xref: /linux/security/selinux/hooks.c (revision 7056741fd9fc14a65608549a4657cf5178f05f63)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *	      Chris Vance, <cvance@nai.com>
8  *	      Wayne Salamon, <wsalamon@nai.com>
9  *	      James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *					   Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *			    <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *	Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *	This program is free software; you can redistribute it and/or modify
22  *	it under the terms of the GNU General Public License version 2,
23  *	as published by the Free Software Foundation.
24  */
25 
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h>		/* for local_port_range[] */
54 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
55 #include <net/net_namespace.h>
56 #include <net/netlabel.h>
57 #include <linux/uaccess.h>
58 #include <asm/ioctls.h>
59 #include <linux/atomic.h>
60 #include <linux/bitops.h>
61 #include <linux/interrupt.h>
62 #include <linux/netdevice.h>	/* for network interface checks */
63 #include <linux/netlink.h>
64 #include <linux/tcp.h>
65 #include <linux/udp.h>
66 #include <linux/dccp.h>
67 #include <linux/quota.h>
68 #include <linux/un.h>		/* for Unix socket types */
69 #include <net/af_unix.h>	/* for Unix socket types */
70 #include <linux/parser.h>
71 #include <linux/nfs_mount.h>
72 #include <net/ipv6.h>
73 #include <linux/hugetlb.h>
74 #include <linux/personality.h>
75 #include <linux/audit.h>
76 #include <linux/string.h>
77 #include <linux/selinux.h>
78 #include <linux/mutex.h>
79 #include <linux/posix-timers.h>
80 #include <linux/syslog.h>
81 #include <linux/user_namespace.h>
82 #include <linux/export.h>
83 #include <linux/msg.h>
84 #include <linux/shm.h>
85 
86 #include "avc.h"
87 #include "objsec.h"
88 #include "netif.h"
89 #include "netnode.h"
90 #include "netport.h"
91 #include "xfrm.h"
92 #include "netlabel.h"
93 #include "audit.h"
94 #include "avc_ss.h"
95 
96 #define NUM_SEL_MNT_OPTS 5
97 
98 extern struct security_operations *security_ops;
99 
100 /* SECMARK reference count */
101 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
102 
103 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104 int selinux_enforcing;
105 
106 static int __init enforcing_setup(char *str)
107 {
108 	unsigned long enforcing;
109 	if (!strict_strtoul(str, 0, &enforcing))
110 		selinux_enforcing = enforcing ? 1 : 0;
111 	return 1;
112 }
113 __setup("enforcing=", enforcing_setup);
114 #endif
115 
116 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
118 
119 static int __init selinux_enabled_setup(char *str)
120 {
121 	unsigned long enabled;
122 	if (!strict_strtoul(str, 0, &enabled))
123 		selinux_enabled = enabled ? 1 : 0;
124 	return 1;
125 }
126 __setup("selinux=", selinux_enabled_setup);
127 #else
128 int selinux_enabled = 1;
129 #endif
130 
131 static struct kmem_cache *sel_inode_cache;
132 
133 /**
134  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
135  *
136  * Description:
137  * This function checks the SECMARK reference counter to see if any SECMARK
138  * targets are currently configured, if the reference counter is greater than
139  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
140  * enabled, false (0) if SECMARK is disabled.
141  *
142  */
143 static int selinux_secmark_enabled(void)
144 {
145 	return (atomic_read(&selinux_secmark_refcount) > 0);
146 }
147 
148 /*
149  * initialise the security for the init task
150  */
151 static void cred_init_security(void)
152 {
153 	struct cred *cred = (struct cred *) current->real_cred;
154 	struct task_security_struct *tsec;
155 
156 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
157 	if (!tsec)
158 		panic("SELinux:  Failed to initialize initial task.\n");
159 
160 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
161 	cred->security = tsec;
162 }
163 
164 /*
165  * get the security ID of a set of credentials
166  */
167 static inline u32 cred_sid(const struct cred *cred)
168 {
169 	const struct task_security_struct *tsec;
170 
171 	tsec = cred->security;
172 	return tsec->sid;
173 }
174 
175 /*
176  * get the objective security ID of a task
177  */
178 static inline u32 task_sid(const struct task_struct *task)
179 {
180 	u32 sid;
181 
182 	rcu_read_lock();
183 	sid = cred_sid(__task_cred(task));
184 	rcu_read_unlock();
185 	return sid;
186 }
187 
188 /*
189  * get the subjective security ID of the current task
190  */
191 static inline u32 current_sid(void)
192 {
193 	const struct task_security_struct *tsec = current_security();
194 
195 	return tsec->sid;
196 }
197 
198 /* Allocate and free functions for each kind of security blob. */
199 
200 static int inode_alloc_security(struct inode *inode)
201 {
202 	struct inode_security_struct *isec;
203 	u32 sid = current_sid();
204 
205 	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
206 	if (!isec)
207 		return -ENOMEM;
208 
209 	mutex_init(&isec->lock);
210 	INIT_LIST_HEAD(&isec->list);
211 	isec->inode = inode;
212 	isec->sid = SECINITSID_UNLABELED;
213 	isec->sclass = SECCLASS_FILE;
214 	isec->task_sid = sid;
215 	inode->i_security = isec;
216 
217 	return 0;
218 }
219 
220 static void inode_free_security(struct inode *inode)
221 {
222 	struct inode_security_struct *isec = inode->i_security;
223 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
224 
225 	spin_lock(&sbsec->isec_lock);
226 	if (!list_empty(&isec->list))
227 		list_del_init(&isec->list);
228 	spin_unlock(&sbsec->isec_lock);
229 
230 	inode->i_security = NULL;
231 	kmem_cache_free(sel_inode_cache, isec);
232 }
233 
234 static int file_alloc_security(struct file *file)
235 {
236 	struct file_security_struct *fsec;
237 	u32 sid = current_sid();
238 
239 	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
240 	if (!fsec)
241 		return -ENOMEM;
242 
243 	fsec->sid = sid;
244 	fsec->fown_sid = sid;
245 	file->f_security = fsec;
246 
247 	return 0;
248 }
249 
250 static void file_free_security(struct file *file)
251 {
252 	struct file_security_struct *fsec = file->f_security;
253 	file->f_security = NULL;
254 	kfree(fsec);
255 }
256 
257 static int superblock_alloc_security(struct super_block *sb)
258 {
259 	struct superblock_security_struct *sbsec;
260 
261 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
262 	if (!sbsec)
263 		return -ENOMEM;
264 
265 	mutex_init(&sbsec->lock);
266 	INIT_LIST_HEAD(&sbsec->isec_head);
267 	spin_lock_init(&sbsec->isec_lock);
268 	sbsec->sb = sb;
269 	sbsec->sid = SECINITSID_UNLABELED;
270 	sbsec->def_sid = SECINITSID_FILE;
271 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
272 	sb->s_security = sbsec;
273 
274 	return 0;
275 }
276 
277 static void superblock_free_security(struct super_block *sb)
278 {
279 	struct superblock_security_struct *sbsec = sb->s_security;
280 	sb->s_security = NULL;
281 	kfree(sbsec);
282 }
283 
284 /* The file system's label must be initialized prior to use. */
285 
286 static const char *labeling_behaviors[6] = {
287 	"uses xattr",
288 	"uses transition SIDs",
289 	"uses task SIDs",
290 	"uses genfs_contexts",
291 	"not configured for labeling",
292 	"uses mountpoint labeling",
293 };
294 
295 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
296 
297 static inline int inode_doinit(struct inode *inode)
298 {
299 	return inode_doinit_with_dentry(inode, NULL);
300 }
301 
302 enum {
303 	Opt_error = -1,
304 	Opt_context = 1,
305 	Opt_fscontext = 2,
306 	Opt_defcontext = 3,
307 	Opt_rootcontext = 4,
308 	Opt_labelsupport = 5,
309 };
310 
311 static const match_table_t tokens = {
312 	{Opt_context, CONTEXT_STR "%s"},
313 	{Opt_fscontext, FSCONTEXT_STR "%s"},
314 	{Opt_defcontext, DEFCONTEXT_STR "%s"},
315 	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
316 	{Opt_labelsupport, LABELSUPP_STR},
317 	{Opt_error, NULL},
318 };
319 
320 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
321 
322 static int may_context_mount_sb_relabel(u32 sid,
323 			struct superblock_security_struct *sbsec,
324 			const struct cred *cred)
325 {
326 	const struct task_security_struct *tsec = cred->security;
327 	int rc;
328 
329 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
330 			  FILESYSTEM__RELABELFROM, NULL);
331 	if (rc)
332 		return rc;
333 
334 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
335 			  FILESYSTEM__RELABELTO, NULL);
336 	return rc;
337 }
338 
339 static int may_context_mount_inode_relabel(u32 sid,
340 			struct superblock_security_struct *sbsec,
341 			const struct cred *cred)
342 {
343 	const struct task_security_struct *tsec = cred->security;
344 	int rc;
345 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
346 			  FILESYSTEM__RELABELFROM, NULL);
347 	if (rc)
348 		return rc;
349 
350 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
351 			  FILESYSTEM__ASSOCIATE, NULL);
352 	return rc;
353 }
354 
355 static int sb_finish_set_opts(struct super_block *sb)
356 {
357 	struct superblock_security_struct *sbsec = sb->s_security;
358 	struct dentry *root = sb->s_root;
359 	struct inode *root_inode = root->d_inode;
360 	int rc = 0;
361 
362 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
363 		/* Make sure that the xattr handler exists and that no
364 		   error other than -ENODATA is returned by getxattr on
365 		   the root directory.  -ENODATA is ok, as this may be
366 		   the first boot of the SELinux kernel before we have
367 		   assigned xattr values to the filesystem. */
368 		if (!root_inode->i_op->getxattr) {
369 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
370 			       "xattr support\n", sb->s_id, sb->s_type->name);
371 			rc = -EOPNOTSUPP;
372 			goto out;
373 		}
374 		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
375 		if (rc < 0 && rc != -ENODATA) {
376 			if (rc == -EOPNOTSUPP)
377 				printk(KERN_WARNING "SELinux: (dev %s, type "
378 				       "%s) has no security xattr handler\n",
379 				       sb->s_id, sb->s_type->name);
380 			else
381 				printk(KERN_WARNING "SELinux: (dev %s, type "
382 				       "%s) getxattr errno %d\n", sb->s_id,
383 				       sb->s_type->name, -rc);
384 			goto out;
385 		}
386 	}
387 
388 	sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
389 
390 	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
391 		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
392 		       sb->s_id, sb->s_type->name);
393 	else
394 		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
395 		       sb->s_id, sb->s_type->name,
396 		       labeling_behaviors[sbsec->behavior-1]);
397 
398 	if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
399 	    sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
400 	    sbsec->behavior == SECURITY_FS_USE_NONE ||
401 	    sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
402 		sbsec->flags &= ~SE_SBLABELSUPP;
403 
404 	/* Special handling for sysfs. Is genfs but also has setxattr handler*/
405 	if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
406 		sbsec->flags |= SE_SBLABELSUPP;
407 
408 	/* Initialize the root inode. */
409 	rc = inode_doinit_with_dentry(root_inode, root);
410 
411 	/* Initialize any other inodes associated with the superblock, e.g.
412 	   inodes created prior to initial policy load or inodes created
413 	   during get_sb by a pseudo filesystem that directly
414 	   populates itself. */
415 	spin_lock(&sbsec->isec_lock);
416 next_inode:
417 	if (!list_empty(&sbsec->isec_head)) {
418 		struct inode_security_struct *isec =
419 				list_entry(sbsec->isec_head.next,
420 					   struct inode_security_struct, list);
421 		struct inode *inode = isec->inode;
422 		spin_unlock(&sbsec->isec_lock);
423 		inode = igrab(inode);
424 		if (inode) {
425 			if (!IS_PRIVATE(inode))
426 				inode_doinit(inode);
427 			iput(inode);
428 		}
429 		spin_lock(&sbsec->isec_lock);
430 		list_del_init(&isec->list);
431 		goto next_inode;
432 	}
433 	spin_unlock(&sbsec->isec_lock);
434 out:
435 	return rc;
436 }
437 
438 /*
439  * This function should allow an FS to ask what it's mount security
440  * options were so it can use those later for submounts, displaying
441  * mount options, or whatever.
442  */
443 static int selinux_get_mnt_opts(const struct super_block *sb,
444 				struct security_mnt_opts *opts)
445 {
446 	int rc = 0, i;
447 	struct superblock_security_struct *sbsec = sb->s_security;
448 	char *context = NULL;
449 	u32 len;
450 	char tmp;
451 
452 	security_init_mnt_opts(opts);
453 
454 	if (!(sbsec->flags & SE_SBINITIALIZED))
455 		return -EINVAL;
456 
457 	if (!ss_initialized)
458 		return -EINVAL;
459 
460 	tmp = sbsec->flags & SE_MNTMASK;
461 	/* count the number of mount options for this sb */
462 	for (i = 0; i < 8; i++) {
463 		if (tmp & 0x01)
464 			opts->num_mnt_opts++;
465 		tmp >>= 1;
466 	}
467 	/* Check if the Label support flag is set */
468 	if (sbsec->flags & SE_SBLABELSUPP)
469 		opts->num_mnt_opts++;
470 
471 	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
472 	if (!opts->mnt_opts) {
473 		rc = -ENOMEM;
474 		goto out_free;
475 	}
476 
477 	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
478 	if (!opts->mnt_opts_flags) {
479 		rc = -ENOMEM;
480 		goto out_free;
481 	}
482 
483 	i = 0;
484 	if (sbsec->flags & FSCONTEXT_MNT) {
485 		rc = security_sid_to_context(sbsec->sid, &context, &len);
486 		if (rc)
487 			goto out_free;
488 		opts->mnt_opts[i] = context;
489 		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
490 	}
491 	if (sbsec->flags & CONTEXT_MNT) {
492 		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
493 		if (rc)
494 			goto out_free;
495 		opts->mnt_opts[i] = context;
496 		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
497 	}
498 	if (sbsec->flags & DEFCONTEXT_MNT) {
499 		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
500 		if (rc)
501 			goto out_free;
502 		opts->mnt_opts[i] = context;
503 		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
504 	}
505 	if (sbsec->flags & ROOTCONTEXT_MNT) {
506 		struct inode *root = sbsec->sb->s_root->d_inode;
507 		struct inode_security_struct *isec = root->i_security;
508 
509 		rc = security_sid_to_context(isec->sid, &context, &len);
510 		if (rc)
511 			goto out_free;
512 		opts->mnt_opts[i] = context;
513 		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
514 	}
515 	if (sbsec->flags & SE_SBLABELSUPP) {
516 		opts->mnt_opts[i] = NULL;
517 		opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
518 	}
519 
520 	BUG_ON(i != opts->num_mnt_opts);
521 
522 	return 0;
523 
524 out_free:
525 	security_free_mnt_opts(opts);
526 	return rc;
527 }
528 
529 static int bad_option(struct superblock_security_struct *sbsec, char flag,
530 		      u32 old_sid, u32 new_sid)
531 {
532 	char mnt_flags = sbsec->flags & SE_MNTMASK;
533 
534 	/* check if the old mount command had the same options */
535 	if (sbsec->flags & SE_SBINITIALIZED)
536 		if (!(sbsec->flags & flag) ||
537 		    (old_sid != new_sid))
538 			return 1;
539 
540 	/* check if we were passed the same options twice,
541 	 * aka someone passed context=a,context=b
542 	 */
543 	if (!(sbsec->flags & SE_SBINITIALIZED))
544 		if (mnt_flags & flag)
545 			return 1;
546 	return 0;
547 }
548 
549 /*
550  * Allow filesystems with binary mount data to explicitly set mount point
551  * labeling information.
552  */
553 static int selinux_set_mnt_opts(struct super_block *sb,
554 				struct security_mnt_opts *opts)
555 {
556 	const struct cred *cred = current_cred();
557 	int rc = 0, i;
558 	struct superblock_security_struct *sbsec = sb->s_security;
559 	const char *name = sb->s_type->name;
560 	struct inode *inode = sbsec->sb->s_root->d_inode;
561 	struct inode_security_struct *root_isec = inode->i_security;
562 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
563 	u32 defcontext_sid = 0;
564 	char **mount_options = opts->mnt_opts;
565 	int *flags = opts->mnt_opts_flags;
566 	int num_opts = opts->num_mnt_opts;
567 
568 	mutex_lock(&sbsec->lock);
569 
570 	if (!ss_initialized) {
571 		if (!num_opts) {
572 			/* Defer initialization until selinux_complete_init,
573 			   after the initial policy is loaded and the security
574 			   server is ready to handle calls. */
575 			goto out;
576 		}
577 		rc = -EINVAL;
578 		printk(KERN_WARNING "SELinux: Unable to set superblock options "
579 			"before the security server is initialized\n");
580 		goto out;
581 	}
582 
583 	/*
584 	 * Binary mount data FS will come through this function twice.  Once
585 	 * from an explicit call and once from the generic calls from the vfs.
586 	 * Since the generic VFS calls will not contain any security mount data
587 	 * we need to skip the double mount verification.
588 	 *
589 	 * This does open a hole in which we will not notice if the first
590 	 * mount using this sb set explict options and a second mount using
591 	 * this sb does not set any security options.  (The first options
592 	 * will be used for both mounts)
593 	 */
594 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
595 	    && (num_opts == 0))
596 		goto out;
597 
598 	/*
599 	 * parse the mount options, check if they are valid sids.
600 	 * also check if someone is trying to mount the same sb more
601 	 * than once with different security options.
602 	 */
603 	for (i = 0; i < num_opts; i++) {
604 		u32 sid;
605 
606 		if (flags[i] == SE_SBLABELSUPP)
607 			continue;
608 		rc = security_context_to_sid(mount_options[i],
609 					     strlen(mount_options[i]), &sid);
610 		if (rc) {
611 			printk(KERN_WARNING "SELinux: security_context_to_sid"
612 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
613 			       mount_options[i], sb->s_id, name, rc);
614 			goto out;
615 		}
616 		switch (flags[i]) {
617 		case FSCONTEXT_MNT:
618 			fscontext_sid = sid;
619 
620 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
621 					fscontext_sid))
622 				goto out_double_mount;
623 
624 			sbsec->flags |= FSCONTEXT_MNT;
625 			break;
626 		case CONTEXT_MNT:
627 			context_sid = sid;
628 
629 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
630 					context_sid))
631 				goto out_double_mount;
632 
633 			sbsec->flags |= CONTEXT_MNT;
634 			break;
635 		case ROOTCONTEXT_MNT:
636 			rootcontext_sid = sid;
637 
638 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
639 					rootcontext_sid))
640 				goto out_double_mount;
641 
642 			sbsec->flags |= ROOTCONTEXT_MNT;
643 
644 			break;
645 		case DEFCONTEXT_MNT:
646 			defcontext_sid = sid;
647 
648 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
649 					defcontext_sid))
650 				goto out_double_mount;
651 
652 			sbsec->flags |= DEFCONTEXT_MNT;
653 
654 			break;
655 		default:
656 			rc = -EINVAL;
657 			goto out;
658 		}
659 	}
660 
661 	if (sbsec->flags & SE_SBINITIALIZED) {
662 		/* previously mounted with options, but not on this attempt? */
663 		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
664 			goto out_double_mount;
665 		rc = 0;
666 		goto out;
667 	}
668 
669 	if (strcmp(sb->s_type->name, "proc") == 0)
670 		sbsec->flags |= SE_SBPROC;
671 
672 	/* Determine the labeling behavior to use for this filesystem type. */
673 	rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
674 	if (rc) {
675 		printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
676 		       __func__, sb->s_type->name, rc);
677 		goto out;
678 	}
679 
680 	/* sets the context of the superblock for the fs being mounted. */
681 	if (fscontext_sid) {
682 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
683 		if (rc)
684 			goto out;
685 
686 		sbsec->sid = fscontext_sid;
687 	}
688 
689 	/*
690 	 * Switch to using mount point labeling behavior.
691 	 * sets the label used on all file below the mountpoint, and will set
692 	 * the superblock context if not already set.
