1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Security-Enhanced Linux (SELinux) security module 4 * 5 * This file contains the SELinux hook function implementations. 6 * 7 * Authors: Stephen Smalley, <stephen.smalley.work@gmail.com> 8 * Chris Vance, <cvance@nai.com> 9 * Wayne Salamon, <wsalamon@nai.com> 10 * James Morris <jmorris@redhat.com> 11 * 12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 14 * Eric Paris <eparis@redhat.com> 15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 16 * <dgoeddel@trustedcs.com> 17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 18 * Paul Moore <paul@paul-moore.com> 19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 20 * Yuichi Nakamura <ynakam@hitachisoft.jp> 21 * Copyright (C) 2016 Mellanox Technologies 22 */ 23 24 #include <linux/init.h> 25 #include <linux/kd.h> 26 #include <linux/kernel.h> 27 #include <linux/kernel_read_file.h> 28 #include <linux/errno.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/task.h> 31 #include <linux/lsm_hooks.h> 32 #include <linux/xattr.h> 33 #include <linux/capability.h> 34 #include <linux/unistd.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/slab.h> 38 #include <linux/pagemap.h> 39 #include <linux/proc_fs.h> 40 #include <linux/swap.h> 41 #include <linux/spinlock.h> 42 #include <linux/syscalls.h> 43 #include <linux/dcache.h> 44 #include <linux/file.h> 45 #include <linux/fdtable.h> 46 #include <linux/namei.h> 47 #include <linux/mount.h> 48 #include <linux/fs_context.h> 49 #include <linux/fs_parser.h> 50 #include <linux/netfilter_ipv4.h> 51 #include <linux/netfilter_ipv6.h> 52 #include <linux/tty.h> 53 #include <net/icmp.h> 54 #include <net/ip.h> /* for local_port_range[] */ 55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 56 #include <net/inet_connection_sock.h> 57 #include <net/net_namespace.h> 58 #include <net/netlabel.h> 59 #include <linux/uaccess.h> 60 #include <asm/ioctls.h> 61 #include <linux/atomic.h> 62 #include <linux/bitops.h> 63 #include <linux/interrupt.h> 64 #include <linux/netdevice.h> /* for network interface checks */ 65 #include <net/netlink.h> 66 #include <linux/tcp.h> 67 #include <linux/udp.h> 68 #include <linux/dccp.h> 69 #include <linux/sctp.h> 70 #include <net/sctp/structs.h> 71 #include <linux/quota.h> 72 #include <linux/un.h> /* for Unix socket types */ 73 #include <net/af_unix.h> /* for Unix socket types */ 74 #include <linux/parser.h> 75 #include <linux/nfs_mount.h> 76 #include <net/ipv6.h> 77 #include <linux/hugetlb.h> 78 #include <linux/personality.h> 79 #include <linux/audit.h> 80 #include <linux/string.h> 81 #include <linux/mutex.h> 82 #include <linux/posix-timers.h> 83 #include <linux/syslog.h> 84 #include <linux/user_namespace.h> 85 #include <linux/export.h> 86 #include <linux/msg.h> 87 #include <linux/shm.h> 88 #include <uapi/linux/shm.h> 89 #include <linux/bpf.h> 90 #include <linux/kernfs.h> 91 #include <linux/stringhash.h> /* for hashlen_string() */ 92 #include <uapi/linux/mount.h> 93 #include <linux/fsnotify.h> 94 #include <linux/fanotify.h> 95 #include <linux/io_uring/cmd.h> 96 #include <uapi/linux/lsm.h> 97 98 #include "avc.h" 99 #include "objsec.h" 100 #include "netif.h" 101 #include "netnode.h" 102 #include "netport.h" 103 #include "ibpkey.h" 104 #include "xfrm.h" 105 #include "netlabel.h" 106 #include "audit.h" 107 #include "avc_ss.h" 108 109 #define SELINUX_INODE_INIT_XATTRS 1 110 111 struct selinux_state selinux_state; 112 113 /* SECMARK reference count */ 114 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 115 116 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 117 static int selinux_enforcing_boot __initdata; 118 119 static int __init enforcing_setup(char *str) 120 { 121 unsigned long enforcing; 122 if (!kstrtoul(str, 0, &enforcing)) 123 selinux_enforcing_boot = enforcing ? 1 : 0; 124 return 1; 125 } 126 __setup("enforcing=", enforcing_setup); 127 #else 128 #define selinux_enforcing_boot 1 129 #endif 130 131 int selinux_enabled_boot __initdata = 1; 132 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 133 static int __init selinux_enabled_setup(char *str) 134 { 135 unsigned long enabled; 136 if (!kstrtoul(str, 0, &enabled)) 137 selinux_enabled_boot = enabled ? 1 : 0; 138 return 1; 139 } 140 __setup("selinux=", selinux_enabled_setup); 141 #endif 142 143 static int __init checkreqprot_setup(char *str) 144 { 145 unsigned long checkreqprot; 146 147 if (!kstrtoul(str, 0, &checkreqprot)) { 148 if (checkreqprot) 149 pr_err("SELinux: checkreqprot set to 1 via kernel parameter. This is no longer supported.\n"); 150 } 151 return 1; 152 } 153 __setup("checkreqprot=", checkreqprot_setup); 154 155 /** 156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 157 * 158 * Description: 159 * This function checks the SECMARK reference counter to see if any SECMARK 160 * targets are currently configured, if the reference counter is greater than 161 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 162 * enabled, false (0) if SECMARK is disabled. If the always_check_network 163 * policy capability is enabled, SECMARK is always considered enabled. 164 * 165 */ 166 static int selinux_secmark_enabled(void) 167 { 168 return (selinux_policycap_alwaysnetwork() || 169 atomic_read(&selinux_secmark_refcount)); 170 } 171 172 /** 173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled 174 * 175 * Description: 176 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true 177 * (1) if any are enabled or false (0) if neither are enabled. If the 178 * always_check_network policy capability is enabled, peer labeling 179 * is always considered enabled. 180 * 181 */ 182 static int selinux_peerlbl_enabled(void) 183 { 184 return (selinux_policycap_alwaysnetwork() || 185 netlbl_enabled() || selinux_xfrm_enabled()); 186 } 187 188 static int selinux_netcache_avc_callback(u32 event) 189 { 190 if (event == AVC_CALLBACK_RESET) { 191 sel_netif_flush(); 192 sel_netnode_flush(); 193 sel_netport_flush(); 194 synchronize_net(); 195 } 196 return 0; 197 } 198 199 static int selinux_lsm_notifier_avc_callback(u32 event) 200 { 201 if (event == AVC_CALLBACK_RESET) { 202 sel_ib_pkey_flush(); 203 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL); 204 } 205 206 return 0; 207 } 208 209 /* 210 * initialise the security for the init task 211 */ 212 static void cred_init_security(void) 213 { 214 struct task_security_struct *tsec; 215 216 tsec = selinux_cred(unrcu_pointer(current->real_cred)); 217 tsec->osid = tsec->sid = SECINITSID_KERNEL; 218 } 219 220 /* 221 * get the security ID of a set of credentials 222 */ 223 static inline u32 cred_sid(const struct cred *cred) 224 { 225 const struct task_security_struct *tsec; 226 227 tsec = selinux_cred(cred); 228 return tsec->sid; 229 } 230 231 static void __ad_net_init(struct common_audit_data *ad, 232 struct lsm_network_audit *net, 233 int ifindex, struct sock *sk, u16 family) 234 { 235 ad->type = LSM_AUDIT_DATA_NET; 236 ad->u.net = net; 237 net->netif = ifindex; 238 net->sk = sk; 239 net->family = family; 240 } 241 242 static void ad_net_init_from_sk(struct common_audit_data *ad, 243 struct lsm_network_audit *net, 244 struct sock *sk) 245 { 246 __ad_net_init(ad, net, 0, sk, 0); 247 } 248 249 static void ad_net_init_from_iif(struct common_audit_data *ad, 250 struct lsm_network_audit *net, 251 int ifindex, u16 family) 252 { 253 __ad_net_init(ad, net, ifindex, NULL, family); 254 } 255 256 /* 257 * get the objective security ID of a task 258 */ 259 static inline u32 task_sid_obj(const struct task_struct *task) 260 { 261 u32 sid; 262 263 rcu_read_lock(); 264 sid = cred_sid(__task_cred(task)); 265 rcu_read_unlock(); 266 return sid; 267 } 268 269 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 270 271 /* 272 * Try reloading inode security labels that have been marked as invalid. The 273 * @may_sleep parameter indicates when sleeping and thus reloading labels is 274 * allowed; when set to false, returns -ECHILD when the label is 275 * invalid. The @dentry parameter should be set to a dentry of the inode. 276 */ 277 static int __inode_security_revalidate(struct inode *inode, 278 struct dentry *dentry, 279 bool may_sleep) 280 { 281 struct inode_security_struct *isec = selinux_inode(inode); 282 283 might_sleep_if(may_sleep); 284 285 if (selinux_initialized() && 286 isec->initialized != LABEL_INITIALIZED) { 287 if (!may_sleep) 288 return -ECHILD; 289 290 /* 291 * Try reloading the inode security label. This will fail if 292 * @opt_dentry is NULL and no dentry for this inode can be 293 * found; in that case, continue using the old label. 294 */ 295 inode_doinit_with_dentry(inode, dentry); 296 } 297 return 0; 298 } 299 300 static struct inode_security_struct *inode_security_novalidate(struct inode *inode) 301 { 302 return selinux_inode(inode); 303 } 304 305 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu) 306 { 307 int error; 308 309 error = __inode_security_revalidate(inode, NULL, !rcu); 310 if (error) 311 return ERR_PTR(error); 312 return selinux_inode(inode); 313 } 314 315 /* 316 * Get the security label of an inode. 317 */ 318 static struct inode_security_struct *inode_security(struct inode *inode) 319 { 320 __inode_security_revalidate(inode, NULL, true); 321 return selinux_inode(inode); 322 } 323 324 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry) 325 { 326 struct inode *inode = d_backing_inode(dentry); 327 328 return selinux_inode(inode); 329 } 330 331 /* 332 * Get the security label of a dentry's backing inode. 333 */ 334 static struct inode_security_struct *backing_inode_security(struct dentry *dentry) 335 { 336 struct inode *inode = d_backing_inode(dentry); 337 338 __inode_security_revalidate(inode, dentry, true); 339 return selinux_inode(inode); 340 } 341 342 static void inode_free_security(struct inode *inode) 343 { 344 struct inode_security_struct *isec = selinux_inode(inode); 345 struct superblock_security_struct *sbsec; 346 347 if (!isec) 348 return; 349 sbsec = selinux_superblock(inode->i_sb); 350 /* 351 * As not all inode security structures are in a list, we check for 352 * empty list outside of the lock to make sure that we won't waste 353 * time taking a lock doing nothing. 354 * 355 * The list_del_init() function can be safely called more than once. 356 * It should not be possible for this function to be called with 357 * concurrent list_add(), but for better safety against future changes 358 * in the code, we use list_empty_careful() here. 359 */ 360 if (!list_empty_careful(&isec->list)) { 361 spin_lock(&sbsec->isec_lock); 362 list_del_init(&isec->list); 363 spin_unlock(&sbsec->isec_lock); 364 } 365 } 366 367 struct selinux_mnt_opts { 368 u32 fscontext_sid; 369 u32 context_sid; 370 u32 rootcontext_sid; 371 u32 defcontext_sid; 372 }; 373 374 static void selinux_free_mnt_opts(void *mnt_opts) 375 { 376 kfree(mnt_opts); 377 } 378 379 enum { 380 Opt_error = -1, 381 Opt_context = 0, 382 Opt_defcontext = 1, 383 Opt_fscontext = 2, 384 Opt_rootcontext = 3, 385 Opt_seclabel = 4, 386 }; 387 388 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg} 389 static const struct { 390 const char *name; 391 int len; 392 int opt; 393 bool has_arg; 394 } tokens[] = { 395 A(context, true), 396 A(fscontext, true), 397 A(defcontext, true), 398 A(rootcontext, true), 399 A(seclabel, false), 400 }; 401 #undef A 402 403 static int match_opt_prefix(char *s, int l, char **arg) 404 { 405 int i; 406 407 for (i = 0; i < ARRAY_SIZE(tokens); i++) { 408 size_t len = tokens[i].len; 409 if (len > l || memcmp(s, tokens[i].name, len)) 410 continue; 411 if (tokens[i].has_arg) { 412 if (len == l || s[len] != '=') 413 continue; 414 *arg = s + len + 1; 415 } else if (len != l) 416 continue; 417 return tokens[i].opt; 418 } 419 return Opt_error; 420 } 421 422 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 423 424 static int may_context_mount_sb_relabel(u32 sid, 425 struct superblock_security_struct *sbsec, 426 const struct cred *cred) 427 { 428 const struct task_security_struct *tsec = selinux_cred(cred); 429 int rc; 430 431 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 432 FILESYSTEM__RELABELFROM, NULL); 433 if (rc) 434 return rc; 435 436 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 437 FILESYSTEM__RELABELTO, NULL); 438 return rc; 439 } 440 441 static int may_context_mount_inode_relabel(u32 sid, 442 struct superblock_security_struct *sbsec, 443 const struct cred *cred) 444 { 445 const struct task_security_struct *tsec = selinux_cred(cred); 446 int rc; 447 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 448 FILESYSTEM__RELABELFROM, NULL); 449 if (rc) 450 return rc; 451 452 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 453 FILESYSTEM__ASSOCIATE, NULL); 454 return rc; 455 } 456 457 static int selinux_is_genfs_special_handling(struct super_block *sb) 458 { 459 /* Special handling. Genfs but also in-core setxattr handler */ 460 return !strcmp(sb->s_type->name, "sysfs") || 461 !strcmp(sb->s_type->name, "pstore") || 462 !strcmp(sb->s_type->name, "debugfs") || 463 !strcmp(sb->s_type->name, "tracefs") || 464 !strcmp(sb->s_type->name, "rootfs") || 465 (selinux_policycap_cgroupseclabel() && 466 (!strcmp(sb->s_type->name, "cgroup") || 467 !strcmp(sb->s_type->name, "cgroup2"))); 468 } 469 470 static int selinux_is_sblabel_mnt(struct super_block *sb) 471 { 472 struct superblock_security_struct *sbsec = selinux_superblock(sb); 473 474 /* 475 * IMPORTANT: Double-check logic in this function when adding a new 476 * SECURITY_FS_USE_* definition! 477 */ 478 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7); 479 480 switch (sbsec->behavior) { 481 case SECURITY_FS_USE_XATTR: 482 case SECURITY_FS_USE_TRANS: 483 case SECURITY_FS_USE_TASK: 484 case SECURITY_FS_USE_NATIVE: 485 return 1; 486 487 case SECURITY_FS_USE_GENFS: 488 return selinux_is_genfs_special_handling(sb); 489 490 /* Never allow relabeling on context mounts */ 491 case SECURITY_FS_USE_MNTPOINT: 492 case SECURITY_FS_USE_NONE: 493 default: 494 return 0; 495 } 496 } 497 498 static int sb_check_xattr_support(struct super_block *sb) 499 { 500 struct superblock_security_struct *sbsec = selinux_superblock(sb); 501 struct dentry *root = sb->s_root; 502 struct inode *root_inode = d_backing_inode(root); 503 u32 sid; 504 int rc; 505 506 /* 507 * Make sure that the xattr handler exists and that no 508 * error other than -ENODATA is returned by getxattr on 509 * the root directory. -ENODATA is ok, as this may be 510 * the first boot of the SELinux kernel before we have 511 * assigned xattr values to the filesystem. 512 */ 513 if (!(root_inode->i_opflags & IOP_XATTR)) { 514 pr_warn("SELinux: (dev %s, type %s) has no xattr support\n", 515 sb->s_id, sb->s_type->name); 516 goto fallback; 517 } 518 519 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0); 520 if (rc < 0 && rc != -ENODATA) { 521 if (rc == -EOPNOTSUPP) { 522 pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n", 523 sb->s_id, sb->s_type->name); 524 goto fallback; 525 } else { 526 pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n", 527 sb->s_id, sb->s_type->name, -rc); 528 return rc; 529 } 530 } 531 return 0; 532 533 fallback: 534 /* No xattr support - try to fallback to genfs if possible. */ 535 rc = security_genfs_sid(sb->s_type->name, "/", 536 SECCLASS_DIR, &sid); 537 if (rc) 538 return -EOPNOTSUPP; 539 540 pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n", 541 sb->s_id, sb->s_type->name); 542 sbsec->behavior = SECURITY_FS_USE_GENFS; 543 sbsec->sid = sid; 544 return 0; 545 } 546 547 static int sb_finish_set_opts(struct super_block *sb) 548 { 549 struct superblock_security_struct *sbsec = selinux_superblock(sb); 550 struct dentry *root = sb->s_root; 551 struct inode *root_inode = d_backing_inode(root); 552 int rc = 0; 553 554 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 555 rc = sb_check_xattr_support(sb); 556 if (rc) 557 return rc; 558 } 559 560 sbsec->flags |= SE_SBINITIALIZED; 561 562 /* 563 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply 564 * leave the flag untouched because sb_clone_mnt_opts might be handing 565 * us a superblock that needs the flag to be cleared. 566 */ 567 if (selinux_is_sblabel_mnt(sb)) 568 sbsec->flags |= SBLABEL_MNT; 569 else 570 sbsec->flags &= ~SBLABEL_MNT; 571 572 /* Initialize the root inode. */ 573 rc = inode_doinit_with_dentry(root_inode, root); 574 575 /* Initialize any other inodes associated with the superblock, e.g. 576 inodes created prior to initial policy load or inodes created 577 during get_sb by a pseudo filesystem that directly 578 populates itself. */ 579 spin_lock(&sbsec->isec_lock); 580 while (!list_empty(&sbsec->isec_head)) { 581 struct inode_security_struct *isec = 582 list_first_entry(&sbsec->isec_head, 583 struct inode_security_struct, list); 584 struct inode *inode = isec->inode; 585 list_del_init(&isec->list); 586 spin_unlock(&sbsec->isec_lock); 587 inode = igrab(inode); 588 if (inode) { 589 if (!IS_PRIVATE(inode)) 590 inode_doinit_with_dentry(inode, NULL); 591 iput(inode); 592 } 593 spin_lock(&sbsec->isec_lock); 594 } 595 spin_unlock(&sbsec->isec_lock); 596 return rc; 597 } 598 599 static int bad_option(struct superblock_security_struct *sbsec, char flag, 600 u32 old_sid, u32 new_sid) 601 { 602 char mnt_flags = sbsec->flags & SE_MNTMASK; 603 604 /* check if the old mount command had the same options */ 605 if (sbsec->flags & SE_SBINITIALIZED) 606 if (!(sbsec->flags & flag) || 607 (old_sid != new_sid)) 608 return 1; 609 610 /* check if we were passed the same options twice, 611 * aka someone passed context=a,context=b 612 */ 613 if (!(sbsec->flags & SE_SBINITIALIZED)) 614 if (mnt_flags & flag) 615 return 1; 616 return 0; 617 } 618 619 /* 620 * Allow filesystems with binary mount data to explicitly set mount point 621 * labeling information. 622 */ 623 static int selinux_set_mnt_opts(struct super_block *sb, 624 void *mnt_opts, 625 unsigned long kern_flags, 626 unsigned long *set_kern_flags) 627 { 628 const struct cred *cred = current_cred(); 629 struct superblock_security_struct *sbsec = selinux_superblock(sb); 630 struct dentry *root = sb->s_root; 631 struct selinux_mnt_opts *opts = mnt_opts; 632 struct inode_security_struct *root_isec; 633 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 634 u32 defcontext_sid = 0; 635 int rc = 0; 636 637 /* 638 * Specifying internal flags without providing a place to 639 * place the results is not allowed 640 */ 641 if (kern_flags && !set_kern_flags) 642 return -EINVAL; 643 644 mutex_lock(&sbsec->lock); 645 646 if (!selinux_initialized()) { 647 if (!opts) { 648 /* Defer initialization until selinux_complete_init, 649 after the initial policy is loaded and the security 650 server is ready to handle calls. */ 651 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) { 652 sbsec->flags |= SE_SBNATIVE; 653 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 654 } 655 goto out; 656 } 657 rc = -EINVAL; 658 pr_warn("SELinux: Unable to set superblock options " 659 "before the security server is initialized\n"); 660 goto out; 661 } 662 663 /* 664 * Binary mount data FS will come through this function twice. Once 665 * from an explicit call and once from the generic calls from the vfs. 666 * Since the generic VFS calls will not contain any security mount data 667 * we need to skip the double mount verification. 668 * 669 * This does open a hole in which we will not notice if the first 670 * mount using this sb set explicit options and a second mount using 671 * this sb does not set any security options. (The first options 672 * will be used for both mounts) 673 */ 674 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 675 && !opts) 676 goto out; 677 678 root_isec = backing_inode_security_novalidate(root); 679 680 /* 681 * parse the mount options, check if they are valid sids. 682 * also check if someone is trying to mount the same sb more 683 * than once with different security options. 684 */ 685 if (opts) { 686 if (opts->fscontext_sid) { 687 fscontext_sid = opts->fscontext_sid; 688 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 689 fscontext_sid)) 690 goto out_double_mount; 691 sbsec->flags |= FSCONTEXT_MNT; 692 } 693 if (opts->context_sid) { 694 context_sid = opts->context_sid; 695 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 696 context_sid)) 697 goto out_double_mount; 698 sbsec->flags |= CONTEXT_MNT; 699 } 700 if (opts->rootcontext_sid) { 701 rootcontext_sid = opts->rootcontext_sid; 702 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 703 rootcontext_sid)) 704 goto out_double_mount; 705 sbsec->flags |= ROOTCONTEXT_MNT; 706 } 707 if (opts->defcontext_sid) { 708 defcontext_sid = opts->defcontext_sid; 709 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 710 defcontext_sid)) 711 goto out_double_mount; 712 sbsec->flags |= DEFCONTEXT_MNT; 713 } 714 } 715 716 if (sbsec->flags & SE_SBINITIALIZED) { 717 /* previously mounted with options, but not on this attempt? */ 718 if ((sbsec->flags & SE_MNTMASK) && !opts) 719 goto out_double_mount; 720 rc = 0; 721 goto out; 722 } 723 724 if (strcmp(sb->s_type->name, "proc") == 0) 725 sbsec->flags |= SE_SBPROC | SE_SBGENFS; 726 727 if (!strcmp(sb->s_type->name, "debugfs") || 728 !strcmp(sb->s_type->name, "tracefs") || 729 !strcmp(sb->s_type->name, "binder") || 730 !strcmp(sb->s_type->name, "bpf") || 731 !strcmp(sb->s_type->name, "pstore") || 732 !strcmp(sb->s_type->name, "securityfs")) 733 sbsec->flags |= SE_SBGENFS; 734 735 if (!strcmp(sb->s_type->name, "sysfs") || 736 !strcmp(sb->s_type->name, "cgroup") || 737 !strcmp(sb->s_type->name, "cgroup2")) 738 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR; 739 740 if (!sbsec->behavior) { 741 /* 742 * Determine the labeling behavior to use for this 743 * filesystem type. 744 */ 745 rc = security_fs_use(sb); 746 if (rc) { 747 pr_warn("%s: security_fs_use(%s) returned %d\n", 748 __func__, sb->s_type->name, rc); 749 goto out; 750 } 751 } 752 753 /* 754 * If this is a user namespace mount and the filesystem type is not 755 * explicitly whitelisted, then no contexts are allowed on the command 756 * line and security labels must be ignored. 