 return 0; 4061 } 4062 4063 static void msg_msg_free_security(struct msg_msg *msg) 4064 { 4065 struct msg_security_struct *msec = msg->security; 4066 4067 msg->security = NULL; 4068 kfree(msec); 4069 } 4070 4071 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 4072 u32 perms) 4073 { 4074 struct task_security_struct *tsec; 4075 struct ipc_security_struct *isec; 4076 struct avc_audit_data ad; 4077 4078 tsec = current->security; 4079 isec = ipc_perms->security; 4080 4081 AVC_AUDIT_DATA_INIT(&ad, IPC); 4082 ad.u.ipc_id = ipc_perms->key; 4083 4084 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad); 4085 } 4086 4087 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 4088 { 4089 return msg_msg_alloc_security(msg); 4090 } 4091 4092 static void selinux_msg_msg_free_security(struct msg_msg *msg) 4093 { 4094 msg_msg_free_security(msg); 4095 } 4096 4097 /* message queue security operations */ 4098 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 4099 { 4100 struct task_security_struct *tsec; 4101 struct ipc_security_struct *isec; 4102 struct avc_audit_data ad; 4103 int rc; 4104 4105 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 4106 if (rc) 4107 return rc; 4108 4109 tsec = current->security; 4110 isec = msq->q_perm.security; 4111 4112 AVC_AUDIT_DATA_INIT(&ad, IPC); 4113 ad.u.ipc_id = msq->q_perm.key; 4114 4115 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4116 MSGQ__CREATE, &ad); 4117 if (rc) { 4118 ipc_free_security(&msq->q_perm); 4119 return rc; 4120 } 4121 return 0; 4122 } 4123 4124 static void selinux_msg_queue_free_security(struct msg_queue *msq) 4125 { 4126 ipc_free_security(&msq->q_perm); 4127 } 4128 4129 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 4130 { 4131 struct task_security_struct *tsec; 4132 struct ipc_security_struct *isec; 4133 struct avc_audit_data ad; 4134 4135 tsec = current->security; 4136 isec = msq->q_perm.security; 4137 4138 AVC_AUDIT_DATA_INIT(&ad, IPC); 4139 ad.u.ipc_id = msq->q_perm.key; 4140 4141 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4142 MSGQ__ASSOCIATE, &ad); 4143 } 4144 4145 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 4146 { 4147 int err; 4148 int perms; 4149 4150 switch(cmd) { 4151 case IPC_INFO: 4152 case MSG_INFO: 4153 /* No specific object, just general system-wide information. */ 4154 return task_has_system(current, SYSTEM__IPC_INFO); 4155 case IPC_STAT: 4156 case MSG_STAT: 4157 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 4158 break; 4159 case IPC_SET: 4160 perms = MSGQ__SETATTR; 4161 break; 4162 case IPC_RMID: 4163 perms = MSGQ__DESTROY; 4164 break; 4165 default: 4166 return 0; 4167 } 4168 4169 err = ipc_has_perm(&msq->q_perm, perms); 4170 return err; 4171 } 4172 4173 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 4174 { 4175 struct task_security_struct *tsec; 4176 struct ipc_security_struct *isec; 4177 struct msg_security_struct *msec; 4178 struct avc_audit_data ad; 4179 int rc; 4180 4181 tsec = current->security; 4182 isec = msq->q_perm.security; 4183 msec = msg->security; 4184 4185 /* 4186 * First time through, need to assign label to the message 4187 */ 4188 if (msec->sid == SECINITSID_UNLABELED) { 4189 /* 4190 * Compute new sid based on current process and 4191 * message queue this message will be stored in 4192 */ 4193 rc = security_transition_sid(tsec->sid, 4194 isec->sid, 4195 SECCLASS_MSG, 4196 &msec->sid); 4197 if (rc) 4198 return rc; 4199 } 4200 4201 AVC_AUDIT_DATA_INIT(&ad, IPC); 4202 ad.u.ipc_id = msq->q_perm.key; 4203 4204 /* Can this process write to the queue? */ 4205 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4206 MSGQ__WRITE, &ad); 4207 if (!rc) 4208 /* Can this process