xref: /linux/security/selinux/hooks.c (revision 804382d59b81b331735d37a18149ea0d36d5936a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Security-Enhanced Linux (SELinux) security module
4  *
5  *  This file contains the SELinux hook function implementations.
6  *
7  *  Authors:  Stephen Smalley, <stephen.smalley.work@gmail.com>
8  *	      Chris Vance, <cvance@nai.com>
9  *	      Wayne Salamon, <wsalamon@nai.com>
10  *	      James Morris <jmorris@redhat.com>
11  *
12  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14  *					   Eric Paris <eparis@redhat.com>
15  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  *			    <dgoeddel@trustedcs.com>
17  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18  *	Paul Moore <paul@paul-moore.com>
19  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
21  *  Copyright (C) 2016 Mellanox Technologies
22  */
23 
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/errno.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/task.h>
31 #include <linux/lsm_hooks.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/swap.h>
41 #include <linux/spinlock.h>
42 #include <linux/syscalls.h>
43 #include <linux/dcache.h>
44 #include <linux/file.h>
45 #include <linux/fdtable.h>
46 #include <linux/namei.h>
47 #include <linux/mount.h>
48 #include <linux/fs_context.h>
49 #include <linux/fs_parser.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>		/* for local_port_range[] */
55 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>	/* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/sctp.h>
70 #include <net/sctp/structs.h>
71 #include <linux/quota.h>
72 #include <linux/un.h>		/* for Unix socket types */
73 #include <net/af_unix.h>	/* for Unix socket types */
74 #include <linux/parser.h>
75 #include <linux/nfs_mount.h>
76 #include <net/ipv6.h>
77 #include <linux/hugetlb.h>
78 #include <linux/personality.h>
79 #include <linux/audit.h>
80 #include <linux/string.h>
81 #include <linux/mutex.h>
82 #include <linux/posix-timers.h>
83 #include <linux/syslog.h>
84 #include <linux/user_namespace.h>
85 #include <linux/export.h>
86 #include <linux/msg.h>
87 #include <linux/shm.h>
88 #include <uapi/linux/shm.h>
89 #include <linux/bpf.h>
90 #include <linux/kernfs.h>
91 #include <linux/stringhash.h>	/* for hashlen_string() */
92 #include <uapi/linux/mount.h>
93 #include <linux/fsnotify.h>
94 #include <linux/fanotify.h>
95 #include <linux/io_uring/cmd.h>
96 #include <uapi/linux/lsm.h>
97 
98 #include "avc.h"
99 #include "objsec.h"
100 #include "netif.h"
101 #include "netnode.h"
102 #include "netport.h"
103 #include "ibpkey.h"
104 #include "xfrm.h"
105 #include "netlabel.h"
106 #include "audit.h"
107 #include "avc_ss.h"
108 
109 #define SELINUX_INODE_INIT_XATTRS 1
110 
111 struct selinux_state selinux_state;
112 
113 /* SECMARK reference count */
114 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
115 
116 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
117 static int selinux_enforcing_boot __initdata;
118 
119 static int __init enforcing_setup(char *str)
120 {
121 	unsigned long enforcing;
122 	if (!kstrtoul(str, 0, &enforcing))
123 		selinux_enforcing_boot = enforcing ? 1 : 0;
124 	return 1;
125 }
126 __setup("enforcing=", enforcing_setup);
127 #else
128 #define selinux_enforcing_boot 1
129 #endif
130 
131 int selinux_enabled_boot __initdata = 1;
132 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
133 static int __init selinux_enabled_setup(char *str)
134 {
135 	unsigned long enabled;
136 	if (!kstrtoul(str, 0, &enabled))
137 		selinux_enabled_boot = enabled ? 1 : 0;
138 	return 1;
139 }
140 __setup("selinux=", selinux_enabled_setup);
141 #endif
142 
143 static int __init checkreqprot_setup(char *str)
144 {
145 	unsigned long checkreqprot;
146 
147 	if (!kstrtoul(str, 0, &checkreqprot)) {
148 		if (checkreqprot)
149 			pr_err("SELinux: checkreqprot set to 1 via kernel parameter.  This is no longer supported.\n");
150 	}
151 	return 1;
152 }
153 __setup("checkreqprot=", checkreqprot_setup);
154 
155 /**
156  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157  *
158  * Description:
159  * This function checks the SECMARK reference counter to see if any SECMARK
160  * targets are currently configured, if the reference counter is greater than
161  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
162  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
163  * policy capability is enabled, SECMARK is always considered enabled.
164  *
165  */
166 static int selinux_secmark_enabled(void)
167 {
168 	return (selinux_policycap_alwaysnetwork() ||
169 		atomic_read(&selinux_secmark_refcount));
170 }
171 
172 /**
173  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174  *
175  * Description:
176  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
177  * (1) if any are enabled or false (0) if neither are enabled.  If the
178  * always_check_network policy capability is enabled, peer labeling
179  * is always considered enabled.
180  *
181  */
182 static int selinux_peerlbl_enabled(void)
183 {
184 	return (selinux_policycap_alwaysnetwork() ||
185 		netlbl_enabled() || selinux_xfrm_enabled());
186 }
187 
188 static int selinux_netcache_avc_callback(u32 event)
189 {
190 	if (event == AVC_CALLBACK_RESET) {
191 		sel_netif_flush();
192 		sel_netnode_flush();
193 		sel_netport_flush();
194 		synchronize_net();
195 	}
196 	return 0;
197 }
198 
199 static int selinux_lsm_notifier_avc_callback(u32 event)
200 {
201 	if (event == AVC_CALLBACK_RESET) {
202 		sel_ib_pkey_flush();
203 		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 	}
205 
206 	return 0;
207 }
208 
209 /*
210  * initialise the security for the init task
211  */
212 static void cred_init_security(void)
213 {
214 	struct task_security_struct *tsec;
215 
216 	tsec = selinux_cred(unrcu_pointer(current->real_cred));
217 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
218 }
219 
220 /*
221  * get the security ID of a set of credentials
222  */
223 static inline u32 cred_sid(const struct cred *cred)
224 {
225 	const struct task_security_struct *tsec;
226 
227 	tsec = selinux_cred(cred);
228 	return tsec->sid;
229 }
230 
231 static void __ad_net_init(struct common_audit_data *ad,
232 			  struct lsm_network_audit *net,
233 			  int ifindex, struct sock *sk, u16 family)
234 {
235 	ad->type = LSM_AUDIT_DATA_NET;
236 	ad->u.net = net;
237 	net->netif = ifindex;
238 	net->sk = sk;
239 	net->family = family;
240 }
241 
242 static void ad_net_init_from_sk(struct common_audit_data *ad,
243 				struct lsm_network_audit *net,
244 				struct sock *sk)
245 {
246 	__ad_net_init(ad, net, 0, sk, 0);
247 }
248 
249 static void ad_net_init_from_iif(struct common_audit_data *ad,
250 				 struct lsm_network_audit *net,
251 				 int ifindex, u16 family)
252 {
253 	__ad_net_init(ad, net, ifindex, NULL, family);
254 }
255 
256 /*
257  * get the objective security ID of a task
258  */
259 static inline u32 task_sid_obj(const struct task_struct *task)
260 {
261 	u32 sid;
262 
263 	rcu_read_lock();
264 	sid = cred_sid(__task_cred(task));
265 	rcu_read_unlock();
266 	return sid;
267 }
268 
269 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
270 
271 /*
272  * Try reloading inode security labels that have been marked as invalid.  The
273  * @may_sleep parameter indicates when sleeping and thus reloading labels is
274  * allowed; when set to false, returns -ECHILD when the label is
275  * invalid.  The @dentry parameter should be set to a dentry of the inode.
276  */
277 static int __inode_security_revalidate(struct inode *inode,
278 				       struct dentry *dentry,
279 				       bool may_sleep)
280 {
281 	struct inode_security_struct *isec = selinux_inode(inode);
282 
283 	might_sleep_if(may_sleep);
284 
285 	/*
286 	 * The check of isec->initialized below is racy but
287 	 * inode_doinit_with_dentry() will recheck with
288 	 * isec->lock held.
289 	 */
290 	if (selinux_initialized() &&
291 	    data_race(isec->initialized != LABEL_INITIALIZED)) {
292 		if (!may_sleep)
293 			return -ECHILD;
294 
295 		/*
296 		 * Try reloading the inode security label.  This will fail if
297 		 * @opt_dentry is NULL and no dentry for this inode can be
298 		 * found; in that case, continue using the old label.
299 		 */
300 		inode_doinit_with_dentry(inode, dentry);
301 	}
302 	return 0;
303 }
304 
305 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
306 {
307 	return selinux_inode(inode);
308 }
309 
310 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
311 {
312 	int error;
313 
314 	error = __inode_security_revalidate(inode, NULL, !rcu);
315 	if (error)
316 		return ERR_PTR(error);
317 	return selinux_inode(inode);
318 }
319 
320 /*
321  * Get the security label of an inode.
322  */
323 static struct inode_security_struct *inode_security(struct inode *inode)
324 {
325 	__inode_security_revalidate(inode, NULL, true);
326 	return selinux_inode(inode);
327 }
328 
329 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
330 {
331 	struct inode *inode = d_backing_inode(dentry);
332 
333 	return selinux_inode(inode);
334 }
335 
336 /*
337  * Get the security label of a dentry's backing inode.
338  */
339 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
340 {
341 	struct inode *inode = d_backing_inode(dentry);
342 
343 	__inode_security_revalidate(inode, dentry, true);
344 	return selinux_inode(inode);
345 }
346 
347 static void inode_free_security(struct inode *inode)
348 {
349 	struct inode_security_struct *isec = selinux_inode(inode);
350 	struct superblock_security_struct *sbsec;
351 
352 	if (!isec)
353 		return;
354 	sbsec = selinux_superblock(inode->i_sb);
355 	/*
356 	 * As not all inode security structures are in a list, we check for
357 	 * empty list outside of the lock to make sure that we won't waste
358 	 * time taking a lock doing nothing.
359 	 *
360 	 * The list_del_init() function can be safely called more than once.
361 	 * It should not be possible for this function to be called with
362 	 * concurrent list_add(), but for better safety against future changes
363 	 * in the code, we use list_empty_careful() here.
364 	 */
365 	if (!list_empty_careful(&isec->list)) {
366 		spin_lock(&sbsec->isec_lock);
367 		list_del_init(&isec->list);
368 		spin_unlock(&sbsec->isec_lock);
369 	}
370 }
371 
372 struct selinux_mnt_opts {
373 	u32 fscontext_sid;
374 	u32 context_sid;
375 	u32 rootcontext_sid;
376 	u32 defcontext_sid;
377 };
378 
379 static void selinux_free_mnt_opts(void *mnt_opts)
380 {
381 	kfree(mnt_opts);
382 }
383 
384 enum {
385 	Opt_error = -1,
386 	Opt_context = 0,
387 	Opt_defcontext = 1,
388 	Opt_fscontext = 2,
389 	Opt_rootcontext = 3,
390 	Opt_seclabel = 4,
391 };
392 
393 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
394 static const struct {
395 	const char *name;
396 	int len;
397 	int opt;
398 	bool has_arg;
399 } tokens[] = {
400 	A(context, true),
401 	A(fscontext, true),
402 	A(defcontext, true),
403 	A(rootcontext, true),
404 	A(seclabel, false),
405 };
406 #undef A
407 
408 static int match_opt_prefix(char *s, int l, char **arg)
409 {
410 	unsigned int i;
411 
412 	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
413 		size_t len = tokens[i].len;
414 		if (len > l || memcmp(s, tokens[i].name, len))
415 			continue;
416 		if (tokens[i].has_arg) {
417 			if (len == l || s[len] != '=')
418 				continue;
419 			*arg = s + len + 1;
420 		} else if (len != l)
421 			continue;
422 		return tokens[i].opt;
423 	}
424 	return Opt_error;
425 }
426 
427 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
428 
429 static int may_context_mount_sb_relabel(u32 sid,
430 			struct superblock_security_struct *sbsec,
431 			const struct cred *cred)
432 {
433 	const struct task_security_struct *tsec = selinux_cred(cred);
434 	int rc;
435 
436 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
437 			  FILESYSTEM__RELABELFROM, NULL);
438 	if (rc)
439 		return rc;
440 
441 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
442 			  FILESYSTEM__RELABELTO, NULL);
443 	return rc;
444 }
445 
446 static int may_context_mount_inode_relabel(u32 sid,
447 			struct superblock_security_struct *sbsec,
448 			const struct cred *cred)
449 {
450 	const struct task_security_struct *tsec = selinux_cred(cred);
451 	int rc;
452 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
453 			  FILESYSTEM__RELABELFROM, NULL);
454 	if (rc)
455 		return rc;
456 
457 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
458 			  FILESYSTEM__ASSOCIATE, NULL);
459 	return rc;
460 }
461 
462 static int selinux_is_genfs_special_handling(struct super_block *sb)
463 {
464 	/* Special handling. Genfs but also in-core setxattr handler */
465 	return	!strcmp(sb->s_type->name, "sysfs") ||
466 		!strcmp(sb->s_type->name, "pstore") ||
467 		!strcmp(sb->s_type->name, "debugfs") ||
468 		!strcmp(sb->s_type->name, "tracefs") ||
469 		!strcmp(sb->s_type->name, "rootfs") ||
470 		(selinux_policycap_cgroupseclabel() &&
471 		 (!strcmp(sb->s_type->name, "cgroup") ||
472 		  !strcmp(sb->s_type->name, "cgroup2")));
473 }
474 
475 static int selinux_is_sblabel_mnt(struct super_block *sb)
476 {
477 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
478 
479 	/*
480 	 * IMPORTANT: Double-check logic in this function when adding a new
481 	 * SECURITY_FS_USE_* definition!
482 	 */
483 	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
484 
485 	switch (sbsec->behavior) {
486 	case SECURITY_FS_USE_XATTR:
487 	case SECURITY_FS_USE_TRANS:
488 	case SECURITY_FS_USE_TASK:
489 	case SECURITY_FS_USE_NATIVE:
490 		return 1;
491 
492 	case SECURITY_FS_USE_GENFS:
493 		return selinux_is_genfs_special_handling(sb);
494 
495 	/* Never allow relabeling on context mounts */
496 	case SECURITY_FS_USE_MNTPOINT:
497 	case SECURITY_FS_USE_NONE:
498 	default:
499 		return 0;
500 	}
501 }
502 
503 static int sb_check_xattr_support(struct super_block *sb)
504 {
505 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
506 	struct dentry *root = sb->s_root;
507 	struct inode *root_inode = d_backing_inode(root);
508 	u32 sid;
509 	int rc;
510 
511 	/*
512 	 * Make sure that the xattr handler exists and that no
513 	 * error other than -ENODATA is returned by getxattr on
514 	 * the root directory.  -ENODATA is ok, as this may be
515 	 * the first boot of the SELinux kernel before we have
516 	 * assigned xattr values to the filesystem.
517 	 */
518 	if (!(root_inode->i_opflags & IOP_XATTR)) {
519 		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
520 			sb->s_id, sb->s_type->name);
521 		goto fallback;
522 	}
523 
524 	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
525 	if (rc < 0 && rc != -ENODATA) {
526 		if (rc == -EOPNOTSUPP) {
527 			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
528 				sb->s_id, sb->s_type->name);
529 			goto fallback;
530 		} else {
531 			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
532 				sb->s_id, sb->s_type->name, -rc);
533 			return rc;
534 		}
535 	}
536 	return 0;
537 
538 fallback:
539 	/* No xattr support - try to fallback to genfs if possible. */
540 	rc = security_genfs_sid(sb->s_type->name, "/",
541 				SECCLASS_DIR, &sid);
542 	if (rc)
543 		return -EOPNOTSUPP;
544 
545 	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
546 		sb->s_id, sb->s_type->name);
547 	sbsec->behavior = SECURITY_FS_USE_GENFS;
548 	sbsec->sid = sid;
549 	return 0;
550 }
551 
552 static int sb_finish_set_opts(struct super_block *sb)
553 {
554 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
555 	struct dentry *root = sb->s_root;
556 	struct inode *root_inode = d_backing_inode(root);
557 	int rc = 0;
558 
559 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
560 		rc = sb_check_xattr_support(sb);
561 		if (rc)
562 			return rc;
563 	}
564 
565 	sbsec->flags |= SE_SBINITIALIZED;
566 
567 	/*
568 	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
569 	 * leave the flag untouched because sb_clone_mnt_opts might be handing
570 	 * us a superblock that needs the flag to be cleared.
571 	 */
572 	if (selinux_is_sblabel_mnt(sb))
573 		sbsec->flags |= SBLABEL_MNT;
574 	else
575 		sbsec->flags &= ~SBLABEL_MNT;
576 
577 	/* Initialize the root inode. */
578 	rc = inode_doinit_with_dentry(root_inode, root);
579 
580 	/* Initialize any other inodes associated with the superblock, e.g.
581 	   inodes created prior to initial policy load or inodes created
582 	   during get_sb by a pseudo filesystem that directly
583 	   populates itself. */
584 	spin_lock(&sbsec->isec_lock);
585 	while (!list_empty(&sbsec->isec_head)) {
586 		struct inode_security_struct *isec =
587 				list_first_entry(&sbsec->isec_head,
588 					   struct inode_security_struct, list);
589 		struct inode *inode = isec->inode;
590 		list_del_init(&isec->list);
591 		spin_unlock(&sbsec->isec_lock);
592 		inode = igrab(inode);
593 		if (inode) {
594 			if (!IS_PRIVATE(inode))
595 				inode_doinit_with_dentry(inode, NULL);
596 			iput(inode);
597 		}
598 		spin_lock(&sbsec->isec_lock);
599 	}
600 	spin_unlock(&sbsec->isec_lock);
601 	return rc;
602 }
603 
604 static int bad_option(struct superblock_security_struct *sbsec, char flag,
605 		      u32 old_sid, u32 new_sid)
606 {
607 	char mnt_flags = sbsec->flags & SE_MNTMASK;
608 
609 	/* check if the old mount command had the same options */
610 	if (sbsec->flags & SE_SBINITIALIZED)
611 		if (!(sbsec->flags & flag) ||
612 		    (old_sid != new_sid))
613 			return 1;
614 
615 	/* check if we were passed the same options twice,
616 	 * aka someone passed context=a,context=b
617 	 */
618 	if (!(sbsec->flags & SE_SBINITIALIZED))
619 		if (mnt_flags & flag)
620 			return 1;
621 	return 0;
622 }
623 
624 /*
625  * Allow filesystems with binary mount data to explicitly set mount point
626  * labeling information.
627  */
628 static int selinux_set_mnt_opts(struct super_block *sb,
629 				void *mnt_opts,
630 				unsigned long kern_flags,
631 				unsigned long *set_kern_flags)
632 {
633 	const struct cred *cred = current_cred();
634 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
635 	struct dentry *root = sb->s_root;
636 	struct selinux_mnt_opts *opts = mnt_opts;
637 	struct inode_security_struct *root_isec;
638 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
639 	u32 defcontext_sid = 0;
640 	int rc = 0;
641 
642 	/*
643 	 * Specifying internal flags without providing a place to
644 	 * place the results is not allowed
645 	 */
646 	if (kern_flags && !set_kern_flags)
647 		return -EINVAL;
648 
649 	mutex_lock(&sbsec->lock);
650 
651 	if (!selinux_initialized()) {
652 		if (!opts) {
653 			/* Defer initialization until selinux_complete_init,
654 			   after the initial policy is loaded and the security
655 			   server is ready to handle calls. */
656 			if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
657 				sbsec->flags |= SE_SBNATIVE;
658 				*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
659 			}
660 			goto out;
661 		}
662 		rc = -EINVAL;
663 		pr_warn("SELinux: Unable to set superblock options "
664 			"before the security server is initialized\n");
665 		goto out;
666 	}
667 
668 	/*
669 	 * Binary mount data FS will come through this function twice.  Once
670 	 * from an explicit call and once from the generic calls from the vfs.
671 	 * Since the generic VFS calls will not contain any security mount data
672 	 * we need to skip the double mount verification.
673 	 *
674 	 * This does open a hole in which we will not notice if the first
675 	 * mount using this sb set explicit options and a second mount using
676 	 * this sb does not set any security options.  (The first options
677 	 * will be used for both mounts)
678 	 */
679 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
680 	    && !opts)
681 		goto out;
682 
683 	root_isec = backing_inode_security_novalidate(root);
684 
685 	/*
686 	 * parse the mount options, check if they are valid sids.
687 	 * also check if someone is trying to mount the same sb more
688 	 * than once with different security options.
689 	 */
690 	if (opts) {
691 		if (opts->fscontext_sid) {
692 			fscontext_sid = opts->fscontext_sid;
693 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
694 					fscontext_sid))
695 				goto out_double_mount;
696 			sbsec->flags |= FSCONTEXT_MNT;
697 		}
698 		if (opts->context_sid) {
699 			context_sid = opts->context_sid;
700 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
701 					context_sid))
702 				goto out_double_mount;
703 			sbsec->flags |= CONTEXT_MNT;
704 		}
705 		if (opts->rootcontext_sid) {
706 			rootcontext_sid = opts->rootcontext_sid;
707 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
708 					rootcontext_sid))
709 				goto out_double_mount;
710 			sbsec->flags |= ROOTCONTEXT_MNT;
711 		}
712 		if (opts->defcontext_sid) {
713 			defcontext_sid = opts->defcontext_sid;
714 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
715 					defcontext_sid))
716 				goto out_double_mount;
717 			sbsec->flags |= DEFCONTEXT_MNT;
718 		}
719 	}
720 
721 	if (sbsec->flags & SE_SBINITIALIZED) {
722 		/* previously mounted with options, but not on this attempt? */
723 		if ((sbsec->flags & SE_MNTMASK) && !opts)
724 			goto out_double_mount;
725 		rc = 0;
726 		goto out;
727 	}
728 
729 	if (strcmp(sb->s_type->name, "proc") == 0)
730 		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
731 
732 	if (!strcmp(sb->s_type->name, "debugfs") ||
733 	    !strcmp(sb->s_type->name, "tracefs") ||
734 	    !strcmp(sb->s_type->name, "binder") ||
735 	    !strcmp(sb->s_type->name, "bpf") ||
736 	    !strcmp(sb->s_type->name, "pstore") ||
737 	    !strcmp(sb->s_type->name, "securityfs"))
738 		sbsec->flags |= SE_SBGENFS;
739 
740 	if (!strcmp(sb->s_type->name, "sysfs") ||
741 	    !strcmp(sb->s_type->name, "cgroup") ||
742 	    !strcmp(sb->s_type->name, "cgroup2"))
743 		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
744 
745 	if (!sbsec->behavior) {
746 		/*
747 		 * Determine the labeling behavior to use for this
748 		 * filesystem type.
749 		 */
750 		rc = security_fs_use(sb);
751 		if (rc) {
752 			pr_warn("%s: security_fs_use(%s) returned %d\n",
753 					__func__, sb->s_type->name, rc);
754 			goto out;
755 		}
756 	}
757 
758 	/*
759 	 * If this is a user namespace mount and the filesystem type is not
760 	 * explicitly whitelisted, then no contexts are allowed on the command
761 	 * line and security labels must be ignored.
762 	 */
763 	if (sb->s_user_ns != &init_user_ns &&
764 	    strcmp(sb->s_type->name, "tmpfs") &&
765 	    strcmp(sb->s_type->name, "ramfs") &&
766 	    strcmp(sb->s_type->name, "devpts") &&
767 	    strcmp(sb->s_type->name, "overlay")) {
768 		if (context_sid || fscontext_sid || rootcontext_sid ||
769 		    defcontext_sid) {
770 			rc = -EACCES;
771 			goto out;
772 		}
773 		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
774 			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
775 			rc = security_transition_sid(current_sid(),
776 						     current_sid(),
777 						     SECCLASS_FILE, NULL,
778 						     &sbsec->mntpoint_sid);
779 			if (rc)
780 				goto out;
781 		}
782 		goto out_set_opts;
783 	}
784 
785 	/* sets the context of the superblock for the fs being mounted. */
786 	if (fscontext_sid) {
787 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
788 		if (rc)
789 			goto out;
790 
791 		sbsec->sid = fscontext_sid;
792 	}
793 
794 	/*
795 	 * Switch to using mount point labeling behavior.
796 	 * sets the label used on all file below the mountpoint, and will set
797 	 * the superblock context if not already set.
798 	 */
799 	if (sbsec->flags & SE_SBNATIVE) {
800 		/*
801 		 * This means we are initializing a superblock that has been
802 		 * mounted before the SELinux was initialized and the
803 		 * filesystem requested native labeling. We had already
804 		 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags
805 		 * in the original mount attempt, so now we just need to set
806 		 * the SECURITY_FS_USE_NATIVE behavior.
807 		 */
808 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
809 	} else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
810 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
811 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
812 	}
813 
814 	if (context_sid) {
815 		if (!fscontext_sid) {
816 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
817 							  cred);
818 			if (rc)
819 				goto out;
820 			sbsec->sid = context_sid;
821 		} else {
822 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
823 							     cred);
824 			if (rc)
825 				goto out;
826 		}
827 		if (!rootcontext_sid)
828 			rootcontext_sid = context_sid;
829 
830 		sbsec->mntpoint_sid = context_sid;
831 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
832 	}
833 
834 	if (rootcontext_sid) {
835 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
836 						     cred);
837 		if (rc)
838 			goto out;
839 
840 		root_isec->sid = rootcontext_sid;
841 		root_isec->initialized = LABEL_INITIALIZED;
842 	}
843 
844 	if (defcontext_sid) {
845 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
846 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
847 			rc = -EINVAL;
848 			pr_warn("SELinux: defcontext option is "
849 			       "invalid for this filesystem type\n");
850 			goto out;
851 		}
852 
853 		if (defcontext_sid != sbsec->def_sid) {
854 			rc = may_context_mount_inode_relabel(defcontext_sid,
855 							     sbsec, cred);
856 			if (rc)
857 				goto out;
858 		}
859 
860 		sbsec->def_sid = defcontext_sid;
861 	}
862 
863 out_set_opts:
864 	rc = sb_finish_set_opts(sb);
865 out:
866 	mutex_unlock(&sbsec->lock);
867 	return rc;
868 out_double_mount:
869 	rc = -EINVAL;
870 	pr_warn("SELinux: mount invalid.  Same superblock, different "
871 	       "security settings for (dev %s, type %s)\n", sb->s_id,
872 	       sb->s_type->name);
873 	goto out;
874 }
875 
876 static int selinux_cmp_sb_context(const struct super_block *oldsb,
877 				    const struct super_block *newsb)
878 {
879 	struct superblock_security_struct *old = selinux_superblock(oldsb);
880 	struct superblock_security_struct *new = selinux_superblock(newsb);
881 	char oldflags = old->flags & SE_MNTMASK;
882 	char newflags = new->flags & SE_MNTMASK;
883 
884 	if (oldflags != newflags)
885 		goto mismatch;
886 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
887 		goto mismatch;
888 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
889 		goto mismatch;
890 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
891 		goto mismatch;
892 	if (oldflags & ROOTCONTEXT_MNT) {
893 		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
894 		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
895 		if (oldroot->sid != newroot->sid)
896 			goto mismatch;
897 	}
898 	return 0;
899 mismatch:
900 	pr_warn("SELinux: mount invalid.  Same superblock, "
901 			    "different security settings for (dev %s, "
902 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
903 	return -EBUSY;
904 }
905 
906 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
907 					struct super_block *newsb,
908 					unsigned long kern_flags,
909 					unsigned long *set_kern_flags)
910 {
911 	int rc = 0;
912 	const struct superblock_security_struct *oldsbsec =
913 						selinux_superblock(oldsb);
914 	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
915 
916 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
917 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
918 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
919 
920 	/*
921 	 * Specifying internal flags without providing a place to
922 	 * place the results is not allowed.
923 	 */
924 	if (kern_flags && !set_kern_flags)
925 		return -EINVAL;
926 
927 	mutex_lock(&newsbsec->lock);
928 
929 	/*
930 	 * if the parent was able to be mounted it clearly had no special lsm
931 	 * mount options.  thus we can safely deal with this superblock later
932 	 */
933 	if (!selinux_initialized()) {
934 		if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
935 			newsbsec->flags |= SE_SBNATIVE;
936 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
937 		}
938 		goto out;
939 	}
940 
941 	/* how can we clone if the old one wasn't set up?? */
942 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
943 
944 	/* if fs is reusing a sb, make sure that the contexts match */
945 	if (newsbsec->flags & SE_SBINITIALIZED) {
946 		mutex_unlock(&newsbsec->lock);
947 		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
948 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
949 		return selinux_cmp_sb_context(oldsb, newsb);
950 	}
951 
952 	newsbsec->flags = oldsbsec->flags;
953 
954 	newsbsec->sid = oldsbsec->sid;
955 	newsbsec->def_sid = oldsbsec->def_sid;
956 	newsbsec->behavior = oldsbsec->behavior;
957 
958 	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
959 		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
960 		rc = security_fs_use(newsb);
961 		if (rc)
962 			goto out;
963 	}
964 
965 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
966 		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
967 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
968 	}
969 
970 	if (set_context) {
971 		u32 sid = oldsbsec->mntpoint_sid;
972 
973 		if (!set_fscontext)
974 			newsbsec->sid = sid;
975 		if (!set_rootcontext) {
976 			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
977 			newisec->sid = sid;
978 		}
979 		newsbsec->mntpoint_sid = sid;
980 	}
981 	if (set_rootcontext) {
982 		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
983 		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
984 
985 		newisec->sid = oldisec->sid;
986 	}
987 
988 	sb_finish_set_opts(newsb);
989 out:
990 	mutex_unlock(&newsbsec->lock);
991 	return rc;
992 }
993 
994 /*
995  * NOTE: the caller is responsible for freeing the memory even if on error.