757 */ 758 if (sb->s_user_ns != &init_user_ns && 759 strcmp(sb->s_type->name, "tmpfs") && 760 strcmp(sb->s_type->name, "ramfs") && 761 strcmp(sb->s_type->name, "devpts") && 762 strcmp(sb->s_type->name, "overlay")) { 763 if (context_sid || fscontext_sid || rootcontext_sid || 764 defcontext_sid) { 765 rc = -EACCES; 766 goto out; 767 } 768 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 769 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 770 rc = security_transition_sid(current_sid(), 771 current_sid(), 772 SECCLASS_FILE, NULL, 773 &sbsec->mntpoint_sid); 774 if (rc) 775 goto out; 776 } 777 goto out_set_opts; 778 } 779 780 /* sets the context of the superblock for the fs being mounted. */ 781 if (fscontext_sid) { 782 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 783 if (rc) 784 goto out; 785 786 sbsec->sid = fscontext_sid; 787 } 788 789 /* 790 * Switch to using mount point labeling behavior. 791 * sets the label used on all file below the mountpoint, and will set 792 * the superblock context if not already set. 793 */ 794 if (sbsec->flags & SE_SBNATIVE) { 795 /* 796 * This means we are initializing a superblock that has been 797 * mounted before the SELinux was initialized and the 798 * filesystem requested native labeling. We had already 799 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags 800 * in the original mount attempt, so now we just need to set 801 * the SECURITY_FS_USE_NATIVE behavior. 802 */ 803 sbsec->behavior = SECURITY_FS_USE_NATIVE; 804 } else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { 805 sbsec->behavior = SECURITY_FS_USE_NATIVE; 806 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 807 } 808 809 if (context_sid) { 810 if (!fscontext_sid) { 811 rc = may_context_mount_sb_relabel(context_sid, sbsec, 812 cred); 813 if (rc) 814 goto out; 815 sbsec->sid = context_sid; 816 } else { 817 rc = may_context_mount_inode_relabel(context_sid, sbsec, 818 cred); 819 if (rc) 820 goto out; 821 } 822 if (!rootcontext_sid) 823 rootcontext_sid = context_sid; 824 825 sbsec->mntpoint_sid = context_sid; 826 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 827 } 828 829 if (rootcontext_sid) { 830 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 831 cred); 832 if (rc) 833 goto out; 834 835 root_isec->sid = rootcontext_sid; 836 root_isec->initialized = LABEL_INITIALIZED; 837 } 838 839 if (defcontext_sid) { 840 if (sbsec->behavior != SECURITY_FS_USE_XATTR && 841 sbsec->behavior != SECURITY_FS_USE_NATIVE) { 842 rc = -EINVAL; 843 pr_warn("SELinux: defcontext option is " 844 "invalid for this filesystem type\n"); 845 goto out; 846 } 847 848 if (defcontext_sid != sbsec->def_sid) { 849 rc = may_context_mount_inode_relabel(defcontext_sid, 850 sbsec, cred); 851 if (rc) 852 goto out; 853 } 854 855 sbsec->def_sid = defcontext_sid; 856 } 857 858 out_set_opts: 859 rc = sb_finish_set_opts(sb); 860 out: 861 mutex_unlock(&sbsec->lock); 862 return rc; 863 out_double_mount: 864 rc = -EINVAL; 865 pr_warn("SELinux: mount invalid. Same superblock, different " 866 "security settings for (dev %s, type %s)\n", sb->s_id, 867 sb->s_type->name); 868 goto out; 869 } 870 871 static int selinux_cmp_sb_context(const struct super_block *oldsb, 872 const struct super_block *newsb) 873 { 874 struct superblock_security_struct *old = selinux_superblock(oldsb); 875 struct superblock_security_struct *new = selinux_superblock(newsb); 876 char oldflags = old->flags & SE_MNTMASK; 877 char newflags = new->flags & SE_MNTMASK; 878 879 if (oldflags != newflags) 880 goto mismatch; 881 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) 882 goto mismatch; 883 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) 884 goto mismatch; 885 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) 886 goto mismatch; 887 if (oldflags & ROOTCONTEXT_MNT) { 888 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root); 889 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root); 890 if (oldroot->sid != newroot->sid) 891 goto mismatch; 892 } 893 return 0; 894 mismatch: 895 pr_warn("SELinux: mount invalid. Same superblock, " 896 "different security settings for (dev %s, " 897 "type %s)\n", newsb->s_id, newsb->s_type->name); 898 return -EBUSY; 899 } 900 901 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 902 struct super_block *newsb, 903 unsigned long kern_flags, 904 unsigned long *set_kern_flags) 905 { 906 int rc = 0; 907 const struct superblock_security_struct *oldsbsec = 908 selinux_superblock(oldsb); 909 struct superblock_security_struct *newsbsec = selinux_superblock(newsb); 910 911 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 912 int set_context = (oldsbsec->flags & CONTEXT_MNT); 913 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 914 915 /* 916 * Specifying internal flags without providing a place to 917 * place the results is not allowed. 918 */ 919 if (kern_flags && !set_kern_flags) 920 return -EINVAL; 921 922 mutex_lock(&newsbsec->lock); 923 924 /* 925 * if the parent was able to be mounted it clearly had no special lsm 926 * mount options. thus we can safely deal with this superblock later 927 */ 928 if (!selinux_initialized()) { 929 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) { 930 newsbsec->flags |= SE_SBNATIVE; 931 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 932 } 933 goto out; 934 } 935 936 /* how can we clone if the old one wasn't set up?? */ 937 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 938 939 /* if fs is reusing a sb, make sure that the contexts match */ 940 if (newsbsec->flags & SE_SBINITIALIZED) { 941 mutex_unlock(&newsbsec->lock); 942 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) 943 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 944 return selinux_cmp_sb_context(oldsb, newsb); 945 } 946 947 newsbsec->flags = oldsbsec->flags; 948 949 newsbsec->sid = oldsbsec->sid; 950 newsbsec->def_sid = oldsbsec->def_sid; 951 newsbsec->behavior = oldsbsec->behavior; 952 953 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE && 954 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) { 955 rc = security_fs_use(newsb); 956 if (rc) 957 goto out; 958 } 959 960 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) { 961 newsbsec->behavior = SECURITY_FS_USE_NATIVE; 962 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 963 } 964 965 if (set_context) { 966 u32 sid = oldsbsec->mntpoint_sid; 967 968 if (!set_fscontext) 969 newsbsec->sid = sid; 970 if (!set_rootcontext) { 971 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 972 newisec->sid = sid; 973 } 974 newsbsec->mntpoint_sid = sid; 975 } 976 if (set_rootcontext) { 977 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root); 978 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 979 980 newisec->sid = oldisec->sid; 981 } 982 983 sb_finish_set_opts(newsb); 984 out: 985 mutex_unlock(&newsbsec->lock); 986 return rc; 987 } 988 989 /* 990 * NOTE: the caller is responsible for freeing the memory even if on error. 991 */ 992 static int selinux_add_opt(int token, const char *s, void **mnt_opts) 993 { 994 struct selinux_mnt_opts *opts = *mnt_opts; 995 u32 *dst_sid; 996 int rc; 997 998 if (token == Opt_seclabel) 999 /* eaten and completely ignored */ 1000 return 0; 1001 if (!s) 1002 return -EINVAL; 1003 1004 if (!selinux_initialized()) { 1005 pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n"); 1006 return -EINVAL; 1007 } 1008 1009 if (!opts) { 1010 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 1011 if (!opts) 1012 return -ENOMEM; 1013 *mnt_opts = opts; 1014 } 1015 1016 switch (token) { 1017 case Opt_context: 1018 if (opts->context_sid || opts->defcontext_sid) 1019 goto err; 1020 dst_sid = &opts->context_sid; 1021 break; 1022 case Opt_fscontext: 1023 if (opts->fscontext_sid) 1024 goto err; 1025 dst_sid = &opts->fscontext_sid; 1026 break; 1027 case Opt_rootcontext: 1028 if (opts->rootcontext_sid) 1029 goto err; 1030 dst_sid = &opts->rootcontext_sid; 1031 break; 1032 case Opt_defcontext: 1033 if (opts->context_sid || opts->defcontext_sid) 1034 goto err; 1035 dst_sid = &opts->defcontext_sid; 1036 break; 1037 default: 1038 WARN_ON(1); 1039 return -EINVAL; 1040 } 1041 rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL); 1042 if (rc) 1043 pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n", 1044 s, rc); 1045 return rc; 1046 1047 err: 1048 pr_warn(SEL_MOUNT_FAIL_MSG); 1049 return -EINVAL; 1050 } 1051 1052 static int show_sid(struct seq_file *m, u32 sid) 1053 { 1054 char *context = NULL; 1055 u32 len; 1056 int rc; 1057 1058 rc = security_sid_to_context(sid, &context, &len); 1059 if (!rc) { 1060 bool has_comma = strchr(context, ','); 1061 1062 seq_putc(m, '='); 1063 if (has_comma) 1064 seq_putc(m, '\"'); 1065 seq_escape(m, context, "\"\n\\"); 1066 if (has_comma) 1067 seq_putc(m, '\"'); 1068 } 1069 kfree(context); 1070 return rc; 1071 } 1072 1073 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1074 { 1075 struct superblock_security_struct *sbsec = selinux_superblock(sb); 1076 int rc; 1077 1078 if (!(sbsec->flags & SE_SBINITIALIZED)) 1079 return 0; 1080 1081 if (!selinux_initialized()) 1082 return 0; 1083 1084 if (sbsec->flags & FSCONTEXT_MNT) { 1085 seq_putc(m, ','); 1086 seq_puts(m, FSCONTEXT_STR); 1087 rc = show_sid(m, sbsec->sid); 1088 if (rc) 1089 return rc; 1090 } 1091 if (sbsec->flags & CONTEXT_MNT) { 1092 seq_putc(m, ','); 1093 seq_puts(m, CONTEXT_STR); 1094 rc = show_sid(m, sbsec->mntpoint_sid); 1095 if (rc) 1096 return rc; 1097 } 1098 if (sbsec->flags & DEFCONTEXT_MNT) { 1099 seq_putc(m, ','); 1100 seq_puts(m, DEFCONTEXT_STR); 1101 rc = show_sid(m, sbsec->def_sid); 1102 if (rc) 1103 return rc; 1104 } 1105 if (sbsec->flags & ROOTCONTEXT_MNT) { 1106 struct dentry *root = sb->s_root; 1107 struct inode_security_struct *isec = backing_inode_security(root); 1108 seq_putc(m, ','); 1109 seq_puts(m, ROOTCONTEXT_STR); 1110 rc = show_sid(m, isec->sid); 1111 if (rc) 1112 return rc; 1113 } 1114 if (sbsec->flags & SBLABEL_MNT) { 1115 seq_putc(m, ','); 1116 seq_puts(m, SECLABEL_STR); 1117 } 1118 return 0; 1119 } 1120 1121 static inline u16 inode_mode_to_security_class(umode_t mode) 1122 { 1123 switch (mode & S_IFMT) { 1124 case S_IFSOCK: 1125 return SECCLASS_SOCK_FILE; 1126 case S_IFLNK: 1127 return SECCLASS_LNK_FILE; 1128 case S_IFREG: 1129 return SECCLASS_FILE; 1130 case S_IFBLK: 1131 return SECCLASS_BLK_FILE; 1132 case S_IFDIR: 1133 return SECCLASS_DIR; 1134 case S_IFCHR: 1135 return SECCLASS_CHR_FILE; 1136 case S_IFIFO: 1137 return SECCLASS_FIFO_FILE; 1138 1139 } 1140 1141 return SECCLASS_FILE; 1142 } 1143 1144 static inline int default_protocol_stream(int protocol) 1145 { 1146 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP || 1147 protocol == IPPROTO_MPTCP); 1148 } 1149 1150 static inline int default_protocol_dgram(int protocol) 1151 { 1152 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1153 } 1154 1155 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1156 { 1157 bool extsockclass = selinux_policycap_extsockclass(); 1158 1159 switch (family) { 1160 case PF_UNIX: 1161 switch (type) { 1162 case SOCK_STREAM: 1163 case SOCK_SEQPACKET: 1164 return SECCLASS_UNIX_STREAM_SOCKET; 1165 case SOCK_DGRAM: 1166 case SOCK_RAW: 1167 return SECCLASS_UNIX_DGRAM_SOCKET; 1168 } 1169 break; 1170 case PF_INET: 1171 case PF_INET6: 1172 switch (type) { 1173 case SOCK_STREAM: 1174 case SOCK_SEQPACKET: 1175 if (default_protocol_stream(protocol)) 1176 return SECCLASS_TCP_SOCKET; 1177 else if (extsockclass && protocol == IPPROTO_SCTP) 1178 return SECCLASS_SCTP_SOCKET; 1179 else 1180 return SECCLASS_RAWIP_SOCKET; 1181 case SOCK_DGRAM: 1182 if (default_protocol_dgram(protocol)) 1183 return SECCLASS_UDP_SOCKET; 1184 else if (extsockclass && (protocol == IPPROTO_ICMP || 1185 protocol == IPPROTO_ICMPV6)) 1186 return SECCLASS_ICMP_SOCKET; 1187 else 1188 return SECCLASS_RAWIP_SOCKET; 1189 case SOCK_DCCP: 1190 return SECCLASS_DCCP_SOCKET; 1191 default: 1192 return SECCLASS_RAWIP_SOCKET; 1193 } 1194 break; 1195 case PF_NETLINK: 1196 switch (protocol) { 1197 case NETLINK_ROUTE: 1198 return SECCLASS_NETLINK_ROUTE_SOCKET; 1199 case NETLINK_SOCK_DIAG: 1200 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1201 case NETLINK_NFLOG: 1202 return SECCLASS_NETLINK_NFLOG_SOCKET; 1203 case NETLINK_XFRM: 1204 return SECCLASS_NETLINK_XFRM_SOCKET; 1205 case NETLINK_SELINUX: 1206 return SECCLASS_NETLINK_SELINUX_SOCKET; 1207 case NETLINK_ISCSI: 1208 return SECCLASS_NETLINK_ISCSI_SOCKET; 1209 case NETLINK_AUDIT: 1210 return SECCLASS_NETLINK_AUDIT_SOCKET; 1211 case NETLINK_FIB_LOOKUP: 1212 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET; 1213 case NETLINK_CONNECTOR: 1214 return SECCLASS_NETLINK_CONNECTOR_SOCKET; 1215 case NETLINK_NETFILTER: 1216 return SECCLASS_NETLINK_NETFILTER_SOCKET; 1217 case NETLINK_DNRTMSG: 1218 return SECCLASS_NETLINK_DNRT_SOCKET; 1219 case NETLINK_KOBJECT_UEVENT: 1220 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1221 case NETLINK_GENERIC: 1222 return SECCLASS_NETLINK_GENERIC_SOCKET; 1223 case NETLINK_SCSITRANSPORT: 1224 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET; 1225 case NETLINK_RDMA: 1226 return SECCLASS_NETLINK_RDMA_SOCKET; 1227 case NETLINK_CRYPTO: 1228 return SECCLASS_NETLINK_CRYPTO_SOCKET; 1229 default: 1230 return SECCLASS_NETLINK_SOCKET; 1231 } 1232 case PF_PACKET: 1233 return SECCLASS_PACKET_SOCKET; 1234 case PF_KEY: 1235 return SECCLASS_KEY_SOCKET; 1236 case PF_APPLETALK: 1237 return SECCLASS_APPLETALK_SOCKET; 1238 } 1239 1240 if (extsockclass) { 1241 switch (family) { 1242 case PF_AX25: 1243 return SECCLASS_AX25_SOCKET; 1244 case PF_IPX: 1245 return SECCLASS_IPX_SOCKET; 1246 case PF_NETROM: 1247 return SECCLASS_NETROM_SOCKET; 1248 case PF_ATMPVC: 1249 return SECCLASS_ATMPVC_SOCKET; 1250 case PF_X25: 1251 return SECCLASS_X25_SOCKET; 1252 case PF_ROSE: 1253 return SECCLASS_ROSE_SOCKET; 1254 case PF_DECnet: 1255 return SECCLASS_DECNET_SOCKET; 1256 case PF_ATMSVC: 1257 return SECCLASS_ATMSVC_SOCKET; 1258 case PF_RDS: 1259 return SECCLASS_RDS_SOCKET; 1260 case PF_IRDA: 1261 return SECCLASS_IRDA_SOCKET; 1262 case PF_PPPOX: 1263 return SECCLASS_PPPOX_SOCKET; 1264 case PF_LLC: 1265 return SECCLASS_LLC_SOCKET; 1266 case PF_CAN: 1267 return SECCLASS_CAN_SOCKET; 1268 case PF_TIPC: 1269 return SECCLASS_TIPC_SOCKET; 1270 case PF_BLUETOOTH: 1271 return SECCLASS_BLUETOOTH_SOCKET; 1272 case PF_IUCV: 1273 return SECCLASS_IUCV_SOCKET; 1274 case PF_RXRPC: 1275 return SECCLASS_RXRPC_SOCKET; 1276 case PF_ISDN: 1277 return SECCLASS_ISDN_SOCKET; 1278 case PF_PHONET: 1279 return SECCLASS_PHONET_SOCKET; 1280 case PF_IEEE802154: 1281 return SECCLASS_IEEE802154_SOCKET; 1282 case PF_CAIF: 1283 return SECCLASS_CAIF_SOCKET; 1284 case PF_ALG: 1285 return SECCLASS_ALG_SOCKET; 1286 case PF_NFC: 1287 return SECCLASS_NFC_SOCKET; 1288 case PF_VSOCK: 1289 return SECCLASS_VSOCK_SOCKET; 1290 case PF_KCM: 1291 return SECCLASS_KCM_SOCKET; 1292 case PF_QIPCRTR: 1293 return SECCLASS_QIPCRTR_SOCKET; 1294 case PF_SMC: 1295 return SECCLASS_SMC_SOCKET; 1296 case PF_XDP: 1297 return SECCLASS_XDP_SOCKET; 1298 case PF_MCTP: 1299 return SECCLASS_MCTP_SOCKET; 1300 #if PF_MAX > 46 1301 #error New address family defined, please update this function. 1302 #endif 1303 } 1304 } 1305 1306 return SECCLASS_SOCKET; 1307 } 1308 1309 static int selinux_genfs_get_sid(struct dentry *dentry, 1310 u16 tclass, 1311 u16 flags, 1312 u32 *sid) 1313 { 1314 int rc; 1315 struct super_block *sb = dentry->d_sb; 1316 char *buffer, *path; 1317 1318 buffer = (char *)__get_free_page(GFP_KERNEL); 1319 if (!buffer) 1320 return -ENOMEM; 1321 1322 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1323 if (IS_ERR(path)) 1324 rc = PTR_ERR(path); 1325 else { 1326 if (flags & SE_SBPROC) { 1327 /* each process gets a /proc/PID/ entry. Strip off the 1328 * PID part to get a valid selinux labeling. 1329 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1330 while (path[1] >= '0' && path[1] <= '9') { 1331 path[1] = '/'; 1332 path++; 1333 } 1334 } 1335 rc = security_genfs_sid(sb->s_type->name, 1336 path, tclass, sid); 1337 if (rc == -ENOENT) { 1338 /* No match in policy, mark as unlabeled. */ 1339 *sid = SECINITSID_UNLABELED; 1340 rc = 0; 1341 } 1342 } 1343 free_page((unsigned long)buffer); 1344 return rc; 1345 } 1346 1347 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry, 1348 u32 def_sid, u32 *sid) 1349 { 1350 #define INITCONTEXTLEN 255 1351 char *context; 1352 unsigned int len; 1353 int rc; 1354 1355 len = INITCONTEXTLEN; 1356 context = kmalloc(len + 1, GFP_NOFS); 1357 if (!context) 1358 return -ENOMEM; 1359 1360 context[len] = '\0'; 1361 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); 1362 if (rc == -ERANGE) { 1363 kfree(context); 1364 1365 /* Need a larger buffer. Query for the right size. */ 1366 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0); 1367 if (rc < 0) 1368 return rc; 1369 1370 len = rc; 1371 context = kmalloc(len + 1, GFP_NOFS); 1372 if (!context) 1373 return -ENOMEM; 1374 1375 context[len] = '\0'; 1376 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, 1377 context, len); 1378 } 1379 if (rc < 0) { 1380 kfree(context); 1381 if (rc != -ENODATA) { 1382 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n", 1383 __func__, -rc, inode->i_sb->s_id, inode->i_ino); 1384 return rc; 1385 } 1386 *sid = def_sid; 1387 return 0; 1388 } 1389 1390 rc = security_context_to_sid_default(context, rc, sid, 1391 def_sid, GFP_NOFS); 1392 if (rc) { 1393 char *dev = inode->i_sb->s_id; 1394 unsigned long ino = inode->i_ino; 1395 1396 if (rc == -EINVAL) { 1397 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n", 1398 ino, dev, context); 1399 } else { 1400 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n", 1401 __func__, context, -rc, dev, ino); 1402 } 1403 } 1404 kfree(context); 1405 return 0; 1406 } 1407 1408 /* The inode's security attributes must be initialized before first use. */ 1409 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1410 { 1411 struct superblock_security_struct *sbsec = NULL; 1412 struct inode_security_struct *isec = selinux_inode(inode); 1413 u32 task_sid, sid = 0; 1414 u16 sclass; 1415 struct dentry *dentry; 1416 int rc = 0; 1417 1418 if (isec->initialized == LABEL_INITIALIZED) 1419 return 0; 1420 1421 spin_lock(&isec->lock); 1422 if (isec->initialized == LABEL_INITIALIZED) 1423 goto out_unlock; 1424 1425 if (isec->sclass == SECCLASS_FILE) 1426 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1427 1428 sbsec = selinux_superblock(inode->i_sb); 1429 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1430 /* Defer initialization until selinux_complete_init, 1431 after the initial policy is loaded and the security 1432 server is ready to handle calls. */ 1433 spin_lock(&sbsec->isec_lock); 1434 if (list_empty(&isec->list)) 1435 list_add(&isec->list, &sbsec->isec_head); 1436 spin_unlock(&sbsec->isec_lock); 1437 goto out_unlock; 1438 } 1439 1440 sclass = isec->sclass; 1441 task_sid = isec->task_sid; 1442 sid = isec->sid; 1443 isec->initialized = LABEL_PENDING; 1444 spin_unlock(&isec->lock); 1445 1446 switch (sbsec->behavior) { 1447 /* 1448 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels 1449 * via xattr when called from delayed_superblock_init(). 1450 */ 1451 case SECURITY_FS_USE_NATIVE: 1452 case SECURITY_FS_USE_XATTR: 1453 if (!(inode->i_opflags & IOP_XATTR)) { 1454 sid = sbsec->def_sid; 1455 break; 1456 } 1457 /* Need a dentry, since the xattr API requires one. 1458 Life would be simpler if we could just pass the inode. */ 1459 if (opt_dentry) { 1460 /* Called from d_instantiate or d_splice_alias. */ 1461 dentry = dget(opt_dentry); 1462 } else { 1463 /* 1464 * Called from selinux_complete_init, try to find a dentry. 1465 * Some filesystems really want a connected one, so try 1466 * that first. We could split SECURITY_FS_USE_XATTR in 1467 * two, depending upon that... 1468 */ 1469 dentry = d_find_alias(inode); 1470 if (!dentry) 1471 dentry = d_find_any_alias(inode); 1472 } 1473 if (!dentry) { 1474 /* 1475 * this is can be hit on boot when a file is accessed 1476 * before the policy is loaded. When we load policy we 1477 * may find inodes that have no dentry on the 1478 * sbsec->isec_head list. No reason to complain as these 1479 * will get fixed up the next time we go through 1480 * inode_doinit with a dentry, before these inodes could 1481 * be used again by userspace. 1482 */ 1483 goto out_invalid; 1484 } 1485 1486 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid, 1487 &sid); 1488 dput(dentry); 1489 if (rc) 1490 goto out; 1491 break; 1492 case SECURITY_FS_USE_TASK: 1493 sid = task_sid; 1494 break; 1495 case SECURITY_FS_USE_TRANS: 1496 /* Default to the fs SID. */ 1497 sid = sbsec->sid; 1498 1499 /* Try to obtain a transition SID. */ 1500 rc = security_transition_sid(task_sid, sid, 1501 sclass, NULL, &sid); 1502 if (rc) 1503 goto out; 1504 break; 1505 case SECURITY_FS_USE_MNTPOINT: 1506 sid = sbsec->mntpoint_sid; 1507 break; 1508 default: 1509 /* Default to the fs superblock SID. */ 1510 sid = sbsec->sid; 1511 1512 if ((sbsec->flags & SE_SBGENFS) && 1513 (!S_ISLNK(inode->i_mode) || 1514 selinux_policycap_genfs_seclabel_symlinks())) { 1515 /* We must have a dentry to determine the label on 1516 * procfs inodes */ 1517 if (opt_dentry) { 1518 /* Called from d_instantiate or 1519 * d_splice_alias. */ 1520 dentry = dget(opt_dentry); 1521 } else { 1522 /* Called from selinux_complete_init, try to 1523 * find a dentry. Some filesystems really want 1524 * a connected one, so try that first. 1525 */ 1526 dentry = d_find_alias(inode); 1527 if (!dentry) 1528 dentry = d_find_any_alias(inode); 1529 } 1530 /* 1531 * This can be hit on boot when a file is accessed 1532 * before the policy is loaded. When we load policy we 1533 * may find inodes that have no dentry on the 1534 * sbsec->isec_head list. No reason to complain as 1535 * these will get fixed up the next time we go through 1536 * inode_doinit() with a dentry, before these inodes 1537 * could be used again by userspace. 