send the message */ 4209 rc = avc_has_perm(tsec->sid, msec->sid, 4210 SECCLASS_MSG, MSG__SEND, &ad); 4211 if (!rc) 4212 /* Can the message be put in the queue? */ 4213 rc = avc_has_perm(msec->sid, isec->sid, 4214 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad); 4215 4216 return rc; 4217 } 4218 4219 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 4220 struct task_struct *target, 4221 long type, int mode) 4222 { 4223 struct task_security_struct *tsec; 4224 struct ipc_security_struct *isec; 4225 struct msg_security_struct *msec; 4226 struct avc_audit_data ad; 4227 int rc; 4228 4229 tsec = target->security; 4230 isec = msq->q_perm.security; 4231 msec = msg->security; 4232 4233 AVC_AUDIT_DATA_INIT(&ad, IPC); 4234 ad.u.ipc_id = msq->q_perm.key; 4235 4236 rc = avc_has_perm(tsec->sid, isec->sid, 4237 SECCLASS_MSGQ, MSGQ__READ, &ad); 4238 if (!rc) 4239 rc = avc_has_perm(tsec->sid, msec->sid, 4240 SECCLASS_MSG, MSG__RECEIVE, &ad); 4241 return rc; 4242 } 4243 4244 /* Shared Memory security operations */ 4245 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 4246 { 4247 struct task_security_struct *tsec; 4248 struct ipc_security_struct *isec; 4249 struct avc_audit_data ad; 4250 int rc; 4251 4252 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 4253 if (rc) 4254 return rc; 4255 4256 tsec = current->security; 4257 isec = shp->shm_perm.security; 4258 4259 AVC_AUDIT_DATA_INIT(&ad, IPC); 4260 ad.u.ipc_id = shp->shm_perm.key; 4261 4262 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM, 4263 SHM__CREATE, &ad); 4264 if (rc) { 4265 ipc_free_security(&shp->shm_perm); 4266 return rc; 4267 } 4268 return 0; 4269 } 4270 4271 static void selinux_shm_free_security(struct shmid_kernel *shp) 4272 { 4273 ipc_free_security(&shp->shm_perm); 4274 } 4275 4276 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 4277 { 4278 struct task_security_struct *tsec; 4279 struct ipc_security_struct *isec; 4280 struct avc_audit_data ad; 4281 4282 tsec = current->security; 4283 isec = shp->shm_perm.security; 4284 4285 AVC_AUDIT_DATA_INIT(&ad, IPC); 4286 ad.u.ipc_id = shp->shm_perm.key; 4287 4288 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM, 4289 SHM__ASSOCIATE, &ad); 4290 } 4291 4292 /* Note, at this point, shp is locked down */ 4293 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 4294 { 4295 int perms; 4296 int err; 4297 4298 switch(cmd) { 4299 case IPC_INFO: 4300 case SHM_INFO: 4301 /* No specific object, just general system-wide information. */ 4302 return task_has_system(current, SYSTEM__IPC_INFO); 4303 case IPC_STAT: 4304 case SHM_STAT: 4305 perms = SHM__GETATTR | SHM__ASSOCIATE; 4306 break; 4307 case IPC_SET: 4308 perms = SHM__SETATTR; 4309 break; 4310 case SHM_LOCK: 4311 case SHM_UNLOCK: 4312 perms = SHM__LOCK; 4313 break; 4314 case IPC_RMID: 4315 perms = SHM__DESTROY; 4316 break; 4317 default: 4318 return 0; 4319 } 4320 4321 err = ipc_has_perm(&shp->shm_perm, perms); 4322 return err; 4323 } 4324 4325 static int selinux_shm_shmat(struct shmid_kernel *shp, 4326 char __user *shmaddr, int shmflg) 4327 { 4328 u32 perms; 4329 int rc; 4330 4331 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg); 4332 if (rc) 4333 return rc; 4334 4335 if (shmflg & SHM_RDONLY) 4336 perms = SHM__READ; 4337 else 4338 perms = SHM__READ | SHM__WRITE; 4339 4340 return ipc_has_perm(&shp->shm_perm, perms); 4341 } 4342 4343 /* Semaphore security operations */ 4344 static int selinux_sem_alloc_security(struct sem_array *sma) 4345 { 4346 struct task_security_struct *tsec; 4347 struct ipc_security_struct *isec; 4348 struct avc_audit_data ad; 4349 int rc; 4350 4351 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 4352 if (rc) 4353 return rc; 4354 4355 tsec = current->security; 4356 isec = sma->sem_perm.security; 4357 4358 AVC_AUDIT_DATA_INIT(&ad, IPC); 4359 ad.u.ipc_id = sma->sem_perm.key; 4360 4361 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM, 4362 SEM__CREATE, &ad); 4363 if (rc) { 4364 ipc_free_security(&sma->sem_perm); 4365 return rc; 4366 } 4367 return 0; 4368 } 4369 4370 static void selinux_sem_free_security(struct sem_array *sma) 4371 { 4372 ipc_free_security(&sma->sem_perm); 4373 } 4374 4375 static int selinux_sem_associate(struct sem_array *sma, int semflg) 4376 { 4377 struct task_security_struct *tsec; 4378 struct ipc_security_struct *isec; 4379 struct avc_audit_data ad; 4380 4381 tsec = current->security; 4382 isec = sma->sem_perm.security; 4383 4384 AVC_AUDIT_DATA_INIT(&ad, IPC); 4385 ad.u.ipc_id = sma->sem_perm.key; 4386 4387 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM, 4388 SEM__ASSOCIATE, &ad); 4389 } 4390 4391 /* Note, at this point, sma is locked down */ 4392 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 4393 { 4394 int err; 4395 u32 perms; 4396 4397 switch(cmd) { 4398 case IPC_INFO: 4399 case SEM_INFO: 4400 /* No specific object, just general system-wide information. */ 4401 return task_has_system(current, SYSTEM__IPC_INFO); 4402 case GETPID: 4403 case GETNCNT: 4404 case GETZCNT: 4405 perms = SEM__GETATTR; 4406 break; 4407 case GETVAL: 4408 case GETALL: 4409 perms = SEM__READ; 4410 break; 4411 case SETVAL: 4412 case SETALL: 4413 perms = SEM__WRITE; 4414 break; 4415 case IPC_RMID: 4416 perms = SEM__DESTROY; 4417 break; 4418 case IPC_SET: 4419 perms = SEM__SETATTR; 4420 break; 4421 case IPC_STAT: 4422 case SEM_STAT: 4423 perms = SEM__GETATTR | SEM__ASSOCIATE; 4424 break; 4425 default: 4426 return 0; 4427 } 4428 4429 err = ipc_has_perm(&sma->sem_perm, perms); 4430 return err; 4431 } 4432 4433 static int selinux_sem_semop(struct sem_array *sma, 4434 struct sembuf *sops, unsigned nsops, int alter) 4435 { 4436 u32 perms; 4437 4438 if (alter) 4439 perms = SEM__READ | SEM__WRITE; 4440 else 4441 perms = SEM__READ; 4442 4443 return ipc_has_perm(&sma->sem_perm, perms); 4444 } 4445 4446 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 4447 { 4448 u32 av = 0; 4449 4450 av = 0; 4451 if (flag & S_IRUGO) 4452 av |= IPC__UNIX_READ; 4453 if (flag & S_IWUGO) 4454 av |= IPC__UNIX_WRITE; 4455 4456 if (av == 0) 4457 return 0; 4458 4459 return ipc_has_perm(ipcp, av); 4460 } 4461 4462 /* module stacking operations */ 4463 static int selinux_register_security (const char *name, struct security_operations *ops) 4464 { 4465 if (secondary_ops != original_ops) { 4466 printk(KERN_ERR "%s: There is already a secondary security " 4467 "module registered.\n", __FUNCTION__); 4468 return -EINVAL; 4469 } 4470 4471 secondary_ops = ops; 4472 4473 printk(KERN_INFO "%s: Registering secondary module %s\n", 4474 __FUNCTION__, 4475 name); 4476 4477 return 0; 4478 } 4479 4480 static int selinux_unregister_security (const char *name, struct security_operations *ops) 4481 { 4482 if (ops != secondary_ops) { 4483 printk(KERN_ERR "%s: trying to unregister a security module " 4484 "that is not registered.