693 	 */
694 	if (context_sid) {
695 		if (!fscontext_sid) {
696 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
697 							  cred);
698 			if (rc)
699 				goto out;
700 			sbsec->sid = context_sid;
701 		} else {
702 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
703 							     cred);
704 			if (rc)
705 				goto out;
706 		}
707 		if (!rootcontext_sid)
708 			rootcontext_sid = context_sid;
709 
710 		sbsec->mntpoint_sid = context_sid;
711 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
712 	}
713 
714 	if (rootcontext_sid) {
715 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
716 						     cred);
717 		if (rc)
718 			goto out;
719 
720 		root_isec->sid = rootcontext_sid;
721 		root_isec->initialized = 1;
722 	}
723 
724 	if (defcontext_sid) {
725 		if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
726 			rc = -EINVAL;
727 			printk(KERN_WARNING "SELinux: defcontext option is "
728 			       "invalid for this filesystem type\n");
729 			goto out;
730 		}
731 
732 		if (defcontext_sid != sbsec->def_sid) {
733 			rc = may_context_mount_inode_relabel(defcontext_sid,
734 							     sbsec, cred);
735 			if (rc)
736 				goto out;
737 		}
738 
739 		sbsec->def_sid = defcontext_sid;
740 	}
741 
742 	rc = sb_finish_set_opts(sb);
743 out:
744 	mutex_unlock(&sbsec->lock);
745 	return rc;
746 out_double_mount:
747 	rc = -EINVAL;
748 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
749 	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
750 	goto out;
751 }
752 
753 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
754 					struct super_block *newsb)
755 {
756 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
757 	struct superblock_security_struct *newsbsec = newsb->s_security;
758 
759 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
760 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
761 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
762 
763 	/*
764 	 * if the parent was able to be mounted it clearly had no special lsm
765 	 * mount options.  thus we can safely deal with this superblock later
766 	 */
767 	if (!ss_initialized)
768 		return;
769 
770 	/* how can we clone if the old one wasn't set up?? */
771 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
772 
773 	/* if fs is reusing a sb, just let its options stand... */
774 	if (newsbsec->flags & SE_SBINITIALIZED)
775 		return;
776 
777 	mutex_lock(&newsbsec->lock);
778 
779 	newsbsec->flags = oldsbsec->flags;
780 
781 	newsbsec->sid = oldsbsec->sid;
782 	newsbsec->def_sid = oldsbsec->def_sid;
783 	newsbsec->behavior = oldsbsec->behavior;
784 
785 	if (set_context) {
786 		u32 sid = oldsbsec->mntpoint_sid;
787 
788 		if (!set_fscontext)
789 			newsbsec->sid = sid;
790 		if (!set_rootcontext) {
791 			struct inode *newinode = newsb->s_root->d_inode;
792 			struct inode_security_struct *newisec = newinode->i_security;
793 			newisec->sid = sid;
794 		}
795 		newsbsec->mntpoint_sid = sid;
796 	}
797 	if (set_rootcontext) {
798 		const struct inode *oldinode = oldsb->s_root->d_inode;
799 		const struct inode_security_struct *oldisec = oldinode->i_security;
800 		struct inode *newinode = newsb->s_root->d_inode;
801 		struct inode_security_struct *newisec = newinode->i_security;
802 
803 		newisec->sid = oldisec->sid;
804 	}
805 
806 	sb_finish_set_opts(newsb);
807 	mutex_unlock(&newsbsec->lock);
808 }
809 
810 static int selinux_parse_opts_str(char *options,
811 				  struct security_mnt_opts *opts)
812 {
813 	char *p;
814 	char *context = NULL, *defcontext = NULL;
815 	char *fscontext = NULL, *rootcontext = NULL;
816 	int rc, num_mnt_opts = 0;
817 
818 	opts->num_mnt_opts = 0;
819 
820 	/* Standard string-based options. */
821 	while ((p = strsep(&options, "|")) != NULL) {
822 		int token;
823 		substring_t args[MAX_OPT_ARGS];
824 
825 		if (!*p)
826 			continue;
827 
828 		token = match_token(p, tokens, args);
829 
830 		switch (token) {
831 		case Opt_context:
832 			if (context || defcontext) {
833 				rc = -EINVAL;
834 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
835 				goto out_err;
836 			}
837 			context = match_strdup(&args[0]);
838 			if (!context) {
839 				rc = -ENOMEM;
840 				goto out_err;
841 			}
842 			break;
843 
844 		case Opt_fscontext:
845 			if (fscontext) {
846 				rc = -EINVAL;
847 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
848 				goto out_err;
849 			}
850 			fscontext = match_strdup(&args[0]);
851 			if (!fscontext) {
852 				rc = -ENOMEM;
853 				goto out_err;
854 			}
855 			break;
856 
857 		case Opt_rootcontext:
858 			if (rootcontext) {
859 				rc = -EINVAL;
860 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
861 				goto out_err;
862 			}
863 			rootcontext = match_strdup(&args[0]);
864 			if (!rootcontext) {
865 				rc = -ENOMEM;
866 				goto out_err;
867 			}
868 			break;
869 
870 		case Opt_defcontext:
871 			if (context || defcontext) {
872 				rc = -EINVAL;
873 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
874 				goto out_err;
875 			}
876 			defcontext = match_strdup(&args[0]);
877 			if (!defcontext) {
878 				rc = -ENOMEM;
879 				goto out_err;
880 			}
881 			break;
882 		case Opt_labelsupport:
883 			break;
884 		default:
885 			rc = -EINVAL;
886 			printk(KERN_WARNING "SELinux:  unknown mount option\n");
887 			goto out_err;
888 
889 		}
890 	}
891 
892 	rc = -ENOMEM;
893 	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
894 	if (!opts->mnt_opts)
895 		goto out_err;
896 
897 	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
898 	if (!opts->mnt_opts_flags) {
899 		kfree(opts->mnt_opts);
900 		goto out_err;
901 	}
902 
903 	if (fscontext) {
904 		opts->mnt_opts[num_mnt_opts] = fscontext;
905 		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
906 	}
907 	if (context) {
908 		opts->mnt_opts[num_mnt_opts] = context;
909 		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
910 	}
911 	if (rootcontext) {
912 		opts->mnt_opts[num_mnt_opts] = rootcontext;
913 		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
914 	}
915 	if (defcontext) {
916 		opts->mnt_opts[num_mnt_opts] = defcontext;
917 		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
918 	}
919 
920 	opts->num_mnt_opts = num_mnt_opts;
921 	return 0;
922 
923 out_err:
924 	kfree(context);
925 	kfree(defcontext);
926 	kfree(fscontext);
927 	kfree(rootcontext);
928 	return rc;
929 }
930 /*
931  * string mount options parsing and call set the sbsec
932  */
933 static int superblock_doinit(struct super_block *sb, void *data)
934 {
935 	int rc = 0;
936 	char *options = data;
937 	struct security_mnt_opts opts;
938 
939 	security_init_mnt_opts(&opts);
940 
941 	if (!data)
942 		goto out;
943 
944 	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
945 
946 	rc = selinux_parse_opts_str(options, &opts);
947 	if (rc)
948 		goto out_err;
949 
950 out:
951 	rc = selinux_set_mnt_opts(sb, &opts);
952 
953 out_err:
954 	security_free_mnt_opts(&opts);
955 	return rc;
956 }
957 
958 static void selinux_write_opts(struct seq_file *m,
959 			       struct security_mnt_opts *opts)
960 {
961 	int i;
962 	char *prefix;
963 
964 	for (i = 0; i < opts->num_mnt_opts; i++) {
965 		char *has_comma;
966 
967 		if (opts->mnt_opts[i])
968 			has_comma = strchr(opts->mnt_opts[i], ',');
969 		else
970 			has_comma = NULL;
971 
972 		switch (opts->mnt_opts_flags[i]) {
973 		case CONTEXT_MNT:
974 			prefix = CONTEXT_STR;
975 			break;
976 		case FSCONTEXT_MNT:
977 			prefix = FSCONTEXT_STR;
978 			break;
979 		case ROOTCONTEXT_MNT:
980 			prefix = ROOTCONTEXT_STR;
981 			break;
982 		case DEFCONTEXT_MNT:
983 			prefix = DEFCONTEXT_STR;
984 			break;
985 		case SE_SBLABELSUPP:
986 			seq_putc(m, ',');
987 			seq_puts(m, LABELSUPP_STR);
988 			continue;
989 		default:
990 			BUG();
991 			return;
992 		};
993 		/* we need a comma before each option */
994 		seq_putc(m, ',');
995 		seq_puts(m, prefix);
996 		if (has_comma)
997 			seq_putc(m, '\"');
998 		seq_puts(m, opts->mnt_opts[i]);
999 		if (has_comma)
1000 			seq_putc(m, '\"');
1001 	}
1002 }
1003 
1004 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1005 {
1006 	struct security_mnt_opts opts;
1007 	int rc;
1008 
1009 	rc = selinux_get_mnt_opts(sb, &opts);
1010 	if (rc) {
1011 		/* before policy load we may get EINVAL, don't show anything */
1012 		if (rc == -EINVAL)
1013 			rc = 0;
1014 		return rc;
1015 	}
1016 
1017 	selinux_write_opts(m, &opts);
1018 
1019 	security_free_mnt_opts(&opts);
1020 
1021 	return rc;
1022 }
1023 
1024 static inline u16 inode_mode_to_security_class(umode_t mode)
1025 {
1026 	switch (mode & S_IFMT) {
1027 	case S_IFSOCK:
1028 		return SECCLASS_SOCK_FILE;
1029 	case S_IFLNK:
1030 		return SECCLASS_LNK_FILE;
1031 	case S_IFREG:
1032 		return SECCLASS_FILE;
1033 	case S_IFBLK:
1034 		return SECCLASS_BLK_FILE;
1035 	case S_IFDIR:
1036 		return SECCLASS_DIR;
1037 	case S_IFCHR:
1038 		return SECCLASS_CHR_FILE;
1039 	case S_IFIFO:
1040 		return SECCLASS_FIFO_FILE;
1041 
1042 	}
1043 
1044 	return SECCLASS_FILE;
1045 }
1046 
1047 static inline int default_protocol_stream(int protocol)
1048 {
1049 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1050 }
1051 
1052 static inline int default_protocol_dgram(int protocol)
1053 {
1054 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1055 }
1056 
1057 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1058 {
1059 	switch (family) {
1060 	case PF_UNIX:
1061 		switch (type) {
1062 		case SOCK_STREAM:
1063 		case SOCK_SEQPACKET:
1064 			return SECCLASS_UNIX_STREAM_SOCKET;
1065 		case SOCK_DGRAM:
1066 			return SECCLASS_UNIX_DGRAM_SOCKET;
1067 		}
1068 		break;
1069 	case PF_INET:
1070 	case PF_INET6:
1071 		switch (type) {
1072 		case SOCK_STREAM:
1073 			if (default_protocol_stream(protocol))
1074 				return SECCLASS_TCP_SOCKET;
1075 			else
1076 				return SECCLASS_RAWIP_SOCKET;
1077 		case SOCK_DGRAM:
1078 			if (default_protocol_dgram(protocol))
1079 				return SECCLASS_UDP_SOCKET;
1080 			else
1081 				return SECCLASS_RAWIP_SOCKET;
1082 		case SOCK_DCCP:
1083 			return SECCLASS_DCCP_SOCKET;
1084 		default:
1085 			return SECCLASS_RAWIP_SOCKET;
1086 		}
1087 		break;
1088 	case PF_NETLINK:
1089 		switch (protocol) {
1090 		case NETLINK_ROUTE:
1091 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1092 		case NETLINK_FIREWALL:
1093 			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1094 		case NETLINK_SOCK_DIAG:
1095 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1096 		case NETLINK_NFLOG:
1097 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1098 		case NETLINK_XFRM:
1099 			return SECCLASS_NETLINK_XFRM_SOCKET;
1100 		case NETLINK_SELINUX:
1101 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1102 		case NETLINK_AUDIT:
1103 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1104 		case NETLINK_IP6_FW:
1105 			return SECCLASS_NETLINK_IP6FW_SOCKET;
1106 		case NETLINK_DNRTMSG:
1107 			return SECCLASS_NETLINK_DNRT_SOCKET;
1108 		case NETLINK_KOBJECT_UEVENT:
1109 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1110 		default:
1111 			return SECCLASS_NETLINK_SOCKET;
1112 		}
1113 	case PF_PACKET:
1114 		return SECCLASS_PACKET_SOCKET;
1115 	case PF_KEY:
1116 		return SECCLASS_KEY_SOCKET;
1117 	case PF_APPLETALK:
1118 		return SECCLASS_APPLETALK_SOCKET;
1119 	}
1120 
1121 	return SECCLASS_SOCKET;
1122 }
1123 
1124 #ifdef CONFIG_PROC_FS
1125 static int selinux_proc_get_sid(struct dentry *dentry,
1126 				u16 tclass,
1127 				u32 *sid)
1128 {
1129 	int rc;
1130 	char *buffer, *path;
1131 
1132 	buffer = (char *)__get_free_page(GFP_KERNEL);
1133 	if (!buffer)
1134 		return -ENOMEM;
1135 
1136 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1137 	if (IS_ERR(path))
1138 		rc = PTR_ERR(path);
1139 	else {
1140 		/* each process gets a /proc/PID/ entry. Strip off the
1141 		 * PID part to get a valid selinux labeling.
1142 		 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1143 		while (path[1] >= '0' && path[1] <= '9') {
1144 			path[1] = '/';
1145 			path++;
1146 		}
1147 		rc = security_genfs_sid("proc", path, tclass, sid);
1148 	}
1149 	free_page((unsigned long)buffer);
1150 	return rc;
1151 }
1152 #else
1153 static int selinux_proc_get_sid(struct dentry *dentry,
1154 				u16 tclass,
1155 				u32 *sid)
1156 {
1157 	return -EINVAL;
1158 }
1159 #endif
1160 
1161 /* The inode's security attributes must be initialized before first use. */
1162 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1163 {
1164 	struct superblock_security_struct *sbsec = NULL;
1165 	struct inode_security_struct *isec = inode->i_security;
1166 	u32 sid;
1167 	struct dentry *dentry;
1168 #define INITCONTEXTLEN 255
1169 	char *context = NULL;
1170 	unsigned len = 0;
1171 	int rc = 0;
1172 
1173 	if (isec->initialized)
1174 		goto out;
1175 
1176 	mutex_lock(&isec->lock);
1177 	if (isec->initialized)
1178 		goto out_unlock;
1179 
1180 	sbsec = inode->i_sb->s_security;
1181 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1182 		/* Defer initialization until selinux_complete_init,
1183 		   after the initial policy is loaded and the security
1184 		   server is ready to handle calls. */
1185 		spin_lock(&sbsec->isec_lock);
1186 		if (list_empty(&isec->list))
1187 			list_add(&isec->list, &sbsec->isec_head);
1188 		spin_unlock(&sbsec->isec_lock);
1189 		goto out_unlock;
1190 	}
1191 
1192 	switch (sbsec->behavior) {
1193 	case SECURITY_FS_USE_XATTR:
1194 		if (!inode->i_op->getxattr) {
1195 			isec->sid = sbsec->def_sid;
1196 			break;
1197 		}
1198 
1199 		/* Need a dentry, since the xattr API requires one.
1200 		   Life would be simpler if we could just pass the inode. */
1201 		if (opt_dentry) {
1202 			/* Called from d_instantiate or d_splice_alias. */
1203 			dentry = dget(opt_dentry);
1204 		} else {
1205 			/* Called from selinux_complete_init, try to find a dentry. */
1206 			dentry = d_find_alias(inode);
1207 		}
1208 		if (!dentry) {
1209 			/*
1210 			 * this is can be hit on boot when a file is accessed
1211 			 * before the policy is loaded.  When we load policy we
1212 			 * may find inodes that have no dentry on the
1213 			 * sbsec->isec_head list.  No reason to complain as these
1214 			 * will get fixed up the next time we go through
1215 			 * inode_doinit with a dentry, before these inodes could
1216 			 * be used again by userspace.
1217 			 */
1218 			goto out_unlock;
1219 		}
1220 
1221 		len = INITCONTEXTLEN;
1222 		context = kmalloc(len+1, GFP_NOFS);
1223 		if (!context) {
1224 			rc = -ENOMEM;
1225 			dput(dentry);
1226 			goto out_unlock;
1227 		}
1228 		context[len] = '\0';
1229 		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1230 					   context, len);
1231 		if (rc == -ERANGE) {
1232 			kfree(context);
1233 
1234 			/* Need a larger buffer.  Query for the right size. */
1235 			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1236 						   NULL, 0);
1237 			if (rc < 0) {
1238 				dput(dentry);
1239 				goto out_unlock;
1240 			}
1241 			len = rc;
1242 			context = kmalloc(len+1, GFP_NOFS);
1243 			if (!context) {
1244 				rc = -ENOMEM;
1245 				dput(dentry);
1246 				goto out_unlock;
1247 			}
1248 			context[len] = '\0';
1249 			rc = inode->i_op->getxattr(dentry,
1250 						   XATTR_NAME_SELINUX,
1251 						   context, len);
1252 		}
1253 		dput(dentry);
1254 		if (rc < 0) {
1255 			if (rc != -ENODATA) {
1256 				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1257 				       "%d for dev=%s ino=%ld\n", __func__,
1258 				       -rc, inode->i_sb->s_id, inode->i_ino);
1259 				kfree(context);
1260 				goto out_unlock;
1261 			}
1262 			/* Map ENODATA to the default file SID */
1263 			sid = sbsec->def_sid;
1264 			rc = 0;
1265 		} else {
1266 			rc = security_context_to_sid_default(context, rc, &sid,
1267 							     sbsec->def_sid,
1268 							     GFP_NOFS);
1269 			if (rc) {
1270 				char *dev = inode->i_sb->s_id;
1271 				unsigned long ino = inode->i_ino;
1272 
1273 				if (rc == -EINVAL) {
1274 					if (printk_ratelimit())
1275 						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1276 							"context=%s.  This indicates you may need to relabel the inode or the "
1277 							"filesystem in question.\n", ino, dev, context);
1278 				} else {
1279 					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1280 					       "returned %d for dev=%s ino=%ld\n",
1281 					       __func__, context, -rc, dev, ino);
1282 				}
1283 				kfree(context);
1284 				/* Leave with the unlabeled SID */
1285 				rc = 0;
1286 				break;
1287 			}
1288 		}
1289 		kfree(context);
1290 		isec->sid = sid;
1291 		break;
1292 	case SECURITY_FS_USE_TASK:
1293 		isec->sid = isec->task_sid;
1294 		break;
1295 	case SECURITY_FS_USE_TRANS:
1296 		/* Default to the fs SID. */
1297 		isec->sid = sbsec->sid;
1298 
1299 		/* Try to obtain a transition SID. */
1300 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1301 		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1302 					     isec->sclass, NULL, &sid);
1303 		if (rc)
1304 			goto out_unlock;
1305 		isec->sid = sid;
1306 		break;
1307 	case SECURITY_FS_USE_MNTPOINT:
1308 		isec->sid = sbsec->mntpoint_sid;
1309 		break;
1310 	default:
1311 		/* Default to the fs superblock SID. */
1312 		isec->sid = sbsec->sid;
1313 
1314 		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1315 			if (opt_dentry) {
1316 				isec->sclass = inode_mode_to_security_class(inode->i_mode);
1317 				rc = selinux_proc_get_sid(opt_dentry,
1318 							  isec->sclass,
1319 							  &sid);
1320 				if (rc)
1321 					goto out_unlock;
1322 				isec->sid = sid;
1323 			}
1324 		}
1325 		break;
1326 	}
1327 
1328 	isec->initialized = 1;
1329 
1330 out_unlock:
1331 	mutex_unlock(&isec->lock);
1332 out:
1333 	if (isec->sclass == SECCLASS_FILE)
1334 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1335 	return rc;
1336 }
1337 
1338 /* Convert a Linux signal to an access vector. */
1339 static inline u32 signal_to_av(int sig)
1340 {
1341 	u32 perm = 0;
1342 
1343 	switch (sig) {
1344 	case SIGCHLD:
1345 		/* Commonly granted from child to parent. */
1346 		perm = PROCESS__SIGCHLD;
1347 		break;
1348 	case SIGKILL:
1349 		/* Cannot be caught or ignored */
1350 		perm = PROCESS__SIGKILL;
1351 		break;
1352 	case SIGSTOP:
1353 		/* Cannot be caught or ignored */
1354 		perm = PROCESS__SIGSTOP;
1355 		break;
1356 	default:
1357 		/* All other signals. */
1358 		perm = PROCESS__SIGNAL;
1359 		break;
1360 	}
1361 
1362 	return perm;
1363 }
1364 
1365 /*
1366  * Check permission between a pair of credentials
1367  * fork check, ptrace check, etc.
1368  */
1369 static int cred_has_perm(const struct cred *actor,
1370 			 const struct cred *target,
1371 			 u32 perms)
1372 {
1373 	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1374 
1375 	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1376 }
1377 
1378 /*
1379  * Check permission between a pair of tasks, e.g. signal checks,
1380  * fork check, ptrace check, etc.
1381  * tsk1 is the actor and tsk2 is the target
1382  * - this uses the default subjective creds of tsk1
1383  */
1384 static int task_has_perm(const struct task_struct *tsk1,
1385 			 const struct task_struct *tsk2,
1386 			 u32 perms)
1387 {
1388 	const struct task_security_struct *__tsec1, *__tsec2;
1389 	u32 sid1, sid2;
1390 
1391 	rcu_read_lock();
1392 	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1393 	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1394 	rcu_read_unlock();
1395 	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1396 }
1397 
1398 /*
1399  * Check permission between current and another task, e.g. signal checks,
1400  * fork check, ptrace check, etc.
1401  * current is the actor and tsk2 is the target
1402  * - this uses current's subjective creds
1403  */
1404 static int current_has_perm(const struct task_struct *tsk,
1405 			    u32 perms)
1406 {
1407 	u32 sid, tsid;
1408 
1409 	sid = current_sid();
1410 	tsid = task_sid(tsk);
1411 	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1412 }
1413 
1414 #if CAP_LAST_CAP > 63
1415 #error Fix SELinux to handle capabilities > 63.
1416 #endif
1417 
1418 /* Check whether a task is allowed to use a capability. */
1419 static int cred_has_capability(const struct cred *cred,
1420 			       int cap, int audit)
1421 {
1422 	struct common_audit_data ad;
1423 	struct av_decision avd;
1424 	u16 sclass;
1425 	u32 sid = cred_sid(cred);
1426 	u32 av = CAP_TO_MASK(cap);
1427 	int rc;
1428 
1429 	ad.type = LSM_AUDIT_DATA_CAP;
1430 	ad.u.cap = cap;
1431 
1432 	switch (CAP_TO_INDEX(cap)) {
1433 	case 0:
1434 		sclass = SECCLASS_CAPABILITY;
1435 		break;
1436 	case 1:
1437 		sclass = SECCLASS_CAPABILITY2;
1438 		break;
1439 	default:
1440 		printk(KERN_ERR
1441 		       "SELinux:  out of range capability %d\n", cap);
1442 		BUG();
1443 		return -EINVAL;
1444 	}
1445 
1446 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1447 	if (audit == SECURITY_CAP_AUDIT) {
1448 		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1449 		if (rc2)
1450 			return rc2;
1451 	}
1452 	return rc;
1453 }
1454 
1455 /* Check whether a task is allowed to use a system operation. */
1456 static int task_has_system(struct task_struct *tsk,
1457 			   u32 perms)
1458 {
1459 	u32 sid = task_sid(tsk);
1460 
1461 	return avc_has_perm(sid, SECINITSID_KERNEL,
1462 			    SECCLASS_SYSTEM, perms, NULL);
1463 }
1464 
1465 /* Check whether a task has a particular permission to an inode.