1538 */ 1539 if (!dentry) 1540 goto out_invalid; 1541 rc = selinux_genfs_get_sid(dentry, sclass, 1542 sbsec->flags, &sid); 1543 if (rc) { 1544 dput(dentry); 1545 goto out; 1546 } 1547 1548 if ((sbsec->flags & SE_SBGENFS_XATTR) && 1549 (inode->i_opflags & IOP_XATTR)) { 1550 rc = inode_doinit_use_xattr(inode, dentry, 1551 sid, &sid); 1552 if (rc) { 1553 dput(dentry); 1554 goto out; 1555 } 1556 } 1557 dput(dentry); 1558 } 1559 break; 1560 } 1561 1562 out: 1563 spin_lock(&isec->lock); 1564 if (isec->initialized == LABEL_PENDING) { 1565 if (rc) { 1566 isec->initialized = LABEL_INVALID; 1567 goto out_unlock; 1568 } 1569 isec->initialized = LABEL_INITIALIZED; 1570 isec->sid = sid; 1571 } 1572 1573 out_unlock: 1574 spin_unlock(&isec->lock); 1575 return rc; 1576 1577 out_invalid: 1578 spin_lock(&isec->lock); 1579 if (isec->initialized == LABEL_PENDING) { 1580 isec->initialized = LABEL_INVALID; 1581 isec->sid = sid; 1582 } 1583 spin_unlock(&isec->lock); 1584 return 0; 1585 } 1586 1587 /* Convert a Linux signal to an access vector. */ 1588 static inline u32 signal_to_av(int sig) 1589 { 1590 u32 perm = 0; 1591 1592 switch (sig) { 1593 case SIGCHLD: 1594 /* Commonly granted from child to parent. */ 1595 perm = PROCESS__SIGCHLD; 1596 break; 1597 case SIGKILL: 1598 /* Cannot be caught or ignored */ 1599 perm = PROCESS__SIGKILL; 1600 break; 1601 case SIGSTOP: 1602 /* Cannot be caught or ignored */ 1603 perm = PROCESS__SIGSTOP; 1604 break; 1605 default: 1606 /* All other signals. */ 1607 perm = PROCESS__SIGNAL; 1608 break; 1609 } 1610 1611 return perm; 1612 } 1613 1614 #if CAP_LAST_CAP > 63 1615 #error Fix SELinux to handle capabilities > 63. 1616 #endif 1617 1618 /* Check whether a task is allowed to use a capability. */ 1619 static int cred_has_capability(const struct cred *cred, 1620 int cap, unsigned int opts, bool initns) 1621 { 1622 struct common_audit_data ad; 1623 struct av_decision avd; 1624 u16 sclass; 1625 u32 sid = cred_sid(cred); 1626 u32 av = CAP_TO_MASK(cap); 1627 int rc; 1628 1629 ad.type = LSM_AUDIT_DATA_CAP; 1630 ad.u.cap = cap; 1631 1632 switch (CAP_TO_INDEX(cap)) { 1633 case 0: 1634 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS; 1635 break; 1636 case 1: 1637 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS; 1638 break; 1639 default: 1640 pr_err("SELinux: out of range capability %d\n", cap); 1641 BUG(); 1642 return -EINVAL; 1643 } 1644 1645 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1646 if (!(opts & CAP_OPT_NOAUDIT)) { 1647 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad); 1648 if (rc2) 1649 return rc2; 1650 } 1651 return rc; 1652 } 1653 1654 /* Check whether a task has a particular permission to an inode. 1655 The 'adp' parameter is optional and allows other audit 1656 data to be passed (e.g. the dentry). */ 1657 static int inode_has_perm(const struct cred *cred, 1658 struct inode *inode, 1659 u32 perms, 1660 struct common_audit_data *adp) 1661 { 1662 struct inode_security_struct *isec; 1663 u32 sid; 1664 1665 if (unlikely(IS_PRIVATE(inode))) 1666 return 0; 1667 1668 sid = cred_sid(cred); 1669 isec = selinux_inode(inode); 1670 1671 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp); 1672 } 1673 1674 /* Same as inode_has_perm, but pass explicit audit data containing 1675 the dentry to help the auditing code to more easily generate the 1676 pathname if needed. */ 1677 static inline int dentry_has_perm(const struct cred *cred, 1678 struct dentry *dentry, 1679 u32 av) 1680 { 1681 struct inode *inode = d_backing_inode(dentry); 1682 struct common_audit_data ad; 1683 1684 ad.type = LSM_AUDIT_DATA_DENTRY; 1685 ad.u.dentry = dentry; 1686 __inode_security_revalidate(inode, dentry, true); 1687 return inode_has_perm(cred, inode, av, &ad); 1688 } 1689 1690 /* Same as inode_has_perm, but pass explicit audit data containing 1691 the path to help the auditing code to more easily generate the 1692 pathname if needed. */ 1693 static inline int path_has_perm(const struct cred *cred, 1694 const struct path *path, 1695 u32 av) 1696 { 1697 struct inode *inode = d_backing_inode(path->dentry); 1698 struct common_audit_data ad; 1699 1700 ad.type = LSM_AUDIT_DATA_PATH; 1701 ad.u.path = *path; 1702 __inode_security_revalidate(inode, path->dentry, true); 1703 return inode_has_perm(cred, inode, av, &ad); 1704 } 1705 1706 /* Same as path_has_perm, but uses the inode from the file struct. */ 1707 static inline int file_path_has_perm(const struct cred *cred, 1708 struct file *file, 1709 u32 av) 1710 { 1711 struct common_audit_data ad; 1712 1713 ad.type = LSM_AUDIT_DATA_FILE; 1714 ad.u.file = file; 1715 return inode_has_perm(cred, file_inode(file), av, &ad); 1716 } 1717 1718 #ifdef CONFIG_BPF_SYSCALL 1719 static int bpf_fd_pass(const struct file *file, u32 sid); 1720 #endif 1721 1722 /* Check whether a task can use an open file descriptor to 1723 access an inode in a given way. Check access to the 1724 descriptor itself, and then use dentry_has_perm to 1725 check a particular permission to the file. 1726 Access to the descriptor is implicitly granted if it 1727 has the same SID as the process. If av is zero, then 1728 access to the file is not checked, e.g. for cases 1729 where only the descriptor is affected like seek. */ 1730 static int file_has_perm(const struct cred *cred, 1731 struct file *file, 1732 u32 av) 1733 { 1734 struct file_security_struct *fsec = selinux_file(file); 1735 struct inode *inode = file_inode(file); 1736 struct common_audit_data ad; 1737 u32 sid = cred_sid(cred); 1738 int rc; 1739 1740 ad.type = LSM_AUDIT_DATA_FILE; 1741 ad.u.file = file; 1742 1743 if (sid != fsec->sid) { 1744 rc = avc_has_perm(sid, fsec->sid, 1745 SECCLASS_FD, 1746 FD__USE, 1747 &ad); 1748 if (rc) 1749 goto out; 1750 } 1751 1752 #ifdef CONFIG_BPF_SYSCALL 1753 rc = bpf_fd_pass(file, cred_sid(cred)); 1754 if (rc) 1755 return rc; 1756 #endif 1757 1758 /* av is zero if only checking access to the descriptor. */ 1759 rc = 0; 1760 if (av) 1761 rc = inode_has_perm(cred, inode, av, &ad); 1762 1763 out: 1764 return rc; 1765 } 1766 1767 /* 1768 * Determine the label for an inode that might be unioned. 1769 */ 1770 static int 1771 selinux_determine_inode_label(const struct task_security_struct *tsec, 1772 struct inode *dir, 1773 const struct qstr *name, u16 tclass, 1774 u32 *_new_isid) 1775 { 1776 const struct superblock_security_struct *sbsec = 1777 selinux_superblock(dir->i_sb); 1778 1779 if ((sbsec->flags & SE_SBINITIALIZED) && 1780 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) { 1781 *_new_isid = sbsec->mntpoint_sid; 1782 } else if ((sbsec->flags & SBLABEL_MNT) && 1783 tsec->create_sid) { 1784 *_new_isid = tsec->create_sid; 1785 } else { 1786 const struct inode_security_struct *dsec = inode_security(dir); 1787 return security_transition_sid(tsec->sid, 1788 dsec->sid, tclass, 1789 name, _new_isid); 1790 } 1791 1792 return 0; 1793 } 1794 1795 /* Check whether a task can create a file. */ 1796 static int may_create(struct inode *dir, 1797 struct dentry *dentry, 1798 u16 tclass) 1799 { 1800 const struct task_security_struct *tsec = selinux_cred(current_cred()); 1801 struct inode_security_struct *dsec; 1802 struct superblock_security_struct *sbsec; 1803 u32 sid, newsid; 1804 struct common_audit_data ad; 1805 int rc; 1806 1807 dsec = inode_security(dir); 1808 sbsec = selinux_superblock(dir->i_sb); 1809 1810 sid = tsec->sid; 1811 1812 ad.type = LSM_AUDIT_DATA_DENTRY; 1813 ad.u.dentry = dentry; 1814 1815 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1816 DIR__ADD_NAME | DIR__SEARCH, 1817 &ad); 1818 if (rc) 1819 return rc; 1820 1821 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass, 1822 &newsid); 1823 if (rc) 1824 return rc; 1825 1826 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1827 if (rc) 1828 return rc; 1829 1830 return avc_has_perm(newsid, sbsec->sid, 1831 SECCLASS_FILESYSTEM, 1832 FILESYSTEM__ASSOCIATE, &ad); 1833 } 1834 1835 #define MAY_LINK 0 1836 #define MAY_UNLINK 1 1837 #define MAY_RMDIR 2 1838 1839 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1840 static int may_link(struct inode *dir, 1841 struct dentry *dentry, 1842 int kind) 1843 1844 { 1845 struct inode_security_struct *dsec, *isec; 1846 struct common_audit_data ad; 1847 u32 sid = current_sid(); 1848 u32 av; 1849 int rc; 1850 1851 dsec = inode_security(dir); 1852 isec = backing_inode_security(dentry); 1853 1854 ad.type = LSM_AUDIT_DATA_DENTRY; 1855 ad.u.dentry = dentry; 1856 1857 av = DIR__SEARCH; 1858 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1859 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1860 if (rc) 1861 return rc; 1862 1863 switch (kind) { 1864 case MAY_LINK: 1865 av = FILE__LINK; 1866 break; 1867 case MAY_UNLINK: 1868 av = FILE__UNLINK; 1869 break; 1870 case MAY_RMDIR: 1871 av = DIR__RMDIR; 1872 break; 1873 default: 1874 pr_warn("SELinux: %s: unrecognized kind %d\n", 1875 __func__, kind); 1876 return 0; 1877 } 1878 1879 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1880 return rc; 1881 } 1882 1883 static inline int may_rename(struct inode *old_dir, 1884 struct dentry *old_dentry, 1885 struct inode *new_dir, 1886 struct dentry *new_dentry) 1887 { 1888 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1889 struct common_audit_data ad; 1890 u32 sid = current_sid(); 1891 u32 av; 1892 int old_is_dir, new_is_dir; 1893 int rc; 1894 1895 old_dsec = inode_security(old_dir); 1896 old_isec = backing_inode_security(old_dentry); 1897 old_is_dir = d_is_dir(old_dentry); 1898 new_dsec = inode_security(new_dir); 1899 1900 ad.type = LSM_AUDIT_DATA_DENTRY; 1901 1902 ad.u.dentry = old_dentry; 1903 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1904 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1905 if (rc) 1906 return rc; 1907 rc = avc_has_perm(sid, old_isec->sid, 1908 old_isec->sclass, FILE__RENAME, &ad); 1909 if (rc) 1910 return rc; 1911 if (old_is_dir && new_dir != old_dir) { 1912 rc = avc_has_perm(sid, old_isec->sid, 1913 old_isec->sclass, DIR__REPARENT, &ad); 1914 if (rc) 1915 return rc; 1916 } 1917 1918 ad.u.dentry = new_dentry; 1919 av = DIR__ADD_NAME | DIR__SEARCH; 1920 if (d_is_positive(new_dentry)) 1921 av |= DIR__REMOVE_NAME; 1922 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1923 if (rc) 1924 return rc; 1925 if (d_is_positive(new_dentry)) { 1926 new_isec = backing_inode_security(new_dentry); 1927 new_is_dir = d_is_dir(new_dentry); 1928 rc = avc_has_perm(sid, new_isec->sid, 1929 new_isec->sclass, 1930 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1931 if (rc) 1932 return rc; 1933 } 1934 1935 return 0; 1936 } 1937 1938 /* Check whether a task can perform a filesystem operation. */ 1939 static int superblock_has_perm(const struct cred *cred, 1940 const struct super_block *sb, 1941 u32 perms, 1942 struct common_audit_data *ad) 1943 { 1944 struct superblock_security_struct *sbsec; 1945 u32 sid = cred_sid(cred); 1946 1947 sbsec = selinux_superblock(sb); 1948 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1949 } 1950 1951 /* Convert a Linux mode and permission mask to an access vector. */ 1952 static inline u32 file_mask_to_av(int mode, int mask) 1953 { 1954 u32 av = 0; 1955 1956 if (!S_ISDIR(mode)) { 1957 if (mask & MAY_EXEC) 1958 av |= FILE__EXECUTE; 1959 if (mask & MAY_READ) 1960 av |= FILE__READ; 1961 1962 if (mask & MAY_APPEND) 1963 av |= FILE__APPEND; 1964 else if (mask & MAY_WRITE) 1965 av |= FILE__WRITE; 1966 1967 } else { 1968 if (mask & MAY_EXEC) 1969 av |= DIR__SEARCH; 1970 if (mask & MAY_WRITE) 1971 av |= DIR__WRITE; 1972 if (mask & MAY_READ) 1973 av |= DIR__READ; 1974 } 1975 1976 return av; 1977 } 1978 1979 /* Convert a Linux file to an access vector. */ 1980 static inline u32 file_to_av(const struct file *file) 1981 { 1982 u32 av = 0; 1983 1984 if (file->f_mode & FMODE_READ) 1985 av |= FILE__READ; 1986 if (file->f_mode & FMODE_WRITE) { 1987 if (file->f_flags & O_APPEND) 1988 av |= FILE__APPEND; 1989 else 1990 av |= FILE__WRITE; 1991 } 1992 if (!av) { 1993 /* 1994 * Special file opened with flags 3 for ioctl-only use. 1995 */ 1996 av = FILE__IOCTL; 1997 } 1998 1999 return av; 2000 } 2001 2002 /* 2003 * Convert a file to an access vector and include the correct 2004 * open permission. 2005 */ 2006 static inline u32 open_file_to_av(struct file *file) 2007 { 2008 u32 av = file_to_av(file); 2009 struct inode *inode = file_inode(file); 2010 2011 if (selinux_policycap_openperm() && 2012 inode->i_sb->s_magic != SOCKFS_MAGIC) 2013 av |= FILE__OPEN; 2014 2015 return av; 2016 } 2017 2018 /* Hook functions begin here. */ 2019 2020 static int selinux_binder_set_context_mgr(const struct cred *mgr) 2021 { 2022 return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER, 2023 BINDER__SET_CONTEXT_MGR, NULL); 2024 } 2025 2026 static int selinux_binder_transaction(const struct cred *from, 2027 const struct cred *to) 2028 { 2029 u32 mysid = current_sid(); 2030 u32 fromsid = cred_sid(from); 2031 u32 tosid = cred_sid(to); 2032 int rc; 2033 2034 if (mysid != fromsid) { 2035 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER, 2036 BINDER__IMPERSONATE, NULL); 2037 if (rc) 2038 return rc; 2039 } 2040 2041 return avc_has_perm(fromsid, tosid, 2042 SECCLASS_BINDER, BINDER__CALL, NULL); 2043 } 2044 2045 static int selinux_binder_transfer_binder(const struct cred *from, 2046 const struct cred *to) 2047 { 2048 return avc_has_perm(cred_sid(from), cred_sid(to), 2049 SECCLASS_BINDER, BINDER__TRANSFER, 2050 NULL); 2051 } 2052 2053 static int selinux_binder_transfer_file(const struct cred *from, 2054 const struct cred *to, 2055 const struct file *file) 2056 { 2057 u32 sid = cred_sid(to); 2058 struct file_security_struct *fsec = selinux_file(file); 2059 struct dentry *dentry = file->f_path.dentry; 2060 struct inode_security_struct *isec; 2061 struct common_audit_data ad; 2062 int rc; 2063 2064 ad.type = LSM_AUDIT_DATA_PATH; 2065 ad.u.path = file->f_path; 2066 2067 if (sid != fsec->sid) { 2068 rc = avc_has_perm(sid, fsec->sid, 2069 SECCLASS_FD, 2070 FD__USE, 2071 &ad); 2072 if (rc) 2073 return rc; 2074 } 2075 2076 #ifdef CONFIG_BPF_SYSCALL 2077 rc = bpf_fd_pass(file, sid); 2078 if (rc) 2079 return rc; 2080 #endif 2081 2082 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2083 return 0; 2084 2085 isec = backing_inode_security(dentry); 2086 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file), 2087 &ad); 2088 } 2089 2090 static int selinux_ptrace_access_check(struct task_struct *child, 2091 unsigned int mode) 2092 { 2093 u32 sid = current_sid(); 2094 u32 csid = task_sid_obj(child); 2095 2096 if (mode & PTRACE_MODE_READ) 2097 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, 2098 NULL); 2099 2100 return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, 2101 NULL); 2102 } 2103 2104 static int selinux_ptrace_traceme(struct task_struct *parent) 2105 { 2106 return avc_has_perm(task_sid_obj(parent), task_sid_obj(current), 2107 SECCLASS_PROCESS, PROCESS__PTRACE, NULL); 2108 } 2109 2110 static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective, 2111 kernel_cap_t *inheritable, kernel_cap_t *permitted) 2112 { 2113 return avc_has_perm(current_sid(), task_sid_obj(target), 2114 SECCLASS_PROCESS, PROCESS__GETCAP, NULL); 2115 } 2116 2117 static int selinux_capset(struct cred *new, const struct cred *old, 2118 const kernel_cap_t *effective, 2119 const kernel_cap_t *inheritable, 2120 const kernel_cap_t *permitted) 2121 { 2122 return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS, 2123 PROCESS__SETCAP, NULL); 2124 } 2125 2126 /* 2127 * (This comment used to live with the selinux_task_setuid hook, 2128 * which was removed). 2129 * 2130 * Since setuid only affects the current process, and since the SELinux 2131 * controls are not based on the Linux identity attributes, SELinux does not 2132 * need to control this operation. However, SELinux does control the use of 2133 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 2134 */ 2135 2136 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 2137 int cap, unsigned int opts) 2138 { 2139 return cred_has_capability(cred, cap, opts, ns == &init_user_ns); 2140 } 2141 2142 static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb) 2143 { 2144 const struct cred *cred = current_cred(); 2145 int rc = 0; 2146 2147 if (!sb) 2148 return 0; 2149 2150 switch (cmds) { 2151 case Q_SYNC: 2152 case Q_QUOTAON: 2153 case Q_QUOTAOFF: 2154 case Q_SETINFO: 2155 case Q_SETQUOTA: 2156 case Q_XQUOTAOFF: 2157 case Q_XQUOTAON: 2158 case Q_XSETQLIM: 2159 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2160 break; 2161 case Q_GETFMT: 2162 case Q_GETINFO: 2163 case Q_GETQUOTA: 2164 case Q_XGETQUOTA: 2165 case Q_XGETQSTAT: 2166 case Q_XGETQSTATV: 2167 case Q_XGETNEXTQUOTA: 2168 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2169 break; 2170 default: 2171 rc = 0; /* let the kernel handle invalid cmds */ 2172 break; 2173 } 2174 return rc; 2175 } 2176 2177 static int selinux_quota_on(struct dentry *dentry) 2178 { 2179 const struct cred *cred = current_cred(); 2180 2181 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 2182 } 2183 2184 static int selinux_syslog(int type) 2185 { 2186 switch (type) { 2187 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2188 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2189 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 2190 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL); 2191 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2192 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2193 /* Set level of messages printed to console */ 2194 case SYSLOG_ACTION_CONSOLE_LEVEL: 2195 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 2196 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE, 2197 NULL); 2198 } 2199 /* All other syslog types */ 2200 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 2201 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL); 2202 } 2203 2204 /* 2205 * Check that a process has enough memory to allocate a new virtual 2206 * mapping. 0 means there is enough memory for the allocation to 2207 * succeed and -ENOMEM implies there is not. 2208 * 2209 * Do not audit the selinux permission check, as this is applied to all 2210 * processes that allocate mappings. 2211 */ 2212 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2213 { 2214 int rc, cap_sys_admin = 0; 2215 2216 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN, 2217 CAP_OPT_NOAUDIT, true); 2218 if (rc == 0) 2219 cap_sys_admin = 1; 2220 2221 return cap_sys_admin; 2222 } 2223 2224 /* binprm security operations */ 2225 2226 static u32 ptrace_parent_sid(void) 2227 { 2228 u32 sid = 0; 2229 struct task_struct *tracer; 2230 2231 rcu_read_lock(); 2232 tracer = ptrace_parent(current); 2233 if (tracer) 2234 sid = task_sid_obj(tracer); 2235 rcu_read_unlock(); 2236 2237 return sid; 2238 } 2239 2240 static int check_nnp_nosuid(const struct linux_binprm *bprm, 2241 const struct task_security_struct *old_tsec, 2242 const struct task_security_struct *new_tsec) 2243 { 2244 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); 2245 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt); 2246 int rc; 2247 u32 av; 2248 2249 if (!nnp && !nosuid) 2250 return 0; /* neither NNP nor nosuid */ 2251 2252 if (new_tsec->sid == old_tsec->sid) 2253 return 0; /* No change in credentials */ 2254 2255 /* 2256 * If the policy enables the nnp_nosuid_transition policy capability, 2257 * then we permit transitions under NNP or nosuid if the 2258 * policy allows the corresponding permission between 2259 * the old and new contexts. 2260 */ 2261 if (selinux_policycap_nnp_nosuid_transition()) { 2262 av = 0; 2263 if (nnp) 2264 av |= PROCESS2__NNP_TRANSITION; 2265 if (nosuid) 2266 av |= PROCESS2__NOSUID_TRANSITION; 2267 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2268 SECCLASS_PROCESS2, av, NULL); 2269 if (!rc) 2270 return 0; 2271 } 2272 2273 /* 2274 * We also permit NNP or nosuid transitions to bounded SIDs, 2275 * i.e. SIDs that are guaranteed to only be allowed a subset 2276 * of the permissions of the current SID. 2277 */ 2278 rc = security_bounded_transition(old_tsec->sid, 2279 new_tsec->sid); 2280 if (!rc) 2281 return 0; 2282 2283 /* 2284 * On failure, preserve the errno values for NNP vs nosuid. 2285 * NNP: Operation not permitted for caller. 2286 * nosuid: Permission denied to file. 2287 */ 2288 if (nnp) 2289 return -EPERM; 2290 return -EACCES; 2291 } 2292 2293 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm) 2294 { 2295 const struct task_security_struct *old_tsec; 2296 struct task_security_struct *new_tsec; 2297 struct inode_security_struct *isec; 2298 struct common_audit_data ad; 2299 struct inode *inode = file_inode(bprm->file); 2300 int rc; 2301 2302 /* SELinux context only depends on initial program or script and not 2303 * the script interpreter */ 2304 2305 old_tsec = selinux_cred(current_cred()); 2306 new_tsec = selinux_cred(bprm->cred); 2307 isec = inode_security(inode); 2308 2309 /* Default to the current task SID. */ 2310 new_tsec->sid = old_tsec->sid; 2311 new_tsec->osid = old_tsec->sid; 2312 2313 /* Reset fs, key, and sock SIDs on execve. */ 2314 new_tsec->create_sid = 0; 2315 new_tsec->keycreate_sid = 0; 2316 new_tsec->sockcreate_sid = 0; 2317 2318 /* 2319 * Before policy is loaded, label any task outside kernel space 2320 * as SECINITSID_INIT, so that any userspace tasks surviving from 2321 * early boot end up with a label different from SECINITSID_KERNEL 2322 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL). 2323 */ 2324 if (!selinux_initialized()) { 2325 new_tsec->sid = SECINITSID_INIT; 2326 /* also clear the exec_sid just in case */ 2327 new_tsec->exec_sid = 0; 2328 return 0; 2329 } 2330 2331 if (old_tsec->exec_sid) { 2332 new_tsec->sid = old_tsec->exec_sid; 2333 /* Reset exec SID on execve. */ 2334 new_tsec->exec_sid = 0; 2335 2336 /* Fail on NNP or nosuid if not an allowed transition. */ 2337 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2338 if (rc) 2339 return rc; 2340 } else { 2341 /* Check for a default transition on this program. */ 2342 rc = security_transition_sid(old_tsec->sid, 2343 isec->sid, SECCLASS_PROCESS, NULL, 2344 &new_tsec->sid); 2345 if (rc) 2346 return rc; 2347 2348 /* 2349 * Fallback to old SID on NNP or nosuid if not an allowed 2350 * transition. 