996  */
997 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
998 {
999 	struct selinux_mnt_opts *opts = *mnt_opts;
1000 	u32 *dst_sid;
1001 	int rc;
1002 
1003 	if (token == Opt_seclabel)
1004 		/* eaten and completely ignored */
1005 		return 0;
1006 	if (!s)
1007 		return -EINVAL;
1008 
1009 	if (!selinux_initialized()) {
1010 		pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
1011 		return -EINVAL;
1012 	}
1013 
1014 	if (!opts) {
1015 		opts = kzalloc(sizeof(*opts), GFP_KERNEL);
1016 		if (!opts)
1017 			return -ENOMEM;
1018 		*mnt_opts = opts;
1019 	}
1020 
1021 	switch (token) {
1022 	case Opt_context:
1023 		if (opts->context_sid || opts->defcontext_sid)
1024 			goto err;
1025 		dst_sid = &opts->context_sid;
1026 		break;
1027 	case Opt_fscontext:
1028 		if (opts->fscontext_sid)
1029 			goto err;
1030 		dst_sid = &opts->fscontext_sid;
1031 		break;
1032 	case Opt_rootcontext:
1033 		if (opts->rootcontext_sid)
1034 			goto err;
1035 		dst_sid = &opts->rootcontext_sid;
1036 		break;
1037 	case Opt_defcontext:
1038 		if (opts->context_sid || opts->defcontext_sid)
1039 			goto err;
1040 		dst_sid = &opts->defcontext_sid;
1041 		break;
1042 	default:
1043 		WARN_ON(1);
1044 		return -EINVAL;
1045 	}
1046 	rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL);
1047 	if (rc)
1048 		pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1049 			s, rc);
1050 	return rc;
1051 
1052 err:
1053 	pr_warn(SEL_MOUNT_FAIL_MSG);
1054 	return -EINVAL;
1055 }
1056 
1057 static int show_sid(struct seq_file *m, u32 sid)
1058 {
1059 	char *context = NULL;
1060 	u32 len;
1061 	int rc;
1062 
1063 	rc = security_sid_to_context(sid, &context, &len);
1064 	if (!rc) {
1065 		bool has_comma = strchr(context, ',');
1066 
1067 		seq_putc(m, '=');
1068 		if (has_comma)
1069 			seq_putc(m, '\"');
1070 		seq_escape(m, context, "\"\n\\");
1071 		if (has_comma)
1072 			seq_putc(m, '\"');
1073 	}
1074 	kfree(context);
1075 	return rc;
1076 }
1077 
1078 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1079 {
1080 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1081 	int rc;
1082 
1083 	if (!(sbsec->flags & SE_SBINITIALIZED))
1084 		return 0;
1085 
1086 	if (!selinux_initialized())
1087 		return 0;
1088 
1089 	if (sbsec->flags & FSCONTEXT_MNT) {
1090 		seq_putc(m, ',');
1091 		seq_puts(m, FSCONTEXT_STR);
1092 		rc = show_sid(m, sbsec->sid);
1093 		if (rc)
1094 			return rc;
1095 	}
1096 	if (sbsec->flags & CONTEXT_MNT) {
1097 		seq_putc(m, ',');
1098 		seq_puts(m, CONTEXT_STR);
1099 		rc = show_sid(m, sbsec->mntpoint_sid);
1100 		if (rc)
1101 			return rc;
1102 	}
1103 	if (sbsec->flags & DEFCONTEXT_MNT) {
1104 		seq_putc(m, ',');
1105 		seq_puts(m, DEFCONTEXT_STR);
1106 		rc = show_sid(m, sbsec->def_sid);
1107 		if (rc)
1108 			return rc;
1109 	}
1110 	if (sbsec->flags & ROOTCONTEXT_MNT) {
1111 		struct dentry *root = sb->s_root;
1112 		struct inode_security_struct *isec = backing_inode_security(root);
1113 		seq_putc(m, ',');
1114 		seq_puts(m, ROOTCONTEXT_STR);
1115 		rc = show_sid(m, isec->sid);
1116 		if (rc)
1117 			return rc;
1118 	}
1119 	if (sbsec->flags & SBLABEL_MNT) {
1120 		seq_putc(m, ',');
1121 		seq_puts(m, SECLABEL_STR);
1122 	}
1123 	return 0;
1124 }
1125 
1126 static inline u16 inode_mode_to_security_class(umode_t mode)
1127 {
1128 	switch (mode & S_IFMT) {
1129 	case S_IFSOCK:
1130 		return SECCLASS_SOCK_FILE;
1131 	case S_IFLNK:
1132 		return SECCLASS_LNK_FILE;
1133 	case S_IFREG:
1134 		return SECCLASS_FILE;
1135 	case S_IFBLK:
1136 		return SECCLASS_BLK_FILE;
1137 	case S_IFDIR:
1138 		return SECCLASS_DIR;
1139 	case S_IFCHR:
1140 		return SECCLASS_CHR_FILE;
1141 	case S_IFIFO:
1142 		return SECCLASS_FIFO_FILE;
1143 
1144 	}
1145 
1146 	return SECCLASS_FILE;
1147 }
1148 
1149 static inline int default_protocol_stream(int protocol)
1150 {
1151 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1152 		protocol == IPPROTO_MPTCP);
1153 }
1154 
1155 static inline int default_protocol_dgram(int protocol)
1156 {
1157 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1158 }
1159 
1160 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1161 {
1162 	bool extsockclass = selinux_policycap_extsockclass();
1163 
1164 	switch (family) {
1165 	case PF_UNIX:
1166 		switch (type) {
1167 		case SOCK_STREAM:
1168 		case SOCK_SEQPACKET:
1169 			return SECCLASS_UNIX_STREAM_SOCKET;
1170 		case SOCK_DGRAM:
1171 		case SOCK_RAW:
1172 			return SECCLASS_UNIX_DGRAM_SOCKET;
1173 		}
1174 		break;
1175 	case PF_INET:
1176 	case PF_INET6:
1177 		switch (type) {
1178 		case SOCK_STREAM:
1179 		case SOCK_SEQPACKET:
1180 			if (default_protocol_stream(protocol))
1181 				return SECCLASS_TCP_SOCKET;
1182 			else if (extsockclass && protocol == IPPROTO_SCTP)
1183 				return SECCLASS_SCTP_SOCKET;
1184 			else
1185 				return SECCLASS_RAWIP_SOCKET;
1186 		case SOCK_DGRAM:
1187 			if (default_protocol_dgram(protocol))
1188 				return SECCLASS_UDP_SOCKET;
1189 			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1190 						  protocol == IPPROTO_ICMPV6))
1191 				return SECCLASS_ICMP_SOCKET;
1192 			else
1193 				return SECCLASS_RAWIP_SOCKET;
1194 		case SOCK_DCCP:
1195 			return SECCLASS_DCCP_SOCKET;
1196 		default:
1197 			return SECCLASS_RAWIP_SOCKET;
1198 		}
1199 		break;
1200 	case PF_NETLINK:
1201 		switch (protocol) {
1202 		case NETLINK_ROUTE:
1203 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1204 		case NETLINK_SOCK_DIAG:
1205 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1206 		case NETLINK_NFLOG:
1207 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1208 		case NETLINK_XFRM:
1209 			return SECCLASS_NETLINK_XFRM_SOCKET;
1210 		case NETLINK_SELINUX:
1211 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1212 		case NETLINK_ISCSI:
1213 			return SECCLASS_NETLINK_ISCSI_SOCKET;
1214 		case NETLINK_AUDIT:
1215 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1216 		case NETLINK_FIB_LOOKUP:
1217 			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1218 		case NETLINK_CONNECTOR:
1219 			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1220 		case NETLINK_NETFILTER:
1221 			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1222 		case NETLINK_DNRTMSG:
1223 			return SECCLASS_NETLINK_DNRT_SOCKET;
1224 		case NETLINK_KOBJECT_UEVENT:
1225 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1226 		case NETLINK_GENERIC:
1227 			return SECCLASS_NETLINK_GENERIC_SOCKET;
1228 		case NETLINK_SCSITRANSPORT:
1229 			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1230 		case NETLINK_RDMA:
1231 			return SECCLASS_NETLINK_RDMA_SOCKET;
1232 		case NETLINK_CRYPTO:
1233 			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1234 		default:
1235 			return SECCLASS_NETLINK_SOCKET;
1236 		}
1237 	case PF_PACKET:
1238 		return SECCLASS_PACKET_SOCKET;
1239 	case PF_KEY:
1240 		return SECCLASS_KEY_SOCKET;
1241 	case PF_APPLETALK:
1242 		return SECCLASS_APPLETALK_SOCKET;
1243 	}
1244 
1245 	if (extsockclass) {
1246 		switch (family) {
1247 		case PF_AX25:
1248 			return SECCLASS_AX25_SOCKET;
1249 		case PF_IPX:
1250 			return SECCLASS_IPX_SOCKET;
1251 		case PF_NETROM:
1252 			return SECCLASS_NETROM_SOCKET;
1253 		case PF_ATMPVC:
1254 			return SECCLASS_ATMPVC_SOCKET;
1255 		case PF_X25:
1256 			return SECCLASS_X25_SOCKET;
1257 		case PF_ROSE:
1258 			return SECCLASS_ROSE_SOCKET;
1259 		case PF_DECnet:
1260 			return SECCLASS_DECNET_SOCKET;
1261 		case PF_ATMSVC:
1262 			return SECCLASS_ATMSVC_SOCKET;
1263 		case PF_RDS:
1264 			return SECCLASS_RDS_SOCKET;
1265 		case PF_IRDA:
1266 			return SECCLASS_IRDA_SOCKET;
1267 		case PF_PPPOX:
1268 			return SECCLASS_PPPOX_SOCKET;
1269 		case PF_LLC:
1270 			return SECCLASS_LLC_SOCKET;
1271 		case PF_CAN:
1272 			return SECCLASS_CAN_SOCKET;
1273 		case PF_TIPC:
1274 			return SECCLASS_TIPC_SOCKET;
1275 		case PF_BLUETOOTH:
1276 			return SECCLASS_BLUETOOTH_SOCKET;
1277 		case PF_IUCV:
1278 			return SECCLASS_IUCV_SOCKET;
1279 		case PF_RXRPC:
1280 			return SECCLASS_RXRPC_SOCKET;
1281 		case PF_ISDN:
1282 			return SECCLASS_ISDN_SOCKET;
1283 		case PF_PHONET:
1284 			return SECCLASS_PHONET_SOCKET;
1285 		case PF_IEEE802154:
1286 			return SECCLASS_IEEE802154_SOCKET;
1287 		case PF_CAIF:
1288 			return SECCLASS_CAIF_SOCKET;
1289 		case PF_ALG:
1290 			return SECCLASS_ALG_SOCKET;
1291 		case PF_NFC:
1292 			return SECCLASS_NFC_SOCKET;
1293 		case PF_VSOCK:
1294 			return SECCLASS_VSOCK_SOCKET;
1295 		case PF_KCM:
1296 			return SECCLASS_KCM_SOCKET;
1297 		case PF_QIPCRTR:
1298 			return SECCLASS_QIPCRTR_SOCKET;
1299 		case PF_SMC:
1300 			return SECCLASS_SMC_SOCKET;
1301 		case PF_XDP:
1302 			return SECCLASS_XDP_SOCKET;
1303 		case PF_MCTP:
1304 			return SECCLASS_MCTP_SOCKET;
1305 #if PF_MAX > 46
1306 #error New address family defined, please update this function.
1307 #endif
1308 		}
1309 	}
1310 
1311 	return SECCLASS_SOCKET;
1312 }
1313 
1314 static int selinux_genfs_get_sid(struct dentry *dentry,
1315 				 u16 tclass,
1316 				 u16 flags,
1317 				 u32 *sid)
1318 {
1319 	int rc;
1320 	struct super_block *sb = dentry->d_sb;
1321 	char *buffer, *path;
1322 
1323 	buffer = (char *)__get_free_page(GFP_KERNEL);
1324 	if (!buffer)
1325 		return -ENOMEM;
1326 
1327 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1328 	if (IS_ERR(path))
1329 		rc = PTR_ERR(path);
1330 	else {
1331 		if (flags & SE_SBPROC) {
1332 			/* each process gets a /proc/PID/ entry. Strip off the
1333 			 * PID part to get a valid selinux labeling.
1334 			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1335 			while (path[1] >= '0' && path[1] <= '9') {
1336 				path[1] = '/';
1337 				path++;
1338 			}
1339 		}
1340 		rc = security_genfs_sid(sb->s_type->name,
1341 					path, tclass, sid);
1342 		if (rc == -ENOENT) {
1343 			/* No match in policy, mark as unlabeled. */
1344 			*sid = SECINITSID_UNLABELED;
1345 			rc = 0;
1346 		}
1347 	}
1348 	free_page((unsigned long)buffer);
1349 	return rc;
1350 }
1351 
1352 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1353 				  u32 def_sid, u32 *sid)
1354 {
1355 #define INITCONTEXTLEN 255
1356 	char *context;
1357 	unsigned int len;
1358 	int rc;
1359 
1360 	len = INITCONTEXTLEN;
1361 	context = kmalloc(len + 1, GFP_NOFS);
1362 	if (!context)
1363 		return -ENOMEM;
1364 
1365 	context[len] = '\0';
1366 	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1367 	if (rc == -ERANGE) {
1368 		kfree(context);
1369 
1370 		/* Need a larger buffer.  Query for the right size. */
1371 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1372 		if (rc < 0)
1373 			return rc;
1374 
1375 		len = rc;
1376 		context = kmalloc(len + 1, GFP_NOFS);
1377 		if (!context)
1378 			return -ENOMEM;
1379 
1380 		context[len] = '\0';
1381 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1382 				    context, len);
1383 	}
1384 	if (rc < 0) {
1385 		kfree(context);
1386 		if (rc != -ENODATA) {
1387 			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1388 				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1389 			return rc;
1390 		}
1391 		*sid = def_sid;
1392 		return 0;
1393 	}
1394 
1395 	rc = security_context_to_sid_default(context, rc, sid,
1396 					     def_sid, GFP_NOFS);
1397 	if (rc) {
1398 		char *dev = inode->i_sb->s_id;
1399 		unsigned long ino = inode->i_ino;
1400 
1401 		if (rc == -EINVAL) {
1402 			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1403 					      ino, dev, context);
1404 		} else {
1405 			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1406 				__func__, context, -rc, dev, ino);
1407 		}
1408 	}
1409 	kfree(context);
1410 	return 0;
1411 }
1412 
1413 /* The inode's security attributes must be initialized before first use. */
1414 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1415 {
1416 	struct superblock_security_struct *sbsec = NULL;
1417 	struct inode_security_struct *isec = selinux_inode(inode);
1418 	u32 task_sid, sid = 0;
1419 	u16 sclass;
1420 	struct dentry *dentry;
1421 	int rc = 0;
1422 
1423 	if (isec->initialized == LABEL_INITIALIZED)
1424 		return 0;
1425 
1426 	spin_lock(&isec->lock);
1427 	if (isec->initialized == LABEL_INITIALIZED)
1428 		goto out_unlock;
1429 
1430 	if (isec->sclass == SECCLASS_FILE)
1431 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1432 
1433 	sbsec = selinux_superblock(inode->i_sb);
1434 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1435 		/* Defer initialization until selinux_complete_init,
1436 		   after the initial policy is loaded and the security
1437 		   server is ready to handle calls. */
1438 		spin_lock(&sbsec->isec_lock);
1439 		if (list_empty(&isec->list))
1440 			list_add(&isec->list, &sbsec->isec_head);
1441 		spin_unlock(&sbsec->isec_lock);
1442 		goto out_unlock;
1443 	}
1444 
1445 	sclass = isec->sclass;
1446 	task_sid = isec->task_sid;
1447 	sid = isec->sid;
1448 	isec->initialized = LABEL_PENDING;
1449 	spin_unlock(&isec->lock);
1450 
1451 	switch (sbsec->behavior) {
1452 	/*
1453 	 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels
1454 	 * via xattr when called from delayed_superblock_init().
1455 	 */
1456 	case SECURITY_FS_USE_NATIVE:
1457 	case SECURITY_FS_USE_XATTR:
1458 		if (!(inode->i_opflags & IOP_XATTR)) {
1459 			sid = sbsec->def_sid;
1460 			break;
1461 		}
1462 		/* Need a dentry, since the xattr API requires one.
1463 		   Life would be simpler if we could just pass the inode. */
1464 		if (opt_dentry) {
1465 			/* Called from d_instantiate or d_splice_alias. */
1466 			dentry = dget(opt_dentry);
1467 		} else {
1468 			/*
1469 			 * Called from selinux_complete_init, try to find a dentry.
1470 			 * Some filesystems really want a connected one, so try
1471 			 * that first.  We could split SECURITY_FS_USE_XATTR in
1472 			 * two, depending upon that...
1473 			 */
1474 			dentry = d_find_alias(inode);
1475 			if (!dentry)
1476 				dentry = d_find_any_alias(inode);
1477 		}
1478 		if (!dentry) {
1479 			/*
1480 			 * this is can be hit on boot when a file is accessed
1481 			 * before the policy is loaded.  When we load policy we
1482 			 * may find inodes that have no dentry on the
1483 			 * sbsec->isec_head list.  No reason to complain as these
1484 			 * will get fixed up the next time we go through
1485 			 * inode_doinit with a dentry, before these inodes could
1486 			 * be used again by userspace.
1487 			 */
1488 			goto out_invalid;
1489 		}
1490 
1491 		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1492 					    &sid);
1493 		dput(dentry);
1494 		if (rc)
1495 			goto out;
1496 		break;
1497 	case SECURITY_FS_USE_TASK:
1498 		sid = task_sid;
1499 		break;
1500 	case SECURITY_FS_USE_TRANS:
1501 		/* Default to the fs SID. */
1502 		sid = sbsec->sid;
1503 
1504 		/* Try to obtain a transition SID. */
1505 		rc = security_transition_sid(task_sid, sid,
1506 					     sclass, NULL, &sid);
1507 		if (rc)
1508 			goto out;
1509 		break;
1510 	case SECURITY_FS_USE_MNTPOINT:
1511 		sid = sbsec->mntpoint_sid;
1512 		break;
1513 	default:
1514 		/* Default to the fs superblock SID. */
1515 		sid = sbsec->sid;
1516 
1517 		if ((sbsec->flags & SE_SBGENFS) &&
1518 		     (!S_ISLNK(inode->i_mode) ||
1519 		      selinux_policycap_genfs_seclabel_symlinks())) {
1520 			/* We must have a dentry to determine the label on
1521 			 * procfs inodes */
1522 			if (opt_dentry) {
1523 				/* Called from d_instantiate or
1524 				 * d_splice_alias. */
1525 				dentry = dget(opt_dentry);
1526 			} else {
1527 				/* Called from selinux_complete_init, try to
1528 				 * find a dentry.  Some filesystems really want
1529 				 * a connected one, so try that first.
1530 				 */
1531 				dentry = d_find_alias(inode);
1532 				if (!dentry)
1533 					dentry = d_find_any_alias(inode);
1534 			}
1535 			/*
1536 			 * This can be hit on boot when a file is accessed
1537 			 * before the policy is loaded.  When we load policy we
1538 			 * may find inodes that have no dentry on the
1539 			 * sbsec->isec_head list.  No reason to complain as
1540 			 * these will get fixed up the next time we go through
1541 			 * inode_doinit() with a dentry, before these inodes
1542 			 * could be used again by userspace.
1543 			 */
1544 			if (!dentry)
1545 				goto out_invalid;
1546 			rc = selinux_genfs_get_sid(dentry, sclass,
1547 						   sbsec->flags, &sid);
1548 			if (rc) {
1549 				dput(dentry);
1550 				goto out;
1551 			}
1552 
1553 			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1554 			    (inode->i_opflags & IOP_XATTR)) {
1555 				rc = inode_doinit_use_xattr(inode, dentry,
1556 							    sid, &sid);
1557 				if (rc) {
1558 					dput(dentry);
1559 					goto out;
1560 				}
1561 			}
1562 			dput(dentry);
1563 		}
1564 		break;
1565 	}
1566 
1567 out:
1568 	spin_lock(&isec->lock);
1569 	if (isec->initialized == LABEL_PENDING) {
1570 		if (rc) {
1571 			isec->initialized = LABEL_INVALID;
1572 			goto out_unlock;
1573 		}
1574 		isec->initialized = LABEL_INITIALIZED;
1575 		isec->sid = sid;
1576 	}
1577 
1578 out_unlock:
1579 	spin_unlock(&isec->lock);
1580 	return rc;
1581 
1582 out_invalid:
1583 	spin_lock(&isec->lock);
1584 	if (isec->initialized == LABEL_PENDING) {
1585 		isec->initialized = LABEL_INVALID;
1586 		isec->sid = sid;
1587 	}
1588 	spin_unlock(&isec->lock);
1589 	return 0;
1590 }
1591 
1592 /* Convert a Linux signal to an access vector. */
1593 static inline u32 signal_to_av(int sig)
1594 {
1595 	u32 perm = 0;
1596 
1597 	switch (sig) {
1598 	case SIGCHLD:
1599 		/* Commonly granted from child to parent. */
1600 		perm = PROCESS__SIGCHLD;
1601 		break;
1602 	case SIGKILL:
1603 		/* Cannot be caught or ignored */
1604 		perm = PROCESS__SIGKILL;
1605 		break;
1606 	case SIGSTOP:
1607 		/* Cannot be caught or ignored */
1608 		perm = PROCESS__SIGSTOP;
1609 		break;
1610 	default:
1611 		/* All other signals. */
1612 		perm = PROCESS__SIGNAL;
1613 		break;
1614 	}
1615 
1616 	return perm;
1617 }
1618 
1619 #if CAP_LAST_CAP > 63
1620 #error Fix SELinux to handle capabilities > 63.
1621 #endif
1622 
1623 /* Check whether a task is allowed to use a capability. */
1624 static int cred_has_capability(const struct cred *cred,
1625 			       int cap, unsigned int opts, bool initns)
1626 {
1627 	struct common_audit_data ad;
1628 	struct av_decision avd;
1629 	u16 sclass;
1630 	u32 sid = cred_sid(cred);
1631 	u32 av = CAP_TO_MASK(cap);
1632 	int rc;
1633 
1634 	ad.type = LSM_AUDIT_DATA_CAP;
1635 	ad.u.cap = cap;
1636 
1637 	switch (CAP_TO_INDEX(cap)) {
1638 	case 0:
1639 		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1640 		break;
1641 	case 1:
1642 		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1643 		break;
1644 	default:
1645 		pr_err("SELinux:  out of range capability %d\n", cap);
1646 		BUG();
1647 		return -EINVAL;
1648 	}
1649 
1650 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1651 	if (!(opts & CAP_OPT_NOAUDIT)) {
1652 		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1653 		if (rc2)
1654 			return rc2;
1655 	}
1656 	return rc;
1657 }
1658 
1659 /* Check whether a task has a particular permission to an inode.
1660    The 'adp' parameter is optional and allows other audit
1661    data to be passed (e.g. the dentry). */
1662 static int inode_has_perm(const struct cred *cred,
1663 			  struct inode *inode,
1664 			  u32 perms,
1665 			  struct common_audit_data *adp)
1666 {
1667 	struct inode_security_struct *isec;
1668 	u32 sid;
1669 
1670 	if (unlikely(IS_PRIVATE(inode)))
1671 		return 0;
1672 
1673 	sid = cred_sid(cred);
1674 	isec = selinux_inode(inode);
1675 
1676 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1677 }
1678 
1679 /* Same as inode_has_perm, but pass explicit audit data containing
1680    the dentry to help the auditing code to more easily generate the
1681    pathname if needed. */
1682 static inline int dentry_has_perm(const struct cred *cred,
1683 				  struct dentry *dentry,
1684 				  u32 av)
1685 {
1686 	struct inode *inode = d_backing_inode(dentry);
1687 	struct common_audit_data ad;
1688 
1689 	ad.type = LSM_AUDIT_DATA_DENTRY;
1690 	ad.u.dentry = dentry;
1691 	__inode_security_revalidate(inode, dentry, true);
1692 	return inode_has_perm(cred, inode, av, &ad);
1693 }
1694 
1695 /* Same as inode_has_perm, but pass explicit audit data containing
1696    the path to help the auditing code to more easily generate the
1697    pathname if needed. */
1698 static inline int path_has_perm(const struct cred *cred,
1699 				const struct path *path,
1700 				u32 av)
1701 {
1702 	struct inode *inode = d_backing_inode(path->dentry);
1703 	struct common_audit_data ad;
1704 
1705 	ad.type = LSM_AUDIT_DATA_PATH;
1706 	ad.u.path = *path;
1707 	__inode_security_revalidate(inode, path->dentry, true);
1708 	return inode_has_perm(cred, inode, av, &ad);
1709 }
1710 
1711 /* Same as path_has_perm, but uses the inode from the file struct. */
1712 static inline int file_path_has_perm(const struct cred *cred,
1713 				     struct file *file,
1714 				     u32 av)
1715 {
1716 	struct common_audit_data ad;
1717 
1718 	ad.type = LSM_AUDIT_DATA_FILE;
1719 	ad.u.file = file;
1720 	return inode_has_perm(cred, file_inode(file), av, &ad);
1721 }
1722 
1723 #ifdef CONFIG_BPF_SYSCALL
1724 static int bpf_fd_pass(const struct file *file, u32 sid);
1725 #endif
1726 
1727 /* Check whether a task can use an open file descriptor to
1728    access an inode in a given way.  Check access to the
1729    descriptor itself, and then use dentry_has_perm to
1730    check a particular permission to the file.
1731    Access to the descriptor is implicitly granted if it
1732    has the same SID as the process.  If av is zero, then
1733    access to the file is not checked, e.g. for cases
1734    where only the descriptor is affected like seek. */
1735 static int file_has_perm(const struct cred *cred,
1736 			 struct file *file,
1737 			 u32 av)
1738 {
1739 	struct file_security_struct *fsec = selinux_file(file);
1740 	struct inode *inode = file_inode(file);
1741 	struct common_audit_data ad;
1742 	u32 sid = cred_sid(cred);
1743 	int rc;
1744 
1745 	ad.type = LSM_AUDIT_DATA_FILE;
1746 	ad.u.file = file;
1747 
1748 	if (sid != fsec->sid) {
1749 		rc = avc_has_perm(sid, fsec->sid,
1750 				  SECCLASS_FD,
1751 				  FD__USE,
1752 				  &ad);
1753 		if (rc)
1754 			goto out;
1755 	}
1756 
1757 #ifdef CONFIG_BPF_SYSCALL
1758 	rc = bpf_fd_pass(file, cred_sid(cred));
1759 	if (rc)
1760 		return rc;
1761 #endif
1762 
1763 	/* av is zero if only checking access to the descriptor. */
1764 	rc = 0;
1765 	if (av)
1766 		rc = inode_has_perm(cred, inode, av, &ad);
1767 
1768 out:
1769 	return rc;
1770 }
1771 
1772 /*
1773  * Determine the label for an inode that might be unioned.
