xref: /linux/security/selinux/hooks.c (revision 6e8331ac6973435b1e7604c30f2ad394035b46e1)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14  *                          <dgoeddel@trustedcs.com>
15  *
16  *	This program is free software; you can redistribute it and/or modify
17  *	it under the terms of the GNU General Public License version 2,
18  *      as published by the Free Software Foundation.
19  */
20 
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/kernel.h>
24 #include <linux/ptrace.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/security.h>
28 #include <linux/xattr.h>
29 #include <linux/capability.h>
30 #include <linux/unistd.h>
31 #include <linux/mm.h>
32 #include <linux/mman.h>
33 #include <linux/slab.h>
34 #include <linux/pagemap.h>
35 #include <linux/swap.h>
36 #include <linux/smp_lock.h>
37 #include <linux/spinlock.h>
38 #include <linux/syscalls.h>
39 #include <linux/file.h>
40 #include <linux/namei.h>
41 #include <linux/mount.h>
42 #include <linux/ext2_fs.h>
43 #include <linux/proc_fs.h>
44 #include <linux/kd.h>
45 #include <linux/netfilter_ipv4.h>
46 #include <linux/netfilter_ipv6.h>
47 #include <linux/tty.h>
48 #include <net/icmp.h>
49 #include <net/ip.h>		/* for sysctl_local_port_range[] */
50 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
51 #include <asm/uaccess.h>
52 #include <asm/semaphore.h>
53 #include <asm/ioctls.h>
54 #include <linux/bitops.h>
55 #include <linux/interrupt.h>
56 #include <linux/netdevice.h>	/* for network interface checks */
57 #include <linux/netlink.h>
58 #include <linux/tcp.h>
59 #include <linux/udp.h>
60 #include <linux/quota.h>
61 #include <linux/un.h>		/* for Unix socket types */
62 #include <net/af_unix.h>	/* for Unix socket types */
63 #include <linux/parser.h>
64 #include <linux/nfs_mount.h>
65 #include <net/ipv6.h>
66 #include <linux/hugetlb.h>
67 #include <linux/personality.h>
68 #include <linux/sysctl.h>
69 #include <linux/audit.h>
70 #include <linux/string.h>
71 #include <linux/selinux.h>
72 
73 #include "avc.h"
74 #include "objsec.h"
75 #include "netif.h"
76 #include "xfrm.h"
77 
78 #define XATTR_SELINUX_SUFFIX "selinux"
79 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
80 
81 extern unsigned int policydb_loaded_version;
82 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
83 extern int selinux_compat_net;
84 
85 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
86 int selinux_enforcing = 0;
87 
88 static int __init enforcing_setup(char *str)
89 {
90 	selinux_enforcing = simple_strtol(str,NULL,0);
91 	return 1;
92 }
93 __setup("enforcing=", enforcing_setup);
94 #endif
95 
96 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
97 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
98 
99 static int __init selinux_enabled_setup(char *str)
100 {
101 	selinux_enabled = simple_strtol(str, NULL, 0);
102 	return 1;
103 }
104 __setup("selinux=", selinux_enabled_setup);
105 #else
106 int selinux_enabled = 1;
107 #endif
108 
109 /* Original (dummy) security module. */
110 static struct security_operations *original_ops = NULL;
111 
112 /* Minimal support for a secondary security module,
113    just to allow the use of the dummy or capability modules.
114    The owlsm module can alternatively be used as a secondary
115    module as long as CONFIG_OWLSM_FD is not enabled. */
116 static struct security_operations *secondary_ops = NULL;
117 
118 /* Lists of inode and superblock security structures initialized
119    before the policy was loaded. */
120 static LIST_HEAD(superblock_security_head);
121 static DEFINE_SPINLOCK(sb_security_lock);
122 
123 static kmem_cache_t *sel_inode_cache;
124 
125 /* Return security context for a given sid or just the context
126    length if the buffer is null or length is 0 */
127 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
128 {
129 	char *context;
130 	unsigned len;
131 	int rc;
132 
133 	rc = security_sid_to_context(sid, &context, &len);
134 	if (rc)
135 		return rc;
136 
137 	if (!buffer || !size)
138 		goto getsecurity_exit;
139 
140 	if (size < len) {
141 		len = -ERANGE;
142 		goto getsecurity_exit;
143 	}
144 	memcpy(buffer, context, len);
145 
146 getsecurity_exit:
147 	kfree(context);
148 	return len;
149 }
150 
151 /* Allocate and free functions for each kind of security blob. */
152 
153 static int task_alloc_security(struct task_struct *task)
154 {
155 	struct task_security_struct *tsec;
156 
157 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
158 	if (!tsec)
159 		return -ENOMEM;
160 
161 	tsec->task = task;
162 	tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
163 	task->security = tsec;
164 
165 	return 0;
166 }
167 
168 static void task_free_security(struct task_struct *task)
169 {
170 	struct task_security_struct *tsec = task->security;
171 	task->security = NULL;
172 	kfree(tsec);
173 }
174 
175 static int inode_alloc_security(struct inode *inode)
176 {
177 	struct task_security_struct *tsec = current->security;
178 	struct inode_security_struct *isec;
179 
180 	isec = kmem_cache_alloc(sel_inode_cache, SLAB_KERNEL);
181 	if (!isec)
182 		return -ENOMEM;
183 
184 	memset(isec, 0, sizeof(*isec));
185 	init_MUTEX(&isec->sem);
186 	INIT_LIST_HEAD(&isec->list);
187 	isec->inode = inode;
188 	isec->sid = SECINITSID_UNLABELED;
189 	isec->sclass = SECCLASS_FILE;
190 	isec->task_sid = tsec->sid;
191 	inode->i_security = isec;
192 
193 	return 0;
194 }
195 
196 static void inode_free_security(struct inode *inode)
197 {
198 	struct inode_security_struct *isec = inode->i_security;
199 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
200 
201 	spin_lock(&sbsec->isec_lock);
202 	if (!list_empty(&isec->list))
203 		list_del_init(&isec->list);
204 	spin_unlock(&sbsec->isec_lock);
205 
206 	inode->i_security = NULL;
207 	kmem_cache_free(sel_inode_cache, isec);
208 }
209 
210 static int file_alloc_security(struct file *file)
211 {
212 	struct task_security_struct *tsec = current->security;
213 	struct file_security_struct *fsec;
214 
215 	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
216 	if (!fsec)
217 		return -ENOMEM;
218 
219 	fsec->file = file;
220 	fsec->sid = tsec->sid;
221 	fsec->fown_sid = tsec->sid;
222 	file->f_security = fsec;
223 
224 	return 0;
225 }
226 
227 static void file_free_security(struct file *file)
228 {
229 	struct file_security_struct *fsec = file->f_security;
230 	file->f_security = NULL;
231 	kfree(fsec);
232 }
233 
234 static int superblock_alloc_security(struct super_block *sb)
235 {
236 	struct superblock_security_struct *sbsec;
237 
238 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
239 	if (!sbsec)
240 		return -ENOMEM;
241 
242 	init_MUTEX(&sbsec->sem);
243 	INIT_LIST_HEAD(&sbsec->list);
244 	INIT_LIST_HEAD(&sbsec->isec_head);
245 	spin_lock_init(&sbsec->isec_lock);
246 	sbsec->sb = sb;
247 	sbsec->sid = SECINITSID_UNLABELED;
248 	sbsec->def_sid = SECINITSID_FILE;
249 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
250 	sb->s_security = sbsec;
251 
252 	return 0;
253 }
254 
255 static void superblock_free_security(struct super_block *sb)
256 {
257 	struct superblock_security_struct *sbsec = sb->s_security;
258 
259 	spin_lock(&sb_security_lock);
260 	if (!list_empty(&sbsec->list))
261 		list_del_init(&sbsec->list);
262 	spin_unlock(&sb_security_lock);
263 
264 	sb->s_security = NULL;
265 	kfree(sbsec);
266 }
267 
268 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
269 {
270 	struct sk_security_struct *ssec;
271 
272 	if (family != PF_UNIX)
273 		return 0;
274 
275 	ssec = kzalloc(sizeof(*ssec), priority);
276 	if (!ssec)
277 		return -ENOMEM;
278 
279 	ssec->sk = sk;
280 	ssec->peer_sid = SECINITSID_UNLABELED;
281 	sk->sk_security = ssec;
282 
283 	return 0;
284 }
285 
286 static void sk_free_security(struct sock *sk)
287 {
288 	struct sk_security_struct *ssec = sk->sk_security;
289 
290 	if (sk->sk_family != PF_UNIX)
291 		return;
292 
293 	sk->sk_security = NULL;
294 	kfree(ssec);
295 }
296 
297 /* The security server must be initialized before
298    any labeling or access decisions can be provided. */
299 extern int ss_initialized;
300 
301 /* The file system's label must be initialized prior to use. */
302 
303 static char *labeling_behaviors[6] = {
304 	"uses xattr",
305 	"uses transition SIDs",
306 	"uses task SIDs",
307 	"uses genfs_contexts",
308 	"not configured for labeling",
309 	"uses mountpoint labeling",
310 };
311 
312 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
313 
314 static inline int inode_doinit(struct inode *inode)
315 {
316 	return inode_doinit_with_dentry(inode, NULL);
317 }
318 
319 enum {
320 	Opt_context = 1,
321 	Opt_fscontext = 2,
322 	Opt_defcontext = 4,
323 	Opt_rootcontext = 8,
324 };
325 
326 static match_table_t tokens = {
327 	{Opt_context, "context=%s"},
328 	{Opt_fscontext, "fscontext=%s"},
329 	{Opt_defcontext, "defcontext=%s"},
330 	{Opt_rootcontext, "rootcontext=%s"},
331 };
332 
333 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
334 
335 static int may_context_mount_sb_relabel(u32 sid,
336 			struct superblock_security_struct *sbsec,
337 			struct task_security_struct *tsec)
338 {
339 	int rc;
340 
341 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
342 			  FILESYSTEM__RELABELFROM, NULL);
343 	if (rc)
344 		return rc;
345 
346 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
347 			  FILESYSTEM__RELABELTO, NULL);
348 	return rc;
349 }
350 
351 static int may_context_mount_inode_relabel(u32 sid,
352 			struct superblock_security_struct *sbsec,
353 			struct task_security_struct *tsec)
354 {
355 	int rc;
356 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
357 			  FILESYSTEM__RELABELFROM, NULL);
358 	if (rc)
359 		return rc;
360 
361 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
362 			  FILESYSTEM__ASSOCIATE, NULL);
363 	return rc;
364 }
365 
366 static int try_context_mount(struct super_block *sb, void *data)
367 {
368 	char *context = NULL, *defcontext = NULL;
369 	char *fscontext = NULL, *rootcontext = NULL;
370 	const char *name;
371 	u32 sid;
372 	int alloc = 0, rc = 0, seen = 0;
373 	struct task_security_struct *tsec = current->security;
374 	struct superblock_security_struct *sbsec = sb->s_security;
375 
376 	if (!data)
377 		goto out;
378 
379 	name = sb->s_type->name;
380 
381 	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
382 
383 		/* NFS we understand. */
384 		if (!strcmp(name, "nfs")) {
385 			struct nfs_mount_data *d = data;
386 
387 			if (d->version <  NFS_MOUNT_VERSION)
388 				goto out;
389 
390 			if (d->context[0]) {
391 				context = d->context;
392 				seen |= Opt_context;
393 			}
394 		} else
395 			goto out;
396 
397 	} else {
398 		/* Standard string-based options. */
399 		char *p, *options = data;
400 
401 		while ((p = strsep(&options, ",")) != NULL) {
402 			int token;
403 			substring_t args[MAX_OPT_ARGS];
404 
405 			if (!*p)
406 				continue;
407 
408 			token = match_token(p, tokens, args);
409 
410 			switch (token) {
411 			case Opt_context:
412 				if (seen & (Opt_context|Opt_defcontext)) {
413 					rc = -EINVAL;
414 					printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
415 					goto out_free;
416 				}
417 				context = match_strdup(&args[0]);
418 				if (!context) {
419 					rc = -ENOMEM;
420 					goto out_free;
421 				}
422 				if (!alloc)
423 					alloc = 1;
424 				seen |= Opt_context;
425 				break;
426 
427 			case Opt_fscontext:
428 				if (seen & Opt_fscontext) {
429 					rc = -EINVAL;
430 					printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
431 					goto out_free;
432 				}
433 				fscontext = match_strdup(&args[0]);
434 				if (!fscontext) {
435 					rc = -ENOMEM;
436 					goto out_free;
437 				}
438 				if (!alloc)
439 					alloc = 1;
440 				seen |= Opt_fscontext;
441 				break;
442 
443 			case Opt_rootcontext:
444 				if (seen & Opt_rootcontext) {
445 					rc = -EINVAL;
446 					printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
447 					goto out_free;
448 				}
449 				rootcontext = match_strdup(&args[0]);
450 				if (!rootcontext) {
451 					rc = -ENOMEM;
452 					goto out_free;
453 				}
454 				if (!alloc)
455 					alloc = 1;
456 				seen |= Opt_rootcontext;
457 				break;
458 
459 			case Opt_defcontext:
460 				if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
461 					rc = -EINVAL;
462 					printk(KERN_WARNING "SELinux:  "
463 					       "defcontext option is invalid "
464 					       "for this filesystem type\n");
465 					goto out_free;
466 				}
467 				if (seen & (Opt_context|Opt_defcontext)) {
468 					rc = -EINVAL;
469 					printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
470 					goto out_free;
471 				}
472 				defcontext = match_strdup(&args[0]);
473 				if (!defcontext) {
474 					rc = -ENOMEM;
475 					goto out_free;
476 				}
477 				if (!alloc)
478 					alloc = 1;
479 				seen |= Opt_defcontext;
480 				break;
481 
482 			default:
483 				rc = -EINVAL;
484 				printk(KERN_WARNING "SELinux:  unknown mount "
485 				       "option\n");
486 				goto out_free;
487 
488 			}
489 		}
490 	}
491 
492 	if (!seen)
493 		goto out;
494 
495 	/* sets the context of the superblock for the fs being mounted. */
496 	if (fscontext) {
497 		rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
498 		if (rc) {
499 			printk(KERN_WARNING "SELinux: security_context_to_sid"
500 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
501 			       fscontext, sb->s_id, name, rc);
502 			goto out_free;
503 		}
504 
505 		rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
506 		if (rc)
507 			goto out_free;
508 
509 		sbsec->sid = sid;
510 	}
511 
512 	/*
513 	 * Switch to using mount point labeling behavior.
514 	 * sets the label used on all file below the mountpoint, and will set
515 	 * the superblock context if not already set.
516 	 */
517 	if (context) {
518 		rc = security_context_to_sid(context, strlen(context), &sid);
519 		if (rc) {
520 			printk(KERN_WARNING "SELinux: security_context_to_sid"
521 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
522 			       context, sb->s_id, name, rc);
523 			goto out_free;
524 		}
525 
526 		if (!fscontext) {
527 			rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
528 			if (rc)
529 				goto out_free;
530 			sbsec->sid = sid;
531 		} else {
532 			rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
533 			if (rc)
534 				goto out_free;
535 		}
536 		sbsec->mntpoint_sid = sid;
537 
538 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
539 	}
540 
541 	if (rootcontext) {
542 		struct inode *inode = sb->s_root->d_inode;
543 		struct inode_security_struct *isec = inode->i_security;
544 		rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
545 		if (rc) {
546 			printk(KERN_WARNING "SELinux: security_context_to_sid"
547 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
548 			       rootcontext, sb->s_id, name, rc);
549 			goto out_free;
550 		}
551 
552 		rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
553 		if (rc)
554 			goto out_free;
555 
556 		isec->sid = sid;
557 		isec->initialized = 1;
558 	}
559 
560 	if (defcontext) {
561 		rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
562 		if (rc) {
563 			printk(KERN_WARNING "SELinux: security_context_to_sid"
564 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
565 			       defcontext, sb->s_id, name, rc);
566 			goto out_free;
567 		}
568 
569 		if (sid == sbsec->def_sid)
570 			goto out_free;
571 
572 		rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
573 		if (rc)
574 			goto out_free;
575 
576 		sbsec->def_sid = sid;
577 	}
578 
579 out_free:
580 	if (alloc) {
581 		kfree(context);
582 		kfree(defcontext);
583 		kfree(fscontext);
584 		kfree(rootcontext);
585 	}
586 out:
587 	return rc;
588 }
589 
590 static int superblock_doinit(struct super_block *sb, void *data)
591 {
592 	struct superblock_security_struct *sbsec = sb->s_security;
593 	struct dentry *root = sb->s_root;
594 	struct inode *inode = root->d_inode;
595 	int rc = 0;
596 
597 	down(&sbsec->sem);
598 	if (sbsec->initialized)
599 		goto out;
600 
601 	if (!ss_initialized) {
602 		/* Defer initialization until selinux_complete_init,
603 		   after the initial policy is loaded and the security
604 		   server is ready to handle calls. */
605 		spin_lock(&sb_security_lock);
606 		if (list_empty(&sbsec->list))
607 			list_add(&sbsec->list, &superblock_security_head);
608 		spin_unlock(&sb_security_lock);
609 		goto out;
610 	}
611 
612 	/* Determine the labeling behavior to use for this filesystem type. */
613 	rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
614 	if (rc) {
615 		printk(KERN_WARNING "%s:  security_fs_use(%s) returned %d\n",
616 		       __FUNCTION__, sb->s_type->name, rc);
617 		goto out;
618 	}
619 
620 	rc = try_context_mount(sb, data);
621 	if (rc)
622 		goto out;
623 
624 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
625 		/* Make sure that the xattr handler exists and that no
626 		   error other than -ENODATA is returned by getxattr on
627 		   the root directory.  -ENODATA is ok, as this may be
628 		   the first boot of the SELinux kernel before we have
629 		   assigned xattr values to the filesystem. */
630 		if (!inode->i_op->getxattr) {
631 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
632 			       "xattr support\n", sb->s_id, sb->s_type->name);
633 			rc = -EOPNOTSUPP;
634 			goto out;
635 		}
636 		rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
637 		if (rc < 0 && rc != -ENODATA) {
638 			if (rc == -EOPNOTSUPP)
639 				printk(KERN_WARNING "SELinux: (dev %s, type "
640 				       "%s) has no security xattr handler\n",
641 				       sb->s_id, sb->s_type->name);
642 			else
643 				printk(KERN_WARNING "SELinux: (dev %s, type "
644 				       "%s) getxattr errno %d\n", sb->s_id,
645 				       sb->s_type->name, -rc);
646 			goto out;
647 		}
648 	}
649 
650 	if (strcmp(sb->s_type->name, "proc") == 0)
651 		sbsec->proc = 1;
652 
653 	sbsec->initialized = 1;
654 
655 	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
656 		printk(KERN_INFO "SELinux: initialized (dev %s, type %s), unknown behavior\n",
657 		       sb->s_id, sb->s_type->name);
658 	}
659 	else {
660 		printk(KERN_INFO "SELinux: initialized (dev %s, type %s), %s\n",
661 		       sb->s_id, sb->s_type->name,
662 		       labeling_behaviors[sbsec->behavior-1]);
663 	}
664 
665 	/* Initialize the root inode. */
666 	rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
667 
668 	/* Initialize any other inodes associated with the superblock, e.g.