2351 */ 2352 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2353 if (rc) 2354 new_tsec->sid = old_tsec->sid; 2355 } 2356 2357 ad.type = LSM_AUDIT_DATA_FILE; 2358 ad.u.file = bprm->file; 2359 2360 if (new_tsec->sid == old_tsec->sid) { 2361 rc = avc_has_perm(old_tsec->sid, isec->sid, 2362 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2363 if (rc) 2364 return rc; 2365 } else { 2366 /* Check permissions for the transition. */ 2367 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2368 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2369 if (rc) 2370 return rc; 2371 2372 rc = avc_has_perm(new_tsec->sid, isec->sid, 2373 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2374 if (rc) 2375 return rc; 2376 2377 /* Check for shared state */ 2378 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2379 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2380 SECCLASS_PROCESS, PROCESS__SHARE, 2381 NULL); 2382 if (rc) 2383 return -EPERM; 2384 } 2385 2386 /* Make sure that anyone attempting to ptrace over a task that 2387 * changes its SID has the appropriate permit */ 2388 if (bprm->unsafe & LSM_UNSAFE_PTRACE) { 2389 u32 ptsid = ptrace_parent_sid(); 2390 if (ptsid != 0) { 2391 rc = avc_has_perm(ptsid, new_tsec->sid, 2392 SECCLASS_PROCESS, 2393 PROCESS__PTRACE, NULL); 2394 if (rc) 2395 return -EPERM; 2396 } 2397 } 2398 2399 /* Clear any possibly unsafe personality bits on exec: */ 2400 bprm->per_clear |= PER_CLEAR_ON_SETID; 2401 2402 /* Enable secure mode for SIDs transitions unless 2403 the noatsecure permission is granted between 2404 the two SIDs, i.e. ahp returns 0. */ 2405 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2406 SECCLASS_PROCESS, PROCESS__NOATSECURE, 2407 NULL); 2408 bprm->secureexec |= !!rc; 2409 } 2410 2411 return 0; 2412 } 2413 2414 static int match_file(const void *p, struct file *file, unsigned fd) 2415 { 2416 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; 2417 } 2418 2419 /* Derived from fs/exec.c:flush_old_files. */ 2420 static inline void flush_unauthorized_files(const struct cred *cred, 2421 struct files_struct *files) 2422 { 2423 struct file *file, *devnull = NULL; 2424 struct tty_struct *tty; 2425 int drop_tty = 0; 2426 unsigned n; 2427 2428 tty = get_current_tty(); 2429 if (tty) { 2430 spin_lock(&tty->files_lock); 2431 if (!list_empty(&tty->tty_files)) { 2432 struct tty_file_private *file_priv; 2433 2434 /* Revalidate access to controlling tty. 2435 Use file_path_has_perm on the tty path directly 2436 rather than using file_has_perm, as this particular 2437 open file may belong to another process and we are 2438 only interested in the inode-based check here. */ 2439 file_priv = list_first_entry(&tty->tty_files, 2440 struct tty_file_private, list); 2441 file = file_priv->file; 2442 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) 2443 drop_tty = 1; 2444 } 2445 spin_unlock(&tty->files_lock); 2446 tty_kref_put(tty); 2447 } 2448 /* Reset controlling tty. */ 2449 if (drop_tty) 2450 no_tty(); 2451 2452 /* Revalidate access to inherited open files. */ 2453 n = iterate_fd(files, 0, match_file, cred); 2454 if (!n) /* none found? */ 2455 return; 2456 2457 devnull = dentry_open(&selinux_null, O_RDWR, cred); 2458 if (IS_ERR(devnull)) 2459 devnull = NULL; 2460 /* replace all the matching ones with this */ 2461 do { 2462 replace_fd(n - 1, devnull, 0); 2463 } while ((n = iterate_fd(files, n, match_file, cred)) != 0); 2464 if (devnull) 2465 fput(devnull); 2466 } 2467 2468 /* 2469 * Prepare a process for imminent new credential changes due to exec 2470 */ 2471 static void selinux_bprm_committing_creds(const struct linux_binprm *bprm) 2472 { 2473 struct task_security_struct *new_tsec; 2474 struct rlimit *rlim, *initrlim; 2475 int rc, i; 2476 2477 new_tsec = selinux_cred(bprm->cred); 2478 if (new_tsec->sid == new_tsec->osid) 2479 return; 2480 2481 /* Close files for which the new task SID is not authorized. */ 2482 flush_unauthorized_files(bprm->cred, current->files); 2483 2484 /* Always clear parent death signal on SID transitions. */ 2485 current->pdeath_signal = 0; 2486 2487 /* Check whether the new SID can inherit resource limits from the old 2488 * SID. If not, reset all soft limits to the lower of the current 2489 * task's hard limit and the init task's soft limit. 2490 * 2491 * Note that the setting of hard limits (even to lower them) can be 2492 * controlled by the setrlimit check. The inclusion of the init task's 2493 * soft limit into the computation is to avoid resetting soft limits 2494 * higher than the default soft limit for cases where the default is 2495 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2496 */ 2497 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2498 PROCESS__RLIMITINH, NULL); 2499 if (rc) { 2500 /* protect against do_prlimit() */ 2501 task_lock(current); 2502 for (i = 0; i < RLIM_NLIMITS; i++) { 2503 rlim = current->signal->rlim + i; 2504 initrlim = init_task.signal->rlim + i; 2505 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2506 } 2507 task_unlock(current); 2508 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 2509 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2510 } 2511 } 2512 2513 /* 2514 * Clean up the process immediately after the installation of new credentials 2515 * due to exec 2516 */ 2517 static void selinux_bprm_committed_creds(const struct linux_binprm *bprm) 2518 { 2519 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2520 u32 osid, sid; 2521 int rc; 2522 2523 osid = tsec->osid; 2524 sid = tsec->sid; 2525 2526 if (sid == osid) 2527 return; 2528 2529 /* Check whether the new SID can inherit signal state from the old SID. 2530 * If not, clear itimers to avoid subsequent signal generation and 2531 * flush and unblock signals. 2532 * 2533 * This must occur _after_ the task SID has been updated so that any 2534 * kill done after the flush will be checked against the new SID. 2535 */ 2536 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2537 if (rc) { 2538 clear_itimer(); 2539 2540 spin_lock_irq(&unrcu_pointer(current->sighand)->siglock); 2541 if (!fatal_signal_pending(current)) { 2542 flush_sigqueue(¤t->pending); 2543 flush_sigqueue(¤t->signal->shared_pending); 2544 flush_signal_handlers(current, 1); 2545 sigemptyset(¤t->blocked); 2546 recalc_sigpending(); 2547 } 2548 spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock); 2549 } 2550 2551 /* Wake up the parent if it is waiting so that it can recheck 2552 * wait permission to the new task SID. */ 2553 read_lock(&tasklist_lock); 2554 __wake_up_parent(current, unrcu_pointer(current->real_parent)); 2555 read_unlock(&tasklist_lock); 2556 } 2557 2558 /* superblock security operations */ 2559 2560 static int selinux_sb_alloc_security(struct super_block *sb) 2561 { 2562 struct superblock_security_struct *sbsec = selinux_superblock(sb); 2563 2564 mutex_init(&sbsec->lock); 2565 INIT_LIST_HEAD(&sbsec->isec_head); 2566 spin_lock_init(&sbsec->isec_lock); 2567 sbsec->sid = SECINITSID_UNLABELED; 2568 sbsec->def_sid = SECINITSID_FILE; 2569 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 2570 2571 return 0; 2572 } 2573 2574 static inline int opt_len(const char *s) 2575 { 2576 bool open_quote = false; 2577 int len; 2578 char c; 2579 2580 for (len = 0; (c = s[len]) != '\0'; len++) { 2581 if (c == '"') 2582 open_quote = !open_quote; 2583 if (c == ',' && !open_quote) 2584 break; 2585 } 2586 return len; 2587 } 2588 2589 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts) 2590 { 2591 char *from = options; 2592 char *to = options; 2593 bool first = true; 2594 int rc; 2595 2596 while (1) { 2597 int len = opt_len(from); 2598 int token; 2599 char *arg = NULL; 2600 2601 token = match_opt_prefix(from, len, &arg); 2602 2603 if (token != Opt_error) { 2604 char *p, *q; 2605 2606 /* strip quotes */ 2607 if (arg) { 2608 for (p = q = arg; p < from + len; p++) { 2609 char c = *p; 2610 if (c != '"') 2611 *q++ = c; 2612 } 2613 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL); 2614 if (!arg) { 2615 rc = -ENOMEM; 2616 goto free_opt; 2617 } 2618 } 2619 rc = selinux_add_opt(token, arg, mnt_opts); 2620 kfree(arg); 2621 arg = NULL; 2622 if (unlikely(rc)) { 2623 goto free_opt; 2624 } 2625 } else { 2626 if (!first) { // copy with preceding comma 2627 from--; 2628 len++; 2629 } 2630 if (to != from) 2631 memmove(to, from, len); 2632 to += len; 2633 first = false; 2634 } 2635 if (!from[len]) 2636 break; 2637 from += len + 1; 2638 } 2639 *to = '\0'; 2640 return 0; 2641 2642 free_opt: 2643 if (*mnt_opts) { 2644 selinux_free_mnt_opts(*mnt_opts); 2645 *mnt_opts = NULL; 2646 } 2647 return rc; 2648 } 2649 2650 static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts) 2651 { 2652 struct selinux_mnt_opts *opts = mnt_opts; 2653 struct superblock_security_struct *sbsec = selinux_superblock(sb); 2654 2655 /* 2656 * Superblock not initialized (i.e. no options) - reject if any 2657 * options specified, otherwise accept. 2658 */ 2659 if (!(sbsec->flags & SE_SBINITIALIZED)) 2660 return opts ? 1 : 0; 2661 2662 /* 2663 * Superblock initialized and no options specified - reject if 2664 * superblock has any options set, otherwise accept. 2665 */ 2666 if (!opts) 2667 return (sbsec->flags & SE_MNTMASK) ? 1 : 0; 2668 2669 if (opts->fscontext_sid) { 2670 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 2671 opts->fscontext_sid)) 2672 return 1; 2673 } 2674 if (opts->context_sid) { 2675 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 2676 opts->context_sid)) 2677 return 1; 2678 } 2679 if (opts->rootcontext_sid) { 2680 struct inode_security_struct *root_isec; 2681 2682 root_isec = backing_inode_security(sb->s_root); 2683 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 2684 opts->rootcontext_sid)) 2685 return 1; 2686 } 2687 if (opts->defcontext_sid) { 2688 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 2689 opts->defcontext_sid)) 2690 return 1; 2691 } 2692 return 0; 2693 } 2694 2695 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts) 2696 { 2697 struct selinux_mnt_opts *opts = mnt_opts; 2698 struct superblock_security_struct *sbsec = selinux_superblock(sb); 2699 2700 if (!(sbsec->flags & SE_SBINITIALIZED)) 2701 return 0; 2702 2703 if (!opts) 2704 return 0; 2705 2706 if (opts->fscontext_sid) { 2707 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 2708 opts->fscontext_sid)) 2709 goto out_bad_option; 2710 } 2711 if (opts->context_sid) { 2712 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 2713 opts->context_sid)) 2714 goto out_bad_option; 2715 } 2716 if (opts->rootcontext_sid) { 2717 struct inode_security_struct *root_isec; 2718 root_isec = backing_inode_security(sb->s_root); 2719 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 2720 opts->rootcontext_sid)) 2721 goto out_bad_option; 2722 } 2723 if (opts->defcontext_sid) { 2724 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 2725 opts->defcontext_sid)) 2726 goto out_bad_option; 2727 } 2728 return 0; 2729 2730 out_bad_option: 2731 pr_warn("SELinux: unable to change security options " 2732 "during remount (dev %s, type=%s)\n", sb->s_id, 2733 sb->s_type->name); 2734 return -EINVAL; 2735 } 2736 2737 static int selinux_sb_kern_mount(const struct super_block *sb) 2738 { 2739 const struct cred *cred = current_cred(); 2740 struct common_audit_data ad; 2741 2742 ad.type = LSM_AUDIT_DATA_DENTRY; 2743 ad.u.dentry = sb->s_root; 2744 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2745 } 2746 2747 static int selinux_sb_statfs(struct dentry *dentry) 2748 { 2749 const struct cred *cred = current_cred(); 2750 struct common_audit_data ad; 2751 2752 ad.type = LSM_AUDIT_DATA_DENTRY; 2753 ad.u.dentry = dentry->d_sb->s_root; 2754 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2755 } 2756 2757 static int selinux_mount(const char *dev_name, 2758 const struct path *path, 2759 const char *type, 2760 unsigned long flags, 2761 void *data) 2762 { 2763 const struct cred *cred = current_cred(); 2764 2765 if (flags & MS_REMOUNT) 2766 return superblock_has_perm(cred, path->dentry->d_sb, 2767 FILESYSTEM__REMOUNT, NULL); 2768 else 2769 return path_has_perm(cred, path, FILE__MOUNTON); 2770 } 2771 2772 static int selinux_move_mount(const struct path *from_path, 2773 const struct path *to_path) 2774 { 2775 const struct cred *cred = current_cred(); 2776 2777 return path_has_perm(cred, to_path, FILE__MOUNTON); 2778 } 2779 2780 static int selinux_umount(struct vfsmount *mnt, int flags) 2781 { 2782 const struct cred *cred = current_cred(); 2783 2784 return superblock_has_perm(cred, mnt->mnt_sb, 2785 FILESYSTEM__UNMOUNT, NULL); 2786 } 2787 2788 static int selinux_fs_context_submount(struct fs_context *fc, 2789 struct super_block *reference) 2790 { 2791 const struct superblock_security_struct *sbsec = selinux_superblock(reference); 2792 struct selinux_mnt_opts *opts; 2793 2794 /* 2795 * Ensure that fc->security remains NULL when no options are set 2796 * as expected by selinux_set_mnt_opts(). 2797 */ 2798 if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT))) 2799 return 0; 2800 2801 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 2802 if (!opts) 2803 return -ENOMEM; 2804 2805 if (sbsec->flags & FSCONTEXT_MNT) 2806 opts->fscontext_sid = sbsec->sid; 2807 if (sbsec->flags & CONTEXT_MNT) 2808 opts->context_sid = sbsec->mntpoint_sid; 2809 if (sbsec->flags & DEFCONTEXT_MNT) 2810 opts->defcontext_sid = sbsec->def_sid; 2811 fc->security = opts; 2812 return 0; 2813 } 2814 2815 static int selinux_fs_context_dup(struct fs_context *fc, 2816 struct fs_context *src_fc) 2817 { 2818 const struct selinux_mnt_opts *src = src_fc->security; 2819 2820 if (!src) 2821 return 0; 2822 2823 fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL); 2824 return fc->security ? 0 : -ENOMEM; 2825 } 2826 2827 static const struct fs_parameter_spec selinux_fs_parameters[] = { 2828 fsparam_string(CONTEXT_STR, Opt_context), 2829 fsparam_string(DEFCONTEXT_STR, Opt_defcontext), 2830 fsparam_string(FSCONTEXT_STR, Opt_fscontext), 2831 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext), 2832 fsparam_flag (SECLABEL_STR, Opt_seclabel), 2833 {} 2834 }; 2835 2836 static int selinux_fs_context_parse_param(struct fs_context *fc, 2837 struct fs_parameter *param) 2838 { 2839 struct fs_parse_result result; 2840 int opt; 2841 2842 opt = fs_parse(fc, selinux_fs_parameters, param, &result); 2843 if (opt < 0) 2844 return opt; 2845 2846 return selinux_add_opt(opt, param->string, &fc->security); 2847 } 2848 2849 /* inode security operations */ 2850 2851 static int selinux_inode_alloc_security(struct inode *inode) 2852 { 2853 struct inode_security_struct *isec = selinux_inode(inode); 2854 u32 sid = current_sid(); 2855 2856 spin_lock_init(&isec->lock); 2857 INIT_LIST_HEAD(&isec->list); 2858 isec->inode = inode; 2859 isec->sid = SECINITSID_UNLABELED; 2860 isec->sclass = SECCLASS_FILE; 2861 isec->task_sid = sid; 2862 isec->initialized = LABEL_INVALID; 2863 2864 return 0; 2865 } 2866 2867 static void selinux_inode_free_security(struct inode *inode) 2868 { 2869 inode_free_security(inode); 2870 } 2871 2872 static int selinux_dentry_init_security(struct dentry *dentry, int mode, 2873 const struct qstr *name, 2874 const char **xattr_name, void **ctx, 2875 u32 *ctxlen) 2876 { 2877 u32 newsid; 2878 int rc; 2879 2880 rc = selinux_determine_inode_label(selinux_cred(current_cred()), 2881 d_inode(dentry->d_parent), name, 2882 inode_mode_to_security_class(mode), 2883 &newsid); 2884 if (rc) 2885 return rc; 2886 2887 if (xattr_name) 2888 *xattr_name = XATTR_NAME_SELINUX; 2889 2890 return security_sid_to_context(newsid, (char **)ctx, 2891 ctxlen); 2892 } 2893 2894 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode, 2895 struct qstr *name, 2896 const struct cred *old, 2897 struct cred *new) 2898 { 2899 u32 newsid; 2900 int rc; 2901 struct task_security_struct *tsec; 2902 2903 rc = selinux_determine_inode_label(selinux_cred(old), 2904 d_inode(dentry->d_parent), name, 2905 inode_mode_to_security_class(mode), 2906 &newsid); 2907 if (rc) 2908 return rc; 2909 2910 tsec = selinux_cred(new); 2911 tsec->create_sid = newsid; 2912 return 0; 2913 } 2914 2915 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2916 const struct qstr *qstr, 2917 struct xattr *xattrs, int *xattr_count) 2918 { 2919 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2920 struct superblock_security_struct *sbsec; 2921 struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count); 2922 u32 newsid, clen; 2923 u16 newsclass; 2924 int rc; 2925 char *context; 2926 2927 sbsec = selinux_superblock(dir->i_sb); 2928 2929 newsid = tsec->create_sid; 2930 newsclass = inode_mode_to_security_class(inode->i_mode); 2931 rc = selinux_determine_inode_label(tsec, dir, qstr, newsclass, &newsid); 2932 if (rc) 2933 return rc; 2934 2935 /* Possibly defer initialization to selinux_complete_init. */ 2936 if (sbsec->flags & SE_SBINITIALIZED) { 2937 struct inode_security_struct *isec = selinux_inode(inode); 2938 isec->sclass = newsclass; 2939 isec->sid = newsid; 2940 isec->initialized = LABEL_INITIALIZED; 2941 } 2942 2943 if (!selinux_initialized() || 2944 !(sbsec->flags & SBLABEL_MNT)) 2945 return -EOPNOTSUPP; 2946 2947 if (xattr) { 2948 rc = security_sid_to_context_force(newsid, 2949 &context, &clen); 2950 if (rc) 2951 return rc; 2952 xattr->value = context; 2953 xattr->value_len = clen; 2954 xattr->name = XATTR_SELINUX_SUFFIX; 2955 } 2956 2957 return 0; 2958 } 2959 2960 static int selinux_inode_init_security_anon(struct inode *inode, 2961 const struct qstr *name, 2962 const struct inode *context_inode) 2963 { 2964 u32 sid = current_sid(); 2965 struct common_audit_data ad; 2966 struct inode_security_struct *isec; 2967 int rc; 2968 2969 if (unlikely(!selinux_initialized())) 2970 return 0; 2971 2972 isec = selinux_inode(inode); 2973 2974 /* 2975 * We only get here once per ephemeral inode. The inode has 2976 * been initialized via inode_alloc_security but is otherwise 2977 * untouched. 2978 */ 2979 2980 if (context_inode) { 2981 struct inode_security_struct *context_isec = 2982 selinux_inode(context_inode); 2983 if (context_isec->initialized != LABEL_INITIALIZED) { 2984 pr_err("SELinux: context_inode is not initialized\n"); 2985 return -EACCES; 2986 } 2987 2988 isec->sclass = context_isec->sclass; 2989 isec->sid = context_isec->sid; 2990 } else { 2991 isec->sclass = SECCLASS_ANON_INODE; 2992 rc = security_transition_sid( 2993 sid, sid, 2994 isec->sclass, name, &isec->sid); 2995 if (rc) 2996 return rc; 2997 } 2998 2999 isec->initialized = LABEL_INITIALIZED; 3000 /* 3001 * Now that we've initialized security, check whether we're 3002 * allowed to actually create this type of anonymous inode. 3003 */ 3004 3005 ad.type = LSM_AUDIT_DATA_ANONINODE; 3006 ad.u.anonclass = name ? (const char *)name->name : "?"; 3007 3008 return avc_has_perm(sid, 3009 isec->sid, 3010 isec->sclass, 3011 FILE__CREATE, 3012 &ad); 3013 } 3014 3015 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 3016 { 3017 return may_create(dir, dentry, SECCLASS_FILE); 3018 } 3019 3020 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 3021 { 3022 return may_link(dir, old_dentry, MAY_LINK); 3023 } 3024 3025 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 3026 { 3027 return may_link(dir, dentry, MAY_UNLINK); 3028 } 3029 3030 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 3031 { 3032 return may_create(dir, dentry, SECCLASS_LNK_FILE); 3033 } 3034 3035 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 3036 { 3037 return may_create(dir, dentry, SECCLASS_DIR); 3038 } 3039 3040 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 3041 { 3042 return may_link(dir, dentry, MAY_RMDIR); 3043 } 3044 3045 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3046 { 3047 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 3048 } 3049 3050 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 3051 struct inode *new_inode, struct dentry *new_dentry) 3052 { 3053 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 3054 } 3055 3056 static int selinux_inode_readlink(struct dentry *dentry) 3057 { 3058 const struct cred *cred = current_cred(); 3059 3060 return dentry_has_perm(cred, dentry, FILE__READ); 3061 } 3062 3063 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode, 3064 bool rcu) 3065 { 3066 struct common_audit_data ad; 3067 struct inode_security_struct *isec; 3068 u32 sid = current_sid(); 3069 3070 ad.type = LSM_AUDIT_DATA_DENTRY; 3071 ad.u.dentry = dentry; 3072 isec = inode_security_rcu(inode, rcu); 3073 if (IS_ERR(isec)) 3074 return PTR_ERR(isec); 3075 3076 return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad); 3077 } 3078 3079 static noinline int audit_inode_permission(struct inode *inode, 3080 u32 perms, u32 audited, u32 denied, 3081 int result) 3082 { 3083 struct common_audit_data ad; 3084 struct inode_security_struct *isec = selinux_inode(inode); 3085 3086 ad.type = LSM_AUDIT_DATA_INODE; 3087 ad.u.inode = inode; 3088 3089 return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms, 3090 audited, denied, result, &ad); 3091 } 3092 3093 static int selinux_inode_permission(struct inode *inode, int mask) 3094 { 3095 u32 perms; 3096 bool from_access; 3097 bool no_block = mask & MAY_NOT_BLOCK; 3098 struct inode_security_struct *isec; 3099 u32 sid = current_sid(); 3100 struct av_decision avd; 3101 int rc, rc2; 3102 u32 audited, denied; 3103 3104 from_access = mask & MAY_ACCESS; 3105 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 3106 3107 /* No permission to check. Existence test. */ 3108 if (!mask) 3109 return 0; 3110 3111 if (unlikely(IS_PRIVATE(inode))) 3112 return 0; 3113 3114 perms = file_mask_to_av(inode->i_mode, mask); 3115 3116 isec = inode_security_rcu(inode, no_block); 3117 if (IS_ERR(isec)) 3118 return PTR_ERR(isec); 3119 3120 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, 3121 &avd); 3122 audited = avc_audit_required(perms, &avd, rc, 3123 from_access ? FILE__AUDIT_ACCESS : 0, 3124 &denied); 3125 if (likely(!audited)) 3126 return rc; 3127 3128 rc2 = audit_inode_permission(inode, perms, audited, denied, rc); 3129 if (rc2) 3130 return rc2; 3131 return rc; 3132 } 3133 3134 static int selinux_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 3135 struct iattr *iattr) 3136 { 3137 const struct cred *cred = current_cred(); 3138 struct inode *inode = d_backing_inode(dentry); 3139 unsigned int ia_valid = iattr->ia_valid; 3140 __u32 av = FILE__WRITE; 3141 3142 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 3143 if (ia_valid & ATTR_FORCE) { 3144 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 3145 ATTR_FORCE); 3146 if (!ia_valid) 3147 return 0; 3148 } 3149 3150 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 3151 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 3152 return dentry_has_perm(cred, dentry, FILE__SETATTR); 3153 3154 if (selinux_policycap_openperm() && 3155 inode->i_sb->s_magic != SOCKFS_MAGIC && 3156 (ia_valid & ATTR_SIZE) && 3157 !