\n", __FUNCTION__); 4485 return -EINVAL; 4486 } 4487 4488 secondary_ops = original_ops; 4489 4490 return 0; 4491 } 4492 4493 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode) 4494 { 4495 if (inode) 4496 inode_doinit_with_dentry(inode, dentry); 4497 } 4498 4499 static int selinux_getprocattr(struct task_struct *p, 4500 char *name, char **value) 4501 { 4502 struct task_security_struct *tsec; 4503 u32 sid; 4504 int error; 4505 unsigned len; 4506 4507 if (current != p) { 4508 error = task_has_perm(current, p, PROCESS__GETATTR); 4509 if (error) 4510 return error; 4511 } 4512 4513 tsec = p->security; 4514 4515 if (!strcmp(name, "current")) 4516 sid = tsec->sid; 4517 else if (!strcmp(name, "prev")) 4518 sid = tsec->osid; 4519 else if (!strcmp(name, "exec")) 4520 sid = tsec->exec_sid; 4521 else if (!strcmp(name, "fscreate")) 4522 sid = tsec->create_sid; 4523 else if (!strcmp(name, "keycreate")) 4524 sid = tsec->keycreate_sid; 4525 else if (!strcmp(name, "sockcreate")) 4526 sid = tsec->sockcreate_sid; 4527 else 4528 return -EINVAL; 4529 4530 if (!sid) 4531 return 0; 4532 4533 error = security_sid_to_context(sid, value, &len); 4534 if (error) 4535 return error; 4536 return len; 4537 } 4538 4539 static int selinux_setprocattr(struct task_struct *p, 4540 char *name, void *value, size_t size) 4541 { 4542 struct task_security_struct *tsec; 4543 u32 sid = 0; 4544 int error; 4545 char *str = value; 4546 4547 if (current != p) { 4548 /* SELinux only allows a process to change its own 4549 security attributes. */ 4550 return -EACCES; 4551 } 4552 4553 /* 4554 * Basic control over ability to set these attributes at all. 4555 * current == p, but we'll pass them separately in case the 4556 * above restriction is ever removed. 4557 */ 4558 if (!strcmp(name, "exec")) 4559 error = task_has_perm(current, p, PROCESS__SETEXEC); 4560 else if (!strcmp(name, "fscreate")) 4561 error = task_has_perm(current, p, PROCESS__SETFSCREATE); 4562 else if (!strcmp(name, "keycreate")) 4563 error = task_has_perm(current, p, PROCESS__SETKEYCREATE); 4564 else if (!strcmp(name, "sockcreate")) 4565 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE); 4566 else if (!strcmp(name, "current")) 4567 error = task_has_perm(current, p, PROCESS__SETCURRENT); 4568 else 4569 error = -EINVAL; 4570 if (error) 4571 return error; 4572 4573 /* Obtain a SID for the context, if one was specified. */ 4574 if (size && str[1] && str[1] != '\n') { 4575 if (str[size-1] == '\n') { 4576 str[size-1] = 0; 4577 size--; 4578 } 4579 error = security_context_to_sid(value, size, &sid); 4580 if (error) 4581 return error; 4582 } 4583 4584 /* Permission checking based on the specified context is 4585 performed during the actual operation (execve, 4586 open/mkdir/...), when we know the full context of the 4587 operation. See selinux_bprm_set_security for the execve 4588 checks and may_create for the file creation checks. The 4589 operation will then fail if the context is not permitted. */ 4590 tsec = p->security; 4591 if (!strcmp(name, "exec")) 4592 tsec->exec_sid = sid; 4593 else if (!strcmp(name, "fscreate")) 4594 tsec->create_sid = sid; 4595 else if (!strcmp(name, "keycreate")) { 4596 error = may_create_key(sid, p); 4597 if (error) 4598 return error; 4599 tsec->keycreate_sid = sid; 4600 } else if (!strcmp(name, "sockcreate")) 4601 tsec->sockcreate_sid = sid; 4602 else if (!strcmp(name, "current")) { 4603 struct av_decision avd; 4604 4605 if (sid == 0) 4606 return -EINVAL; 4607 4608 /* Only allow single threaded processes to change context */ 4609 if (atomic_read(&p->mm->mm_users) != 1) { 4610 struct task_struct *g, *t; 4611 struct mm_struct *mm = p->mm; 4612 read_lock(&tasklist_lock); 4613 do_each_thread(g, t) 4614 if (t->mm == mm && t != p) { 4615 read_unlock(&tasklist_lock); 4616 return -EPERM; 4617 } 4618 while_each_thread(g, t); 4619 read_unlock(&tasklist_lock); 4620 } 4621 4622 /* Check permissions for the transition. */ 4623 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 4624 PROCESS__DYNTRANSITION, NULL); 4625 if (error) 4626 return error; 4627 4628 /* Check for ptracing, and update the task SID if ok. 4629 Otherwise, leave SID unchanged and fail. */ 4630 task_lock(p); 