669 	   inodes created prior to initial policy load or inodes created
670 	   during get_sb by a pseudo filesystem that directly
671 	   populates itself. */
672 	spin_lock(&sbsec->isec_lock);
673 next_inode:
674 	if (!list_empty(&sbsec->isec_head)) {
675 		struct inode_security_struct *isec =
676 				list_entry(sbsec->isec_head.next,
677 				           struct inode_security_struct, list);
678 		struct inode *inode = isec->inode;
679 		spin_unlock(&sbsec->isec_lock);
680 		inode = igrab(inode);
681 		if (inode) {
682 			if (!IS_PRIVATE (inode))
683 				inode_doinit(inode);
684 			iput(inode);
685 		}
686 		spin_lock(&sbsec->isec_lock);
687 		list_del_init(&isec->list);
688 		goto next_inode;
689 	}
690 	spin_unlock(&sbsec->isec_lock);
691 out:
692 	up(&sbsec->sem);
693 	return rc;
694 }
695 
696 static inline u16 inode_mode_to_security_class(umode_t mode)
697 {
698 	switch (mode & S_IFMT) {
699 	case S_IFSOCK:
700 		return SECCLASS_SOCK_FILE;
701 	case S_IFLNK:
702 		return SECCLASS_LNK_FILE;
703 	case S_IFREG:
704 		return SECCLASS_FILE;
705 	case S_IFBLK:
706 		return SECCLASS_BLK_FILE;
707 	case S_IFDIR:
708 		return SECCLASS_DIR;
709 	case S_IFCHR:
710 		return SECCLASS_CHR_FILE;
711 	case S_IFIFO:
712 		return SECCLASS_FIFO_FILE;
713 
714 	}
715 
716 	return SECCLASS_FILE;
717 }
718 
719 static inline int default_protocol_stream(int protocol)
720 {
721 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
722 }
723 
724 static inline int default_protocol_dgram(int protocol)
725 {
726 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
727 }
728 
729 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
730 {
731 	switch (family) {
732 	case PF_UNIX:
733 		switch (type) {
734 		case SOCK_STREAM:
735 		case SOCK_SEQPACKET:
736 			return SECCLASS_UNIX_STREAM_SOCKET;
737 		case SOCK_DGRAM:
738 			return SECCLASS_UNIX_DGRAM_SOCKET;
739 		}
740 		break;
741 	case PF_INET:
742 	case PF_INET6:
743 		switch (type) {
744 		case SOCK_STREAM:
745 			if (default_protocol_stream(protocol))
746 				return SECCLASS_TCP_SOCKET;
747 			else
748 				return SECCLASS_RAWIP_SOCKET;
749 		case SOCK_DGRAM:
750 			if (default_protocol_dgram(protocol))
751 				return SECCLASS_UDP_SOCKET;
752 			else
753 				return SECCLASS_RAWIP_SOCKET;
754 		default:
755 			return SECCLASS_RAWIP_SOCKET;
756 		}
757 		break;
758 	case PF_NETLINK:
759 		switch (protocol) {
760 		case NETLINK_ROUTE:
761 			return SECCLASS_NETLINK_ROUTE_SOCKET;
762 		case NETLINK_FIREWALL:
763 			return SECCLASS_NETLINK_FIREWALL_SOCKET;
764 		case NETLINK_INET_DIAG:
765 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
766 		case NETLINK_NFLOG:
767 			return SECCLASS_NETLINK_NFLOG_SOCKET;
768 		case NETLINK_XFRM:
769 			return SECCLASS_NETLINK_XFRM_SOCKET;
770 		case NETLINK_SELINUX:
771 			return SECCLASS_NETLINK_SELINUX_SOCKET;
772 		case NETLINK_AUDIT:
773 			return SECCLASS_NETLINK_AUDIT_SOCKET;
774 		case NETLINK_IP6_FW:
775 			return SECCLASS_NETLINK_IP6FW_SOCKET;
776 		case NETLINK_DNRTMSG:
777 			return SECCLASS_NETLINK_DNRT_SOCKET;
778 		case NETLINK_KOBJECT_UEVENT:
779 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
780 		default:
781 			return SECCLASS_NETLINK_SOCKET;
782 		}
783 	case PF_PACKET:
784 		return SECCLASS_PACKET_SOCKET;
785 	case PF_KEY:
786 		return SECCLASS_KEY_SOCKET;
787 	case PF_APPLETALK:
788 		return SECCLASS_APPLETALK_SOCKET;
789 	}
790 
791 	return SECCLASS_SOCKET;
792 }
793 
794 #ifdef CONFIG_PROC_FS
795 static int selinux_proc_get_sid(struct proc_dir_entry *de,
796 				u16 tclass,
797 				u32 *sid)
798 {
799 	int buflen, rc;
800 	char *buffer, *path, *end;
801 
802 	buffer = (char*)__get_free_page(GFP_KERNEL);
803 	if (!buffer)
804 		return -ENOMEM;
805 
806 	buflen = PAGE_SIZE;
807 	end = buffer+buflen;
808 	*--end = '\0';
809 	buflen--;
810 	path = end-1;
811 	*path = '/';
812 	while (de && de != de->parent) {
813 		buflen -= de->namelen + 1;
814 		if (buflen < 0)
815 			break;
816 		end -= de->namelen;
817 		memcpy(end, de->name, de->namelen);
818 		*--end = '/';
819 		path = end;
820 		de = de->parent;
821 	}
822 	rc = security_genfs_sid("proc", path, tclass, sid);
823 	free_page((unsigned long)buffer);
824 	return rc;
825 }
826 #else
827 static int selinux_proc_get_sid(struct proc_dir_entry *de,
828 				u16 tclass,
829 				u32 *sid)
830 {
831 	return -EINVAL;
832 }
833 #endif
834 
835 /* The inode's security attributes must be initialized before first use. */
836 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
837 {
838 	struct superblock_security_struct *sbsec = NULL;
839 	struct inode_security_struct *isec = inode->i_security;
840 	u32 sid;
841 	struct dentry *dentry;
842 #define INITCONTEXTLEN 255
843 	char *context = NULL;
844 	unsigned len = 0;
845 	int rc = 0;
846 	int hold_sem = 0;
847 
848 	if (isec->initialized)
849 		goto out;
850 
851 	down(&isec->sem);
852 	hold_sem = 1;
853 	if (isec->initialized)
854 		goto out;
855 
856 	sbsec = inode->i_sb->s_security;
857 	if (!sbsec->initialized) {
858 		/* Defer initialization until selinux_complete_init,
859 		   after the initial policy is loaded and the security
860 		   server is ready to handle calls. */
861 		spin_lock(&sbsec->isec_lock);
862 		if (list_empty(&isec->list))
863 			list_add(&isec->list, &sbsec->isec_head);
864 		spin_unlock(&sbsec->isec_lock);
865 		goto out;
866 	}
867 
868 	switch (sbsec->behavior) {
869 	case SECURITY_FS_USE_XATTR:
870 		if (!inode->i_op->getxattr) {
871 			isec->sid = sbsec->def_sid;
872 			break;
873 		}
874 
875 		/* Need a dentry, since the xattr API requires one.
876 		   Life would be simpler if we could just pass the inode. */
877 		if (opt_dentry) {
878 			/* Called from d_instantiate or d_splice_alias. */
879 			dentry = dget(opt_dentry);
880 		} else {
881 			/* Called from selinux_complete_init, try to find a dentry. */
882 			dentry = d_find_alias(inode);
883 		}
884 		if (!dentry) {
885 			printk(KERN_WARNING "%s:  no dentry for dev=%s "
886 			       "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
887 			       inode->i_ino);
888 			goto out;
889 		}
890 
891 		len = INITCONTEXTLEN;
892 		context = kmalloc(len, GFP_KERNEL);
893 		if (!context) {
894 			rc = -ENOMEM;
895 			dput(dentry);
896 			goto out;
897 		}
898 		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
899 					   context, len);
900 		if (rc == -ERANGE) {
901 			/* Need a larger buffer.  Query for the right size. */
902 			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
903 						   NULL, 0);
904 			if (rc < 0) {
905 				dput(dentry);
906 				goto out;
907 			}
908 			kfree(context);
909 			len = rc;
910 			context = kmalloc(len, GFP_KERNEL);
911 			if (!context) {
912 				rc = -ENOMEM;
913 				dput(dentry);
914 				goto out;
915 			}
916 			rc = inode->i_op->getxattr(dentry,
917 						   XATTR_NAME_SELINUX,
918 						   context, len);
919 		}
920 		dput(dentry);
921 		if (rc < 0) {
922 			if (rc != -ENODATA) {
923 				printk(KERN_WARNING "%s:  getxattr returned "
924 				       "%d for dev=%s ino=%ld\n", __FUNCTION__,
925 				       -rc, inode->i_sb->s_id, inode->i_ino);
926 				kfree(context);
927 				goto out;
928 			}
929 			/* Map ENODATA to the default file SID */
930 			sid = sbsec->def_sid;
931 			rc = 0;
932 		} else {
933 			rc = security_context_to_sid_default(context, rc, &sid,
934 			                                     sbsec->def_sid);
935 			if (rc) {
936 				printk(KERN_WARNING "%s:  context_to_sid(%s) "
937 				       "returned %d for dev=%s ino=%ld\n",
938 				       __FUNCTION__, context, -rc,
939 				       inode->i_sb->s_id, inode->i_ino);
940 				kfree(context);
941 				/* Leave with the unlabeled SID */
942 				rc = 0;
943 				break;
944 			}
945 		}
946 		kfree(context);
947 		isec->sid = sid;
948 		break;
949 	case SECURITY_FS_USE_TASK:
950 		isec->sid = isec->task_sid;
951 		break;
952 	case SECURITY_FS_USE_TRANS:
953 		/* Default to the fs SID. */
954 		isec->sid = sbsec->sid;
955 
956 		/* Try to obtain a transition SID. */
957 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
958 		rc = security_transition_sid(isec->task_sid,
959 					     sbsec->sid,
960 					     isec->sclass,
961 					     &sid);
962 		if (rc)
963 			goto out;
964 		isec->sid = sid;
965 		break;
966 	case SECURITY_FS_USE_MNTPOINT:
967 		isec->sid = sbsec->mntpoint_sid;
968 		break;
969 	default:
970 		/* Default to the fs superblock SID. */
971 		isec->sid = sbsec->sid;
972 
973 		if (sbsec->proc) {
974 			struct proc_inode *proci = PROC_I(inode);
975 			if (proci->pde) {
976 				isec->sclass = inode_mode_to_security_class(inode->i_mode);
977 				rc = selinux_proc_get_sid(proci->pde,
978 							  isec->sclass,
979 							  &sid);
980 				if (rc)
981 					goto out;
982 				isec->sid = sid;
983 			}
984 		}
985 		break;
986 	}
987 
988 	isec->initialized = 1;
989 
990 out:
991 	if (isec->sclass == SECCLASS_FILE)
992 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
993 
994 	if (hold_sem)
995 		up(&isec->sem);
996 	return rc;
997 }
998 
999 /* Convert a Linux signal to an access vector. */
1000 static inline u32 signal_to_av(int sig)
1001 {
1002 	u32 perm = 0;
1003 
1004 	switch (sig) {
1005 	case SIGCHLD:
1006 		/* Commonly granted from child to parent. */
1007 		perm = PROCESS__SIGCHLD;
1008 		break;
1009 	case SIGKILL:
1010 		/* Cannot be caught or ignored */
1011 		perm = PROCESS__SIGKILL;
1012 		break;
1013 	case SIGSTOP:
1014 		/* Cannot be caught or ignored */
1015 		perm = PROCESS__SIGSTOP;
1016 		break;
1017 	default:
1018 		/* All other signals. */
1019 		perm = PROCESS__SIGNAL;
1020 		break;
1021 	}
1022 
1023 	return perm;
1024 }
1025 
1026 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1027    fork check, ptrace check, etc. */
1028 static int task_has_perm(struct task_struct *tsk1,
1029 			 struct task_struct *tsk2,
1030 			 u32 perms)
1031 {
1032 	struct task_security_struct *tsec1, *tsec2;
1033 
1034 	tsec1 = tsk1->security;
1035 	tsec2 = tsk2->security;
1036 	return avc_has_perm(tsec1->sid, tsec2->sid,
1037 			    SECCLASS_PROCESS, perms, NULL);
1038 }
1039 
1040 /* Check whether a task is allowed to use a capability. */
1041 static int task_has_capability(struct task_struct *tsk,
1042 			       int cap)
1043 {
1044 	struct task_security_struct *tsec;
1045 	struct avc_audit_data ad;
1046 
1047 	tsec = tsk->security;
1048 
1049 	AVC_AUDIT_DATA_INIT(&ad,CAP);
1050 	ad.tsk = tsk;
1051 	ad.u.cap = cap;
1052 
1053 	return avc_has_perm(tsec->sid, tsec->sid,
1054 			    SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1055 }
1056 
1057 /* Check whether a task is allowed to use a system operation. */
1058 static int task_has_system(struct task_struct *tsk,
1059 			   u32 perms)
1060 {
1061 	struct task_security_struct *tsec;
1062 
1063 	tsec = tsk->security;
1064 
1065 	return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1066 			    SECCLASS_SYSTEM, perms, NULL);
1067 }
1068 
1069 /* Check whether a task has a particular permission to an inode.
1070    The 'adp' parameter is optional and allows other audit
1071    data to be passed (e.g. the dentry). */
1072 static int inode_has_perm(struct task_struct *tsk,
1073 			  struct inode *inode,
1074 			  u32 perms,
1075 			  struct avc_audit_data *adp)
1076 {
1077 	struct task_security_struct *tsec;
1078 	struct inode_security_struct *isec;
1079 	struct avc_audit_data ad;
1080 
1081 	tsec = tsk->security;
1082 	isec = inode->i_security;
1083 
1084 	if (!adp) {
1085 		adp = &ad;
1086 		AVC_AUDIT_DATA_INIT(&ad, FS);
1087 		ad.u.fs.inode = inode;
1088 	}
1089 
1090 	return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1091 }
1092 
1093 /* Same as inode_has_perm, but pass explicit audit data containing
1094    the dentry to help the auditing code to more easily generate the
1095    pathname if needed. */
1096 static inline int dentry_has_perm(struct task_struct *tsk,
1097 				  struct vfsmount *mnt,
1098 				  struct dentry *dentry,
1099 				  u32 av)
1100 {
1101 	struct inode *inode = dentry->d_inode;
1102 	struct avc_audit_data ad;
1103 	AVC_AUDIT_DATA_INIT(&ad,FS);
1104 	ad.u.fs.mnt = mnt;
1105 	ad.u.fs.dentry = dentry;
1106 	return inode_has_perm(tsk, inode, av, &ad);
1107 }
1108 
1109 /* Check whether a task can use an open file descriptor to
1110    access an inode in a given way.  Check access to the
1111    descriptor itself, and then use dentry_has_perm to
1112    check a particular permission to the file.