(ia_valid & ATTR_FILE)) 3158 av |= FILE__OPEN; 3159 3160 return dentry_has_perm(cred, dentry, av); 3161 } 3162 3163 static int selinux_inode_getattr(const struct path *path) 3164 { 3165 return path_has_perm(current_cred(), path, FILE__GETATTR); 3166 } 3167 3168 static bool has_cap_mac_admin(bool audit) 3169 { 3170 const struct cred *cred = current_cred(); 3171 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT; 3172 3173 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts)) 3174 return false; 3175 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true)) 3176 return false; 3177 return true; 3178 } 3179 3180 /** 3181 * selinux_inode_xattr_skipcap - Skip the xattr capability checks? 3182 * @name: name of the xattr 3183 * 3184 * Returns 1 to indicate that SELinux "owns" the access control rights to xattrs 3185 * named @name; the LSM layer should avoid enforcing any traditional 3186 * capability based access controls on this xattr. Returns 0 to indicate that 3187 * SELinux does not "own" the access control rights to xattrs named @name and is 3188 * deferring to the LSM layer for further access controls, including capability 3189 * based controls. 3190 */ 3191 static int selinux_inode_xattr_skipcap(const char *name) 3192 { 3193 /* require capability check if not a selinux xattr */ 3194 return !strcmp(name, XATTR_NAME_SELINUX); 3195 } 3196 3197 static int selinux_inode_setxattr(struct mnt_idmap *idmap, 3198 struct dentry *dentry, const char *name, 3199 const void *value, size_t size, int flags) 3200 { 3201 struct inode *inode = d_backing_inode(dentry); 3202 struct inode_security_struct *isec; 3203 struct superblock_security_struct *sbsec; 3204 struct common_audit_data ad; 3205 u32 newsid, sid = current_sid(); 3206 int rc = 0; 3207 3208 /* if not a selinux xattr, only check the ordinary setattr perm */ 3209 if (strcmp(name, XATTR_NAME_SELINUX)) 3210 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3211 3212 if (!selinux_initialized()) 3213 return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM); 3214 3215 sbsec = selinux_superblock(inode->i_sb); 3216 if (!(sbsec->flags & SBLABEL_MNT)) 3217 return -EOPNOTSUPP; 3218 3219 if (!inode_owner_or_capable(idmap, inode)) 3220 return -EPERM; 3221 3222 ad.type = LSM_AUDIT_DATA_DENTRY; 3223 ad.u.dentry = dentry; 3224 3225 isec = backing_inode_security(dentry); 3226 rc = avc_has_perm(sid, isec->sid, isec->sclass, 3227 FILE__RELABELFROM, &ad); 3228 if (rc) 3229 return rc; 3230 3231 rc = security_context_to_sid(value, size, &newsid, 3232 GFP_KERNEL); 3233 if (rc == -EINVAL) { 3234 if (!has_cap_mac_admin(true)) { 3235 struct audit_buffer *ab; 3236 size_t audit_size; 3237 3238 /* We strip a nul only if it is at the end, otherwise the 3239 * context contains a nul and we should audit that */ 3240 if (value) { 3241 const char *str = value; 3242 3243 if (str[size - 1] == '\0') 3244 audit_size = size - 1; 3245 else 3246 audit_size = size; 3247 } else { 3248 audit_size = 0; 3249 } 3250 ab = audit_log_start(audit_context(), 3251 GFP_ATOMIC, AUDIT_SELINUX_ERR); 3252 if (!ab) 3253 return rc; 3254 audit_log_format(ab, "op=setxattr invalid_context="); 3255 audit_log_n_untrustedstring(ab, value, audit_size); 3256 audit_log_end(ab); 3257 3258 return rc; 3259 } 3260 rc = security_context_to_sid_force(value, 3261 size, &newsid); 3262 } 3263 if (rc) 3264 return rc; 3265 3266 rc = avc_has_perm(sid, newsid, isec->sclass, 3267 FILE__RELABELTO, &ad); 3268 if (rc) 3269 return rc; 3270 3271 rc = security_validate_transition(isec->sid, newsid, 3272 sid, isec->sclass); 3273 if (rc) 3274 return rc; 3275 3276 return avc_has_perm(newsid, 3277 sbsec->sid, 3278 SECCLASS_FILESYSTEM, 3279 FILESYSTEM__ASSOCIATE, 3280 &ad); 3281 } 3282 3283 static int selinux_inode_set_acl(struct mnt_idmap *idmap, 3284 struct dentry *dentry, const char *acl_name, 3285 struct posix_acl *kacl) 3286 { 3287 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3288 } 3289 3290 static int selinux_inode_get_acl(struct mnt_idmap *idmap, 3291 struct dentry *dentry, const char *acl_name) 3292 { 3293 return dentry_has_perm(current_cred(), dentry, FILE__GETATTR); 3294 } 3295 3296 static int selinux_inode_remove_acl(struct mnt_idmap *idmap, 3297 struct dentry *dentry, const char *acl_name) 3298 { 3299 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3300 } 3301 3302 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 3303 const void *value, size_t size, 3304 int flags) 3305 { 3306 struct inode *inode = d_backing_inode(dentry); 3307 struct inode_security_struct *isec; 3308 u32 newsid; 3309 int rc; 3310 3311 if (strcmp(name, XATTR_NAME_SELINUX)) { 3312 /* Not an attribute we recognize, so nothing to do. */ 3313 return; 3314 } 3315 3316 if (!selinux_initialized()) { 3317 /* If we haven't even been initialized, then we can't validate 3318 * against a policy, so leave the label as invalid. It may 3319 * resolve to a valid label on the next revalidation try if 3320 * we've since initialized. 3321 */ 3322 return; 3323 } 3324 3325 rc = security_context_to_sid_force(value, size, 3326 &newsid); 3327 if (rc) { 3328 pr_err("SELinux: unable to map context to SID" 3329 "for (%s, %lu), rc=%d\n", 3330 inode->i_sb->s_id, inode->i_ino, -rc); 3331 return; 3332 } 3333 3334 isec = backing_inode_security(dentry); 3335 spin_lock(&isec->lock); 3336 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3337 isec->sid = newsid; 3338 isec->initialized = LABEL_INITIALIZED; 3339 spin_unlock(&isec->lock); 3340 } 3341 3342 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 3343 { 3344 const struct cred *cred = current_cred(); 3345 3346 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3347 } 3348 3349 static int selinux_inode_listxattr(struct dentry *dentry) 3350 { 3351 const struct cred *cred = current_cred(); 3352 3353 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3354 } 3355 3356 static int selinux_inode_removexattr(struct mnt_idmap *idmap, 3357 struct dentry *dentry, const char *name) 3358 { 3359 /* if not a selinux xattr, only check the ordinary setattr perm */ 3360 if (strcmp(name, XATTR_NAME_SELINUX)) 3361 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3362 3363 if (!selinux_initialized()) 3364 return 0; 3365 3366 /* No one is allowed to remove a SELinux security label. 3367 You can change the label, but all data must be labeled. */ 3368 return -EACCES; 3369 } 3370 3371 static int selinux_path_notify(const struct path *path, u64 mask, 3372 unsigned int obj_type) 3373 { 3374 int ret; 3375 u32 perm; 3376 3377 struct common_audit_data ad; 3378 3379 ad.type = LSM_AUDIT_DATA_PATH; 3380 ad.u.path = *path; 3381 3382 /* 3383 * Set permission needed based on the type of mark being set. 3384 * Performs an additional check for sb watches. 3385 */ 3386 switch (obj_type) { 3387 case FSNOTIFY_OBJ_TYPE_VFSMOUNT: 3388 perm = FILE__WATCH_MOUNT; 3389 break; 3390 case FSNOTIFY_OBJ_TYPE_SB: 3391 perm = FILE__WATCH_SB; 3392 ret = superblock_has_perm(current_cred(), path->dentry->d_sb, 3393 FILESYSTEM__WATCH, &ad); 3394 if (ret) 3395 return ret; 3396 break; 3397 case FSNOTIFY_OBJ_TYPE_INODE: 3398 perm = FILE__WATCH; 3399 break; 3400 default: 3401 return -EINVAL; 3402 } 3403 3404 /* blocking watches require the file:watch_with_perm permission */ 3405 if (mask & (ALL_FSNOTIFY_PERM_EVENTS)) 3406 perm |= FILE__WATCH_WITH_PERM; 3407 3408 /* watches on read-like events need the file:watch_reads permission */ 3409 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE)) 3410 perm |= FILE__WATCH_READS; 3411 3412 return path_has_perm(current_cred(), path, perm); 3413 } 3414 3415 /* 3416 * Copy the inode security context value to the user. 3417 * 3418 * Permission check is handled by selinux_inode_getxattr hook. 3419 */ 3420 static int selinux_inode_getsecurity(struct mnt_idmap *idmap, 3421 struct inode *inode, const char *name, 3422 void **buffer, bool alloc) 3423 { 3424 u32 size; 3425 int error; 3426 char *context = NULL; 3427 struct inode_security_struct *isec; 3428 3429 /* 3430 * If we're not initialized yet, then we can't validate contexts, so 3431 * just let vfs_getxattr fall back to using the on-disk xattr. 3432 */ 3433 if (!selinux_initialized() || 3434 strcmp(name, XATTR_SELINUX_SUFFIX)) 3435 return -EOPNOTSUPP; 3436 3437 /* 3438 * If the caller has CAP_MAC_ADMIN, then get the raw context 3439 * value even if it is not defined by current policy; otherwise, 3440 * use the in-core value under current policy. 3441 * Use the non-auditing forms of the permission checks since 3442 * getxattr may be called by unprivileged processes commonly 3443 * and lack of permission just means that we fall back to the 3444 * in-core context value, not a denial. 3445 */ 3446 isec = inode_security(inode); 3447 if (has_cap_mac_admin(false)) 3448 error = security_sid_to_context_force(isec->sid, &context, 3449 &size); 3450 else 3451 error = security_sid_to_context(isec->sid, 3452 &context, &size); 3453 if (error) 3454 return error; 3455 error = size; 3456 if (alloc) { 3457 *buffer = context; 3458 goto out_nofree; 3459 } 3460 kfree(context); 3461 out_nofree: 3462 return error; 3463 } 3464 3465 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 3466 const void *value, size_t size, int flags) 3467 { 3468 struct inode_security_struct *isec = inode_security_novalidate(inode); 3469 struct superblock_security_struct *sbsec; 3470 u32 newsid; 3471 int rc; 3472 3473 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3474 return -EOPNOTSUPP; 3475 3476 sbsec = selinux_superblock(inode->i_sb); 3477 if (!(sbsec->flags & SBLABEL_MNT)) 3478 return -EOPNOTSUPP; 3479 3480 if (!value || !size) 3481 return -EACCES; 3482 3483 rc = security_context_to_sid(value, size, &newsid, 3484 GFP_KERNEL); 3485 if (rc) 3486 return rc; 3487 3488 spin_lock(&isec->lock); 3489 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3490 isec->sid = newsid; 3491 isec->initialized = LABEL_INITIALIZED; 3492 spin_unlock(&isec->lock); 3493 return 0; 3494 } 3495 3496 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 3497 { 3498 const int len = sizeof(XATTR_NAME_SELINUX); 3499 3500 if (!selinux_initialized()) 3501 return 0; 3502 3503 if (buffer && len <= buffer_size) 3504 memcpy(buffer, XATTR_NAME_SELINUX, len); 3505 return len; 3506 } 3507 3508 static void selinux_inode_getsecid(struct inode *inode, u32 *secid) 3509 { 3510 struct inode_security_struct *isec = inode_security_novalidate(inode); 3511 *secid = isec->sid; 3512 } 3513 3514 static int selinux_inode_copy_up(struct dentry *src, struct cred **new) 3515 { 3516 u32 sid; 3517 struct task_security_struct *tsec; 3518 struct cred *new_creds = *new; 3519 3520 if (new_creds == NULL) { 3521 new_creds = prepare_creds(); 3522 if (!new_creds) 3523 return -ENOMEM; 3524 } 3525 3526 tsec = selinux_cred(new_creds); 3527 /* Get label from overlay inode and set it in create_sid */ 3528 selinux_inode_getsecid(d_inode(src), &sid); 3529 tsec->create_sid = sid; 3530 *new = new_creds; 3531 return 0; 3532 } 3533 3534 static int selinux_inode_copy_up_xattr(struct dentry *dentry, const char *name) 3535 { 3536 /* The copy_up hook above sets the initial context on an inode, but we 3537 * don't then want to overwrite it by blindly copying all the lower 3538 * xattrs up. Instead, filter out SELinux-related xattrs following 3539 * policy load. 3540 */ 3541 if (selinux_initialized() && strcmp(name, XATTR_NAME_SELINUX) == 0) 3542 return 1; /* Discard */ 3543 /* 3544 * Any other attribute apart from SELINUX is not claimed, supported 3545 * by selinux. 3546 */ 3547 return -EOPNOTSUPP; 3548 } 3549 3550 /* kernfs node operations */ 3551 3552 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir, 3553 struct kernfs_node *kn) 3554 { 3555 const struct task_security_struct *tsec = selinux_cred(current_cred()); 3556 u32 parent_sid, newsid, clen; 3557 int rc; 3558 char *context; 3559 3560 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0); 3561 if (rc == -ENODATA) 3562 return 0; 3563 else if (rc < 0) 3564 return rc; 3565 3566 clen = (u32)rc; 3567 context = kmalloc(clen, GFP_KERNEL); 3568 if (!context) 3569 return -ENOMEM; 3570 3571 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen); 3572 if (rc < 0) { 3573 kfree(context); 3574 return rc; 3575 } 3576 3577 rc = security_context_to_sid(context, clen, &parent_sid, 3578 GFP_KERNEL); 3579 kfree(context); 3580 if (rc) 3581 return rc; 3582 3583 if (tsec->create_sid) { 3584 newsid = tsec->create_sid; 3585 } else { 3586 u16 secclass = inode_mode_to_security_class(kn->mode); 3587 struct qstr q; 3588 3589 q.name = kn->name; 3590 q.hash_len = hashlen_string(kn_dir, kn->name); 3591 3592 rc = security_transition_sid(tsec->sid, 3593 parent_sid, secclass, &q, 3594 &newsid); 3595 if (rc) 3596 return rc; 3597 } 3598 3599 rc = security_sid_to_context_force(newsid, 3600 &context, &clen); 3601 if (rc) 3602 return rc; 3603 3604 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen, 3605 XATTR_CREATE); 3606 kfree(context); 3607 return rc; 3608 } 3609 3610 3611 /* file security operations */ 3612 3613 static int selinux_revalidate_file_permission(struct file *file, int mask) 3614 { 3615 const struct cred *cred = current_cred(); 3616 struct inode *inode = file_inode(file); 3617 3618 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 3619 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 3620 mask |= MAY_APPEND; 3621 3622 return file_has_perm(cred, file, 3623 file_mask_to_av(inode->i_mode, mask)); 3624 } 3625 3626 static int selinux_file_permission(struct file *file, int mask) 3627 { 3628 struct inode *inode = file_inode(file); 3629 struct file_security_struct *fsec = selinux_file(file); 3630 struct inode_security_struct *isec; 3631 u32 sid = current_sid(); 3632 3633 if (!mask) 3634 /* No permission to check. Existence test. */ 3635 return 0; 3636 3637 isec = inode_security(inode); 3638 if (sid == fsec->sid && fsec->isid == isec->sid && 3639 fsec->pseqno == avc_policy_seqno()) 3640 /* No change since file_open check. */ 3641 return 0; 3642 3643 return selinux_revalidate_file_permission(file, mask); 3644 } 3645 3646 static int selinux_file_alloc_security(struct file *file) 3647 { 3648 struct file_security_struct *fsec = selinux_file(file); 3649 u32 sid = current_sid(); 3650 3651 fsec->sid = sid; 3652 fsec->fown_sid = sid; 3653 3654 return 0; 3655 } 3656 3657 /* 3658 * Check whether a task has the ioctl permission and cmd 3659 * operation to an inode. 3660 */ 3661 static int ioctl_has_perm(const struct cred *cred, struct file *file, 3662 u32 requested, u16 cmd) 3663 { 3664 struct common_audit_data ad; 3665 struct file_security_struct *fsec = selinux_file(file); 3666 struct inode *inode = file_inode(file); 3667 struct inode_security_struct *isec; 3668 struct lsm_ioctlop_audit ioctl; 3669 u32 ssid = cred_sid(cred); 3670 int rc; 3671 u8 driver = cmd >> 8; 3672 u8 xperm = cmd & 0xff; 3673 3674 ad.type = LSM_AUDIT_DATA_IOCTL_OP; 3675 ad.u.op = &ioctl; 3676 ad.u.op->cmd = cmd; 3677 ad.u.op->path = file->f_path; 3678 3679 if (ssid != fsec->sid) { 3680 rc = avc_has_perm(ssid, fsec->sid, 3681 SECCLASS_FD, 3682 FD__USE, 3683 &ad); 3684 if (rc) 3685 goto out; 3686 } 3687 3688 if (unlikely(IS_PRIVATE(inode))) 3689 return 0; 3690 3691 isec = inode_security(inode); 3692 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass, 3693 requested, driver, xperm, &ad); 3694 out: 3695 return rc; 3696 } 3697 3698 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3699 unsigned long arg) 3700 { 3701 const struct cred *cred = current_cred(); 3702 int error = 0; 3703 3704 switch (cmd) { 3705 case FIONREAD: 3706 case FIBMAP: 3707 case FIGETBSZ: 3708 case FS_IOC_GETFLAGS: 3709 case FS_IOC_GETVERSION: 3710 error = file_has_perm(cred, file, FILE__GETATTR); 3711 break; 3712 3713 case FS_IOC_SETFLAGS: 3714 case FS_IOC_SETVERSION: 3715 error = file_has_perm(cred, file, FILE__SETATTR); 3716 break; 3717 3718 /* sys_ioctl() checks */ 3719 case FIONBIO: 3720 case FIOASYNC: 3721 error = file_has_perm(cred, file, 0); 3722 break; 3723 3724 case KDSKBENT: 3725 case KDSKBSENT: 3726 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3727 CAP_OPT_NONE, true); 3728 break; 3729 3730 case FIOCLEX: 3731 case FIONCLEX: 3732 if (!selinux_policycap_ioctl_skip_cloexec()) 3733 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); 3734 break; 3735 3736 /* default case assumes that the command will go 3737 * to the file's ioctl() function. 3738 */ 3739 default: 3740 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); 3741 } 3742 return error; 3743 } 3744 3745 static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd, 3746 unsigned long arg) 3747 { 3748 /* 3749 * If we are in a 64-bit kernel running 32-bit userspace, we need to 3750 * make sure we don't compare 32-bit flags to 64-bit flags. 3751 */ 3752 switch (cmd) { 3753 case FS_IOC32_GETFLAGS: 3754 cmd = FS_IOC_GETFLAGS; 3755 break; 3756 case FS_IOC32_SETFLAGS: 3757 cmd = FS_IOC_SETFLAGS; 3758 break; 3759 case FS_IOC32_GETVERSION: 3760 cmd = FS_IOC_GETVERSION; 3761 break; 3762 case FS_IOC32_SETVERSION: 3763 cmd = FS_IOC_SETVERSION; 3764 break; 3765 default: 3766 break; 3767 } 3768 3769 return selinux_file_ioctl(file, cmd, arg); 3770 } 3771 3772 static int default_noexec __ro_after_init; 3773 3774 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3775 { 3776 const struct cred *cred = current_cred(); 3777 u32 sid = cred_sid(cred); 3778 int rc = 0; 3779 3780 if (default_noexec && 3781 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) || 3782 (!shared && (prot & PROT_WRITE)))) { 3783 /* 3784 * We are making executable an anonymous mapping or a 3785 * private file mapping that will also be writable. 3786 * This has an additional check. 3787 */ 3788 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS, 3789 PROCESS__EXECMEM, NULL); 3790 if (rc) 3791 goto error; 3792 } 3793 3794 if (file) { 3795 /* read access is always possible with a mapping */ 3796 u32 av = FILE__READ; 3797 3798 /* write access only matters if the mapping is shared */ 3799 if (shared && (prot & PROT_WRITE)) 3800 av |= FILE__WRITE; 3801 3802 if (prot & PROT_EXEC) 3803 av |= FILE__EXECUTE; 3804 3805 return file_has_perm(cred, file, av); 3806 } 3807 3808 error: 3809 return rc; 3810 } 3811 3812 static int selinux_mmap_addr(unsigned long addr) 3813 { 3814 int rc = 0; 3815 3816 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3817 u32 sid = current_sid(); 3818 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3819 MEMPROTECT__MMAP_ZERO, NULL); 3820 } 3821 3822 return rc; 3823 } 3824 3825 static int selinux_mmap_file(struct file *file, 3826 unsigned long reqprot __always_unused, 3827 unsigned long prot, unsigned long flags) 3828 { 3829 struct common_audit_data ad; 3830 int rc; 3831 3832 if (file) { 3833 ad.type = LSM_AUDIT_DATA_FILE; 3834 ad.u.file = file; 3835 rc = inode_has_perm(current_cred(), file_inode(file), 3836 FILE__MAP, &ad); 3837 if (rc) 3838 return rc; 3839 } 3840 3841 return file_map_prot_check(file, prot, 3842 (flags & MAP_TYPE) == MAP_SHARED); 3843 } 3844 3845 static int selinux_file_mprotect(struct vm_area_struct *vma, 3846 unsigned long reqprot __always_unused, 3847 unsigned long prot) 3848 { 3849 const struct cred *cred = current_cred(); 3850 u32 sid = cred_sid(cred); 3851 3852 if (default_noexec && 3853 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3854 int rc = 0; 3855 if (vma_is_initial_heap(vma)) { 3856 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS, 3857 PROCESS__EXECHEAP, NULL); 3858 } else if (!vma->vm_file && (vma_is_initial_stack(vma) || 3859 vma_is_stack_for_current(vma))) { 3860 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS, 3861 PROCESS__EXECSTACK, NULL); 3862 } else if (vma->vm_file && vma->anon_vma) { 3863 /* 3864 * We are making executable a file mapping that has 3865 * had some COW done. Since pages might have been 3866 * written, check ability to execute the possibly 3867 * modified content. This typically should only 3868 * occur for text relocations. 