4631 if (p->ptrace & PT_PTRACED) { 4632 error = avc_has_perm_noaudit(tsec->ptrace_sid, sid, 4633 SECCLASS_PROCESS, 4634 PROCESS__PTRACE, 0, &avd); 4635 if (!error) 4636 tsec->sid = sid; 4637 task_unlock(p); 4638 avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS, 4639 PROCESS__PTRACE, &avd, error, NULL); 4640 if (error) 4641 return error; 4642 } else { 4643 tsec->sid = sid; 4644 task_unlock(p); 4645 } 4646 } 4647 else 4648 return -EINVAL; 4649 4650 return size; 4651 } 4652 4653 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 4654 { 4655 return security_sid_to_context(secid, secdata, seclen); 4656 } 4657 4658 static void selinux_release_secctx(char *secdata, u32 seclen) 4659 { 4660 if (secdata) 4661 kfree(secdata); 4662 } 4663 4664 #ifdef CONFIG_KEYS 4665 4666 static int selinux_key_alloc(struct key *k, struct task_struct *tsk, 4667 unsigned long flags) 4668 { 4669 struct task_security_struct *tsec = tsk->security; 4670 struct key_security_struct *ksec; 4671 4672 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 4673 if (!ksec) 4674 return -ENOMEM; 4675 4676 ksec->obj = k; 4677 if (tsec->keycreate_sid) 4678 ksec->sid = tsec->keycreate_sid; 4679 else 4680 ksec->sid = tsec->sid; 4681 k->security = ksec; 4682 4683 return 0; 4684 } 4685 4686 static void selinux_key_free(struct key *k) 4687 { 4688 struct key_security_struct *ksec = k->security; 4689 4690 k->security = NULL; 4691 kfree(ksec); 4692 } 4693 4694 static int selinux_key_permission(key_ref_t key_ref, 4695 struct task_struct *ctx, 4696 key_perm_t perm) 4697 { 4698 struct key *key; 4699 struct task_security_struct *tsec; 4700 struct key_security_struct *ksec; 4701 4702 key = key_ref_to_ptr(key_ref); 4703 4704 tsec = ctx->security; 4705 ksec = key->security; 4706 4707 /* if no specific permissions are requested, we skip the 4708 permission check. No serious, additional covert channels 4709 appear to be created. */ 4710 if (perm == 0) 4711 return 0; 4712 4713 return avc_has_perm(tsec->sid, ksec->sid, 4714 SECCLASS_KEY, perm, NULL); 4715 } 4716 4717 #endif 4718 4719 static struct security_operations selinux_ops = { 4720 .ptrace = selinux_ptrace, 4721 .capget = selinux_capget, 4722 .capset_check = selinux_capset_check, 4723 .capset_set = selinux_capset_set, 4724 .sysctl = selinux_sysctl, 4725 .capable = selinux_capable, 4726 .quotactl = selinux_quotactl, 4727 .quota_on = selinux_quota_on, 4728 .syslog = selinux_syslog, 4729 .vm_enough_memory = selinux_vm_enough_memory, 4730 4731 .netlink_send = selinux_netlink_send, 4732 .netlink_recv = selinux_netlink_recv, 4733 4734 .bprm_alloc_security = selinux_bprm_alloc_security, 4735 .bprm_free_security = selinux_bprm_free_security, 4736 .bprm_apply_creds = selinux_bprm_apply_creds, 4737 .bprm_post_apply_creds = selinux_bprm_post_apply_creds, 4738 .bprm_set_security = selinux_bprm_set_security, 4739 .bprm_check_security = selinux_bprm_check_security, 4740 .bprm_secureexec = selinux_bprm_secureexec, 4741 4742 .sb_alloc_security = selinux_sb_alloc_security, 4743 .sb_free_security = selinux_sb_free_security, 4744 .sb_copy_data = selinux_sb_copy_data, 4745 .sb_kern_mount = selinux_sb_kern_mount, 4746 .sb_statfs = selinux_sb_statfs, 4747 .sb_mount = selinux_mount, 4748 .sb_umount = selinux_umount, 4749 4750 .inode_alloc_security = selinux_inode_alloc_security, 4751 .inode_free_security = selinux_inode_free_security, 4752 .inode_init_security = selinux_inode_init_security, 4753 .inode_create = selinux_inode_create, 4754 .inode_link = selinux_inode_link, 4755 .inode_unlink = selinux_inode_unlink, 4756 .inode_symlink = selinux_inode_symlink, 4757 .inode_mkdir = selinux_inode_mkdir, 4758 .inode_rmdir = selinux_inode_rmdir, 4759 .inode_mknod = selinux_inode_mknod, 4760 .inode_rename = selinux_inode_rename, 4761 .inode_readlink = selinux_inode_readlink, 4762 .inode_follow_link = selinux_inode_follow_link, 4763 .inode_permission = selinux_inode_permission, 4764 .inode_setattr = selinux_inode_setattr, 4765 .inode_getattr = selinux_inode_getattr, 4766 .inode_setxattr = selinux_inode_setxattr, 4767 .inode_post_setxattr = selinux_inode_post_setxattr, 4768 .inode_getxattr = selinux_inode_getxattr, 4769 .inode_listxattr = selinux_inode_listxattr, 4770 .inode_removexattr = selinux_inode_removexattr, 4771 .inode_xattr_getsuffix = selinux_inode_xattr_getsuffix, 4772 .inode_getsecurity = selinux_inode_getsecurity, 4773 .inode_setsecurity = selinux_inode_setsecurity, 4774 .inode_listsecurity = selinux_inode_listsecurity, 4775 4776 .file_permission = selinux_file_permission, 4777 .file_alloc_security = selinux_file_alloc_security, 4778 .file_free_security = selinux_file_free_security, 4779 .file_ioctl = selinux_file_ioctl, 4780 .file_mmap = selinux_file_mmap, 4781 .file_mprotect = selinux_file_mprotect, 4782 .file_lock = selinux_file_lock, 4783 .file_fcntl = selinux_file_fcntl, 4784 .file_set_fowner = selinux_file_set_fowner, 4785 .file_send_sigiotask = selinux_file_send_sigiotask, 4786 .file_receive = selinux_file_receive, 4787 4788 .task_create = selinux_task_create, 4789 .task_alloc_security = selinux_task_alloc_security, 4790 .task_free_security = selinux_task_free_security, 4791 .task_setuid = selinux_task_setuid, 4792 .task_post_setuid = selinux_task_post_setuid, 4793 .task_setgid = selinux_task_setgid, 4794 .task_setpgid = selinux_task_setpgid, 4795 .task_getpgid = selinux_task_getpgid, 4796 .task_getsid = selinux_task_getsid, 4797 .task_getsecid = selinux_task_getsecid, 4798 .task_setgroups = selinux_task_setgroups, 4799 .task_setnice = selinux_task_setnice, 4800 .task_setioprio = selinux_task_setioprio, 4801 .task_getioprio = selinux_task_getioprio, 4802 .task_setrlimit = selinux_task_setrlimit, 4803 .task_setscheduler = selinux_task_setscheduler, 4804 .task_getscheduler = selinux_task_getscheduler, 4805 .task_movememory = selinux_task_movememory, 4806 .task_kill = selinux_task_kill, 4807 .task_wait = selinux_task_wait, 4808 .task_prctl = selinux_task_prctl, 4809 .task_reparent_to_init = selinux_task_reparent_to_init, 4810 .task_to_inode = selinux_task_to_inode, 4811 4812 .ipc_permission = selinux_ipc_permission, 4813 4814 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 4815 .msg_msg_free_security = selinux_msg_msg_free_security, 4816 4817 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 4818 .msg_queue_free_security = selinux_msg_queue_free_security, 4819 .msg_queue_associate = selinux_msg_queue_associate, 4820 .msg_queue_msgctl = selinux_msg_queue_msgctl, 4821 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 4822 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 4823 4824 .shm_alloc_security = selinux_shm_alloc_security, 4825 .shm_free_security = selinux_shm_free_security, 4826 .shm_associate = selinux_shm_associate, 4827 .shm_shmctl = selinux_shm_shmctl, 4828 .shm_shmat = selinux_shm_shmat, 4829 4830 .sem_alloc_security = selinux_sem_alloc_security, 4831 .sem_free_security = selinux_sem_free_security, 4832 .sem_associate = selinux_sem_associate, 4833 .sem_semctl = selinux_sem_semctl, 4834 .sem_semop = selinux_sem_semop, 4835 4836 .register_security = selinux_register_security, 4837 .unregister_security = selinux_unregister_security, 4838 4839 .d_instantiate = selinux_d_instantiate, 4840 4841 .getprocattr = selinux_getprocattr, 4842 .setprocattr = selinux_setprocattr, 4843 4844 .secid_to_secctx = selinux_secid_to_secctx, 4845 .release_secctx = selinux_release_secctx, 4846 4847 .unix_stream_connect = selinux_socket_unix_stream_connect, 4848 .unix_may_send = selinux_socket_unix_may_send, 4849 4850 .socket_create = selinux_socket_create, 4851 .socket_post_create = selinux_socket_post_create, 4852 .socket_bind = selinux_socket_bind, 4853 .socket_connect = selinux_socket_connect, 4854 .socket_listen = selinux_socket_listen, 4855 .socket_accept = selinux_socket_accept, 4856 .socket_sendmsg = selinux_socket_sendmsg, 4857 .socket_recvmsg = selinux_socket_recvmsg, 4858 .socket_getsockname = selinux_socket_getsockname, 4859 .socket_getpeername = selinux_socket_getpeername, 4860 .socket_getsockopt = selinux_socket_getsockopt, 4861 .socket_setsockopt = selinux_socket_setsockopt, 4862 .socket_shutdown = selinux_socket_shutdown, 4863 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 4864 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 4865 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 4866 .sk_alloc_security = selinux_sk_alloc_security, 4867 .sk_free_security = selinux_sk_free_security, 4868 .sk_clone_security = selinux_sk_clone_security, 4869 .sk_getsecid = selinux_sk_getsecid, 4870 .sock_graft = selinux_sock_graft, 4871 .inet_conn_request = selinux_inet_conn_request, 4872 .inet_csk_clone = selinux_inet_csk_clone, 4873 .inet_conn_established = selinux_inet_conn_established, 4874 .req_classify_flow = selinux_req_classify_flow, 4875 4876 #ifdef CONFIG_SECURITY_NETWORK_XFRM 4877 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 4878 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 4879 .xfrm_policy_free_security = selinux_xfrm_policy_free, 4880 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 4881 .xfrm_state_alloc_security = selinux_xfrm_state_alloc, 4882 .xfrm_state_free_security = selinux_xfrm_state_free, 4883 .xfrm_state_delete_security = selinux_xfrm_state_delete, 4884 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 4885 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 4886 .xfrm_decode_session = selinux_xfrm_decode_session, 4887 #endif 4888 4889 #ifdef CONFIG_KEYS 4890 .key_alloc = selinux_key_alloc, 4891 .key_free = selinux_key_free, 4892 .key_permission = selinux_key_permission, 4893 #endif 4894 }; 4895 4896 static __init int selinux_init(void) 4897 { 4898 struct task_security_struct *tsec; 4899 4900 if (!selinux_enabled) { 4901 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 4902 return 0; 4903 } 4904 4905 printk(KERN_INFO "SELinux: Initializing.\n"); 4906 4907 /* Set the security state for the initial task. */ 4908 if (task_alloc_security(current)) 4909 panic("SELinux: Failed to initialize initial task.\n"); 4910 tsec = current->security; 4911 tsec->osid = tsec->sid = SECINITSID_KERNEL; 4912 4913 sel_inode_cache = kmem_cache_create("selinux_inode_security", 4914 sizeof(struct inode_security_struct), 4915 0, SLAB_PANIC, NULL, NULL); 4916 avc_init(); 4917 4918 original_ops = secondary_ops = security_ops; 4919 if (!secondary_ops) 4920 panic ("SELinux: No initial security operations\n"); 4921 if (register_security (&selinux_ops)) 4922 panic("SELinux: Unable to register with kernel.