1113    Access to the descriptor is implicitly granted if it
1114    has the same SID as the process.  If av is zero, then
1115    access to the file is not checked, e.g. for cases
1116    where only the descriptor is affected like seek. */
1117 static int file_has_perm(struct task_struct *tsk,
1118 				struct file *file,
1119 				u32 av)
1120 {
1121 	struct task_security_struct *tsec = tsk->security;
1122 	struct file_security_struct *fsec = file->f_security;
1123 	struct vfsmount *mnt = file->f_vfsmnt;
1124 	struct dentry *dentry = file->f_dentry;
1125 	struct inode *inode = dentry->d_inode;
1126 	struct avc_audit_data ad;
1127 	int rc;
1128 
1129 	AVC_AUDIT_DATA_INIT(&ad, FS);
1130 	ad.u.fs.mnt = mnt;
1131 	ad.u.fs.dentry = dentry;
1132 
1133 	if (tsec->sid != fsec->sid) {
1134 		rc = avc_has_perm(tsec->sid, fsec->sid,
1135 				  SECCLASS_FD,
1136 				  FD__USE,
1137 				  &ad);
1138 		if (rc)
1139 			return rc;
1140 	}
1141 
1142 	/* av is zero if only checking access to the descriptor. */
1143 	if (av)
1144 		return inode_has_perm(tsk, inode, av, &ad);
1145 
1146 	return 0;
1147 }
1148 
1149 /* Check whether a task can create a file. */
1150 static int may_create(struct inode *dir,
1151 		      struct dentry *dentry,
1152 		      u16 tclass)
1153 {
1154 	struct task_security_struct *tsec;
1155 	struct inode_security_struct *dsec;
1156 	struct superblock_security_struct *sbsec;
1157 	u32 newsid;
1158 	struct avc_audit_data ad;
1159 	int rc;
1160 
1161 	tsec = current->security;
1162 	dsec = dir->i_security;
1163 	sbsec = dir->i_sb->s_security;
1164 
1165 	AVC_AUDIT_DATA_INIT(&ad, FS);
1166 	ad.u.fs.dentry = dentry;
1167 
1168 	rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1169 			  DIR__ADD_NAME | DIR__SEARCH,
1170 			  &ad);
1171 	if (rc)
1172 		return rc;
1173 
1174 	if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1175 		newsid = tsec->create_sid;
1176 	} else {
1177 		rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1178 					     &newsid);
1179 		if (rc)
1180 			return rc;
1181 	}
1182 
1183 	rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1184 	if (rc)
1185 		return rc;
1186 
1187 	return avc_has_perm(newsid, sbsec->sid,
1188 			    SECCLASS_FILESYSTEM,
1189 			    FILESYSTEM__ASSOCIATE, &ad);
1190 }
1191 
1192 /* Check whether a task can create a key. */
1193 static int may_create_key(u32 ksid,
1194 			  struct task_struct *ctx)
1195 {
1196 	struct task_security_struct *tsec;
1197 
1198 	tsec = ctx->security;
1199 
1200 	return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1201 }
1202 
1203 #define MAY_LINK   0
1204 #define MAY_UNLINK 1
1205 #define MAY_RMDIR  2
1206 
1207 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1208 static int may_link(struct inode *dir,
1209 		    struct dentry *dentry,
1210 		    int kind)
1211 
1212 {
1213 	struct task_security_struct *tsec;
1214 	struct inode_security_struct *dsec, *isec;
1215 	struct avc_audit_data ad;
1216 	u32 av;
1217 	int rc;
1218 
1219 	tsec = current->security;
1220 	dsec = dir->i_security;
1221 	isec = dentry->d_inode->i_security;
1222 
1223 	AVC_AUDIT_DATA_INIT(&ad, FS);
1224 	ad.u.fs.dentry = dentry;
1225 
1226 	av = DIR__SEARCH;
1227 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1228 	rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1229 	if (rc)
1230 		return rc;
1231 
1232 	switch (kind) {
1233 	case MAY_LINK:
1234 		av = FILE__LINK;
1235 		break;
1236 	case MAY_UNLINK:
1237 		av = FILE__UNLINK;
1238 		break;
1239 	case MAY_RMDIR:
1240 		av = DIR__RMDIR;
1241 		break;
1242 	default:
1243 		printk(KERN_WARNING "may_link:  unrecognized kind %d\n", kind);
1244 		return 0;
1245 	}
1246 
1247 	rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1248 	return rc;
1249 }
1250 
1251 static inline int may_rename(struct inode *old_dir,
1252 			     struct dentry *old_dentry,
1253 			     struct inode *new_dir,
1254 			     struct dentry *new_dentry)
1255 {
1256 	struct task_security_struct *tsec;
1257 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1258 	struct avc_audit_data ad;
1259 	u32 av;
1260 	int old_is_dir, new_is_dir;
1261 	int rc;
1262 
1263 	tsec = current->security;
1264 	old_dsec = old_dir->i_security;
1265 	old_isec = old_dentry->d_inode->i_security;
1266 	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1267 	new_dsec = new_dir->i_security;
1268 
1269 	AVC_AUDIT_DATA_INIT(&ad, FS);
1270 
1271 	ad.u.fs.dentry = old_dentry;
1272 	rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1273 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1274 	if (rc)
1275 		return rc;
1276 	rc = avc_has_perm(tsec->sid, old_isec->sid,
1277 			  old_isec->sclass, FILE__RENAME, &ad);
1278 	if (rc)
1279 		return rc;
1280 	if (old_is_dir && new_dir != old_dir) {
1281 		rc = avc_has_perm(tsec->sid, old_isec->sid,
1282 				  old_isec->sclass, DIR__REPARENT, &ad);
1283 		if (rc)
1284 			return rc;
1285 	}
1286 
1287 	ad.u.fs.dentry = new_dentry;
1288 	av = DIR__ADD_NAME | DIR__SEARCH;
1289 	if (new_dentry->d_inode)
1290 		av |= DIR__REMOVE_NAME;
1291 	rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1292 	if (rc)
1293 		return rc;
1294 	if (new_dentry->d_inode) {
1295 		new_isec = new_dentry->d_inode->i_security;
1296 		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1297 		rc = avc_has_perm(tsec->sid, new_isec->sid,
1298 				  new_isec->sclass,
1299 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1300 		if (rc)
1301 			return rc;
1302 	}
1303 
1304 	return 0;
1305 }
1306 
1307 /* Check whether a task can perform a filesystem operation. */
1308 static int superblock_has_perm(struct task_struct *tsk,
1309 			       struct super_block *sb,
1310 			       u32 perms,
1311 			       struct avc_audit_data *ad)
1312 {
1313 	struct task_security_struct *tsec;
1314 	struct superblock_security_struct *sbsec;
1315 
1316 	tsec = tsk->security;
1317 	sbsec = sb->s_security;
1318 	return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1319 			    perms, ad);
1320 }
1321 
1322 /* Convert a Linux mode and permission mask to an access vector. */
1323 static inline u32 file_mask_to_av(int mode, int mask)
1324 {
1325 	u32 av = 0;
1326 
1327 	if ((mode & S_IFMT) != S_IFDIR) {
1328 		if (mask & MAY_EXEC)
1329 			av |= FILE__EXECUTE;
1330 		if (mask & MAY_READ)
1331 			av |= FILE__READ;
1332 
1333 		if (mask & MAY_APPEND)
1334 			av |= FILE__APPEND;
1335 		else if (mask & MAY_WRITE)
1336 			av |= FILE__WRITE;
1337 
1338 	} else {
1339 		if (mask & MAY_EXEC)
1340 			av |= DIR__SEARCH;
1341 		if (mask & MAY_WRITE)
1342 			av |= DIR__WRITE;
1343 		if (mask & MAY_READ)
1344 			av |= DIR__READ;
1345 	}
1346 
1347 	return av;
1348 }
1349 
1350 /* Convert a Linux file to an access vector. */
1351 static inline u32 file_to_av(struct file *file)
1352 {
1353 	u32 av = 0;
1354 
1355 	if (file->f_mode & FMODE_READ)
1356 		av |= FILE__READ;
1357 	if (file->f_mode & FMODE_WRITE) {
1358 		if (file->f_flags & O_APPEND)
1359 			av |= FILE__APPEND;
1360 		else
1361 			av |= FILE__WRITE;
1362 	}
1363 
1364 	return av;
1365 }
1366 
1367 /* Set an inode's SID to a specified value. */
1368 static int inode_security_set_sid(struct inode *inode, u32 sid)
1369 {
1370 	struct inode_security_struct *isec = inode->i_security;
1371 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
1372 
1373 	if (!sbsec->initialized) {
1374 		/* Defer initialization to selinux_complete_init. */
1375 		return 0;
1376 	}
1377 
1378 	down(&isec->sem);
1379 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
1380 	isec->sid = sid;
1381 	isec->initialized = 1;
1382 	up(&isec->sem);
1383 	return 0;
1384 }
1385 
1386 /* Hook functions begin here. */
1387 
1388 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1389 {
1390 	struct task_security_struct *psec = parent->security;
1391 	struct task_security_struct *csec = child->security;
1392 	int rc;
1393 
1394 	rc = secondary_ops->ptrace(parent,child);
1395 	if (rc)
1396 		return rc;
1397 
1398 	rc = task_has_perm(parent, child, PROCESS__PTRACE);
1399 	/* Save the SID of the tracing process for later use in apply_creds. */
1400 	if (!(child->ptrace & PT_PTRACED) && !rc)
1401 		csec->ptrace_sid = psec->sid;
1402 	return rc;
1403 }
1404 
1405 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1406                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1407 {
1408 	int error;
1409 
1410 	error = task_has_perm(current, target, PROCESS__GETCAP);
1411 	if (error)
1412 		return error;
1413 
1414 	return secondary_ops->capget(target, effective, inheritable, permitted);
1415 }
1416 
1417 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1418                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1419 {
1420 	int error;
1421 
1422 	error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1423 	if (error)
1424 		return error;
1425 
1426 	return task_has_perm(current, target, PROCESS__SETCAP);
1427 }
1428 
1429 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1430                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1431 {
1432 	secondary_ops->capset_set(target, effective, inheritable, permitted);
1433 }
1434 
1435 static int selinux_capable(struct task_struct *tsk, int cap)
1436 {
1437 	int rc;
1438 
1439 	rc = secondary_ops->capable(tsk, cap);
1440 	if (rc)
1441 		return rc;
1442 
1443 	return task_has_capability(tsk,cap);
1444 }
1445 
1446 static int selinux_sysctl(ctl_table *table, int op)
1447 {
1448 	int error = 0;
1449 	u32 av;
1450 	struct task_security_struct *tsec;
1451 	u32 tsid;
1452 	int rc;
1453 
1454 	rc = secondary_ops->sysctl(table, op);
1455 	if (rc)
1456 		return rc;
1457 
1458 	tsec = current->security;
1459 
1460 	rc = selinux_proc_get_sid(table->de, (op == 001) ?
1461 	                          SECCLASS_DIR : SECCLASS_FILE, &tsid);
1462 	if (rc) {
1463 		/* Default to the well-defined sysctl SID. */
1464 		tsid = SECINITSID_SYSCTL;
1465 	}
1466 
1467 	/* The op values are "defined" in sysctl.c, thereby creating
1468 	 * a bad coupling between this module and sysctl.c */
1469 	if(op == 001) {
1470 		error = avc_has_perm(tsec->sid, tsid,
1471 				     SECCLASS_DIR, DIR__SEARCH, NULL);
1472 	} else {
1473 		av = 0;
1474 		if (op & 004)
1475 			av |= FILE__READ;
1476 		if (op & 002)
1477 			av |= FILE__WRITE;
1478 		if (av)
1479 			error = avc_has_perm(tsec->sid, tsid,
1480 					     SECCLASS_FILE, av, NULL);
1481         }
1482 
1483 	return error;
1484 }
1485 
1486 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1487 {
1488 	int rc = 0;
1489 
1490 	if (!sb)
1491 		return 0;
1492 
1493 	switch (cmds) {
1494 		case Q_SYNC:
1495 		case Q_QUOTAON:
1496 		case Q_QUOTAOFF:
1497 	        case Q_SETINFO:
1498 		case Q_SETQUOTA:
1499 			rc = superblock_has_perm(current,
1500 						 sb,
1501 						 FILESYSTEM__QUOTAMOD, NULL);
1502 			break;
1503 	        case Q_GETFMT:
1504 	        case Q_GETINFO:
1505 		case Q_GETQUOTA:
1506 			rc = superblock_has_perm(current,
1507 						 sb,
1508 						 FILESYSTEM__QUOTAGET, NULL);
1509 			break;
1510 		default:
1511 			rc = 0;  /* let the kernel handle invalid cmds */
1512 			break;
1513 	}
1514 	return rc;
1515 }
1516 
1517 static int selinux_quota_on(struct dentry *dentry)
1518 {
1519 	return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1520 }
1521 
1522 static int selinux_syslog(int type)
1523 {
1524 	int rc;
1525 
1526 	rc = secondary_ops->syslog(type);
1527 	if (rc)
1528 		return rc;
1529 
1530 	switch (type) {
1531 		case 3:         /* Read last kernel messages */
1532 		case 10:        /* Return size of the log buffer */
1533 			rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1534 			break;
1535 		case 6:         /* Disable logging to console */
1536 		case 7:         /* Enable logging to console */
1537 		case 8:		/* Set level of messages printed to console */
1538 			rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1539 			break;
1540 		case 0:         /* Close log */
1541 		case 1:         /* Open log */
1542 		case 2:         /* Read from log */
1543 		case 4:         /* Read/clear last kernel messages */
1544 		case 5:         /* Clear ring buffer */
1545 		default:
1546 			rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1547 			break;
1548 	}
1549 	return rc;
1550 }
1551 
1552 /*
1553  * Check that a process has enough memory to allocate a new virtual
1554  * mapping. 0 means there is enough memory for the allocation to
1555  * succeed and -ENOMEM implies there is not.
1556  *
1557  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1558  * if the capability is granted, but __vm_enough_memory requires 1 if
1559  * the capability is granted.
1560  *
1561  * Do not audit the selinux permission check, as this is applied to all
1562  * processes that allocate mappings.
1563  */
1564 static int selinux_vm_enough_memory(long pages)
1565 {
1566 	int rc, cap_sys_admin = 0;
1567 	struct task_security_struct *tsec = current->security;
1568 
1569 	rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1570 	if (rc == 0)
1571 		rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1572 					SECCLASS_CAPABILITY,
1573 					CAP_TO_MASK(CAP_SYS_ADMIN),
1574 					NULL);
1575 
1576 	if (rc == 0)
1577 		cap_sys_admin = 1;
1578 
1579 	return __vm_enough_memory(pages, cap_sys_admin);
1580 }
1581 
1582 /* binprm security operations */
1583 
1584 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1585 {
1586 	struct bprm_security_struct *bsec;
1587 
1588 	bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1589 	if (!bsec)
1590 		return -ENOMEM;
1591 
1592 	bsec->bprm = bprm;
1593 	bsec->sid = SECINITSID_UNLABELED;
1594 	bsec->set = 0;
1595 
1596 	bprm->security = bsec;
1597 	return 0;
1598 }
1599 
1600 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1601 {
1602 	struct task_security_struct *tsec;
1603 	struct inode *inode = bprm->file->f_dentry->d_inode;
1604 	struct inode_security_struct *isec;
1605 	struct bprm_security_struct *bsec;
1606 	u32 newsid;
1607 	struct avc_audit_data ad;
1608 	int rc;
1609 
1610 	rc = secondary_ops->bprm_set_security(bprm);
1611 	if (rc)
1612 		return rc;
1613 
1614 	bsec = bprm->security;
1615 
1616 	if (bsec->set)
1617 		return 0;
1618 
1619 	tsec = current->security;
1620 	isec = inode->i_security;
1621 
1622 	/* Default to the current task SID. */
1623 	bsec->sid = tsec->sid;
1624 
1625 	/* Reset fs, key, and sock SIDs on execve. */
1626 	tsec->create_sid = 0;
1627 	tsec->keycreate_sid = 0;
1628 	tsec->sockcreate_sid = 0;
1629 
1630 	if (tsec->exec_sid) {
1631 		newsid = tsec->exec_sid;
1632 		/* Reset exec SID on execve. */
1633 		tsec->exec_sid = 0;
1634 	} else {
1635 		/* Check for a default transition on this program. */
1636 		rc = security_transition_sid(tsec->sid, isec->sid,
1637 		                             SECCLASS_PROCESS, &newsid);
1638 		if (rc)
1639 			return rc;
1640 	}
1641 
1642 	AVC_AUDIT_DATA_INIT(&ad, FS);
1643 	ad.u.fs.mnt = bprm->file->f_vfsmnt;
1644 	ad.u.fs.dentry = bprm->file->f_dentry;
1645 
1646 	if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
1647 		newsid = tsec->sid;
1648 
1649         if (tsec->sid == newsid) {
1650 		rc = avc_has_perm(tsec->sid, isec->sid,
1651 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1652 		if (rc)
1653 			return rc;
1654 	} else {
1655 		/* Check permissions for the transition. */
1656 		rc = avc_has_perm(tsec->sid, newsid,
1657 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1658 		if (rc)
1659 			return rc;
1660 
1661 		rc = avc_has_perm(newsid, isec->sid,
1662 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1663 		if (rc)
1664 			return rc;
1665 
1666 		/* Clear any possibly unsafe personality bits on exec: */
1667 		current->personality &= ~PER_CLEAR_ON_SETID;
1668 
1669 		/* Set the security field to the new SID. */
1670 		bsec->sid = newsid;
1671 	}
1672 
1673 	bsec->set = 1;
1674 	return 0;
1675 }
1676 
1677 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1678 {
1679 	return secondary_ops->bprm_check_security(bprm);
1680 }
1681 
1682 
1683 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1684 {
1685 	struct task_security_struct *tsec = current->security;
1686 	int atsecure = 0;
1687 
1688 	if (tsec->osid != tsec->sid) {
1689 		/* Enable secure mode for SIDs transitions unless
1690 		   the noatsecure permission is granted between
1691 		   the two SIDs, i.e. ahp returns 0. */
1692 		atsecure = avc_has_perm(tsec->osid, tsec->sid,
1693 					 SECCLASS_PROCESS,
1694 					 PROCESS__NOATSECURE, NULL);
1695 	}
1696 
1697 	return (atsecure || secondary_ops->bprm_secureexec(bprm));
1698 }
1699 
1700 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1701 {
1702 	kfree(bprm->security);
1703 	bprm->security = NULL;
1704 }
1705 
1706 extern struct vfsmount *selinuxfs_mount;
1707 extern struct dentry *selinux_null;
1708 
1709 /* Derived from fs/exec.c:flush_old_files. */
1710 static inline void flush_unauthorized_files(struct files_struct * files)
1711 {
1712 	struct avc_audit_data ad;
1713 	struct file *file, *devnull = NULL;
1714 	struct tty_struct *tty = current->signal->tty;
1715 	struct fdtable *fdt;
1716 	long j = -1;
1717 
1718 	if (tty) {
1719 		file_list_lock();
1720 		file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1721 		if (file) {
1722 			/* Revalidate access to controlling tty.
1723 			   Use inode_has_perm on the tty inode directly rather
1724 			   than using file_has_perm, as this particular open
1725 			   file may belong to another process and we are only
1726 			   interested in the inode-based check here. */
1727 			struct inode *inode = file->f_dentry->d_inode;
1728 			if (inode_has_perm(current, inode,
1729 					   FILE__READ | FILE__WRITE, NULL)) {
1730 				/* Reset controlling tty. */
1731 				current->signal->tty = NULL;
1732 				current->signal->tty_old_pgrp = 0;
1733 			}
1734 		}
1735 		file_list_unlock();
1736 	}
1737 
1738 	/* Revalidate access to inherited open files. */
1739 
1740 	AVC_AUDIT_DATA_INIT(&ad,FS);
1741 
1742 	spin_lock(&files->file_lock);
1743 	for (;;) {
1744 		unsigned long set, i;
1745 		int fd;
1746 
1747 		j++;
1748 		i = j * __NFDBITS;
1749 		fdt = files_fdtable(files);
1750 		if (i >= fdt->max_fds || i >= fdt->max_fdset)
1751 			break;
1752 		set = fdt->open_fds->fds_bits[j];
1753 		if (!set)
1754 			continue;
1755 		spin_unlock(&files->file_lock);
1756 		for ( ; set ; i++,set >>= 1) {
1757 			if (set & 1) {
1758 				file = fget(i);
1759 				if (!file)
1760 					continue;
1761 				if (file_has_perm(current,
1762 						  file,
1763 						  file_to_av(file))) {
1764 					sys_close(i);
1765 					fd = get_unused_fd();
1766 					if (fd != i) {
1767 						if (fd >= 0)
1768 							put_unused_fd(fd);
1769 						fput(file);
1770 						continue;
1771 					}
1772 					if (devnull) {
1773 						get_file(devnull);
1774 					} else {
1775 						devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1776 						if (!devnull) {
1777 							put_unused_fd(fd);
1778 							fput(file);
1779 							continue;
1780 						}
1781 					}
1782 					fd_install(fd, devnull);
1783 				}
1784 				fput(file);
1785 			}
1786 		}
1787 		spin_lock(&files->file_lock);
1788 
1789 	}
1790 	spin_unlock(&files->file_lock);
1791 }
1792 
1793 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1794 {
1795 	struct task_security_struct *tsec;
1796 	struct bprm_security_struct *bsec;
1797 	u32 sid;
1798 	int rc;
1799 
1800 	secondary_ops->bprm_apply_creds(bprm, unsafe);
1801 
1802 	tsec = current->security;
1803 
1804 	bsec = bprm->security;
1805 	sid = bsec->sid;
1806 
1807 	tsec->osid = tsec->sid;
1808 	bsec->unsafe = 0;
1809 	if (tsec->sid != sid) {
1810 		/* Check for shared state.  If not ok, leave SID
1811 		   unchanged and kill. */
1812 		if (unsafe & LSM_UNSAFE_SHARE) {
1813 			rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1814 					PROCESS__SHARE, NULL);
1815 			if (rc) {
1816 				bsec->unsafe = 1;
1817 				return;
1818 			}
1819 		}
1820 
1821 		/* Check for ptracing, and update the task SID if ok.