3869 */ 3870 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3871 } 3872 if (rc) 3873 return rc; 3874 } 3875 3876 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3877 } 3878 3879 static int selinux_file_lock(struct file *file, unsigned int cmd) 3880 { 3881 const struct cred *cred = current_cred(); 3882 3883 return file_has_perm(cred, file, FILE__LOCK); 3884 } 3885 3886 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3887 unsigned long arg) 3888 { 3889 const struct cred *cred = current_cred(); 3890 int err = 0; 3891 3892 switch (cmd) { 3893 case F_SETFL: 3894 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3895 err = file_has_perm(cred, file, FILE__WRITE); 3896 break; 3897 } 3898 fallthrough; 3899 case F_SETOWN: 3900 case F_SETSIG: 3901 case F_GETFL: 3902 case F_GETOWN: 3903 case F_GETSIG: 3904 case F_GETOWNER_UIDS: 3905 /* Just check FD__USE permission */ 3906 err = file_has_perm(cred, file, 0); 3907 break; 3908 case F_GETLK: 3909 case F_SETLK: 3910 case F_SETLKW: 3911 case F_OFD_GETLK: 3912 case F_OFD_SETLK: 3913 case F_OFD_SETLKW: 3914 #if BITS_PER_LONG == 32 3915 case F_GETLK64: 3916 case F_SETLK64: 3917 case F_SETLKW64: 3918 #endif 3919 err = file_has_perm(cred, file, FILE__LOCK); 3920 break; 3921 } 3922 3923 return err; 3924 } 3925 3926 static void selinux_file_set_fowner(struct file *file) 3927 { 3928 struct file_security_struct *fsec; 3929 3930 fsec = selinux_file(file); 3931 fsec->fown_sid = current_sid(); 3932 } 3933 3934 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3935 struct fown_struct *fown, int signum) 3936 { 3937 struct file *file; 3938 u32 sid = task_sid_obj(tsk); 3939 u32 perm; 3940 struct file_security_struct *fsec; 3941 3942 /* struct fown_struct is never outside the context of a struct file */ 3943 file = container_of(fown, struct file, f_owner); 3944 3945 fsec = selinux_file(file); 3946 3947 if (!signum) 3948 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3949 else 3950 perm = signal_to_av(signum); 3951 3952 return avc_has_perm(fsec->fown_sid, sid, 3953 SECCLASS_PROCESS, perm, NULL); 3954 } 3955 3956 static int selinux_file_receive(struct file *file) 3957 { 3958 const struct cred *cred = current_cred(); 3959 3960 return file_has_perm(cred, file, file_to_av(file)); 3961 } 3962 3963 static int selinux_file_open(struct file *file) 3964 { 3965 struct file_security_struct *fsec; 3966 struct inode_security_struct *isec; 3967 3968 fsec = selinux_file(file); 3969 isec = inode_security(file_inode(file)); 3970 /* 3971 * Save inode label and policy sequence number 3972 * at open-time so that selinux_file_permission 3973 * can determine whether revalidation is necessary. 3974 * Task label is already saved in the file security 3975 * struct as its SID. 3976 */ 3977 fsec->isid = isec->sid; 3978 fsec->pseqno = avc_policy_seqno(); 3979 /* 3980 * Since the inode label or policy seqno may have changed 3981 * between the selinux_inode_permission check and the saving 3982 * of state above, recheck that access is still permitted. 3983 * Otherwise, access might never be revalidated against the 3984 * new inode label or new policy. 3985 * This check is not redundant - do not remove. 3986 */ 3987 return file_path_has_perm(file->f_cred, file, open_file_to_av(file)); 3988 } 3989 3990 /* task security operations */ 3991 3992 static int selinux_task_alloc(struct task_struct *task, 3993 unsigned long clone_flags) 3994 { 3995 u32 sid = current_sid(); 3996 3997 return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL); 3998 } 3999 4000 /* 4001 * prepare a new set of credentials for modification 4002 */ 4003 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 4004 gfp_t gfp) 4005 { 4006 const struct task_security_struct *old_tsec = selinux_cred(old); 4007 struct task_security_struct *tsec = selinux_cred(new); 4008 4009 *tsec = *old_tsec; 4010 return 0; 4011 } 4012 4013 /* 4014 * transfer the SELinux data to a blank set of creds 4015 */ 4016 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 4017 { 4018 const struct task_security_struct *old_tsec = selinux_cred(old); 4019 struct task_security_struct *tsec = selinux_cred(new); 4020 4021 *tsec = *old_tsec; 4022 } 4023 4024 static void selinux_cred_getsecid(const struct cred *c, u32 *secid) 4025 { 4026 *secid = cred_sid(c); 4027 } 4028 4029 /* 4030 * set the security data for a kernel service 4031 * - all the creation contexts are set to unlabelled 4032 */ 4033 static int selinux_kernel_act_as(struct cred *new, u32 secid) 4034 { 4035 struct task_security_struct *tsec = selinux_cred(new); 4036 u32 sid = current_sid(); 4037 int ret; 4038 4039 ret = avc_has_perm(sid, secid, 4040 SECCLASS_KERNEL_SERVICE, 4041 KERNEL_SERVICE__USE_AS_OVERRIDE, 4042 NULL); 4043 if (ret == 0) { 4044 tsec->sid = secid; 4045 tsec->create_sid = 0; 4046 tsec->keycreate_sid = 0; 4047 tsec->sockcreate_sid = 0; 4048 } 4049 return ret; 4050 } 4051 4052 /* 4053 * set the file creation context in a security record to the same as the 4054 * objective context of the specified inode 4055 */ 4056 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 4057 { 4058 struct inode_security_struct *isec = inode_security(inode); 4059 struct task_security_struct *tsec = selinux_cred(new); 4060 u32 sid = current_sid(); 4061 int ret; 4062 4063 ret = avc_has_perm(sid, isec->sid, 4064 SECCLASS_KERNEL_SERVICE, 4065 KERNEL_SERVICE__CREATE_FILES_AS, 4066 NULL); 4067 4068 if (ret == 0) 4069 tsec->create_sid = isec->sid; 4070 return ret; 4071 } 4072 4073 static int selinux_kernel_module_request(char *kmod_name) 4074 { 4075 struct common_audit_data ad; 4076 4077 ad.type = LSM_AUDIT_DATA_KMOD; 4078 ad.u.kmod_name = kmod_name; 4079 4080 return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, 4081 SYSTEM__MODULE_REQUEST, &ad); 4082 } 4083 4084 static int selinux_kernel_module_from_file(struct file *file) 4085 { 4086 struct common_audit_data ad; 4087 struct inode_security_struct *isec; 4088 struct file_security_struct *fsec; 4089 u32 sid = current_sid(); 4090 int rc; 4091 4092 /* init_module */ 4093 if (file == NULL) 4094 return avc_has_perm(sid, sid, SECCLASS_SYSTEM, 4095 SYSTEM__MODULE_LOAD, NULL); 4096 4097 /* finit_module */ 4098 4099 ad.type = LSM_AUDIT_DATA_FILE; 4100 ad.u.file = file; 4101 4102 fsec = selinux_file(file); 4103 if (sid != fsec->sid) { 4104 rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); 4105 if (rc) 4106 return rc; 4107 } 4108 4109 isec = inode_security(file_inode(file)); 4110 return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM, 4111 SYSTEM__MODULE_LOAD, &ad); 4112 } 4113 4114 static int selinux_kernel_read_file(struct file *file, 4115 enum kernel_read_file_id id, 4116 bool contents) 4117 { 4118 int rc = 0; 4119 4120 switch (id) { 4121 case READING_MODULE: 4122 rc = selinux_kernel_module_from_file(contents ? file : NULL); 4123 break; 4124 default: 4125 break; 4126 } 4127 4128 return rc; 4129 } 4130 4131 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents) 4132 { 4133 int rc = 0; 4134 4135 switch (id) { 4136 case LOADING_MODULE: 4137 rc = selinux_kernel_module_from_file(NULL); 4138 break; 4139 default: 4140 break; 4141 } 4142 4143 return rc; 4144 } 4145 4146 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 4147 { 4148 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4149 PROCESS__SETPGID, NULL); 4150 } 4151 4152 static int selinux_task_getpgid(struct task_struct *p) 4153 { 4154 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4155 PROCESS__GETPGID, NULL); 4156 } 4157 4158 static int selinux_task_getsid(struct task_struct *p) 4159 { 4160 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4161 PROCESS__GETSESSION, NULL); 4162 } 4163 4164 static void selinux_current_getsecid_subj(u32 *secid) 4165 { 4166 *secid = current_sid(); 4167 } 4168 4169 static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid) 4170 { 4171 *secid = task_sid_obj(p); 4172 } 4173 4174 static int selinux_task_setnice(struct task_struct *p, int nice) 4175 { 4176 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4177 PROCESS__SETSCHED, NULL); 4178 } 4179 4180 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 4181 { 4182 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4183 PROCESS__SETSCHED, NULL); 4184 } 4185 4186 static int selinux_task_getioprio(struct task_struct *p) 4187 { 4188 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4189 PROCESS__GETSCHED, NULL); 4190 } 4191 4192 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred, 4193 unsigned int flags) 4194 { 4195 u32 av = 0; 4196 4197 if (!flags) 4198 return 0; 4199 if (flags & LSM_PRLIMIT_WRITE) 4200 av |= PROCESS__SETRLIMIT; 4201 if (flags & LSM_PRLIMIT_READ) 4202 av |= PROCESS__GETRLIMIT; 4203 return avc_has_perm(cred_sid(cred), cred_sid(tcred), 4204 SECCLASS_PROCESS, av, NULL); 4205 } 4206 4207 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 4208 struct rlimit *new_rlim) 4209 { 4210 struct rlimit *old_rlim = p->signal->rlim + resource; 4211 4212 /* Control the ability to change the hard limit (whether 4213 lowering or raising it), so that the hard limit can 4214 later be used as a safe reset point for the soft limit 4215 upon context transitions. See selinux_bprm_committing_creds. */ 4216 if (old_rlim->rlim_max != new_rlim->rlim_max) 4217 return avc_has_perm(current_sid(), task_sid_obj(p), 4218 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL); 4219 4220 return 0; 4221 } 4222 4223 static int selinux_task_setscheduler(struct task_struct *p) 4224 { 4225 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4226 PROCESS__SETSCHED, NULL); 4227 } 4228 4229 static int selinux_task_getscheduler(struct task_struct *p) 4230 { 4231 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4232 PROCESS__GETSCHED, NULL); 4233 } 4234 4235 static int selinux_task_movememory(struct task_struct *p) 4236 { 4237 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4238 PROCESS__SETSCHED, NULL); 4239 } 4240 4241 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info, 4242 int sig, const struct cred *cred) 4243 { 4244 u32 secid; 4245 u32 perm; 4246 4247 if (!sig) 4248 perm = PROCESS__SIGNULL; /* null signal; existence test */ 4249 else 4250 perm = signal_to_av(sig); 4251 if (!cred) 4252 secid = current_sid(); 4253 else 4254 secid = cred_sid(cred); 4255 return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL); 4256 } 4257 4258 static void selinux_task_to_inode(struct task_struct *p, 4259 struct inode *inode) 4260 { 4261 struct inode_security_struct *isec = selinux_inode(inode); 4262 u32 sid = task_sid_obj(p); 4263 4264 spin_lock(&isec->lock); 4265 isec->sclass = inode_mode_to_security_class(inode->i_mode); 4266 isec->sid = sid; 4267 isec->initialized = LABEL_INITIALIZED; 4268 spin_unlock(&isec->lock); 4269 } 4270 4271 static int selinux_userns_create(const struct cred *cred) 4272 { 4273 u32 sid = current_sid(); 4274 4275 return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE, 4276 USER_NAMESPACE__CREATE, NULL); 4277 } 4278 4279 /* Returns error only if unable to parse addresses */ 4280 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 4281 struct common_audit_data *ad, u8 *proto) 4282 { 4283 int offset, ihlen, ret = -EINVAL; 4284 struct iphdr _iph, *ih; 4285 4286 offset = skb_network_offset(skb); 4287 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 4288 if (ih == NULL) 4289 goto out; 4290 4291 ihlen = ih->ihl * 4; 4292 if (ihlen < sizeof(_iph)) 4293 goto out; 4294 4295 ad->u.net->v4info.saddr = ih->saddr; 4296 ad->u.net->v4info.daddr = ih->daddr; 4297 ret = 0; 4298 4299 if (proto) 4300 *proto = ih->protocol; 4301 4302 switch (ih->protocol) { 4303 case IPPROTO_TCP: { 4304 struct tcphdr _tcph, *th; 4305 4306 if (ntohs(ih->frag_off) & IP_OFFSET) 4307 break; 4308 4309 offset += ihlen; 4310 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4311 if (th == NULL) 4312 break; 4313 4314 ad->u.net->sport = th->source; 4315 ad->u.net->dport = th->dest; 4316 break; 4317 } 4318 4319 case IPPROTO_UDP: { 4320 struct udphdr _udph, *uh; 4321 4322 if (ntohs(ih->frag_off) & IP_OFFSET) 4323 break; 4324 4325 offset += ihlen; 4326 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4327 if (uh == NULL) 4328 break; 4329 4330 ad->u.net->sport = uh->source; 4331 ad->u.net->dport = uh->dest; 4332 break; 4333 } 4334 4335 case IPPROTO_DCCP: { 4336 struct dccp_hdr _dccph, *dh; 4337 4338 if (ntohs(ih->frag_off) & IP_OFFSET) 4339 break; 4340 4341 offset += ihlen; 4342 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4343 if (dh == NULL) 4344 break; 4345 4346 ad->u.net->sport = dh->dccph_sport; 4347 ad->u.net->dport = dh->dccph_dport; 4348 break; 4349 } 4350 4351 #if IS_ENABLED(CONFIG_IP_SCTP) 4352 case IPPROTO_SCTP: { 4353 struct sctphdr _sctph, *sh; 4354 4355 if (ntohs(ih->frag_off) & IP_OFFSET) 4356 break; 4357 4358 offset += ihlen; 4359 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4360 if (sh == NULL) 4361 break; 4362 4363 ad->u.net->sport = sh->source; 4364 ad->u.net->dport = sh->dest; 4365 break; 4366 } 4367 #endif 4368 default: 4369 break; 4370 } 4371 out: 4372 return ret; 4373 } 4374 4375 #if IS_ENABLED(CONFIG_IPV6) 4376 4377 /* Returns error only if unable to parse addresses */ 4378 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 4379 struct common_audit_data *ad, u8 *proto) 4380 { 4381 u8 nexthdr; 4382 int ret = -EINVAL, offset; 4383 struct ipv6hdr _ipv6h, *ip6; 4384 __be16 frag_off; 4385 4386 offset = skb_network_offset(skb); 4387 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 4388 if (ip6 == NULL) 4389 goto out; 4390 4391 ad->u.net->v6info.saddr = ip6->saddr; 4392 ad->u.net->v6info.daddr = ip6->daddr; 4393 ret = 0; 4394 4395 nexthdr = ip6->nexthdr; 4396 offset += sizeof(_ipv6h); 4397 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 4398 if (offset < 0) 4399 goto out; 4400 4401 if (proto) 4402 *proto = nexthdr; 4403 4404 switch (nexthdr) { 4405 case IPPROTO_TCP: { 4406 struct tcphdr _tcph, *th; 4407 4408 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4409 if (th == NULL) 4410 break; 4411 4412 ad->u.net->sport = th->source; 4413 ad->u.net->dport = th->dest; 4414 break; 4415 } 4416 4417 case IPPROTO_UDP: { 4418 struct udphdr _udph, *uh; 4419 4420 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4421 if (uh == NULL) 4422 break; 4423 4424 ad->u.net->sport = uh->source; 4425 ad->u.net->dport = uh->dest; 4426 break; 4427 } 4428 4429 case IPPROTO_DCCP: { 4430 struct dccp_hdr _dccph, *dh; 4431 4432 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4433 if (dh == NULL) 4434 break; 4435 4436 ad->u.net->sport = dh->dccph_sport; 4437 ad->u.net->dport = dh->dccph_dport; 4438 break; 4439 } 4440 4441 #if IS_ENABLED(CONFIG_IP_SCTP) 4442 case IPPROTO_SCTP: { 4443 struct sctphdr _sctph, *sh; 4444 4445 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4446 if (sh == NULL) 4447 break; 4448 4449 ad->u.net->sport = sh->source; 4450 ad->u.net->dport = sh->dest; 4451 break; 4452 } 4453 #endif 4454 /* includes fragments */ 4455 default: 4456 break; 4457 } 4458 out: 4459 return ret; 4460 } 4461 4462 #endif /* IPV6 */ 4463 4464 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 4465 char **_addrp, int src, u8 *proto) 4466 { 4467 char *addrp; 4468 int ret; 4469 4470 switch (ad->u.net->family) { 4471 case PF_INET: 4472 ret = selinux_parse_skb_ipv4(skb, ad, proto); 4473 if (ret) 4474 goto parse_error; 4475 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 4476 &ad->u.net->v4info.daddr); 4477 goto okay; 4478 4479 #if IS_ENABLED(CONFIG_IPV6) 4480 case PF_INET6: 4481 ret = selinux_parse_skb_ipv6(skb, ad, proto); 4482 if (ret) 4483 goto parse_error; 4484 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 4485 &ad->u.net->v6info.daddr); 4486 goto okay; 4487 #endif /* IPV6 */ 4488 default: 4489 addrp = NULL; 4490 goto okay; 4491 } 4492 4493 parse_error: 4494 pr_warn( 4495 "SELinux: failure in selinux_parse_skb()," 4496 " unable to parse packet\n"); 4497 return ret; 4498 4499 okay: 4500 if (_addrp) 4501 *_addrp = addrp; 4502 return 0; 4503 } 4504 4505 /** 4506 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 4507 * @skb: the packet 4508 * @family: protocol family 4509 * @sid: the packet's peer label SID 4510 * 4511 * Description: 4512 * Check the various different forms of network peer labeling and determine 4513 * the peer label/SID for the packet; most of the magic actually occurs in 4514 * the security server function security_net_peersid_cmp(). The function 4515 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 4516 * or -EACCES if @sid is invalid due to inconsistencies with the different 4517 * peer labels. 4518 * 4519 */ 4520 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 4521 { 4522 int err; 4523 u32 xfrm_sid; 4524 u32 nlbl_sid; 4525 u32 nlbl_type; 4526 4527 err = selinux_xfrm_skb_sid(skb, &xfrm_sid); 4528 if (unlikely(err)) 4529 return -EACCES; 4530 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 4531 if (unlikely(err)) 4532 return -EACCES; 4533 4534 err = security_net_peersid_resolve(nlbl_sid, 4535 nlbl_type, xfrm_sid, sid); 4536 if (unlikely(err)) { 4537 pr_warn( 4538 "SELinux: failure in selinux_skb_peerlbl_sid()," 4539 " unable to determine packet's peer label\n"); 4540 return -EACCES; 4541 } 4542 4543 return 0; 4544 } 4545 4546 /** 4547 * selinux_conn_sid - Determine the child socket label for a connection 4548 * @sk_sid: the parent socket's SID 4549 * @skb_sid: the packet's SID 4550 * @conn_sid: the resulting connection SID 4551 * 4552 * If @skb_sid is valid then the user:role:type information from @sk_sid is 4553 * combined with the MLS information from @skb_sid in order to create 4554 * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy 4555 * of @sk_sid. Returns zero on success, negative values on failure. 4556 * 4557 */ 4558 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) 4559 { 4560 int err = 0; 4561 4562 if (skb_sid != SECSID_NULL) 4563 err = security_sid_mls_copy(sk_sid, skb_sid, 4564 conn_sid); 4565 else 4566 *conn_sid = sk_sid; 4567 4568 return err; 4569 } 4570 4571 /* socket security operations */ 4572 4573 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 4574 u16 secclass, u32 *socksid) 4575 { 4576 if (tsec->sockcreate_sid > SECSID_NULL) { 4577 *socksid = tsec->sockcreate_sid; 4578 return 0; 4579 } 4580 4581 return security_transition_sid(tsec->sid, tsec->sid, 4582 secclass, NULL, socksid); 4583 } 4584 4585 static int sock_has_perm(struct sock *sk, u32 perms) 4586 { 4587 struct sk_security_struct *sksec = sk->sk_security; 4588 struct common_audit_data ad; 4589 struct lsm_network_audit net; 4590 4591 if (sksec->sid == SECINITSID_KERNEL) 4592 return 0; 4593 4594 /* 4595 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that 4596 * inherited the kernel context from early boot used to be skipped 4597 * here, so preserve that behavior unless the capability is set. 4598 * 4599 * By setting the capability the policy signals that it is ready 4600 * for this quirk to be fixed. Note that sockets created by a kernel 4601 * thread or a usermode helper executed without a transition will 4602 * still be skipped in this check regardless of the policycap 4603 * setting. 4604 */ 4605 if (!selinux_policycap_userspace_initial_context() && 4606 sksec->sid == SECINITSID_INIT) 4607 return 0; 4608 4609 ad_net_init_from_sk(&ad, &net, sk); 4610 4611 return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms, 4612 &ad); 4613 } 4614 4615 static int selinux_socket_create(int family, int type, 4616 int protocol, int kern) 4617 { 4618 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4619 u32 newsid; 4620 u16 secclass; 4621 int rc; 4622 4623 if (kern) 4624 return 0; 4625 4626 secclass = socket_type_to_security_class(family, type, protocol); 4627 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 4628 if (rc) 4629 return rc; 4630 4631 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 4632 } 4633 4634 static int selinux_socket_post_create(struct socket *sock, int family, 4635 int type, int protocol, int kern) 4636 { 4637 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4638 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock)); 4639 struct sk_security_struct *sksec; 4640 u16 sclass = socket_type_to_security_class(family, type, protocol); 4641 u32 sid = SECINITSID_KERNEL; 4642 int err = 0; 4643 4644 if (!kern) { 4645 err = socket_sockcreate_sid(tsec, sclass, &sid); 4646 if (err) 4647 return err; 4648 } 4649 4650 isec->sclass = sclass; 4651 isec->sid = sid; 4652 isec->initialized = LABEL_INITIALIZED; 4653 4654 if (sock->sk) { 4655 sksec = sock->sk->sk_security; 4656 sksec->sclass = sclass; 4657 sksec->sid = sid; 4658 /* Allows detection of the first association on this socket */ 4659 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4660 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET; 4661 4662 err = selinux_netlbl_socket_post_create(sock->sk, family); 4663 } 4664 4665 return err; 4666 } 4667 4668 static int selinux_socket_socketpair(struct socket *socka, 4669 struct socket *sockb) 4670 { 4671 struct sk_security_struct *sksec_a = socka->sk->sk_security; 4672 struct sk_security_struct *sksec_b = sockb->sk->sk_security; 4673 4674 sksec_a->peer_sid = sksec_b->sid; 4675 sksec_b->peer_sid = sksec_a->sid; 4676 4677 return 0; 4678 } 4679 4680 /* Range of port numbers used to automatically bind. 4681 Need to determine whether we should perform a name_bind 4682 permission check between the socket and the port number. */ 4683 4684 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 4685 { 4686 struct sock *sk = sock->sk; 4687 struct sk_security_struct *sksec = sk->sk_security; 4688 u16 family; 4689 int err; 4690 4691 err = sock_has_perm(sk, SOCKET__BIND); 4692 if (err) 4693 goto out; 4694 4695 /* If PF_INET or PF_INET6, check name_bind permission for the port. */ 4696 family = sk->sk_family; 4697 if (family == PF_INET || family == PF_INET6) { 4698 char *addrp; 4699 struct common_audit_data ad; 4700 struct lsm_network_audit net = {0,}; 4701 struct sockaddr_in *addr4 = NULL; 4702 struct sockaddr_in6 *addr6 = NULL; 4703 u16 family_sa; 4704 unsigned short snum; 4705 u32 sid, node_perm; 4706 4707 /* 4708 * sctp_bindx(3) calls via selinux_sctp_bind_connect() 4709 * that validates multiple binding addresses. Because of this 4710 * need to check address->sa_family as it is possible to have 4711 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4712 */ 4713 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4714 return -EINVAL; 4715 family_sa = address->sa_family; 4716 switch (family_sa) { 4717 case AF_UNSPEC: 4718 case AF_INET: 4719 if (addrlen < sizeof(struct sockaddr_in)) 4720 return -EINVAL; 4721 addr4 = (struct sockaddr_in *)address; 4722 if (family_sa == AF_UNSPEC) { 4723 if (family == PF_INET6) { 4724 /* Length check from inet6_bind_sk() */ 