1774  */
1775 static int
1776 selinux_determine_inode_label(const struct task_security_struct *tsec,
1777 				 struct inode *dir,
1778 				 const struct qstr *name, u16 tclass,
1779 				 u32 *_new_isid)
1780 {
1781 	const struct superblock_security_struct *sbsec =
1782 						selinux_superblock(dir->i_sb);
1783 
1784 	if ((sbsec->flags & SE_SBINITIALIZED) &&
1785 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1786 		*_new_isid = sbsec->mntpoint_sid;
1787 	} else if ((sbsec->flags & SBLABEL_MNT) &&
1788 		   tsec->create_sid) {
1789 		*_new_isid = tsec->create_sid;
1790 	} else {
1791 		const struct inode_security_struct *dsec = inode_security(dir);
1792 		return security_transition_sid(tsec->sid,
1793 					       dsec->sid, tclass,
1794 					       name, _new_isid);
1795 	}
1796 
1797 	return 0;
1798 }
1799 
1800 /* Check whether a task can create a file. */
1801 static int may_create(struct inode *dir,
1802 		      struct dentry *dentry,
1803 		      u16 tclass)
1804 {
1805 	const struct task_security_struct *tsec = selinux_cred(current_cred());
1806 	struct inode_security_struct *dsec;
1807 	struct superblock_security_struct *sbsec;
1808 	u32 sid, newsid;
1809 	struct common_audit_data ad;
1810 	int rc;
1811 
1812 	dsec = inode_security(dir);
1813 	sbsec = selinux_superblock(dir->i_sb);
1814 
1815 	sid = tsec->sid;
1816 
1817 	ad.type = LSM_AUDIT_DATA_DENTRY;
1818 	ad.u.dentry = dentry;
1819 
1820 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1821 			  DIR__ADD_NAME | DIR__SEARCH,
1822 			  &ad);
1823 	if (rc)
1824 		return rc;
1825 
1826 	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1827 					   &newsid);
1828 	if (rc)
1829 		return rc;
1830 
1831 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1832 	if (rc)
1833 		return rc;
1834 
1835 	return avc_has_perm(newsid, sbsec->sid,
1836 			    SECCLASS_FILESYSTEM,
1837 			    FILESYSTEM__ASSOCIATE, &ad);
1838 }
1839 
1840 #define MAY_LINK	0
1841 #define MAY_UNLINK	1
1842 #define MAY_RMDIR	2
1843 
1844 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1845 static int may_link(struct inode *dir,
1846 		    struct dentry *dentry,
1847 		    int kind)
1848 
1849 {
1850 	struct inode_security_struct *dsec, *isec;
1851 	struct common_audit_data ad;
1852 	u32 sid = current_sid();
1853 	u32 av;
1854 	int rc;
1855 
1856 	dsec = inode_security(dir);
1857 	isec = backing_inode_security(dentry);
1858 
1859 	ad.type = LSM_AUDIT_DATA_DENTRY;
1860 	ad.u.dentry = dentry;
1861 
1862 	av = DIR__SEARCH;
1863 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1864 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1865 	if (rc)
1866 		return rc;
1867 
1868 	switch (kind) {
1869 	case MAY_LINK:
1870 		av = FILE__LINK;
1871 		break;
1872 	case MAY_UNLINK:
1873 		av = FILE__UNLINK;
1874 		break;
1875 	case MAY_RMDIR:
1876 		av = DIR__RMDIR;
1877 		break;
1878 	default:
1879 		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1880 			__func__, kind);
1881 		return 0;
1882 	}
1883 
1884 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1885 	return rc;
1886 }
1887 
1888 static inline int may_rename(struct inode *old_dir,
1889 			     struct dentry *old_dentry,
1890 			     struct inode *new_dir,
1891 			     struct dentry *new_dentry)
1892 {
1893 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1894 	struct common_audit_data ad;
1895 	u32 sid = current_sid();
1896 	u32 av;
1897 	int old_is_dir, new_is_dir;
1898 	int rc;
1899 
1900 	old_dsec = inode_security(old_dir);
1901 	old_isec = backing_inode_security(old_dentry);
1902 	old_is_dir = d_is_dir(old_dentry);
1903 	new_dsec = inode_security(new_dir);
1904 
1905 	ad.type = LSM_AUDIT_DATA_DENTRY;
1906 
1907 	ad.u.dentry = old_dentry;
1908 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1909 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1910 	if (rc)
1911 		return rc;
1912 	rc = avc_has_perm(sid, old_isec->sid,
1913 			  old_isec->sclass, FILE__RENAME, &ad);
1914 	if (rc)
1915 		return rc;
1916 	if (old_is_dir && new_dir != old_dir) {
1917 		rc = avc_has_perm(sid, old_isec->sid,
1918 				  old_isec->sclass, DIR__REPARENT, &ad);
1919 		if (rc)
1920 			return rc;
1921 	}
1922 
1923 	ad.u.dentry = new_dentry;
1924 	av = DIR__ADD_NAME | DIR__SEARCH;
1925 	if (d_is_positive(new_dentry))
1926 		av |= DIR__REMOVE_NAME;
1927 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1928 	if (rc)
1929 		return rc;
1930 	if (d_is_positive(new_dentry)) {
1931 		new_isec = backing_inode_security(new_dentry);
1932 		new_is_dir = d_is_dir(new_dentry);
1933 		rc = avc_has_perm(sid, new_isec->sid,
1934 				  new_isec->sclass,
1935 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1936 		if (rc)
1937 			return rc;
1938 	}
1939 
1940 	return 0;
1941 }
1942 
1943 /* Check whether a task can perform a filesystem operation. */
1944 static int superblock_has_perm(const struct cred *cred,
1945 			       const struct super_block *sb,
1946 			       u32 perms,
1947 			       struct common_audit_data *ad)
1948 {
1949 	struct superblock_security_struct *sbsec;
1950 	u32 sid = cred_sid(cred);
1951 
1952 	sbsec = selinux_superblock(sb);
1953 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1954 }
1955 
1956 /* Convert a Linux mode and permission mask to an access vector. */
1957 static inline u32 file_mask_to_av(int mode, int mask)
1958 {
1959 	u32 av = 0;
1960 
1961 	if (!S_ISDIR(mode)) {
1962 		if (mask & MAY_EXEC)
1963 			av |= FILE__EXECUTE;
1964 		if (mask & MAY_READ)
1965 			av |= FILE__READ;
1966 
1967 		if (mask & MAY_APPEND)
1968 			av |= FILE__APPEND;
1969 		else if (mask & MAY_WRITE)
1970 			av |= FILE__WRITE;
1971 
1972 	} else {
1973 		if (mask & MAY_EXEC)
1974 			av |= DIR__SEARCH;
1975 		if (mask & MAY_WRITE)
1976 			av |= DIR__WRITE;
1977 		if (mask & MAY_READ)
1978 			av |= DIR__READ;
1979 	}
1980 
1981 	return av;
1982 }
1983 
1984 /* Convert a Linux file to an access vector. */
1985 static inline u32 file_to_av(const struct file *file)
1986 {
1987 	u32 av = 0;
1988 
1989 	if (file->f_mode & FMODE_READ)
1990 		av |= FILE__READ;
1991 	if (file->f_mode & FMODE_WRITE) {
1992 		if (file->f_flags & O_APPEND)
1993 			av |= FILE__APPEND;
1994 		else
1995 			av |= FILE__WRITE;
1996 	}
1997 	if (!av) {
1998 		/*
1999 		 * Special file opened with flags 3 for ioctl-only use.
2000 		 */
2001 		av = FILE__IOCTL;
2002 	}
2003 
2004 	return av;
2005 }
2006 
2007 /*
2008  * Convert a file to an access vector and include the correct
2009  * open permission.
2010  */
2011 static inline u32 open_file_to_av(struct file *file)
2012 {
2013 	u32 av = file_to_av(file);
2014 	struct inode *inode = file_inode(file);
2015 
2016 	if (selinux_policycap_openperm() &&
2017 	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2018 		av |= FILE__OPEN;
2019 
2020 	return av;
2021 }
2022 
2023 /* Hook functions begin here. */
2024 
2025 static int selinux_binder_set_context_mgr(const struct cred *mgr)
2026 {
2027 	return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER,
2028 			    BINDER__SET_CONTEXT_MGR, NULL);
2029 }
2030 
2031 static int selinux_binder_transaction(const struct cred *from,
2032 				      const struct cred *to)
2033 {
2034 	u32 mysid = current_sid();
2035 	u32 fromsid = cred_sid(from);
2036 	u32 tosid = cred_sid(to);
2037 	int rc;
2038 
2039 	if (mysid != fromsid) {
2040 		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2041 				  BINDER__IMPERSONATE, NULL);
2042 		if (rc)
2043 			return rc;
2044 	}
2045 
2046 	return avc_has_perm(fromsid, tosid,
2047 			    SECCLASS_BINDER, BINDER__CALL, NULL);
2048 }
2049 
2050 static int selinux_binder_transfer_binder(const struct cred *from,
2051 					  const struct cred *to)
2052 {
2053 	return avc_has_perm(cred_sid(from), cred_sid(to),
2054 			    SECCLASS_BINDER, BINDER__TRANSFER,
2055 			    NULL);
2056 }
2057 
2058 static int selinux_binder_transfer_file(const struct cred *from,
2059 					const struct cred *to,
2060 					const struct file *file)
2061 {
2062 	u32 sid = cred_sid(to);
2063 	struct file_security_struct *fsec = selinux_file(file);
2064 	struct dentry *dentry = file->f_path.dentry;
2065 	struct inode_security_struct *isec;
2066 	struct common_audit_data ad;
2067 	int rc;
2068 
2069 	ad.type = LSM_AUDIT_DATA_PATH;
2070 	ad.u.path = file->f_path;
2071 
2072 	if (sid != fsec->sid) {
2073 		rc = avc_has_perm(sid, fsec->sid,
2074 				  SECCLASS_FD,
2075 				  FD__USE,
2076 				  &ad);
2077 		if (rc)
2078 			return rc;
2079 	}
2080 
2081 #ifdef CONFIG_BPF_SYSCALL
2082 	rc = bpf_fd_pass(file, sid);
2083 	if (rc)
2084 		return rc;
2085 #endif
2086 
2087 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2088 		return 0;
2089 
2090 	isec = backing_inode_security(dentry);
2091 	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2092 			    &ad);
2093 }
2094 
2095 static int selinux_ptrace_access_check(struct task_struct *child,
2096 				       unsigned int mode)
2097 {
2098 	u32 sid = current_sid();
2099 	u32 csid = task_sid_obj(child);
2100 
2101 	if (mode & PTRACE_MODE_READ)
2102 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ,
2103 				NULL);
2104 
2105 	return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE,
2106 			NULL);
2107 }
2108 
2109 static int selinux_ptrace_traceme(struct task_struct *parent)
2110 {
2111 	return avc_has_perm(task_sid_obj(parent), task_sid_obj(current),
2112 			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2113 }
2114 
2115 static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective,
2116 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2117 {
2118 	return avc_has_perm(current_sid(), task_sid_obj(target),
2119 			SECCLASS_PROCESS, PROCESS__GETCAP, NULL);
2120 }
2121 
2122 static int selinux_capset(struct cred *new, const struct cred *old,
2123 			  const kernel_cap_t *effective,
2124 			  const kernel_cap_t *inheritable,
2125 			  const kernel_cap_t *permitted)
2126 {
2127 	return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2128 			    PROCESS__SETCAP, NULL);
2129 }
2130 
2131 /*
2132  * (This comment used to live with the selinux_task_setuid hook,
2133  * which was removed).
2134  *
2135  * Since setuid only affects the current process, and since the SELinux
2136  * controls are not based on the Linux identity attributes, SELinux does not
2137  * need to control this operation.  However, SELinux does control the use of
2138  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2139  */
2140 
2141 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2142 			   int cap, unsigned int opts)
2143 {
2144 	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2145 }
2146 
2147 static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb)
2148 {
2149 	const struct cred *cred = current_cred();
2150 	int rc = 0;
2151 
2152 	if (!sb)
2153 		return 0;
2154 
2155 	switch (cmds) {
2156 	case Q_SYNC:
2157 	case Q_QUOTAON:
2158 	case Q_QUOTAOFF:
2159 	case Q_SETINFO:
2160 	case Q_SETQUOTA:
2161 	case Q_XQUOTAOFF:
2162 	case Q_XQUOTAON:
2163 	case Q_XSETQLIM:
2164 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2165 		break;
2166 	case Q_GETFMT:
2167 	case Q_GETINFO:
2168 	case Q_GETQUOTA:
2169 	case Q_XGETQUOTA:
2170 	case Q_XGETQSTAT:
2171 	case Q_XGETQSTATV:
2172 	case Q_XGETNEXTQUOTA:
2173 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2174 		break;
2175 	default:
2176 		rc = 0;  /* let the kernel handle invalid cmds */
2177 		break;
2178 	}
2179 	return rc;
2180 }
2181 
2182 static int selinux_quota_on(struct dentry *dentry)
2183 {
2184 	const struct cred *cred = current_cred();
2185 
2186 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2187 }
2188 
2189 static int selinux_syslog(int type)
2190 {
2191 	switch (type) {
2192 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2193 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2194 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2195 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2196 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2197 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2198 	/* Set level of messages printed to console */
2199 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2200 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2201 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2202 				    NULL);
2203 	}
2204 	/* All other syslog types */
2205 	return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2206 			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2207 }
2208 
2209 /*
2210  * Check permission for allocating a new virtual mapping. Returns
2211  * 0 if permission is granted, negative error code if not.
2212  *
2213  * Do not audit the selinux permission check, as this is applied to all
2214  * processes that allocate mappings.
2215  */
2216 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2217 {
2218 	return cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2219 				   CAP_OPT_NOAUDIT, true);
2220 }
2221 
2222 /* binprm security operations */
2223 
2224 static u32 ptrace_parent_sid(void)
2225 {
2226 	u32 sid = 0;
2227 	struct task_struct *tracer;
2228 
2229 	rcu_read_lock();
2230 	tracer = ptrace_parent(current);
2231 	if (tracer)
2232 		sid = task_sid_obj(tracer);
2233 	rcu_read_unlock();
2234 
2235 	return sid;
2236 }
2237 
2238 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2239 			    const struct task_security_struct *old_tsec,
2240 			    const struct task_security_struct *new_tsec)
2241 {
2242 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2243 	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2244 	int rc;
2245 	u32 av;
2246 
2247 	if (!nnp && !nosuid)
2248 		return 0; /* neither NNP nor nosuid */
2249 
2250 	if (new_tsec->sid == old_tsec->sid)
2251 		return 0; /* No change in credentials */
2252 
2253 	/*
2254 	 * If the policy enables the nnp_nosuid_transition policy capability,
2255 	 * then we permit transitions under NNP or nosuid if the
2256 	 * policy allows the corresponding permission between
2257 	 * the old and new contexts.
2258 	 */
2259 	if (selinux_policycap_nnp_nosuid_transition()) {
2260 		av = 0;
2261 		if (nnp)
2262 			av |= PROCESS2__NNP_TRANSITION;
2263 		if (nosuid)
2264 			av |= PROCESS2__NOSUID_TRANSITION;
2265 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2266 				  SECCLASS_PROCESS2, av, NULL);
2267 		if (!rc)
2268 			return 0;
2269 	}
2270 
2271 	/*
2272 	 * We also permit NNP or nosuid transitions to bounded SIDs,
2273 	 * i.e. SIDs that are guaranteed to only be allowed a subset
2274 	 * of the permissions of the current SID.
2275 	 */
2276 	rc = security_bounded_transition(old_tsec->sid,
2277 					 new_tsec->sid);
2278 	if (!rc)
2279 		return 0;
2280 
2281 	/*
2282 	 * On failure, preserve the errno values for NNP vs nosuid.
2283 	 * NNP:  Operation not permitted for caller.
2284 	 * nosuid:  Permission denied to file.
2285 	 */
2286 	if (nnp)
2287 		return -EPERM;
2288 	return -EACCES;
2289 }
2290 
2291 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2292 {
2293 	const struct task_security_struct *old_tsec;
2294 	struct task_security_struct *new_tsec;
2295 	struct inode_security_struct *isec;
2296 	struct common_audit_data ad;
2297 	struct inode *inode = file_inode(bprm->file);
2298 	int rc;
2299 
2300 	/* SELinux context only depends on initial program or script and not
2301 	 * the script interpreter */
2302 
2303 	old_tsec = selinux_cred(current_cred());
2304 	new_tsec = selinux_cred(bprm->cred);
2305 	isec = inode_security(inode);
2306 
2307 	/* Default to the current task SID. */
2308 	new_tsec->sid = old_tsec->sid;
2309 	new_tsec->osid = old_tsec->sid;
2310 
2311 	/* Reset fs, key, and sock SIDs on execve. */
2312 	new_tsec->create_sid = 0;
2313 	new_tsec->keycreate_sid = 0;
2314 	new_tsec->sockcreate_sid = 0;
2315 
2316 	/*
2317 	 * Before policy is loaded, label any task outside kernel space
2318 	 * as SECINITSID_INIT, so that any userspace tasks surviving from
2319 	 * early boot end up with a label different from SECINITSID_KERNEL
2320 	 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL).
2321 	 */
2322 	if (!selinux_initialized()) {
2323 		new_tsec->sid = SECINITSID_INIT;
2324 		/* also clear the exec_sid just in case */
2325 		new_tsec->exec_sid = 0;
2326 		return 0;
2327 	}
2328 
2329 	if (old_tsec->exec_sid) {
2330 		new_tsec->sid = old_tsec->exec_sid;
2331 		/* Reset exec SID on execve. */
2332 		new_tsec->exec_sid = 0;
2333 
2334 		/* Fail on NNP or nosuid if not an allowed transition. */
2335 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2336 		if (rc)
2337 			return rc;
2338 	} else {
2339 		/* Check for a default transition on this program. */
2340 		rc = security_transition_sid(old_tsec->sid,
2341 					     isec->sid, SECCLASS_PROCESS, NULL,
2342 					     &new_tsec->sid);
2343 		if (rc)
2344 			return rc;
2345 
2346 		/*
2347 		 * Fallback to old SID on NNP or nosuid if not an allowed
2348 		 * transition.
2349 		 */
2350 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2351 		if (rc)
2352 			new_tsec->sid = old_tsec->sid;
2353 	}
2354 
2355 	ad.type = LSM_AUDIT_DATA_FILE;
2356 	ad.u.file = bprm->file;
2357 
2358 	if (new_tsec->sid == old_tsec->sid) {
2359 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2360 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2361 		if (rc)
2362 			return rc;
2363 	} else {
2364 		/* Check permissions for the transition. */
2365 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2366 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2367 		if (rc)
2368 			return rc;
2369 
2370 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2371 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2372 		if (rc)
2373 			return rc;
2374 
2375 		/* Check for shared state */
2376 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2377 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2378 					  SECCLASS_PROCESS, PROCESS__SHARE,
2379 					  NULL);
2380 			if (rc)
2381 				return -EPERM;
2382 		}
2383 
2384 		/* Make sure that anyone attempting to ptrace over a task that
2385 		 * changes its SID has the appropriate permit */
2386 		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2387 			u32 ptsid = ptrace_parent_sid();
2388 			if (ptsid != 0) {
2389 				rc = avc_has_perm(ptsid, new_tsec->sid,
2390 						  SECCLASS_PROCESS,
2391 						  PROCESS__PTRACE, NULL);
2392 				if (rc)
2393 					return -EPERM;
2394 			}
2395 		}
2396 
2397 		/* Clear any possibly unsafe personality bits on exec: */
2398 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2399 
2400 		/* Enable secure mode for SIDs transitions unless
2401 		   the noatsecure permission is granted between
2402 		   the two SIDs, i.e. ahp returns 0. */
2403 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2404 				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2405 				  NULL);
2406 		bprm->secureexec |= !!rc;
2407 	}
2408 
2409 	return 0;
2410 }
2411 
2412 static int match_file(const void *p, struct file *file, unsigned fd)
2413 {
2414 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2415 }
2416 
2417 /* Derived from fs/exec.c:flush_old_files. */
2418 static inline void flush_unauthorized_files(const struct cred *cred,
2419 					    struct files_struct *files)
2420 {
2421 	struct file *file, *devnull = NULL;
2422 	struct tty_struct *tty;
2423 	int drop_tty = 0;
2424 	unsigned n;
2425 
2426 	tty = get_current_tty();
2427 	if (tty) {
2428 		spin_lock(&tty->files_lock);
2429 		if (!list_empty(&tty->tty_files)) {
2430 			struct tty_file_private *file_priv;
2431 
2432 			/* Revalidate access to controlling tty.
2433 			   Use file_path_has_perm on the tty path directly
2434 			   rather than using file_has_perm, as this particular
2435 			   open file may belong to another process and we are
2436 			   only interested in the inode-based check here. */
2437 			file_priv = list_first_entry(&tty->tty_files,
2438 						struct tty_file_private, list);
2439 			file = file_priv->file;
2440 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2441 				drop_tty = 1;
2442 		}
2443 		spin_unlock(&tty->files_lock);
2444 		tty_kref_put(tty);
2445 	}
2446 	/* Reset controlling tty. */
2447 	if (drop_tty)
2448 		no_tty();
2449 
2450 	/* Revalidate access to inherited open files. */
2451 	n = iterate_fd(files, 0, match_file, cred);
2452 	if (!n) /* none found? */
2453 		return;
2454 
2455 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2456 	if (IS_ERR(devnull))
2457 		devnull = NULL;
2458 	/* replace all the matching ones with this */
2459 	do {
2460 		replace_fd(n - 1, devnull, 0);
2461 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2462 	if (devnull)
2463 		fput(devnull);
2464 }
2465 
2466 /*
2467  * Prepare a process for imminent new credential changes due to exec
2468  */
2469 static void selinux_bprm_committing_creds(const struct linux_binprm *bprm)
2470 {
2471 	struct task_security_struct *new_tsec;
2472 	struct rlimit *rlim, *initrlim;
2473 	int rc, i;
2474 
2475 	new_tsec = selinux_cred(bprm->cred);
2476 	if (new_tsec->sid == new_tsec->osid)
2477 		return;
2478 
2479 	/* Close files for which the new task SID is not authorized. */
2480 	flush_unauthorized_files(bprm->cred, current->files);
2481 
2482 	/* Always clear parent death signal on SID transitions. */
2483 	current->pdeath_signal = 0;
2484 
2485 	/* Check whether the new SID can inherit resource limits from the old
2486 	 * SID.  If not, reset all soft limits to the lower of the current
2487 	 * task's hard limit and the init task's soft limit.
2488 	 *
2489 	 * Note that the setting of hard limits (even to lower them) can be
2490 	 * controlled by the setrlimit check.  The inclusion of the init task's
2491 	 * soft limit into the computation is to avoid resetting soft limits
2492 	 * higher than the default soft limit for cases where the default is
2493 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2494 	 */
2495 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2496 			  PROCESS__RLIMITINH, NULL);
2497 	if (rc) {
2498 		/* protect against do_prlimit() */
2499 		task_lock(current);
2500 		for (i = 0; i < RLIM_NLIMITS; i++) {
2501 			rlim = current->signal->rlim + i;
2502 			initrlim = init_task.signal->rlim + i;
2503 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2504 		}
2505 		task_unlock(current);
2506 		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2507 			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2508 	}
2509 }
2510 
2511 /*
2512  * Clean up the process immediately after the installation of new credentials
2513  * due to exec
2514  */
2515 static void selinux_bprm_committed_creds(const struct linux_binprm *bprm)
2516 {
2517 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2518 	u32 osid, sid;
2519 	int rc;
2520 
2521 	osid = tsec->osid;
2522 	sid = tsec->sid;
2523 
2524 	if (sid == osid)
2525 		return;
2526 
2527 	/* Check whether the new SID can inherit signal state from the old SID.
2528 	 * If not, clear itimers to avoid subsequent signal generation and
2529 	 * flush and unblock signals.
2530 	 *
2531 	 * This must occur _after_ the task SID has been updated so that any
2532 	 * kill done after the flush will be checked against the new SID.
2533 	 */
2534 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2535 	if (rc) {
2536 		clear_itimer();
2537 
2538 		spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2539 		if (!fatal_signal_pending(current)) {
2540 			flush_sigqueue(&current->pending);
2541 			flush_sigqueue(&current->signal->shared_pending);
2542 			flush_signal_handlers(current, 1);
2543 			sigemptyset(&current->blocked);
2544 			recalc_sigpending();
2545 		}
2546 		spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2547 	}
2548 
2549 	/* Wake up the parent if it is waiting so that it can recheck
2550 	 * wait permission to the new task SID. */
2551 	read_lock(&tasklist_lock);
2552 	__wake_up_parent(current, unrcu_pointer(current->real_parent));
2553 	read_unlock(&tasklist_lock);
2554 }
2555 
2556 /* superblock security operations */
2557 
2558 static int selinux_sb_alloc_security(struct super_block *sb)
2559 {
2560 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2561 
2562 	mutex_init(&sbsec->lock);
2563 	INIT_LIST_HEAD(&sbsec->isec_head);
2564 	spin_lock_init(&sbsec->isec_lock);
2565 	sbsec->sid = SECINITSID_UNLABELED;
2566 	sbsec->def_sid = SECINITSID_FILE;
2567 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2568 
2569 	return 0;
2570 }
2571 
2572 static inline int opt_len(const char *s)
2573 {
2574 	bool open_quote = false;
2575 	int len;
2576 	char c;
2577 
2578 	for (len = 0; (c = s[len]) != '\0'; len++) {
2579 		if (c == '"')
2580 			open_quote = !open_quote;
2581 		if (c == ',' && !open_quote)
2582 			break;
2583 	}
2584 	return len;
2585 }
2586 
2587 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2588 {
2589 	char *from = options;
2590 	char *to = options;
2591 	bool first = true;
2592 	int rc;
2593 
2594 	while (1) {
2595 		int len = opt_len(from);
2596 		int token;
2597 		char *arg = NULL;
2598 
2599 		token = match_opt_prefix(from, len, &arg);
2600 
2601 		if (token != Opt_error) {
2602 			char *p, *q;
2603 
2604 			/* strip quotes */
2605 			if (arg) {
2606 				for (p = q = arg; p < from + len; p++) {
2607 					char c = *p;
2608 					if (c != '"')
2609 						*q++ = c;
2610 				}
2611 				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2612 				if (!arg) {
2613 					rc = -ENOMEM;
2614 					goto free_opt;
2615 				}
2616 			}
2617 			rc = selinux_add_opt(token, arg, mnt_opts);
2618 			kfree(arg);
2619 			arg = NULL;
2620 			if (unlikely(rc)) {
2621 				goto free_opt;
2622 			}
2623 		} else {
2624 			if (!first) {	// copy with preceding comma
2625 				from--;
2626 				len++;
2627 			}
2628 			if (to != from)
2629 				memmove(to, from, len);
2630 			to += len;
2631 			first = false;
2632 		}
2633 		if (!from[len])
2634 			break;
2635 		from += len + 1;
2636 	}
2637 	*to = '\0';
2638 	return 0;
2639 
2640 free_opt:
2641 	if (*mnt_opts) {
2642 		selinux_free_mnt_opts(*mnt_opts);
2643 		*mnt_opts = NULL;
2644 	}
2645 	return rc;
2646 }
2647 
2648 static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2649 {
2650 	struct selinux_mnt_opts *opts = mnt_opts;
2651 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2652 
2653 	/*
2654 	 * Superblock not initialized (i.e. no options) - reject if any
2655 	 * options specified, otherwise accept.
2656 	 */
2657 	if (!(sbsec->flags & SE_SBINITIALIZED))
2658 		return opts ? 1 : 0;
2659 
2660 	/*
2661 	 * Superblock initialized and no options specified - reject if
2662 	 * superblock has any options set, otherwise accept.
2663 	 */
2664 	if (!opts)
2665 		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2666 
2667 	if (opts->fscontext_sid) {
2668 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2669 			       opts->fscontext_sid))
2670 			return 1;
2671 	}
2672 	if (opts->context_sid) {
2673 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2674 			       opts->context_sid))
2675 			return 1;
2676 	}
2677 	if (opts->rootcontext_sid) {
2678 		struct inode_security_struct *root_isec;
2679 
2680 		root_isec = backing_inode_security(sb->s_root);
2681 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2682 			       opts->rootcontext_sid))
2683 			return 1;
2684 	}
2685 	if (opts->defcontext_sid) {
2686 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2687 			       opts->defcontext_sid))
2688 			return 1;
2689 	}
2690 	return 0;
2691 }
2692 
2693 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2694 {
2695 	struct selinux_mnt_opts *opts = mnt_opts;
2696 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2697 
2698 	if (!(sbsec->flags & SE_SBINITIALIZED))
2699 		return 0;
2700 
2701 	if (!opts)
2702 		return 0;
2703 
2704 	if (opts->fscontext_sid) {
2705 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2706 			       opts->fscontext_sid))
2707 			goto out_bad_option;
2708 	}
2709 	if (opts->context_sid) {
2710 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2711 			       opts->context_sid))
2712 			goto out_bad_option;
2713 	}
2714 	if (opts->rootcontext_sid) {
2715 		struct inode_security_struct *root_isec;
2716 		root_isec = backing_inode_security(sb->s_root);
2717 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2718 			       opts->rootcontext_sid))
2719 			goto out_bad_option;
2720 	}
2721 	if (opts->defcontext_sid) {
2722 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2723 			       opts->defcontext_sid))
2724 			goto out_bad_option;
2725 	}
2726 	return 0;
2727 
2728 out_bad_option:
2729 	pr_warn("SELinux: unable to change security options "
2730 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2731 	       sb->s_type->name);
2732 	return -EINVAL;
2733 }
2734 
2735 static int selinux_sb_kern_mount(const struct super_block *sb)
2736 {
2737 	const struct cred *cred = current_cred();
2738 	struct common_audit_data ad;
2739 
2740 	ad.type = LSM_AUDIT_DATA_DENTRY;
2741 	ad.u.dentry = sb->s_root;
2742 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2743 }
2744 
2745 static int selinux_sb_statfs(struct dentry *dentry)
2746 {
2747 	const struct cred *cred = current_cred();
2748 	struct common_audit_data ad;
2749 
2750 	ad.type = LSM_AUDIT_DATA_DENTRY;
2751 	ad.u.dentry = dentry->d_sb->s_root;
2752 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2753 }
2754 
2755 static int selinux_mount(const char *dev_name,
2756 			 const struct path *path,
2757 			 const char *type,
2758 			 unsigned long flags,
2759 			 void *data)
2760 {
2761 	const struct cred *cred = current_cred();
2762 
2763 	if (flags & MS_REMOUNT)
2764 		return superblock_has_perm(cred, path->dentry->d_sb,
2765 					   FILESYSTEM__REMOUNT, NULL);
2766 	else
2767 		return path_has_perm(cred, path, FILE__MOUNTON);
2768 }
2769 
2770 static int selinux_move_mount(const struct path *from_path,
2771 			      const struct path *to_path)
2772 {
2773 	const struct cred *cred = current_cred();
2774 
2775 	return path_has_perm(cred, to_path, FILE__MOUNTON);
2776 }
2777 
2778 static int selinux_umount(struct vfsmount *mnt, int flags)
2779 {
2780 	const struct cred *cred = current_cred();
2781 
2782 	return superblock_has_perm(cred, mnt->mnt_sb,
2783 				   FILESYSTEM__UNMOUNT, NULL);
2784 }
2785 
2786 static int selinux_fs_context_submount(struct fs_context *fc,
2787 				   struct super_block *reference)
2788 {
2789 	const struct superblock_security_struct *sbsec = selinux_superblock(reference);
2790 	struct selinux_mnt_opts *opts;
2791 
2792 	/*
2793 	 * Ensure that fc->security remains NULL when no options are set
2794 	 * as expected by selinux_set_mnt_opts().