1822 		   Otherwise, leave SID unchanged and kill. */
1823 		if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1824 			rc = avc_has_perm(tsec->ptrace_sid, sid,
1825 					  SECCLASS_PROCESS, PROCESS__PTRACE,
1826 					  NULL);
1827 			if (rc) {
1828 				bsec->unsafe = 1;
1829 				return;
1830 			}
1831 		}
1832 		tsec->sid = sid;
1833 	}
1834 }
1835 
1836 /*
1837  * called after apply_creds without the task lock held
1838  */
1839 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1840 {
1841 	struct task_security_struct *tsec;
1842 	struct rlimit *rlim, *initrlim;
1843 	struct itimerval itimer;
1844 	struct bprm_security_struct *bsec;
1845 	int rc, i;
1846 
1847 	tsec = current->security;
1848 	bsec = bprm->security;
1849 
1850 	if (bsec->unsafe) {
1851 		force_sig_specific(SIGKILL, current);
1852 		return;
1853 	}
1854 	if (tsec->osid == tsec->sid)
1855 		return;
1856 
1857 	/* Close files for which the new task SID is not authorized. */
1858 	flush_unauthorized_files(current->files);
1859 
1860 	/* Check whether the new SID can inherit signal state
1861 	   from the old SID.  If not, clear itimers to avoid
1862 	   subsequent signal generation and flush and unblock
1863 	   signals. This must occur _after_ the task SID has
1864 	  been updated so that any kill done after the flush
1865 	  will be checked against the new SID. */
1866 	rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1867 			  PROCESS__SIGINH, NULL);
1868 	if (rc) {
1869 		memset(&itimer, 0, sizeof itimer);
1870 		for (i = 0; i < 3; i++)
1871 			do_setitimer(i, &itimer, NULL);
1872 		flush_signals(current);
1873 		spin_lock_irq(&current->sighand->siglock);
1874 		flush_signal_handlers(current, 1);
1875 		sigemptyset(&current->blocked);
1876 		recalc_sigpending();
1877 		spin_unlock_irq(&current->sighand->siglock);
1878 	}
1879 
1880 	/* Check whether the new SID can inherit resource limits
1881 	   from the old SID.  If not, reset all soft limits to
1882 	   the lower of the current task's hard limit and the init
1883 	   task's soft limit.  Note that the setting of hard limits
1884 	   (even to lower them) can be controlled by the setrlimit
1885 	   check. The inclusion of the init task's soft limit into
1886 	   the computation is to avoid resetting soft limits higher
1887 	   than the default soft limit for cases where the default
1888 	   is lower than the hard limit, e.g. RLIMIT_CORE or
1889 	   RLIMIT_STACK.*/
1890 	rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1891 			  PROCESS__RLIMITINH, NULL);
1892 	if (rc) {
1893 		for (i = 0; i < RLIM_NLIMITS; i++) {
1894 			rlim = current->signal->rlim + i;
1895 			initrlim = init_task.signal->rlim+i;
1896 			rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1897 		}
1898 		if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1899 			/*
1900 			 * This will cause RLIMIT_CPU calculations
1901 			 * to be refigured.
1902 			 */
1903 			current->it_prof_expires = jiffies_to_cputime(1);
1904 		}
1905 	}
1906 
1907 	/* Wake up the parent if it is waiting so that it can
1908 	   recheck wait permission to the new task SID. */
1909 	wake_up_interruptible(&current->parent->signal->wait_chldexit);
1910 }
1911 
1912 /* superblock security operations */
1913 
1914 static int selinux_sb_alloc_security(struct super_block *sb)
1915 {
1916 	return superblock_alloc_security(sb);
1917 }
1918 
1919 static void selinux_sb_free_security(struct super_block *sb)
1920 {
1921 	superblock_free_security(sb);
1922 }
1923 
1924 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1925 {
1926 	if (plen > olen)
1927 		return 0;
1928 
1929 	return !memcmp(prefix, option, plen);
1930 }
1931 
1932 static inline int selinux_option(char *option, int len)
1933 {
1934 	return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1935 	        match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1936 	        match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1937 		match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1938 }
1939 
1940 static inline void take_option(char **to, char *from, int *first, int len)
1941 {
1942 	if (!*first) {
1943 		**to = ',';
1944 		*to += 1;
1945 	}
1946 	else
1947 		*first = 0;
1948 	memcpy(*to, from, len);
1949 	*to += len;
1950 }
1951 
1952 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
1953 {
1954 	int fnosec, fsec, rc = 0;
1955 	char *in_save, *in_curr, *in_end;
1956 	char *sec_curr, *nosec_save, *nosec;
1957 
1958 	in_curr = orig;
1959 	sec_curr = copy;
1960 
1961 	/* Binary mount data: just copy */
1962 	if (type->fs_flags & FS_BINARY_MOUNTDATA) {
1963 		copy_page(sec_curr, in_curr);
1964 		goto out;
1965 	}
1966 
1967 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
1968 	if (!nosec) {
1969 		rc = -ENOMEM;
1970 		goto out;
1971 	}
1972 
1973 	nosec_save = nosec;
1974 	fnosec = fsec = 1;
1975 	in_save = in_end = orig;
1976 
1977 	do {
1978 		if (*in_end == ',' || *in_end == '\0') {
1979 			int len = in_end - in_curr;
1980 
1981 			if (selinux_option(in_curr, len))
1982 				take_option(&sec_curr, in_curr, &fsec, len);
1983 			else
1984 				take_option(&nosec, in_curr, &fnosec, len);
1985 
1986 			in_curr = in_end + 1;
1987 		}
1988 	} while (*in_end++);
1989 
1990 	strcpy(in_save, nosec_save);
1991 	free_page((unsigned long)nosec_save);
1992 out:
1993 	return rc;
1994 }
1995 
1996 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
1997 {
1998 	struct avc_audit_data ad;
1999 	int rc;
2000 
2001 	rc = superblock_doinit(sb, data);
2002 	if (rc)
2003 		return rc;
2004 
2005 	AVC_AUDIT_DATA_INIT(&ad,FS);
2006 	ad.u.fs.dentry = sb->s_root;
2007 	return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2008 }
2009 
2010 static int selinux_sb_statfs(struct dentry *dentry)
2011 {
2012 	struct avc_audit_data ad;
2013 
2014 	AVC_AUDIT_DATA_INIT(&ad,FS);
2015 	ad.u.fs.dentry = dentry->d_sb->s_root;
2016 	return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2017 }
2018 
2019 static int selinux_mount(char * dev_name,
2020                          struct nameidata *nd,
2021                          char * type,
2022                          unsigned long flags,
2023                          void * data)
2024 {
2025 	int rc;
2026 
2027 	rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2028 	if (rc)
2029 		return rc;
2030 
2031 	if (flags & MS_REMOUNT)
2032 		return superblock_has_perm(current, nd->mnt->mnt_sb,
2033 		                           FILESYSTEM__REMOUNT, NULL);
2034 	else
2035 		return dentry_has_perm(current, nd->mnt, nd->dentry,
2036 		                       FILE__MOUNTON);
2037 }
2038 
2039 static int selinux_umount(struct vfsmount *mnt, int flags)
2040 {
2041 	int rc;
2042 
2043 	rc = secondary_ops->sb_umount(mnt, flags);
2044 	if (rc)
2045 		return rc;
2046 
2047 	return superblock_has_perm(current,mnt->mnt_sb,
2048 	                           FILESYSTEM__UNMOUNT,NULL);
2049 }
2050 
2051 /* inode security operations */
2052 
2053 static int selinux_inode_alloc_security(struct inode *inode)
2054 {
2055 	return inode_alloc_security(inode);
2056 }
2057 
2058 static void selinux_inode_free_security(struct inode *inode)
2059 {
2060 	inode_free_security(inode);
2061 }
2062 
2063 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2064 				       char **name, void **value,
2065 				       size_t *len)
2066 {
2067 	struct task_security_struct *tsec;
2068 	struct inode_security_struct *dsec;
2069 	struct superblock_security_struct *sbsec;
2070 	u32 newsid, clen;
2071 	int rc;
2072 	char *namep = NULL, *context;
2073 
2074 	tsec = current->security;
2075 	dsec = dir->i_security;
2076 	sbsec = dir->i_sb->s_security;
2077 
2078 	if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2079 		newsid = tsec->create_sid;
2080 	} else {
2081 		rc = security_transition_sid(tsec->sid, dsec->sid,
2082 					     inode_mode_to_security_class(inode->i_mode),
2083 					     &newsid);
2084 		if (rc) {
2085 			printk(KERN_WARNING "%s:  "
2086 			       "security_transition_sid failed, rc=%d (dev=%s "
2087 			       "ino=%ld)\n",
2088 			       __FUNCTION__,
2089 			       -rc, inode->i_sb->s_id, inode->i_ino);
2090 			return rc;
2091 		}
2092 	}
2093 
2094 	inode_security_set_sid(inode, newsid);
2095 
2096 	if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2097 		return -EOPNOTSUPP;
2098 
2099 	if (name) {
2100 		namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2101 		if (!namep)
2102 			return -ENOMEM;
2103 		*name = namep;
2104 	}
2105 
2106 	if (value && len) {
2107 		rc = security_sid_to_context(newsid, &context, &clen);
2108 		if (rc) {
2109 			kfree(namep);
2110 			return rc;
2111 		}
2112 		*value = context;
2113 		*len = clen;
2114 	}
2115 
2116 	return 0;
2117 }
2118 
2119 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2120 {
2121 	return may_create(dir, dentry, SECCLASS_FILE);
2122 }
2123 
2124 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2125 {
2126 	int rc;
2127 
2128 	rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2129 	if (rc)
2130 		return rc;
2131 	return may_link(dir, old_dentry, MAY_LINK);
2132 }
2133 
2134 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2135 {
2136 	int rc;
2137 
2138 	rc = secondary_ops->inode_unlink(dir, dentry);
2139 	if (rc)
2140 		return rc;
2141 	return may_link(dir, dentry, MAY_UNLINK);
2142 }
2143 
2144 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2145 {
2146 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2147 }
2148 
2149 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2150 {
2151 	return may_create(dir, dentry, SECCLASS_DIR);
2152 }
2153 
2154 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2155 {
2156 	return may_link(dir, dentry, MAY_RMDIR);
2157 }
2158 
2159 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2160 {
2161 	int rc;
2162 
2163 	rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2164 	if (rc)
2165 		return rc;
2166 
2167 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2168 }
2169 
2170 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2171                                 struct inode *new_inode, struct dentry *new_dentry)
2172 {
2173 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2174 }
2175 
2176 static int selinux_inode_readlink(struct dentry *dentry)
2177 {
2178 	return dentry_has_perm(current, NULL, dentry, FILE__READ);
2179 }
2180 
2181 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2182 {
2183 	int rc;
2184 
2185 	rc = secondary_ops->inode_follow_link(dentry,nameidata);
2186 	if (rc)
2187 		return rc;
2188 	return dentry_has_perm(current, NULL, dentry, FILE__READ);
2189 }
2190 
2191 static int selinux_inode_permission(struct inode *inode, int mask,
2192 				    struct nameidata *nd)
2193 {
2194 	int rc;
2195 
2196 	rc = secondary_ops->inode_permission(inode, mask, nd);
2197 	if (rc)
2198 		return rc;
2199 
2200 	if (!mask) {
2201 		/* No permission to check.  Existence test. */
2202 		return 0;
2203 	}
2204 
2205 	return inode_has_perm(current, inode,
2206 			       file_mask_to_av(inode->i_mode, mask), NULL);
2207 }
2208 
2209 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2210 {
2211 	int rc;
2212 
2213 	rc = secondary_ops->inode_setattr(dentry, iattr);
2214 	if (rc)
2215 		return rc;
2216 
2217 	if (iattr->ia_valid & ATTR_FORCE)
2218 		return 0;
2219 
2220 	if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2221 			       ATTR_ATIME_SET | ATTR_MTIME_SET))
2222 		return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2223 
2224 	return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2225 }
2226 
2227 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2228 {
2229 	return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2230 }
2231 
2232 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2233 {
2234 	struct task_security_struct *tsec = current->security;
2235 	struct inode *inode = dentry->d_inode;
2236 	struct inode_security_struct *isec = inode->i_security;
2237 	struct superblock_security_struct *sbsec;
2238 	struct avc_audit_data ad;
2239 	u32 newsid;
2240 	int rc = 0;
2241 
2242 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2243 		if (!strncmp(name, XATTR_SECURITY_PREFIX,
2244 			     sizeof XATTR_SECURITY_PREFIX - 1) &&
2245 		    !capable(CAP_SYS_ADMIN)) {
2246 			/* A different attribute in the security namespace.
2247 			   Restrict to administrator. */
2248 			return -EPERM;
2249 		}
2250 
2251 		/* Not an attribute we recognize, so just check the
2252 		   ordinary setattr permission. */
2253 		return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2254 	}
2255 
2256 	sbsec = inode->i_sb->s_security;
2257 	if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2258 		return -EOPNOTSUPP;
2259 
2260 	if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
2261 		return -EPERM;
2262 
2263 	AVC_AUDIT_DATA_INIT(&ad,FS);
2264 	ad.u.fs.dentry = dentry;
2265 
2266 	rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2267 			  FILE__RELABELFROM, &ad);
2268 	if (rc)
2269 		return rc;
2270 
2271 	rc = security_context_to_sid(value, size, &newsid);
2272 	if (rc)
2273 		return rc;
2274 
2275 	rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2276 			  FILE__RELABELTO, &ad);
2277 	if (rc)
2278 		return rc;
2279 
2280 	rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2281 	                                  isec->sclass);
2282 	if (rc)
2283 		return rc;
2284 
2285 	return avc_has_perm(newsid,
2286 			    sbsec->sid,
2287 			    SECCLASS_FILESYSTEM,
2288 			    FILESYSTEM__ASSOCIATE,
2289 			    &ad);
2290 }
2291 
2292 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2293                                         void *value, size_t size, int flags)
2294 {
2295 	struct inode *inode = dentry->d_inode;
2296 	struct inode_security_struct *isec = inode->i_security;
2297 	u32 newsid;
2298 	int rc;
2299 
2300 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2301 		/* Not an attribute we recognize, so nothing to do. */
2302 		return;
2303 	}
2304 
2305 	rc = security_context_to_sid(value, size, &newsid);
2306 	if (rc) {
2307 		printk(KERN_WARNING "%s:  unable to obtain SID for context "
2308 		       "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2309 		return;
2310 	}
2311 
2312 	isec->sid = newsid;
2313 	return;
2314 }
2315 
2316 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2317 {
2318 	return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2319 }
2320 
2321 static int selinux_inode_listxattr (struct dentry *dentry)
2322 {
2323 	return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2324 }
2325 
2326 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2327 {
2328 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2329 		if (!strncmp(name, XATTR_SECURITY_PREFIX,
2330 			     sizeof XATTR_SECURITY_PREFIX - 1) &&
2331 		    !capable(CAP_SYS_ADMIN)) {
2332 			/* A different attribute in the security namespace.
2333 			   Restrict to administrator. */
2334 			return -EPERM;
2335 		}
2336 
2337 		/* Not an attribute we recognize, so just check the
2338 		   ordinary setattr permission. Might want a separate
2339 		   permission for removexattr. */
2340 		return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2341 	}
2342 
2343 	/* No one is allowed to remove a SELinux security label.
2344 	   You can change the label, but all data must be labeled. */
2345 	return -EACCES;
2346 }
2347 
2348 static const char *selinux_inode_xattr_getsuffix(void)
2349 {
2350       return XATTR_SELINUX_SUFFIX;
2351 }
2352 
2353 /*
2354  * Copy the in-core inode security context value to the user.  If the
2355  * getxattr() prior to this succeeded, check to see if we need to
2356  * canonicalize the value to be finally returned to the user.
2357  *
2358  * Permission check is handled by selinux_inode_getxattr hook.
2359  */
2360 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2361 {
2362 	struct inode_security_struct *isec = inode->i_security;
2363 
2364 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2365 		return -EOPNOTSUPP;
2366 
2367 	return selinux_getsecurity(isec->sid, buffer, size);
2368 }
2369 
2370 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2371                                      const void *value, size_t size, int flags)
2372 {
2373 	struct inode_security_struct *isec = inode->i_security;
2374 	u32 newsid;
2375 	int rc;
2376 
2377 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2378 		return -EOPNOTSUPP;
2379 
2380 	if (!value || !size)
2381 		return -EACCES;
2382 
2383 	rc = security_context_to_sid((void*)value, size, &newsid);
2384 	if (rc)
2385 		return rc;
2386 
2387 	isec->sid = newsid;
2388 	return 0;
2389 }
2390 
2391 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2392 {
2393 	const int len = sizeof(XATTR_NAME_SELINUX);
2394 	if (buffer && len <= buffer_size)
2395 		memcpy(buffer, XATTR_NAME_SELINUX, len);
2396 	return len;
2397 }
2398 
2399 /* file security operations */
2400 
2401 static int selinux_file_permission(struct file *file, int mask)
2402 {
2403 	struct inode *inode = file->f_dentry->d_inode;
2404 
2405 	if (!mask) {
2406 		/* No permission to check.  Existence test. */
2407 		return 0;
2408 	}
2409 
2410 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2411 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2412 		mask |= MAY_APPEND;
2413 
2414 	return file_has_perm(current, file,
2415 			     file_mask_to_av(inode->i_mode, mask));
2416 }
2417 
2418 static int selinux_file_alloc_security(struct file *file)
2419 {
2420 	return file_alloc_security(file);
2421 }
2422 
2423 static void selinux_file_free_security(struct file *file)
2424 {
2425 	file_free_security(file);
2426 }
2427 
2428 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2429 			      unsigned long arg)
2430 {
2431 	int error = 0;
2432 
2433 	switch (cmd) {
2434 		case FIONREAD:
2435 		/* fall through */
2436 		case FIBMAP:
2437 		/* fall through */
2438 		case FIGETBSZ:
2439 		/* fall through */
2440 		case EXT2_IOC_GETFLAGS:
2441 		/* fall through */
2442 		case EXT2_IOC_GETVERSION:
2443 			error = file_has_perm(current, file, FILE__GETATTR);
2444 			break;
2445 
2446 		case EXT2_IOC_SETFLAGS:
2447 		/* fall through */
2448 		case EXT2_IOC_SETVERSION:
2449 			error = file_has_perm(current, file, FILE__SETATTR);
2450 			break;
2451 
2452 		/* sys_ioctl() checks */
2453 		case FIONBIO:
2454 		/* fall through */
2455 		case FIOASYNC:
2456 			error = file_has_perm(current, file, 0);
2457 			break;
2458 
2459 	        case KDSKBENT:
2460 	        case KDSKBSENT:
2461 			error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2462 			break;
2463 
2464 		/* default case assumes that the command will go
2465 		 * to the file's ioctl() function.
2466 		 */
2467 		default:
2468 			error = file_has_perm(current, file, FILE__IOCTL);
2469 
2470 	}
2471 	return error;
2472 }
2473 
2474 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2475 {
2476 #ifndef CONFIG_PPC32
2477 	if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2478 		/*
2479 		 * We are making executable an anonymous mapping or a
2480 		 * private file mapping that will also be writable.