1466    The 'adp' parameter is optional and allows other audit
1467    data to be passed (e.g. the dentry). */
1468 static int inode_has_perm(const struct cred *cred,
1469 			  struct inode *inode,
1470 			  u32 perms,
1471 			  struct common_audit_data *adp,
1472 			  unsigned flags)
1473 {
1474 	struct inode_security_struct *isec;
1475 	u32 sid;
1476 
1477 	validate_creds(cred);
1478 
1479 	if (unlikely(IS_PRIVATE(inode)))
1480 		return 0;
1481 
1482 	sid = cred_sid(cred);
1483 	isec = inode->i_security;
1484 
1485 	return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1486 }
1487 
1488 /* Same as inode_has_perm, but pass explicit audit data containing
1489    the dentry to help the auditing code to more easily generate the
1490    pathname if needed. */
1491 static inline int dentry_has_perm(const struct cred *cred,
1492 				  struct dentry *dentry,
1493 				  u32 av)
1494 {
1495 	struct inode *inode = dentry->d_inode;
1496 	struct common_audit_data ad;
1497 
1498 	ad.type = LSM_AUDIT_DATA_DENTRY;
1499 	ad.u.dentry = dentry;
1500 	return inode_has_perm(cred, inode, av, &ad, 0);
1501 }
1502 
1503 /* Same as inode_has_perm, but pass explicit audit data containing
1504    the path to help the auditing code to more easily generate the
1505    pathname if needed. */
1506 static inline int path_has_perm(const struct cred *cred,
1507 				struct path *path,
1508 				u32 av)
1509 {
1510 	struct inode *inode = path->dentry->d_inode;
1511 	struct common_audit_data ad;
1512 
1513 	ad.type = LSM_AUDIT_DATA_PATH;
1514 	ad.u.path = *path;
1515 	return inode_has_perm(cred, inode, av, &ad, 0);
1516 }
1517 
1518 /* Check whether a task can use an open file descriptor to
1519    access an inode in a given way.  Check access to the
1520    descriptor itself, and then use dentry_has_perm to
1521    check a particular permission to the file.
1522    Access to the descriptor is implicitly granted if it
1523    has the same SID as the process.  If av is zero, then
1524    access to the file is not checked, e.g. for cases
1525    where only the descriptor is affected like seek. */
1526 static int file_has_perm(const struct cred *cred,
1527 			 struct file *file,
1528 			 u32 av)
1529 {
1530 	struct file_security_struct *fsec = file->f_security;
1531 	struct inode *inode = file->f_path.dentry->d_inode;
1532 	struct common_audit_data ad;
1533 	u32 sid = cred_sid(cred);
1534 	int rc;
1535 
1536 	ad.type = LSM_AUDIT_DATA_PATH;
1537 	ad.u.path = file->f_path;
1538 
1539 	if (sid != fsec->sid) {
1540 		rc = avc_has_perm(sid, fsec->sid,
1541 				  SECCLASS_FD,
1542 				  FD__USE,
1543 				  &ad);
1544 		if (rc)
1545 			goto out;
1546 	}
1547 
1548 	/* av is zero if only checking access to the descriptor. */
1549 	rc = 0;
1550 	if (av)
1551 		rc = inode_has_perm(cred, inode, av, &ad, 0);
1552 
1553 out:
1554 	return rc;
1555 }
1556 
1557 /* Check whether a task can create a file. */
1558 static int may_create(struct inode *dir,
1559 		      struct dentry *dentry,
1560 		      u16 tclass)
1561 {
1562 	const struct task_security_struct *tsec = current_security();
1563 	struct inode_security_struct *dsec;
1564 	struct superblock_security_struct *sbsec;
1565 	u32 sid, newsid;
1566 	struct common_audit_data ad;
1567 	int rc;
1568 
1569 	dsec = dir->i_security;
1570 	sbsec = dir->i_sb->s_security;
1571 
1572 	sid = tsec->sid;
1573 	newsid = tsec->create_sid;
1574 
1575 	ad.type = LSM_AUDIT_DATA_DENTRY;
1576 	ad.u.dentry = dentry;
1577 
1578 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1579 			  DIR__ADD_NAME | DIR__SEARCH,
1580 			  &ad);
1581 	if (rc)
1582 		return rc;
1583 
1584 	if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1585 		rc = security_transition_sid(sid, dsec->sid, tclass,
1586 					     &dentry->d_name, &newsid);
1587 		if (rc)
1588 			return rc;
1589 	}
1590 
1591 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1592 	if (rc)
1593 		return rc;
1594 
1595 	return avc_has_perm(newsid, sbsec->sid,
1596 			    SECCLASS_FILESYSTEM,
1597 			    FILESYSTEM__ASSOCIATE, &ad);
1598 }
1599 
1600 /* Check whether a task can create a key. */
1601 static int may_create_key(u32 ksid,
1602 			  struct task_struct *ctx)
1603 {
1604 	u32 sid = task_sid(ctx);
1605 
1606 	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1607 }
1608 
1609 #define MAY_LINK	0
1610 #define MAY_UNLINK	1
1611 #define MAY_RMDIR	2
1612 
1613 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1614 static int may_link(struct inode *dir,
1615 		    struct dentry *dentry,
1616 		    int kind)
1617 
1618 {
1619 	struct inode_security_struct *dsec, *isec;
1620 	struct common_audit_data ad;
1621 	u32 sid = current_sid();
1622 	u32 av;
1623 	int rc;
1624 
1625 	dsec = dir->i_security;
1626 	isec = dentry->d_inode->i_security;
1627 
1628 	ad.type = LSM_AUDIT_DATA_DENTRY;
1629 	ad.u.dentry = dentry;
1630 
1631 	av = DIR__SEARCH;
1632 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1633 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1634 	if (rc)
1635 		return rc;
1636 
1637 	switch (kind) {
1638 	case MAY_LINK:
1639 		av = FILE__LINK;
1640 		break;
1641 	case MAY_UNLINK:
1642 		av = FILE__UNLINK;
1643 		break;
1644 	case MAY_RMDIR:
1645 		av = DIR__RMDIR;
1646 		break;
1647 	default:
1648 		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1649 			__func__, kind);
1650 		return 0;
1651 	}
1652 
1653 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1654 	return rc;
1655 }
1656 
1657 static inline int may_rename(struct inode *old_dir,
1658 			     struct dentry *old_dentry,
1659 			     struct inode *new_dir,
1660 			     struct dentry *new_dentry)
1661 {
1662 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1663 	struct common_audit_data ad;
1664 	u32 sid = current_sid();
1665 	u32 av;
1666 	int old_is_dir, new_is_dir;
1667 	int rc;
1668 
1669 	old_dsec = old_dir->i_security;
1670 	old_isec = old_dentry->d_inode->i_security;
1671 	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1672 	new_dsec = new_dir->i_security;
1673 
1674 	ad.type = LSM_AUDIT_DATA_DENTRY;
1675 
1676 	ad.u.dentry = old_dentry;
1677 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1678 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1679 	if (rc)
1680 		return rc;
1681 	rc = avc_has_perm(sid, old_isec->sid,
1682 			  old_isec->sclass, FILE__RENAME, &ad);
1683 	if (rc)
1684 		return rc;
1685 	if (old_is_dir && new_dir != old_dir) {
1686 		rc = avc_has_perm(sid, old_isec->sid,
1687 				  old_isec->sclass, DIR__REPARENT, &ad);
1688 		if (rc)
1689 			return rc;
1690 	}
1691 
1692 	ad.u.dentry = new_dentry;
1693 	av = DIR__ADD_NAME | DIR__SEARCH;
1694 	if (new_dentry->d_inode)
1695 		av |= DIR__REMOVE_NAME;
1696 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1697 	if (rc)
1698 		return rc;
1699 	if (new_dentry->d_inode) {
1700 		new_isec = new_dentry->d_inode->i_security;
1701 		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1702 		rc = avc_has_perm(sid, new_isec->sid,
1703 				  new_isec->sclass,
1704 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1705 		if (rc)
1706 			return rc;
1707 	}
1708 
1709 	return 0;
1710 }
1711 
1712 /* Check whether a task can perform a filesystem operation. */
1713 static int superblock_has_perm(const struct cred *cred,
1714 			       struct super_block *sb,
1715 			       u32 perms,
1716 			       struct common_audit_data *ad)
1717 {
1718 	struct superblock_security_struct *sbsec;
1719 	u32 sid = cred_sid(cred);
1720 
1721 	sbsec = sb->s_security;
1722 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1723 }
1724 
1725 /* Convert a Linux mode and permission mask to an access vector. */
1726 static inline u32 file_mask_to_av(int mode, int mask)
1727 {
1728 	u32 av = 0;
1729 
1730 	if (!S_ISDIR(mode)) {
1731 		if (mask & MAY_EXEC)
1732 			av |= FILE__EXECUTE;
1733 		if (mask & MAY_READ)
1734 			av |= FILE__READ;
1735 
1736 		if (mask & MAY_APPEND)
1737 			av |= FILE__APPEND;
1738 		else if (mask & MAY_WRITE)
1739 			av |= FILE__WRITE;
1740 
1741 	} else {
1742 		if (mask & MAY_EXEC)
1743 			av |= DIR__SEARCH;
1744 		if (mask & MAY_WRITE)
1745 			av |= DIR__WRITE;
1746 		if (mask & MAY_READ)
1747 			av |= DIR__READ;
1748 	}
1749 
1750 	return av;
1751 }
1752 
1753 /* Convert a Linux file to an access vector. */
1754 static inline u32 file_to_av(struct file *file)
1755 {
1756 	u32 av = 0;
1757 
1758 	if (file->f_mode & FMODE_READ)
1759 		av |= FILE__READ;
1760 	if (file->f_mode & FMODE_WRITE) {
1761 		if (file->f_flags & O_APPEND)
1762 			av |= FILE__APPEND;
1763 		else
1764 			av |= FILE__WRITE;
1765 	}
1766 	if (!av) {
1767 		/*
1768 		 * Special file opened with flags 3 for ioctl-only use.
1769 		 */
1770 		av = FILE__IOCTL;
1771 	}
1772 
1773 	return av;
1774 }
1775 
1776 /*
1777  * Convert a file to an access vector and include the correct open
1778  * open permission.
1779  */
1780 static inline u32 open_file_to_av(struct file *file)
1781 {
1782 	u32 av = file_to_av(file);
1783 
1784 	if (selinux_policycap_openperm)
1785 		av |= FILE__OPEN;
1786 
1787 	return av;
1788 }
1789 
1790 /* Hook functions begin here. */
1791 
1792 static int selinux_ptrace_access_check(struct task_struct *child,
1793 				     unsigned int mode)
1794 {
1795 	int rc;
1796 
1797 	rc = cap_ptrace_access_check(child, mode);
1798 	if (rc)
1799 		return rc;
1800 
1801 	if (mode & PTRACE_MODE_READ) {
1802 		u32 sid = current_sid();
1803 		u32 csid = task_sid(child);
1804 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1805 	}
1806 
1807 	return current_has_perm(child, PROCESS__PTRACE);
1808 }
1809 
1810 static int selinux_ptrace_traceme(struct task_struct *parent)
1811 {
1812 	int rc;
1813 
1814 	rc = cap_ptrace_traceme(parent);
1815 	if (rc)
1816 		return rc;
1817 
1818 	return task_has_perm(parent, current, PROCESS__PTRACE);
1819 }
1820 
1821 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1822 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1823 {
1824 	int error;
1825 
1826 	error = current_has_perm(target, PROCESS__GETCAP);
1827 	if (error)
1828 		return error;
1829 
1830 	return cap_capget(target, effective, inheritable, permitted);
1831 }
1832 
1833 static int selinux_capset(struct cred *new, const struct cred *old,
1834 			  const kernel_cap_t *effective,
1835 			  const kernel_cap_t *inheritable,
1836 			  const kernel_cap_t *permitted)
1837 {
1838 	int error;
1839 
1840 	error = cap_capset(new, old,
1841 				      effective, inheritable, permitted);
1842 	if (error)
1843 		return error;
1844 
1845 	return cred_has_perm(old, new, PROCESS__SETCAP);
1846 }
1847 
1848 /*
1849  * (This comment used to live with the selinux_task_setuid hook,
1850  * which was removed).
1851  *
1852  * Since setuid only affects the current process, and since the SELinux
1853  * controls are not based on the Linux identity attributes, SELinux does not
1854  * need to control this operation.  However, SELinux does control the use of
1855  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1856  */
1857 
1858 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1859 			   int cap, int audit)
1860 {
1861 	int rc;
1862 
1863 	rc = cap_capable(cred, ns, cap, audit);
1864 	if (rc)
1865 		return rc;
1866 
1867 	return cred_has_capability(cred, cap, audit);
1868 }
1869 
1870 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1871 {
1872 	const struct cred *cred = current_cred();
1873 	int rc = 0;
1874 
1875 	if (!sb)
1876 		return 0;
1877 
1878 	switch (cmds) {
1879 	case Q_SYNC:
1880 	case Q_QUOTAON:
1881 	case Q_QUOTAOFF:
1882 	case Q_SETINFO:
1883 	case Q_SETQUOTA:
1884 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1885 		break;
1886 	case Q_GETFMT:
1887 	case Q_GETINFO:
1888 	case Q_GETQUOTA:
1889 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1890 		break;
1891 	default:
1892 		rc = 0;  /* let the kernel handle invalid cmds */
1893 		break;
1894 	}
1895 	return rc;
1896 }
1897 
1898 static int selinux_quota_on(struct dentry *dentry)
1899 {
1900 	const struct cred *cred = current_cred();
1901 
1902 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1903 }
1904 
1905 static int selinux_syslog(int type)
1906 {
1907 	int rc;
1908 
1909 	switch (type) {
1910 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
1911 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
1912 		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1913 		break;
1914 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
1915 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
1916 	/* Set level of messages printed to console */
1917 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1918 		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1919 		break;
1920 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1921 	case SYSLOG_ACTION_OPEN:	/* Open log */
1922 	case SYSLOG_ACTION_READ:	/* Read from log */
1923 	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
1924 	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
1925 	default:
1926 		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1927 		break;
1928 	}
1929 	return rc;
1930 }
1931 
1932 /*
1933  * Check that a process has enough memory to allocate a new virtual
1934  * mapping. 0 means there is enough memory for the allocation to
1935  * succeed and -ENOMEM implies there is not.
1936  *
1937  * Do not audit the selinux permission check, as this is applied to all
1938  * processes that allocate mappings.
1939  */
1940 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1941 {
1942 	int rc, cap_sys_admin = 0;
1943 
1944 	rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1945 			     SECURITY_CAP_NOAUDIT);
1946 	if (rc == 0)
1947 		cap_sys_admin = 1;
1948 
1949 	return __vm_enough_memory(mm, pages, cap_sys_admin);
1950 }
1951 
1952 /* binprm security operations */
1953 
1954 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1955 {
1956 	const struct task_security_struct *old_tsec;
1957 	struct task_security_struct *new_tsec;
1958 	struct inode_security_struct *isec;
1959 	struct common_audit_data ad;
1960 	struct inode *inode = bprm->file->f_path.dentry->d_inode;
1961 	int rc;
1962 
1963 	rc = cap_bprm_set_creds(bprm);
1964 	if (rc)
1965 		return rc;
1966 
1967 	/* SELinux context only depends on initial program or script and not
1968 	 * the script interpreter */
1969 	if (bprm->cred_prepared)
1970 		return 0;
1971 
1972 	old_tsec = current_security();
1973 	new_tsec = bprm->cred->security;
1974 	isec = inode->i_security;
1975 
1976 	/* Default to the current task SID. */
1977 	new_tsec->sid = old_tsec->sid;
1978 	new_tsec->osid = old_tsec->sid;
1979 
1980 	/* Reset fs, key, and sock SIDs on execve. */
1981 	new_tsec->create_sid = 0;
1982 	new_tsec->keycreate_sid = 0;
1983 	new_tsec->sockcreate_sid = 0;
1984 
1985 	if (old_tsec->exec_sid) {
1986 		new_tsec->sid = old_tsec->exec_sid;
1987 		/* Reset exec SID on execve. */
1988 		new_tsec->exec_sid = 0;
1989 
1990 		/*
1991 		 * Minimize confusion: if no_new_privs and a transition is
1992 		 * explicitly requested, then fail the exec.
1993 		 */
1994 		if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
1995 			return -EPERM;
1996 	} else {
1997 		/* Check for a default transition on this program. */
1998 		rc = security_transition_sid(old_tsec->sid, isec->sid,
1999 					     SECCLASS_PROCESS, NULL,
2000 					     &new_tsec->sid);
2001 		if (rc)
2002 			return rc;
2003 	}
2004 
2005 	ad.type = LSM_AUDIT_DATA_PATH;
2006 	ad.u.path = bprm->file->f_path;
2007 
2008 	if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2009 	    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2010 		new_tsec->sid = old_tsec->sid;
2011 
2012 	if (new_tsec->sid == old_tsec->sid) {
2013 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2014 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2015 		if (rc)
2016 			return rc;
2017 	} else {
2018 		/* Check permissions for the transition. */
2019 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2020 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2021 		if (rc)
2022 			return rc;
2023 
2024 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2025 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2026 		if (rc)
2027 			return rc;
2028 
2029 		/* Check for shared state */
2030 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2031 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2032 					  SECCLASS_PROCESS, PROCESS__SHARE,
2033 					  NULL);
2034 			if (rc)
2035 				return -EPERM;
2036 		}
2037 
2038 		/* Make sure that anyone attempting to ptrace over a task that
2039 		 * changes its SID has the appropriate permit */
2040 		if (bprm->unsafe &
2041 		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2042 			struct task_struct *tracer;
2043 			struct task_security_struct *sec;
2044 			u32 ptsid = 0;
2045 
2046 			rcu_read_lock();
2047 			tracer = ptrace_parent(current);
2048 			if (likely(tracer != NULL)) {
2049 				sec = __task_cred(tracer)->security;
2050 				ptsid = sec->sid;
2051 			}
2052 			rcu_read_unlock();
2053 
2054 			if (ptsid != 0) {
2055 				rc = avc_has_perm(ptsid, new_tsec->sid,
2056 						  SECCLASS_PROCESS,
2057 						  PROCESS__PTRACE, NULL);
2058 				if (rc)
2059 					return -EPERM;
2060 			}
2061 		}
2062 
2063 		/* Clear any possibly unsafe personality bits on exec: */
2064 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2065 	}
2066 
2067 	return 0;
2068 }
2069 
2070 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2071 {
2072 	const struct task_security_struct *tsec = current_security();
2073 	u32 sid, osid;
2074 	int atsecure = 0;
2075 
2076 	sid = tsec->sid;
2077 	osid = tsec->osid;
2078 
2079 	if (osid != sid) {
2080 		/* Enable secure mode for SIDs transitions unless
2081 		   the noatsecure permission is granted between
2082 		   the two SIDs, i.e. ahp returns 0. */
2083 		atsecure = avc_has_perm(osid, sid,
2084 					SECCLASS_PROCESS,
2085 					PROCESS__NOATSECURE, NULL);
2086 	}
2087 
2088 	return (atsecure || cap_bprm_secureexec(bprm));
2089 }
2090 
2091 static int match_file(const void *p, struct file *file, unsigned fd)
2092 {
2093 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2094 }
2095 
2096 /* Derived from fs/exec.c:flush_old_files. */
2097 static inline void flush_unauthorized_files(const struct cred *cred,
2098 					    struct files_struct *files)
2099 {
2100 	struct file *file, *devnull = NULL;
2101 	struct tty_struct *tty;
2102 	int drop_tty = 0;
2103 	unsigned n;
2104 
2105 	tty = get_current_tty();
2106 	if (tty) {
2107 		spin_lock(&tty_files_lock);
2108 		if (!list_empty(&tty->tty_files)) {
2109 			struct tty_file_private *file_priv;
2110 
2111 			/* Revalidate access to controlling tty.
2112 			   Use path_has_perm on the tty path directly rather
2113 			   than using file_has_perm, as this particular open
2114 			   file may belong to another process and we are only
2115 			   interested in the inode-based check here. */
2116 			file_priv = list_first_entry(&tty->tty_files,
2117 						struct tty_file_private, list);
2118 			file = file_priv->file;
2119 			if (path_has_perm(cred, &file->f_path, FILE__READ | FILE__WRITE))
2120 				drop_tty = 1;
2121 		}
2122 		spin_unlock(&tty_files_lock);
2123 		tty_kref_put(tty);
2124 	}
2125 	/* Reset controlling tty. */
2126 	if (drop_tty)
2127 		no_tty();
2128 
2129 	/* Revalidate access to inherited open files. */
2130 	n = iterate_fd(files, 0, match_file, cred);
2131 	if (!n) /* none found? */
2132 		return;
2133 
2134 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2135 	if (!IS_ERR(devnull)) {
2136 		/* replace all the matching ones with this */
2137 		do {
2138 			replace_fd(n - 1, get_file(devnull), 0);
2139 		} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2140 		fput(devnull);
2141 	} else {
2142 		/* just close all the matching ones */
2143 		do {
2144 			replace_fd(n - 1, NULL, 0);
2145 		} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2146 	}
2147 }
2148 
2149 /*
2150  * Prepare a process for imminent new credential changes due to exec
2151  */
2152 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2153 {
2154 	struct task_security_struct *new_tsec;
2155 	struct rlimit *rlim, *initrlim;
2156 	int rc, i;
2157 
2158 	new_tsec = bprm->cred->security;
2159 	if (new_tsec->sid == new_tsec->osid)
2160 		return;
2161 
2162 	/* Close files for which the new task SID is not authorized. */
2163 	flush_unauthorized_files(bprm->cred, current->files);
2164 
2165 	/* Always clear parent death signal on SID transitions. */
2166 	current->pdeath_signal = 0;
2167 
2168 	/* Check whether the new SID can inherit resource limits from the old
2169 	 * SID.  If not, reset all soft limits to the lower of the current
2170 	 * task's hard limit and the init task's soft limit.
2171 	 *
2172 	 * Note that the setting of hard limits (even to lower them) can be
2173 	 * controlled by the setrlimit check.  The inclusion of the init task's
2174 	 * soft limit into the computation is to avoid resetting soft limits
2175 	 * higher than the default soft limit for cases where the default is
2176 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2177 	 */
2178 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2179 			  PROCESS__RLIMITINH, NULL);
2180 	if (rc) {
2181 		/* protect against do_prlimit() */
2182 		task_lock(current);
2183 		for (i = 0; i < RLIM_NLIMITS; i++) {
2184 			rlim = current->signal->rlim + i;
2185 			initrlim = init_task.signal->rlim + i;
2186 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2187 		}
2188 		task_unlock(current);
2189 		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2190 	}
2191 }
2192 
2193 /*
2194  * Clean up the process immediately after the installation of new credentials
2195  * due to exec
2196  */
2197 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2198 {
2199 	const struct task_security_struct *tsec = current_security();
2200 	struct itimerval itimer;
2201 	u32 osid, sid;
2202 	int rc, i;
2203 
2204 	osid = tsec->osid;
2205 	sid = tsec->sid;
2206 
2207 	if (sid == osid)
2208 		return;
2209 
2210 	/* Check whether the new SID can inherit signal state from the old SID.