2795 	 */
2796 	if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT)))
2797 		return 0;
2798 
2799 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
2800 	if (!opts)
2801 		return -ENOMEM;
2802 
2803 	if (sbsec->flags & FSCONTEXT_MNT)
2804 		opts->fscontext_sid = sbsec->sid;
2805 	if (sbsec->flags & CONTEXT_MNT)
2806 		opts->context_sid = sbsec->mntpoint_sid;
2807 	if (sbsec->flags & DEFCONTEXT_MNT)
2808 		opts->defcontext_sid = sbsec->def_sid;
2809 	fc->security = opts;
2810 	return 0;
2811 }
2812 
2813 static int selinux_fs_context_dup(struct fs_context *fc,
2814 				  struct fs_context *src_fc)
2815 {
2816 	const struct selinux_mnt_opts *src = src_fc->security;
2817 
2818 	if (!src)
2819 		return 0;
2820 
2821 	fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2822 	return fc->security ? 0 : -ENOMEM;
2823 }
2824 
2825 static const struct fs_parameter_spec selinux_fs_parameters[] = {
2826 	fsparam_string(CONTEXT_STR,	Opt_context),
2827 	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2828 	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2829 	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2830 	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2831 	{}
2832 };
2833 
2834 static int selinux_fs_context_parse_param(struct fs_context *fc,
2835 					  struct fs_parameter *param)
2836 {
2837 	struct fs_parse_result result;
2838 	int opt;
2839 
2840 	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2841 	if (opt < 0)
2842 		return opt;
2843 
2844 	return selinux_add_opt(opt, param->string, &fc->security);
2845 }
2846 
2847 /* inode security operations */
2848 
2849 static int selinux_inode_alloc_security(struct inode *inode)
2850 {
2851 	struct inode_security_struct *isec = selinux_inode(inode);
2852 	u32 sid = current_sid();
2853 
2854 	spin_lock_init(&isec->lock);
2855 	INIT_LIST_HEAD(&isec->list);
2856 	isec->inode = inode;
2857 	isec->sid = SECINITSID_UNLABELED;
2858 	isec->sclass = SECCLASS_FILE;
2859 	isec->task_sid = sid;
2860 	isec->initialized = LABEL_INVALID;
2861 
2862 	return 0;
2863 }
2864 
2865 static void selinux_inode_free_security(struct inode *inode)
2866 {
2867 	inode_free_security(inode);
2868 }
2869 
2870 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2871 					const struct qstr *name,
2872 					const char **xattr_name,
2873 					struct lsm_context *cp)
2874 {
2875 	u32 newsid;
2876 	int rc;
2877 
2878 	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2879 					   d_inode(dentry->d_parent), name,
2880 					   inode_mode_to_security_class(mode),
2881 					   &newsid);
2882 	if (rc)
2883 		return rc;
2884 
2885 	if (xattr_name)
2886 		*xattr_name = XATTR_NAME_SELINUX;
2887 
2888 	cp->id = LSM_ID_SELINUX;
2889 	return security_sid_to_context(newsid, &cp->context, &cp->len);
2890 }
2891 
2892 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2893 					  struct qstr *name,
2894 					  const struct cred *old,
2895 					  struct cred *new)
2896 {
2897 	u32 newsid;
2898 	int rc;
2899 	struct task_security_struct *tsec;
2900 
2901 	rc = selinux_determine_inode_label(selinux_cred(old),
2902 					   d_inode(dentry->d_parent), name,
2903 					   inode_mode_to_security_class(mode),
2904 					   &newsid);
2905 	if (rc)
2906 		return rc;
2907 
2908 	tsec = selinux_cred(new);
2909 	tsec->create_sid = newsid;
2910 	return 0;
2911 }
2912 
2913 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2914 				       const struct qstr *qstr,
2915 				       struct xattr *xattrs, int *xattr_count)
2916 {
2917 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2918 	struct superblock_security_struct *sbsec;
2919 	struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count);
2920 	u32 newsid, clen;
2921 	u16 newsclass;
2922 	int rc;
2923 	char *context;
2924 
2925 	sbsec = selinux_superblock(dir->i_sb);
2926 
2927 	newsid = tsec->create_sid;
2928 	newsclass = inode_mode_to_security_class(inode->i_mode);
2929 	rc = selinux_determine_inode_label(tsec, dir, qstr, newsclass, &newsid);
2930 	if (rc)
2931 		return rc;
2932 
2933 	/* Possibly defer initialization to selinux_complete_init. */
2934 	if (sbsec->flags & SE_SBINITIALIZED) {
2935 		struct inode_security_struct *isec = selinux_inode(inode);
2936 		isec->sclass = newsclass;
2937 		isec->sid = newsid;
2938 		isec->initialized = LABEL_INITIALIZED;
2939 	}
2940 
2941 	if (!selinux_initialized() ||
2942 	    !(sbsec->flags & SBLABEL_MNT))
2943 		return -EOPNOTSUPP;
2944 
2945 	if (xattr) {
2946 		rc = security_sid_to_context_force(newsid,
2947 						   &context, &clen);
2948 		if (rc)
2949 			return rc;
2950 		xattr->value = context;
2951 		xattr->value_len = clen;
2952 		xattr->name = XATTR_SELINUX_SUFFIX;
2953 	}
2954 
2955 	return 0;
2956 }
2957 
2958 static int selinux_inode_init_security_anon(struct inode *inode,
2959 					    const struct qstr *name,
2960 					    const struct inode *context_inode)
2961 {
2962 	u32 sid = current_sid();
2963 	struct common_audit_data ad;
2964 	struct inode_security_struct *isec;
2965 	int rc;
2966 
2967 	if (unlikely(!selinux_initialized()))
2968 		return 0;
2969 
2970 	isec = selinux_inode(inode);
2971 
2972 	/*
2973 	 * We only get here once per ephemeral inode.  The inode has
2974 	 * been initialized via inode_alloc_security but is otherwise
2975 	 * untouched.
2976 	 */
2977 
2978 	if (context_inode) {
2979 		struct inode_security_struct *context_isec =
2980 			selinux_inode(context_inode);
2981 		if (context_isec->initialized != LABEL_INITIALIZED) {
2982 			pr_err("SELinux:  context_inode is not initialized\n");
2983 			return -EACCES;
2984 		}
2985 
2986 		isec->sclass = context_isec->sclass;
2987 		isec->sid = context_isec->sid;
2988 	} else {
2989 		isec->sclass = SECCLASS_ANON_INODE;
2990 		rc = security_transition_sid(
2991 			sid, sid,
2992 			isec->sclass, name, &isec->sid);
2993 		if (rc)
2994 			return rc;
2995 	}
2996 
2997 	isec->initialized = LABEL_INITIALIZED;
2998 	/*
2999 	 * Now that we've initialized security, check whether we're
3000 	 * allowed to actually create this type of anonymous inode.
3001 	 */
3002 
3003 	ad.type = LSM_AUDIT_DATA_ANONINODE;
3004 	ad.u.anonclass = name ? (const char *)name->name : "?";
3005 
3006 	return avc_has_perm(sid,
3007 			    isec->sid,
3008 			    isec->sclass,
3009 			    FILE__CREATE,
3010 			    &ad);
3011 }
3012 
3013 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3014 {
3015 	return may_create(dir, dentry, SECCLASS_FILE);
3016 }
3017 
3018 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3019 {
3020 	return may_link(dir, old_dentry, MAY_LINK);
3021 }
3022 
3023 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3024 {
3025 	return may_link(dir, dentry, MAY_UNLINK);
3026 }
3027 
3028 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3029 {
3030 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3031 }
3032 
3033 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3034 {
3035 	return may_create(dir, dentry, SECCLASS_DIR);
3036 }
3037 
3038 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3039 {
3040 	return may_link(dir, dentry, MAY_RMDIR);
3041 }
3042 
3043 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3044 {
3045 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3046 }
3047 
3048 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3049 				struct inode *new_inode, struct dentry *new_dentry)
3050 {
3051 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3052 }
3053 
3054 static int selinux_inode_readlink(struct dentry *dentry)
3055 {
3056 	const struct cred *cred = current_cred();
3057 
3058 	return dentry_has_perm(cred, dentry, FILE__READ);
3059 }
3060 
3061 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3062 				     bool rcu)
3063 {
3064 	struct common_audit_data ad;
3065 	struct inode_security_struct *isec;
3066 	u32 sid = current_sid();
3067 
3068 	ad.type = LSM_AUDIT_DATA_DENTRY;
3069 	ad.u.dentry = dentry;
3070 	isec = inode_security_rcu(inode, rcu);
3071 	if (IS_ERR(isec))
3072 		return PTR_ERR(isec);
3073 
3074 	return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad);
3075 }
3076 
3077 static noinline int audit_inode_permission(struct inode *inode,
3078 					   u32 perms, u32 audited, u32 denied,
3079 					   int result)
3080 {
3081 	struct common_audit_data ad;
3082 	struct inode_security_struct *isec = selinux_inode(inode);
3083 
3084 	ad.type = LSM_AUDIT_DATA_INODE;
3085 	ad.u.inode = inode;
3086 
3087 	return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3088 			    audited, denied, result, &ad);
3089 }
3090 
3091 static int selinux_inode_permission(struct inode *inode, int mask)
3092 {
3093 	u32 perms;
3094 	bool from_access;
3095 	bool no_block = mask & MAY_NOT_BLOCK;
3096 	struct inode_security_struct *isec;
3097 	u32 sid = current_sid();
3098 	struct av_decision avd;
3099 	int rc, rc2;
3100 	u32 audited, denied;
3101 
3102 	from_access = mask & MAY_ACCESS;
3103 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3104 
3105 	/* No permission to check.  Existence test. */
3106 	if (!mask)
3107 		return 0;
3108 
3109 	if (unlikely(IS_PRIVATE(inode)))
3110 		return 0;
3111 
3112 	perms = file_mask_to_av(inode->i_mode, mask);
3113 
3114 	isec = inode_security_rcu(inode, no_block);
3115 	if (IS_ERR(isec))
3116 		return PTR_ERR(isec);
3117 
3118 	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0,
3119 				  &avd);
3120 	audited = avc_audit_required(perms, &avd, rc,
3121 				     from_access ? FILE__AUDIT_ACCESS : 0,
3122 				     &denied);
3123 	if (likely(!audited))
3124 		return rc;
3125 
3126 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3127 	if (rc2)
3128 		return rc2;
3129 	return rc;
3130 }
3131 
3132 static int selinux_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3133 				 struct iattr *iattr)
3134 {
3135 	const struct cred *cred = current_cred();
3136 	struct inode *inode = d_backing_inode(dentry);
3137 	unsigned int ia_valid = iattr->ia_valid;
3138 	u32 av = FILE__WRITE;
3139 
3140 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3141 	if (ia_valid & ATTR_FORCE) {
3142 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3143 			      ATTR_FORCE);
3144 		if (!ia_valid)
3145 			return 0;
3146 	}
3147 
3148 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3149 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3150 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3151 
3152 	if (selinux_policycap_openperm() &&
3153 	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3154 	    (ia_valid & ATTR_SIZE) &&
3155 	    !(ia_valid & ATTR_FILE))
3156 		av |= FILE__OPEN;
3157 
3158 	return dentry_has_perm(cred, dentry, av);
3159 }
3160 
3161 static int selinux_inode_getattr(const struct path *path)
3162 {
3163 	return path_has_perm(current_cred(), path, FILE__GETATTR);
3164 }
3165 
3166 static bool has_cap_mac_admin(bool audit)
3167 {
3168 	const struct cred *cred = current_cred();
3169 	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3170 
3171 	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3172 		return false;
3173 	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3174 		return false;
3175 	return true;
3176 }
3177 
3178 /**
3179  * selinux_inode_xattr_skipcap - Skip the xattr capability checks?
3180  * @name: name of the xattr
3181  *
3182  * Returns 1 to indicate that SELinux "owns" the access control rights to xattrs
3183  * named @name; the LSM layer should avoid enforcing any traditional
3184  * capability based access controls on this xattr.  Returns 0 to indicate that
3185  * SELinux does not "own" the access control rights to xattrs named @name and is
3186  * deferring to the LSM layer for further access controls, including capability
3187  * based controls.
3188  */
3189 static int selinux_inode_xattr_skipcap(const char *name)
3190 {
3191 	/* require capability check if not a selinux xattr */
3192 	return !strcmp(name, XATTR_NAME_SELINUX);
3193 }
3194 
3195 static int selinux_inode_setxattr(struct mnt_idmap *idmap,
3196 				  struct dentry *dentry, const char *name,
3197 				  const void *value, size_t size, int flags)
3198 {
3199 	struct inode *inode = d_backing_inode(dentry);
3200 	struct inode_security_struct *isec;
3201 	struct superblock_security_struct *sbsec;
3202 	struct common_audit_data ad;
3203 	u32 newsid, sid = current_sid();
3204 	int rc = 0;
3205 
3206 	/* if not a selinux xattr, only check the ordinary setattr perm */
3207 	if (strcmp(name, XATTR_NAME_SELINUX))
3208 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3209 
3210 	if (!selinux_initialized())
3211 		return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM);
3212 
3213 	sbsec = selinux_superblock(inode->i_sb);
3214 	if (!(sbsec->flags & SBLABEL_MNT))
3215 		return -EOPNOTSUPP;
3216 
3217 	if (!inode_owner_or_capable(idmap, inode))
3218 		return -EPERM;
3219 
3220 	ad.type = LSM_AUDIT_DATA_DENTRY;
3221 	ad.u.dentry = dentry;
3222 
3223 	isec = backing_inode_security(dentry);
3224 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
3225 			  FILE__RELABELFROM, &ad);
3226 	if (rc)
3227 		return rc;
3228 
3229 	rc = security_context_to_sid(value, size, &newsid,
3230 				     GFP_KERNEL);
3231 	if (rc == -EINVAL) {
3232 		if (!has_cap_mac_admin(true)) {
3233 			struct audit_buffer *ab;
3234 			size_t audit_size;
3235 
3236 			/* We strip a nul only if it is at the end, otherwise the
3237 			 * context contains a nul and we should audit that */
3238 			if (value) {
3239 				const char *str = value;
3240 
3241 				if (str[size - 1] == '\0')
3242 					audit_size = size - 1;
3243 				else
3244 					audit_size = size;
3245 			} else {
3246 				audit_size = 0;
3247 			}
3248 			ab = audit_log_start(audit_context(),
3249 					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3250 			if (!ab)
3251 				return rc;
3252 			audit_log_format(ab, "op=setxattr invalid_context=");
3253 			audit_log_n_untrustedstring(ab, value, audit_size);
3254 			audit_log_end(ab);
3255 
3256 			return rc;
3257 		}
3258 		rc = security_context_to_sid_force(value,
3259 						   size, &newsid);
3260 	}
3261 	if (rc)
3262 		return rc;
3263 
3264 	rc = avc_has_perm(sid, newsid, isec->sclass,
3265 			  FILE__RELABELTO, &ad);
3266 	if (rc)
3267 		return rc;
3268 
3269 	rc = security_validate_transition(isec->sid, newsid,
3270 					  sid, isec->sclass);
3271 	if (rc)
3272 		return rc;
3273 
3274 	return avc_has_perm(newsid,
3275 			    sbsec->sid,
3276 			    SECCLASS_FILESYSTEM,
3277 			    FILESYSTEM__ASSOCIATE,
3278 			    &ad);
3279 }
3280 
3281 static int selinux_inode_set_acl(struct mnt_idmap *idmap,
3282 				 struct dentry *dentry, const char *acl_name,
3283 				 struct posix_acl *kacl)
3284 {
3285 	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3286 }
3287 
3288 static int selinux_inode_get_acl(struct mnt_idmap *idmap,
3289 				 struct dentry *dentry, const char *acl_name)
3290 {
3291 	return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3292 }
3293 
3294 static int selinux_inode_remove_acl(struct mnt_idmap *idmap,
3295 				    struct dentry *dentry, const char *acl_name)
3296 {
3297 	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3298 }
3299 
3300 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3301 					const void *value, size_t size,
3302 					int flags)
3303 {
3304 	struct inode *inode = d_backing_inode(dentry);
3305 	struct inode_security_struct *isec;
3306 	u32 newsid;
3307 	int rc;
3308 
3309 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3310 		/* Not an attribute we recognize, so nothing to do. */
3311 		return;
3312 	}
3313 
3314 	if (!selinux_initialized()) {
3315 		/* If we haven't even been initialized, then we can't validate
3316 		 * against a policy, so leave the label as invalid. It may
3317 		 * resolve to a valid label on the next revalidation try if
3318 		 * we've since initialized.
3319 		 */
3320 		return;
3321 	}
3322 
3323 	rc = security_context_to_sid_force(value, size,
3324 					   &newsid);
3325 	if (rc) {
3326 		pr_err("SELinux:  unable to map context to SID"
3327 		       "for (%s, %lu), rc=%d\n",
3328 		       inode->i_sb->s_id, inode->i_ino, -rc);
3329 		return;
3330 	}
3331 
3332 	isec = backing_inode_security(dentry);
3333 	spin_lock(&isec->lock);
3334 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3335 	isec->sid = newsid;
3336 	isec->initialized = LABEL_INITIALIZED;
3337 	spin_unlock(&isec->lock);
3338 }
3339 
3340 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3341 {
3342 	const struct cred *cred = current_cred();
3343 
3344 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3345 }
3346 
3347 static int selinux_inode_listxattr(struct dentry *dentry)
3348 {
3349 	const struct cred *cred = current_cred();
3350 
3351 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3352 }
3353 
3354 static int selinux_inode_removexattr(struct mnt_idmap *idmap,
3355 				     struct dentry *dentry, const char *name)
3356 {
3357 	/* if not a selinux xattr, only check the ordinary setattr perm */
3358 	if (strcmp(name, XATTR_NAME_SELINUX))
3359 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3360 
3361 	if (!selinux_initialized())
3362 		return 0;
3363 
3364 	/* No one is allowed to remove a SELinux security label.
3365 	   You can change the label, but all data must be labeled. */
3366 	return -EACCES;
3367 }
3368 
3369 static int selinux_path_notify(const struct path *path, u64 mask,
3370 						unsigned int obj_type)
3371 {
3372 	int ret;
3373 	u32 perm;
3374 
3375 	struct common_audit_data ad;
3376 
3377 	ad.type = LSM_AUDIT_DATA_PATH;
3378 	ad.u.path = *path;
3379 
3380 	/*
3381 	 * Set permission needed based on the type of mark being set.
3382 	 * Performs an additional check for sb watches.
3383 	 */
3384 	switch (obj_type) {
3385 	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3386 		perm = FILE__WATCH_MOUNT;
3387 		break;
3388 	case FSNOTIFY_OBJ_TYPE_SB:
3389 		perm = FILE__WATCH_SB;
3390 		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3391 						FILESYSTEM__WATCH, &ad);
3392 		if (ret)
3393 			return ret;
3394 		break;
3395 	case FSNOTIFY_OBJ_TYPE_INODE:
3396 		perm = FILE__WATCH;
3397 		break;
3398 	case FSNOTIFY_OBJ_TYPE_MNTNS:
3399 		perm = FILE__WATCH_MOUNTNS;
3400 		break;
3401 	default:
3402 		return -EINVAL;
3403 	}
3404 
3405 	/* blocking watches require the file:watch_with_perm permission */
3406 	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3407 		perm |= FILE__WATCH_WITH_PERM;
3408 
3409 	/* watches on read-like events need the file:watch_reads permission */
3410 	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_PRE_ACCESS |
3411 		    FS_CLOSE_NOWRITE))
3412 		perm |= FILE__WATCH_READS;
3413 
3414 	return path_has_perm(current_cred(), path, perm);
3415 }
3416 
3417 /*
3418  * Copy the inode security context value to the user.
3419  *
3420  * Permission check is handled by selinux_inode_getxattr hook.
3421  */
3422 static int selinux_inode_getsecurity(struct mnt_idmap *idmap,
3423 				     struct inode *inode, const char *name,
3424 				     void **buffer, bool alloc)
3425 {
3426 	u32 size;
3427 	int error;
3428 	char *context = NULL;
3429 	struct inode_security_struct *isec;
3430 
3431 	/*
3432 	 * If we're not initialized yet, then we can't validate contexts, so
3433 	 * just let vfs_getxattr fall back to using the on-disk xattr.
3434 	 */
3435 	if (!selinux_initialized() ||
3436 	    strcmp(name, XATTR_SELINUX_SUFFIX))
3437 		return -EOPNOTSUPP;
3438 
3439 	/*
3440 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3441 	 * value even if it is not defined by current policy; otherwise,
3442 	 * use the in-core value under current policy.
3443 	 * Use the non-auditing forms of the permission checks since
3444 	 * getxattr may be called by unprivileged processes commonly
3445 	 * and lack of permission just means that we fall back to the
3446 	 * in-core context value, not a denial.
3447 	 */
3448 	isec = inode_security(inode);
3449 	if (has_cap_mac_admin(false))
3450 		error = security_sid_to_context_force(isec->sid, &context,
3451 						      &size);
3452 	else
3453 		error = security_sid_to_context(isec->sid,
3454 						&context, &size);
3455 	if (error)
3456 		return error;
3457 	error = size;
3458 	if (alloc) {
3459 		*buffer = context;
3460 		goto out_nofree;
3461 	}
3462 	kfree(context);
3463 out_nofree:
3464 	return error;
3465 }
3466 
3467 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3468 				     const void *value, size_t size, int flags)
3469 {
3470 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3471 	struct superblock_security_struct *sbsec;
3472 	u32 newsid;
3473 	int rc;
3474 
3475 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3476 		return -EOPNOTSUPP;
3477 
3478 	sbsec = selinux_superblock(inode->i_sb);
3479 	if (!(sbsec->flags & SBLABEL_MNT))
3480 		return -EOPNOTSUPP;
3481 
3482 	if (!value || !size)
3483 		return -EACCES;
3484 
3485 	rc = security_context_to_sid(value, size, &newsid,
3486 				     GFP_KERNEL);
3487 	if (rc)
3488 		return rc;
3489 
3490 	spin_lock(&isec->lock);
3491 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3492 	isec->sid = newsid;
3493 	isec->initialized = LABEL_INITIALIZED;
3494 	spin_unlock(&isec->lock);
3495 	return 0;
3496 }
3497 
3498 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3499 {
3500 	const int len = sizeof(XATTR_NAME_SELINUX);
3501 
3502 	if (!selinux_initialized())
3503 		return 0;
3504 
3505 	if (buffer && len <= buffer_size)
3506 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3507 	return len;
3508 }
3509 
3510 static void selinux_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop)
3511 {
3512 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3513 
3514 	prop->selinux.secid = isec->sid;
3515 }
3516 
3517 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3518 {
3519 	struct lsm_prop prop;
3520 	struct task_security_struct *tsec;
3521 	struct cred *new_creds = *new;
3522 
3523 	if (new_creds == NULL) {
3524 		new_creds = prepare_creds();
3525 		if (!new_creds)
3526 			return -ENOMEM;
3527 	}
3528 
3529 	tsec = selinux_cred(new_creds);
3530 	/* Get label from overlay inode and set it in create_sid */
3531 	selinux_inode_getlsmprop(d_inode(src), &prop);
3532 	tsec->create_sid = prop.selinux.secid;
3533 	*new = new_creds;
3534 	return 0;
3535 }
3536 
3537 static int selinux_inode_copy_up_xattr(struct dentry *dentry, const char *name)
3538 {
3539 	/* The copy_up hook above sets the initial context on an inode, but we
3540 	 * don't then want to overwrite it by blindly copying all the lower
3541 	 * xattrs up.  Instead, filter out SELinux-related xattrs following
3542 	 * policy load.
3543 	 */
3544 	if (selinux_initialized() && !strcmp(name, XATTR_NAME_SELINUX))
3545 		return -ECANCELED; /* Discard */
3546 	/*
3547 	 * Any other attribute apart from SELINUX is not claimed, supported
3548 	 * by selinux.
3549 	 */
3550 	return -EOPNOTSUPP;
3551 }
3552 
3553 /* kernfs node operations */
3554 
3555 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3556 					struct kernfs_node *kn)
3557 {
3558 	const struct task_security_struct *tsec = selinux_cred(current_cred());
3559 	u32 parent_sid, newsid, clen;
3560 	int rc;
3561 	char *context;
3562 
3563 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3564 	if (rc == -ENODATA)
3565 		return 0;
3566 	else if (rc < 0)
3567 		return rc;
3568 
3569 	clen = (u32)rc;
3570 	context = kmalloc(clen, GFP_KERNEL);
3571 	if (!context)
3572 		return -ENOMEM;
3573 
3574 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3575 	if (rc < 0) {
3576 		kfree(context);
3577 		return rc;
3578 	}
3579 
3580 	rc = security_context_to_sid(context, clen, &parent_sid,
3581 				     GFP_KERNEL);
3582 	kfree(context);
3583 	if (rc)
3584 		return rc;
3585 
3586 	if (tsec->create_sid) {
3587 		newsid = tsec->create_sid;
3588 	} else {
3589 		u16 secclass = inode_mode_to_security_class(kn->mode);
3590 		struct qstr q;
3591 
3592 		q.name = kn->name;
3593 		q.hash_len = hashlen_string(kn_dir, kn->name);
3594 
3595 		rc = security_transition_sid(tsec->sid,
3596 					     parent_sid, secclass, &q,
3597 					     &newsid);
3598 		if (rc)
3599 			return rc;
3600 	}
3601 
3602 	rc = security_sid_to_context_force(newsid,
3603 					   &context, &clen);
3604 	if (rc)
3605 		return rc;
3606 
3607 	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3608 			      XATTR_CREATE);
3609 	kfree(context);
3610 	return rc;
3611 }
3612 
3613 
3614 /* file security operations */
3615 
3616 static int selinux_revalidate_file_permission(struct file *file, int mask)
3617 {
3618 	const struct cred *cred = current_cred();
3619 	struct inode *inode = file_inode(file);
3620 
3621 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3622 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3623 		mask |= MAY_APPEND;
3624 
3625 	return file_has_perm(cred, file,
3626 			     file_mask_to_av(inode->i_mode, mask));
3627 }
3628 
3629 static int selinux_file_permission(struct file *file, int mask)
3630 {
3631 	struct inode *inode = file_inode(file);
3632 	struct file_security_struct *fsec = selinux_file(file);
3633 	struct inode_security_struct *isec;
3634 	u32 sid = current_sid();
3635 
3636 	if (!mask)
3637 		/* No permission to check.  Existence test. */
3638 		return 0;
3639 
3640 	isec = inode_security(inode);
3641 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3642 	    fsec->pseqno == avc_policy_seqno())
3643 		/* No change since file_open check. */
3644 		return 0;
3645 
3646 	return selinux_revalidate_file_permission(file, mask);
3647 }
3648 
3649 static int selinux_file_alloc_security(struct file *file)
3650 {
3651 	struct file_security_struct *fsec = selinux_file(file);
3652 	u32 sid = current_sid();
3653 
3654 	fsec->sid = sid;
3655 	fsec->fown_sid = sid;
3656 
3657 	return 0;
3658 }
3659 
3660 /*
3661  * Check whether a task has the ioctl permission and cmd
3662  * operation to an inode.
3663  */
3664 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3665 		u32 requested, u16 cmd)
3666 {
3667 	struct common_audit_data ad;
3668 	struct file_security_struct *fsec = selinux_file(file);
3669 	struct inode *inode = file_inode(file);
3670 	struct inode_security_struct *isec;
3671 	struct lsm_ioctlop_audit ioctl;
3672 	u32 ssid = cred_sid(cred);
3673 	int rc;
3674 	u8 driver = cmd >> 8;
3675 	u8 xperm = cmd & 0xff;
3676 
3677 	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3678 	ad.u.op = &ioctl;
3679 	ad.u.op->cmd = cmd;
3680 	ad.u.op->path = file->f_path;
3681 
3682 	if (ssid != fsec->sid) {
3683 		rc = avc_has_perm(ssid, fsec->sid,
3684 				SECCLASS_FD,
3685 				FD__USE,
3686 				&ad);
3687 		if (rc)
3688 			goto out;
3689 	}
3690 
3691 	if (unlikely(IS_PRIVATE(inode)))
3692 		return 0;
3693 
3694 	isec = inode_security(inode);
3695 	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass, requested,
3696 				    driver, AVC_EXT_IOCTL, xperm, &ad);
3697 out:
3698 	return rc;
3699 }
3700 
3701 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3702 			      unsigned long arg)
3703 {
3704 	const struct cred *cred = current_cred();
3705 	int error = 0;
3706 
3707 	switch (cmd) {
3708 	case FIONREAD:
3709 	case FIBMAP:
3710 	case FIGETBSZ:
3711 	case FS_IOC_GETFLAGS:
3712 	case FS_IOC_GETVERSION:
3713 		error = file_has_perm(cred, file, FILE__GETATTR);
3714 		break;
3715 
3716 	case FS_IOC_SETFLAGS:
3717 	case FS_IOC_SETVERSION:
3718 		error = file_has_perm(cred, file, FILE__SETATTR);
3719 		break;
3720 
3721 	/* sys_ioctl() checks */
3722 	case FIONBIO:
3723 	case FIOASYNC:
3724 		error = file_has_perm(cred, file, 0);
3725 		break;
3726 
3727 	case KDSKBENT:
3728 	case KDSKBSENT:
3729 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3730 					    CAP_OPT_NONE, true);
3731 		break;
3732 
3733 	case FIOCLEX:
3734 	case FIONCLEX:
3735 		if (!selinux_policycap_ioctl_skip_cloexec())
3736 			error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3737 		break;
3738 
3739 	/* default case assumes that the command will go
3740 	 * to the file's ioctl() function.