4725 if (addrlen < SIN6_LEN_RFC2133) 4726 return -EINVAL; 4727 /* Family check from __inet6_bind() */ 4728 goto err_af; 4729 } 4730 /* see __inet_bind(), we only want to allow 4731 * AF_UNSPEC if the address is INADDR_ANY 4732 */ 4733 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY)) 4734 goto err_af; 4735 family_sa = AF_INET; 4736 } 4737 snum = ntohs(addr4->sin_port); 4738 addrp = (char *)&addr4->sin_addr.s_addr; 4739 break; 4740 case AF_INET6: 4741 if (addrlen < SIN6_LEN_RFC2133) 4742 return -EINVAL; 4743 addr6 = (struct sockaddr_in6 *)address; 4744 snum = ntohs(addr6->sin6_port); 4745 addrp = (char *)&addr6->sin6_addr.s6_addr; 4746 break; 4747 default: 4748 goto err_af; 4749 } 4750 4751 ad.type = LSM_AUDIT_DATA_NET; 4752 ad.u.net = &net; 4753 ad.u.net->sport = htons(snum); 4754 ad.u.net->family = family_sa; 4755 4756 if (snum) { 4757 int low, high; 4758 4759 inet_get_local_port_range(sock_net(sk), &low, &high); 4760 4761 if (inet_port_requires_bind_service(sock_net(sk), snum) || 4762 snum < low || snum > high) { 4763 err = sel_netport_sid(sk->sk_protocol, 4764 snum, &sid); 4765 if (err) 4766 goto out; 4767 err = avc_has_perm(sksec->sid, sid, 4768 sksec->sclass, 4769 SOCKET__NAME_BIND, &ad); 4770 if (err) 4771 goto out; 4772 } 4773 } 4774 4775 switch (sksec->sclass) { 4776 case SECCLASS_TCP_SOCKET: 4777 node_perm = TCP_SOCKET__NODE_BIND; 4778 break; 4779 4780 case SECCLASS_UDP_SOCKET: 4781 node_perm = UDP_SOCKET__NODE_BIND; 4782 break; 4783 4784 case SECCLASS_DCCP_SOCKET: 4785 node_perm = DCCP_SOCKET__NODE_BIND; 4786 break; 4787 4788 case SECCLASS_SCTP_SOCKET: 4789 node_perm = SCTP_SOCKET__NODE_BIND; 4790 break; 4791 4792 default: 4793 node_perm = RAWIP_SOCKET__NODE_BIND; 4794 break; 4795 } 4796 4797 err = sel_netnode_sid(addrp, family_sa, &sid); 4798 if (err) 4799 goto out; 4800 4801 if (family_sa == AF_INET) 4802 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 4803 else 4804 ad.u.net->v6info.saddr = addr6->sin6_addr; 4805 4806 err = avc_has_perm(sksec->sid, sid, 4807 sksec->sclass, node_perm, &ad); 4808 if (err) 4809 goto out; 4810 } 4811 out: 4812 return err; 4813 err_af: 4814 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */ 4815 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4816 return -EINVAL; 4817 return -EAFNOSUPPORT; 4818 } 4819 4820 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3) 4821 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst 4822 */ 4823 static int selinux_socket_connect_helper(struct socket *sock, 4824 struct sockaddr *address, int addrlen) 4825 { 4826 struct sock *sk = sock->sk; 4827 struct sk_security_struct *sksec = sk->sk_security; 4828 int err; 4829 4830 err = sock_has_perm(sk, SOCKET__CONNECT); 4831 if (err) 4832 return err; 4833 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4834 return -EINVAL; 4835 4836 /* connect(AF_UNSPEC) has special handling, as it is a documented 4837 * way to disconnect the socket 4838 */ 4839 if (address->sa_family == AF_UNSPEC) 4840 return 0; 4841 4842 /* 4843 * If a TCP, DCCP or SCTP socket, check name_connect permission 4844 * for the port. 4845 */ 4846 if (sksec->sclass == SECCLASS_TCP_SOCKET || 4847 sksec->sclass == SECCLASS_DCCP_SOCKET || 4848 sksec->sclass == SECCLASS_SCTP_SOCKET) { 4849 struct common_audit_data ad; 4850 struct lsm_network_audit net = {0,}; 4851 struct sockaddr_in *addr4 = NULL; 4852 struct sockaddr_in6 *addr6 = NULL; 4853 unsigned short snum; 4854 u32 sid, perm; 4855 4856 /* sctp_connectx(3) calls via selinux_sctp_bind_connect() 4857 * that validates multiple connect addresses. Because of this 4858 * need to check address->sa_family as it is possible to have 4859 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4860 */ 4861 switch (address->sa_family) { 4862 case AF_INET: 4863 addr4 = (struct sockaddr_in *)address; 4864 if (addrlen < sizeof(struct sockaddr_in)) 4865 return -EINVAL; 4866 snum = ntohs(addr4->sin_port); 4867 break; 4868 case AF_INET6: 4869 addr6 = (struct sockaddr_in6 *)address; 4870 if (addrlen < SIN6_LEN_RFC2133) 4871 return -EINVAL; 4872 snum = ntohs(addr6->sin6_port); 4873 break; 4874 default: 4875 /* Note that SCTP services expect -EINVAL, whereas 4876 * others expect -EAFNOSUPPORT. 4877 */ 4878 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4879 return -EINVAL; 4880 else 4881 return -EAFNOSUPPORT; 4882 } 4883 4884 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 4885 if (err) 4886 return err; 4887 4888 switch (sksec->sclass) { 4889 case SECCLASS_TCP_SOCKET: 4890 perm = TCP_SOCKET__NAME_CONNECT; 4891 break; 4892 case SECCLASS_DCCP_SOCKET: 4893 perm = DCCP_SOCKET__NAME_CONNECT; 4894 break; 4895 case SECCLASS_SCTP_SOCKET: 4896 perm = SCTP_SOCKET__NAME_CONNECT; 4897 break; 4898 } 4899 4900 ad.type = LSM_AUDIT_DATA_NET; 4901 ad.u.net = &net; 4902 ad.u.net->dport = htons(snum); 4903 ad.u.net->family = address->sa_family; 4904 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad); 4905 if (err) 4906 return err; 4907 } 4908 4909 return 0; 4910 } 4911 4912 /* Supports connect(2), see comments in selinux_socket_connect_helper() */ 4913 static int selinux_socket_connect(struct socket *sock, 4914 struct sockaddr *address, int addrlen) 4915 { 4916 int err; 4917 struct sock *sk = sock->sk; 4918 4919 err = selinux_socket_connect_helper(sock, address, addrlen); 4920 if (err) 4921 return err; 4922 4923 return selinux_netlbl_socket_connect(sk, address); 4924 } 4925 4926 static int selinux_socket_listen(struct socket *sock, int backlog) 4927 { 4928 return sock_has_perm(sock->sk, SOCKET__LISTEN); 4929 } 4930 4931 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 4932 { 4933 int err; 4934 struct inode_security_struct *isec; 4935 struct inode_security_struct *newisec; 4936 u16 sclass; 4937 u32 sid; 4938 4939 err = sock_has_perm(sock->sk, SOCKET__ACCEPT); 4940 if (err) 4941 return err; 4942 4943 isec = inode_security_novalidate(SOCK_INODE(sock)); 4944 spin_lock(&isec->lock); 4945 sclass = isec->sclass; 4946 sid = isec->sid; 4947 spin_unlock(&isec->lock); 4948 4949 newisec = inode_security_novalidate(SOCK_INODE(newsock)); 4950 newisec->sclass = sclass; 4951 newisec->sid = sid; 4952 newisec->initialized = LABEL_INITIALIZED; 4953 4954 return 0; 4955 } 4956 4957 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4958 int size) 4959 { 4960 return sock_has_perm(sock->sk, SOCKET__WRITE); 4961 } 4962 4963 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4964 int size, int flags) 4965 { 4966 return sock_has_perm(sock->sk, SOCKET__READ); 4967 } 4968 4969 static int selinux_socket_getsockname(struct socket *sock) 4970 { 4971 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4972 } 4973 4974 static int selinux_socket_getpeername(struct socket *sock) 4975 { 4976 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4977 } 4978 4979 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 4980 { 4981 int err; 4982 4983 err = sock_has_perm(sock->sk, SOCKET__SETOPT); 4984 if (err) 4985 return err; 4986 4987 return selinux_netlbl_socket_setsockopt(sock, level, optname); 4988 } 4989 4990 static int selinux_socket_getsockopt(struct socket *sock, int level, 4991 int optname) 4992 { 4993 return sock_has_perm(sock->sk, SOCKET__GETOPT); 4994 } 4995 4996 static int selinux_socket_shutdown(struct socket *sock, int how) 4997 { 4998 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN); 4999 } 5000 5001 static int selinux_socket_unix_stream_connect(struct sock *sock, 5002 struct sock *other, 5003 struct sock *newsk) 5004 { 5005 struct sk_security_struct *sksec_sock = sock->sk_security; 5006 struct sk_security_struct *sksec_other = other->sk_security; 5007 struct sk_security_struct *sksec_new = newsk->sk_security; 5008 struct common_audit_data ad; 5009 struct lsm_network_audit net; 5010 int err; 5011 5012 ad_net_init_from_sk(&ad, &net, other); 5013 5014 err = avc_has_perm(sksec_sock->sid, sksec_other->sid, 5015 sksec_other->sclass, 5016 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 5017 if (err) 5018 return err; 5019 5020 /* server child socket */ 5021 sksec_new->peer_sid = sksec_sock->sid; 5022 err = security_sid_mls_copy(sksec_other->sid, 5023 sksec_sock->sid, &sksec_new->sid); 5024 if (err) 5025 return err; 5026 5027 /* connecting socket */ 5028 sksec_sock->peer_sid = sksec_new->sid; 5029 5030 return 0; 5031 } 5032 5033 static int selinux_socket_unix_may_send(struct socket *sock, 5034 struct socket *other) 5035 { 5036 struct sk_security_struct *ssec = sock->sk->sk_security; 5037 struct sk_security_struct *osec = other->sk->sk_security; 5038 struct common_audit_data ad; 5039 struct lsm_network_audit net; 5040 5041 ad_net_init_from_sk(&ad, &net, other->sk); 5042 5043 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 5044 &ad); 5045 } 5046 5047 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, 5048 char *addrp, u16 family, u32 peer_sid, 5049 struct common_audit_data *ad) 5050 { 5051 int err; 5052 u32 if_sid; 5053 u32 node_sid; 5054 5055 err = sel_netif_sid(ns, ifindex, &if_sid); 5056 if (err) 5057 return err; 5058 err = avc_has_perm(peer_sid, if_sid, 5059 SECCLASS_NETIF, NETIF__INGRESS, ad); 5060 if (err) 5061 return err; 5062 5063 err = sel_netnode_sid(addrp, family, &node_sid); 5064 if (err) 5065 return err; 5066 return avc_has_perm(peer_sid, node_sid, 5067 SECCLASS_NODE, NODE__RECVFROM, ad); 5068 } 5069 5070 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 5071 u16 family) 5072 { 5073 int err = 0; 5074 struct sk_security_struct *sksec = sk->sk_security; 5075 u32 sk_sid = sksec->sid; 5076 struct common_audit_data ad; 5077 struct lsm_network_audit net; 5078 char *addrp; 5079 5080 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family); 5081 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 5082 if (err) 5083 return err; 5084 5085 if (selinux_secmark_enabled()) { 5086 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 5087 PACKET__RECV, &ad); 5088 if (err) 5089 return err; 5090 } 5091 5092 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 5093 if (err) 5094 return err; 5095 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 5096 5097 return err; 5098 } 5099 5100 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 5101 { 5102 int err, peerlbl_active, secmark_active; 5103 struct sk_security_struct *sksec = sk->sk_security; 5104 u16 family = sk->sk_family; 5105 u32 sk_sid = sksec->sid; 5106 struct common_audit_data ad; 5107 struct lsm_network_audit net; 5108 char *addrp; 5109 5110 if (family != PF_INET && family != PF_INET6) 5111 return 0; 5112 5113 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 5114 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5115 family = PF_INET; 5116 5117 /* If any sort of compatibility mode is enabled then handoff processing 5118 * to the selinux_sock_rcv_skb_compat() function to deal with the 5119 * special handling. We do this in an attempt to keep this function 5120 * as fast and as clean as possible. */ 5121 if (!selinux_policycap_netpeer()) 5122 return selinux_sock_rcv_skb_compat(sk, skb, family); 5123 5124 secmark_active = selinux_secmark_enabled(); 5125 peerlbl_active = selinux_peerlbl_enabled(); 5126 if (!secmark_active && !peerlbl_active) 5127 return 0; 5128 5129 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family); 5130 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 5131 if (err) 5132 return err; 5133 5134 if (peerlbl_active) { 5135 u32 peer_sid; 5136 5137 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 5138 if (err) 5139 return err; 5140 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, 5141 addrp, family, peer_sid, &ad); 5142 if (err) { 5143 selinux_netlbl_err(skb, family, err, 0); 5144 return err; 5145 } 5146 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 5147 PEER__RECV, &ad); 5148 if (err) { 5149 selinux_netlbl_err(skb, family, err, 0); 5150 return err; 5151 } 5152 } 5153 5154 if (secmark_active) { 5155 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 5156 PACKET__RECV, &ad); 5157 if (err) 5158 return err; 5159 } 5160 5161 return err; 5162 } 5163 5164 static int selinux_socket_getpeersec_stream(struct socket *sock, 5165 sockptr_t optval, sockptr_t optlen, 5166 unsigned int len) 5167 { 5168 int err = 0; 5169 char *scontext = NULL; 5170 u32 scontext_len; 5171 struct sk_security_struct *sksec = sock->sk->sk_security; 5172 u32 peer_sid = SECSID_NULL; 5173 5174 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 5175 sksec->sclass == SECCLASS_TCP_SOCKET || 5176 sksec->sclass == SECCLASS_SCTP_SOCKET) 5177 peer_sid = sksec->peer_sid; 5178 if (peer_sid == SECSID_NULL) 5179 return -ENOPROTOOPT; 5180 5181 err = security_sid_to_context(peer_sid, &scontext, 5182 &scontext_len); 5183 if (err) 5184 return err; 5185 if (scontext_len > len) { 5186 err = -ERANGE; 5187 goto out_len; 5188 } 5189 5190 if (copy_to_sockptr(optval, scontext, scontext_len)) 5191 err = -EFAULT; 5192 out_len: 5193 if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len))) 5194 err = -EFAULT; 5195 kfree(scontext); 5196 return err; 5197 } 5198 5199 static int selinux_socket_getpeersec_dgram(struct socket *sock, 5200 struct sk_buff *skb, u32 *secid) 5201 { 5202 u32 peer_secid = SECSID_NULL; 5203 u16 family; 5204 5205 if (skb && skb->protocol == htons(ETH_P_IP)) 5206 family = PF_INET; 5207 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 5208 family = PF_INET6; 5209 else if (sock) 5210 family = sock->sk->sk_family; 5211 else { 5212 *secid = SECSID_NULL; 5213 return -EINVAL; 5214 } 5215 5216 if (sock && family == PF_UNIX) { 5217 struct inode_security_struct *isec; 5218 isec = inode_security_novalidate(SOCK_INODE(sock)); 5219 peer_secid = isec->sid; 5220 } else if (skb) 5221 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 5222 5223 *secid = peer_secid; 5224 if (peer_secid == SECSID_NULL) 5225 return -ENOPROTOOPT; 5226 return 0; 5227 } 5228 5229 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 5230 { 5231 struct sk_security_struct *sksec; 5232 5233 sksec = kzalloc(sizeof(*sksec), priority); 5234 if (!sksec) 5235 return -ENOMEM; 5236 5237 sksec->peer_sid = SECINITSID_UNLABELED; 5238 sksec->sid = SECINITSID_UNLABELED; 5239 sksec->sclass = SECCLASS_SOCKET; 5240 selinux_netlbl_sk_security_reset(sksec); 5241 sk->sk_security = sksec; 5242 5243 return 0; 5244 } 5245 5246 static void selinux_sk_free_security(struct sock *sk) 5247 { 5248 struct sk_security_struct *sksec = sk->sk_security; 5249 5250 sk->sk_security = NULL; 5251 selinux_netlbl_sk_security_free(sksec); 5252 kfree(sksec); 5253 } 5254 5255 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 5256 { 5257 struct sk_security_struct *sksec = sk->sk_security; 5258 struct sk_security_struct *newsksec = newsk->sk_security; 5259 5260 newsksec->sid = sksec->sid; 5261 newsksec->peer_sid = sksec->peer_sid; 5262 newsksec->sclass = sksec->sclass; 5263 5264 selinux_netlbl_sk_security_reset(newsksec); 5265 } 5266 5267 static void selinux_sk_getsecid(const struct sock *sk, u32 *secid) 5268 { 5269 if (!sk) 5270 *secid = SECINITSID_ANY_SOCKET; 5271 else { 5272 const struct sk_security_struct *sksec = sk->sk_security; 5273 5274 *secid = sksec->sid; 5275 } 5276 } 5277 5278 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 5279 { 5280 struct inode_security_struct *isec = 5281 inode_security_novalidate(SOCK_INODE(parent)); 5282 struct sk_security_struct *sksec = sk->sk_security; 5283 5284 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 5285 sk->sk_family == PF_UNIX) 5286 isec->sid = sksec->sid; 5287 sksec->sclass = isec->sclass; 5288 } 5289 5290 /* 5291 * Determines peer_secid for the asoc and updates socket's peer label 5292 * if it's the first association on the socket. 5293 */ 5294 static int selinux_sctp_process_new_assoc(struct sctp_association *asoc, 5295 struct sk_buff *skb) 5296 { 5297 struct sock *sk = asoc->base.sk; 5298 u16 family = sk->sk_family; 5299 struct sk_security_struct *sksec = sk->sk_security; 5300 struct common_audit_data ad; 5301 struct lsm_network_audit net; 5302 int err; 5303 5304 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 5305 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5306 family = PF_INET; 5307 5308 if (selinux_peerlbl_enabled()) { 5309 asoc->peer_secid = SECSID_NULL; 5310 5311 /* This will return peer_sid = SECSID_NULL if there are 5312 * no peer labels, see security_net_peersid_resolve(). 5313 */ 5314 err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid); 5315 if (err) 5316 return err; 5317 5318 if (asoc->peer_secid == SECSID_NULL) 5319 asoc->peer_secid = SECINITSID_UNLABELED; 5320 } else { 5321 asoc->peer_secid = SECINITSID_UNLABELED; 5322 } 5323 5324 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) { 5325 sksec->sctp_assoc_state = SCTP_ASSOC_SET; 5326 5327 /* Here as first association on socket. As the peer SID 5328 * was allowed by peer recv (and the netif/node checks), 5329 * then it is approved by policy and used as the primary 5330 * peer SID for getpeercon(3). 5331 */ 5332 sksec->peer_sid = asoc->peer_secid; 5333 } else if (sksec->peer_sid != asoc->peer_secid) { 5334 /* Other association peer SIDs are checked to enforce 5335 * consistency among the peer SIDs. 5336 */ 5337 ad_net_init_from_sk(&ad, &net, asoc->base.sk); 5338 err = avc_has_perm(sksec->peer_sid, asoc->peer_secid, 5339 sksec->sclass, SCTP_SOCKET__ASSOCIATION, 5340 &ad); 5341 if (err) 5342 return err; 5343 } 5344 return 0; 5345 } 5346 5347 /* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This 5348 * happens on an incoming connect(2), sctp_connectx(3) or 5349 * sctp_sendmsg(3) (with no association already present). 5350 */ 5351 static int selinux_sctp_assoc_request(struct sctp_association *asoc, 5352 struct sk_buff *skb) 5353 { 5354 struct sk_security_struct *sksec = asoc->base.sk->sk_security; 5355 u32 conn_sid; 5356 int err; 5357 5358 if (!selinux_policycap_extsockclass()) 5359 return 0; 5360 5361 err = selinux_sctp_process_new_assoc(asoc, skb); 5362 if (err) 5363 return err; 5364 5365 /* Compute the MLS component for the connection and store 5366 * the information in asoc. This will be used by SCTP TCP type 5367 * sockets and peeled off connections as they cause a new 5368 * socket to be generated. selinux_sctp_sk_clone() will then 5369 * plug this into the new socket. 5370 */ 5371 err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid); 5372 if (err) 5373 return err; 5374 5375 asoc->secid = conn_sid; 5376 5377 /* Set any NetLabel labels including CIPSO/CALIPSO options. */ 5378 return selinux_netlbl_sctp_assoc_request(asoc, skb); 5379 } 5380 5381 /* Called when SCTP receives a COOKIE ACK chunk as the final 5382 * response to an association request (initited by us). 5383 */ 5384 static int selinux_sctp_assoc_established(struct sctp_association *asoc, 5385 struct sk_buff *skb) 5386 { 5387 struct sk_security_struct *sksec = asoc->base.sk->sk_security; 5388 5389 if (!selinux_policycap_extsockclass()) 5390 return 0; 5391 5392 /* Inherit secid from the parent socket - this will be picked up 5393 * by selinux_sctp_sk_clone() if the association gets peeled off 5394 * into a new socket. 5395 */ 5396 asoc->secid = sksec->sid; 5397 5398 return selinux_sctp_process_new_assoc(asoc, skb); 5399 } 5400 5401 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting 5402 * based on their @optname. 5403 */ 5404 static int selinux_sctp_bind_connect(struct sock *sk, int optname, 5405 struct sockaddr *address, 5406 int addrlen) 5407 { 5408 int len, err = 0, walk_size = 0; 5409 void *addr_buf; 5410 struct sockaddr *addr; 5411 struct socket *sock; 5412 5413 if (!selinux_policycap_extsockclass()) 5414 return 0; 5415 5416 /* Process one or more addresses that may be IPv4 or IPv6 */ 5417 sock = sk->sk_socket; 5418 addr_buf = address; 5419 5420 while (walk_size < addrlen) { 5421 if (walk_size + sizeof(sa_family_t) > addrlen) 5422 return -EINVAL; 5423 5424 addr = addr_buf; 5425 switch (addr->sa_family) { 5426 case AF_UNSPEC: 5427 case AF_INET: 5428 len = sizeof(struct sockaddr_in); 5429 break; 5430 case AF_INET6: 5431 len = sizeof(struct sockaddr_in6); 5432 break; 5433 default: 5434 return -EINVAL; 5435 } 5436 5437 if (walk_size + len > addrlen) 5438 return -EINVAL; 5439 5440 err = -EINVAL; 5441 switch (optname) { 5442 /* Bind checks */ 5443 case SCTP_PRIMARY_ADDR: 5444 case SCTP_SET_PEER_PRIMARY_ADDR: 5445 case SCTP_SOCKOPT_BINDX_ADD: 5446 err = selinux_socket_bind(sock, addr, len); 5447 break; 5448 /* Connect checks */ 5449 case SCTP_SOCKOPT_CONNECTX: 5450 case SCTP_PARAM_SET_PRIMARY: 5451 case SCTP_PARAM_ADD_IP: 5452 case SCTP_SENDMSG_CONNECT: 5453 err = selinux_socket_connect_helper(sock, addr, len); 5454 if (err) 5455 return err; 5456 5457 /* As selinux_sctp_bind_connect() is called by the 5458 * SCTP protocol layer, the socket is already locked, 5459 * therefore selinux_netlbl_socket_connect_locked() 5460 * is called here. The situations handled are: 5461 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2), 5462 * whenever a new IP address is added or when a new 5463 * primary address is selected. 5464 * Note that an SCTP connect(2) call happens before 5465 * the SCTP protocol layer and is handled via 5466 * selinux_socket_connect(). 5467 */ 5468 err = selinux_netlbl_socket_connect_locked(sk, addr); 5469 break; 5470 } 5471 5472 if (err) 5473 return err; 5474 5475 addr_buf += len; 5476 walk_size += len; 5477 } 5478 5479 return 0; 5480 } 5481 5482 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */ 5483 static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 5484 struct sock *newsk) 5485 { 5486 struct sk_security_struct *sksec = sk->sk_security; 5487 struct sk_security_struct *newsksec = newsk->sk_security; 5488 5489 /* If policy does not support SECCLASS_SCTP_SOCKET then call 5490 * the non-sctp clone version. 