2211 	 * If not, clear itimers to avoid subsequent signal generation and
2212 	 * flush and unblock signals.
2213 	 *
2214 	 * This must occur _after_ the task SID has been updated so that any
2215 	 * kill done after the flush will be checked against the new SID.
2216 	 */
2217 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2218 	if (rc) {
2219 		memset(&itimer, 0, sizeof itimer);
2220 		for (i = 0; i < 3; i++)
2221 			do_setitimer(i, &itimer, NULL);
2222 		spin_lock_irq(&current->sighand->siglock);
2223 		if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2224 			__flush_signals(current);
2225 			flush_signal_handlers(current, 1);
2226 			sigemptyset(&current->blocked);
2227 		}
2228 		spin_unlock_irq(&current->sighand->siglock);
2229 	}
2230 
2231 	/* Wake up the parent if it is waiting so that it can recheck
2232 	 * wait permission to the new task SID. */
2233 	read_lock(&tasklist_lock);
2234 	__wake_up_parent(current, current->real_parent);
2235 	read_unlock(&tasklist_lock);
2236 }
2237 
2238 /* superblock security operations */
2239 
2240 static int selinux_sb_alloc_security(struct super_block *sb)
2241 {
2242 	return superblock_alloc_security(sb);
2243 }
2244 
2245 static void selinux_sb_free_security(struct super_block *sb)
2246 {
2247 	superblock_free_security(sb);
2248 }
2249 
2250 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2251 {
2252 	if (plen > olen)
2253 		return 0;
2254 
2255 	return !memcmp(prefix, option, plen);
2256 }
2257 
2258 static inline int selinux_option(char *option, int len)
2259 {
2260 	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2261 		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2262 		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2263 		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2264 		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2265 }
2266 
2267 static inline void take_option(char **to, char *from, int *first, int len)
2268 {
2269 	if (!*first) {
2270 		**to = ',';
2271 		*to += 1;
2272 	} else
2273 		*first = 0;
2274 	memcpy(*to, from, len);
2275 	*to += len;
2276 }
2277 
2278 static inline void take_selinux_option(char **to, char *from, int *first,
2279 				       int len)
2280 {
2281 	int current_size = 0;
2282 
2283 	if (!*first) {
2284 		**to = '|';
2285 		*to += 1;
2286 	} else
2287 		*first = 0;
2288 
2289 	while (current_size < len) {
2290 		if (*from != '"') {
2291 			**to = *from;
2292 			*to += 1;
2293 		}
2294 		from += 1;
2295 		current_size += 1;
2296 	}
2297 }
2298 
2299 static int selinux_sb_copy_data(char *orig, char *copy)
2300 {
2301 	int fnosec, fsec, rc = 0;
2302 	char *in_save, *in_curr, *in_end;
2303 	char *sec_curr, *nosec_save, *nosec;
2304 	int open_quote = 0;
2305 
2306 	in_curr = orig;
2307 	sec_curr = copy;
2308 
2309 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2310 	if (!nosec) {
2311 		rc = -ENOMEM;
2312 		goto out;
2313 	}
2314 
2315 	nosec_save = nosec;
2316 	fnosec = fsec = 1;
2317 	in_save = in_end = orig;
2318 
2319 	do {
2320 		if (*in_end == '"')
2321 			open_quote = !open_quote;
2322 		if ((*in_end == ',' && open_quote == 0) ||
2323 				*in_end == '\0') {
2324 			int len = in_end - in_curr;
2325 
2326 			if (selinux_option(in_curr, len))
2327 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2328 			else
2329 				take_option(&nosec, in_curr, &fnosec, len);
2330 
2331 			in_curr = in_end + 1;
2332 		}
2333 	} while (*in_end++);
2334 
2335 	strcpy(in_save, nosec_save);
2336 	free_page((unsigned long)nosec_save);
2337 out:
2338 	return rc;
2339 }
2340 
2341 static int selinux_sb_remount(struct super_block *sb, void *data)
2342 {
2343 	int rc, i, *flags;
2344 	struct security_mnt_opts opts;
2345 	char *secdata, **mount_options;
2346 	struct superblock_security_struct *sbsec = sb->s_security;
2347 
2348 	if (!(sbsec->flags & SE_SBINITIALIZED))
2349 		return 0;
2350 
2351 	if (!data)
2352 		return 0;
2353 
2354 	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2355 		return 0;
2356 
2357 	security_init_mnt_opts(&opts);
2358 	secdata = alloc_secdata();
2359 	if (!secdata)
2360 		return -ENOMEM;
2361 	rc = selinux_sb_copy_data(data, secdata);
2362 	if (rc)
2363 		goto out_free_secdata;
2364 
2365 	rc = selinux_parse_opts_str(secdata, &opts);
2366 	if (rc)
2367 		goto out_free_secdata;
2368 
2369 	mount_options = opts.mnt_opts;
2370 	flags = opts.mnt_opts_flags;
2371 
2372 	for (i = 0; i < opts.num_mnt_opts; i++) {
2373 		u32 sid;
2374 		size_t len;
2375 
2376 		if (flags[i] == SE_SBLABELSUPP)
2377 			continue;
2378 		len = strlen(mount_options[i]);
2379 		rc = security_context_to_sid(mount_options[i], len, &sid);
2380 		if (rc) {
2381 			printk(KERN_WARNING "SELinux: security_context_to_sid"
2382 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2383 			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2384 			goto out_free_opts;
2385 		}
2386 		rc = -EINVAL;
2387 		switch (flags[i]) {
2388 		case FSCONTEXT_MNT:
2389 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2390 				goto out_bad_option;
2391 			break;
2392 		case CONTEXT_MNT:
2393 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2394 				goto out_bad_option;
2395 			break;
2396 		case ROOTCONTEXT_MNT: {
2397 			struct inode_security_struct *root_isec;
2398 			root_isec = sb->s_root->d_inode->i_security;
2399 
2400 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2401 				goto out_bad_option;
2402 			break;
2403 		}
2404 		case DEFCONTEXT_MNT:
2405 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2406 				goto out_bad_option;
2407 			break;
2408 		default:
2409 			goto out_free_opts;
2410 		}
2411 	}
2412 
2413 	rc = 0;
2414 out_free_opts:
2415 	security_free_mnt_opts(&opts);
2416 out_free_secdata:
2417 	free_secdata(secdata);
2418 	return rc;
2419 out_bad_option:
2420 	printk(KERN_WARNING "SELinux: unable to change security options "
2421 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2422 	       sb->s_type->name);
2423 	goto out_free_opts;
2424 }
2425 
2426 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2427 {
2428 	const struct cred *cred = current_cred();
2429 	struct common_audit_data ad;
2430 	int rc;
2431 
2432 	rc = superblock_doinit(sb, data);
2433 	if (rc)
2434 		return rc;
2435 
2436 	/* Allow all mounts performed by the kernel */
2437 	if (flags & MS_KERNMOUNT)
2438 		return 0;
2439 
2440 	ad.type = LSM_AUDIT_DATA_DENTRY;
2441 	ad.u.dentry = sb->s_root;
2442 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2443 }
2444 
2445 static int selinux_sb_statfs(struct dentry *dentry)
2446 {
2447 	const struct cred *cred = current_cred();
2448 	struct common_audit_data ad;
2449 
2450 	ad.type = LSM_AUDIT_DATA_DENTRY;
2451 	ad.u.dentry = dentry->d_sb->s_root;
2452 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2453 }
2454 
2455 static int selinux_mount(const char *dev_name,
2456 			 struct path *path,
2457 			 const char *type,
2458 			 unsigned long flags,
2459 			 void *data)
2460 {
2461 	const struct cred *cred = current_cred();
2462 
2463 	if (flags & MS_REMOUNT)
2464 		return superblock_has_perm(cred, path->dentry->d_sb,
2465 					   FILESYSTEM__REMOUNT, NULL);
2466 	else
2467 		return path_has_perm(cred, path, FILE__MOUNTON);
2468 }
2469 
2470 static int selinux_umount(struct vfsmount *mnt, int flags)
2471 {
2472 	const struct cred *cred = current_cred();
2473 
2474 	return superblock_has_perm(cred, mnt->mnt_sb,
2475 				   FILESYSTEM__UNMOUNT, NULL);
2476 }
2477 
2478 /* inode security operations */
2479 
2480 static int selinux_inode_alloc_security(struct inode *inode)
2481 {
2482 	return inode_alloc_security(inode);
2483 }
2484 
2485 static void selinux_inode_free_security(struct inode *inode)
2486 {
2487 	inode_free_security(inode);
2488 }
2489 
2490 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2491 				       const struct qstr *qstr, char **name,
2492 				       void **value, size_t *len)
2493 {
2494 	const struct task_security_struct *tsec = current_security();
2495 	struct inode_security_struct *dsec;
2496 	struct superblock_security_struct *sbsec;
2497 	u32 sid, newsid, clen;
2498 	int rc;
2499 	char *namep = NULL, *context;
2500 
2501 	dsec = dir->i_security;
2502 	sbsec = dir->i_sb->s_security;
2503 
2504 	sid = tsec->sid;
2505 	newsid = tsec->create_sid;
2506 
2507 	if ((sbsec->flags & SE_SBINITIALIZED) &&
2508 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2509 		newsid = sbsec->mntpoint_sid;
2510 	else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2511 		rc = security_transition_sid(sid, dsec->sid,
2512 					     inode_mode_to_security_class(inode->i_mode),
2513 					     qstr, &newsid);
2514 		if (rc) {
2515 			printk(KERN_WARNING "%s:  "
2516 			       "security_transition_sid failed, rc=%d (dev=%s "
2517 			       "ino=%ld)\n",
2518 			       __func__,
2519 			       -rc, inode->i_sb->s_id, inode->i_ino);
2520 			return rc;
2521 		}
2522 	}
2523 
2524 	/* Possibly defer initialization to selinux_complete_init. */
2525 	if (sbsec->flags & SE_SBINITIALIZED) {
2526 		struct inode_security_struct *isec = inode->i_security;
2527 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2528 		isec->sid = newsid;
2529 		isec->initialized = 1;
2530 	}
2531 
2532 	if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2533 		return -EOPNOTSUPP;
2534 
2535 	if (name) {
2536 		namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2537 		if (!namep)
2538 			return -ENOMEM;
2539 		*name = namep;
2540 	}
2541 
2542 	if (value && len) {
2543 		rc = security_sid_to_context_force(newsid, &context, &clen);
2544 		if (rc) {
2545 			kfree(namep);
2546 			return rc;
2547 		}
2548 		*value = context;
2549 		*len = clen;
2550 	}
2551 
2552 	return 0;
2553 }
2554 
2555 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2556 {
2557 	return may_create(dir, dentry, SECCLASS_FILE);
2558 }
2559 
2560 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2561 {
2562 	return may_link(dir, old_dentry, MAY_LINK);
2563 }
2564 
2565 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2566 {
2567 	return may_link(dir, dentry, MAY_UNLINK);
2568 }
2569 
2570 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2571 {
2572 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2573 }
2574 
2575 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2576 {
2577 	return may_create(dir, dentry, SECCLASS_DIR);
2578 }
2579 
2580 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2581 {
2582 	return may_link(dir, dentry, MAY_RMDIR);
2583 }
2584 
2585 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2586 {
2587 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2588 }
2589 
2590 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2591 				struct inode *new_inode, struct dentry *new_dentry)
2592 {
2593 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2594 }
2595 
2596 static int selinux_inode_readlink(struct dentry *dentry)
2597 {
2598 	const struct cred *cred = current_cred();
2599 
2600 	return dentry_has_perm(cred, dentry, FILE__READ);
2601 }
2602 
2603 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2604 {
2605 	const struct cred *cred = current_cred();
2606 
2607 	return dentry_has_perm(cred, dentry, FILE__READ);
2608 }
2609 
2610 static noinline int audit_inode_permission(struct inode *inode,
2611 					   u32 perms, u32 audited, u32 denied,
2612 					   unsigned flags)
2613 {
2614 	struct common_audit_data ad;
2615 	struct inode_security_struct *isec = inode->i_security;
2616 	int rc;
2617 
2618 	ad.type = LSM_AUDIT_DATA_INODE;
2619 	ad.u.inode = inode;
2620 
2621 	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2622 			    audited, denied, &ad, flags);
2623 	if (rc)
2624 		return rc;
2625 	return 0;
2626 }
2627 
2628 static int selinux_inode_permission(struct inode *inode, int mask)
2629 {
2630 	const struct cred *cred = current_cred();
2631 	u32 perms;
2632 	bool from_access;
2633 	unsigned flags = mask & MAY_NOT_BLOCK;
2634 	struct inode_security_struct *isec;
2635 	u32 sid;
2636 	struct av_decision avd;
2637 	int rc, rc2;
2638 	u32 audited, denied;
2639 
2640 	from_access = mask & MAY_ACCESS;
2641 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2642 
2643 	/* No permission to check.  Existence test. */
2644 	if (!mask)
2645 		return 0;
2646 
2647 	validate_creds(cred);
2648 
2649 	if (unlikely(IS_PRIVATE(inode)))
2650 		return 0;
2651 
2652 	perms = file_mask_to_av(inode->i_mode, mask);
2653 
2654 	sid = cred_sid(cred);
2655 	isec = inode->i_security;
2656 
2657 	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2658 	audited = avc_audit_required(perms, &avd, rc,
2659 				     from_access ? FILE__AUDIT_ACCESS : 0,
2660 				     &denied);
2661 	if (likely(!audited))
2662 		return rc;
2663 
2664 	rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2665 	if (rc2)
2666 		return rc2;
2667 	return rc;
2668 }
2669 
2670 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2671 {
2672 	const struct cred *cred = current_cred();
2673 	unsigned int ia_valid = iattr->ia_valid;
2674 	__u32 av = FILE__WRITE;
2675 
2676 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2677 	if (ia_valid & ATTR_FORCE) {
2678 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2679 			      ATTR_FORCE);
2680 		if (!ia_valid)
2681 			return 0;
2682 	}
2683 
2684 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2685 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2686 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
2687 
2688 	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2689 		av |= FILE__OPEN;
2690 
2691 	return dentry_has_perm(cred, dentry, av);
2692 }
2693 
2694 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2695 {
2696 	const struct cred *cred = current_cred();
2697 	struct path path;
2698 
2699 	path.dentry = dentry;
2700 	path.mnt = mnt;
2701 
2702 	return path_has_perm(cred, &path, FILE__GETATTR);
2703 }
2704 
2705 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2706 {
2707 	const struct cred *cred = current_cred();
2708 
2709 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2710 		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2711 		if (!strcmp(name, XATTR_NAME_CAPS)) {
2712 			if (!capable(CAP_SETFCAP))
2713 				return -EPERM;
2714 		} else if (!capable(CAP_SYS_ADMIN)) {
2715 			/* A different attribute in the security namespace.
2716 			   Restrict to administrator. */
2717 			return -EPERM;
2718 		}
2719 	}
2720 
2721 	/* Not an attribute we recognize, so just check the
2722 	   ordinary setattr permission. */
2723 	return dentry_has_perm(cred, dentry, FILE__SETATTR);
2724 }
2725 
2726 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2727 				  const void *value, size_t size, int flags)
2728 {
2729 	struct inode *inode = dentry->d_inode;
2730 	struct inode_security_struct *isec = inode->i_security;
2731 	struct superblock_security_struct *sbsec;
2732 	struct common_audit_data ad;
2733 	u32 newsid, sid = current_sid();
2734 	int rc = 0;
2735 
2736 	if (strcmp(name, XATTR_NAME_SELINUX))
2737 		return selinux_inode_setotherxattr(dentry, name);
2738 
2739 	sbsec = inode->i_sb->s_security;
2740 	if (!(sbsec->flags & SE_SBLABELSUPP))
2741 		return -EOPNOTSUPP;
2742 
2743 	if (!inode_owner_or_capable(inode))
2744 		return -EPERM;
2745 
2746 	ad.type = LSM_AUDIT_DATA_DENTRY;
2747 	ad.u.dentry = dentry;
2748 
2749 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
2750 			  FILE__RELABELFROM, &ad);
2751 	if (rc)
2752 		return rc;
2753 
2754 	rc = security_context_to_sid(value, size, &newsid);
2755 	if (rc == -EINVAL) {
2756 		if (!capable(CAP_MAC_ADMIN)) {
2757 			struct audit_buffer *ab;
2758 			size_t audit_size;
2759 			const char *str;
2760 
2761 			/* We strip a nul only if it is at the end, otherwise the
2762 			 * context contains a nul and we should audit that */
2763 			if (value) {
2764 				str = value;
2765 				if (str[size - 1] == '\0')
2766 					audit_size = size - 1;
2767 				else
2768 					audit_size = size;
2769 			} else {
2770 				str = "";
2771 				audit_size = 0;
2772 			}
2773 			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2774 			audit_log_format(ab, "op=setxattr invalid_context=");
2775 			audit_log_n_untrustedstring(ab, value, audit_size);
2776 			audit_log_end(ab);
2777 
2778 			return rc;
2779 		}
2780 		rc = security_context_to_sid_force(value, size, &newsid);
2781 	}
2782 	if (rc)
2783 		return rc;
2784 
2785 	rc = avc_has_perm(sid, newsid, isec->sclass,
2786 			  FILE__RELABELTO, &ad);
2787 	if (rc)
2788 		return rc;
2789 
2790 	rc = security_validate_transition(isec->sid, newsid, sid,
2791 					  isec->sclass);
2792 	if (rc)
2793 		return rc;
2794 
2795 	return avc_has_perm(newsid,
2796 			    sbsec->sid,
2797 			    SECCLASS_FILESYSTEM,
2798 			    FILESYSTEM__ASSOCIATE,
2799 			    &ad);
2800 }
2801 
2802 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2803 					const void *value, size_t size,
2804 					int flags)
2805 {
2806 	struct inode *inode = dentry->d_inode;
2807 	struct inode_security_struct *isec = inode->i_security;
2808 	u32 newsid;
2809 	int rc;
2810 
2811 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2812 		/* Not an attribute we recognize, so nothing to do. */
2813 		return;
2814 	}
2815 
2816 	rc = security_context_to_sid_force(value, size, &newsid);
2817 	if (rc) {
2818 		printk(KERN_ERR "SELinux:  unable to map context to SID"
2819 		       "for (%s, %lu), rc=%d\n",
2820 		       inode->i_sb->s_id, inode->i_ino, -rc);
2821 		return;
2822 	}
2823 
2824 	isec->sid = newsid;
2825 	return;
2826 }
2827 
2828 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2829 {
2830 	const struct cred *cred = current_cred();
2831 
2832 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2833 }
2834 
2835 static int selinux_inode_listxattr(struct dentry *dentry)
2836 {
2837 	const struct cred *cred = current_cred();
2838 
2839 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2840 }
2841 
2842 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2843 {
2844 	if (strcmp(name, XATTR_NAME_SELINUX))
2845 		return selinux_inode_setotherxattr(dentry, name);
2846 
2847 	/* No one is allowed to remove a SELinux security label.
2848 	   You can change the label, but all data must be labeled. */
2849 	return -EACCES;
2850 }
2851 
2852 /*
2853  * Copy the inode security context value to the user.
2854  *
2855  * Permission check is handled by selinux_inode_getxattr hook.
2856  */
2857 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2858 {
2859 	u32 size;
2860 	int error;
2861 	char *context = NULL;
2862 	struct inode_security_struct *isec = inode->i_security;
2863 
2864 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2865 		return -EOPNOTSUPP;
2866 
2867 	/*
2868 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
2869 	 * value even if it is not defined by current policy; otherwise,
2870 	 * use the in-core value under current policy.
2871 	 * Use the non-auditing forms of the permission checks since
2872 	 * getxattr may be called by unprivileged processes commonly
2873 	 * and lack of permission just means that we fall back to the
2874 	 * in-core context value, not a denial.
2875 	 */
2876 	error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2877 				SECURITY_CAP_NOAUDIT);
2878 	if (!error)
2879 		error = security_sid_to_context_force(isec->sid, &context,
2880 						      &size);
2881 	else
2882 		error = security_sid_to_context(isec->sid, &context, &size);
2883 	if (error)
2884 		return error;
2885 	error = size;
2886 	if (alloc) {
2887 		*buffer = context;
2888 		goto out_nofree;
2889 	}
2890 	kfree(context);
2891 out_nofree:
2892 	return error;
2893 }
2894 
2895 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2896 				     const void *value, size_t size, int flags)
2897 {
2898 	struct inode_security_struct *isec = inode->i_security;
2899 	u32 newsid;
2900 	int rc;
2901 
2902 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2903 		return -EOPNOTSUPP;
2904 
2905 	if (!value || !size)
2906 		return -EACCES;
2907 
2908 	rc = security_context_to_sid((void *)value, size, &newsid);
2909 	if (rc)
2910 		return rc;
2911 
2912 	isec->sid = newsid;
2913 	isec->initialized = 1;
2914 	return 0;
2915 }
2916 
2917 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2918 {
2919 	const int len = sizeof(XATTR_NAME_SELINUX);
2920 	if (buffer && len <= buffer_size)
2921 		memcpy(buffer, XATTR_NAME_SELINUX, len);
2922 	return len;
2923 }
2924 
2925 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2926 {
2927 	struct inode_security_struct *isec = inode->i_security;
2928 	*secid = isec->sid;
2929 }
2930 
2931 /* file security operations */
2932 
2933 static int selinux_revalidate_file_permission(struct file *file, int mask)
2934 {
2935 	const struct cred *cred = current_cred();
2936 	struct inode *inode = file->f_path.dentry->d_inode;
2937 
2938 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2939 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2940 		mask |= MAY_APPEND;
2941 
2942 	return file_has_perm(cred, file,
2943 			     file_mask_to_av(inode->i_mode, mask));
2944 }
2945 
2946 static int selinux_file_permission(struct file *file, int mask)
2947 {
2948 	struct inode *inode = file->f_path.dentry->d_inode;
2949 	struct file_security_struct *fsec = file->f_security;
2950 	struct inode_security_struct *isec = inode->i_security;
2951 	u32 sid = current_sid();
2952 
2953 	if (!mask)
2954 		/* No permission to check.  Existence test. */
2955 		return 0;
2956 
2957 	if (sid == fsec->sid && fsec->isid == isec->sid &&
2958 	    fsec->pseqno == avc_policy_seqno())
2959 		/* No change since file_open check. */
2960 		return 0;
2961 
2962 	return selinux_revalidate_file_permission(file, mask);
2963 }
2964 
2965 static int selinux_file_alloc_security(struct file *file)
2966 {
2967 	return file_alloc_security(file);
2968 }
2969 
2970 static void selinux_file_free_security(struct file *file)
2971 {
2972 	file_free_security(file);
2973 }
2974 
2975 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2976 			      unsigned long arg)
2977 {
2978 	const struct cred *cred = current_cred();
2979 	int error = 0;
2980 
2981 	switch (cmd) {
2982 	case FIONREAD:
2983 	/* fall through */
2984 	case FIBMAP:
2985 	/* fall through */
2986 	case FIGETBSZ:
2987 	/* fall through */
2988 	case FS_IOC_GETFLAGS:
2989 	/* fall through */
2990 	case FS_IOC_GETVERSION:
2991 		error = file_has_perm(cred, file, FILE__GETATTR);
2992 		break;
2993 
2994 	case FS_IOC_SETFLAGS:
2995 	/* fall through */
2996 	case FS_IOC_SETVERSION:
2997 		error = file_has_perm(cred, file, FILE__SETATTR);
2998 		break;
2999 
3000 	/* sys_ioctl() checks */
3001 	case FIONBIO:
3002 	/* fall through */
3003 	case FIOASYNC:
3004 		error = file_has_perm(cred, file, 0);
3005 		break;
3006 
3007 	case KDSKBENT:
3008 	case KDSKBSENT:
3009 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3010 					    SECURITY_CAP_AUDIT);
3011 		break;
3012 
3013 	/* default case assumes that the command will go
3014 	 * to the file's ioctl() function.