3741 	 */
3742 	default:
3743 		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3744 	}
3745 	return error;
3746 }
3747 
3748 static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd,
3749 			      unsigned long arg)
3750 {
3751 	/*
3752 	 * If we are in a 64-bit kernel running 32-bit userspace, we need to
3753 	 * make sure we don't compare 32-bit flags to 64-bit flags.
3754 	 */
3755 	switch (cmd) {
3756 	case FS_IOC32_GETFLAGS:
3757 		cmd = FS_IOC_GETFLAGS;
3758 		break;
3759 	case FS_IOC32_SETFLAGS:
3760 		cmd = FS_IOC_SETFLAGS;
3761 		break;
3762 	case FS_IOC32_GETVERSION:
3763 		cmd = FS_IOC_GETVERSION;
3764 		break;
3765 	case FS_IOC32_SETVERSION:
3766 		cmd = FS_IOC_SETVERSION;
3767 		break;
3768 	default:
3769 		break;
3770 	}
3771 
3772 	return selinux_file_ioctl(file, cmd, arg);
3773 }
3774 
3775 static int default_noexec __ro_after_init;
3776 
3777 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3778 {
3779 	const struct cred *cred = current_cred();
3780 	u32 sid = cred_sid(cred);
3781 	int rc = 0;
3782 
3783 	if (default_noexec &&
3784 	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3785 				   (!shared && (prot & PROT_WRITE)))) {
3786 		/*
3787 		 * We are making executable an anonymous mapping or a
3788 		 * private file mapping that will also be writable.
3789 		 * This has an additional check.
3790 		 */
3791 		rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3792 				  PROCESS__EXECMEM, NULL);
3793 		if (rc)
3794 			goto error;
3795 	}
3796 
3797 	if (file) {
3798 		/* read access is always possible with a mapping */
3799 		u32 av = FILE__READ;
3800 
3801 		/* write access only matters if the mapping is shared */
3802 		if (shared && (prot & PROT_WRITE))
3803 			av |= FILE__WRITE;
3804 
3805 		if (prot & PROT_EXEC)
3806 			av |= FILE__EXECUTE;
3807 
3808 		return file_has_perm(cred, file, av);
3809 	}
3810 
3811 error:
3812 	return rc;
3813 }
3814 
3815 static int selinux_mmap_addr(unsigned long addr)
3816 {
3817 	int rc = 0;
3818 
3819 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3820 		u32 sid = current_sid();
3821 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3822 				  MEMPROTECT__MMAP_ZERO, NULL);
3823 	}
3824 
3825 	return rc;
3826 }
3827 
3828 static int selinux_mmap_file(struct file *file,
3829 			     unsigned long reqprot __always_unused,
3830 			     unsigned long prot, unsigned long flags)
3831 {
3832 	struct common_audit_data ad;
3833 	int rc;
3834 
3835 	if (file) {
3836 		ad.type = LSM_AUDIT_DATA_FILE;
3837 		ad.u.file = file;
3838 		rc = inode_has_perm(current_cred(), file_inode(file),
3839 				    FILE__MAP, &ad);
3840 		if (rc)
3841 			return rc;
3842 	}
3843 
3844 	return file_map_prot_check(file, prot,
3845 				   (flags & MAP_TYPE) == MAP_SHARED);
3846 }
3847 
3848 static int selinux_file_mprotect(struct vm_area_struct *vma,
3849 				 unsigned long reqprot __always_unused,
3850 				 unsigned long prot)
3851 {
3852 	const struct cred *cred = current_cred();
3853 	u32 sid = cred_sid(cred);
3854 
3855 	if (default_noexec &&
3856 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3857 		int rc = 0;
3858 		/*
3859 		 * We don't use the vma_is_initial_heap() helper as it has
3860 		 * a history of problems and is currently broken on systems
3861 		 * where there is no heap, e.g. brk == start_brk.  Before
3862 		 * replacing the conditional below with vma_is_initial_heap(),
3863 		 * or something similar, please ensure that the logic is the
3864 		 * same as what we have below or you have tested every possible
3865 		 * corner case you can think to test.
3866 		 */
3867 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3868 		    vma->vm_end <= vma->vm_mm->brk) {
3869 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3870 					  PROCESS__EXECHEAP, NULL);
3871 		} else if (!vma->vm_file && (vma_is_initial_stack(vma) ||
3872 			    vma_is_stack_for_current(vma))) {
3873 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3874 					  PROCESS__EXECSTACK, NULL);
3875 		} else if (vma->vm_file && vma->anon_vma) {
3876 			/*
3877 			 * We are making executable a file mapping that has
3878 			 * had some COW done. Since pages might have been
3879 			 * written, check ability to execute the possibly
3880 			 * modified content.  This typically should only
3881 			 * occur for text relocations.
3882 			 */
3883 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3884 		}
3885 		if (rc)
3886 			return rc;
3887 	}
3888 
3889 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3890 }
3891 
3892 static int selinux_file_lock(struct file *file, unsigned int cmd)
3893 {
3894 	const struct cred *cred = current_cred();
3895 
3896 	return file_has_perm(cred, file, FILE__LOCK);
3897 }
3898 
3899 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3900 			      unsigned long arg)
3901 {
3902 	const struct cred *cred = current_cred();
3903 	int err = 0;
3904 
3905 	switch (cmd) {
3906 	case F_SETFL:
3907 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3908 			err = file_has_perm(cred, file, FILE__WRITE);
3909 			break;
3910 		}
3911 		fallthrough;
3912 	case F_SETOWN:
3913 	case F_SETSIG:
3914 	case F_GETFL:
3915 	case F_GETOWN:
3916 	case F_GETSIG:
3917 	case F_GETOWNER_UIDS:
3918 		/* Just check FD__USE permission */
3919 		err = file_has_perm(cred, file, 0);
3920 		break;
3921 	case F_GETLK:
3922 	case F_SETLK:
3923 	case F_SETLKW:
3924 	case F_OFD_GETLK:
3925 	case F_OFD_SETLK:
3926 	case F_OFD_SETLKW:
3927 #if BITS_PER_LONG == 32
3928 	case F_GETLK64:
3929 	case F_SETLK64:
3930 	case F_SETLKW64:
3931 #endif
3932 		err = file_has_perm(cred, file, FILE__LOCK);
3933 		break;
3934 	}
3935 
3936 	return err;
3937 }
3938 
3939 static void selinux_file_set_fowner(struct file *file)
3940 {
3941 	struct file_security_struct *fsec;
3942 
3943 	fsec = selinux_file(file);
3944 	fsec->fown_sid = current_sid();
3945 }
3946 
3947 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3948 				       struct fown_struct *fown, int signum)
3949 {
3950 	struct file *file;
3951 	u32 sid = task_sid_obj(tsk);
3952 	u32 perm;
3953 	struct file_security_struct *fsec;
3954 
3955 	/* struct fown_struct is never outside the context of a struct file */
3956 	file = fown->file;
3957 
3958 	fsec = selinux_file(file);
3959 
3960 	if (!signum)
3961 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3962 	else
3963 		perm = signal_to_av(signum);
3964 
3965 	return avc_has_perm(fsec->fown_sid, sid,
3966 			    SECCLASS_PROCESS, perm, NULL);
3967 }
3968 
3969 static int selinux_file_receive(struct file *file)
3970 {
3971 	const struct cred *cred = current_cred();
3972 
3973 	return file_has_perm(cred, file, file_to_av(file));
3974 }
3975 
3976 static int selinux_file_open(struct file *file)
3977 {
3978 	struct file_security_struct *fsec;
3979 	struct inode_security_struct *isec;
3980 
3981 	fsec = selinux_file(file);
3982 	isec = inode_security(file_inode(file));
3983 	/*
3984 	 * Save inode label and policy sequence number
3985 	 * at open-time so that selinux_file_permission
3986 	 * can determine whether revalidation is necessary.
3987 	 * Task label is already saved in the file security
3988 	 * struct as its SID.
3989 	 */
3990 	fsec->isid = isec->sid;
3991 	fsec->pseqno = avc_policy_seqno();
3992 	/*
3993 	 * Since the inode label or policy seqno may have changed
3994 	 * between the selinux_inode_permission check and the saving
3995 	 * of state above, recheck that access is still permitted.
3996 	 * Otherwise, access might never be revalidated against the
3997 	 * new inode label or new policy.
3998 	 * This check is not redundant - do not remove.
3999 	 */
4000 	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
4001 }
4002 
4003 /* task security operations */
4004 
4005 static int selinux_task_alloc(struct task_struct *task,
4006 			      unsigned long clone_flags)
4007 {
4008 	u32 sid = current_sid();
4009 
4010 	return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
4011 }
4012 
4013 /*
4014  * prepare a new set of credentials for modification
4015  */
4016 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4017 				gfp_t gfp)
4018 {
4019 	const struct task_security_struct *old_tsec = selinux_cred(old);
4020 	struct task_security_struct *tsec = selinux_cred(new);
4021 
4022 	*tsec = *old_tsec;
4023 	return 0;
4024 }
4025 
4026 /*
4027  * transfer the SELinux data to a blank set of creds
4028  */
4029 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4030 {
4031 	const struct task_security_struct *old_tsec = selinux_cred(old);
4032 	struct task_security_struct *tsec = selinux_cred(new);
4033 
4034 	*tsec = *old_tsec;
4035 }
4036 
4037 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4038 {
4039 	*secid = cred_sid(c);
4040 }
4041 
4042 static void selinux_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop)
4043 {
4044 	prop->selinux.secid = cred_sid(c);
4045 }
4046 
4047 /*
4048  * set the security data for a kernel service
4049  * - all the creation contexts are set to unlabelled
4050  */
4051 static int selinux_kernel_act_as(struct cred *new, u32 secid)
4052 {
4053 	struct task_security_struct *tsec = selinux_cred(new);
4054 	u32 sid = current_sid();
4055 	int ret;
4056 
4057 	ret = avc_has_perm(sid, secid,
4058 			   SECCLASS_KERNEL_SERVICE,
4059 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
4060 			   NULL);
4061 	if (ret == 0) {
4062 		tsec->sid = secid;
4063 		tsec->create_sid = 0;
4064 		tsec->keycreate_sid = 0;
4065 		tsec->sockcreate_sid = 0;
4066 	}
4067 	return ret;
4068 }
4069 
4070 /*
4071  * set the file creation context in a security record to the same as the
4072  * objective context of the specified inode
4073  */
4074 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4075 {
4076 	struct inode_security_struct *isec = inode_security(inode);
4077 	struct task_security_struct *tsec = selinux_cred(new);
4078 	u32 sid = current_sid();
4079 	int ret;
4080 
4081 	ret = avc_has_perm(sid, isec->sid,
4082 			   SECCLASS_KERNEL_SERVICE,
4083 			   KERNEL_SERVICE__CREATE_FILES_AS,
4084 			   NULL);
4085 
4086 	if (ret == 0)
4087 		tsec->create_sid = isec->sid;
4088 	return ret;
4089 }
4090 
4091 static int selinux_kernel_module_request(char *kmod_name)
4092 {
4093 	struct common_audit_data ad;
4094 
4095 	ad.type = LSM_AUDIT_DATA_KMOD;
4096 	ad.u.kmod_name = kmod_name;
4097 
4098 	return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4099 			    SYSTEM__MODULE_REQUEST, &ad);
4100 }
4101 
4102 static int selinux_kernel_module_from_file(struct file *file)
4103 {
4104 	struct common_audit_data ad;
4105 	struct inode_security_struct *isec;
4106 	struct file_security_struct *fsec;
4107 	u32 sid = current_sid();
4108 	int rc;
4109 
4110 	/* init_module */
4111 	if (file == NULL)
4112 		return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
4113 					SYSTEM__MODULE_LOAD, NULL);
4114 
4115 	/* finit_module */
4116 
4117 	ad.type = LSM_AUDIT_DATA_FILE;
4118 	ad.u.file = file;
4119 
4120 	fsec = selinux_file(file);
4121 	if (sid != fsec->sid) {
4122 		rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4123 		if (rc)
4124 			return rc;
4125 	}
4126 
4127 	isec = inode_security(file_inode(file));
4128 	return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
4129 				SYSTEM__MODULE_LOAD, &ad);
4130 }
4131 
4132 static int selinux_kernel_read_file(struct file *file,
4133 				    enum kernel_read_file_id id,
4134 				    bool contents)
4135 {
4136 	int rc = 0;
4137 
4138 	switch (id) {
4139 	case READING_MODULE:
4140 		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4141 		break;
4142 	default:
4143 		break;
4144 	}
4145 
4146 	return rc;
4147 }
4148 
4149 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4150 {
4151 	int rc = 0;
4152 
4153 	switch (id) {
4154 	case LOADING_MODULE:
4155 		rc = selinux_kernel_module_from_file(NULL);
4156 		break;
4157 	default:
4158 		break;
4159 	}
4160 
4161 	return rc;
4162 }
4163 
4164 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4165 {
4166 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4167 			    PROCESS__SETPGID, NULL);
4168 }
4169 
4170 static int selinux_task_getpgid(struct task_struct *p)
4171 {
4172 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4173 			    PROCESS__GETPGID, NULL);
4174 }
4175 
4176 static int selinux_task_getsid(struct task_struct *p)
4177 {
4178 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4179 			    PROCESS__GETSESSION, NULL);
4180 }
4181 
4182 static void selinux_current_getlsmprop_subj(struct lsm_prop *prop)
4183 {
4184 	prop->selinux.secid = current_sid();
4185 }
4186 
4187 static void selinux_task_getlsmprop_obj(struct task_struct *p,
4188 					struct lsm_prop *prop)
4189 {
4190 	prop->selinux.secid = task_sid_obj(p);
4191 }
4192 
4193 static int selinux_task_setnice(struct task_struct *p, int nice)
4194 {
4195 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4196 			    PROCESS__SETSCHED, NULL);
4197 }
4198 
4199 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4200 {
4201 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4202 			    PROCESS__SETSCHED, NULL);
4203 }
4204 
4205 static int selinux_task_getioprio(struct task_struct *p)
4206 {
4207 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4208 			    PROCESS__GETSCHED, NULL);
4209 }
4210 
4211 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4212 				unsigned int flags)
4213 {
4214 	u32 av = 0;
4215 
4216 	if (!flags)
4217 		return 0;
4218 	if (flags & LSM_PRLIMIT_WRITE)
4219 		av |= PROCESS__SETRLIMIT;
4220 	if (flags & LSM_PRLIMIT_READ)
4221 		av |= PROCESS__GETRLIMIT;
4222 	return avc_has_perm(cred_sid(cred), cred_sid(tcred),
4223 			    SECCLASS_PROCESS, av, NULL);
4224 }
4225 
4226 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4227 		struct rlimit *new_rlim)
4228 {
4229 	struct rlimit *old_rlim = p->signal->rlim + resource;
4230 
4231 	/* Control the ability to change the hard limit (whether
4232 	   lowering or raising it), so that the hard limit can
4233 	   later be used as a safe reset point for the soft limit
4234 	   upon context transitions.  See selinux_bprm_committing_creds. */
4235 	if (old_rlim->rlim_max != new_rlim->rlim_max)
4236 		return avc_has_perm(current_sid(), task_sid_obj(p),
4237 				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4238 
4239 	return 0;
4240 }
4241 
4242 static int selinux_task_setscheduler(struct task_struct *p)
4243 {
4244 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4245 			    PROCESS__SETSCHED, NULL);
4246 }
4247 
4248 static int selinux_task_getscheduler(struct task_struct *p)
4249 {
4250 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4251 			    PROCESS__GETSCHED, NULL);
4252 }
4253 
4254 static int selinux_task_movememory(struct task_struct *p)
4255 {
4256 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4257 			    PROCESS__SETSCHED, NULL);
4258 }
4259 
4260 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4261 				int sig, const struct cred *cred)
4262 {
4263 	u32 secid;
4264 	u32 perm;
4265 
4266 	if (!sig)
4267 		perm = PROCESS__SIGNULL; /* null signal; existence test */
4268 	else
4269 		perm = signal_to_av(sig);
4270 	if (!cred)
4271 		secid = current_sid();
4272 	else
4273 		secid = cred_sid(cred);
4274 	return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4275 }
4276 
4277 static void selinux_task_to_inode(struct task_struct *p,
4278 				  struct inode *inode)
4279 {
4280 	struct inode_security_struct *isec = selinux_inode(inode);
4281 	u32 sid = task_sid_obj(p);
4282 
4283 	spin_lock(&isec->lock);
4284 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4285 	isec->sid = sid;
4286 	isec->initialized = LABEL_INITIALIZED;
4287 	spin_unlock(&isec->lock);
4288 }
4289 
4290 static int selinux_userns_create(const struct cred *cred)
4291 {
4292 	u32 sid = current_sid();
4293 
4294 	return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE,
4295 			USER_NAMESPACE__CREATE, NULL);
4296 }
4297 
4298 /* Returns error only if unable to parse addresses */
4299 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4300 			struct common_audit_data *ad, u8 *proto)
4301 {
4302 	int offset, ihlen, ret = -EINVAL;
4303 	struct iphdr _iph, *ih;
4304 
4305 	offset = skb_network_offset(skb);
4306 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4307 	if (ih == NULL)
4308 		goto out;
4309 
4310 	ihlen = ih->ihl * 4;
4311 	if (ihlen < sizeof(_iph))
4312 		goto out;
4313 
4314 	ad->u.net->v4info.saddr = ih->saddr;
4315 	ad->u.net->v4info.daddr = ih->daddr;
4316 	ret = 0;
4317 
4318 	if (proto)
4319 		*proto = ih->protocol;
4320 
4321 	switch (ih->protocol) {
4322 	case IPPROTO_TCP: {
4323 		struct tcphdr _tcph, *th;
4324 
4325 		if (ntohs(ih->frag_off) & IP_OFFSET)
4326 			break;
4327 
4328 		offset += ihlen;
4329 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4330 		if (th == NULL)
4331 			break;
4332 
4333 		ad->u.net->sport = th->source;
4334 		ad->u.net->dport = th->dest;
4335 		break;
4336 	}
4337 
4338 	case IPPROTO_UDP: {
4339 		struct udphdr _udph, *uh;
4340 
4341 		if (ntohs(ih->frag_off) & IP_OFFSET)
4342 			break;
4343 
4344 		offset += ihlen;
4345 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4346 		if (uh == NULL)
4347 			break;
4348 
4349 		ad->u.net->sport = uh->source;
4350 		ad->u.net->dport = uh->dest;
4351 		break;
4352 	}
4353 
4354 	case IPPROTO_DCCP: {
4355 		struct dccp_hdr _dccph, *dh;
4356 
4357 		if (ntohs(ih->frag_off) & IP_OFFSET)
4358 			break;
4359 
4360 		offset += ihlen;
4361 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4362 		if (dh == NULL)
4363 			break;
4364 
4365 		ad->u.net->sport = dh->dccph_sport;
4366 		ad->u.net->dport = dh->dccph_dport;
4367 		break;
4368 	}
4369 
4370 #if IS_ENABLED(CONFIG_IP_SCTP)
4371 	case IPPROTO_SCTP: {
4372 		struct sctphdr _sctph, *sh;
4373 
4374 		if (ntohs(ih->frag_off) & IP_OFFSET)
4375 			break;
4376 
4377 		offset += ihlen;
4378 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4379 		if (sh == NULL)
4380 			break;
4381 
4382 		ad->u.net->sport = sh->source;
4383 		ad->u.net->dport = sh->dest;
4384 		break;
4385 	}
4386 #endif
4387 	default:
4388 		break;
4389 	}
4390 out:
4391 	return ret;
4392 }
4393 
4394 #if IS_ENABLED(CONFIG_IPV6)
4395 
4396 /* Returns error only if unable to parse addresses */
4397 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4398 			struct common_audit_data *ad, u8 *proto)
4399 {
4400 	u8 nexthdr;
4401 	int ret = -EINVAL, offset;
4402 	struct ipv6hdr _ipv6h, *ip6;
4403 	__be16 frag_off;
4404 
4405 	offset = skb_network_offset(skb);
4406 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4407 	if (ip6 == NULL)
4408 		goto out;
4409 
4410 	ad->u.net->v6info.saddr = ip6->saddr;
4411 	ad->u.net->v6info.daddr = ip6->daddr;
4412 	ret = 0;
4413 
4414 	nexthdr = ip6->nexthdr;
4415 	offset += sizeof(_ipv6h);
4416 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4417 	if (offset < 0)
4418 		goto out;
4419 
4420 	if (proto)
4421 		*proto = nexthdr;
4422 
4423 	switch (nexthdr) {
4424 	case IPPROTO_TCP: {
4425 		struct tcphdr _tcph, *th;
4426 
4427 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4428 		if (th == NULL)
4429 			break;
4430 
4431 		ad->u.net->sport = th->source;
4432 		ad->u.net->dport = th->dest;
4433 		break;
4434 	}
4435 
4436 	case IPPROTO_UDP: {
4437 		struct udphdr _udph, *uh;
4438 
4439 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4440 		if (uh == NULL)
4441 			break;
4442 
4443 		ad->u.net->sport = uh->source;
4444 		ad->u.net->dport = uh->dest;
4445 		break;
4446 	}
4447 
4448 	case IPPROTO_DCCP: {
4449 		struct dccp_hdr _dccph, *dh;
4450 
4451 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4452 		if (dh == NULL)
4453 			break;
4454 
4455 		ad->u.net->sport = dh->dccph_sport;
4456 		ad->u.net->dport = dh->dccph_dport;
4457 		break;
4458 	}
4459 
4460 #if IS_ENABLED(CONFIG_IP_SCTP)
4461 	case IPPROTO_SCTP: {
4462 		struct sctphdr _sctph, *sh;
4463 
4464 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4465 		if (sh == NULL)
4466 			break;
4467 
4468 		ad->u.net->sport = sh->source;
4469 		ad->u.net->dport = sh->dest;
4470 		break;
4471 	}
4472 #endif
4473 	/* includes fragments */
4474 	default:
4475 		break;
4476 	}
4477 out:
4478 	return ret;
4479 }
4480 
4481 #endif /* IPV6 */
4482 
4483 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4484 			     char **_addrp, int src, u8 *proto)
4485 {
4486 	char *addrp;
4487 	int ret;
4488 
4489 	switch (ad->u.net->family) {
4490 	case PF_INET:
4491 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4492 		if (ret)
4493 			goto parse_error;
4494 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4495 				       &ad->u.net->v4info.daddr);
4496 		goto okay;
4497 
4498 #if IS_ENABLED(CONFIG_IPV6)
4499 	case PF_INET6:
4500 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4501 		if (ret)
4502 			goto parse_error;
4503 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4504 				       &ad->u.net->v6info.daddr);
4505 		goto okay;
4506 #endif	/* IPV6 */
4507 	default:
4508 		addrp = NULL;
4509 		goto okay;
4510 	}
4511 
4512 parse_error:
4513 	pr_warn(
4514 	       "SELinux: failure in selinux_parse_skb(),"
4515 	       " unable to parse packet\n");
4516 	return ret;
4517 
4518 okay:
4519 	if (_addrp)
4520 		*_addrp = addrp;
4521 	return 0;
4522 }
4523 
4524 /**
4525  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4526  * @skb: the packet
4527  * @family: protocol family
4528  * @sid: the packet's peer label SID
4529  *
4530  * Description:
4531  * Check the various different forms of network peer labeling and determine
4532  * the peer label/SID for the packet; most of the magic actually occurs in
4533  * the security server function security_net_peersid_cmp().  The function
4534  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4535  * or -EACCES if @sid is invalid due to inconsistencies with the different
4536  * peer labels.
4537  *
4538  */
4539 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4540 {
4541 	int err;
4542 	u32 xfrm_sid;
4543 	u32 nlbl_sid;
4544 	u32 nlbl_type;
4545 
4546 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4547 	if (unlikely(err))
4548 		return -EACCES;
4549 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4550 	if (unlikely(err))
4551 		return -EACCES;
4552 
4553 	err = security_net_peersid_resolve(nlbl_sid,
4554 					   nlbl_type, xfrm_sid, sid);
4555 	if (unlikely(err)) {
4556 		pr_warn(
4557 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4558 		       " unable to determine packet's peer label\n");
4559 		return -EACCES;
4560 	}
4561 
4562 	return 0;
4563 }
4564 
4565 /**
4566  * selinux_conn_sid - Determine the child socket label for a connection
4567  * @sk_sid: the parent socket's SID
4568  * @skb_sid: the packet's SID
4569  * @conn_sid: the resulting connection SID
4570  *
4571  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4572  * combined with the MLS information from @skb_sid in order to create
4573  * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4574  * of @sk_sid.  Returns zero on success, negative values on failure.
4575  *
4576  */
4577 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4578 {
4579 	int err = 0;
4580 
4581 	if (skb_sid != SECSID_NULL)
4582 		err = security_sid_mls_copy(sk_sid, skb_sid,
4583 					    conn_sid);
4584 	else
4585 		*conn_sid = sk_sid;
4586 
4587 	return err;
4588 }
4589 
4590 /* socket security operations */
4591 
4592 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4593 				 u16 secclass, u32 *socksid)
4594 {
4595 	if (tsec->sockcreate_sid > SECSID_NULL) {
4596 		*socksid = tsec->sockcreate_sid;
4597 		return 0;
4598 	}
4599 
4600 	return security_transition_sid(tsec->sid, tsec->sid,
4601 				       secclass, NULL, socksid);
4602 }
4603 
4604 static bool sock_skip_has_perm(u32 sid)
4605 {
4606 	if (sid == SECINITSID_KERNEL)
4607 		return true;
4608 
4609 	/*
4610 	 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that
4611 	 * inherited the kernel context from early boot used to be skipped
4612 	 * here, so preserve that behavior unless the capability is set.
4613 	 *
4614 	 * By setting the capability the policy signals that it is ready
4615 	 * for this quirk to be fixed. Note that sockets created by a kernel
4616 	 * thread or a usermode helper executed without a transition will
4617 	 * still be skipped in this check regardless of the policycap
4618 	 * setting.
4619 	 */
4620 	if (!selinux_policycap_userspace_initial_context() &&
4621 	    sid == SECINITSID_INIT)
4622 		return true;
4623 	return false;
4624 }
4625 
4626 
4627 static int sock_has_perm(struct sock *sk, u32 perms)
4628 {
4629 	struct sk_security_struct *sksec = sk->sk_security;
4630 	struct common_audit_data ad;
4631 	struct lsm_network_audit net;
4632 
4633 	if (sock_skip_has_perm(sksec->sid))
4634 		return 0;
4635 
4636 	ad_net_init_from_sk(&ad, &net, sk);
4637 
4638 	return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
4639 			    &ad);
4640 }
4641 
4642 static int selinux_socket_create(int family, int type,
4643 				 int protocol, int kern)
4644 {
4645 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4646 	u32 newsid;
4647 	u16 secclass;
4648 	int rc;
4649 
4650 	if (kern)
4651 		return 0;
4652 
4653 	secclass = socket_type_to_security_class(family, type, protocol);
4654 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4655 	if (rc)
4656 		return rc;
4657 
4658 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4659 }
4660 
4661 static int selinux_socket_post_create(struct socket *sock, int family,
4662 				      int type, int protocol, int kern)
4663 {
4664 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4665 	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4666 	struct sk_security_struct *sksec;
4667 	u16 sclass = socket_type_to_security_class(family, type, protocol);
4668 	u32 sid = SECINITSID_KERNEL;
4669 	int err = 0;
4670 
4671 	if (!kern) {
4672 		err = socket_sockcreate_sid(tsec, sclass, &sid);
4673 		if (err)
4674 			return err;
4675 	}
4676 
4677 	isec->sclass = sclass;
4678 	isec->sid = sid;
4679 	isec->initialized = LABEL_INITIALIZED;
4680 
4681 	if (sock->sk) {
4682 		sksec = selinux_sock(sock->sk);
4683 		sksec->sclass = sclass;
4684 		sksec->sid = sid;
4685 		/* Allows detection of the first association on this socket */
4686 		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4687 			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4688 
4689 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4690 	}
4691 
4692 	return err;
4693 }
4694 
4695 static int selinux_socket_socketpair(struct socket *socka,
4696 				     struct socket *sockb)
4697 {
4698 	struct sk_security_struct *sksec_a = selinux_sock(socka->sk);
4699 	struct sk_security_struct *sksec_b = selinux_sock(sockb->sk);
4700 
4701 	sksec_a->peer_sid = sksec_b->sid;
4702 	sksec_b->peer_sid = sksec_a->sid;
4703 
4704 	return 0;
4705 }
4706 
4707 /* Range of port numbers used to automatically bind.