2481 		 * This has an additional check.
2482 		 */
2483 		int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2484 		if (rc)
2485 			return rc;
2486 	}
2487 #endif
2488 
2489 	if (file) {
2490 		/* read access is always possible with a mapping */
2491 		u32 av = FILE__READ;
2492 
2493 		/* write access only matters if the mapping is shared */
2494 		if (shared && (prot & PROT_WRITE))
2495 			av |= FILE__WRITE;
2496 
2497 		if (prot & PROT_EXEC)
2498 			av |= FILE__EXECUTE;
2499 
2500 		return file_has_perm(current, file, av);
2501 	}
2502 	return 0;
2503 }
2504 
2505 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2506 			     unsigned long prot, unsigned long flags)
2507 {
2508 	int rc;
2509 
2510 	rc = secondary_ops->file_mmap(file, reqprot, prot, flags);
2511 	if (rc)
2512 		return rc;
2513 
2514 	if (selinux_checkreqprot)
2515 		prot = reqprot;
2516 
2517 	return file_map_prot_check(file, prot,
2518 				   (flags & MAP_TYPE) == MAP_SHARED);
2519 }
2520 
2521 static int selinux_file_mprotect(struct vm_area_struct *vma,
2522 				 unsigned long reqprot,
2523 				 unsigned long prot)
2524 {
2525 	int rc;
2526 
2527 	rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2528 	if (rc)
2529 		return rc;
2530 
2531 	if (selinux_checkreqprot)
2532 		prot = reqprot;
2533 
2534 #ifndef CONFIG_PPC32
2535 	if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2536 		rc = 0;
2537 		if (vma->vm_start >= vma->vm_mm->start_brk &&
2538 		    vma->vm_end <= vma->vm_mm->brk) {
2539 			rc = task_has_perm(current, current,
2540 					   PROCESS__EXECHEAP);
2541 		} else if (!vma->vm_file &&
2542 			   vma->vm_start <= vma->vm_mm->start_stack &&
2543 			   vma->vm_end >= vma->vm_mm->start_stack) {
2544 			rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2545 		} else if (vma->vm_file && vma->anon_vma) {
2546 			/*
2547 			 * We are making executable a file mapping that has
2548 			 * had some COW done. Since pages might have been
2549 			 * written, check ability to execute the possibly
2550 			 * modified content.  This typically should only
2551 			 * occur for text relocations.
2552 			 */
2553 			rc = file_has_perm(current, vma->vm_file,
2554 					   FILE__EXECMOD);
2555 		}
2556 		if (rc)
2557 			return rc;
2558 	}
2559 #endif
2560 
2561 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2562 }
2563 
2564 static int selinux_file_lock(struct file *file, unsigned int cmd)
2565 {
2566 	return file_has_perm(current, file, FILE__LOCK);
2567 }
2568 
2569 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2570 			      unsigned long arg)
2571 {
2572 	int err = 0;
2573 
2574 	switch (cmd) {
2575 	        case F_SETFL:
2576 			if (!file->f_dentry || !file->f_dentry->d_inode) {
2577 				err = -EINVAL;
2578 				break;
2579 			}
2580 
2581 			if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2582 				err = file_has_perm(current, file,FILE__WRITE);
2583 				break;
2584 			}
2585 			/* fall through */
2586 	        case F_SETOWN:
2587 	        case F_SETSIG:
2588 	        case F_GETFL:
2589 	        case F_GETOWN:
2590 	        case F_GETSIG:
2591 			/* Just check FD__USE permission */
2592 			err = file_has_perm(current, file, 0);
2593 			break;
2594 		case F_GETLK:
2595 		case F_SETLK:
2596 	        case F_SETLKW:
2597 #if BITS_PER_LONG == 32
2598 	        case F_GETLK64:
2599 		case F_SETLK64:
2600 	        case F_SETLKW64:
2601 #endif
2602 			if (!file->f_dentry || !file->f_dentry->d_inode) {
2603 				err = -EINVAL;
2604 				break;
2605 			}
2606 			err = file_has_perm(current, file, FILE__LOCK);
2607 			break;
2608 	}
2609 
2610 	return err;
2611 }
2612 
2613 static int selinux_file_set_fowner(struct file *file)
2614 {
2615 	struct task_security_struct *tsec;
2616 	struct file_security_struct *fsec;
2617 
2618 	tsec = current->security;
2619 	fsec = file->f_security;
2620 	fsec->fown_sid = tsec->sid;
2621 
2622 	return 0;
2623 }
2624 
2625 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2626 				       struct fown_struct *fown, int signum)
2627 {
2628         struct file *file;
2629 	u32 perm;
2630 	struct task_security_struct *tsec;
2631 	struct file_security_struct *fsec;
2632 
2633 	/* struct fown_struct is never outside the context of a struct file */
2634         file = (struct file *)((long)fown - offsetof(struct file,f_owner));
2635 
2636 	tsec = tsk->security;
2637 	fsec = file->f_security;
2638 
2639 	if (!signum)
2640 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2641 	else
2642 		perm = signal_to_av(signum);
2643 
2644 	return avc_has_perm(fsec->fown_sid, tsec->sid,
2645 			    SECCLASS_PROCESS, perm, NULL);
2646 }
2647 
2648 static int selinux_file_receive(struct file *file)
2649 {
2650 	return file_has_perm(current, file, file_to_av(file));
2651 }
2652 
2653 /* task security operations */
2654 
2655 static int selinux_task_create(unsigned long clone_flags)
2656 {
2657 	int rc;
2658 
2659 	rc = secondary_ops->task_create(clone_flags);
2660 	if (rc)
2661 		return rc;
2662 
2663 	return task_has_perm(current, current, PROCESS__FORK);
2664 }
2665 
2666 static int selinux_task_alloc_security(struct task_struct *tsk)
2667 {
2668 	struct task_security_struct *tsec1, *tsec2;
2669 	int rc;
2670 
2671 	tsec1 = current->security;
2672 
2673 	rc = task_alloc_security(tsk);
2674 	if (rc)
2675 		return rc;
2676 	tsec2 = tsk->security;
2677 
2678 	tsec2->osid = tsec1->osid;
2679 	tsec2->sid = tsec1->sid;
2680 
2681 	/* Retain the exec, fs, key, and sock SIDs across fork */
2682 	tsec2->exec_sid = tsec1->exec_sid;
2683 	tsec2->create_sid = tsec1->create_sid;
2684 	tsec2->keycreate_sid = tsec1->keycreate_sid;
2685 	tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2686 
2687 	/* Retain ptracer SID across fork, if any.
2688 	   This will be reset by the ptrace hook upon any
2689 	   subsequent ptrace_attach operations. */
2690 	tsec2->ptrace_sid = tsec1->ptrace_sid;
2691 
2692 	return 0;
2693 }
2694 
2695 static void selinux_task_free_security(struct task_struct *tsk)
2696 {
2697 	task_free_security(tsk);
2698 }
2699 
2700 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2701 {
2702 	/* Since setuid only affects the current process, and
2703 	   since the SELinux controls are not based on the Linux
2704 	   identity attributes, SELinux does not need to control
2705 	   this operation.  However, SELinux does control the use
2706 	   of the CAP_SETUID and CAP_SETGID capabilities using the
2707 	   capable hook. */
2708 	return 0;
2709 }
2710 
2711 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2712 {
2713 	return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2714 }
2715 
2716 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2717 {
2718 	/* See the comment for setuid above. */
2719 	return 0;
2720 }
2721 
2722 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2723 {
2724 	return task_has_perm(current, p, PROCESS__SETPGID);
2725 }
2726 
2727 static int selinux_task_getpgid(struct task_struct *p)
2728 {
2729 	return task_has_perm(current, p, PROCESS__GETPGID);
2730 }
2731 
2732 static int selinux_task_getsid(struct task_struct *p)
2733 {
2734 	return task_has_perm(current, p, PROCESS__GETSESSION);
2735 }
2736 
2737 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2738 {
2739 	selinux_get_task_sid(p, secid);
2740 }
2741 
2742 static int selinux_task_setgroups(struct group_info *group_info)
2743 {
2744 	/* See the comment for setuid above. */
2745 	return 0;
2746 }
2747 
2748 static int selinux_task_setnice(struct task_struct *p, int nice)
2749 {
2750 	int rc;
2751 
2752 	rc = secondary_ops->task_setnice(p, nice);
2753 	if (rc)
2754 		return rc;
2755 
2756 	return task_has_perm(current,p, PROCESS__SETSCHED);
2757 }
2758 
2759 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2760 {
2761 	return task_has_perm(current, p, PROCESS__SETSCHED);
2762 }
2763 
2764 static int selinux_task_getioprio(struct task_struct *p)
2765 {
2766 	return task_has_perm(current, p, PROCESS__GETSCHED);
2767 }
2768 
2769 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2770 {
2771 	struct rlimit *old_rlim = current->signal->rlim + resource;
2772 	int rc;
2773 
2774 	rc = secondary_ops->task_setrlimit(resource, new_rlim);
2775 	if (rc)
2776 		return rc;
2777 
2778 	/* Control the ability to change the hard limit (whether
2779 	   lowering or raising it), so that the hard limit can
2780 	   later be used as a safe reset point for the soft limit
2781 	   upon context transitions. See selinux_bprm_apply_creds. */
2782 	if (old_rlim->rlim_max != new_rlim->rlim_max)
2783 		return task_has_perm(current, current, PROCESS__SETRLIMIT);
2784 
2785 	return 0;
2786 }
2787 
2788 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2789 {
2790 	return task_has_perm(current, p, PROCESS__SETSCHED);
2791 }
2792 
2793 static int selinux_task_getscheduler(struct task_struct *p)
2794 {
2795 	return task_has_perm(current, p, PROCESS__GETSCHED);
2796 }
2797 
2798 static int selinux_task_movememory(struct task_struct *p)
2799 {
2800 	return task_has_perm(current, p, PROCESS__SETSCHED);
2801 }
2802 
2803 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2804 				int sig, u32 secid)
2805 {
2806 	u32 perm;
2807 	int rc;
2808 	struct task_security_struct *tsec;
2809 
2810 	rc = secondary_ops->task_kill(p, info, sig, secid);
2811 	if (rc)
2812 		return rc;
2813 
2814 	if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2815 		return 0;
2816 
2817 	if (!sig)
2818 		perm = PROCESS__SIGNULL; /* null signal; existence test */
2819 	else
2820 		perm = signal_to_av(sig);
2821 	tsec = p->security;
2822 	if (secid)
2823 		rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2824 	else
2825 		rc = task_has_perm(current, p, perm);
2826 	return rc;
2827 }
2828 
2829 static int selinux_task_prctl(int option,
2830 			      unsigned long arg2,
2831 			      unsigned long arg3,
2832 			      unsigned long arg4,
2833 			      unsigned long arg5)
2834 {
2835 	/* The current prctl operations do not appear to require
2836 	   any SELinux controls since they merely observe or modify
2837 	   the state of the current process. */
2838 	return 0;
2839 }
2840 
2841 static int selinux_task_wait(struct task_struct *p)
2842 {
2843 	u32 perm;
2844 
2845 	perm = signal_to_av(p->exit_signal);
2846 
2847 	return task_has_perm(p, current, perm);
2848 }
2849 
2850 static void selinux_task_reparent_to_init(struct task_struct *p)
2851 {
2852   	struct task_security_struct *tsec;
2853 
2854 	secondary_ops->task_reparent_to_init(p);
2855 
2856 	tsec = p->security;
2857 	tsec->osid = tsec->sid;
2858 	tsec->sid = SECINITSID_KERNEL;
2859 	return;
2860 }
2861 
2862 static void selinux_task_to_inode(struct task_struct *p,
2863 				  struct inode *inode)
2864 {
2865 	struct task_security_struct *tsec = p->security;
2866 	struct inode_security_struct *isec = inode->i_security;
2867 
2868 	isec->sid = tsec->sid;
2869 	isec->initialized = 1;
2870 	return;
2871 }
2872 
2873 /* Returns error only if unable to parse addresses */
2874 static int selinux_parse_skb_ipv4(struct sk_buff *skb, struct avc_audit_data *ad)
2875 {
2876 	int offset, ihlen, ret = -EINVAL;
2877 	struct iphdr _iph, *ih;
2878 
2879 	offset = skb->nh.raw - skb->data;
2880 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2881 	if (ih == NULL)
2882 		goto out;
2883 
2884 	ihlen = ih->ihl * 4;
2885 	if (ihlen < sizeof(_iph))
2886 		goto out;
2887 
2888 	ad->u.net.v4info.saddr = ih->saddr;
2889 	ad->u.net.v4info.daddr = ih->daddr;
2890 	ret = 0;
2891 
2892 	switch (ih->protocol) {
2893         case IPPROTO_TCP: {
2894         	struct tcphdr _tcph, *th;
2895 
2896         	if (ntohs(ih->frag_off) & IP_OFFSET)
2897         		break;
2898 
2899 		offset += ihlen;
2900 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2901 		if (th == NULL)
2902 			break;
2903 
2904 		ad->u.net.sport = th->source;
2905 		ad->u.net.dport = th->dest;
2906 		break;
2907         }
2908 
2909         case IPPROTO_UDP: {
2910         	struct udphdr _udph, *uh;
2911 
2912         	if (ntohs(ih->frag_off) & IP_OFFSET)
2913         		break;
2914 
2915 		offset += ihlen;
2916         	uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2917 		if (uh == NULL)
2918 			break;
2919 
2920         	ad->u.net.sport = uh->source;
2921         	ad->u.net.dport = uh->dest;
2922         	break;
2923         }
2924 
2925         default:
2926         	break;
2927         }
2928 out:
2929 	return ret;
2930 }
2931 
2932 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2933 
2934 /* Returns error only if unable to parse addresses */
2935 static int selinux_parse_skb_ipv6(struct sk_buff *skb, struct avc_audit_data *ad)
2936 {
2937 	u8 nexthdr;
2938 	int ret = -EINVAL, offset;
2939 	struct ipv6hdr _ipv6h, *ip6;
2940 
2941 	offset = skb->nh.raw - skb->data;
2942 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
2943 	if (ip6 == NULL)
2944 		goto out;
2945 
2946 	ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
2947 	ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
2948 	ret = 0;
2949 
2950 	nexthdr = ip6->nexthdr;
2951 	offset += sizeof(_ipv6h);
2952 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
2953 	if (offset < 0)
2954 		goto out;
2955 
2956 	switch (nexthdr) {
2957 	case IPPROTO_TCP: {
2958         	struct tcphdr _tcph, *th;
2959 
2960 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2961 		if (th == NULL)
2962 			break;
2963 
2964 		ad->u.net.sport = th->source;
2965 		ad->u.net.dport = th->dest;
2966 		break;
2967 	}
2968 
2969 	case IPPROTO_UDP: {
2970 		struct udphdr _udph, *uh;
2971 
2972 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2973 		if (uh == NULL)
2974 			break;
2975 
2976 		ad->u.net.sport = uh->source;
2977 		ad->u.net.dport = uh->dest;
2978 		break;
2979 	}
2980 
2981 	/* includes fragments */
2982 	default:
2983 		break;
2984 	}
2985 out:
2986 	return ret;
2987 }
2988 
2989 #endif /* IPV6 */
2990 
2991 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
2992 			     char **addrp, int *len, int src)
2993 {
2994 	int ret = 0;
2995 
2996 	switch (ad->u.net.family) {
2997 	case PF_INET:
2998 		ret = selinux_parse_skb_ipv4(skb, ad);
2999 		if (ret || !addrp)
3000 			break;
3001 		*len = 4;
3002 		*addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3003 					&ad->u.net.v4info.daddr);
3004 		break;
3005 
3006 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3007 	case PF_INET6:
3008 		ret = selinux_parse_skb_ipv6(skb, ad);
3009 		if (ret || !addrp)
3010 			break;
3011 		*len = 16;
3012 		*addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3013 					&ad->u.net.v6info.daddr);
3014 		break;
3015 #endif	/* IPV6 */
3016 	default:
3017 		break;
3018 	}
3019 
3020 	return ret;
3021 }
3022 
3023 /* socket security operations */
3024 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3025 			   u32 perms)
3026 {
3027 	struct inode_security_struct *isec;
3028 	struct task_security_struct *tsec;
3029 	struct avc_audit_data ad;
3030 	int err = 0;
3031 
3032 	tsec = task->security;
3033 	isec = SOCK_INODE(sock)->i_security;
3034 
3035 	if (isec->sid == SECINITSID_KERNEL)
3036 		goto out;
3037 
3038 	AVC_AUDIT_DATA_INIT(&ad,NET);
3039 	ad.u.net.sk = sock->sk;
3040 	err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3041 
3042 out:
3043 	return err;
3044 }
3045 
3046 static int selinux_socket_create(int family, int type,
3047 				 int protocol, int kern)
3048 {
3049 	int err = 0;
3050 	struct task_security_struct *tsec;
3051 	u32 newsid;
3052 
3053 	if (kern)
3054 		goto out;
3055 
3056 	tsec = current->security;
3057 	newsid = tsec->sockcreate_sid ? : tsec->sid;
3058 	err = avc_has_perm(tsec->sid, newsid,
3059 			   socket_type_to_security_class(family, type,
3060 			   protocol), SOCKET__CREATE, NULL);
3061 
3062 out:
3063 	return err;
3064 }
3065 
3066 static void selinux_socket_post_create(struct socket *sock, int family,
3067 				       int type, int protocol, int kern)
3068 {
3069 	struct inode_security_struct *isec;
3070 	struct task_security_struct *tsec;
3071 	u32 newsid;
3072 
3073 	isec = SOCK_INODE(sock)->i_security;
3074 
3075 	tsec = current->security;
3076 	newsid = tsec->sockcreate_sid ? : tsec->sid;
3077 	isec->sclass = socket_type_to_security_class(family, type, protocol);
3078 	isec->sid = kern ? SECINITSID_KERNEL : newsid;
3079 	isec->initialized = 1;
3080 
3081 	return;
3082 }
3083 
3084 /* Range of port numbers used to automatically bind.
3085    Need to determine whether we should perform a name_bind
3086    permission check between the socket and the port number. */
3087 #define ip_local_port_range_0 sysctl_local_port_range[0]
3088 #define ip_local_port_range_1 sysctl_local_port_range[1]
3089 
3090 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3091 {
3092 	u16 family;
3093 	int err;
3094 
3095 	err = socket_has_perm(current, sock, SOCKET__BIND);
3096 	if (err)
3097 		goto out;
3098 
3099 	/*
3100 	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3101 	 * Multiple address binding for SCTP is not supported yet: we just
3102 	 * check the first address now.