3015 	 */
3016 	default:
3017 		error = file_has_perm(cred, file, FILE__IOCTL);
3018 	}
3019 	return error;
3020 }
3021 
3022 static int default_noexec;
3023 
3024 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3025 {
3026 	const struct cred *cred = current_cred();
3027 	int rc = 0;
3028 
3029 	if (default_noexec &&
3030 	    (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3031 		/*
3032 		 * We are making executable an anonymous mapping or a
3033 		 * private file mapping that will also be writable.
3034 		 * This has an additional check.
3035 		 */
3036 		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3037 		if (rc)
3038 			goto error;
3039 	}
3040 
3041 	if (file) {
3042 		/* read access is always possible with a mapping */
3043 		u32 av = FILE__READ;
3044 
3045 		/* write access only matters if the mapping is shared */
3046 		if (shared && (prot & PROT_WRITE))
3047 			av |= FILE__WRITE;
3048 
3049 		if (prot & PROT_EXEC)
3050 			av |= FILE__EXECUTE;
3051 
3052 		return file_has_perm(cred, file, av);
3053 	}
3054 
3055 error:
3056 	return rc;
3057 }
3058 
3059 static int selinux_mmap_addr(unsigned long addr)
3060 {
3061 	int rc = 0;
3062 	u32 sid = current_sid();
3063 
3064 	/*
3065 	 * notice that we are intentionally putting the SELinux check before
3066 	 * the secondary cap_file_mmap check.  This is such a likely attempt
3067 	 * at bad behaviour/exploit that we always want to get the AVC, even
3068 	 * if DAC would have also denied the operation.
3069 	 */
3070 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3071 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3072 				  MEMPROTECT__MMAP_ZERO, NULL);
3073 		if (rc)
3074 			return rc;
3075 	}
3076 
3077 	/* do DAC check on address space usage */
3078 	return cap_mmap_addr(addr);
3079 }
3080 
3081 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3082 			     unsigned long prot, unsigned long flags)
3083 {
3084 	if (selinux_checkreqprot)
3085 		prot = reqprot;
3086 
3087 	return file_map_prot_check(file, prot,
3088 				   (flags & MAP_TYPE) == MAP_SHARED);
3089 }
3090 
3091 static int selinux_file_mprotect(struct vm_area_struct *vma,
3092 				 unsigned long reqprot,
3093 				 unsigned long prot)
3094 {
3095 	const struct cred *cred = current_cred();
3096 
3097 	if (selinux_checkreqprot)
3098 		prot = reqprot;
3099 
3100 	if (default_noexec &&
3101 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3102 		int rc = 0;
3103 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3104 		    vma->vm_end <= vma->vm_mm->brk) {
3105 			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3106 		} else if (!vma->vm_file &&
3107 			   vma->vm_start <= vma->vm_mm->start_stack &&
3108 			   vma->vm_end >= vma->vm_mm->start_stack) {
3109 			rc = current_has_perm(current, PROCESS__EXECSTACK);
3110 		} else if (vma->vm_file && vma->anon_vma) {
3111 			/*
3112 			 * We are making executable a file mapping that has
3113 			 * had some COW done. Since pages might have been
3114 			 * written, check ability to execute the possibly
3115 			 * modified content.  This typically should only
3116 			 * occur for text relocations.
3117 			 */
3118 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3119 		}
3120 		if (rc)
3121 			return rc;
3122 	}
3123 
3124 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3125 }
3126 
3127 static int selinux_file_lock(struct file *file, unsigned int cmd)
3128 {
3129 	const struct cred *cred = current_cred();
3130 
3131 	return file_has_perm(cred, file, FILE__LOCK);
3132 }
3133 
3134 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3135 			      unsigned long arg)
3136 {
3137 	const struct cred *cred = current_cred();
3138 	int err = 0;
3139 
3140 	switch (cmd) {
3141 	case F_SETFL:
3142 		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3143 			err = -EINVAL;
3144 			break;
3145 		}
3146 
3147 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3148 			err = file_has_perm(cred, file, FILE__WRITE);
3149 			break;
3150 		}
3151 		/* fall through */
3152 	case F_SETOWN:
3153 	case F_SETSIG:
3154 	case F_GETFL:
3155 	case F_GETOWN:
3156 	case F_GETSIG:
3157 	case F_GETOWNER_UIDS:
3158 		/* Just check FD__USE permission */
3159 		err = file_has_perm(cred, file, 0);
3160 		break;
3161 	case F_GETLK:
3162 	case F_SETLK:
3163 	case F_SETLKW:
3164 #if BITS_PER_LONG == 32
3165 	case F_GETLK64:
3166 	case F_SETLK64:
3167 	case F_SETLKW64:
3168 #endif
3169 		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3170 			err = -EINVAL;
3171 			break;
3172 		}
3173 		err = file_has_perm(cred, file, FILE__LOCK);
3174 		break;
3175 	}
3176 
3177 	return err;
3178 }
3179 
3180 static int selinux_file_set_fowner(struct file *file)
3181 {
3182 	struct file_security_struct *fsec;
3183 
3184 	fsec = file->f_security;
3185 	fsec->fown_sid = current_sid();
3186 
3187 	return 0;
3188 }
3189 
3190 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3191 				       struct fown_struct *fown, int signum)
3192 {
3193 	struct file *file;
3194 	u32 sid = task_sid(tsk);
3195 	u32 perm;
3196 	struct file_security_struct *fsec;
3197 
3198 	/* struct fown_struct is never outside the context of a struct file */
3199 	file = container_of(fown, struct file, f_owner);
3200 
3201 	fsec = file->f_security;
3202 
3203 	if (!signum)
3204 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3205 	else
3206 		perm = signal_to_av(signum);
3207 
3208 	return avc_has_perm(fsec->fown_sid, sid,
3209 			    SECCLASS_PROCESS, perm, NULL);
3210 }
3211 
3212 static int selinux_file_receive(struct file *file)
3213 {
3214 	const struct cred *cred = current_cred();
3215 
3216 	return file_has_perm(cred, file, file_to_av(file));
3217 }
3218 
3219 static int selinux_file_open(struct file *file, const struct cred *cred)
3220 {
3221 	struct file_security_struct *fsec;
3222 	struct inode_security_struct *isec;
3223 
3224 	fsec = file->f_security;
3225 	isec = file->f_path.dentry->d_inode->i_security;
3226 	/*
3227 	 * Save inode label and policy sequence number
3228 	 * at open-time so that selinux_file_permission
3229 	 * can determine whether revalidation is necessary.
3230 	 * Task label is already saved in the file security
3231 	 * struct as its SID.
3232 	 */
3233 	fsec->isid = isec->sid;
3234 	fsec->pseqno = avc_policy_seqno();
3235 	/*
3236 	 * Since the inode label or policy seqno may have changed
3237 	 * between the selinux_inode_permission check and the saving
3238 	 * of state above, recheck that access is still permitted.
3239 	 * Otherwise, access might never be revalidated against the
3240 	 * new inode label or new policy.
3241 	 * This check is not redundant - do not remove.
3242 	 */
3243 	return path_has_perm(cred, &file->f_path, open_file_to_av(file));
3244 }
3245 
3246 /* task security operations */
3247 
3248 static int selinux_task_create(unsigned long clone_flags)
3249 {
3250 	return current_has_perm(current, PROCESS__FORK);
3251 }
3252 
3253 /*
3254  * allocate the SELinux part of blank credentials
3255  */
3256 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3257 {
3258 	struct task_security_struct *tsec;
3259 
3260 	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3261 	if (!tsec)
3262 		return -ENOMEM;
3263 
3264 	cred->security = tsec;
3265 	return 0;
3266 }
3267 
3268 /*
3269  * detach and free the LSM part of a set of credentials
3270  */
3271 static void selinux_cred_free(struct cred *cred)
3272 {
3273 	struct task_security_struct *tsec = cred->security;
3274 
3275 	/*
3276 	 * cred->security == NULL if security_cred_alloc_blank() or
3277 	 * security_prepare_creds() returned an error.
3278 	 */
3279 	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3280 	cred->security = (void *) 0x7UL;
3281 	kfree(tsec);
3282 }
3283 
3284 /*
3285  * prepare a new set of credentials for modification
3286  */
3287 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3288 				gfp_t gfp)
3289 {
3290 	const struct task_security_struct *old_tsec;
3291 	struct task_security_struct *tsec;
3292 
3293 	old_tsec = old->security;
3294 
3295 	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3296 	if (!tsec)
3297 		return -ENOMEM;
3298 
3299 	new->security = tsec;
3300 	return 0;
3301 }
3302 
3303 /*
3304  * transfer the SELinux data to a blank set of creds
3305  */
3306 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3307 {
3308 	const struct task_security_struct *old_tsec = old->security;
3309 	struct task_security_struct *tsec = new->security;
3310 
3311 	*tsec = *old_tsec;
3312 }
3313 
3314 /*
3315  * set the security data for a kernel service
3316  * - all the creation contexts are set to unlabelled
3317  */
3318 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3319 {
3320 	struct task_security_struct *tsec = new->security;
3321 	u32 sid = current_sid();
3322 	int ret;
3323 
3324 	ret = avc_has_perm(sid, secid,
3325 			   SECCLASS_KERNEL_SERVICE,
3326 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3327 			   NULL);
3328 	if (ret == 0) {
3329 		tsec->sid = secid;
3330 		tsec->create_sid = 0;
3331 		tsec->keycreate_sid = 0;
3332 		tsec->sockcreate_sid = 0;
3333 	}
3334 	return ret;
3335 }
3336 
3337 /*
3338  * set the file creation context in a security record to the same as the
3339  * objective context of the specified inode
3340  */
3341 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3342 {
3343 	struct inode_security_struct *isec = inode->i_security;
3344 	struct task_security_struct *tsec = new->security;
3345 	u32 sid = current_sid();
3346 	int ret;
3347 
3348 	ret = avc_has_perm(sid, isec->sid,
3349 			   SECCLASS_KERNEL_SERVICE,
3350 			   KERNEL_SERVICE__CREATE_FILES_AS,
3351 			   NULL);
3352 
3353 	if (ret == 0)
3354 		tsec->create_sid = isec->sid;
3355 	return ret;
3356 }
3357 
3358 static int selinux_kernel_module_request(char *kmod_name)
3359 {
3360 	u32 sid;
3361 	struct common_audit_data ad;
3362 
3363 	sid = task_sid(current);
3364 
3365 	ad.type = LSM_AUDIT_DATA_KMOD;
3366 	ad.u.kmod_name = kmod_name;
3367 
3368 	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3369 			    SYSTEM__MODULE_REQUEST, &ad);
3370 }
3371 
3372 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3373 {
3374 	return current_has_perm(p, PROCESS__SETPGID);
3375 }
3376 
3377 static int selinux_task_getpgid(struct task_struct *p)
3378 {
3379 	return current_has_perm(p, PROCESS__GETPGID);
3380 }
3381 
3382 static int selinux_task_getsid(struct task_struct *p)
3383 {
3384 	return current_has_perm(p, PROCESS__GETSESSION);
3385 }
3386 
3387 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3388 {
3389 	*secid = task_sid(p);
3390 }
3391 
3392 static int selinux_task_setnice(struct task_struct *p, int nice)
3393 {
3394 	int rc;
3395 
3396 	rc = cap_task_setnice(p, nice);
3397 	if (rc)
3398 		return rc;
3399 
3400 	return current_has_perm(p, PROCESS__SETSCHED);
3401 }
3402 
3403 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3404 {
3405 	int rc;
3406 
3407 	rc = cap_task_setioprio(p, ioprio);
3408 	if (rc)
3409 		return rc;
3410 
3411 	return current_has_perm(p, PROCESS__SETSCHED);
3412 }
3413 
3414 static int selinux_task_getioprio(struct task_struct *p)
3415 {
3416 	return current_has_perm(p, PROCESS__GETSCHED);
3417 }
3418 
3419 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3420 		struct rlimit *new_rlim)
3421 {
3422 	struct rlimit *old_rlim = p->signal->rlim + resource;
3423 
3424 	/* Control the ability to change the hard limit (whether
3425 	   lowering or raising it), so that the hard limit can
3426 	   later be used as a safe reset point for the soft limit
3427 	   upon context transitions.  See selinux_bprm_committing_creds. */
3428 	if (old_rlim->rlim_max != new_rlim->rlim_max)
3429 		return current_has_perm(p, PROCESS__SETRLIMIT);
3430 
3431 	return 0;
3432 }
3433 
3434 static int selinux_task_setscheduler(struct task_struct *p)
3435 {
3436 	int rc;
3437 
3438 	rc = cap_task_setscheduler(p);
3439 	if (rc)
3440 		return rc;
3441 
3442 	return current_has_perm(p, PROCESS__SETSCHED);
3443 }
3444 
3445 static int selinux_task_getscheduler(struct task_struct *p)
3446 {
3447 	return current_has_perm(p, PROCESS__GETSCHED);
3448 }
3449 
3450 static int selinux_task_movememory(struct task_struct *p)
3451 {
3452 	return current_has_perm(p, PROCESS__SETSCHED);
3453 }
3454 
3455 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3456 				int sig, u32 secid)
3457 {
3458 	u32 perm;
3459 	int rc;
3460 
3461 	if (!sig)
3462 		perm = PROCESS__SIGNULL; /* null signal; existence test */
3463 	else
3464 		perm = signal_to_av(sig);
3465 	if (secid)
3466 		rc = avc_has_perm(secid, task_sid(p),
3467 				  SECCLASS_PROCESS, perm, NULL);
3468 	else
3469 		rc = current_has_perm(p, perm);
3470 	return rc;
3471 }
3472 
3473 static int selinux_task_wait(struct task_struct *p)
3474 {
3475 	return task_has_perm(p, current, PROCESS__SIGCHLD);
3476 }
3477 
3478 static void selinux_task_to_inode(struct task_struct *p,
3479 				  struct inode *inode)
3480 {
3481 	struct inode_security_struct *isec = inode->i_security;
3482 	u32 sid = task_sid(p);
3483 
3484 	isec->sid = sid;
3485 	isec->initialized = 1;
3486 }
3487 
3488 /* Returns error only if unable to parse addresses */
3489 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3490 			struct common_audit_data *ad, u8 *proto)
3491 {
3492 	int offset, ihlen, ret = -EINVAL;
3493 	struct iphdr _iph, *ih;
3494 
3495 	offset = skb_network_offset(skb);
3496 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3497 	if (ih == NULL)
3498 		goto out;
3499 
3500 	ihlen = ih->ihl * 4;
3501 	if (ihlen < sizeof(_iph))
3502 		goto out;
3503 
3504 	ad->u.net->v4info.saddr = ih->saddr;
3505 	ad->u.net->v4info.daddr = ih->daddr;
3506 	ret = 0;
3507 
3508 	if (proto)
3509 		*proto = ih->protocol;
3510 
3511 	switch (ih->protocol) {
3512 	case IPPROTO_TCP: {
3513 		struct tcphdr _tcph, *th;
3514 
3515 		if (ntohs(ih->frag_off) & IP_OFFSET)
3516 			break;
3517 
3518 		offset += ihlen;
3519 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3520 		if (th == NULL)
3521 			break;
3522 
3523 		ad->u.net->sport = th->source;
3524 		ad->u.net->dport = th->dest;
3525 		break;
3526 	}
3527 
3528 	case IPPROTO_UDP: {
3529 		struct udphdr _udph, *uh;
3530 
3531 		if (ntohs(ih->frag_off) & IP_OFFSET)
3532 			break;
3533 
3534 		offset += ihlen;
3535 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3536 		if (uh == NULL)
3537 			break;
3538 
3539 		ad->u.net->sport = uh->source;
3540 		ad->u.net->dport = uh->dest;
3541 		break;
3542 	}
3543 
3544 	case IPPROTO_DCCP: {
3545 		struct dccp_hdr _dccph, *dh;
3546 
3547 		if (ntohs(ih->frag_off) & IP_OFFSET)
3548 			break;
3549 
3550 		offset += ihlen;
3551 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3552 		if (dh == NULL)
3553 			break;
3554 
3555 		ad->u.net->sport = dh->dccph_sport;
3556 		ad->u.net->dport = dh->dccph_dport;
3557 		break;
3558 	}
3559 
3560 	default:
3561 		break;
3562 	}
3563 out:
3564 	return ret;
3565 }
3566 
3567 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3568 
3569 /* Returns error only if unable to parse addresses */
3570 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3571 			struct common_audit_data *ad, u8 *proto)
3572 {
3573 	u8 nexthdr;
3574 	int ret = -EINVAL, offset;
3575 	struct ipv6hdr _ipv6h, *ip6;
3576 	__be16 frag_off;
3577 
3578 	offset = skb_network_offset(skb);
3579 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3580 	if (ip6 == NULL)
3581 		goto out;
3582 
3583 	ad->u.net->v6info.saddr = ip6->saddr;
3584 	ad->u.net->v6info.daddr = ip6->daddr;
3585 	ret = 0;
3586 
3587 	nexthdr = ip6->nexthdr;
3588 	offset += sizeof(_ipv6h);
3589 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3590 	if (offset < 0)
3591 		goto out;
3592 
3593 	if (proto)
3594 		*proto = nexthdr;
3595 
3596 	switch (nexthdr) {
3597 	case IPPROTO_TCP: {
3598 		struct tcphdr _tcph, *th;
3599 
3600 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3601 		if (th == NULL)
3602 			break;
3603 
3604 		ad->u.net->sport = th->source;
3605 		ad->u.net->dport = th->dest;
3606 		break;
3607 	}
3608 
3609 	case IPPROTO_UDP: {
3610 		struct udphdr _udph, *uh;
3611 
3612 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3613 		if (uh == NULL)
3614 			break;
3615 
3616 		ad->u.net->sport = uh->source;
3617 		ad->u.net->dport = uh->dest;
3618 		break;
3619 	}
3620 
3621 	case IPPROTO_DCCP: {
3622 		struct dccp_hdr _dccph, *dh;
3623 
3624 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3625 		if (dh == NULL)
3626 			break;
3627 
3628 		ad->u.net->sport = dh->dccph_sport;
3629 		ad->u.net->dport = dh->dccph_dport;
3630 		break;
3631 	}
3632 
3633 	/* includes fragments */
3634 	default:
3635 		break;
3636 	}
3637 out:
3638 	return ret;
3639 }
3640 
3641 #endif /* IPV6 */
3642 
3643 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3644 			     char **_addrp, int src, u8 *proto)
3645 {
3646 	char *addrp;
3647 	int ret;
3648 
3649 	switch (ad->u.net->family) {
3650 	case PF_INET:
3651 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3652 		if (ret)
3653 			goto parse_error;
3654 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3655 				       &ad->u.net->v4info.daddr);
3656 		goto okay;
3657 
3658 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3659 	case PF_INET6:
3660 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3661 		if (ret)
3662 			goto parse_error;
3663 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3664 				       &ad->u.net->v6info.daddr);
3665 		goto okay;
3666 #endif	/* IPV6 */
3667 	default:
3668 		addrp = NULL;
3669 		goto okay;
3670 	}
3671 
3672 parse_error:
3673 	printk(KERN_WARNING
3674 	       "SELinux: failure in selinux_parse_skb(),"
3675 	       " unable to parse packet\n");
3676 	return ret;
3677 
3678 okay:
3679 	if (_addrp)
3680 		*_addrp = addrp;
3681 	return 0;
3682 }
3683 
3684 /**
3685  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3686  * @skb: the packet
3687  * @family: protocol family
3688  * @sid: the packet's peer label SID
3689  *
3690  * Description:
3691  * Check the various different forms of network peer labeling and determine
3692  * the peer label/SID for the packet; most of the magic actually occurs in
3693  * the security server function security_net_peersid_cmp().  The function
3694  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3695  * or -EACCES if @sid is invalid due to inconsistencies with the different
3696  * peer labels.