4708    Need to determine whether we should perform a name_bind
4709    permission check between the socket and the port number. */
4710 
4711 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4712 {
4713 	struct sock *sk = sock->sk;
4714 	struct sk_security_struct *sksec = selinux_sock(sk);
4715 	u16 family;
4716 	int err;
4717 
4718 	err = sock_has_perm(sk, SOCKET__BIND);
4719 	if (err)
4720 		goto out;
4721 
4722 	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4723 	family = sk->sk_family;
4724 	if (family == PF_INET || family == PF_INET6) {
4725 		char *addrp;
4726 		struct common_audit_data ad;
4727 		struct lsm_network_audit net = {0,};
4728 		struct sockaddr_in *addr4 = NULL;
4729 		struct sockaddr_in6 *addr6 = NULL;
4730 		u16 family_sa;
4731 		unsigned short snum;
4732 		u32 sid, node_perm;
4733 
4734 		/*
4735 		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4736 		 * that validates multiple binding addresses. Because of this
4737 		 * need to check address->sa_family as it is possible to have
4738 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4739 		 */
4740 		if (addrlen < offsetofend(struct sockaddr, sa_family))
4741 			return -EINVAL;
4742 		family_sa = address->sa_family;
4743 		switch (family_sa) {
4744 		case AF_UNSPEC:
4745 		case AF_INET:
4746 			if (addrlen < sizeof(struct sockaddr_in))
4747 				return -EINVAL;
4748 			addr4 = (struct sockaddr_in *)address;
4749 			if (family_sa == AF_UNSPEC) {
4750 				if (family == PF_INET6) {
4751 					/* Length check from inet6_bind_sk() */
4752 					if (addrlen < SIN6_LEN_RFC2133)
4753 						return -EINVAL;
4754 					/* Family check from __inet6_bind() */
4755 					goto err_af;
4756 				}
4757 				/* see __inet_bind(), we only want to allow
4758 				 * AF_UNSPEC if the address is INADDR_ANY
4759 				 */
4760 				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4761 					goto err_af;
4762 				family_sa = AF_INET;
4763 			}
4764 			snum = ntohs(addr4->sin_port);
4765 			addrp = (char *)&addr4->sin_addr.s_addr;
4766 			break;
4767 		case AF_INET6:
4768 			if (addrlen < SIN6_LEN_RFC2133)
4769 				return -EINVAL;
4770 			addr6 = (struct sockaddr_in6 *)address;
4771 			snum = ntohs(addr6->sin6_port);
4772 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4773 			break;
4774 		default:
4775 			goto err_af;
4776 		}
4777 
4778 		ad.type = LSM_AUDIT_DATA_NET;
4779 		ad.u.net = &net;
4780 		ad.u.net->sport = htons(snum);
4781 		ad.u.net->family = family_sa;
4782 
4783 		if (snum) {
4784 			int low, high;
4785 
4786 			inet_get_local_port_range(sock_net(sk), &low, &high);
4787 
4788 			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4789 			    snum < low || snum > high) {
4790 				err = sel_netport_sid(sk->sk_protocol,
4791 						      snum, &sid);
4792 				if (err)
4793 					goto out;
4794 				err = avc_has_perm(sksec->sid, sid,
4795 						   sksec->sclass,
4796 						   SOCKET__NAME_BIND, &ad);
4797 				if (err)
4798 					goto out;
4799 			}
4800 		}
4801 
4802 		switch (sksec->sclass) {
4803 		case SECCLASS_TCP_SOCKET:
4804 			node_perm = TCP_SOCKET__NODE_BIND;
4805 			break;
4806 
4807 		case SECCLASS_UDP_SOCKET:
4808 			node_perm = UDP_SOCKET__NODE_BIND;
4809 			break;
4810 
4811 		case SECCLASS_DCCP_SOCKET:
4812 			node_perm = DCCP_SOCKET__NODE_BIND;
4813 			break;
4814 
4815 		case SECCLASS_SCTP_SOCKET:
4816 			node_perm = SCTP_SOCKET__NODE_BIND;
4817 			break;
4818 
4819 		default:
4820 			node_perm = RAWIP_SOCKET__NODE_BIND;
4821 			break;
4822 		}
4823 
4824 		err = sel_netnode_sid(addrp, family_sa, &sid);
4825 		if (err)
4826 			goto out;
4827 
4828 		if (family_sa == AF_INET)
4829 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4830 		else
4831 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4832 
4833 		err = avc_has_perm(sksec->sid, sid,
4834 				   sksec->sclass, node_perm, &ad);
4835 		if (err)
4836 			goto out;
4837 	}
4838 out:
4839 	return err;
4840 err_af:
4841 	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4842 	if (sk->sk_protocol == IPPROTO_SCTP)
4843 		return -EINVAL;
4844 	return -EAFNOSUPPORT;
4845 }
4846 
4847 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4848  * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4849  */
4850 static int selinux_socket_connect_helper(struct socket *sock,
4851 					 struct sockaddr *address, int addrlen)
4852 {
4853 	struct sock *sk = sock->sk;
4854 	struct sk_security_struct *sksec = selinux_sock(sk);
4855 	int err;
4856 
4857 	err = sock_has_perm(sk, SOCKET__CONNECT);
4858 	if (err)
4859 		return err;
4860 	if (addrlen < offsetofend(struct sockaddr, sa_family))
4861 		return -EINVAL;
4862 
4863 	/* connect(AF_UNSPEC) has special handling, as it is a documented
4864 	 * way to disconnect the socket
4865 	 */
4866 	if (address->sa_family == AF_UNSPEC)
4867 		return 0;
4868 
4869 	/*
4870 	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4871 	 * for the port.
4872 	 */
4873 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4874 	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4875 	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4876 		struct common_audit_data ad;
4877 		struct lsm_network_audit net = {0,};
4878 		struct sockaddr_in *addr4 = NULL;
4879 		struct sockaddr_in6 *addr6 = NULL;
4880 		unsigned short snum;
4881 		u32 sid, perm;
4882 
4883 		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4884 		 * that validates multiple connect addresses. Because of this
4885 		 * need to check address->sa_family as it is possible to have
4886 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4887 		 */
4888 		switch (address->sa_family) {
4889 		case AF_INET:
4890 			addr4 = (struct sockaddr_in *)address;
4891 			if (addrlen < sizeof(struct sockaddr_in))
4892 				return -EINVAL;
4893 			snum = ntohs(addr4->sin_port);
4894 			break;
4895 		case AF_INET6:
4896 			addr6 = (struct sockaddr_in6 *)address;
4897 			if (addrlen < SIN6_LEN_RFC2133)
4898 				return -EINVAL;
4899 			snum = ntohs(addr6->sin6_port);
4900 			break;
4901 		default:
4902 			/* Note that SCTP services expect -EINVAL, whereas
4903 			 * others expect -EAFNOSUPPORT.
4904 			 */
4905 			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4906 				return -EINVAL;
4907 			else
4908 				return -EAFNOSUPPORT;
4909 		}
4910 
4911 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4912 		if (err)
4913 			return err;
4914 
4915 		switch (sksec->sclass) {
4916 		case SECCLASS_TCP_SOCKET:
4917 			perm = TCP_SOCKET__NAME_CONNECT;
4918 			break;
4919 		case SECCLASS_DCCP_SOCKET:
4920 			perm = DCCP_SOCKET__NAME_CONNECT;
4921 			break;
4922 		case SECCLASS_SCTP_SOCKET:
4923 			perm = SCTP_SOCKET__NAME_CONNECT;
4924 			break;
4925 		}
4926 
4927 		ad.type = LSM_AUDIT_DATA_NET;
4928 		ad.u.net = &net;
4929 		ad.u.net->dport = htons(snum);
4930 		ad.u.net->family = address->sa_family;
4931 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4932 		if (err)
4933 			return err;
4934 	}
4935 
4936 	return 0;
4937 }
4938 
4939 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4940 static int selinux_socket_connect(struct socket *sock,
4941 				  struct sockaddr *address, int addrlen)
4942 {
4943 	int err;
4944 	struct sock *sk = sock->sk;
4945 
4946 	err = selinux_socket_connect_helper(sock, address, addrlen);
4947 	if (err)
4948 		return err;
4949 
4950 	return selinux_netlbl_socket_connect(sk, address);
4951 }
4952 
4953 static int selinux_socket_listen(struct socket *sock, int backlog)
4954 {
4955 	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4956 }
4957 
4958 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4959 {
4960 	int err;
4961 	struct inode_security_struct *isec;
4962 	struct inode_security_struct *newisec;
4963 	u16 sclass;
4964 	u32 sid;
4965 
4966 	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4967 	if (err)
4968 		return err;
4969 
4970 	isec = inode_security_novalidate(SOCK_INODE(sock));
4971 	spin_lock(&isec->lock);
4972 	sclass = isec->sclass;
4973 	sid = isec->sid;
4974 	spin_unlock(&isec->lock);
4975 
4976 	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4977 	newisec->sclass = sclass;
4978 	newisec->sid = sid;
4979 	newisec->initialized = LABEL_INITIALIZED;
4980 
4981 	return 0;
4982 }
4983 
4984 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4985 				  int size)
4986 {
4987 	return sock_has_perm(sock->sk, SOCKET__WRITE);
4988 }
4989 
4990 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4991 				  int size, int flags)
4992 {
4993 	return sock_has_perm(sock->sk, SOCKET__READ);
4994 }
4995 
4996 static int selinux_socket_getsockname(struct socket *sock)
4997 {
4998 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4999 }
5000 
5001 static int selinux_socket_getpeername(struct socket *sock)
5002 {
5003 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
5004 }
5005 
5006 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
5007 {
5008 	int err;
5009 
5010 	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
5011 	if (err)
5012 		return err;
5013 
5014 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
5015 }
5016 
5017 static int selinux_socket_getsockopt(struct socket *sock, int level,
5018 				     int optname)
5019 {
5020 	return sock_has_perm(sock->sk, SOCKET__GETOPT);
5021 }
5022 
5023 static int selinux_socket_shutdown(struct socket *sock, int how)
5024 {
5025 	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
5026 }
5027 
5028 static int selinux_socket_unix_stream_connect(struct sock *sock,
5029 					      struct sock *other,
5030 					      struct sock *newsk)
5031 {
5032 	struct sk_security_struct *sksec_sock = selinux_sock(sock);
5033 	struct sk_security_struct *sksec_other = selinux_sock(other);
5034 	struct sk_security_struct *sksec_new = selinux_sock(newsk);
5035 	struct common_audit_data ad;
5036 	struct lsm_network_audit net;
5037 	int err;
5038 
5039 	ad_net_init_from_sk(&ad, &net, other);
5040 
5041 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
5042 			   sksec_other->sclass,
5043 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5044 	if (err)
5045 		return err;
5046 
5047 	/* server child socket */
5048 	sksec_new->peer_sid = sksec_sock->sid;
5049 	err = security_sid_mls_copy(sksec_other->sid,
5050 				    sksec_sock->sid, &sksec_new->sid);
5051 	if (err)
5052 		return err;
5053 
5054 	/* connecting socket */
5055 	sksec_sock->peer_sid = sksec_new->sid;
5056 
5057 	return 0;
5058 }
5059 
5060 static int selinux_socket_unix_may_send(struct socket *sock,
5061 					struct socket *other)
5062 {
5063 	struct sk_security_struct *ssec = selinux_sock(sock->sk);
5064 	struct sk_security_struct *osec = selinux_sock(other->sk);
5065 	struct common_audit_data ad;
5066 	struct lsm_network_audit net;
5067 
5068 	ad_net_init_from_sk(&ad, &net, other->sk);
5069 
5070 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5071 			    &ad);
5072 }
5073 
5074 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5075 				    char *addrp, u16 family, u32 peer_sid,
5076 				    struct common_audit_data *ad)
5077 {
5078 	int err;
5079 	u32 if_sid;
5080 	u32 node_sid;
5081 
5082 	err = sel_netif_sid(ns, ifindex, &if_sid);
5083 	if (err)
5084 		return err;
5085 	err = avc_has_perm(peer_sid, if_sid,
5086 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5087 	if (err)
5088 		return err;
5089 
5090 	err = sel_netnode_sid(addrp, family, &node_sid);
5091 	if (err)
5092 		return err;
5093 	return avc_has_perm(peer_sid, node_sid,
5094 			    SECCLASS_NODE, NODE__RECVFROM, ad);
5095 }
5096 
5097 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5098 				       u16 family)
5099 {
5100 	int err = 0;
5101 	struct sk_security_struct *sksec = selinux_sock(sk);
5102 	u32 sk_sid = sksec->sid;
5103 	struct common_audit_data ad;
5104 	struct lsm_network_audit net;
5105 	char *addrp;
5106 
5107 	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5108 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5109 	if (err)
5110 		return err;
5111 
5112 	if (selinux_secmark_enabled()) {
5113 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5114 				   PACKET__RECV, &ad);
5115 		if (err)
5116 			return err;
5117 	}
5118 
5119 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5120 	if (err)
5121 		return err;
5122 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5123 
5124 	return err;
5125 }
5126 
5127 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5128 {
5129 	int err, peerlbl_active, secmark_active;
5130 	struct sk_security_struct *sksec = selinux_sock(sk);
5131 	u16 family = sk->sk_family;
5132 	u32 sk_sid = sksec->sid;
5133 	struct common_audit_data ad;
5134 	struct lsm_network_audit net;
5135 	char *addrp;
5136 
5137 	if (family != PF_INET && family != PF_INET6)
5138 		return 0;
5139 
5140 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5141 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5142 		family = PF_INET;
5143 
5144 	/* If any sort of compatibility mode is enabled then handoff processing
5145 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5146 	 * special handling.  We do this in an attempt to keep this function
5147 	 * as fast and as clean as possible. */
5148 	if (!selinux_policycap_netpeer())
5149 		return selinux_sock_rcv_skb_compat(sk, skb, family);
5150 
5151 	secmark_active = selinux_secmark_enabled();
5152 	peerlbl_active = selinux_peerlbl_enabled();
5153 	if (!secmark_active && !peerlbl_active)
5154 		return 0;
5155 
5156 	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5157 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5158 	if (err)
5159 		return err;
5160 
5161 	if (peerlbl_active) {
5162 		u32 peer_sid;
5163 
5164 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5165 		if (err)
5166 			return err;
5167 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5168 					       addrp, family, peer_sid, &ad);
5169 		if (err) {
5170 			selinux_netlbl_err(skb, family, err, 0);
5171 			return err;
5172 		}
5173 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
5174 				   PEER__RECV, &ad);
5175 		if (err) {
5176 			selinux_netlbl_err(skb, family, err, 0);
5177 			return err;
5178 		}
5179 	}
5180 
5181 	if (secmark_active) {
5182 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5183 				   PACKET__RECV, &ad);
5184 		if (err)
5185 			return err;
5186 	}
5187 
5188 	return err;
5189 }
5190 
5191 static int selinux_socket_getpeersec_stream(struct socket *sock,
5192 					    sockptr_t optval, sockptr_t optlen,
5193 					    unsigned int len)
5194 {
5195 	int err = 0;
5196 	char *scontext = NULL;
5197 	u32 scontext_len;
5198 	struct sk_security_struct *sksec = selinux_sock(sock->sk);
5199 	u32 peer_sid = SECSID_NULL;
5200 
5201 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5202 	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5203 	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5204 		peer_sid = sksec->peer_sid;
5205 	if (peer_sid == SECSID_NULL)
5206 		return -ENOPROTOOPT;
5207 
5208 	err = security_sid_to_context(peer_sid, &scontext,
5209 				      &scontext_len);
5210 	if (err)
5211 		return err;
5212 	if (scontext_len > len) {
5213 		err = -ERANGE;
5214 		goto out_len;
5215 	}
5216 
5217 	if (copy_to_sockptr(optval, scontext, scontext_len))
5218 		err = -EFAULT;
5219 out_len:
5220 	if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5221 		err = -EFAULT;
5222 	kfree(scontext);
5223 	return err;
5224 }
5225 
5226 static int selinux_socket_getpeersec_dgram(struct socket *sock,
5227 					   struct sk_buff *skb, u32 *secid)
5228 {
5229 	u32 peer_secid = SECSID_NULL;
5230 	u16 family;
5231 
5232 	if (skb && skb->protocol == htons(ETH_P_IP))
5233 		family = PF_INET;
5234 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5235 		family = PF_INET6;
5236 	else if (sock)
5237 		family = sock->sk->sk_family;
5238 	else {
5239 		*secid = SECSID_NULL;
5240 		return -EINVAL;
5241 	}
5242 
5243 	if (sock && family == PF_UNIX) {
5244 		struct inode_security_struct *isec;
5245 		isec = inode_security_novalidate(SOCK_INODE(sock));
5246 		peer_secid = isec->sid;
5247 	} else if (skb)
5248 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5249 
5250 	*secid = peer_secid;
5251 	if (peer_secid == SECSID_NULL)
5252 		return -ENOPROTOOPT;
5253 	return 0;
5254 }
5255 
5256 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5257 {
5258 	struct sk_security_struct *sksec = selinux_sock(sk);
5259 
5260 	sksec->peer_sid = SECINITSID_UNLABELED;
5261 	sksec->sid = SECINITSID_UNLABELED;
5262 	sksec->sclass = SECCLASS_SOCKET;
5263 	selinux_netlbl_sk_security_reset(sksec);
5264 
5265 	return 0;
5266 }
5267 
5268 static void selinux_sk_free_security(struct sock *sk)
5269 {
5270 	struct sk_security_struct *sksec = selinux_sock(sk);
5271 
5272 	selinux_netlbl_sk_security_free(sksec);
5273 }
5274 
5275 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5276 {
5277 	struct sk_security_struct *sksec = selinux_sock(sk);
5278 	struct sk_security_struct *newsksec = selinux_sock(newsk);
5279 
5280 	newsksec->sid = sksec->sid;
5281 	newsksec->peer_sid = sksec->peer_sid;
5282 	newsksec->sclass = sksec->sclass;
5283 
5284 	selinux_netlbl_sk_security_reset(newsksec);
5285 }
5286 
5287 static void selinux_sk_getsecid(const struct sock *sk, u32 *secid)
5288 {
5289 	if (!sk)
5290 		*secid = SECINITSID_ANY_SOCKET;
5291 	else {
5292 		const struct sk_security_struct *sksec = selinux_sock(sk);
5293 
5294 		*secid = sksec->sid;
5295 	}
5296 }
5297 
5298 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5299 {
5300 	struct inode_security_struct *isec =
5301 		inode_security_novalidate(SOCK_INODE(parent));
5302 	struct sk_security_struct *sksec = selinux_sock(sk);
5303 
5304 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5305 	    sk->sk_family == PF_UNIX)
5306 		isec->sid = sksec->sid;
5307 	sksec->sclass = isec->sclass;
5308 }
5309 
5310 /*
5311  * Determines peer_secid for the asoc and updates socket's peer label
5312  * if it's the first association on the socket.
5313  */
5314 static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5315 					  struct sk_buff *skb)
5316 {
5317 	struct sock *sk = asoc->base.sk;
5318 	u16 family = sk->sk_family;
5319 	struct sk_security_struct *sksec = selinux_sock(sk);
5320 	struct common_audit_data ad;
5321 	struct lsm_network_audit net;
5322 	int err;
5323 
5324 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5325 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5326 		family = PF_INET;
5327 
5328 	if (selinux_peerlbl_enabled()) {
5329 		asoc->peer_secid = SECSID_NULL;
5330 
5331 		/* This will return peer_sid = SECSID_NULL if there are
5332 		 * no peer labels, see security_net_peersid_resolve().
5333 		 */
5334 		err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5335 		if (err)
5336 			return err;
5337 
5338 		if (asoc->peer_secid == SECSID_NULL)
5339 			asoc->peer_secid = SECINITSID_UNLABELED;
5340 	} else {
5341 		asoc->peer_secid = SECINITSID_UNLABELED;
5342 	}
5343 
5344 	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5345 		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5346 
5347 		/* Here as first association on socket. As the peer SID
5348 		 * was allowed by peer recv (and the netif/node checks),
5349 		 * then it is approved by policy and used as the primary
5350 		 * peer SID for getpeercon(3).
5351 		 */
5352 		sksec->peer_sid = asoc->peer_secid;
5353 	} else if (sksec->peer_sid != asoc->peer_secid) {
5354 		/* Other association peer SIDs are checked to enforce
5355 		 * consistency among the peer SIDs.
5356 		 */
5357 		ad_net_init_from_sk(&ad, &net, asoc->base.sk);
5358 		err = avc_has_perm(sksec->peer_sid, asoc->peer_secid,
5359 				   sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5360 				   &ad);
5361 		if (err)
5362 			return err;
5363 	}
5364 	return 0;
5365 }
5366 
5367 /* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5368  * happens on an incoming connect(2), sctp_connectx(3) or
5369  * sctp_sendmsg(3) (with no association already present).
5370  */
5371 static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5372 				      struct sk_buff *skb)
5373 {
5374 	struct sk_security_struct *sksec = selinux_sock(asoc->base.sk);
5375 	u32 conn_sid;
5376 	int err;
5377 
5378 	if (!selinux_policycap_extsockclass())
5379 		return 0;
5380 
5381 	err = selinux_sctp_process_new_assoc(asoc, skb);
5382 	if (err)
5383 		return err;
5384 
5385 	/* Compute the MLS component for the connection and store
5386 	 * the information in asoc. This will be used by SCTP TCP type
5387 	 * sockets and peeled off connections as they cause a new
5388 	 * socket to be generated. selinux_sctp_sk_clone() will then
5389 	 * plug this into the new socket.
5390 	 */
5391 	err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5392 	if (err)
5393 		return err;
5394 
5395 	asoc->secid = conn_sid;
5396 
5397 	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5398 	return selinux_netlbl_sctp_assoc_request(asoc, skb);
5399 }
5400 
5401 /* Called when SCTP receives a COOKIE ACK chunk as the final
5402  * response to an association request (initited by us).
5403  */
5404 static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5405 					  struct sk_buff *skb)
5406 {
5407 	struct sk_security_struct *sksec = selinux_sock(asoc->base.sk);
5408 
5409 	if (!selinux_policycap_extsockclass())
5410 		return 0;
5411 
5412 	/* Inherit secid from the parent socket - this will be picked up
5413 	 * by selinux_sctp_sk_clone() if the association gets peeled off
5414 	 * into a new socket.
5415 	 */
5416 	asoc->secid = sksec->sid;
5417 
5418 	return selinux_sctp_process_new_assoc(asoc, skb);
5419 }
5420 
5421 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5422  * based on their @optname.
5423  */
5424 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5425 				     struct sockaddr *address,
5426 				     int addrlen)
5427 {
5428 	int len, err = 0, walk_size = 0;
5429 	void *addr_buf;
5430 	struct sockaddr *addr;
5431 	struct socket *sock;
5432 
5433 	if (!selinux_policycap_extsockclass())
5434 		return 0;
5435 
5436 	/* Process one or more addresses that may be IPv4 or IPv6 */
5437 	sock = sk->sk_socket;
5438 	addr_buf = address;
5439 
5440 	while (walk_size < addrlen) {
5441 		if (walk_size + sizeof(sa_family_t) > addrlen)
5442 			return -EINVAL;
5443 
5444 		addr = addr_buf;
5445 		switch (addr->sa_family) {
5446 		case AF_UNSPEC:
5447 		case AF_INET:
5448 			len = sizeof(struct sockaddr_in);
5449 			break;
5450 		case AF_INET6:
5451 			len = sizeof(struct sockaddr_in6);
5452 			break;
5453 		default:
5454 			return -EINVAL;
5455 		}
5456 
5457 		if (walk_size + len > addrlen)
5458 			return -EINVAL;
5459 
5460 		err = -EINVAL;
5461 		switch (optname) {
5462 		/* Bind checks */
5463 		case SCTP_PRIMARY_ADDR:
5464 		case SCTP_SET_PEER_PRIMARY_ADDR:
5465 		case SCTP_SOCKOPT_BINDX_ADD:
5466 			err = selinux_socket_bind(sock, addr, len);
5467 			break;
5468 		/* Connect checks */
5469 		case SCTP_SOCKOPT_CONNECTX:
5470 		case SCTP_PARAM_SET_PRIMARY:
5471 		case SCTP_PARAM_ADD_IP:
5472 		case SCTP_SENDMSG_CONNECT:
5473 			err = selinux_socket_connect_helper(sock, addr, len);
5474 			if (err)
5475 				return err;
5476 
5477 			/* As selinux_sctp_bind_connect() is called by the
5478 			 * SCTP protocol layer, the socket is already locked,
5479 			 * therefore selinux_netlbl_socket_connect_locked()
5480 			 * is called here. The situations handled are:
5481 			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5482 			 * whenever a new IP address is added or when a new
5483 			 * primary address is selected.
5484 			 * Note that an SCTP connect(2) call happens before
5485 			 * the SCTP protocol layer and is handled via
5486 			 * selinux_socket_connect().
5487 			 */
5488 			err = selinux_netlbl_socket_connect_locked(sk, addr);
5489 			break;
5490 		}
5491 
5492 		if (err)
5493 			return err;
5494 
5495 		addr_buf += len;
5496 		walk_size += len;
5497 	}
5498 
5499 	return 0;
5500 }
5501 
5502 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5503 static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5504 				  struct sock *newsk)
5505 {
5506 	struct sk_security_struct *sksec = selinux_sock(sk);
5507 	struct sk_security_struct *newsksec = selinux_sock(newsk);
5508 
5509 	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5510 	 * the non-sctp clone version.
5511 	 */
5512 	if (!selinux_policycap_extsockclass())
5513 		return selinux_sk_clone_security(sk, newsk);
5514 
5515 	newsksec->sid = asoc->secid;
5516 	newsksec->peer_sid = asoc->peer_secid;
5517 	newsksec->sclass = sksec->sclass;
5518 	selinux_netlbl_sctp_sk_clone(sk, newsk);
5519 }
5520 
5521 static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5522 {
5523 	struct sk_security_struct *ssksec = selinux_sock(ssk);
5524 	struct sk_security_struct *sksec = selinux_sock(sk);
5525 
5526 	ssksec->sclass = sksec->sclass;
5527 	ssksec->sid = sksec->sid;
5528 
5529 	/* replace the existing subflow label deleting the existing one
5530 	 * and re-recreating a new label using the updated context
5531 	 */
5532 	selinux_netlbl_sk_security_free(ssksec);
5533 	return selinux_netlbl_socket_post_create(ssk, ssk->sk_family);
5534 }
5535 
5536 static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5537 				     struct request_sock *req)
5538 {
5539 	struct sk_security_struct *sksec = selinux_sock(sk);
5540 	int err;
5541 	u16 family = req->rsk_ops->family;
5542 	u32 connsid;
5543 	u32 peersid;
5544 
5545 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5546 	if (err)
5547 		return err;
5548 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5549 	if (err)
5550 		return err;
5551 	req->secid = connsid;
5552 	req->peer_secid = peersid;
5553 
5554 	return selinux_netlbl_inet_conn_request(req, family);
5555 }
5556 
5557 static void selinux_inet_csk_clone(struct sock *newsk,
5558 				   const struct request_sock *req)
5559 {
5560 	struct sk_security_struct *newsksec = selinux_sock(newsk);
5561 
5562 	newsksec->sid = req->secid;
5563 	newsksec->peer_sid = req->peer_secid;
5564 	/* NOTE: Ideally, we should also get the isec->sid for the
5565 	   new socket in sync, but we don't have the isec available yet.
5566 	   So we will wait until sock_graft to do it, by which
5567 	   time it will have been created and available. */
5568 
5569 	/* We don't need to take any sort of lock here as we are the only
5570 	 * thread with access to newsksec */
5571 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5572 }
5573 
5574 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5575 {
5576 	u16 family = sk->sk_family;
5577 	struct sk_security_struct *sksec = selinux_sock(sk);
5578 
5579 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5580 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5581 		family = PF_INET;
5582 
5583 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5584 }
5585 
5586 static int selinux_secmark_relabel_packet(u32 sid)
5587 {
5588 	return avc_has_perm(current_sid(), sid, SECCLASS_PACKET, PACKET__RELABELTO,
5589 			    NULL);
5590 }
5591 
5592 static void selinux_secmark_refcount_inc(void)
5593 {
5594 	atomic_inc(&selinux_secmark_refcount);
5595 }
5596 
5597 static void selinux_secmark_refcount_dec(void)
5598 {
5599 	atomic_dec(&selinux_secmark_refcount);
5600 }
5601 
5602 static void selinux_req_classify_flow(const struct request_sock *req,
5603 				      struct flowi_common *flic)
5604 {
5605 	flic->flowic_secid = req->secid;
5606 }
5607 
5608 static int selinux_tun_dev_alloc_security(void *security)
5609 {
5610 	struct tun_security_struct *tunsec = selinux_tun_dev(security);
5611 
5612 	tunsec->sid = current_sid();
5613 	return 0;
5614 }
5615 
5616 static int selinux_tun_dev_create(void)
5617 {
5618 	u32 sid = current_sid();
5619 
5620 	/* we aren't taking into account the "sockcreate" SID since the socket
5621 	 * that is being created here is not a socket in the traditional sense,
5622 	 * instead it is a private sock, accessible only to the kernel, and
5623 	 * representing a wide range of network traffic spanning multiple
5624 	 * connections unlike traditional sockets - check the TUN driver to
5625 	 * get a better understanding of why this socket is special */
5626 
5627 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5628 			    NULL);
5629 }
5630 
5631 static int selinux_tun_dev_attach_queue(void *security)
5632 {
5633 	struct tun_security_struct *tunsec = selinux_tun_dev(security);
5634 
5635 	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5636 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5637 }
5638 
5639 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5640 {
5641 	struct tun_security_struct *tunsec = selinux_tun_dev(security);
5642 	struct sk_security_struct *sksec = selinux_sock(sk);
5643 
5644 	/* we don't currently perform any NetLabel based labeling here and it
5645 	 * isn't clear that we would want to do so anyway; while we could apply
5646 	 * labeling without the support of the TUN user the resulting labeled
5647 	 * traffic from the other end of the connection would almost certainly
5648 	 * cause confusion to the TUN user that had no idea network labeling
5649 	 * protocols were being used */
5650 
5651 	sksec->sid = tunsec->sid;
5652 	sksec->sclass = SECCLASS_TUN_SOCKET;
5653 
5654 	return 0;
5655 }
5656 
5657 static int selinux_tun_dev_open(void *security)
5658 {
5659 	struct tun_security_struct *tunsec = selinux_tun_dev(security);
5660 	u32 sid = current_sid();
5661 	int err;
5662 
5663 	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5664 			   TUN_SOCKET__RELABELFROM, NULL);
5665 	if (err)
5666 		return err;
5667 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5668 			   TUN_SOCKET__RELABELTO, NULL);
5669 	if (err)
5670 		return err;
5671 	tunsec->sid = sid;
5672 
5673 	return 0;
5674 }
5675 
5676 #ifdef CONFIG_NETFILTER
5677 
5678 static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5679 				       const struct nf_hook_state *state)
5680 {
5681 	int ifindex;
5682 	u16 family;
5683 	char *addrp;
5684 	u32 peer_sid;
5685 	struct common_audit_data ad;
5686 	struct lsm_network_audit net;
5687 	int secmark_active, peerlbl_active;
5688 
5689 	if (!selinux_policycap_netpeer())
5690 		return NF_ACCEPT;
5691 
5692 	secmark_active = selinux_secmark_enabled();
5693 	peerlbl_active = selinux_peerlbl_enabled();
5694 	if (!secmark_active && !peerlbl_active)
5695 		return NF_ACCEPT;
5696 
5697 	family = state->pf;
5698 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5699 		return NF_DROP;
5700 
5701 	ifindex = state->in->ifindex;
5702 	ad_net_init_from_iif(&ad, &net, ifindex, family);
5703 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5704 		return NF_DROP;
5705 
5706 	if (peerlbl_active) {
5707 		int err;
5708 
5709 		err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5710 					       addrp, family, peer_sid, &ad);
5711 		if (err) {
5712 			selinux_netlbl_err(skb, family, err, 1);
5713 			return NF_DROP;
5714 		}
5715 	}
5716 
5717 	if (secmark_active)
5718 		if (avc_has_perm(peer_sid, skb->secmark,
5719 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5720 			return NF_DROP;
5721 
5722 	if (netlbl_enabled())
5723 		/* we do this in the FORWARD path and not the POST_ROUTING
5724 		 * path because we want to make sure we apply the necessary
5725 		 * labeling before IPsec is applied so we can leverage AH
5726 		 * protection */
5727 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5728 			return NF_DROP;
5729 
5730 	return NF_ACCEPT;
5731 }
5732 
5733 static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5734 				      const struct nf_hook_state *state)
5735 {
5736 	struct sock *sk;
5737 	u32 sid;
5738 
5739 	if (!netlbl_enabled())
5740 		return NF_ACCEPT;
5741 
5742 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5743 	 * because we want to make sure we apply the necessary labeling
5744 	 * before IPsec is applied so we can leverage AH protection */
5745 	sk = sk_to_full_sk(skb->sk);
5746 	if (sk) {
5747 		struct sk_security_struct *sksec;
5748 
5749 		if (sk_listener(sk))
5750 			/* if the socket is the listening state then this
5751 			 * packet is a SYN-ACK packet which means it needs to
5752 			 * be labeled based on the connection/request_sock and
5753 			 * not the parent socket.  unfortunately, we can't
5754 			 * lookup the request_sock yet as it isn't queued on
5755 			 * the parent socket until after the SYN-ACK is sent.