\n"); 4923 4924 if (selinux_enforcing) { 4925 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 4926 } else { 4927 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 4928 } 4929 4930 #ifdef CONFIG_KEYS 4931 /* Add security information to initial keyrings */ 4932 selinux_key_alloc(&root_user_keyring, current, 4933 KEY_ALLOC_NOT_IN_QUOTA); 4934 selinux_key_alloc(&root_session_keyring, current, 4935 KEY_ALLOC_NOT_IN_QUOTA); 4936 #endif 4937 4938 return 0; 4939 } 4940 4941 void selinux_complete_init(void) 4942 { 4943 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 4944 4945 /* Set up any superblocks initialized prior to the policy load. */ 4946 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 4947 spin_lock(&sb_lock); 4948 spin_lock(&sb_security_lock); 4949 next_sb: 4950 if (!list_empty(&superblock_security_head)) { 4951 struct superblock_security_struct *sbsec = 4952 list_entry(superblock_security_head.next, 4953 struct superblock_security_struct, 4954 list); 4955 struct super_block *sb = sbsec->sb; 4956 sb->s_count++; 4957 spin_unlock(&sb_security_lock); 4958 spin_unlock(&sb_lock); 4959 down_read(&sb->s_umount); 4960 if (sb->s_root) 4961 superblock_doinit(sb, NULL); 4962 drop_super(sb); 4963 spin_lock(&sb_lock); 4964 spin_lock(&sb_security_lock); 4965 list_del_init(&sbsec->list); 4966 goto next_sb; 4967 } 4968 spin_unlock(&sb_security_lock); 4969 spin_unlock(&sb_lock); 4970 } 4971 4972 /* SELinux requires early initialization in order to label 4973 all processes and objects when they are created. */ 4974 security_initcall(selinux_init); 4975 4976 #if defined(CONFIG_NETFILTER) 4977 4978 static struct nf_hook_ops selinux_ipv4_op = { 4979 .hook = selinux_ipv4_postroute_last, 4980 .owner = THIS_MODULE, 4981 .pf = PF_INET, 4982 .hooknum = NF_IP_POST_ROUTING, 4983 .priority = NF_IP_PRI_SELINUX_LAST, 4984 }; 4985 4986 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4987 4988 static struct nf_hook_ops selinux_ipv6_op = { 4989 .hook = selinux_ipv6_postroute_last, 4990 .owner = THIS_MODULE, 4991 .pf = PF_INET6, 4992 .hooknum = NF_IP6_POST_ROUTING, 4993 .priority = NF_IP6_PRI_SELINUX_LAST, 4994 }; 4995 4996 #endif /* IPV6 */ 4997 4998 static int __init selinux_nf_ip_init(void) 4999 { 5000 int err = 0; 5001 5002 if (!selinux_enabled) 5003 goto out; 5004 5005 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 5006 5007 err = nf_register_hook(&selinux_ipv4_op); 5008 if (err) 5009 panic("SELinux: nf_register_hook for IPv4: error %d\n", err); 5010 5011 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5012 5013 err = nf_register_hook(&selinux_ipv6_op); 5014 if (err) 5015 panic("SELinux: nf_register_hook for IPv6: error %d\n", err); 5016 5017 #endif /* IPV6 */ 5018 5019 out: 5020 return err; 5021 } 5022 5023 __initcall(selinux_nf_ip_init); 5024 5025 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5026 static void selinux_nf_ip_exit(void) 5027 { 5028 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 5029 5030 nf_unregister_hook(&selinux_ipv4_op); 5031 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5032 nf_unregister_hook(&selinux_ipv6_op); 5033 #endif /* IPV6 */ 5034 } 5035 #endif 5036 5037 #else /* CONFIG_NETFILTER */ 5038 5039 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5040 #define selinux_nf_ip_exit() 5041 #endif 5042 5043 #endif /* CONFIG_NETFILTER */ 5044 5045 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5046 int selinux_disable(void) 5047 { 5048 extern void exit_sel_fs(void); 5049 static int selinux_disabled = 0; 5050 5051 if (ss_initialized) { 5052 /* Not permitted after initial policy load. */ 5053 return -EINVAL; 5054 } 5055 5056 if (selinux_disabled) { 5057 /* Only do this once. */ 5058 return -EINVAL; 5059 } 5060 5061 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 5062 5063 selinux_disabled = 1; 5064 selinux_enabled = 0; 5065 5066 /* Reset security_ops to the secondary module, dummy or capability. */ 5067 security_ops = secondary_ops; 5068 5069 /* Unregister netfilter hooks. */ 5070 selinux_nf_ip_exit(); 5071 5072 /* Unregister selinuxfs. */ 5073 exit_sel_fs(); 5074 5075 return 0; 5076 } 5077 #endif 5078 5079 5080