3697  *
3698  */
3699 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3700 {
3701 	int err;
3702 	u32 xfrm_sid;
3703 	u32 nlbl_sid;
3704 	u32 nlbl_type;
3705 
3706 	selinux_skb_xfrm_sid(skb, &xfrm_sid);
3707 	selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3708 
3709 	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3710 	if (unlikely(err)) {
3711 		printk(KERN_WARNING
3712 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3713 		       " unable to determine packet's peer label\n");
3714 		return -EACCES;
3715 	}
3716 
3717 	return 0;
3718 }
3719 
3720 /* socket security operations */
3721 
3722 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3723 				 u16 secclass, u32 *socksid)
3724 {
3725 	if (tsec->sockcreate_sid > SECSID_NULL) {
3726 		*socksid = tsec->sockcreate_sid;
3727 		return 0;
3728 	}
3729 
3730 	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3731 				       socksid);
3732 }
3733 
3734 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3735 {
3736 	struct sk_security_struct *sksec = sk->sk_security;
3737 	struct common_audit_data ad;
3738 	struct lsm_network_audit net = {0,};
3739 	u32 tsid = task_sid(task);
3740 
3741 	if (sksec->sid == SECINITSID_KERNEL)
3742 		return 0;
3743 
3744 	ad.type = LSM_AUDIT_DATA_NET;
3745 	ad.u.net = &net;
3746 	ad.u.net->sk = sk;
3747 
3748 	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3749 }
3750 
3751 static int selinux_socket_create(int family, int type,
3752 				 int protocol, int kern)
3753 {
3754 	const struct task_security_struct *tsec = current_security();
3755 	u32 newsid;
3756 	u16 secclass;
3757 	int rc;
3758 
3759 	if (kern)
3760 		return 0;
3761 
3762 	secclass = socket_type_to_security_class(family, type, protocol);
3763 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3764 	if (rc)
3765 		return rc;
3766 
3767 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3768 }
3769 
3770 static int selinux_socket_post_create(struct socket *sock, int family,
3771 				      int type, int protocol, int kern)
3772 {
3773 	const struct task_security_struct *tsec = current_security();
3774 	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3775 	struct sk_security_struct *sksec;
3776 	int err = 0;
3777 
3778 	isec->sclass = socket_type_to_security_class(family, type, protocol);
3779 
3780 	if (kern)
3781 		isec->sid = SECINITSID_KERNEL;
3782 	else {
3783 		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3784 		if (err)
3785 			return err;
3786 	}
3787 
3788 	isec->initialized = 1;
3789 
3790 	if (sock->sk) {
3791 		sksec = sock->sk->sk_security;
3792 		sksec->sid = isec->sid;
3793 		sksec->sclass = isec->sclass;
3794 		err = selinux_netlbl_socket_post_create(sock->sk, family);
3795 	}
3796 
3797 	return err;
3798 }
3799 
3800 /* Range of port numbers used to automatically bind.
3801    Need to determine whether we should perform a name_bind
3802    permission check between the socket and the port number. */
3803 
3804 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3805 {
3806 	struct sock *sk = sock->sk;
3807 	u16 family;
3808 	int err;
3809 
3810 	err = sock_has_perm(current, sk, SOCKET__BIND);
3811 	if (err)
3812 		goto out;
3813 
3814 	/*
3815 	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3816 	 * Multiple address binding for SCTP is not supported yet: we just
3817 	 * check the first address now.
3818 	 */
3819 	family = sk->sk_family;
3820 	if (family == PF_INET || family == PF_INET6) {
3821 		char *addrp;
3822 		struct sk_security_struct *sksec = sk->sk_security;
3823 		struct common_audit_data ad;
3824 		struct lsm_network_audit net = {0,};
3825 		struct sockaddr_in *addr4 = NULL;
3826 		struct sockaddr_in6 *addr6 = NULL;
3827 		unsigned short snum;
3828 		u32 sid, node_perm;
3829 
3830 		if (family == PF_INET) {
3831 			addr4 = (struct sockaddr_in *)address;
3832 			snum = ntohs(addr4->sin_port);
3833 			addrp = (char *)&addr4->sin_addr.s_addr;
3834 		} else {
3835 			addr6 = (struct sockaddr_in6 *)address;
3836 			snum = ntohs(addr6->sin6_port);
3837 			addrp = (char *)&addr6->sin6_addr.s6_addr;
3838 		}
3839 
3840 		if (snum) {
3841 			int low, high;
3842 
3843 			inet_get_local_port_range(&low, &high);
3844 
3845 			if (snum < max(PROT_SOCK, low) || snum > high) {
3846 				err = sel_netport_sid(sk->sk_protocol,
3847 						      snum, &sid);
3848 				if (err)
3849 					goto out;
3850 				ad.type = LSM_AUDIT_DATA_NET;
3851 				ad.u.net = &net;
3852 				ad.u.net->sport = htons(snum);
3853 				ad.u.net->family = family;
3854 				err = avc_has_perm(sksec->sid, sid,
3855 						   sksec->sclass,
3856 						   SOCKET__NAME_BIND, &ad);
3857 				if (err)
3858 					goto out;
3859 			}
3860 		}
3861 
3862 		switch (sksec->sclass) {
3863 		case SECCLASS_TCP_SOCKET:
3864 			node_perm = TCP_SOCKET__NODE_BIND;
3865 			break;
3866 
3867 		case SECCLASS_UDP_SOCKET:
3868 			node_perm = UDP_SOCKET__NODE_BIND;
3869 			break;
3870 
3871 		case SECCLASS_DCCP_SOCKET:
3872 			node_perm = DCCP_SOCKET__NODE_BIND;
3873 			break;
3874 
3875 		default:
3876 			node_perm = RAWIP_SOCKET__NODE_BIND;
3877 			break;
3878 		}
3879 
3880 		err = sel_netnode_sid(addrp, family, &sid);
3881 		if (err)
3882 			goto out;
3883 
3884 		ad.type = LSM_AUDIT_DATA_NET;
3885 		ad.u.net = &net;
3886 		ad.u.net->sport = htons(snum);
3887 		ad.u.net->family = family;
3888 
3889 		if (family == PF_INET)
3890 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3891 		else
3892 			ad.u.net->v6info.saddr = addr6->sin6_addr;
3893 
3894 		err = avc_has_perm(sksec->sid, sid,
3895 				   sksec->sclass, node_perm, &ad);
3896 		if (err)
3897 			goto out;
3898 	}
3899 out:
3900 	return err;
3901 }
3902 
3903 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3904 {
3905 	struct sock *sk = sock->sk;
3906 	struct sk_security_struct *sksec = sk->sk_security;
3907 	int err;
3908 
3909 	err = sock_has_perm(current, sk, SOCKET__CONNECT);
3910 	if (err)
3911 		return err;
3912 
3913 	/*
3914 	 * If a TCP or DCCP socket, check name_connect permission for the port.
3915 	 */
3916 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3917 	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
3918 		struct common_audit_data ad;
3919 		struct lsm_network_audit net = {0,};
3920 		struct sockaddr_in *addr4 = NULL;
3921 		struct sockaddr_in6 *addr6 = NULL;
3922 		unsigned short snum;
3923 		u32 sid, perm;
3924 
3925 		if (sk->sk_family == PF_INET) {
3926 			addr4 = (struct sockaddr_in *)address;
3927 			if (addrlen < sizeof(struct sockaddr_in))
3928 				return -EINVAL;
3929 			snum = ntohs(addr4->sin_port);
3930 		} else {
3931 			addr6 = (struct sockaddr_in6 *)address;
3932 			if (addrlen < SIN6_LEN_RFC2133)
3933 				return -EINVAL;
3934 			snum = ntohs(addr6->sin6_port);
3935 		}
3936 
3937 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3938 		if (err)
3939 			goto out;
3940 
3941 		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3942 		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3943 
3944 		ad.type = LSM_AUDIT_DATA_NET;
3945 		ad.u.net = &net;
3946 		ad.u.net->dport = htons(snum);
3947 		ad.u.net->family = sk->sk_family;
3948 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3949 		if (err)
3950 			goto out;
3951 	}
3952 
3953 	err = selinux_netlbl_socket_connect(sk, address);
3954 
3955 out:
3956 	return err;
3957 }
3958 
3959 static int selinux_socket_listen(struct socket *sock, int backlog)
3960 {
3961 	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3962 }
3963 
3964 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3965 {
3966 	int err;
3967 	struct inode_security_struct *isec;
3968 	struct inode_security_struct *newisec;
3969 
3970 	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3971 	if (err)
3972 		return err;
3973 
3974 	newisec = SOCK_INODE(newsock)->i_security;
3975 
3976 	isec = SOCK_INODE(sock)->i_security;
3977 	newisec->sclass = isec->sclass;
3978 	newisec->sid = isec->sid;
3979 	newisec->initialized = 1;
3980 
3981 	return 0;
3982 }
3983 
3984 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3985 				  int size)
3986 {
3987 	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3988 }
3989 
3990 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3991 				  int size, int flags)
3992 {
3993 	return sock_has_perm(current, sock->sk, SOCKET__READ);
3994 }
3995 
3996 static int selinux_socket_getsockname(struct socket *sock)
3997 {
3998 	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3999 }
4000 
4001 static int selinux_socket_getpeername(struct socket *sock)
4002 {
4003 	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4004 }
4005 
4006 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4007 {
4008 	int err;
4009 
4010 	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4011 	if (err)
4012 		return err;
4013 
4014 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4015 }
4016 
4017 static int selinux_socket_getsockopt(struct socket *sock, int level,
4018 				     int optname)
4019 {
4020 	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4021 }
4022 
4023 static int selinux_socket_shutdown(struct socket *sock, int how)
4024 {
4025 	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4026 }
4027 
4028 static int selinux_socket_unix_stream_connect(struct sock *sock,
4029 					      struct sock *other,
4030 					      struct sock *newsk)
4031 {
4032 	struct sk_security_struct *sksec_sock = sock->sk_security;
4033 	struct sk_security_struct *sksec_other = other->sk_security;
4034 	struct sk_security_struct *sksec_new = newsk->sk_security;
4035 	struct common_audit_data ad;
4036 	struct lsm_network_audit net = {0,};
4037 	int err;
4038 
4039 	ad.type = LSM_AUDIT_DATA_NET;
4040 	ad.u.net = &net;
4041 	ad.u.net->sk = other;
4042 
4043 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4044 			   sksec_other->sclass,
4045 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4046 	if (err)
4047 		return err;
4048 
4049 	/* server child socket */
4050 	sksec_new->peer_sid = sksec_sock->sid;
4051 	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4052 				    &sksec_new->sid);
4053 	if (err)
4054 		return err;
4055 
4056 	/* connecting socket */
4057 	sksec_sock->peer_sid = sksec_new->sid;
4058 
4059 	return 0;
4060 }
4061 
4062 static int selinux_socket_unix_may_send(struct socket *sock,
4063 					struct socket *other)
4064 {
4065 	struct sk_security_struct *ssec = sock->sk->sk_security;
4066 	struct sk_security_struct *osec = other->sk->sk_security;
4067 	struct common_audit_data ad;
4068 	struct lsm_network_audit net = {0,};
4069 
4070 	ad.type = LSM_AUDIT_DATA_NET;
4071 	ad.u.net = &net;
4072 	ad.u.net->sk = other->sk;
4073 
4074 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4075 			    &ad);
4076 }
4077 
4078 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4079 				    u32 peer_sid,
4080 				    struct common_audit_data *ad)
4081 {
4082 	int err;
4083 	u32 if_sid;
4084 	u32 node_sid;
4085 
4086 	err = sel_netif_sid(ifindex, &if_sid);
4087 	if (err)
4088 		return err;
4089 	err = avc_has_perm(peer_sid, if_sid,
4090 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4091 	if (err)
4092 		return err;
4093 
4094 	err = sel_netnode_sid(addrp, family, &node_sid);
4095 	if (err)
4096 		return err;
4097 	return avc_has_perm(peer_sid, node_sid,
4098 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4099 }
4100 
4101 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4102 				       u16 family)
4103 {
4104 	int err = 0;
4105 	struct sk_security_struct *sksec = sk->sk_security;
4106 	u32 sk_sid = sksec->sid;
4107 	struct common_audit_data ad;
4108 	struct lsm_network_audit net = {0,};
4109 	char *addrp;
4110 
4111 	ad.type = LSM_AUDIT_DATA_NET;
4112 	ad.u.net = &net;
4113 	ad.u.net->netif = skb->skb_iif;
4114 	ad.u.net->family = family;
4115 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4116 	if (err)
4117 		return err;
4118 
4119 	if (selinux_secmark_enabled()) {
4120 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4121 				   PACKET__RECV, &ad);
4122 		if (err)
4123 			return err;
4124 	}
4125 
4126 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4127 	if (err)
4128 		return err;
4129 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4130 
4131 	return err;
4132 }
4133 
4134 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4135 {
4136 	int err;
4137 	struct sk_security_struct *sksec = sk->sk_security;
4138 	u16 family = sk->sk_family;
4139 	u32 sk_sid = sksec->sid;
4140 	struct common_audit_data ad;
4141 	struct lsm_network_audit net = {0,};
4142 	char *addrp;
4143 	u8 secmark_active;
4144 	u8 peerlbl_active;
4145 
4146 	if (family != PF_INET && family != PF_INET6)
4147 		return 0;
4148 
4149 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4150 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4151 		family = PF_INET;
4152 
4153 	/* If any sort of compatibility mode is enabled then handoff processing
4154 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4155 	 * special handling.  We do this in an attempt to keep this function
4156 	 * as fast and as clean as possible. */
4157 	if (!selinux_policycap_netpeer)
4158 		return selinux_sock_rcv_skb_compat(sk, skb, family);
4159 
4160 	secmark_active = selinux_secmark_enabled();
4161 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4162 	if (!secmark_active && !peerlbl_active)
4163 		return 0;
4164 
4165 	ad.type = LSM_AUDIT_DATA_NET;
4166 	ad.u.net = &net;
4167 	ad.u.net->netif = skb->skb_iif;
4168 	ad.u.net->family = family;
4169 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4170 	if (err)
4171 		return err;
4172 
4173 	if (peerlbl_active) {
4174 		u32 peer_sid;
4175 
4176 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4177 		if (err)
4178 			return err;
4179 		err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4180 					       peer_sid, &ad);
4181 		if (err) {
4182 			selinux_netlbl_err(skb, err, 0);
4183 			return err;
4184 		}
4185 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4186 				   PEER__RECV, &ad);
4187 		if (err)
4188 			selinux_netlbl_err(skb, err, 0);
4189 	}
4190 
4191 	if (secmark_active) {
4192 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4193 				   PACKET__RECV, &ad);
4194 		if (err)
4195 			return err;
4196 	}
4197 
4198 	return err;
4199 }
4200 
4201 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4202 					    int __user *optlen, unsigned len)
4203 {
4204 	int err = 0;
4205 	char *scontext;
4206 	u32 scontext_len;
4207 	struct sk_security_struct *sksec = sock->sk->sk_security;
4208 	u32 peer_sid = SECSID_NULL;
4209 
4210 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4211 	    sksec->sclass == SECCLASS_TCP_SOCKET)
4212 		peer_sid = sksec->peer_sid;
4213 	if (peer_sid == SECSID_NULL)
4214 		return -ENOPROTOOPT;
4215 
4216 	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4217 	if (err)
4218 		return err;
4219 
4220 	if (scontext_len > len) {
4221 		err = -ERANGE;
4222 		goto out_len;
4223 	}
4224 
4225 	if (copy_to_user(optval, scontext, scontext_len))
4226 		err = -EFAULT;
4227 
4228 out_len:
4229 	if (put_user(scontext_len, optlen))
4230 		err = -EFAULT;
4231 	kfree(scontext);
4232 	return err;
4233 }
4234 
4235 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4236 {
4237 	u32 peer_secid = SECSID_NULL;
4238 	u16 family;
4239 
4240 	if (skb && skb->protocol == htons(ETH_P_IP))
4241 		family = PF_INET;
4242 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4243 		family = PF_INET6;
4244 	else if (sock)
4245 		family = sock->sk->sk_family;
4246 	else
4247 		goto out;
4248 
4249 	if (sock && family == PF_UNIX)
4250 		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4251 	else if (skb)
4252 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4253 
4254 out:
4255 	*secid = peer_secid;
4256 	if (peer_secid == SECSID_NULL)
4257 		return -EINVAL;
4258 	return 0;
4259 }
4260 
4261 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4262 {
4263 	struct sk_security_struct *sksec;
4264 
4265 	sksec = kzalloc(sizeof(*sksec), priority);
4266 	if (!sksec)
4267 		return -ENOMEM;
4268 
4269 	sksec->peer_sid = SECINITSID_UNLABELED;
4270 	sksec->sid = SECINITSID_UNLABELED;
4271 	selinux_netlbl_sk_security_reset(sksec);
4272 	sk->sk_security = sksec;
4273 
4274 	return 0;
4275 }
4276 
4277 static void selinux_sk_free_security(struct sock *sk)
4278 {
4279 	struct sk_security_struct *sksec = sk->sk_security;
4280 
4281 	sk->sk_security = NULL;
4282 	selinux_netlbl_sk_security_free(sksec);
4283 	kfree(sksec);
4284 }
4285 
4286 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4287 {
4288 	struct sk_security_struct *sksec = sk->sk_security;
4289 	struct sk_security_struct *newsksec = newsk->sk_security;
4290 
4291 	newsksec->sid = sksec->sid;
4292 	newsksec->peer_sid = sksec->peer_sid;
4293 	newsksec->sclass = sksec->sclass;
4294 
4295 	selinux_netlbl_sk_security_reset(newsksec);
4296 }
4297 
4298 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4299 {
4300 	if (!sk)
4301 		*secid = SECINITSID_ANY_SOCKET;
4302 	else {
4303 		struct sk_security_struct *sksec = sk->sk_security;
4304 
4305 		*secid = sksec->sid;
4306 	}
4307 }
4308 
4309 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4310 {
4311 	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4312 	struct sk_security_struct *sksec = sk->sk_security;
4313 
4314 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4315 	    sk->sk_family == PF_UNIX)
4316 		isec->sid = sksec->sid;
4317 	sksec->sclass = isec->sclass;
4318 }
4319 
4320 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4321 				     struct request_sock *req)
4322 {
4323 	struct sk_security_struct *sksec = sk->sk_security;
4324 	int err;
4325 	u16 family = sk->sk_family;
4326 	u32 newsid;
4327 	u32 peersid;
4328 
4329 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4330 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4331 		family = PF_INET;
4332 
4333 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4334 	if (err)
4335 		return err;
4336 	if (peersid == SECSID_NULL) {
4337 		req->secid = sksec->sid;
4338 		req->peer_secid = SECSID_NULL;
4339 	} else {
4340 		err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4341 		if (err)
4342 			return err;
4343 		req->secid = newsid;
4344 		req->peer_secid = peersid;
4345 	}
4346 
4347 	return selinux_netlbl_inet_conn_request(req, family);
4348 }
4349 
4350 static void selinux_inet_csk_clone(struct sock *newsk,
4351 				   const struct request_sock *req)
4352 {
4353 	struct sk_security_struct *newsksec = newsk->sk_security;
4354 
4355 	newsksec->sid = req->secid;
4356 	newsksec->peer_sid = req->peer_secid;
4357 	/* NOTE: Ideally, we should also get the isec->sid for the
4358 	   new socket in sync, but we don't have the isec available yet.