5756 			 * the "solution" is to simply pass the packet as-is
5757 			 * as any IP option based labeling should be copied
5758 			 * from the initial connection request (in the IP
5759 			 * layer).  it is far from ideal, but until we get a
5760 			 * security label in the packet itself this is the
5761 			 * best we can do. */
5762 			return NF_ACCEPT;
5763 
5764 		/* standard practice, label using the parent socket */
5765 		sksec = selinux_sock(sk);
5766 		sid = sksec->sid;
5767 	} else
5768 		sid = SECINITSID_KERNEL;
5769 	if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5770 		return NF_DROP;
5771 
5772 	return NF_ACCEPT;
5773 }
5774 
5775 
5776 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5777 					const struct nf_hook_state *state)
5778 {
5779 	struct sock *sk;
5780 	struct sk_security_struct *sksec;
5781 	struct common_audit_data ad;
5782 	struct lsm_network_audit net;
5783 	u8 proto = 0;
5784 
5785 	sk = skb_to_full_sk(skb);
5786 	if (sk == NULL)
5787 		return NF_ACCEPT;
5788 	sksec = selinux_sock(sk);
5789 
5790 	ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf);
5791 	if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5792 		return NF_DROP;
5793 
5794 	if (selinux_secmark_enabled())
5795 		if (avc_has_perm(sksec->sid, skb->secmark,
5796 				 SECCLASS_PACKET, PACKET__SEND, &ad))
5797 			return NF_DROP_ERR(-ECONNREFUSED);
5798 
5799 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5800 		return NF_DROP_ERR(-ECONNREFUSED);
5801 
5802 	return NF_ACCEPT;
5803 }
5804 
5805 static unsigned int selinux_ip_postroute(void *priv,
5806 					 struct sk_buff *skb,
5807 					 const struct nf_hook_state *state)
5808 {
5809 	u16 family;
5810 	u32 secmark_perm;
5811 	u32 peer_sid;
5812 	int ifindex;
5813 	struct sock *sk;
5814 	struct common_audit_data ad;
5815 	struct lsm_network_audit net;
5816 	char *addrp;
5817 	int secmark_active, peerlbl_active;
5818 
5819 	/* If any sort of compatibility mode is enabled then handoff processing
5820 	 * to the selinux_ip_postroute_compat() function to deal with the
5821 	 * special handling.  We do this in an attempt to keep this function
5822 	 * as fast and as clean as possible. */
5823 	if (!selinux_policycap_netpeer())
5824 		return selinux_ip_postroute_compat(skb, state);
5825 
5826 	secmark_active = selinux_secmark_enabled();
5827 	peerlbl_active = selinux_peerlbl_enabled();
5828 	if (!secmark_active && !peerlbl_active)
5829 		return NF_ACCEPT;
5830 
5831 	sk = skb_to_full_sk(skb);
5832 
5833 #ifdef CONFIG_XFRM
5834 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5835 	 * packet transformation so allow the packet to pass without any checks
5836 	 * since we'll have another chance to perform access control checks
5837 	 * when the packet is on it's final way out.
5838 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5839 	 *       is NULL, in this case go ahead and apply access control.
5840 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5841 	 *       TCP listening state we cannot wait until the XFRM processing
5842 	 *       is done as we will miss out on the SA label if we do;
5843 	 *       unfortunately, this means more work, but it is only once per
5844 	 *       connection. */
5845 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5846 	    !(sk && sk_listener(sk)))
5847 		return NF_ACCEPT;
5848 #endif
5849 
5850 	family = state->pf;
5851 	if (sk == NULL) {
5852 		/* Without an associated socket the packet is either coming
5853 		 * from the kernel or it is being forwarded; check the packet
5854 		 * to determine which and if the packet is being forwarded
5855 		 * query the packet directly to determine the security label. */
5856 		if (skb->skb_iif) {
5857 			secmark_perm = PACKET__FORWARD_OUT;
5858 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5859 				return NF_DROP;
5860 		} else {
5861 			secmark_perm = PACKET__SEND;
5862 			peer_sid = SECINITSID_KERNEL;
5863 		}
5864 	} else if (sk_listener(sk)) {
5865 		/* Locally generated packet but the associated socket is in the
5866 		 * listening state which means this is a SYN-ACK packet.  In
5867 		 * this particular case the correct security label is assigned
5868 		 * to the connection/request_sock but unfortunately we can't
5869 		 * query the request_sock as it isn't queued on the parent
5870 		 * socket until after the SYN-ACK packet is sent; the only
5871 		 * viable choice is to regenerate the label like we do in
5872 		 * selinux_inet_conn_request().  See also selinux_ip_output()
5873 		 * for similar problems. */
5874 		u32 skb_sid;
5875 		struct sk_security_struct *sksec;
5876 
5877 		sksec = selinux_sock(sk);
5878 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5879 			return NF_DROP;
5880 		/* At this point, if the returned skb peerlbl is SECSID_NULL
5881 		 * and the packet has been through at least one XFRM
5882 		 * transformation then we must be dealing with the "final"
5883 		 * form of labeled IPsec packet; since we've already applied
5884 		 * all of our access controls on this packet we can safely
5885 		 * pass the packet. */
5886 		if (skb_sid == SECSID_NULL) {
5887 			switch (family) {
5888 			case PF_INET:
5889 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5890 					return NF_ACCEPT;
5891 				break;
5892 			case PF_INET6:
5893 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5894 					return NF_ACCEPT;
5895 				break;
5896 			default:
5897 				return NF_DROP_ERR(-ECONNREFUSED);
5898 			}
5899 		}
5900 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5901 			return NF_DROP;
5902 		secmark_perm = PACKET__SEND;
5903 	} else {
5904 		/* Locally generated packet, fetch the security label from the
5905 		 * associated socket. */
5906 		struct sk_security_struct *sksec = selinux_sock(sk);
5907 		peer_sid = sksec->sid;
5908 		secmark_perm = PACKET__SEND;
5909 	}
5910 
5911 	ifindex = state->out->ifindex;
5912 	ad_net_init_from_iif(&ad, &net, ifindex, family);
5913 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5914 		return NF_DROP;
5915 
5916 	if (secmark_active)
5917 		if (avc_has_perm(peer_sid, skb->secmark,
5918 				 SECCLASS_PACKET, secmark_perm, &ad))
5919 			return NF_DROP_ERR(-ECONNREFUSED);
5920 
5921 	if (peerlbl_active) {
5922 		u32 if_sid;
5923 		u32 node_sid;
5924 
5925 		if (sel_netif_sid(state->net, ifindex, &if_sid))
5926 			return NF_DROP;
5927 		if (avc_has_perm(peer_sid, if_sid,
5928 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5929 			return NF_DROP_ERR(-ECONNREFUSED);
5930 
5931 		if (sel_netnode_sid(addrp, family, &node_sid))
5932 			return NF_DROP;
5933 		if (avc_has_perm(peer_sid, node_sid,
5934 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5935 			return NF_DROP_ERR(-ECONNREFUSED);
5936 	}
5937 
5938 	return NF_ACCEPT;
5939 }
5940 #endif	/* CONFIG_NETFILTER */
5941 
5942 static int nlmsg_sock_has_extended_perms(struct sock *sk, u32 perms, u16 nlmsg_type)
5943 {
5944 	struct sk_security_struct *sksec = sk->sk_security;
5945 	struct common_audit_data ad;
5946 	u8 driver;
5947 	u8 xperm;
5948 
5949 	if (sock_skip_has_perm(sksec->sid))
5950 		return 0;
5951 
5952 	ad.type = LSM_AUDIT_DATA_NLMSGTYPE;
5953 	ad.u.nlmsg_type = nlmsg_type;
5954 
5955 	driver = nlmsg_type >> 8;
5956 	xperm = nlmsg_type & 0xff;
5957 
5958 	return avc_has_extended_perms(current_sid(), sksec->sid, sksec->sclass,
5959 				      perms, driver, AVC_EXT_NLMSG, xperm, &ad);
5960 }
5961 
5962 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5963 {
5964 	int rc = 0;
5965 	unsigned int msg_len;
5966 	unsigned int data_len = skb->len;
5967 	unsigned char *data = skb->data;
5968 	struct nlmsghdr *nlh;
5969 	struct sk_security_struct *sksec = selinux_sock(sk);
5970 	u16 sclass = sksec->sclass;
5971 	u32 perm;
5972 
5973 	while (data_len >= nlmsg_total_size(0)) {
5974 		nlh = (struct nlmsghdr *)data;
5975 
5976 		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5977 		 *       users which means we can't reject skb's with bogus
5978 		 *       length fields; our solution is to follow what
5979 		 *       netlink_rcv_skb() does and simply skip processing at
5980 		 *       messages with length fields that are clearly junk
5981 		 */
5982 		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5983 			return 0;
5984 
5985 		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5986 		if (rc == 0) {
5987 			if (selinux_policycap_netlink_xperm()) {
5988 				rc = nlmsg_sock_has_extended_perms(
5989 					sk, perm, nlh->nlmsg_type);
5990 			} else {
5991 				rc = sock_has_perm(sk, perm);
5992 			}
5993 			if (rc)
5994 				return rc;
5995 		} else if (rc == -EINVAL) {
5996 			/* -EINVAL is a missing msg/perm mapping */
5997 			pr_warn_ratelimited("SELinux: unrecognized netlink"
5998 				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5999 				" pid=%d comm=%s\n",
6000 				sk->sk_protocol, nlh->nlmsg_type,
6001 				secclass_map[sclass - 1].name,
6002 				task_pid_nr(current), current->comm);
6003 			if (enforcing_enabled() &&
6004 			    !security_get_allow_unknown())
6005 				return rc;
6006 			rc = 0;
6007 		} else if (rc == -ENOENT) {
6008 			/* -ENOENT is a missing socket/class mapping, ignore */
6009 			rc = 0;
6010 		} else {
6011 			return rc;
6012 		}
6013 
6014 		/* move to the next message after applying netlink padding */
6015 		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
6016 		if (msg_len >= data_len)
6017 			return 0;
6018 		data_len -= msg_len;
6019 		data += msg_len;
6020 	}
6021 
6022 	return rc;
6023 }
6024 
6025 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
6026 {
6027 	isec->sclass = sclass;
6028 	isec->sid = current_sid();
6029 }
6030 
6031 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6032 			u32 perms)
6033 {
6034 	struct ipc_security_struct *isec;
6035 	struct common_audit_data ad;
6036 	u32 sid = current_sid();
6037 
6038 	isec = selinux_ipc(ipc_perms);
6039 
6040 	ad.type = LSM_AUDIT_DATA_IPC;
6041 	ad.u.ipc_id = ipc_perms->key;
6042 
6043 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
6044 }
6045 
6046 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6047 {
6048 	struct msg_security_struct *msec;
6049 
6050 	msec = selinux_msg_msg(msg);
6051 	msec->sid = SECINITSID_UNLABELED;
6052 
6053 	return 0;
6054 }
6055 
6056 /* message queue security operations */
6057 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6058 {
6059 	struct ipc_security_struct *isec;
6060 	struct common_audit_data ad;
6061 	u32 sid = current_sid();
6062 
6063 	isec = selinux_ipc(msq);
6064 	ipc_init_security(isec, SECCLASS_MSGQ);
6065 
6066 	ad.type = LSM_AUDIT_DATA_IPC;
6067 	ad.u.ipc_id = msq->key;
6068 
6069 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6070 			    MSGQ__CREATE, &ad);
6071 }
6072 
6073 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6074 {
6075 	struct ipc_security_struct *isec;
6076 	struct common_audit_data ad;
6077 	u32 sid = current_sid();
6078 
6079 	isec = selinux_ipc(msq);
6080 
6081 	ad.type = LSM_AUDIT_DATA_IPC;
6082 	ad.u.ipc_id = msq->key;
6083 
6084 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6085 			    MSGQ__ASSOCIATE, &ad);
6086 }
6087 
6088 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6089 {
6090 	u32 perms;
6091 
6092 	switch (cmd) {
6093 	case IPC_INFO:
6094 	case MSG_INFO:
6095 		/* No specific object, just general system-wide information. */
6096 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6097 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6098 	case IPC_STAT:
6099 	case MSG_STAT:
6100 	case MSG_STAT_ANY:
6101 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6102 		break;
6103 	case IPC_SET:
6104 		perms = MSGQ__SETATTR;
6105 		break;
6106 	case IPC_RMID:
6107 		perms = MSGQ__DESTROY;
6108 		break;
6109 	default:
6110 		return 0;
6111 	}
6112 
6113 	return ipc_has_perm(msq, perms);
6114 }
6115 
6116 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6117 {
6118 	struct ipc_security_struct *isec;
6119 	struct msg_security_struct *msec;
6120 	struct common_audit_data ad;
6121 	u32 sid = current_sid();
6122 	int rc;
6123 
6124 	isec = selinux_ipc(msq);
6125 	msec = selinux_msg_msg(msg);
6126 
6127 	/*
6128 	 * First time through, need to assign label to the message
6129 	 */
6130 	if (msec->sid == SECINITSID_UNLABELED) {
6131 		/*
6132 		 * Compute new sid based on current process and
6133 		 * message queue this message will be stored in
6134 		 */
6135 		rc = security_transition_sid(sid, isec->sid,
6136 					     SECCLASS_MSG, NULL, &msec->sid);
6137 		if (rc)
6138 			return rc;
6139 	}
6140 
6141 	ad.type = LSM_AUDIT_DATA_IPC;
6142 	ad.u.ipc_id = msq->key;
6143 
6144 	/* Can this process write to the queue? */
6145 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6146 			  MSGQ__WRITE, &ad);
6147 	if (!rc)
6148 		/* Can this process send the message */
6149 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
6150 				  MSG__SEND, &ad);
6151 	if (!rc)
6152 		/* Can the message be put in the queue? */
6153 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
6154 				  MSGQ__ENQUEUE, &ad);
6155 
6156 	return rc;
6157 }
6158 
6159 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6160 				    struct task_struct *target,
6161 				    long type, int mode)
6162 {
6163 	struct ipc_security_struct *isec;
6164 	struct msg_security_struct *msec;
6165 	struct common_audit_data ad;
6166 	u32 sid = task_sid_obj(target);
6167 	int rc;
6168 
6169 	isec = selinux_ipc(msq);
6170 	msec = selinux_msg_msg(msg);
6171 
6172 	ad.type = LSM_AUDIT_DATA_IPC;
6173 	ad.u.ipc_id = msq->key;
6174 
6175 	rc = avc_has_perm(sid, isec->sid,
6176 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6177 	if (!rc)
6178 		rc = avc_has_perm(sid, msec->sid,
6179 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6180 	return rc;
6181 }
6182 
6183 /* Shared Memory security operations */
6184 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6185 {
6186 	struct ipc_security_struct *isec;
6187 	struct common_audit_data ad;
6188 	u32 sid = current_sid();
6189 
6190 	isec = selinux_ipc(shp);
6191 	ipc_init_security(isec, SECCLASS_SHM);
6192 
6193 	ad.type = LSM_AUDIT_DATA_IPC;
6194 	ad.u.ipc_id = shp->key;
6195 
6196 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6197 			    SHM__CREATE, &ad);
6198 }
6199 
6200 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6201 {
6202 	struct ipc_security_struct *isec;
6203 	struct common_audit_data ad;
6204 	u32 sid = current_sid();
6205 
6206 	isec = selinux_ipc(shp);
6207 
6208 	ad.type = LSM_AUDIT_DATA_IPC;
6209 	ad.u.ipc_id = shp->key;
6210 
6211 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6212 			    SHM__ASSOCIATE, &ad);
6213 }
6214 
6215 /* Note, at this point, shp is locked down */
6216 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6217 {
6218 	u32 perms;
6219 
6220 	switch (cmd) {
6221 	case IPC_INFO:
6222 	case SHM_INFO:
6223 		/* No specific object, just general system-wide information. */
6224 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6225 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6226 	case IPC_STAT:
6227 	case SHM_STAT:
6228 	case SHM_STAT_ANY:
6229 		perms = SHM__GETATTR | SHM__ASSOCIATE;
6230 		break;
6231 	case IPC_SET:
6232 		perms = SHM__SETATTR;
6233 		break;
6234 	case SHM_LOCK:
6235 	case SHM_UNLOCK:
6236 		perms = SHM__LOCK;
6237 		break;
6238 	case IPC_RMID:
6239 		perms = SHM__DESTROY;
6240 		break;
6241 	default:
6242 		return 0;
6243 	}
6244 
6245 	return ipc_has_perm(shp, perms);
6246 }
6247 
6248 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6249 			     char __user *shmaddr, int shmflg)
6250 {
6251 	u32 perms;
6252 
6253 	if (shmflg & SHM_RDONLY)
6254 		perms = SHM__READ;
6255 	else
6256 		perms = SHM__READ | SHM__WRITE;
6257 
6258 	return ipc_has_perm(shp, perms);
6259 }
6260 
6261 /* Semaphore security operations */
6262 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6263 {
6264 	struct ipc_security_struct *isec;
6265 	struct common_audit_data ad;
6266 	u32 sid = current_sid();
6267 
6268 	isec = selinux_ipc(sma);
6269 	ipc_init_security(isec, SECCLASS_SEM);
6270 
6271 	ad.type = LSM_AUDIT_DATA_IPC;
6272 	ad.u.ipc_id = sma->key;
6273 
6274 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6275 			    SEM__CREATE, &ad);
6276 }
6277 
6278 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6279 {
6280 	struct ipc_security_struct *isec;
6281 	struct common_audit_data ad;
6282 	u32 sid = current_sid();
6283 
6284 	isec = selinux_ipc(sma);
6285 
6286 	ad.type = LSM_AUDIT_DATA_IPC;
6287 	ad.u.ipc_id = sma->key;
6288 
6289 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6290 			    SEM__ASSOCIATE, &ad);
6291 }
6292 
6293 /* Note, at this point, sma is locked down */
6294 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6295 {
6296 	int err;
6297 	u32 perms;
6298 
6299 	switch (cmd) {
6300 	case IPC_INFO:
6301 	case SEM_INFO:
6302 		/* No specific object, just general system-wide information. */
6303 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6304 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6305 	case GETPID:
6306 	case GETNCNT:
6307 	case GETZCNT:
6308 		perms = SEM__GETATTR;
6309 		break;
6310 	case GETVAL:
6311 	case GETALL:
6312 		perms = SEM__READ;
6313 		break;
6314 	case SETVAL:
6315 	case SETALL:
6316 		perms = SEM__WRITE;
6317 		break;
6318 	case IPC_RMID:
6319 		perms = SEM__DESTROY;
6320 		break;
6321 	case IPC_SET:
6322 		perms = SEM__SETATTR;
6323 		break;
6324 	case IPC_STAT:
6325 	case SEM_STAT:
6326 	case SEM_STAT_ANY:
6327 		perms = SEM__GETATTR | SEM__ASSOCIATE;
6328 		break;
6329 	default:
6330 		return 0;
6331 	}
6332 
6333 	err = ipc_has_perm(sma, perms);
6334 	return err;
6335 }
6336 
6337 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6338 			     struct sembuf *sops, unsigned nsops, int alter)
6339 {
6340 	u32 perms;
6341 
6342 	if (alter)
6343 		perms = SEM__READ | SEM__WRITE;
6344 	else
6345 		perms = SEM__READ;
6346 
6347 	return ipc_has_perm(sma, perms);
6348 }
6349 
6350 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6351 {
6352 	u32 av = 0;
6353 
6354 	av = 0;
6355 	if (flag & S_IRUGO)
6356 		av |= IPC__UNIX_READ;
6357 	if (flag & S_IWUGO)
6358 		av |= IPC__UNIX_WRITE;
6359 
6360 	if (av == 0)
6361 		return 0;
6362 
6363 	return ipc_has_perm(ipcp, av);
6364 }
6365 
6366 static void selinux_ipc_getlsmprop(struct kern_ipc_perm *ipcp,
6367 				   struct lsm_prop *prop)
6368 {
6369 	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6370 	prop->selinux.secid = isec->sid;
6371 }
6372 
6373 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6374 {
6375 	if (inode)
6376 		inode_doinit_with_dentry(inode, dentry);
6377 }
6378 
6379 static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p,
6380 			       char **value)
6381 {
6382 	const struct task_security_struct *tsec;
6383 	int error;
6384 	u32 sid;
6385 	u32 len;
6386 
6387 	rcu_read_lock();
6388 	tsec = selinux_cred(__task_cred(p));
6389 	if (p != current) {
6390 		error = avc_has_perm(current_sid(), tsec->sid,
6391 				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6392 		if (error)
6393 			goto err_unlock;
6394 	}
6395 	switch (attr) {
6396 	case LSM_ATTR_CURRENT:
6397 		sid = tsec->sid;
6398 		break;
6399 	case LSM_ATTR_PREV:
6400 		sid = tsec->osid;
6401 		break;
6402 	case LSM_ATTR_EXEC:
6403 		sid = tsec->exec_sid;
6404 		break;
6405 	case LSM_ATTR_FSCREATE:
6406 		sid = tsec->create_sid;
6407 		break;
6408 	case LSM_ATTR_KEYCREATE:
6409 		sid = tsec->keycreate_sid;
6410 		break;
6411 	case LSM_ATTR_SOCKCREATE:
6412 		sid = tsec->sockcreate_sid;
6413 		break;
6414 	default:
6415 		error = -EOPNOTSUPP;
6416 		goto err_unlock;
6417 	}
6418 	rcu_read_unlock();
6419 
6420 	if (sid == SECSID_NULL) {
6421 		*value = NULL;
6422 		return 0;
6423 	}
6424 
6425 	error = security_sid_to_context(sid, value, &len);
6426 	if (error)
6427 		return error;
6428 	return len;
6429 
6430 err_unlock:
6431 	rcu_read_unlock();
6432 	return error;
6433 }
6434 
6435 static int selinux_lsm_setattr(u64 attr, void *value, size_t size)
6436 {
6437 	struct task_security_struct *tsec;
6438 	struct cred *new;
6439 	u32 mysid = current_sid(), sid = 0, ptsid;
6440 	int error;
6441 	char *str = value;
6442 
6443 	/*
6444 	 * Basic control over ability to set these attributes at all.
6445 	 */
6446 	switch (attr) {
6447 	case LSM_ATTR_EXEC:
6448 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6449 				     PROCESS__SETEXEC, NULL);
6450 		break;
6451 	case LSM_ATTR_FSCREATE:
6452 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6453 				     PROCESS__SETFSCREATE, NULL);
6454 		break;
6455 	case LSM_ATTR_KEYCREATE:
6456 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6457 				     PROCESS__SETKEYCREATE, NULL);
6458 		break;
6459 	case LSM_ATTR_SOCKCREATE:
6460 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6461 				     PROCESS__SETSOCKCREATE, NULL);
6462 		break;
6463 	case LSM_ATTR_CURRENT:
6464 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6465 				     PROCESS__SETCURRENT, NULL);
6466 		break;
6467 	default:
6468 		error = -EOPNOTSUPP;
6469 		break;
6470 	}
6471 	if (error)
6472 		return error;
6473 
6474 	/* Obtain a SID for the context, if one was specified. */
6475 	if (size && str[0] && str[0] != '\n') {
6476 		if (str[size-1] == '\n') {
6477 			str[size-1] = 0;
6478 			size--;
6479 		}
6480 		error = security_context_to_sid(value, size,
6481 						&sid, GFP_KERNEL);
6482 		if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) {
6483 			if (!has_cap_mac_admin(true)) {
6484 				struct audit_buffer *ab;
6485 				size_t audit_size;
6486 
6487 				/* We strip a nul only if it is at the end,
6488 				 * otherwise the context contains a nul and
6489 				 * we should audit that */
6490 				if (str[size - 1] == '\0')
6491 					audit_size = size - 1;
6492 				else
6493 					audit_size = size;
6494 				ab = audit_log_start(audit_context(),
6495 						     GFP_ATOMIC,
6496 						     AUDIT_SELINUX_ERR);
6497 				if (!ab)
6498 					return error;
6499 				audit_log_format(ab, "op=fscreate invalid_context=");
6500 				audit_log_n_untrustedstring(ab, value,
6501 							    audit_size);
6502 				audit_log_end(ab);
6503 
6504 				return error;
6505 			}
6506 			error = security_context_to_sid_force(value, size,
6507 							&sid);
6508 		}
6509 		if (error)
6510 			return error;
6511 	}
6512 
6513 	new = prepare_creds();
6514 	if (!new)
6515 		return -ENOMEM;
6516 
6517 	/* Permission checking based on the specified context is
6518 	   performed during the actual operation (execve,
6519 	   open/mkdir/...), when we know the full context of the
6520 	   operation.  See selinux_bprm_creds_for_exec for the execve
6521 	   checks and may_create for the file creation checks. The
6522 	   operation will then fail if the context is not permitted. */
6523 	tsec = selinux_cred(new);
6524 	if (attr == LSM_ATTR_EXEC) {
6525 		tsec->exec_sid = sid;
6526 	} else if (attr == LSM_ATTR_FSCREATE) {
6527 		tsec->create_sid = sid;
6528 	} else if (attr == LSM_ATTR_KEYCREATE) {
6529 		if (sid) {
6530 			error = avc_has_perm(mysid, sid,
6531 					     SECCLASS_KEY, KEY__CREATE, NULL);
6532 			if (error)
6533 				goto abort_change;
6534 		}
6535 		tsec->keycreate_sid = sid;
6536 	} else if (attr == LSM_ATTR_SOCKCREATE) {
6537 		tsec->sockcreate_sid = sid;
6538 	} else if (attr == LSM_ATTR_CURRENT) {
6539 		error = -EINVAL;
6540 		if (sid == 0)
6541 			goto abort_change;
6542 
6543 		if (!current_is_single_threaded()) {
6544 			error = security_bounded_transition(tsec->sid, sid);
6545 			if (error)
6546 				goto abort_change;
6547 		}
6548 
6549 		/* Check permissions for the transition. */
6550 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
6551 				     PROCESS__DYNTRANSITION, NULL);
6552 		if (error)
6553 			goto abort_change;
6554 
6555 		/* Check for ptracing, and update the task SID if ok.
6556 		   Otherwise, leave SID unchanged and fail. */
6557 		ptsid = ptrace_parent_sid();
6558 		if (ptsid != 0) {
6559 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
6560 					     PROCESS__PTRACE, NULL);
6561 			if (error)
6562 				goto abort_change;
6563 		}
6564 
6565 		tsec->sid = sid;
6566 	} else {
6567 		error = -EINVAL;
6568 		goto abort_change;
6569 	}
6570 
6571 	commit_creds(new);
6572 	return size;
6573 
6574 abort_change:
6575 	abort_creds(new);
6576 	return error;
6577 }
6578 
6579 /**
6580  * selinux_getselfattr - Get SELinux current task attributes
6581  * @attr: the requested attribute
6582  * @ctx: buffer to receive the result
6583  * @size: buffer size (input), buffer size used (output)
6584  * @flags: unused
6585  *
6586  * Fill the passed user space @ctx with the details of the requested
6587  * attribute.