3103 	 */
3104 	family = sock->sk->sk_family;
3105 	if (family == PF_INET || family == PF_INET6) {
3106 		char *addrp;
3107 		struct inode_security_struct *isec;
3108 		struct task_security_struct *tsec;
3109 		struct avc_audit_data ad;
3110 		struct sockaddr_in *addr4 = NULL;
3111 		struct sockaddr_in6 *addr6 = NULL;
3112 		unsigned short snum;
3113 		struct sock *sk = sock->sk;
3114 		u32 sid, node_perm, addrlen;
3115 
3116 		tsec = current->security;
3117 		isec = SOCK_INODE(sock)->i_security;
3118 
3119 		if (family == PF_INET) {
3120 			addr4 = (struct sockaddr_in *)address;
3121 			snum = ntohs(addr4->sin_port);
3122 			addrlen = sizeof(addr4->sin_addr.s_addr);
3123 			addrp = (char *)&addr4->sin_addr.s_addr;
3124 		} else {
3125 			addr6 = (struct sockaddr_in6 *)address;
3126 			snum = ntohs(addr6->sin6_port);
3127 			addrlen = sizeof(addr6->sin6_addr.s6_addr);
3128 			addrp = (char *)&addr6->sin6_addr.s6_addr;
3129 		}
3130 
3131 		if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
3132 			   snum > ip_local_port_range_1)) {
3133 			err = security_port_sid(sk->sk_family, sk->sk_type,
3134 						sk->sk_protocol, snum, &sid);
3135 			if (err)
3136 				goto out;
3137 			AVC_AUDIT_DATA_INIT(&ad,NET);
3138 			ad.u.net.sport = htons(snum);
3139 			ad.u.net.family = family;
3140 			err = avc_has_perm(isec->sid, sid,
3141 					   isec->sclass,
3142 					   SOCKET__NAME_BIND, &ad);
3143 			if (err)
3144 				goto out;
3145 		}
3146 
3147 		switch(isec->sclass) {
3148 		case SECCLASS_TCP_SOCKET:
3149 			node_perm = TCP_SOCKET__NODE_BIND;
3150 			break;
3151 
3152 		case SECCLASS_UDP_SOCKET:
3153 			node_perm = UDP_SOCKET__NODE_BIND;
3154 			break;
3155 
3156 		default:
3157 			node_perm = RAWIP_SOCKET__NODE_BIND;
3158 			break;
3159 		}
3160 
3161 		err = security_node_sid(family, addrp, addrlen, &sid);
3162 		if (err)
3163 			goto out;
3164 
3165 		AVC_AUDIT_DATA_INIT(&ad,NET);
3166 		ad.u.net.sport = htons(snum);
3167 		ad.u.net.family = family;
3168 
3169 		if (family == PF_INET)
3170 			ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3171 		else
3172 			ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3173 
3174 		err = avc_has_perm(isec->sid, sid,
3175 		                   isec->sclass, node_perm, &ad);
3176 		if (err)
3177 			goto out;
3178 	}
3179 out:
3180 	return err;
3181 }
3182 
3183 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3184 {
3185 	struct inode_security_struct *isec;
3186 	int err;
3187 
3188 	err = socket_has_perm(current, sock, SOCKET__CONNECT);
3189 	if (err)
3190 		return err;
3191 
3192 	/*
3193 	 * If a TCP socket, check name_connect permission for the port.
3194 	 */
3195 	isec = SOCK_INODE(sock)->i_security;
3196 	if (isec->sclass == SECCLASS_TCP_SOCKET) {
3197 		struct sock *sk = sock->sk;
3198 		struct avc_audit_data ad;
3199 		struct sockaddr_in *addr4 = NULL;
3200 		struct sockaddr_in6 *addr6 = NULL;
3201 		unsigned short snum;
3202 		u32 sid;
3203 
3204 		if (sk->sk_family == PF_INET) {
3205 			addr4 = (struct sockaddr_in *)address;
3206 			if (addrlen < sizeof(struct sockaddr_in))
3207 				return -EINVAL;
3208 			snum = ntohs(addr4->sin_port);
3209 		} else {
3210 			addr6 = (struct sockaddr_in6 *)address;
3211 			if (addrlen < SIN6_LEN_RFC2133)
3212 				return -EINVAL;
3213 			snum = ntohs(addr6->sin6_port);
3214 		}
3215 
3216 		err = security_port_sid(sk->sk_family, sk->sk_type,
3217 					sk->sk_protocol, snum, &sid);
3218 		if (err)
3219 			goto out;
3220 
3221 		AVC_AUDIT_DATA_INIT(&ad,NET);
3222 		ad.u.net.dport = htons(snum);
3223 		ad.u.net.family = sk->sk_family;
3224 		err = avc_has_perm(isec->sid, sid, isec->sclass,
3225 				   TCP_SOCKET__NAME_CONNECT, &ad);
3226 		if (err)
3227 			goto out;
3228 	}
3229 
3230 out:
3231 	return err;
3232 }
3233 
3234 static int selinux_socket_listen(struct socket *sock, int backlog)
3235 {
3236 	return socket_has_perm(current, sock, SOCKET__LISTEN);
3237 }
3238 
3239 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3240 {
3241 	int err;
3242 	struct inode_security_struct *isec;
3243 	struct inode_security_struct *newisec;
3244 
3245 	err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3246 	if (err)
3247 		return err;
3248 
3249 	newisec = SOCK_INODE(newsock)->i_security;
3250 
3251 	isec = SOCK_INODE(sock)->i_security;
3252 	newisec->sclass = isec->sclass;
3253 	newisec->sid = isec->sid;
3254 	newisec->initialized = 1;
3255 
3256 	return 0;
3257 }
3258 
3259 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3260  				  int size)
3261 {
3262 	return socket_has_perm(current, sock, SOCKET__WRITE);
3263 }
3264 
3265 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3266 				  int size, int flags)
3267 {
3268 	return socket_has_perm(current, sock, SOCKET__READ);
3269 }
3270 
3271 static int selinux_socket_getsockname(struct socket *sock)
3272 {
3273 	return socket_has_perm(current, sock, SOCKET__GETATTR);
3274 }
3275 
3276 static int selinux_socket_getpeername(struct socket *sock)
3277 {
3278 	return socket_has_perm(current, sock, SOCKET__GETATTR);
3279 }
3280 
3281 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3282 {
3283 	return socket_has_perm(current, sock, SOCKET__SETOPT);
3284 }
3285 
3286 static int selinux_socket_getsockopt(struct socket *sock, int level,
3287 				     int optname)
3288 {
3289 	return socket_has_perm(current, sock, SOCKET__GETOPT);
3290 }
3291 
3292 static int selinux_socket_shutdown(struct socket *sock, int how)
3293 {
3294 	return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3295 }
3296 
3297 static int selinux_socket_unix_stream_connect(struct socket *sock,
3298 					      struct socket *other,
3299 					      struct sock *newsk)
3300 {
3301 	struct sk_security_struct *ssec;
3302 	struct inode_security_struct *isec;
3303 	struct inode_security_struct *other_isec;
3304 	struct avc_audit_data ad;
3305 	int err;
3306 
3307 	err = secondary_ops->unix_stream_connect(sock, other, newsk);
3308 	if (err)
3309 		return err;
3310 
3311 	isec = SOCK_INODE(sock)->i_security;
3312 	other_isec = SOCK_INODE(other)->i_security;
3313 
3314 	AVC_AUDIT_DATA_INIT(&ad,NET);
3315 	ad.u.net.sk = other->sk;
3316 
3317 	err = avc_has_perm(isec->sid, other_isec->sid,
3318 			   isec->sclass,
3319 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3320 	if (err)
3321 		return err;
3322 
3323 	/* connecting socket */
3324 	ssec = sock->sk->sk_security;
3325 	ssec->peer_sid = other_isec->sid;
3326 
3327 	/* server child socket */
3328 	ssec = newsk->sk_security;
3329 	ssec->peer_sid = isec->sid;
3330 
3331 	return 0;
3332 }
3333 
3334 static int selinux_socket_unix_may_send(struct socket *sock,
3335 					struct socket *other)
3336 {
3337 	struct inode_security_struct *isec;
3338 	struct inode_security_struct *other_isec;
3339 	struct avc_audit_data ad;
3340 	int err;
3341 
3342 	isec = SOCK_INODE(sock)->i_security;
3343 	other_isec = SOCK_INODE(other)->i_security;
3344 
3345 	AVC_AUDIT_DATA_INIT(&ad,NET);
3346 	ad.u.net.sk = other->sk;
3347 
3348 	err = avc_has_perm(isec->sid, other_isec->sid,
3349 			   isec->sclass, SOCKET__SENDTO, &ad);
3350 	if (err)
3351 		return err;
3352 
3353 	return 0;
3354 }
3355 
3356 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3357 		struct avc_audit_data *ad, u32 sock_sid, u16 sock_class,
3358 		u16 family, char *addrp, int len)
3359 {
3360 	int err = 0;
3361 	u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3362 
3363 	if (!skb->dev)
3364 		goto out;
3365 
3366 	err = sel_netif_sids(skb->dev, &if_sid, NULL);
3367 	if (err)
3368 		goto out;
3369 
3370 	switch (sock_class) {
3371 	case SECCLASS_UDP_SOCKET:
3372 		netif_perm = NETIF__UDP_RECV;
3373 		node_perm = NODE__UDP_RECV;
3374 		recv_perm = UDP_SOCKET__RECV_MSG;
3375 		break;
3376 
3377 	case SECCLASS_TCP_SOCKET:
3378 		netif_perm = NETIF__TCP_RECV;
3379 		node_perm = NODE__TCP_RECV;
3380 		recv_perm = TCP_SOCKET__RECV_MSG;
3381 		break;
3382 
3383 	default:
3384 		netif_perm = NETIF__RAWIP_RECV;
3385 		node_perm = NODE__RAWIP_RECV;
3386 		break;
3387 	}
3388 
3389 	err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3390 	if (err)
3391 		goto out;
3392 
3393 	err = security_node_sid(family, addrp, len, &node_sid);
3394 	if (err)
3395 		goto out;
3396 
3397 	err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3398 	if (err)
3399 		goto out;
3400 
3401 	if (recv_perm) {
3402 		u32 port_sid;
3403 
3404 		err = security_port_sid(sk->sk_family, sk->sk_type,
3405 		                        sk->sk_protocol, ntohs(ad->u.net.sport),
3406 		                        &port_sid);
3407 		if (err)
3408 			goto out;
3409 
3410 		err = avc_has_perm(sock_sid, port_sid,
3411 				   sock_class, recv_perm, ad);
3412 	}
3413 
3414 out:
3415 	return err;
3416 }
3417 
3418 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3419 {
3420 	u16 family;
3421 	u16 sock_class = 0;
3422 	char *addrp;
3423 	int len, err = 0;
3424 	u32 sock_sid = 0;
3425 	struct socket *sock;
3426 	struct avc_audit_data ad;
3427 
3428 	family = sk->sk_family;
3429 	if (family != PF_INET && family != PF_INET6)
3430 		goto out;
3431 
3432 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
3433 	if (family == PF_INET6 && skb->protocol == ntohs(ETH_P_IP))
3434 		family = PF_INET;
3435 
3436  	read_lock_bh(&sk->sk_callback_lock);
3437  	sock = sk->sk_socket;
3438  	if (sock) {
3439  		struct inode *inode;
3440  		inode = SOCK_INODE(sock);
3441  		if (inode) {
3442  			struct inode_security_struct *isec;
3443  			isec = inode->i_security;
3444  			sock_sid = isec->sid;
3445  			sock_class = isec->sclass;
3446  		}
3447  	}
3448  	read_unlock_bh(&sk->sk_callback_lock);
3449  	if (!sock_sid)
3450   		goto out;
3451 
3452 	AVC_AUDIT_DATA_INIT(&ad, NET);
3453 	ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3454 	ad.u.net.family = family;
3455 
3456 	err = selinux_parse_skb(skb, &ad, &addrp, &len, 1);
3457 	if (err)
3458 		goto out;
3459 
3460 	if (selinux_compat_net)
3461 		err = selinux_sock_rcv_skb_compat(sk, skb, &ad, sock_sid,
3462 						  sock_class, family,
3463 						  addrp, len);
3464 	else
3465 		err = avc_has_perm(sock_sid, skb->secmark, SECCLASS_PACKET,
3466 				   PACKET__RECV, &ad);
3467 	if (err)
3468 		goto out;
3469 
3470 	err = selinux_xfrm_sock_rcv_skb(sock_sid, skb);
3471 out:
3472 	return err;
3473 }
3474 
3475 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3476 					    int __user *optlen, unsigned len)
3477 {
3478 	int err = 0;
3479 	char *scontext;
3480 	u32 scontext_len;
3481 	struct sk_security_struct *ssec;
3482 	struct inode_security_struct *isec;
3483 	u32 peer_sid = 0;
3484 
3485 	isec = SOCK_INODE(sock)->i_security;
3486 
3487 	/* if UNIX_STREAM check peer_sid, if TCP check dst for labelled sa */
3488 	if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET) {
3489 		ssec = sock->sk->sk_security;
3490 		peer_sid = ssec->peer_sid;
3491 	}
3492 	else if (isec->sclass == SECCLASS_TCP_SOCKET) {
3493 		peer_sid = selinux_socket_getpeer_stream(sock->sk);
3494 
3495 		if (peer_sid == SECSID_NULL) {
3496 			err = -ENOPROTOOPT;
3497 			goto out;
3498 		}
3499 	}
3500 	else {
3501 		err = -ENOPROTOOPT;
3502 		goto out;
3503 	}
3504 
3505 	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3506 
3507 	if (err)
3508 		goto out;
3509 
3510 	if (scontext_len > len) {
3511 		err = -ERANGE;
3512 		goto out_len;
3513 	}
3514 
3515 	if (copy_to_user(optval, scontext, scontext_len))
3516 		err = -EFAULT;
3517 
3518 out_len:
3519 	if (put_user(scontext_len, optlen))
3520 		err = -EFAULT;
3521 
3522 	kfree(scontext);
3523 out:
3524 	return err;
3525 }
3526 
3527 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3528 {
3529 	u32 peer_secid = SECSID_NULL;
3530 	int err = 0;
3531 
3532 	if (sock && (sock->sk->sk_family == PF_UNIX))
3533 		selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
3534 	else if (skb)
3535 		peer_secid = selinux_socket_getpeer_dgram(skb);
3536 
3537 	if (peer_secid == SECSID_NULL)
3538 		err = -EINVAL;
3539 	*secid = peer_secid;
3540 
3541 	return err;
3542 }
3543 
3544 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3545 {
3546 	return sk_alloc_security(sk, family, priority);
3547 }
3548 
3549 static void selinux_sk_free_security(struct sock *sk)
3550 {
3551 	sk_free_security(sk);
3552 }
3553 
3554 static unsigned int selinux_sk_getsid_security(struct sock *sk, struct flowi *fl, u8 dir)
3555 {
3556 	struct inode_security_struct *isec;
3557 	u32 sock_sid = SECINITSID_ANY_SOCKET;
3558 
3559 	if (!sk)
3560 		return selinux_no_sk_sid(fl);
3561 
3562 	read_lock_bh(&sk->sk_callback_lock);
3563 	isec = get_sock_isec(sk);
3564 
3565 	if (isec)
3566 		sock_sid = isec->sid;
3567 
3568 	read_unlock_bh(&sk->sk_callback_lock);
3569 	return sock_sid;
3570 }
3571 
3572 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3573 {
3574 	int err = 0;
3575 	u32 perm;
3576 	struct nlmsghdr *nlh;
3577 	struct socket *sock = sk->sk_socket;
3578 	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3579 
3580 	if (skb->len < NLMSG_SPACE(0)) {
3581 		err = -EINVAL;
3582 		goto out;
3583 	}
3584 	nlh = (struct nlmsghdr *)skb->data;
3585 
3586 	err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3587 	if (err) {
3588 		if (err == -EINVAL) {
3589 			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3590 				  "SELinux:  unrecognized netlink message"
3591 				  " type=%hu for sclass=%hu\n",
3592 				  nlh->nlmsg_type, isec->sclass);
3593 			if (!selinux_enforcing)
3594 				err = 0;
3595 		}
3596 
3597 		/* Ignore */
3598 		if (err == -ENOENT)
3599 			err = 0;
3600 		goto out;
3601 	}
3602 
3603 	err = socket_has_perm(current, sock, perm);
3604 out:
3605 	return err;
3606 }
3607 
3608 #ifdef CONFIG_NETFILTER
3609 
3610 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3611 					    struct inode_security_struct *isec,
3612 					    struct avc_audit_data *ad,
3613 					    u16 family, char *addrp, int len)
3614 {
3615 	int err;
3616 	u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3617 
3618 	err = sel_netif_sids(dev, &if_sid, NULL);
3619 	if (err)
3620 		goto out;
3621 
3622 	switch (isec->sclass) {
3623 	case SECCLASS_UDP_SOCKET:
3624 		netif_perm = NETIF__UDP_SEND;
3625 		node_perm = NODE__UDP_SEND;
3626 		send_perm = UDP_SOCKET__SEND_MSG;
3627 		break;
3628 
3629 	case SECCLASS_TCP_SOCKET:
3630 		netif_perm = NETIF__TCP_SEND;
3631 		node_perm = NODE__TCP_SEND;
3632 		send_perm = TCP_SOCKET__SEND_MSG;
3633 		break;
3634 
3635 	default:
3636 		netif_perm = NETIF__RAWIP_SEND;
3637 		node_perm = NODE__RAWIP_SEND;
3638 		break;
3639 	}
3640 
3641 	err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3642 	if (err)
3643 		goto out;
3644 
3645 	err = security_node_sid(family, addrp, len, &node_sid);
3646 	if (err)
3647 		goto out;
3648 
3649 	err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3650 	if (err)
3651 		goto out;
3652 
3653 	if (send_perm) {
3654 		u32 port_sid;
3655 
3656 		err = security_port_sid(sk->sk_family,
3657 		                        sk->sk_type,
3658 		                        sk->sk_protocol,
3659 		                        ntohs(ad->u.net.dport),
3660 		                        &port_sid);
3661 		if (err)
3662 			goto out;
3663 
3664 		err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3665 				   send_perm, ad);
3666 	}
3667 out:
3668 	return err;
3669 }
3670 
3671 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3672                                               struct sk_buff **pskb,
3673                                               const struct net_device *in,
3674                                               const struct net_device *out,
3675                                               int (*okfn)(struct sk_buff *),
3676                                               u16 family)
3677 {
3678 	char *addrp;
3679 	int len, err = 0;
3680 	struct sock *sk;
3681 	struct socket *sock;
3682 	struct inode *inode;
3683 	struct sk_buff *skb = *pskb;
3684 	struct inode_security_struct *isec;
3685 	struct avc_audit_data ad;
3686 	struct net_device *dev = (struct net_device *)out;
3687 
3688 	sk = skb->sk;
3689 	if (!sk)
3690 		goto out;
3691 
3692 	sock = sk->sk_socket;
3693 	if (!sock)