4359 	   So we will wait until sock_graft to do it, by which
4360 	   time it will have been created and available. */
4361 
4362 	/* We don't need to take any sort of lock here as we are the only
4363 	 * thread with access to newsksec */
4364 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4365 }
4366 
4367 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4368 {
4369 	u16 family = sk->sk_family;
4370 	struct sk_security_struct *sksec = sk->sk_security;
4371 
4372 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4373 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4374 		family = PF_INET;
4375 
4376 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4377 }
4378 
4379 static int selinux_secmark_relabel_packet(u32 sid)
4380 {
4381 	const struct task_security_struct *__tsec;
4382 	u32 tsid;
4383 
4384 	__tsec = current_security();
4385 	tsid = __tsec->sid;
4386 
4387 	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4388 }
4389 
4390 static void selinux_secmark_refcount_inc(void)
4391 {
4392 	atomic_inc(&selinux_secmark_refcount);
4393 }
4394 
4395 static void selinux_secmark_refcount_dec(void)
4396 {
4397 	atomic_dec(&selinux_secmark_refcount);
4398 }
4399 
4400 static void selinux_req_classify_flow(const struct request_sock *req,
4401 				      struct flowi *fl)
4402 {
4403 	fl->flowi_secid = req->secid;
4404 }
4405 
4406 static int selinux_tun_dev_create(void)
4407 {
4408 	u32 sid = current_sid();
4409 
4410 	/* we aren't taking into account the "sockcreate" SID since the socket
4411 	 * that is being created here is not a socket in the traditional sense,
4412 	 * instead it is a private sock, accessible only to the kernel, and
4413 	 * representing a wide range of network traffic spanning multiple
4414 	 * connections unlike traditional sockets - check the TUN driver to
4415 	 * get a better understanding of why this socket is special */
4416 
4417 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4418 			    NULL);
4419 }
4420 
4421 static void selinux_tun_dev_post_create(struct sock *sk)
4422 {
4423 	struct sk_security_struct *sksec = sk->sk_security;
4424 
4425 	/* we don't currently perform any NetLabel based labeling here and it
4426 	 * isn't clear that we would want to do so anyway; while we could apply
4427 	 * labeling without the support of the TUN user the resulting labeled
4428 	 * traffic from the other end of the connection would almost certainly
4429 	 * cause confusion to the TUN user that had no idea network labeling
4430 	 * protocols were being used */
4431 
4432 	/* see the comments in selinux_tun_dev_create() about why we don't use
4433 	 * the sockcreate SID here */
4434 
4435 	sksec->sid = current_sid();
4436 	sksec->sclass = SECCLASS_TUN_SOCKET;
4437 }
4438 
4439 static int selinux_tun_dev_attach(struct sock *sk)
4440 {
4441 	struct sk_security_struct *sksec = sk->sk_security;
4442 	u32 sid = current_sid();
4443 	int err;
4444 
4445 	err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4446 			   TUN_SOCKET__RELABELFROM, NULL);
4447 	if (err)
4448 		return err;
4449 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4450 			   TUN_SOCKET__RELABELTO, NULL);
4451 	if (err)
4452 		return err;
4453 
4454 	sksec->sid = sid;
4455 
4456 	return 0;
4457 }
4458 
4459 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4460 {
4461 	int err = 0;
4462 	u32 perm;
4463 	struct nlmsghdr *nlh;
4464 	struct sk_security_struct *sksec = sk->sk_security;
4465 
4466 	if (skb->len < NLMSG_SPACE(0)) {
4467 		err = -EINVAL;
4468 		goto out;
4469 	}
4470 	nlh = nlmsg_hdr(skb);
4471 
4472 	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4473 	if (err) {
4474 		if (err == -EINVAL) {
4475 			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4476 				  "SELinux:  unrecognized netlink message"
4477 				  " type=%hu for sclass=%hu\n",
4478 				  nlh->nlmsg_type, sksec->sclass);
4479 			if (!selinux_enforcing || security_get_allow_unknown())
4480 				err = 0;
4481 		}
4482 
4483 		/* Ignore */
4484 		if (err == -ENOENT)
4485 			err = 0;
4486 		goto out;
4487 	}
4488 
4489 	err = sock_has_perm(current, sk, perm);
4490 out:
4491 	return err;
4492 }
4493 
4494 #ifdef CONFIG_NETFILTER
4495 
4496 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4497 				       u16 family)
4498 {
4499 	int err;
4500 	char *addrp;
4501 	u32 peer_sid;
4502 	struct common_audit_data ad;
4503 	struct lsm_network_audit net = {0,};
4504 	u8 secmark_active;
4505 	u8 netlbl_active;
4506 	u8 peerlbl_active;
4507 
4508 	if (!selinux_policycap_netpeer)
4509 		return NF_ACCEPT;
4510 
4511 	secmark_active = selinux_secmark_enabled();
4512 	netlbl_active = netlbl_enabled();
4513 	peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4514 	if (!secmark_active && !peerlbl_active)
4515 		return NF_ACCEPT;
4516 
4517 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4518 		return NF_DROP;
4519 
4520 	ad.type = LSM_AUDIT_DATA_NET;
4521 	ad.u.net = &net;
4522 	ad.u.net->netif = ifindex;
4523 	ad.u.net->family = family;
4524 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4525 		return NF_DROP;
4526 
4527 	if (peerlbl_active) {
4528 		err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4529 					       peer_sid, &ad);
4530 		if (err) {
4531 			selinux_netlbl_err(skb, err, 1);
4532 			return NF_DROP;
4533 		}
4534 	}
4535 
4536 	if (secmark_active)
4537 		if (avc_has_perm(peer_sid, skb->secmark,
4538 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4539 			return NF_DROP;
4540 
4541 	if (netlbl_active)
4542 		/* we do this in the FORWARD path and not the POST_ROUTING
4543 		 * path because we want to make sure we apply the necessary
4544 		 * labeling before IPsec is applied so we can leverage AH
4545 		 * protection */
4546 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4547 			return NF_DROP;
4548 
4549 	return NF_ACCEPT;
4550 }
4551 
4552 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4553 					 struct sk_buff *skb,
4554 					 const struct net_device *in,
4555 					 const struct net_device *out,
4556 					 int (*okfn)(struct sk_buff *))
4557 {
4558 	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4559 }
4560 
4561 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4562 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4563 					 struct sk_buff *skb,
4564 					 const struct net_device *in,
4565 					 const struct net_device *out,
4566 					 int (*okfn)(struct sk_buff *))
4567 {
4568 	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4569 }
4570 #endif	/* IPV6 */
4571 
4572 static unsigned int selinux_ip_output(struct sk_buff *skb,
4573 				      u16 family)
4574 {
4575 	u32 sid;
4576 
4577 	if (!netlbl_enabled())
4578 		return NF_ACCEPT;
4579 
4580 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4581 	 * because we want to make sure we apply the necessary labeling
4582 	 * before IPsec is applied so we can leverage AH protection */
4583 	if (skb->sk) {
4584 		struct sk_security_struct *sksec = skb->sk->sk_security;
4585 		sid = sksec->sid;
4586 	} else
4587 		sid = SECINITSID_KERNEL;
4588 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4589 		return NF_DROP;
4590 
4591 	return NF_ACCEPT;
4592 }
4593 
4594 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4595 					struct sk_buff *skb,
4596 					const struct net_device *in,
4597 					const struct net_device *out,
4598 					int (*okfn)(struct sk_buff *))
4599 {
4600 	return selinux_ip_output(skb, PF_INET);
4601 }
4602 
4603 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4604 						int ifindex,
4605 						u16 family)
4606 {
4607 	struct sock *sk = skb->sk;
4608 	struct sk_security_struct *sksec;
4609 	struct common_audit_data ad;
4610 	struct lsm_network_audit net = {0,};
4611 	char *addrp;
4612 	u8 proto;
4613 
4614 	if (sk == NULL)
4615 		return NF_ACCEPT;
4616 	sksec = sk->sk_security;
4617 
4618 	ad.type = LSM_AUDIT_DATA_NET;
4619 	ad.u.net = &net;
4620 	ad.u.net->netif = ifindex;
4621 	ad.u.net->family = family;
4622 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4623 		return NF_DROP;
4624 
4625 	if (selinux_secmark_enabled())
4626 		if (avc_has_perm(sksec->sid, skb->secmark,
4627 				 SECCLASS_PACKET, PACKET__SEND, &ad))
4628 			return NF_DROP_ERR(-ECONNREFUSED);
4629 
4630 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4631 		return NF_DROP_ERR(-ECONNREFUSED);
4632 
4633 	return NF_ACCEPT;
4634 }
4635 
4636 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4637 					 u16 family)
4638 {
4639 	u32 secmark_perm;
4640 	u32 peer_sid;
4641 	struct sock *sk;
4642 	struct common_audit_data ad;
4643 	struct lsm_network_audit net = {0,};
4644 	char *addrp;
4645 	u8 secmark_active;
4646 	u8 peerlbl_active;
4647 
4648 	/* If any sort of compatibility mode is enabled then handoff processing
4649 	 * to the selinux_ip_postroute_compat() function to deal with the
4650 	 * special handling.  We do this in an attempt to keep this function
4651 	 * as fast and as clean as possible. */
4652 	if (!selinux_policycap_netpeer)
4653 		return selinux_ip_postroute_compat(skb, ifindex, family);
4654 #ifdef CONFIG_XFRM
4655 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4656 	 * packet transformation so allow the packet to pass without any checks
4657 	 * since we'll have another chance to perform access control checks
4658 	 * when the packet is on it's final way out.
4659 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4660 	 *       is NULL, in this case go ahead and apply access control. */
4661 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4662 		return NF_ACCEPT;
4663 #endif
4664 	secmark_active = selinux_secmark_enabled();
4665 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4666 	if (!secmark_active && !peerlbl_active)
4667 		return NF_ACCEPT;
4668 
4669 	/* if the packet is being forwarded then get the peer label from the
4670 	 * packet itself; otherwise check to see if it is from a local
4671 	 * application or the kernel, if from an application get the peer label
4672 	 * from the sending socket, otherwise use the kernel's sid */
4673 	sk = skb->sk;
4674 	if (sk == NULL) {
4675 		if (skb->skb_iif) {
4676 			secmark_perm = PACKET__FORWARD_OUT;
4677 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4678 				return NF_DROP;
4679 		} else {
4680 			secmark_perm = PACKET__SEND;
4681 			peer_sid = SECINITSID_KERNEL;
4682 		}
4683 	} else {
4684 		struct sk_security_struct *sksec = sk->sk_security;
4685 		peer_sid = sksec->sid;
4686 		secmark_perm = PACKET__SEND;
4687 	}
4688 
4689 	ad.type = LSM_AUDIT_DATA_NET;
4690 	ad.u.net = &net;
4691 	ad.u.net->netif = ifindex;
4692 	ad.u.net->family = family;
4693 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4694 		return NF_DROP;
4695 
4696 	if (secmark_active)
4697 		if (avc_has_perm(peer_sid, skb->secmark,
4698 				 SECCLASS_PACKET, secmark_perm, &ad))
4699 			return NF_DROP_ERR(-ECONNREFUSED);
4700 
4701 	if (peerlbl_active) {
4702 		u32 if_sid;
4703 		u32 node_sid;
4704 
4705 		if (sel_netif_sid(ifindex, &if_sid))
4706 			return NF_DROP;
4707 		if (avc_has_perm(peer_sid, if_sid,
4708 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4709 			return NF_DROP_ERR(-ECONNREFUSED);
4710 
4711 		if (sel_netnode_sid(addrp, family, &node_sid))
4712 			return NF_DROP;
4713 		if (avc_has_perm(peer_sid, node_sid,
4714 				 SECCLASS_NODE, NODE__SENDTO, &ad))
4715 			return NF_DROP_ERR(-ECONNREFUSED);
4716 	}
4717 
4718 	return NF_ACCEPT;
4719 }
4720 
4721 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4722 					   struct sk_buff *skb,
4723 					   const struct net_device *in,
4724 					   const struct net_device *out,
4725 					   int (*okfn)(struct sk_buff *))
4726 {
4727 	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4728 }
4729 
4730 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4731 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4732 					   struct sk_buff *skb,
4733 					   const struct net_device *in,
4734 					   const struct net_device *out,
4735 					   int (*okfn)(struct sk_buff *))
4736 {
4737 	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4738 }
4739 #endif	/* IPV6 */
4740 
4741 #endif	/* CONFIG_NETFILTER */
4742 
4743 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4744 {
4745 	int err;
4746 
4747 	err = cap_netlink_send(sk, skb);
4748 	if (err)
4749 		return err;
4750 
4751 	return selinux_nlmsg_perm(sk, skb);
4752 }
4753 
4754 static int ipc_alloc_security(struct task_struct *task,
4755 			      struct kern_ipc_perm *perm,
4756 			      u16 sclass)
4757 {
4758 	struct ipc_security_struct *isec;
4759 	u32 sid;
4760 
4761 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4762 	if (!isec)
4763 		return -ENOMEM;
4764 
4765 	sid = task_sid(task);
4766 	isec->sclass = sclass;
4767 	isec->sid = sid;
4768 	perm->security = isec;
4769 
4770 	return 0;
4771 }
4772 
4773 static void ipc_free_security(struct kern_ipc_perm *perm)
4774 {
4775 	struct ipc_security_struct *isec = perm->security;
4776 	perm->security = NULL;
4777 	kfree(isec);
4778 }
4779 
4780 static int msg_msg_alloc_security(struct msg_msg *msg)
4781 {
4782 	struct msg_security_struct *msec;
4783 
4784 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4785 	if (!msec)
4786 		return -ENOMEM;
4787 
4788 	msec->sid = SECINITSID_UNLABELED;
4789 	msg->security = msec;
4790 
4791 	return 0;
4792 }
4793 
4794 static void msg_msg_free_security(struct msg_msg *msg)
4795 {
4796 	struct msg_security_struct *msec = msg->security;
4797 
4798 	msg->security = NULL;
4799 	kfree(msec);
4800 }
4801 
4802 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4803 			u32 perms)
4804 {
4805 	struct ipc_security_struct *isec;
4806 	struct common_audit_data ad;
4807 	u32 sid = current_sid();
4808 
4809 	isec = ipc_perms->security;
4810 
4811 	ad.type = LSM_AUDIT_DATA_IPC;
4812 	ad.u.ipc_id = ipc_perms->key;
4813 
4814 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4815 }
4816 
4817 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4818 {
4819 	return msg_msg_alloc_security(msg);
4820 }
4821 
4822 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4823 {
4824 	msg_msg_free_security(msg);
4825 }
4826 
4827 /* message queue security operations */
4828 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4829 {
4830 	struct ipc_security_struct *isec;
4831 	struct common_audit_data ad;
4832 	u32 sid = current_sid();
4833 	int rc;
4834 
4835 	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4836 	if (rc)
4837 		return rc;
4838 
4839 	isec = msq->q_perm.security;
4840 
4841 	ad.type = LSM_AUDIT_DATA_IPC;
4842 	ad.u.ipc_id = msq->q_perm.key;
4843 
4844 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4845 			  MSGQ__CREATE, &ad);
4846 	if (rc) {
4847 		ipc_free_security(&msq->q_perm);
4848 		return rc;
4849 	}
4850 	return 0;
4851 }
4852 
4853 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4854 {
4855 	ipc_free_security(&msq->q_perm);
4856 }
4857 
4858 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4859 {
4860 	struct ipc_security_struct *isec;
4861 	struct common_audit_data ad;
4862 	u32 sid = current_sid();
4863 
4864 	isec = msq->q_perm.security;
4865 
4866 	ad.type = LSM_AUDIT_DATA_IPC;
4867 	ad.u.ipc_id = msq->q_perm.key;
4868 
4869 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4870 			    MSGQ__ASSOCIATE, &ad);
4871 }
4872 
4873 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4874 {
4875 	int err;
4876 	int perms;
4877 
4878 	switch (cmd) {
4879 	case IPC_INFO:
4880 	case MSG_INFO:
4881 		/* No specific object, just general system-wide information. */
4882 		return task_has_system(current, SYSTEM__IPC_INFO);
4883 	case IPC_STAT:
4884 	case MSG_STAT:
4885 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4886 		break;
4887 	case IPC_SET:
4888 		perms = MSGQ__SETATTR;
4889 		break;
4890 	case IPC_RMID:
4891 		perms = MSGQ__DESTROY;
4892 		break;
4893 	default:
4894 		return 0;
4895 	}
4896 
4897 	err = ipc_has_perm(&msq->q_perm, perms);
4898 	return err;
4899 }
4900 
4901 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4902 {
4903 	struct ipc_security_struct *isec;
4904 	struct msg_security_struct *msec;
4905 	struct common_audit_data ad;
4906 	u32 sid = current_sid();
4907 	int rc;
4908 
4909 	isec = msq->q_perm.security;
4910 	msec = msg->security;
4911 
4912 	/*
4913 	 * First time through, need to assign label to the message
4914 	 */
4915 	if (msec->sid == SECINITSID_UNLABELED) {
4916 		/*
4917 		 * Compute new sid based on current process and
4918 		 * message queue this message will be stored in
4919 		 */
4920 		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4921 					     NULL, &msec->sid);
4922 		if (rc)
4923 			return rc;
4924 	}
4925 
4926 	ad.type = LSM_AUDIT_DATA_IPC;
4927 	ad.u.ipc_id = msq->q_perm.key;
4928 
4929 	/* Can this process write to the queue? */
4930 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4931 			  MSGQ__WRITE, &ad);
4932 	if (!rc)
4933 		/* Can this process send the message */
4934 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4935 				  MSG__SEND, &ad);
4936 	if (!rc)
4937 		/* Can the message be put in the queue? */
4938 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4939 				  MSGQ__ENQUEUE, &ad);
4940 
4941 	return rc;
4942 }
4943 
4944 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4945 				    struct task_struct *target,
4946 				    long type, int mode)
4947 {
4948 	struct ipc_security_struct *isec;
4949 	struct msg_security_struct *msec;
4950 	struct common_audit_data ad;
4951 	u32 sid = task_sid(target);
4952 	int rc;
4953 
4954 	isec = msq->q_perm.security;
4955 	msec = msg->security;
4956 
4957 	ad.type = LSM_AUDIT_DATA_IPC;
4958 	ad.u.ipc_id = msq->q_perm.key;
4959 
4960 	rc = avc_has_perm(sid, isec->sid,
4961 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
4962 	if (!rc)
4963 		rc = avc_has_perm(sid, msec->sid,
4964 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
4965 	return rc;
4966 }
4967 
4968 /* Shared Memory security operations */
4969 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4970 {
4971 	struct ipc_security_struct *isec;
4972 	struct common_audit_data ad;
4973 	u32 sid = current_sid();
4974 	int rc;
4975 
4976 	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4977 	if (rc)
4978 		return rc;
4979 
4980 	isec = shp->shm_perm.security;
4981 
4982 	ad.type = LSM_AUDIT_DATA_IPC;
4983 	ad.u.ipc_id = shp->shm_perm.key;
4984 
4985 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4986 			  SHM__CREATE, &ad);
4987 	if (rc) {
4988 		ipc_free_security(&shp->shm_perm);
4989 		return rc;
4990 	}
4991 	return 0;
4992 }
4993 
4994 static void selinux_shm_free_security(struct shmid_kernel *shp)
4995 {
4996 	ipc_free_security(&shp->shm_perm);
4997 }
4998 
4999 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5000 {
5001 	struct ipc_security_struct *isec;
5002 	struct common_audit_data ad;
5003 	u32 sid = current_sid();
5004 
5005 	isec = shp->shm_perm.security;
5006 
5007 	ad.type = LSM_AUDIT_DATA_IPC;
5008 	ad.u.ipc_id = shp->shm_perm.key;
5009 
5010 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5011 			    SHM__ASSOCIATE, &ad);
5012 }
5013 
5014 /* Note, at this point, shp is locked down */
5015 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5016 {
5017 	int perms;
5018 	int err;
5019 
5020 	switch (cmd) {
5021 	case IPC_INFO:
5022 	case SHM_INFO:
5023 		/* No specific object, just general system-wide information. */
5024 		return task_has_system(current, SYSTEM__IPC_INFO);
5025 	case IPC_STAT:
5026 	case SHM_STAT:
5027 		perms = SHM__GETATTR | SHM__ASSOCIATE;
5028 		break;
5029 	case IPC_SET:
5030 		perms = SHM__SETATTR;
5031 		break;
5032 	case SHM_LOCK:
5033 	case SHM_UNLOCK:
5034 		perms = SHM__LOCK;
5035 		break;
5036 	case IPC_RMID:
5037 		perms = SHM__DESTROY;
5038 		break;
5039 	default:
5040 		return 0;
5041 	}
5042 
5043 	err = ipc_has_perm(&shp->shm_perm, perms);
5044 	return err;
5045 }
5046 
5047 static int selinux_shm_shmat(struct shmid_kernel *shp,
5048 			     char __user *shmaddr, int shmflg)
5049 {
5050 	u32 perms;
5051 
5052 	if (shmflg & SHM_RDONLY)
5053 		perms = SHM__READ;
5054 	else
5055 		perms = SHM__READ | SHM__WRITE;
5056 
5057 	return ipc_has_perm(&shp->shm_perm, perms);
5058 }
5059 
5060 /* Semaphore security operations */
5061 static int selinux_sem_alloc_security(struct sem_array *sma)
5062 {
5063 	struct ipc_security_struct *isec;
5064 	struct common_audit_data ad;
5065 	u32 sid = current_sid();
5066 	int rc;
5067 
5068 	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5069 	if (rc)
5070 		return rc;
5071 
5072 	isec = sma->sem_perm.security;
5073 
5074 	ad.type = LSM_AUDIT_DATA_IPC;
5075 	ad.u.ipc_id = sma->sem_perm.key;
5076 
5077 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5078 			  SEM__CREATE, &ad);
5079 	if (rc) {
5080 		ipc_free_security(&sma->sem_perm);
5081 		return rc;
5082 	}
5083 	return 0;
5084 }
5085 
5086 static void selinux_sem_free_security(struct sem_array *sma)
5087 {
5088 	ipc_free_security(&sma->sem_perm);
5089 }
5090 
5091 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5092 {
5093 	struct ipc_security_struct *isec;
5094 	struct common_audit_data ad;
5095 	u32 sid = current_sid();
5096 
5097 	isec = sma->sem_perm.security;
5098 
5099 	ad.type = LSM_AUDIT_DATA_IPC;
5100 	ad.u.ipc_id = sma->sem_perm.key;
5101 
5102 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5103 			    SEM__ASSOCIATE, &ad);
5104 }
5105 
5106 /* Note, at this point, sma is locked down */
5107 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5108 {
5109 	int err;
5110 	u32 perms;
5111 
5112 	switch (cmd) {
5113 	case IPC_INFO:
5114 	case SEM_INFO:
5115 		/* No specific object, just general system-wide information. */
5116 		return task_has_system(current, SYSTEM__IPC_INFO);
5117 	case GETPID:
5118 	case GETNCNT:
5119 	case GETZCNT:
5120 		perms = SEM__GETATTR;
5121 		break;
5122 	case GETVAL:
5123 	case GETALL:
5124 		perms = SEM__READ;
5125 		break;
5126 	case SETVAL:
5127 	case SETALL:
5128 		perms = SEM__WRITE;
5129 		break;
5130 	case IPC_RMID:
5131 		perms = SEM__DESTROY;
5132 		break;
5133 	case IPC_SET:
5134 		perms = SEM__SETATTR;
5135 		break;
5136 	case IPC_STAT:
5137 	case SEM_STAT:
5138 		perms = SEM__GETATTR | SEM__ASSOCIATE;
5139 		break;
5140 	default:
5141 		return 0;
5142 	}
5143 
5144 	err = ipc_has_perm(&sma->sem_perm, perms);
5145 	return err;
5146 }
5147 
5148 static int selinux_sem_semop(struct sem_array *sma,
5149 			     struct sembuf *sops, unsigned nsops, int alter)
5150 {
5151 	u32 perms;
5152 
5153 	if (alter)
5154 		perms = SEM__READ | SEM__WRITE;
5155 	else
5156 		perms = SEM__READ;
5157 
5158 	return ipc_has_perm(&sma->sem_perm, perms);
5159 }
5160 
5161 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5162 {
5163 	u32 av = 0;
5164 
5165 	av = 0;
5166 	if (flag & S_IRUGO)
5167 		av |= IPC__UNIX_READ;
5168 	if (flag & S_IWUGO)
5169 		av |= IPC__UNIX_WRITE;
5170 
5171 	if (av == 0)
5172 		return 0;
5173 
5174 	return ipc_has_perm(ipcp, av);
5175 }
5176 
5177 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5178 {
5179 	struct ipc_security_struct *isec = ipcp->security;
5180 	*secid = isec->sid;
5181 }
5182 
5183 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5184 {
5185 	if (inode)
5186 		inode_doinit_with_dentry(inode, dentry);
5187 }
5188 
5189 static int selinux_getprocattr(struct task_struct *p,
5190 			       char *name, char **value)
5191 {
5192 	const struct task_security_struct *__tsec;
5193 	u32 sid;
5194 	int error;
5195 	unsigned len;
5196 
5197 	if (current != p) {
5198 		error = current_has_perm(p, PROCESS__GETATTR);
5199 		if (error)
5200 			return error;
5201 	}
5202 
5203 	rcu_read_lock();
5204 	__tsec = __task_cred(p)->security;
5205 
5206 	if (!strcmp(name, "current"))
5207 		sid = __tsec->sid;
5208 	else if (!strcmp(name, "prev"))
5209 		sid = __tsec->osid;
5210 	else if (!strcmp(name, "exec"))
5211 		sid = __tsec->exec_sid;
5212 	else if (!strcmp(name, "fscreate"))
5213 		sid = __tsec->create_sid;
5214 	else if (!strcmp(name, "keycreate"))
5215 		sid = __tsec->keycreate_sid;
5216 	else if (!strcmp(name, "sockcreate"))
5217 		sid = __tsec->sockcreate_sid;
5218 	else
5219 		goto invalid;
5220 	rcu_read_unlock();
5221 
5222 	if (!sid)
5223 		return 0;
5224 
5225 	error = security_sid_to_context(sid, value, &len);
5226 	if (error)
5227 		return error;
5228 	return len;
5229 
5230 invalid:
5231 	rcu_read_unlock();
5232 	return -EINVAL;
5233 }
5234 
5235 static int selinux_setprocattr(struct task_struct *p,
5236 			       char *name, void *value, size_t size)
5237 {
5238 	struct task_security_struct *tsec;
5239 	struct task_struct *tracer;
5240 	struct cred *new;
5241 	u32 sid = 0, ptsid;
5242 	int error;
5243 	char *str = value;
5244 
5245 	if (current != p) {
5246 		/* SELinux only allows a process to change its own
5247 		   security attributes. */
5248 		return -EACCES;
5249 	}
5250 
5251 	/*
5252 	 * Basic control over ability to set these attributes at all.