6588  *
6589  * Returns the number of attributes on success, an error code otherwise.
6590  * There will only ever be one attribute.
6591  */
6592 static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx,
6593 			       u32 *size, u32 flags)
6594 {
6595 	int rc;
6596 	char *val = NULL;
6597 	int val_len;
6598 
6599 	val_len = selinux_lsm_getattr(attr, current, &val);
6600 	if (val_len < 0)
6601 		return val_len;
6602 	rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0);
6603 	kfree(val);
6604 	return (!rc ? 1 : rc);
6605 }
6606 
6607 static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx,
6608 			       u32 size, u32 flags)
6609 {
6610 	int rc;
6611 
6612 	rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len);
6613 	if (rc > 0)
6614 		return 0;
6615 	return rc;
6616 }
6617 
6618 static int selinux_getprocattr(struct task_struct *p,
6619 			       const char *name, char **value)
6620 {
6621 	unsigned int attr = lsm_name_to_attr(name);
6622 	int rc;
6623 
6624 	if (attr) {
6625 		rc = selinux_lsm_getattr(attr, p, value);
6626 		if (rc != -EOPNOTSUPP)
6627 			return rc;
6628 	}
6629 
6630 	return -EINVAL;
6631 }
6632 
6633 static int selinux_setprocattr(const char *name, void *value, size_t size)
6634 {
6635 	int attr = lsm_name_to_attr(name);
6636 
6637 	if (attr)
6638 		return selinux_lsm_setattr(attr, value, size);
6639 	return -EINVAL;
6640 }
6641 
6642 static int selinux_ismaclabel(const char *name)
6643 {
6644 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6645 }
6646 
6647 static int selinux_secid_to_secctx(u32 secid, struct lsm_context *cp)
6648 {
6649 	u32 seclen;
6650 	int ret;
6651 
6652 	if (cp) {
6653 		cp->id = LSM_ID_SELINUX;
6654 		ret = security_sid_to_context(secid, &cp->context, &cp->len);
6655 		if (ret < 0)
6656 			return ret;
6657 		return cp->len;
6658 	}
6659 	ret = security_sid_to_context(secid, NULL, &seclen);
6660 	if (ret < 0)
6661 		return ret;
6662 	return seclen;
6663 }
6664 
6665 static int selinux_lsmprop_to_secctx(struct lsm_prop *prop,
6666 				     struct lsm_context *cp)
6667 {
6668 	return selinux_secid_to_secctx(prop->selinux.secid, cp);
6669 }
6670 
6671 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6672 {
6673 	return security_context_to_sid(secdata, seclen,
6674 				       secid, GFP_KERNEL);
6675 }
6676 
6677 static void selinux_release_secctx(struct lsm_context *cp)
6678 {
6679 	if (cp->id == LSM_ID_SELINUX) {
6680 		kfree(cp->context);
6681 		cp->context = NULL;
6682 		cp->id = LSM_ID_UNDEF;
6683 	}
6684 }
6685 
6686 static void selinux_inode_invalidate_secctx(struct inode *inode)
6687 {
6688 	struct inode_security_struct *isec = selinux_inode(inode);
6689 
6690 	spin_lock(&isec->lock);
6691 	isec->initialized = LABEL_INVALID;
6692 	spin_unlock(&isec->lock);
6693 }
6694 
6695 /*
6696  *	called with inode->i_mutex locked
6697  */
6698 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6699 {
6700 	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6701 					   ctx, ctxlen, 0);
6702 	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6703 	return rc == -EOPNOTSUPP ? 0 : rc;
6704 }
6705 
6706 /*
6707  *	called with inode->i_mutex locked
6708  */
6709 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6710 {
6711 	return __vfs_setxattr_locked(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX,
6712 				     ctx, ctxlen, 0, NULL);
6713 }
6714 
6715 static int selinux_inode_getsecctx(struct inode *inode, struct lsm_context *cp)
6716 {
6717 	int len;
6718 	len = selinux_inode_getsecurity(&nop_mnt_idmap, inode,
6719 					XATTR_SELINUX_SUFFIX,
6720 					(void **)&cp->context, true);
6721 	if (len < 0)
6722 		return len;
6723 	cp->len = len;
6724 	cp->id = LSM_ID_SELINUX;
6725 	return 0;
6726 }
6727 #ifdef CONFIG_KEYS
6728 
6729 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6730 			     unsigned long flags)
6731 {
6732 	const struct task_security_struct *tsec;
6733 	struct key_security_struct *ksec = selinux_key(k);
6734 
6735 	tsec = selinux_cred(cred);
6736 	if (tsec->keycreate_sid)
6737 		ksec->sid = tsec->keycreate_sid;
6738 	else
6739 		ksec->sid = tsec->sid;
6740 
6741 	return 0;
6742 }
6743 
6744 static int selinux_key_permission(key_ref_t key_ref,
6745 				  const struct cred *cred,
6746 				  enum key_need_perm need_perm)
6747 {
6748 	struct key *key;
6749 	struct key_security_struct *ksec;
6750 	u32 perm, sid;
6751 
6752 	switch (need_perm) {
6753 	case KEY_NEED_VIEW:
6754 		perm = KEY__VIEW;
6755 		break;
6756 	case KEY_NEED_READ:
6757 		perm = KEY__READ;
6758 		break;
6759 	case KEY_NEED_WRITE:
6760 		perm = KEY__WRITE;
6761 		break;
6762 	case KEY_NEED_SEARCH:
6763 		perm = KEY__SEARCH;
6764 		break;
6765 	case KEY_NEED_LINK:
6766 		perm = KEY__LINK;
6767 		break;
6768 	case KEY_NEED_SETATTR:
6769 		perm = KEY__SETATTR;
6770 		break;
6771 	case KEY_NEED_UNLINK:
6772 	case KEY_SYSADMIN_OVERRIDE:
6773 	case KEY_AUTHTOKEN_OVERRIDE:
6774 	case KEY_DEFER_PERM_CHECK:
6775 		return 0;
6776 	default:
6777 		WARN_ON(1);
6778 		return -EPERM;
6779 
6780 	}
6781 
6782 	sid = cred_sid(cred);
6783 	key = key_ref_to_ptr(key_ref);
6784 	ksec = selinux_key(key);
6785 
6786 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6787 }
6788 
6789 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6790 {
6791 	struct key_security_struct *ksec = selinux_key(key);
6792 	char *context = NULL;
6793 	unsigned len;
6794 	int rc;
6795 
6796 	rc = security_sid_to_context(ksec->sid,
6797 				     &context, &len);
6798 	if (!rc)
6799 		rc = len;
6800 	*_buffer = context;
6801 	return rc;
6802 }
6803 
6804 #ifdef CONFIG_KEY_NOTIFICATIONS
6805 static int selinux_watch_key(struct key *key)
6806 {
6807 	struct key_security_struct *ksec = selinux_key(key);
6808 	u32 sid = current_sid();
6809 
6810 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6811 }
6812 #endif
6813 #endif
6814 
6815 #ifdef CONFIG_SECURITY_INFINIBAND
6816 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6817 {
6818 	struct common_audit_data ad;
6819 	int err;
6820 	u32 sid = 0;
6821 	struct ib_security_struct *sec = ib_sec;
6822 	struct lsm_ibpkey_audit ibpkey;
6823 
6824 	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6825 	if (err)
6826 		return err;
6827 
6828 	ad.type = LSM_AUDIT_DATA_IBPKEY;
6829 	ibpkey.subnet_prefix = subnet_prefix;
6830 	ibpkey.pkey = pkey_val;
6831 	ad.u.ibpkey = &ibpkey;
6832 	return avc_has_perm(sec->sid, sid,
6833 			    SECCLASS_INFINIBAND_PKEY,
6834 			    INFINIBAND_PKEY__ACCESS, &ad);
6835 }
6836 
6837 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6838 					    u8 port_num)
6839 {
6840 	struct common_audit_data ad;
6841 	int err;
6842 	u32 sid = 0;
6843 	struct ib_security_struct *sec = ib_sec;
6844 	struct lsm_ibendport_audit ibendport;
6845 
6846 	err = security_ib_endport_sid(dev_name, port_num,
6847 				      &sid);
6848 
6849 	if (err)
6850 		return err;
6851 
6852 	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6853 	ibendport.dev_name = dev_name;
6854 	ibendport.port = port_num;
6855 	ad.u.ibendport = &ibendport;
6856 	return avc_has_perm(sec->sid, sid,
6857 			    SECCLASS_INFINIBAND_ENDPORT,
6858 			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6859 }
6860 
6861 static int selinux_ib_alloc_security(void *ib_sec)
6862 {
6863 	struct ib_security_struct *sec = selinux_ib(ib_sec);
6864 
6865 	sec->sid = current_sid();
6866 	return 0;
6867 }
6868 #endif
6869 
6870 #ifdef CONFIG_BPF_SYSCALL
6871 static int selinux_bpf(int cmd, union bpf_attr *attr,
6872 				     unsigned int size)
6873 {
6874 	u32 sid = current_sid();
6875 	int ret;
6876 
6877 	switch (cmd) {
6878 	case BPF_MAP_CREATE:
6879 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6880 				   NULL);
6881 		break;
6882 	case BPF_PROG_LOAD:
6883 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6884 				   NULL);
6885 		break;
6886 	default:
6887 		ret = 0;
6888 		break;
6889 	}
6890 
6891 	return ret;
6892 }
6893 
6894 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6895 {
6896 	u32 av = 0;
6897 
6898 	if (fmode & FMODE_READ)
6899 		av |= BPF__MAP_READ;
6900 	if (fmode & FMODE_WRITE)
6901 		av |= BPF__MAP_WRITE;
6902 	return av;
6903 }
6904 
6905 /* This function will check the file pass through unix socket or binder to see
6906  * if it is a bpf related object. And apply corresponding checks on the bpf
6907  * object based on the type. The bpf maps and programs, not like other files and
6908  * socket, are using a shared anonymous inode inside the kernel as their inode.
6909  * So checking that inode cannot identify if the process have privilege to
6910  * access the bpf object and that's why we have to add this additional check in
6911  * selinux_file_receive and selinux_binder_transfer_files.
6912  */
6913 static int bpf_fd_pass(const struct file *file, u32 sid)
6914 {
6915 	struct bpf_security_struct *bpfsec;
6916 	struct bpf_prog *prog;
6917 	struct bpf_map *map;
6918 	int ret;
6919 
6920 	if (file->f_op == &bpf_map_fops) {
6921 		map = file->private_data;
6922 		bpfsec = map->security;
6923 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6924 				   bpf_map_fmode_to_av(file->f_mode), NULL);
6925 		if (ret)
6926 			return ret;
6927 	} else if (file->f_op == &bpf_prog_fops) {
6928 		prog = file->private_data;
6929 		bpfsec = prog->aux->security;
6930 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6931 				   BPF__PROG_RUN, NULL);
6932 		if (ret)
6933 			return ret;
6934 	}
6935 	return 0;
6936 }
6937 
6938 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6939 {
6940 	u32 sid = current_sid();
6941 	struct bpf_security_struct *bpfsec;
6942 
6943 	bpfsec = map->security;
6944 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6945 			    bpf_map_fmode_to_av(fmode), NULL);
6946 }
6947 
6948 static int selinux_bpf_prog(struct bpf_prog *prog)
6949 {
6950 	u32 sid = current_sid();
6951 	struct bpf_security_struct *bpfsec;
6952 
6953 	bpfsec = prog->aux->security;
6954 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6955 			    BPF__PROG_RUN, NULL);
6956 }
6957 
6958 static int selinux_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
6959 				  struct bpf_token *token)
6960 {
6961 	struct bpf_security_struct *bpfsec;
6962 
6963 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6964 	if (!bpfsec)
6965 		return -ENOMEM;
6966 
6967 	bpfsec->sid = current_sid();
6968 	map->security = bpfsec;
6969 
6970 	return 0;
6971 }
6972 
6973 static void selinux_bpf_map_free(struct bpf_map *map)
6974 {
6975 	struct bpf_security_struct *bpfsec = map->security;
6976 
6977 	map->security = NULL;
6978 	kfree(bpfsec);
6979 }
6980 
6981 static int selinux_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
6982 				 struct bpf_token *token)
6983 {
6984 	struct bpf_security_struct *bpfsec;
6985 
6986 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6987 	if (!bpfsec)
6988 		return -ENOMEM;
6989 
6990 	bpfsec->sid = current_sid();
6991 	prog->aux->security = bpfsec;
6992 
6993 	return 0;
6994 }
6995 
6996 static void selinux_bpf_prog_free(struct bpf_prog *prog)
6997 {
6998 	struct bpf_security_struct *bpfsec = prog->aux->security;
6999 
7000 	prog->aux->security = NULL;
7001 	kfree(bpfsec);
7002 }
7003 
7004 static int selinux_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
7005 				    const struct path *path)
7006 {
7007 	struct bpf_security_struct *bpfsec;
7008 
7009 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
7010 	if (!bpfsec)
7011 		return -ENOMEM;
7012 
7013 	bpfsec->sid = current_sid();
7014 	token->security = bpfsec;
7015 
7016 	return 0;
7017 }
7018 
7019 static void selinux_bpf_token_free(struct bpf_token *token)
7020 {
7021 	struct bpf_security_struct *bpfsec = token->security;
7022 
7023 	token->security = NULL;
7024 	kfree(bpfsec);
7025 }
7026 #endif
7027 
7028 struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = {
7029 	.lbs_cred = sizeof(struct task_security_struct),
7030 	.lbs_file = sizeof(struct file_security_struct),
7031 	.lbs_inode = sizeof(struct inode_security_struct),
7032 	.lbs_ipc = sizeof(struct ipc_security_struct),
7033 	.lbs_key = sizeof(struct key_security_struct),
7034 	.lbs_msg_msg = sizeof(struct msg_security_struct),
7035 #ifdef CONFIG_PERF_EVENTS
7036 	.lbs_perf_event = sizeof(struct perf_event_security_struct),
7037 #endif
7038 	.lbs_sock = sizeof(struct sk_security_struct),
7039 	.lbs_superblock = sizeof(struct superblock_security_struct),
7040 	.lbs_xattr_count = SELINUX_INODE_INIT_XATTRS,
7041 	.lbs_tun_dev = sizeof(struct tun_security_struct),
7042 	.lbs_ib = sizeof(struct ib_security_struct),
7043 };
7044 
7045 #ifdef CONFIG_PERF_EVENTS
7046 static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7047 {
7048 	u32 requested, sid = current_sid();
7049 
7050 	if (type == PERF_SECURITY_OPEN)
7051 		requested = PERF_EVENT__OPEN;
7052 	else if (type == PERF_SECURITY_CPU)
7053 		requested = PERF_EVENT__CPU;
7054 	else if (type == PERF_SECURITY_KERNEL)
7055 		requested = PERF_EVENT__KERNEL;
7056 	else if (type == PERF_SECURITY_TRACEPOINT)
7057 		requested = PERF_EVENT__TRACEPOINT;
7058 	else
7059 		return -EINVAL;
7060 
7061 	return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT,
7062 			    requested, NULL);
7063 }
7064 
7065 static int selinux_perf_event_alloc(struct perf_event *event)
7066 {
7067 	struct perf_event_security_struct *perfsec;
7068 
7069 	perfsec = selinux_perf_event(event->security);
7070 	perfsec->sid = current_sid();
7071 
7072 	return 0;
7073 }
7074 
7075 static int selinux_perf_event_read(struct perf_event *event)
7076 {
7077 	struct perf_event_security_struct *perfsec = event->security;
7078 	u32 sid = current_sid();
7079 
7080 	return avc_has_perm(sid, perfsec->sid,
7081 			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7082 }
7083 
7084 static int selinux_perf_event_write(struct perf_event *event)
7085 {
7086 	struct perf_event_security_struct *perfsec = event->security;
7087 	u32 sid = current_sid();
7088 
7089 	return avc_has_perm(sid, perfsec->sid,
7090 			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7091 }
7092 #endif
7093 
7094 #ifdef CONFIG_IO_URING
7095 /**
7096  * selinux_uring_override_creds - check the requested cred override
7097  * @new: the target creds
7098  *
7099  * Check to see if the current task is allowed to override it's credentials
7100  * to service an io_uring operation.
7101  */
7102 static int selinux_uring_override_creds(const struct cred *new)
7103 {
7104 	return avc_has_perm(current_sid(), cred_sid(new),
7105 			    SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
7106 }
7107 
7108 /**
7109  * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7110  *
7111  * Check to see if the current task is allowed to create a new io_uring
7112  * kernel polling thread.
7113  */
7114 static int selinux_uring_sqpoll(void)
7115 {
7116 	u32 sid = current_sid();
7117 
7118 	return avc_has_perm(sid, sid,
7119 			    SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7120 }
7121 
7122 /**
7123  * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7124  * @ioucmd: the io_uring command structure
7125  *
7126  * Check to see if the current domain is allowed to execute an
7127  * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7128  *
7129  */
7130 static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7131 {
7132 	struct file *file = ioucmd->file;
7133 	struct inode *inode = file_inode(file);
7134 	struct inode_security_struct *isec = selinux_inode(inode);
7135 	struct common_audit_data ad;
7136 
7137 	ad.type = LSM_AUDIT_DATA_FILE;
7138 	ad.u.file = file;
7139 
7140 	return avc_has_perm(current_sid(), isec->sid,
7141 			    SECCLASS_IO_URING, IO_URING__CMD, &ad);
7142 }
7143 #endif /* CONFIG_IO_URING */
7144 
7145 static const struct lsm_id selinux_lsmid = {
7146 	.name = "selinux",
7147 	.id = LSM_ID_SELINUX,
7148 };
7149 
7150 /*
7151  * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7152  * 1. any hooks that don't belong to (2.) or (3.) below,
7153  * 2. hooks that both access structures allocated by other hooks, and allocate
7154  *    structures that can be later accessed by other hooks (mostly "cloning"
7155  *    hooks),
7156  * 3. hooks that only allocate structures that can be later accessed by other
7157  *    hooks ("allocating" hooks).
7158  *
7159  * Please follow block comment delimiters in the list to keep this order.
7160  */
7161 static struct security_hook_list selinux_hooks[] __ro_after_init = {
7162 	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7163 	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7164 	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7165 	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7166 
7167 	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7168 	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7169 	LSM_HOOK_INIT(capget, selinux_capget),
7170 	LSM_HOOK_INIT(capset, selinux_capset),
7171 	LSM_HOOK_INIT(capable, selinux_capable),
7172 	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7173 	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7174 	LSM_HOOK_INIT(syslog, selinux_syslog),
7175 	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7176 
7177 	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7178 
7179 	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7180 	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7181 	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7182 
7183 	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7184 	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7185 	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7186 	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7187 	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7188 	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7189 	LSM_HOOK_INIT(sb_mount, selinux_mount),
7190 	LSM_HOOK_INIT(sb_umount, selinux_umount),
7191 	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7192 	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7193 
7194 	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7195 
7196 	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7197 	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7198 
7199 	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7200 	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7201 	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7202 	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7203 	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7204 	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7205 	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7206 	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7207 	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7208 	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7209 	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7210 	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7211 	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7212 	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7213 	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7214 	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7215 	LSM_HOOK_INIT(inode_xattr_skipcap, selinux_inode_xattr_skipcap),
7216 	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7217 	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7218 	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7219 	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7220 	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7221 	LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7222 	LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7223 	LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7224 	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7225 	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7226 	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7227 	LSM_HOOK_INIT(inode_getlsmprop, selinux_inode_getlsmprop),
7228 	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7229 	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7230 	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7231 
7232 	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7233 
7234 	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7235 	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7236 	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7237 	LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat),
7238 	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7239 	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7240 	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7241 	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7242 	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7243 	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7244 	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7245 	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7246 
7247 	LSM_HOOK_INIT(file_open, selinux_file_open),
7248 
7249 	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7250 	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7251 	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7252 	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7253 	LSM_HOOK_INIT(cred_getlsmprop, selinux_cred_getlsmprop),
7254 	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7255 	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7256 	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7257 	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7258 	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7259 	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7260 	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7261 	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7262 	LSM_HOOK_INIT(current_getlsmprop_subj, selinux_current_getlsmprop_subj),
7263 	LSM_HOOK_INIT(task_getlsmprop_obj, selinux_task_getlsmprop_obj),
7264 	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7265 	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7266 	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7267 	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7268 	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7269 	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7270 	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7271 	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7272 	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7273 	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7274 	LSM_HOOK_INIT(userns_create, selinux_userns_create),
7275 
7276 	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7277 	LSM_HOOK_INIT(ipc_getlsmprop, selinux_ipc_getlsmprop),
7278 
7279 	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7280 	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7281 	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7282 	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7283 
7284 	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7285 	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7286 	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7287 
7288 	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7289 	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7290 	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7291 
7292 	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7293 
7294 	LSM_HOOK_INIT(getselfattr, selinux_getselfattr),
7295 	LSM_HOOK_INIT(setselfattr, selinux_setselfattr),
7296 	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7297 	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7298 
7299 	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7300 	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7301 	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7302 	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7303 	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7304 	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7305 
7306 	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7307 	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7308 
7309 	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7310 	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7311 	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7312 	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7313 	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7314 	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7315 	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7316 	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7317 	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7318 	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7319 	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7320 	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7321 	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7322 	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7323 	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7324 	LSM_HOOK_INIT(socket_getpeersec_stream,
7325 			selinux_socket_getpeersec_stream),
7326 	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7327 	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7328 	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7329 	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7330 	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7331 	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7332 	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7333 	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7334 	LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7335 	LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow),
7336 	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7337 	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7338 	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7339 	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7340 	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7341 	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7342 	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7343 	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7344 	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7345 	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7346 	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7347 #ifdef CONFIG_SECURITY_INFINIBAND
7348 	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7349 	LSM_HOOK_INIT(ib_endport_manage_subnet,
7350 		      selinux_ib_endport_manage_subnet),
7351 #endif
7352 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7353 	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7354 	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7355 	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7356 	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7357 	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7358 	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7359 			selinux_xfrm_state_pol_flow_match),
7360 	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7361 #endif
7362 
7363 #ifdef CONFIG_KEYS
7364 	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7365 	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7366 #ifdef CONFIG_KEY_NOTIFICATIONS
7367 	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7368 #endif
7369 #endif
7370 
7371 #ifdef CONFIG_AUDIT
7372 	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7373 	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7374 	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7375 #endif
7376 
7377 #ifdef CONFIG_BPF_SYSCALL
7378 	LSM_HOOK_INIT(bpf, selinux_bpf),
7379 	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7380 	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7381 	LSM_HOOK_INIT(bpf_map_free, selinux_bpf_map_free),
7382 	LSM_HOOK_INIT(bpf_prog_free, selinux_bpf_prog_free),
7383 	LSM_HOOK_INIT(bpf_token_free, selinux_bpf_token_free),
7384 #endif
7385 
7386 #ifdef CONFIG_PERF_EVENTS
7387 	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7388 	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7389 	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7390 #endif
7391 
7392 #ifdef CONFIG_IO_URING
7393 	LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7394 	LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7395 	LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7396 #endif
7397 
7398 	/*
7399 	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7400 	 */
7401 	LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount),
7402 	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7403 	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7404 	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7405 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7406 	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7407 #endif
7408 
7409 	/*
7410 	 * PUT "ALLOCATING" HOOKS HERE
7411 	 */
7412 	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7413 	LSM_HOOK_INIT(msg_queue_alloc_security,
7414 		      selinux_msg_queue_alloc_security),
7415 	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7416 	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7417 	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7418 	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7419 	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7420 	LSM_HOOK_INIT(lsmprop_to_secctx, selinux_lsmprop_to_secctx),
7421 	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7422 	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7423 	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7424 #ifdef CONFIG_SECURITY_INFINIBAND
7425 	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7426 #endif
7427 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7428 	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7429 	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7430 	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7431 		      selinux_xfrm_state_alloc_acquire),
7432 #endif
7433 #ifdef CONFIG_KEYS
7434 	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7435 #endif
7436 #ifdef CONFIG_AUDIT
7437 	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7438 #endif
7439 #ifdef CONFIG_BPF_SYSCALL
7440 	LSM_HOOK_INIT(bpf_map_create, selinux_bpf_map_create),
7441 	LSM_HOOK_INIT(bpf_prog_load, selinux_bpf_prog_load),
7442 	LSM_HOOK_INIT(bpf_token_create, selinux_bpf_token_create),
7443 #endif
7444 #ifdef CONFIG_PERF_EVENTS
7445 	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7446 #endif
7447 };
7448 
7449 static __init int selinux_init(void)
7450 {
7451 	pr_info("SELinux:  Initializing.\n");
7452 
7453 	memset(&selinux_state, 0, sizeof(selinux_state));
7454 	enforcing_set(selinux_enforcing_boot);
7455 	selinux_avc_init();
7456 	mutex_init(&selinux_state.status_lock);
7457 	mutex_init(&selinux_state.policy_mutex);
7458 
7459 	/* Set the security state for the initial task. */
7460 	cred_init_security();
7461 
7462 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7463 	if (!default_noexec)
7464 		pr_notice("SELinux:  virtual memory is executable by default\n");
7465 
7466 	avc_init();
7467 
7468 	avtab_cache_init();
7469 
7470 	ebitmap_cache_init();
7471 
7472 	hashtab_cache_init();
7473 
7474 	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks),
7475 			   &selinux_lsmid);
7476 
7477 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7478 		panic("SELinux: Unable to register AVC netcache callback\n");
7479 
7480 	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7481 		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7482 
7483 	if (selinux_enforcing_boot)
7484 		pr_debug("SELinux:  Starting in enforcing mode\n");
7485 	else
7486 		pr_debug("SELinux:  Starting in permissive mode\n");
7487 
7488 	fs_validate_description("selinux", selinux_fs_parameters);
7489 
7490 	return 0;
7491 }
7492 
7493 static void delayed_superblock_init(struct super_block *sb, void *unused)
7494 {
7495 	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7496 }
7497 
7498 void selinux_complete_init(void)
7499 {
7500 	pr_debug("SELinux:  Completing initialization.\n");
7501 
7502 	/* Set up any superblocks initialized prior to the policy load. */
7503 	pr_debug("SELinux:  Setting up existing superblocks.\n");
7504 	iterate_supers(delayed_superblock_init, NULL);
7505 }
7506 
7507 /* SELinux requires early initialization in order to label
7508    all processes and objects when they are created. */
7509 DEFINE_LSM(selinux) = {
7510 	.name = "selinux",
7511 	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7512 	.enabled = &selinux_enabled_boot,
7513 	.blobs = &selinux_blob_sizes,
7514 	.init = selinux_init,
7515 };
7516 
7517 #if defined(CONFIG_NETFILTER)
7518 static const struct nf_hook_ops selinux_nf_ops[] = {
7519 	{
7520 		.hook =		selinux_ip_postroute,
7521 		.pf =		NFPROTO_IPV4,
7522 		.hooknum =	NF_INET_POST_ROUTING,
7523 		.priority =	NF_IP_PRI_SELINUX_LAST,
7524 	},
7525 	{
7526 		.hook =		selinux_ip_forward,
7527 		.pf =		NFPROTO_IPV4,
7528 		.hooknum =	NF_INET_FORWARD,
7529 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7530 	},
7531 	{
7532 		.hook =		selinux_ip_output,
7533 		.pf =		NFPROTO_IPV4,
7534 		.hooknum =	NF_INET_LOCAL_OUT,
7535 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7536 	},
7537 #if IS_ENABLED(CONFIG_IPV6)
7538 	{
7539 		.hook =		selinux_ip_postroute,
7540 		.pf =		NFPROTO_IPV6,
7541 		.hooknum =	NF_INET_POST_ROUTING,
7542 		.priority =	NF_IP6_PRI_SELINUX_LAST,
7543 	},
7544 	{
7545 		.hook =		selinux_ip_forward,
7546 		.pf =		NFPROTO_IPV6,
7547 		.hooknum =	NF_INET_FORWARD,
7548 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7549 	},
7550 	{
7551 		.hook =		selinux_ip_output,
7552 		.pf =		NFPROTO_IPV6,
7553 		.hooknum =	NF_INET_LOCAL_OUT,
7554 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7555 	},
7556 #endif	/* IPV6 */
7557 };
7558 
7559 static int __net_init selinux_nf_register(struct net *net)
7560 {
7561 	return nf_register_net_hooks(net, selinux_nf_ops,
7562 				     ARRAY_SIZE(selinux_nf_ops));
7563 }
7564 
7565 static void __net_exit selinux_nf_unregister(struct net *net)
7566 {
7567 	nf_unregister_net_hooks(net, selinux_nf_ops,
7568 				ARRAY_SIZE(selinux_nf_ops));
7569 }
7570 
7571 static struct pernet_operations selinux_net_ops = {
7572 	.init = selinux_nf_register,
7573 	.exit = selinux_nf_unregister,
7574 };
7575 
7576 static int __init selinux_nf_ip_init(void)
7577 {
7578 	int err;
7579 
7580 	if (!selinux_enabled_boot)
7581 		return 0;
7582 
7583 	pr_debug("SELinux:  Registering netfilter hooks\n");
7584 
7585 	err = register_pernet_subsys(&selinux_net_ops);
7586 	if (err)
7587 		panic("SELinux: register_pernet_subsys: error %d\n", err);
7588 
7589 	return 0;
7590 }
7591 __initcall(selinux_nf_ip_init);
7592 #endif /* CONFIG_NETFILTER */
7593