3694 		goto out;
3695 
3696 	inode = SOCK_INODE(sock);
3697 	if (!inode)
3698 		goto out;
3699 
3700 	isec = inode->i_security;
3701 
3702 	AVC_AUDIT_DATA_INIT(&ad, NET);
3703 	ad.u.net.netif = dev->name;
3704 	ad.u.net.family = family;
3705 
3706 	err = selinux_parse_skb(skb, &ad, &addrp, &len, 0);
3707 	if (err)
3708 		goto out;
3709 
3710 	if (selinux_compat_net)
3711 		err = selinux_ip_postroute_last_compat(sk, dev, isec, &ad,
3712 						       family, addrp, len);
3713 	else
3714 		err = avc_has_perm(isec->sid, skb->secmark, SECCLASS_PACKET,
3715 				   PACKET__SEND, &ad);
3716 
3717 	if (err)
3718 		goto out;
3719 
3720 	err = selinux_xfrm_postroute_last(isec->sid, skb);
3721 out:
3722 	return err ? NF_DROP : NF_ACCEPT;
3723 }
3724 
3725 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3726 						struct sk_buff **pskb,
3727 						const struct net_device *in,
3728 						const struct net_device *out,
3729 						int (*okfn)(struct sk_buff *))
3730 {
3731 	return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3732 }
3733 
3734 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3735 
3736 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3737 						struct sk_buff **pskb,
3738 						const struct net_device *in,
3739 						const struct net_device *out,
3740 						int (*okfn)(struct sk_buff *))
3741 {
3742 	return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3743 }
3744 
3745 #endif	/* IPV6 */
3746 
3747 #endif	/* CONFIG_NETFILTER */
3748 
3749 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
3750 {
3751 	int err;
3752 
3753 	err = secondary_ops->netlink_send(sk, skb);
3754 	if (err)
3755 		return err;
3756 
3757 	if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
3758 		err = selinux_nlmsg_perm(sk, skb);
3759 
3760 	return err;
3761 }
3762 
3763 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
3764 {
3765 	int err;
3766 	struct avc_audit_data ad;
3767 
3768 	err = secondary_ops->netlink_recv(skb, capability);
3769 	if (err)
3770 		return err;
3771 
3772 	AVC_AUDIT_DATA_INIT(&ad, CAP);
3773 	ad.u.cap = capability;
3774 
3775 	return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
3776 	                    SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
3777 }
3778 
3779 static int ipc_alloc_security(struct task_struct *task,
3780 			      struct kern_ipc_perm *perm,
3781 			      u16 sclass)
3782 {
3783 	struct task_security_struct *tsec = task->security;
3784 	struct ipc_security_struct *isec;
3785 
3786 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
3787 	if (!isec)
3788 		return -ENOMEM;
3789 
3790 	isec->sclass = sclass;
3791 	isec->ipc_perm = perm;
3792 	isec->sid = tsec->sid;
3793 	perm->security = isec;
3794 
3795 	return 0;
3796 }
3797 
3798 static void ipc_free_security(struct kern_ipc_perm *perm)
3799 {
3800 	struct ipc_security_struct *isec = perm->security;
3801 	perm->security = NULL;
3802 	kfree(isec);
3803 }
3804 
3805 static int msg_msg_alloc_security(struct msg_msg *msg)
3806 {
3807 	struct msg_security_struct *msec;
3808 
3809 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
3810 	if (!msec)
3811 		return -ENOMEM;
3812 
3813 	msec->msg = msg;
3814 	msec->sid = SECINITSID_UNLABELED;
3815 	msg->security = msec;
3816 
3817 	return 0;
3818 }
3819 
3820 static void msg_msg_free_security(struct msg_msg *msg)
3821 {
3822 	struct msg_security_struct *msec = msg->security;
3823 
3824 	msg->security = NULL;
3825 	kfree(msec);
3826 }
3827 
3828 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
3829 			u32 perms)
3830 {
3831 	struct task_security_struct *tsec;
3832 	struct ipc_security_struct *isec;
3833 	struct avc_audit_data ad;
3834 
3835 	tsec = current->security;
3836 	isec = ipc_perms->security;
3837 
3838 	AVC_AUDIT_DATA_INIT(&ad, IPC);
3839 	ad.u.ipc_id = ipc_perms->key;
3840 
3841 	return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3842 }
3843 
3844 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
3845 {
3846 	return msg_msg_alloc_security(msg);
3847 }
3848 
3849 static void selinux_msg_msg_free_security(struct msg_msg *msg)
3850 {
3851 	msg_msg_free_security(msg);
3852 }
3853 
3854 /* message queue security operations */
3855 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
3856 {
3857 	struct task_security_struct *tsec;
3858 	struct ipc_security_struct *isec;
3859 	struct avc_audit_data ad;
3860 	int rc;
3861 
3862 	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
3863 	if (rc)
3864 		return rc;
3865 
3866 	tsec = current->security;
3867 	isec = msq->q_perm.security;
3868 
3869 	AVC_AUDIT_DATA_INIT(&ad, IPC);
3870  	ad.u.ipc_id = msq->q_perm.key;
3871 
3872 	rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3873 			  MSGQ__CREATE, &ad);
3874 	if (rc) {
3875 		ipc_free_security(&msq->q_perm);
3876 		return rc;
3877 	}
3878 	return 0;
3879 }
3880 
3881 static void selinux_msg_queue_free_security(struct msg_queue *msq)
3882 {
3883 	ipc_free_security(&msq->q_perm);
3884 }
3885 
3886 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
3887 {
3888 	struct task_security_struct *tsec;
3889 	struct ipc_security_struct *isec;
3890 	struct avc_audit_data ad;
3891 
3892 	tsec = current->security;
3893 	isec = msq->q_perm.security;
3894 
3895 	AVC_AUDIT_DATA_INIT(&ad, IPC);
3896 	ad.u.ipc_id = msq->q_perm.key;
3897 
3898 	return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3899 			    MSGQ__ASSOCIATE, &ad);
3900 }
3901 
3902 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
3903 {
3904 	int err;
3905 	int perms;
3906 
3907 	switch(cmd) {
3908 	case IPC_INFO:
3909 	case MSG_INFO:
3910 		/* No specific object, just general system-wide information. */
3911 		return task_has_system(current, SYSTEM__IPC_INFO);
3912 	case IPC_STAT:
3913 	case MSG_STAT:
3914 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
3915 		break;
3916 	case IPC_SET:
3917 		perms = MSGQ__SETATTR;
3918 		break;
3919 	case IPC_RMID:
3920 		perms = MSGQ__DESTROY;
3921 		break;
3922 	default:
3923 		return 0;
3924 	}
3925 
3926 	err = ipc_has_perm(&msq->q_perm, perms);
3927 	return err;
3928 }
3929 
3930 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
3931 {
3932 	struct task_security_struct *tsec;
3933 	struct ipc_security_struct *isec;
3934 	struct msg_security_struct *msec;
3935 	struct avc_audit_data ad;
3936 	int rc;
3937 
3938 	tsec = current->security;
3939 	isec = msq->q_perm.security;
3940 	msec = msg->security;
3941 
3942 	/*
3943 	 * First time through, need to assign label to the message
3944 	 */
3945 	if (msec->sid == SECINITSID_UNLABELED) {
3946 		/*
3947 		 * Compute new sid based on current process and
3948 		 * message queue this message will be stored in
3949 		 */
3950 		rc = security_transition_sid(tsec->sid,
3951 					     isec->sid,
3952 					     SECCLASS_MSG,
3953 					     &msec->sid);
3954 		if (rc)
3955 			return rc;
3956 	}
3957 
3958 	AVC_AUDIT_DATA_INIT(&ad, IPC);
3959 	ad.u.ipc_id = msq->q_perm.key;
3960 
3961 	/* Can this process write to the queue? */
3962 	rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3963 			  MSGQ__WRITE, &ad);
3964 	if (!rc)
3965 		/* Can this process send the message */
3966 		rc = avc_has_perm(tsec->sid, msec->sid,
3967 				  SECCLASS_MSG, MSG__SEND, &ad);
3968 	if (!rc)
3969 		/* Can the message be put in the queue? */
3970 		rc = avc_has_perm(msec->sid, isec->sid,
3971 				  SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
3972 
3973 	return rc;
3974 }
3975 
3976 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
3977 				    struct task_struct *target,
3978 				    long type, int mode)
3979 {
3980 	struct task_security_struct *tsec;
3981 	struct ipc_security_struct *isec;
3982 	struct msg_security_struct *msec;
3983 	struct avc_audit_data ad;
3984 	int rc;
3985 
3986 	tsec = target->security;
3987 	isec = msq->q_perm.security;
3988 	msec = msg->security;
3989 
3990 	AVC_AUDIT_DATA_INIT(&ad, IPC);
3991  	ad.u.ipc_id = msq->q_perm.key;
3992 
3993 	rc = avc_has_perm(tsec->sid, isec->sid,
3994 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
3995 	if (!rc)
3996 		rc = avc_has_perm(tsec->sid, msec->sid,
3997 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
3998 	return rc;
3999 }
4000 
4001 /* Shared Memory security operations */
4002 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4003 {
4004 	struct task_security_struct *tsec;
4005 	struct ipc_security_struct *isec;
4006 	struct avc_audit_data ad;
4007 	int rc;
4008 
4009 	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4010 	if (rc)
4011 		return rc;
4012 
4013 	tsec = current->security;
4014 	isec = shp->shm_perm.security;
4015 
4016 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4017  	ad.u.ipc_id = shp->shm_perm.key;
4018 
4019 	rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4020 			  SHM__CREATE, &ad);
4021 	if (rc) {
4022 		ipc_free_security(&shp->shm_perm);
4023 		return rc;
4024 	}
4025 	return 0;
4026 }
4027 
4028 static void selinux_shm_free_security(struct shmid_kernel *shp)
4029 {
4030 	ipc_free_security(&shp->shm_perm);
4031 }
4032 
4033 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4034 {
4035 	struct task_security_struct *tsec;
4036 	struct ipc_security_struct *isec;
4037 	struct avc_audit_data ad;
4038 
4039 	tsec = current->security;
4040 	isec = shp->shm_perm.security;
4041 
4042 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4043 	ad.u.ipc_id = shp->shm_perm.key;
4044 
4045 	return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4046 			    SHM__ASSOCIATE, &ad);
4047 }
4048 
4049 /* Note, at this point, shp is locked down */
4050 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4051 {
4052 	int perms;
4053 	int err;
4054 
4055 	switch(cmd) {
4056 	case IPC_INFO:
4057 	case SHM_INFO:
4058 		/* No specific object, just general system-wide information. */
4059 		return task_has_system(current, SYSTEM__IPC_INFO);
4060 	case IPC_STAT:
4061 	case SHM_STAT:
4062 		perms = SHM__GETATTR | SHM__ASSOCIATE;
4063 		break;
4064 	case IPC_SET:
4065 		perms = SHM__SETATTR;
4066 		break;
4067 	case SHM_LOCK:
4068 	case SHM_UNLOCK:
4069 		perms = SHM__LOCK;
4070 		break;
4071 	case IPC_RMID:
4072 		perms = SHM__DESTROY;
4073 		break;
4074 	default:
4075 		return 0;
4076 	}
4077 
4078 	err = ipc_has_perm(&shp->shm_perm, perms);
4079 	return err;
4080 }
4081 
4082 static int selinux_shm_shmat(struct shmid_kernel *shp,
4083 			     char __user *shmaddr, int shmflg)
4084 {
4085 	u32 perms;
4086 	int rc;
4087 
4088 	rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4089 	if (rc)
4090 		return rc;
4091 
4092 	if (shmflg & SHM_RDONLY)
4093 		perms = SHM__READ;
4094 	else
4095 		perms = SHM__READ | SHM__WRITE;
4096 
4097 	return ipc_has_perm(&shp->shm_perm, perms);
4098 }
4099 
4100 /* Semaphore security operations */
4101 static int selinux_sem_alloc_security(struct sem_array *sma)
4102 {
4103 	struct task_security_struct *tsec;
4104 	struct ipc_security_struct *isec;
4105 	struct avc_audit_data ad;
4106 	int rc;
4107 
4108 	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4109 	if (rc)
4110 		return rc;
4111 
4112 	tsec = current->security;
4113 	isec = sma->sem_perm.security;
4114 
4115 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4116  	ad.u.ipc_id = sma->sem_perm.key;
4117 
4118 	rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4119 			  SEM__CREATE, &ad);
4120 	if (rc) {
4121 		ipc_free_security(&sma->sem_perm);
4122 		return rc;
4123 	}
4124 	return 0;
4125 }
4126 
4127 static void selinux_sem_free_security(struct sem_array *sma)
4128 {
4129 	ipc_free_security(&sma->sem_perm);
4130 }
4131 
4132 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4133 {
4134 	struct task_security_struct *tsec;
4135 	struct ipc_security_struct *isec;
4136 	struct avc_audit_data ad;
4137 
4138 	tsec = current->security;
4139 	isec = sma->sem_perm.security;
4140 
4141 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4142 	ad.u.ipc_id = sma->sem_perm.key;
4143 
4144 	return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4145 			    SEM__ASSOCIATE, &ad);
4146 }
4147 
4148 /* Note, at this point, sma is locked down */
4149 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4150 {
4151 	int err;
4152 	u32 perms;
4153 
4154 	switch(cmd) {
4155 	case IPC_INFO:
4156 	case SEM_INFO:
4157 		/* No specific object, just general system-wide information. */
4158 		return task_has_system(current, SYSTEM__IPC_INFO);
4159 	case GETPID:
4160 	case GETNCNT:
4161 	case GETZCNT:
4162 		perms = SEM__GETATTR;
4163 		break;
4164 	case GETVAL:
4165 	case GETALL:
4166 		perms = SEM__READ;
4167 		break;
4168 	case SETVAL:
4169 	case SETALL:
4170 		perms = SEM__WRITE;
4171 		break;
4172 	case IPC_RMID:
4173 		perms = SEM__DESTROY;
4174 		break;
4175 	case IPC_SET:
4176 		perms = SEM__SETATTR;
4177 		break;
4178 	case IPC_STAT:
4179 	case SEM_STAT:
4180 		perms = SEM__GETATTR | SEM__ASSOCIATE;
4181 		break;
4182 	default:
4183 		return 0;
4184 	}
4185 
4186 	err = ipc_has_perm(&sma->sem_perm, perms);
4187 	return err;
4188 }
4189 
4190 static int selinux_sem_semop(struct sem_array *sma,
4191 			     struct sembuf *sops, unsigned nsops, int alter)
4192 {
4193 	u32 perms;
4194 
4195 	if (alter)
4196 		perms = SEM__READ | SEM__WRITE;
4197 	else
4198 		perms = SEM__READ;
4199 
4200 	return ipc_has_perm(&sma->sem_perm, perms);
4201 }
4202 
4203 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4204 {
4205 	u32 av = 0;
4206 
4207 	av = 0;
4208 	if (flag & S_IRUGO)
4209 		av |= IPC__UNIX_READ;
4210 	if (flag & S_IWUGO)
4211 		av |= IPC__UNIX_WRITE;
4212 
4213 	if (av == 0)
4214 		return 0;
4215 
4216 	return ipc_has_perm(ipcp, av);
4217 }
4218 
4219 /* module stacking operations */
4220 static int selinux_register_security (const char *name, struct security_operations *ops)
4221 {
4222 	if (secondary_ops != original_ops) {
4223 		printk(KERN_INFO "%s:  There is already a secondary security "
4224 		       "module registered.\n", __FUNCTION__);
4225 		return -EINVAL;
4226  	}
4227 
4228 	secondary_ops = ops;
4229 
4230 	printk(KERN_INFO "%s:  Registering secondary module %s\n",
4231 	       __FUNCTION__,
4232 	       name);
4233 
4234 	return 0;
4235 }
4236 
4237 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4238 {
4239 	if (ops != secondary_ops) {
4240 		printk (KERN_INFO "%s:  trying to unregister a security module "
4241 		        "that is not registered.\n", __FUNCTION__);
4242 		return -EINVAL;
4243 	}
4244 
4245 	secondary_ops = original_ops;
4246 
4247 	return 0;
4248 }
4249 
4250 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4251 {
4252 	if (inode)
4253 		inode_doinit_with_dentry(inode, dentry);
4254 }
4255 
4256 static int selinux_getprocattr(struct task_struct *p,
4257 			       char *name, void *value, size_t size)
4258 {
4259 	struct task_security_struct *tsec;
4260 	u32 sid;
4261 	int error;
4262 
4263 	if (current != p) {
4264 		error = task_has_perm(current, p, PROCESS__GETATTR);
4265 		if (error)
4266 			return error;
4267 	}
4268 
4269 	tsec = p->security;
4270 
4271 	if (!strcmp(name, "current"))
4272 		sid = tsec->sid;
4273 	else if (!strcmp(name, "prev"))
4274 		sid = tsec->osid;
4275 	else if (!strcmp(name, "exec"))
4276 		sid = tsec->exec_sid;
4277 	else if (!strcmp(name, "fscreate"))
4278 		sid = tsec->create_sid;
4279 	else if (!strcmp(name, "keycreate"))
4280 		sid = tsec->keycreate_sid;
4281 	else if (!strcmp(name, "sockcreate"))
4282 		sid = tsec->sockcreate_sid;
4283 	else
4284 		return -EINVAL;
4285 
4286 	if (!sid)
4287 		return 0;
4288 
4289 	return selinux_getsecurity(sid, value, size);
4290 }
4291 
4292 static int selinux_setprocattr(struct task_struct *p,
4293 			       char *name, void *value, size_t size)
4294 {
4295 	struct task_security_struct *tsec;
4296 	u32 sid = 0;
4297 	int error;
4298 	char *str = value;
4299 
4300 	if (current != p) {
4301 		/* SELinux only allows a process to change its own
4302 		   security attributes. */
4303 		return -EACCES;
4304 	}
4305 
4306 	/*
4307 	 * Basic control over ability to set these attributes at all.
4308 	 * current == p, but we'll pass them separately in case the
4309 	 * above restriction is ever removed.