5253 	 * current == p, but we'll pass them separately in case the
5254 	 * above restriction is ever removed.
5255 	 */
5256 	if (!strcmp(name, "exec"))
5257 		error = current_has_perm(p, PROCESS__SETEXEC);
5258 	else if (!strcmp(name, "fscreate"))
5259 		error = current_has_perm(p, PROCESS__SETFSCREATE);
5260 	else if (!strcmp(name, "keycreate"))
5261 		error = current_has_perm(p, PROCESS__SETKEYCREATE);
5262 	else if (!strcmp(name, "sockcreate"))
5263 		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5264 	else if (!strcmp(name, "current"))
5265 		error = current_has_perm(p, PROCESS__SETCURRENT);
5266 	else
5267 		error = -EINVAL;
5268 	if (error)
5269 		return error;
5270 
5271 	/* Obtain a SID for the context, if one was specified. */
5272 	if (size && str[1] && str[1] != '\n') {
5273 		if (str[size-1] == '\n') {
5274 			str[size-1] = 0;
5275 			size--;
5276 		}
5277 		error = security_context_to_sid(value, size, &sid);
5278 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5279 			if (!capable(CAP_MAC_ADMIN)) {
5280 				struct audit_buffer *ab;
5281 				size_t audit_size;
5282 
5283 				/* We strip a nul only if it is at the end, otherwise the
5284 				 * context contains a nul and we should audit that */
5285 				if (str[size - 1] == '\0')
5286 					audit_size = size - 1;
5287 				else
5288 					audit_size = size;
5289 				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5290 				audit_log_format(ab, "op=fscreate invalid_context=");
5291 				audit_log_n_untrustedstring(ab, value, audit_size);
5292 				audit_log_end(ab);
5293 
5294 				return error;
5295 			}
5296 			error = security_context_to_sid_force(value, size,
5297 							      &sid);
5298 		}
5299 		if (error)
5300 			return error;
5301 	}
5302 
5303 	new = prepare_creds();
5304 	if (!new)
5305 		return -ENOMEM;
5306 
5307 	/* Permission checking based on the specified context is
5308 	   performed during the actual operation (execve,
5309 	   open/mkdir/...), when we know the full context of the
5310 	   operation.  See selinux_bprm_set_creds for the execve
5311 	   checks and may_create for the file creation checks. The
5312 	   operation will then fail if the context is not permitted. */
5313 	tsec = new->security;
5314 	if (!strcmp(name, "exec")) {
5315 		tsec->exec_sid = sid;
5316 	} else if (!strcmp(name, "fscreate")) {
5317 		tsec->create_sid = sid;
5318 	} else if (!strcmp(name, "keycreate")) {
5319 		error = may_create_key(sid, p);
5320 		if (error)
5321 			goto abort_change;
5322 		tsec->keycreate_sid = sid;
5323 	} else if (!strcmp(name, "sockcreate")) {
5324 		tsec->sockcreate_sid = sid;
5325 	} else if (!strcmp(name, "current")) {
5326 		error = -EINVAL;
5327 		if (sid == 0)
5328 			goto abort_change;
5329 
5330 		/* Only allow single threaded processes to change context */
5331 		error = -EPERM;
5332 		if (!current_is_single_threaded()) {
5333 			error = security_bounded_transition(tsec->sid, sid);
5334 			if (error)
5335 				goto abort_change;
5336 		}
5337 
5338 		/* Check permissions for the transition. */
5339 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5340 				     PROCESS__DYNTRANSITION, NULL);
5341 		if (error)
5342 			goto abort_change;
5343 
5344 		/* Check for ptracing, and update the task SID if ok.
5345 		   Otherwise, leave SID unchanged and fail. */
5346 		ptsid = 0;
5347 		task_lock(p);
5348 		tracer = ptrace_parent(p);
5349 		if (tracer)
5350 			ptsid = task_sid(tracer);
5351 		task_unlock(p);
5352 
5353 		if (tracer) {
5354 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5355 					     PROCESS__PTRACE, NULL);
5356 			if (error)
5357 				goto abort_change;
5358 		}
5359 
5360 		tsec->sid = sid;
5361 	} else {
5362 		error = -EINVAL;
5363 		goto abort_change;
5364 	}
5365 
5366 	commit_creds(new);
5367 	return size;
5368 
5369 abort_change:
5370 	abort_creds(new);
5371 	return error;
5372 }
5373 
5374 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5375 {
5376 	return security_sid_to_context(secid, secdata, seclen);
5377 }
5378 
5379 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5380 {
5381 	return security_context_to_sid(secdata, seclen, secid);
5382 }
5383 
5384 static void selinux_release_secctx(char *secdata, u32 seclen)
5385 {
5386 	kfree(secdata);
5387 }
5388 
5389 /*
5390  *	called with inode->i_mutex locked
5391  */
5392 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5393 {
5394 	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5395 }
5396 
5397 /*
5398  *	called with inode->i_mutex locked
5399  */
5400 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5401 {
5402 	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5403 }
5404 
5405 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5406 {
5407 	int len = 0;
5408 	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5409 						ctx, true);
5410 	if (len < 0)
5411 		return len;
5412 	*ctxlen = len;
5413 	return 0;
5414 }
5415 #ifdef CONFIG_KEYS
5416 
5417 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5418 			     unsigned long flags)
5419 {
5420 	const struct task_security_struct *tsec;
5421 	struct key_security_struct *ksec;
5422 
5423 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5424 	if (!ksec)
5425 		return -ENOMEM;
5426 
5427 	tsec = cred->security;
5428 	if (tsec->keycreate_sid)
5429 		ksec->sid = tsec->keycreate_sid;
5430 	else
5431 		ksec->sid = tsec->sid;
5432 
5433 	k->security = ksec;
5434 	return 0;
5435 }
5436 
5437 static void selinux_key_free(struct key *k)
5438 {
5439 	struct key_security_struct *ksec = k->security;
5440 
5441 	k->security = NULL;
5442 	kfree(ksec);
5443 }
5444 
5445 static int selinux_key_permission(key_ref_t key_ref,
5446 				  const struct cred *cred,
5447 				  key_perm_t perm)
5448 {
5449 	struct key *key;
5450 	struct key_security_struct *ksec;
5451 	u32 sid;
5452 
5453 	/* if no specific permissions are requested, we skip the
5454 	   permission check. No serious, additional covert channels
5455 	   appear to be created. */
5456 	if (perm == 0)
5457 		return 0;
5458 
5459 	sid = cred_sid(cred);
5460 
5461 	key = key_ref_to_ptr(key_ref);
5462 	ksec = key->security;
5463 
5464 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5465 }
5466 
5467 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5468 {
5469 	struct key_security_struct *ksec = key->security;
5470 	char *context = NULL;
5471 	unsigned len;
5472 	int rc;
5473 
5474 	rc = security_sid_to_context(ksec->sid, &context, &len);
5475 	if (!rc)
5476 		rc = len;
5477 	*_buffer = context;
5478 	return rc;
5479 }
5480 
5481 #endif
5482 
5483 static struct security_operations selinux_ops = {
5484 	.name =				"selinux",
5485 
5486 	.ptrace_access_check =		selinux_ptrace_access_check,
5487 	.ptrace_traceme =		selinux_ptrace_traceme,
5488 	.capget =			selinux_capget,
5489 	.capset =			selinux_capset,
5490 	.capable =			selinux_capable,
5491 	.quotactl =			selinux_quotactl,
5492 	.quota_on =			selinux_quota_on,
5493 	.syslog =			selinux_syslog,
5494 	.vm_enough_memory =		selinux_vm_enough_memory,
5495 
5496 	.netlink_send =			selinux_netlink_send,
5497 
5498 	.bprm_set_creds =		selinux_bprm_set_creds,
5499 	.bprm_committing_creds =	selinux_bprm_committing_creds,
5500 	.bprm_committed_creds =		selinux_bprm_committed_creds,
5501 	.bprm_secureexec =		selinux_bprm_secureexec,
5502 
5503 	.sb_alloc_security =		selinux_sb_alloc_security,
5504 	.sb_free_security =		selinux_sb_free_security,
5505 	.sb_copy_data =			selinux_sb_copy_data,
5506 	.sb_remount =			selinux_sb_remount,
5507 	.sb_kern_mount =		selinux_sb_kern_mount,
5508 	.sb_show_options =		selinux_sb_show_options,
5509 	.sb_statfs =			selinux_sb_statfs,
5510 	.sb_mount =			selinux_mount,
5511 	.sb_umount =			selinux_umount,
5512 	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5513 	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5514 	.sb_parse_opts_str = 		selinux_parse_opts_str,
5515 
5516 
5517 	.inode_alloc_security =		selinux_inode_alloc_security,
5518 	.inode_free_security =		selinux_inode_free_security,
5519 	.inode_init_security =		selinux_inode_init_security,
5520 	.inode_create =			selinux_inode_create,
5521 	.inode_link =			selinux_inode_link,
5522 	.inode_unlink =			selinux_inode_unlink,
5523 	.inode_symlink =		selinux_inode_symlink,
5524 	.inode_mkdir =			selinux_inode_mkdir,
5525 	.inode_rmdir =			selinux_inode_rmdir,
5526 	.inode_mknod =			selinux_inode_mknod,
5527 	.inode_rename =			selinux_inode_rename,
5528 	.inode_readlink =		selinux_inode_readlink,
5529 	.inode_follow_link =		selinux_inode_follow_link,
5530 	.inode_permission =		selinux_inode_permission,
5531 	.inode_setattr =		selinux_inode_setattr,
5532 	.inode_getattr =		selinux_inode_getattr,
5533 	.inode_setxattr =		selinux_inode_setxattr,
5534 	.inode_post_setxattr =		selinux_inode_post_setxattr,
5535 	.inode_getxattr =		selinux_inode_getxattr,
5536 	.inode_listxattr =		selinux_inode_listxattr,
5537 	.inode_removexattr =		selinux_inode_removexattr,
5538 	.inode_getsecurity =		selinux_inode_getsecurity,
5539 	.inode_setsecurity =		selinux_inode_setsecurity,
5540 	.inode_listsecurity =		selinux_inode_listsecurity,
5541 	.inode_getsecid =		selinux_inode_getsecid,
5542 
5543 	.file_permission =		selinux_file_permission,
5544 	.file_alloc_security =		selinux_file_alloc_security,
5545 	.file_free_security =		selinux_file_free_security,
5546 	.file_ioctl =			selinux_file_ioctl,
5547 	.mmap_file =			selinux_mmap_file,
5548 	.mmap_addr =			selinux_mmap_addr,
5549 	.file_mprotect =		selinux_file_mprotect,
5550 	.file_lock =			selinux_file_lock,
5551 	.file_fcntl =			selinux_file_fcntl,
5552 	.file_set_fowner =		selinux_file_set_fowner,
5553 	.file_send_sigiotask =		selinux_file_send_sigiotask,
5554 	.file_receive =			selinux_file_receive,
5555 
5556 	.file_open =			selinux_file_open,
5557 
5558 	.task_create =			selinux_task_create,
5559 	.cred_alloc_blank =		selinux_cred_alloc_blank,
5560 	.cred_free =			selinux_cred_free,
5561 	.cred_prepare =			selinux_cred_prepare,
5562 	.cred_transfer =		selinux_cred_transfer,
5563 	.kernel_act_as =		selinux_kernel_act_as,
5564 	.kernel_create_files_as =	selinux_kernel_create_files_as,
5565 	.kernel_module_request =	selinux_kernel_module_request,
5566 	.task_setpgid =			selinux_task_setpgid,
5567 	.task_getpgid =			selinux_task_getpgid,
5568 	.task_getsid =			selinux_task_getsid,
5569 	.task_getsecid =		selinux_task_getsecid,
5570 	.task_setnice =			selinux_task_setnice,
5571 	.task_setioprio =		selinux_task_setioprio,
5572 	.task_getioprio =		selinux_task_getioprio,
5573 	.task_setrlimit =		selinux_task_setrlimit,
5574 	.task_setscheduler =		selinux_task_setscheduler,
5575 	.task_getscheduler =		selinux_task_getscheduler,
5576 	.task_movememory =		selinux_task_movememory,
5577 	.task_kill =			selinux_task_kill,
5578 	.task_wait =			selinux_task_wait,
5579 	.task_to_inode =		selinux_task_to_inode,
5580 
5581 	.ipc_permission =		selinux_ipc_permission,
5582 	.ipc_getsecid =			selinux_ipc_getsecid,
5583 
5584 	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5585 	.msg_msg_free_security =	selinux_msg_msg_free_security,
5586 
5587 	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5588 	.msg_queue_free_security =	selinux_msg_queue_free_security,
5589 	.msg_queue_associate =		selinux_msg_queue_associate,
5590 	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5591 	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5592 	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5593 
5594 	.shm_alloc_security =		selinux_shm_alloc_security,
5595 	.shm_free_security =		selinux_shm_free_security,
5596 	.shm_associate =		selinux_shm_associate,
5597 	.shm_shmctl =			selinux_shm_shmctl,
5598 	.shm_shmat =			selinux_shm_shmat,
5599 
5600 	.sem_alloc_security =		selinux_sem_alloc_security,
5601 	.sem_free_security =		selinux_sem_free_security,
5602 	.sem_associate =		selinux_sem_associate,
5603 	.sem_semctl =			selinux_sem_semctl,
5604 	.sem_semop =			selinux_sem_semop,
5605 
5606 	.d_instantiate =		selinux_d_instantiate,
5607 
5608 	.getprocattr =			selinux_getprocattr,
5609 	.setprocattr =			selinux_setprocattr,
5610 
5611 	.secid_to_secctx =		selinux_secid_to_secctx,
5612 	.secctx_to_secid =		selinux_secctx_to_secid,
5613 	.release_secctx =		selinux_release_secctx,
5614 	.inode_notifysecctx =		selinux_inode_notifysecctx,
5615 	.inode_setsecctx =		selinux_inode_setsecctx,
5616 	.inode_getsecctx =		selinux_inode_getsecctx,
5617 
5618 	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5619 	.unix_may_send =		selinux_socket_unix_may_send,
5620 
5621 	.socket_create =		selinux_socket_create,
5622 	.socket_post_create =		selinux_socket_post_create,
5623 	.socket_bind =			selinux_socket_bind,
5624 	.socket_connect =		selinux_socket_connect,
5625 	.socket_listen =		selinux_socket_listen,
5626 	.socket_accept =		selinux_socket_accept,
5627 	.socket_sendmsg =		selinux_socket_sendmsg,
5628 	.socket_recvmsg =		selinux_socket_recvmsg,
5629 	.socket_getsockname =		selinux_socket_getsockname,
5630 	.socket_getpeername =		selinux_socket_getpeername,
5631 	.socket_getsockopt =		selinux_socket_getsockopt,
5632 	.socket_setsockopt =		selinux_socket_setsockopt,
5633 	.socket_shutdown =		selinux_socket_shutdown,
5634 	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5635 	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5636 	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5637 	.sk_alloc_security =		selinux_sk_alloc_security,
5638 	.sk_free_security =		selinux_sk_free_security,
5639 	.sk_clone_security =		selinux_sk_clone_security,
5640 	.sk_getsecid =			selinux_sk_getsecid,
5641 	.sock_graft =			selinux_sock_graft,
5642 	.inet_conn_request =		selinux_inet_conn_request,
5643 	.inet_csk_clone =		selinux_inet_csk_clone,
5644 	.inet_conn_established =	selinux_inet_conn_established,
5645 	.secmark_relabel_packet =	selinux_secmark_relabel_packet,
5646 	.secmark_refcount_inc =		selinux_secmark_refcount_inc,
5647 	.secmark_refcount_dec =		selinux_secmark_refcount_dec,
5648 	.req_classify_flow =		selinux_req_classify_flow,
5649 	.tun_dev_create =		selinux_tun_dev_create,
5650 	.tun_dev_post_create = 		selinux_tun_dev_post_create,
5651 	.tun_dev_attach =		selinux_tun_dev_attach,
5652 
5653 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5654 	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5655 	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5656 	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5657 	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5658 	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
5659 	.xfrm_state_free_security =	selinux_xfrm_state_free,
5660 	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5661 	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5662 	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5663 	.xfrm_decode_session =		selinux_xfrm_decode_session,
5664 #endif
5665 
5666 #ifdef CONFIG_KEYS
5667 	.key_alloc =			selinux_key_alloc,
5668 	.key_free =			selinux_key_free,
5669 	.key_permission =		selinux_key_permission,
5670 	.key_getsecurity =		selinux_key_getsecurity,
5671 #endif
5672 
5673 #ifdef CONFIG_AUDIT
5674 	.audit_rule_init =		selinux_audit_rule_init,
5675 	.audit_rule_known =		selinux_audit_rule_known,
5676 	.audit_rule_match =		selinux_audit_rule_match,
5677 	.audit_rule_free =		selinux_audit_rule_free,
5678 #endif
5679 };
5680 
5681 static __init int selinux_init(void)
5682 {
5683 	if (!security_module_enable(&selinux_ops)) {
5684 		selinux_enabled = 0;
5685 		return 0;
5686 	}
5687 
5688 	if (!selinux_enabled) {
5689 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5690 		return 0;
5691 	}
5692 
5693 	printk(KERN_INFO "SELinux:  Initializing.\n");
5694 
5695 	/* Set the security state for the initial task. */
5696 	cred_init_security();
5697 
5698 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5699 
5700 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5701 					    sizeof(struct inode_security_struct),
5702 					    0, SLAB_PANIC, NULL);
5703 	avc_init();
5704 
5705 	if (register_security(&selinux_ops))
5706 		panic("SELinux: Unable to register with kernel.\n");
5707 
5708 	if (selinux_enforcing)
5709 		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5710 	else
5711 		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5712 
5713 	return 0;
5714 }
5715 
5716 static void delayed_superblock_init(struct super_block *sb, void *unused)
5717 {
5718 	superblock_doinit(sb, NULL);
5719 }
5720 
5721 void selinux_complete_init(void)
5722 {
5723 	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5724 
5725 	/* Set up any superblocks initialized prior to the policy load. */
5726 	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5727 	iterate_supers(delayed_superblock_init, NULL);
5728 }
5729 
5730 /* SELinux requires early initialization in order to label
5731    all processes and objects when they are created. */
5732 security_initcall(selinux_init);
5733 
5734 #if defined(CONFIG_NETFILTER)
5735 
5736 static struct nf_hook_ops selinux_ipv4_ops[] = {
5737 	{
5738 		.hook =		selinux_ipv4_postroute,
5739 		.owner =	THIS_MODULE,
5740 		.pf =		NFPROTO_IPV4,
5741 		.hooknum =	NF_INET_POST_ROUTING,
5742 		.priority =	NF_IP_PRI_SELINUX_LAST,
5743 	},
5744 	{
5745 		.hook =		selinux_ipv4_forward,
5746 		.owner =	THIS_MODULE,
5747 		.pf =		NFPROTO_IPV4,
5748 		.hooknum =	NF_INET_FORWARD,
5749 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5750 	},
5751 	{
5752 		.hook =		selinux_ipv4_output,
5753 		.owner =	THIS_MODULE,
5754 		.pf =		NFPROTO_IPV4,
5755 		.hooknum =	NF_INET_LOCAL_OUT,
5756 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5757 	}
5758 };
5759 
5760 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5761 
5762 static struct nf_hook_ops selinux_ipv6_ops[] = {
5763 	{
5764 		.hook =		selinux_ipv6_postroute,
5765 		.owner =	THIS_MODULE,
5766 		.pf =		NFPROTO_IPV6,
5767 		.hooknum =	NF_INET_POST_ROUTING,
5768 		.priority =	NF_IP6_PRI_SELINUX_LAST,
5769 	},
5770 	{
5771 		.hook =		selinux_ipv6_forward,
5772 		.owner =	THIS_MODULE,
5773 		.pf =		NFPROTO_IPV6,
5774 		.hooknum =	NF_INET_FORWARD,
5775 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
5776 	}
5777 };
5778 
5779 #endif	/* IPV6 */
5780 
5781 static int __init selinux_nf_ip_init(void)
5782 {
5783 	int err = 0;
5784 
5785 	if (!selinux_enabled)
5786 		goto out;
5787 
5788 	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5789 
5790 	err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5791 	if (err)
5792 		panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5793 
5794 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5795 	err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5796 	if (err)
5797 		panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5798 #endif	/* IPV6 */
5799 
5800 out:
5801 	return err;
5802 }
5803 
5804 __initcall(selinux_nf_ip_init);
5805 
5806 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5807 static void selinux_nf_ip_exit(void)
5808 {
5809 	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5810 
5811 	nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5812 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5813 	nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5814 #endif	/* IPV6 */
5815 }
5816 #endif
5817 
5818 #else /* CONFIG_NETFILTER */
5819 
5820 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5821 #define selinux_nf_ip_exit()
5822 #endif
5823 
5824 #endif /* CONFIG_NETFILTER */
5825 
5826 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5827 static int selinux_disabled;
5828 
5829 int selinux_disable(void)
5830 {
5831 	if (ss_initialized) {
5832 		/* Not permitted after initial policy load. */
5833 		return -EINVAL;
5834 	}
5835 
5836 	if (selinux_disabled) {
5837 		/* Only do this once. */
5838 		return -EINVAL;
5839 	}
5840 
5841 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5842 
5843 	selinux_disabled = 1;
5844 	selinux_enabled = 0;
5845 
5846 	reset_security_ops();
5847 
5848 	/* Try to destroy the avc node cache */
5849 	avc_disable();
5850 
5851 	/* Unregister netfilter hooks. */
5852 	selinux_nf_ip_exit();
5853 
5854 	/* Unregister selinuxfs. */
5855 	exit_sel_fs();
5856 
5857 	return 0;
5858 }
5859 #endif
5860