4310 	 */
4311 	if (!strcmp(name, "exec"))
4312 		error = task_has_perm(current, p, PROCESS__SETEXEC);
4313 	else if (!strcmp(name, "fscreate"))
4314 		error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4315 	else if (!strcmp(name, "keycreate"))
4316 		error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4317 	else if (!strcmp(name, "sockcreate"))
4318 		error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4319 	else if (!strcmp(name, "current"))
4320 		error = task_has_perm(current, p, PROCESS__SETCURRENT);
4321 	else
4322 		error = -EINVAL;
4323 	if (error)
4324 		return error;
4325 
4326 	/* Obtain a SID for the context, if one was specified. */
4327 	if (size && str[1] && str[1] != '\n') {
4328 		if (str[size-1] == '\n') {
4329 			str[size-1] = 0;
4330 			size--;
4331 		}
4332 		error = security_context_to_sid(value, size, &sid);
4333 		if (error)
4334 			return error;
4335 	}
4336 
4337 	/* Permission checking based on the specified context is
4338 	   performed during the actual operation (execve,
4339 	   open/mkdir/...), when we know the full context of the
4340 	   operation.  See selinux_bprm_set_security for the execve
4341 	   checks and may_create for the file creation checks. The
4342 	   operation will then fail if the context is not permitted. */
4343 	tsec = p->security;
4344 	if (!strcmp(name, "exec"))
4345 		tsec->exec_sid = sid;
4346 	else if (!strcmp(name, "fscreate"))
4347 		tsec->create_sid = sid;
4348 	else if (!strcmp(name, "keycreate")) {
4349 		error = may_create_key(sid, p);
4350 		if (error)
4351 			return error;
4352 		tsec->keycreate_sid = sid;
4353 	} else if (!strcmp(name, "sockcreate"))
4354 		tsec->sockcreate_sid = sid;
4355 	else if (!strcmp(name, "current")) {
4356 		struct av_decision avd;
4357 
4358 		if (sid == 0)
4359 			return -EINVAL;
4360 
4361 		/* Only allow single threaded processes to change context */
4362 		if (atomic_read(&p->mm->mm_users) != 1) {
4363 			struct task_struct *g, *t;
4364 			struct mm_struct *mm = p->mm;
4365 			read_lock(&tasklist_lock);
4366 			do_each_thread(g, t)
4367 				if (t->mm == mm && t != p) {
4368 					read_unlock(&tasklist_lock);
4369 					return -EPERM;
4370 				}
4371 			while_each_thread(g, t);
4372 			read_unlock(&tasklist_lock);
4373                 }
4374 
4375 		/* Check permissions for the transition. */
4376 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4377 		                     PROCESS__DYNTRANSITION, NULL);
4378 		if (error)
4379 			return error;
4380 
4381 		/* Check for ptracing, and update the task SID if ok.
4382 		   Otherwise, leave SID unchanged and fail. */
4383 		task_lock(p);
4384 		if (p->ptrace & PT_PTRACED) {
4385 			error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4386 						     SECCLASS_PROCESS,
4387 						     PROCESS__PTRACE, &avd);
4388 			if (!error)
4389 				tsec->sid = sid;
4390 			task_unlock(p);
4391 			avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4392 				  PROCESS__PTRACE, &avd, error, NULL);
4393 			if (error)
4394 				return error;
4395 		} else {
4396 			tsec->sid = sid;
4397 			task_unlock(p);
4398 		}
4399 	}
4400 	else
4401 		return -EINVAL;
4402 
4403 	return size;
4404 }
4405 
4406 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4407 {
4408 	return security_sid_to_context(secid, secdata, seclen);
4409 }
4410 
4411 static void selinux_release_secctx(char *secdata, u32 seclen)
4412 {
4413 	if (secdata)
4414 		kfree(secdata);
4415 }
4416 
4417 #ifdef CONFIG_KEYS
4418 
4419 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4420 			     unsigned long flags)
4421 {
4422 	struct task_security_struct *tsec = tsk->security;
4423 	struct key_security_struct *ksec;
4424 
4425 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4426 	if (!ksec)
4427 		return -ENOMEM;
4428 
4429 	ksec->obj = k;
4430 	if (tsec->keycreate_sid)
4431 		ksec->sid = tsec->keycreate_sid;
4432 	else
4433 		ksec->sid = tsec->sid;
4434 	k->security = ksec;
4435 
4436 	return 0;
4437 }
4438 
4439 static void selinux_key_free(struct key *k)
4440 {
4441 	struct key_security_struct *ksec = k->security;
4442 
4443 	k->security = NULL;
4444 	kfree(ksec);
4445 }
4446 
4447 static int selinux_key_permission(key_ref_t key_ref,
4448 			    struct task_struct *ctx,
4449 			    key_perm_t perm)
4450 {
4451 	struct key *key;
4452 	struct task_security_struct *tsec;
4453 	struct key_security_struct *ksec;
4454 
4455 	key = key_ref_to_ptr(key_ref);
4456 
4457 	tsec = ctx->security;
4458 	ksec = key->security;
4459 
4460 	/* if no specific permissions are requested, we skip the
4461 	   permission check. No serious, additional covert channels
4462 	   appear to be created. */
4463 	if (perm == 0)
4464 		return 0;
4465 
4466 	return avc_has_perm(tsec->sid, ksec->sid,
4467 			    SECCLASS_KEY, perm, NULL);
4468 }
4469 
4470 #endif
4471 
4472 static struct security_operations selinux_ops = {
4473 	.ptrace =			selinux_ptrace,
4474 	.capget =			selinux_capget,
4475 	.capset_check =			selinux_capset_check,
4476 	.capset_set =			selinux_capset_set,
4477 	.sysctl =			selinux_sysctl,
4478 	.capable =			selinux_capable,
4479 	.quotactl =			selinux_quotactl,
4480 	.quota_on =			selinux_quota_on,
4481 	.syslog =			selinux_syslog,
4482 	.vm_enough_memory =		selinux_vm_enough_memory,
4483 
4484 	.netlink_send =			selinux_netlink_send,
4485         .netlink_recv =			selinux_netlink_recv,
4486 
4487 	.bprm_alloc_security =		selinux_bprm_alloc_security,
4488 	.bprm_free_security =		selinux_bprm_free_security,
4489 	.bprm_apply_creds =		selinux_bprm_apply_creds,
4490 	.bprm_post_apply_creds =	selinux_bprm_post_apply_creds,
4491 	.bprm_set_security =		selinux_bprm_set_security,
4492 	.bprm_check_security =		selinux_bprm_check_security,
4493 	.bprm_secureexec =		selinux_bprm_secureexec,
4494 
4495 	.sb_alloc_security =		selinux_sb_alloc_security,
4496 	.sb_free_security =		selinux_sb_free_security,
4497 	.sb_copy_data =			selinux_sb_copy_data,
4498 	.sb_kern_mount =	        selinux_sb_kern_mount,
4499 	.sb_statfs =			selinux_sb_statfs,
4500 	.sb_mount =			selinux_mount,
4501 	.sb_umount =			selinux_umount,
4502 
4503 	.inode_alloc_security =		selinux_inode_alloc_security,
4504 	.inode_free_security =		selinux_inode_free_security,
4505 	.inode_init_security =		selinux_inode_init_security,
4506 	.inode_create =			selinux_inode_create,
4507 	.inode_link =			selinux_inode_link,
4508 	.inode_unlink =			selinux_inode_unlink,
4509 	.inode_symlink =		selinux_inode_symlink,
4510 	.inode_mkdir =			selinux_inode_mkdir,
4511 	.inode_rmdir =			selinux_inode_rmdir,
4512 	.inode_mknod =			selinux_inode_mknod,
4513 	.inode_rename =			selinux_inode_rename,
4514 	.inode_readlink =		selinux_inode_readlink,
4515 	.inode_follow_link =		selinux_inode_follow_link,
4516 	.inode_permission =		selinux_inode_permission,
4517 	.inode_setattr =		selinux_inode_setattr,
4518 	.inode_getattr =		selinux_inode_getattr,
4519 	.inode_setxattr =		selinux_inode_setxattr,
4520 	.inode_post_setxattr =		selinux_inode_post_setxattr,
4521 	.inode_getxattr =		selinux_inode_getxattr,
4522 	.inode_listxattr =		selinux_inode_listxattr,
4523 	.inode_removexattr =		selinux_inode_removexattr,
4524 	.inode_xattr_getsuffix =        selinux_inode_xattr_getsuffix,
4525 	.inode_getsecurity =            selinux_inode_getsecurity,
4526 	.inode_setsecurity =            selinux_inode_setsecurity,
4527 	.inode_listsecurity =           selinux_inode_listsecurity,
4528 
4529 	.file_permission =		selinux_file_permission,
4530 	.file_alloc_security =		selinux_file_alloc_security,
4531 	.file_free_security =		selinux_file_free_security,
4532 	.file_ioctl =			selinux_file_ioctl,
4533 	.file_mmap =			selinux_file_mmap,
4534 	.file_mprotect =		selinux_file_mprotect,
4535 	.file_lock =			selinux_file_lock,
4536 	.file_fcntl =			selinux_file_fcntl,
4537 	.file_set_fowner =		selinux_file_set_fowner,
4538 	.file_send_sigiotask =		selinux_file_send_sigiotask,
4539 	.file_receive =			selinux_file_receive,
4540 
4541 	.task_create =			selinux_task_create,
4542 	.task_alloc_security =		selinux_task_alloc_security,
4543 	.task_free_security =		selinux_task_free_security,
4544 	.task_setuid =			selinux_task_setuid,
4545 	.task_post_setuid =		selinux_task_post_setuid,
4546 	.task_setgid =			selinux_task_setgid,
4547 	.task_setpgid =			selinux_task_setpgid,
4548 	.task_getpgid =			selinux_task_getpgid,
4549 	.task_getsid =		        selinux_task_getsid,
4550 	.task_getsecid =		selinux_task_getsecid,
4551 	.task_setgroups =		selinux_task_setgroups,
4552 	.task_setnice =			selinux_task_setnice,
4553 	.task_setioprio =		selinux_task_setioprio,
4554 	.task_getioprio =		selinux_task_getioprio,
4555 	.task_setrlimit =		selinux_task_setrlimit,
4556 	.task_setscheduler =		selinux_task_setscheduler,
4557 	.task_getscheduler =		selinux_task_getscheduler,
4558 	.task_movememory =		selinux_task_movememory,
4559 	.task_kill =			selinux_task_kill,
4560 	.task_wait =			selinux_task_wait,
4561 	.task_prctl =			selinux_task_prctl,
4562 	.task_reparent_to_init =	selinux_task_reparent_to_init,
4563 	.task_to_inode =                selinux_task_to_inode,
4564 
4565 	.ipc_permission =		selinux_ipc_permission,
4566 
4567 	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
4568 	.msg_msg_free_security =	selinux_msg_msg_free_security,
4569 
4570 	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
4571 	.msg_queue_free_security =	selinux_msg_queue_free_security,
4572 	.msg_queue_associate =		selinux_msg_queue_associate,
4573 	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
4574 	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
4575 	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
4576 
4577 	.shm_alloc_security =		selinux_shm_alloc_security,
4578 	.shm_free_security =		selinux_shm_free_security,
4579 	.shm_associate =		selinux_shm_associate,
4580 	.shm_shmctl =			selinux_shm_shmctl,
4581 	.shm_shmat =			selinux_shm_shmat,
4582 
4583 	.sem_alloc_security = 		selinux_sem_alloc_security,
4584 	.sem_free_security =  		selinux_sem_free_security,
4585 	.sem_associate =		selinux_sem_associate,
4586 	.sem_semctl =			selinux_sem_semctl,
4587 	.sem_semop =			selinux_sem_semop,
4588 
4589 	.register_security =		selinux_register_security,
4590 	.unregister_security =		selinux_unregister_security,
4591 
4592 	.d_instantiate =                selinux_d_instantiate,
4593 
4594 	.getprocattr =                  selinux_getprocattr,
4595 	.setprocattr =                  selinux_setprocattr,
4596 
4597 	.secid_to_secctx =		selinux_secid_to_secctx,
4598 	.release_secctx =		selinux_release_secctx,
4599 
4600         .unix_stream_connect =		selinux_socket_unix_stream_connect,
4601 	.unix_may_send =		selinux_socket_unix_may_send,
4602 
4603 	.socket_create =		selinux_socket_create,
4604 	.socket_post_create =		selinux_socket_post_create,
4605 	.socket_bind =			selinux_socket_bind,
4606 	.socket_connect =		selinux_socket_connect,
4607 	.socket_listen =		selinux_socket_listen,
4608 	.socket_accept =		selinux_socket_accept,
4609 	.socket_sendmsg =		selinux_socket_sendmsg,
4610 	.socket_recvmsg =		selinux_socket_recvmsg,
4611 	.socket_getsockname =		selinux_socket_getsockname,
4612 	.socket_getpeername =		selinux_socket_getpeername,
4613 	.socket_getsockopt =		selinux_socket_getsockopt,
4614 	.socket_setsockopt =		selinux_socket_setsockopt,
4615 	.socket_shutdown =		selinux_socket_shutdown,
4616 	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
4617 	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
4618 	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
4619 	.sk_alloc_security =		selinux_sk_alloc_security,
4620 	.sk_free_security =		selinux_sk_free_security,
4621 	.sk_getsid = 			selinux_sk_getsid_security,
4622 
4623 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4624 	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
4625 	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
4626 	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
4627 	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
4628 	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
4629 	.xfrm_state_free_security =	selinux_xfrm_state_free,
4630 	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
4631 	.xfrm_policy_lookup = 		selinux_xfrm_policy_lookup,
4632 #endif
4633 
4634 #ifdef CONFIG_KEYS
4635 	.key_alloc =                    selinux_key_alloc,
4636 	.key_free =                     selinux_key_free,
4637 	.key_permission =               selinux_key_permission,
4638 #endif
4639 };
4640 
4641 static __init int selinux_init(void)
4642 {
4643 	struct task_security_struct *tsec;
4644 
4645 	if (!selinux_enabled) {
4646 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
4647 		return 0;
4648 	}
4649 
4650 	printk(KERN_INFO "SELinux:  Initializing.\n");
4651 
4652 	/* Set the security state for the initial task. */
4653 	if (task_alloc_security(current))
4654 		panic("SELinux:  Failed to initialize initial task.\n");
4655 	tsec = current->security;
4656 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
4657 
4658 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
4659 					    sizeof(struct inode_security_struct),
4660 					    0, SLAB_PANIC, NULL, NULL);
4661 	avc_init();
4662 
4663 	original_ops = secondary_ops = security_ops;
4664 	if (!secondary_ops)
4665 		panic ("SELinux: No initial security operations\n");
4666 	if (register_security (&selinux_ops))
4667 		panic("SELinux: Unable to register with kernel.\n");
4668 
4669 	if (selinux_enforcing) {
4670 		printk(KERN_INFO "SELinux:  Starting in enforcing mode\n");
4671 	} else {
4672 		printk(KERN_INFO "SELinux:  Starting in permissive mode\n");
4673 	}
4674 
4675 #ifdef CONFIG_KEYS
4676 	/* Add security information to initial keyrings */
4677 	selinux_key_alloc(&root_user_keyring, current,
4678 			  KEY_ALLOC_NOT_IN_QUOTA);
4679 	selinux_key_alloc(&root_session_keyring, current,
4680 			  KEY_ALLOC_NOT_IN_QUOTA);
4681 #endif
4682 
4683 	return 0;
4684 }
4685 
4686 void selinux_complete_init(void)
4687 {
4688 	printk(KERN_INFO "SELinux:  Completing initialization.\n");
4689 
4690 	/* Set up any superblocks initialized prior to the policy load. */
4691 	printk(KERN_INFO "SELinux:  Setting up existing superblocks.\n");
4692 	spin_lock(&sb_lock);
4693 	spin_lock(&sb_security_lock);
4694 next_sb:
4695 	if (!list_empty(&superblock_security_head)) {
4696 		struct superblock_security_struct *sbsec =
4697 				list_entry(superblock_security_head.next,
4698 				           struct superblock_security_struct,
4699 				           list);
4700 		struct super_block *sb = sbsec->sb;
4701 		sb->s_count++;
4702 		spin_unlock(&sb_security_lock);
4703 		spin_unlock(&sb_lock);
4704 		down_read(&sb->s_umount);
4705 		if (sb->s_root)
4706 			superblock_doinit(sb, NULL);
4707 		drop_super(sb);
4708 		spin_lock(&sb_lock);
4709 		spin_lock(&sb_security_lock);
4710 		list_del_init(&sbsec->list);
4711 		goto next_sb;
4712 	}
4713 	spin_unlock(&sb_security_lock);
4714 	spin_unlock(&sb_lock);
4715 }
4716 
4717 /* SELinux requires early initialization in order to label
4718    all processes and objects when they are created. */
4719 security_initcall(selinux_init);
4720 
4721 #if defined(CONFIG_NETFILTER)
4722 
4723 static struct nf_hook_ops selinux_ipv4_op = {
4724 	.hook =		selinux_ipv4_postroute_last,
4725 	.owner =	THIS_MODULE,
4726 	.pf =		PF_INET,
4727 	.hooknum =	NF_IP_POST_ROUTING,
4728 	.priority =	NF_IP_PRI_SELINUX_LAST,
4729 };
4730 
4731 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4732 
4733 static struct nf_hook_ops selinux_ipv6_op = {
4734 	.hook =		selinux_ipv6_postroute_last,
4735 	.owner =	THIS_MODULE,
4736 	.pf =		PF_INET6,
4737 	.hooknum =	NF_IP6_POST_ROUTING,
4738 	.priority =	NF_IP6_PRI_SELINUX_LAST,
4739 };
4740 
4741 #endif	/* IPV6 */
4742 
4743 static int __init selinux_nf_ip_init(void)
4744 {
4745 	int err = 0;
4746 
4747 	if (!selinux_enabled)
4748 		goto out;
4749 
4750 	printk(KERN_INFO "SELinux:  Registering netfilter hooks\n");
4751 
4752 	err = nf_register_hook(&selinux_ipv4_op);
4753 	if (err)
4754 		panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
4755 
4756 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4757 
4758 	err = nf_register_hook(&selinux_ipv6_op);
4759 	if (err)
4760 		panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
4761 
4762 #endif	/* IPV6 */
4763 
4764 out:
4765 	return err;
4766 }
4767 
4768 __initcall(selinux_nf_ip_init);
4769 
4770 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4771 static void selinux_nf_ip_exit(void)
4772 {
4773 	printk(KERN_INFO "SELinux:  Unregistering netfilter hooks\n");
4774 
4775 	nf_unregister_hook(&selinux_ipv4_op);
4776 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4777 	nf_unregister_hook(&selinux_ipv6_op);
4778 #endif	/* IPV6 */
4779 }
4780 #endif
4781 
4782 #else /* CONFIG_NETFILTER */
4783 
4784 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4785 #define selinux_nf_ip_exit()
4786 #endif
4787 
4788 #endif /* CONFIG_NETFILTER */
4789 
4790 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4791 int selinux_disable(void)
4792 {
4793 	extern void exit_sel_fs(void);
4794 	static int selinux_disabled = 0;
4795 
4796 	if (ss_initialized) {
4797 		/* Not permitted after initial policy load. */
4798 		return -EINVAL;
4799 	}
4800 
4801 	if (selinux_disabled) {
4802 		/* Only do this once. */
4803 		return -EINVAL;
4804 	}
4805 
4806 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
4807 
4808 	selinux_disabled = 1;
4809 	selinux_enabled = 0;
4810 
4811 	/* Reset security_ops to the secondary module, dummy or capability. */
4812 	security_ops = secondary_ops;
4813 
4814 	/* Unregister netfilter hooks. */
4815 	selinux_nf_ip_exit();
4816 
4817 	/* Unregister selinuxfs. */
4818 	exit_sel_fs();
4819 
4820 	return 0;
4821 }
4822 #endif
4823 
4824 
4825