5491 */ 5492 if (!selinux_policycap_extsockclass()) 5493 return selinux_sk_clone_security(sk, newsk); 5494 5495 newsksec->sid = asoc->secid; 5496 newsksec->peer_sid = asoc->peer_secid; 5497 newsksec->sclass = sksec->sclass; 5498 selinux_netlbl_sctp_sk_clone(sk, newsk); 5499 } 5500 5501 static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk) 5502 { 5503 struct sk_security_struct *ssksec = ssk->sk_security; 5504 struct sk_security_struct *sksec = sk->sk_security; 5505 5506 ssksec->sclass = sksec->sclass; 5507 ssksec->sid = sksec->sid; 5508 5509 /* replace the existing subflow label deleting the existing one 5510 * and re-recreating a new label using the updated context 5511 */ 5512 selinux_netlbl_sk_security_free(ssksec); 5513 return selinux_netlbl_socket_post_create(ssk, ssk->sk_family); 5514 } 5515 5516 static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb, 5517 struct request_sock *req) 5518 { 5519 struct sk_security_struct *sksec = sk->sk_security; 5520 int err; 5521 u16 family = req->rsk_ops->family; 5522 u32 connsid; 5523 u32 peersid; 5524 5525 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 5526 if (err) 5527 return err; 5528 err = selinux_conn_sid(sksec->sid, peersid, &connsid); 5529 if (err) 5530 return err; 5531 req->secid = connsid; 5532 req->peer_secid = peersid; 5533 5534 return selinux_netlbl_inet_conn_request(req, family); 5535 } 5536 5537 static void selinux_inet_csk_clone(struct sock *newsk, 5538 const struct request_sock *req) 5539 { 5540 struct sk_security_struct *newsksec = newsk->sk_security; 5541 5542 newsksec->sid = req->secid; 5543 newsksec->peer_sid = req->peer_secid; 5544 /* NOTE: Ideally, we should also get the isec->sid for the 5545 new socket in sync, but we don't have the isec available yet. 5546 So we will wait until sock_graft to do it, by which 5547 time it will have been created and available. */ 5548 5549 /* We don't need to take any sort of lock here as we are the only 5550 * thread with access to newsksec */ 5551 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 5552 } 5553 5554 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 5555 { 5556 u16 family = sk->sk_family; 5557 struct sk_security_struct *sksec = sk->sk_security; 5558 5559 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 5560 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5561 family = PF_INET; 5562 5563 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 5564 } 5565 5566 static int selinux_secmark_relabel_packet(u32 sid) 5567 { 5568 return avc_has_perm(current_sid(), sid, SECCLASS_PACKET, PACKET__RELABELTO, 5569 NULL); 5570 } 5571 5572 static void selinux_secmark_refcount_inc(void) 5573 { 5574 atomic_inc(&selinux_secmark_refcount); 5575 } 5576 5577 static void selinux_secmark_refcount_dec(void) 5578 { 5579 atomic_dec(&selinux_secmark_refcount); 5580 } 5581 5582 static void selinux_req_classify_flow(const struct request_sock *req, 5583 struct flowi_common *flic) 5584 { 5585 flic->flowic_secid = req->secid; 5586 } 5587 5588 static int selinux_tun_dev_alloc_security(void **security) 5589 { 5590 struct tun_security_struct *tunsec; 5591 5592 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); 5593 if (!tunsec) 5594 return -ENOMEM; 5595 tunsec->sid = current_sid(); 5596 5597 *security = tunsec; 5598 return 0; 5599 } 5600 5601 static void selinux_tun_dev_free_security(void *security) 5602 { 5603 kfree(security); 5604 } 5605 5606 static int selinux_tun_dev_create(void) 5607 { 5608 u32 sid = current_sid(); 5609 5610 /* we aren't taking into account the "sockcreate" SID since the socket 5611 * that is being created here is not a socket in the traditional sense, 5612 * instead it is a private sock, accessible only to the kernel, and 5613 * representing a wide range of network traffic spanning multiple 5614 * connections unlike traditional sockets - check the TUN driver to 5615 * get a better understanding of why this socket is special */ 5616 5617 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 5618 NULL); 5619 } 5620 5621 static int selinux_tun_dev_attach_queue(void *security) 5622 { 5623 struct tun_security_struct *tunsec = security; 5624 5625 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, 5626 TUN_SOCKET__ATTACH_QUEUE, NULL); 5627 } 5628 5629 static int selinux_tun_dev_attach(struct sock *sk, void *security) 5630 { 5631 struct tun_security_struct *tunsec = security; 5632 struct sk_security_struct *sksec = sk->sk_security; 5633 5634 /* we don't currently perform any NetLabel based labeling here and it 5635 * isn't clear that we would want to do so anyway; while we could apply 5636 * labeling without the support of the TUN user the resulting labeled 5637 * traffic from the other end of the connection would almost certainly 5638 * cause confusion to the TUN user that had no idea network labeling 5639 * protocols were being used */ 5640 5641 sksec->sid = tunsec->sid; 5642 sksec->sclass = SECCLASS_TUN_SOCKET; 5643 5644 return 0; 5645 } 5646 5647 static int selinux_tun_dev_open(void *security) 5648 { 5649 struct tun_security_struct *tunsec = security; 5650 u32 sid = current_sid(); 5651 int err; 5652 5653 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET, 5654 TUN_SOCKET__RELABELFROM, NULL); 5655 if (err) 5656 return err; 5657 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, 5658 TUN_SOCKET__RELABELTO, NULL); 5659 if (err) 5660 return err; 5661 tunsec->sid = sid; 5662 5663 return 0; 5664 } 5665 5666 #ifdef CONFIG_NETFILTER 5667 5668 static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb, 5669 const struct nf_hook_state *state) 5670 { 5671 int ifindex; 5672 u16 family; 5673 char *addrp; 5674 u32 peer_sid; 5675 struct common_audit_data ad; 5676 struct lsm_network_audit net; 5677 int secmark_active, peerlbl_active; 5678 5679 if (!selinux_policycap_netpeer()) 5680 return NF_ACCEPT; 5681 5682 secmark_active = selinux_secmark_enabled(); 5683 peerlbl_active = selinux_peerlbl_enabled(); 5684 if (!secmark_active && !peerlbl_active) 5685 return NF_ACCEPT; 5686 5687 family = state->pf; 5688 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 5689 return NF_DROP; 5690 5691 ifindex = state->in->ifindex; 5692 ad_net_init_from_iif(&ad, &net, ifindex, family); 5693 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 5694 return NF_DROP; 5695 5696 if (peerlbl_active) { 5697 int err; 5698 5699 err = selinux_inet_sys_rcv_skb(state->net, ifindex, 5700 addrp, family, peer_sid, &ad); 5701 if (err) { 5702 selinux_netlbl_err(skb, family, err, 1); 5703 return NF_DROP; 5704 } 5705 } 5706 5707 if (secmark_active) 5708 if (avc_has_perm(peer_sid, skb->secmark, 5709 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 5710 return NF_DROP; 5711 5712 if (netlbl_enabled()) 5713 /* we do this in the FORWARD path and not the POST_ROUTING 5714 * path because we want to make sure we apply the necessary 5715 * labeling before IPsec is applied so we can leverage AH 5716 * protection */ 5717 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 5718 return NF_DROP; 5719 5720 return NF_ACCEPT; 5721 } 5722 5723 static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb, 5724 const struct nf_hook_state *state) 5725 { 5726 struct sock *sk; 5727 u32 sid; 5728 5729 if (!netlbl_enabled()) 5730 return NF_ACCEPT; 5731 5732 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 5733 * because we want to make sure we apply the necessary labeling 5734 * before IPsec is applied so we can leverage AH protection */ 5735 sk = skb->sk; 5736 if (sk) { 5737 struct sk_security_struct *sksec; 5738 5739 if (sk_listener(sk)) 5740 /* if the socket is the listening state then this 5741 * packet is a SYN-ACK packet which means it needs to 5742 * be labeled based on the connection/request_sock and 5743 * not the parent socket. unfortunately, we can't 5744 * lookup the request_sock yet as it isn't queued on 5745 * the parent socket until after the SYN-ACK is sent. 5746 * the "solution" is to simply pass the packet as-is 5747 * as any IP option based labeling should be copied 5748 * from the initial connection request (in the IP 5749 * layer). it is far from ideal, but until we get a 5750 * security label in the packet itself this is the 5751 * best we can do. */ 5752 return NF_ACCEPT; 5753 5754 /* standard practice, label using the parent socket */ 5755 sksec = sk->sk_security; 5756 sid = sksec->sid; 5757 } else 5758 sid = SECINITSID_KERNEL; 5759 if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0) 5760 return NF_DROP; 5761 5762 return NF_ACCEPT; 5763 } 5764 5765 5766 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 5767 const struct nf_hook_state *state) 5768 { 5769 struct sock *sk; 5770 struct sk_security_struct *sksec; 5771 struct common_audit_data ad; 5772 struct lsm_network_audit net; 5773 u8 proto = 0; 5774 5775 sk = skb_to_full_sk(skb); 5776 if (sk == NULL) 5777 return NF_ACCEPT; 5778 sksec = sk->sk_security; 5779 5780 ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf); 5781 if (selinux_parse_skb(skb, &ad, NULL, 0, &proto)) 5782 return NF_DROP; 5783 5784 if (selinux_secmark_enabled()) 5785 if (avc_has_perm(sksec->sid, skb->secmark, 5786 SECCLASS_PACKET, PACKET__SEND, &ad)) 5787 return NF_DROP_ERR(-ECONNREFUSED); 5788 5789 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 5790 return NF_DROP_ERR(-ECONNREFUSED); 5791 5792 return NF_ACCEPT; 5793 } 5794 5795 static unsigned int selinux_ip_postroute(void *priv, 5796 struct sk_buff *skb, 5797 const struct nf_hook_state *state) 5798 { 5799 u16 family; 5800 u32 secmark_perm; 5801 u32 peer_sid; 5802 int ifindex; 5803 struct sock *sk; 5804 struct common_audit_data ad; 5805 struct lsm_network_audit net; 5806 char *addrp; 5807 int secmark_active, peerlbl_active; 5808 5809 /* If any sort of compatibility mode is enabled then handoff processing 5810 * to the selinux_ip_postroute_compat() function to deal with the 5811 * special handling. We do this in an attempt to keep this function 5812 * as fast and as clean as possible. */ 5813 if (!selinux_policycap_netpeer()) 5814 return selinux_ip_postroute_compat(skb, state); 5815 5816 secmark_active = selinux_secmark_enabled(); 5817 peerlbl_active = selinux_peerlbl_enabled(); 5818 if (!secmark_active && !peerlbl_active) 5819 return NF_ACCEPT; 5820 5821 sk = skb_to_full_sk(skb); 5822 5823 #ifdef CONFIG_XFRM 5824 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 5825 * packet transformation so allow the packet to pass without any checks 5826 * since we'll have another chance to perform access control checks 5827 * when the packet is on it's final way out. 5828 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 5829 * is NULL, in this case go ahead and apply access control. 5830 * NOTE: if this is a local socket (skb->sk != NULL) that is in the 5831 * TCP listening state we cannot wait until the XFRM processing 5832 * is done as we will miss out on the SA label if we do; 5833 * unfortunately, this means more work, but it is only once per 5834 * connection. */ 5835 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && 5836 !(sk && sk_listener(sk))) 5837 return NF_ACCEPT; 5838 #endif 5839 5840 family = state->pf; 5841 if (sk == NULL) { 5842 /* Without an associated socket the packet is either coming 5843 * from the kernel or it is being forwarded; check the packet 5844 * to determine which and if the packet is being forwarded 5845 * query the packet directly to determine the security label. */ 5846 if (skb->skb_iif) { 5847 secmark_perm = PACKET__FORWARD_OUT; 5848 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 5849 return NF_DROP; 5850 } else { 5851 secmark_perm = PACKET__SEND; 5852 peer_sid = SECINITSID_KERNEL; 5853 } 5854 } else if (sk_listener(sk)) { 5855 /* Locally generated packet but the associated socket is in the 5856 * listening state which means this is a SYN-ACK packet. In 5857 * this particular case the correct security label is assigned 5858 * to the connection/request_sock but unfortunately we can't 5859 * query the request_sock as it isn't queued on the parent 5860 * socket until after the SYN-ACK packet is sent; the only 5861 * viable choice is to regenerate the label like we do in 5862 * selinux_inet_conn_request(). See also selinux_ip_output() 5863 * for similar problems. */ 5864 u32 skb_sid; 5865 struct sk_security_struct *sksec; 5866 5867 sksec = sk->sk_security; 5868 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) 5869 return NF_DROP; 5870 /* At this point, if the returned skb peerlbl is SECSID_NULL 5871 * and the packet has been through at least one XFRM 5872 * transformation then we must be dealing with the "final" 5873 * form of labeled IPsec packet; since we've already applied 5874 * all of our access controls on this packet we can safely 5875 * pass the packet. */ 5876 if (skb_sid == SECSID_NULL) { 5877 switch (family) { 5878 case PF_INET: 5879 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 5880 return NF_ACCEPT; 5881 break; 5882 case PF_INET6: 5883 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 5884 return NF_ACCEPT; 5885 break; 5886 default: 5887 return NF_DROP_ERR(-ECONNREFUSED); 5888 } 5889 } 5890 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) 5891 return NF_DROP; 5892 secmark_perm = PACKET__SEND; 5893 } else { 5894 /* Locally generated packet, fetch the security label from the 5895 * associated socket. */ 5896 struct sk_security_struct *sksec = sk->sk_security; 5897 peer_sid = sksec->sid; 5898 secmark_perm = PACKET__SEND; 5899 } 5900 5901 ifindex = state->out->ifindex; 5902 ad_net_init_from_iif(&ad, &net, ifindex, family); 5903 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 5904 return NF_DROP; 5905 5906 if (secmark_active) 5907 if (avc_has_perm(peer_sid, skb->secmark, 5908 SECCLASS_PACKET, secmark_perm, &ad)) 5909 return NF_DROP_ERR(-ECONNREFUSED); 5910 5911 if (peerlbl_active) { 5912 u32 if_sid; 5913 u32 node_sid; 5914 5915 if (sel_netif_sid(state->net, ifindex, &if_sid)) 5916 return NF_DROP; 5917 if (avc_has_perm(peer_sid, if_sid, 5918 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 5919 return NF_DROP_ERR(-ECONNREFUSED); 5920 5921 if (sel_netnode_sid(addrp, family, &node_sid)) 5922 return NF_DROP; 5923 if (avc_has_perm(peer_sid, node_sid, 5924 SECCLASS_NODE, NODE__SENDTO, &ad)) 5925 return NF_DROP_ERR(-ECONNREFUSED); 5926 } 5927 5928 return NF_ACCEPT; 5929 } 5930 #endif /* CONFIG_NETFILTER */ 5931 5932 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 5933 { 5934 int rc = 0; 5935 unsigned int msg_len; 5936 unsigned int data_len = skb->len; 5937 unsigned char *data = skb->data; 5938 struct nlmsghdr *nlh; 5939 struct sk_security_struct *sksec = sk->sk_security; 5940 u16 sclass = sksec->sclass; 5941 u32 perm; 5942 5943 while (data_len >= nlmsg_total_size(0)) { 5944 nlh = (struct nlmsghdr *)data; 5945 5946 /* NOTE: the nlmsg_len field isn't reliably set by some netlink 5947 * users which means we can't reject skb's with bogus 5948 * length fields; our solution is to follow what 5949 * netlink_rcv_skb() does and simply skip processing at 5950 * messages with length fields that are clearly junk 5951 */ 5952 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len) 5953 return 0; 5954 5955 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm); 5956 if (rc == 0) { 5957 rc = sock_has_perm(sk, perm); 5958 if (rc) 5959 return rc; 5960 } else if (rc == -EINVAL) { 5961 /* -EINVAL is a missing msg/perm mapping */ 5962 pr_warn_ratelimited("SELinux: unrecognized netlink" 5963 " message: protocol=%hu nlmsg_type=%hu sclass=%s" 5964 " pid=%d comm=%s\n", 5965 sk->sk_protocol, nlh->nlmsg_type, 5966 secclass_map[sclass - 1].name, 5967 task_pid_nr(current), current->comm); 5968 if (enforcing_enabled() && 5969 !security_get_allow_unknown()) 5970 return rc; 5971 rc = 0; 5972 } else if (rc == -ENOENT) { 5973 /* -ENOENT is a missing socket/class mapping, ignore */ 5974 rc = 0; 5975 } else { 5976 return rc; 5977 } 5978 5979 /* move to the next message after applying netlink padding */ 5980 msg_len = NLMSG_ALIGN(nlh->nlmsg_len); 5981 if (msg_len >= data_len) 5982 return 0; 5983 data_len -= msg_len; 5984 data += msg_len; 5985 } 5986 5987 return rc; 5988 } 5989 5990 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass) 5991 { 5992 isec->sclass = sclass; 5993 isec->sid = current_sid(); 5994 } 5995 5996 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 5997 u32 perms) 5998 { 5999 struct ipc_security_struct *isec; 6000 struct common_audit_data ad; 6001 u32 sid = current_sid(); 6002 6003 isec = selinux_ipc(ipc_perms); 6004 6005 ad.type = LSM_AUDIT_DATA_IPC; 6006 ad.u.ipc_id = ipc_perms->key; 6007 6008 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 6009 } 6010 6011 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 6012 { 6013 struct msg_security_struct *msec; 6014 6015 msec = selinux_msg_msg(msg); 6016 msec->sid = SECINITSID_UNLABELED; 6017 6018 return 0; 6019 } 6020 6021 /* message queue security operations */ 6022 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq) 6023 { 6024 struct ipc_security_struct *isec; 6025 struct common_audit_data ad; 6026 u32 sid = current_sid(); 6027 6028 isec = selinux_ipc(msq); 6029 ipc_init_security(isec, SECCLASS_MSGQ); 6030 6031 ad.type = LSM_AUDIT_DATA_IPC; 6032 ad.u.ipc_id = msq->key; 6033 6034 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 6035 MSGQ__CREATE, &ad); 6036 } 6037 6038 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 6039 { 6040 struct ipc_security_struct *isec; 6041 struct common_audit_data ad; 6042 u32 sid = current_sid(); 6043 6044 isec = selinux_ipc(msq); 6045 6046 ad.type = LSM_AUDIT_DATA_IPC; 6047 ad.u.ipc_id = msq->key; 6048 6049 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 6050 MSGQ__ASSOCIATE, &ad); 6051 } 6052 6053 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 6054 { 6055 u32 perms; 6056 6057 switch (cmd) { 6058 case IPC_INFO: 6059 case MSG_INFO: 6060 /* No specific object, just general system-wide information. */ 6061 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 6062 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6063 case IPC_STAT: 6064 case MSG_STAT: 6065 case MSG_STAT_ANY: 6066 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 6067 break; 6068 case IPC_SET: 6069 perms = MSGQ__SETATTR; 6070 break; 6071 case IPC_RMID: 6072 perms = MSGQ__DESTROY; 6073 break; 6074 default: 6075 return 0; 6076 } 6077 6078 return ipc_has_perm(msq, perms); 6079 } 6080 6081 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg) 6082 { 6083 struct ipc_security_struct *isec; 6084 struct msg_security_struct *msec; 6085 struct common_audit_data ad; 6086 u32 sid = current_sid(); 6087 int rc; 6088 6089 isec = selinux_ipc(msq); 6090 msec = selinux_msg_msg(msg); 6091 6092 /* 6093 * First time through, need to assign label to the message 6094 */ 6095 if (msec->sid == SECINITSID_UNLABELED) { 6096 /* 6097 * Compute new sid based on current process and 6098 * message queue this message will be stored in 6099 */ 6100 rc = security_transition_sid(sid, isec->sid, 6101 SECCLASS_MSG, NULL, &msec->sid); 6102 if (rc) 6103 return rc; 6104 } 6105 6106 ad.type = LSM_AUDIT_DATA_IPC; 6107 ad.u.ipc_id = msq->key; 6108 6109 /* Can this process write to the queue? */ 6110 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 6111 MSGQ__WRITE, &ad); 6112 if (!rc) 6113 /* Can this process send the message */ 6114 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 6115 MSG__SEND, &ad); 6116 if (!rc) 6117 /* Can the message be put in the queue? */ 6118 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 6119 MSGQ__ENQUEUE, &ad); 6120 6121 return rc; 6122 } 6123 6124 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 6125 struct task_struct *target, 6126 long type, int mode) 6127 { 6128 struct ipc_security_struct *isec; 6129 struct msg_security_struct *msec; 6130 struct common_audit_data ad; 6131 u32 sid = task_sid_obj(target); 6132 int rc; 6133 6134 isec = selinux_ipc(msq); 6135 msec = selinux_msg_msg(msg); 6136 6137 ad.type = LSM_AUDIT_DATA_IPC; 6138 ad.u.ipc_id = msq->key; 6139 6140 rc = avc_has_perm(sid, isec->sid, 6141 SECCLASS_MSGQ, MSGQ__READ, &ad); 6142 if (!rc) 6143 rc = avc_has_perm(sid, msec->sid, 6144 SECCLASS_MSG, MSG__RECEIVE, &ad); 6145 return rc; 6146 } 6147 6148 /* Shared Memory security operations */ 6149 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp) 6150 { 6151 struct ipc_security_struct *isec; 6152 struct common_audit_data ad; 6153 u32 sid = current_sid(); 6154 6155 isec = selinux_ipc(shp); 6156 ipc_init_security(isec, SECCLASS_SHM); 6157 6158 ad.type = LSM_AUDIT_DATA_IPC; 6159 ad.u.ipc_id = shp->key; 6160 6161 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 6162 SHM__CREATE, &ad); 6163 } 6164 6165 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg) 6166 { 6167 struct ipc_security_struct *isec; 6168 struct common_audit_data ad; 6169 u32 sid = current_sid(); 6170 6171 isec = selinux_ipc(shp); 6172 6173 ad.type = LSM_AUDIT_DATA_IPC; 6174 ad.u.ipc_id = shp->key; 6175 6176 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 6177 SHM__ASSOCIATE, &ad); 6178 } 6179 6180 /* Note, at this point, shp is locked down */ 6181 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 6182 { 6183 u32 perms; 6184 6185 switch (cmd) { 6186 case IPC_INFO: 6187 case SHM_INFO: 6188 /* No specific object, just general system-wide information. */ 6189 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 6190 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6191 case IPC_STAT: 6192 case SHM_STAT: 6193 case SHM_STAT_ANY: 6194 perms = SHM__GETATTR | SHM__ASSOCIATE; 6195 break; 6196 case IPC_SET: 6197 perms = SHM__SETATTR; 6198 break; 6199 case SHM_LOCK: 6200 case SHM_UNLOCK: 6201 perms = SHM__LOCK; 6202 break; 6203 case IPC_RMID: 6204 perms = SHM__DESTROY; 6205 break; 6206 default: 6207 return 0; 6208 } 6209 6210 return ipc_has_perm(shp, perms); 6211 } 6212 6213 static int selinux_shm_shmat(struct kern_ipc_perm *shp, 6214 char __user *shmaddr, int shmflg) 6215 { 6216 u32 perms; 6217 6218 if (shmflg & SHM_RDONLY) 6219 perms = SHM__READ; 6220 else 6221 perms = SHM__READ | SHM__WRITE; 6222 6223 return ipc_has_perm(shp, perms); 6224 } 6225 6226 /* Semaphore security operations */ 6227 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma) 6228 { 6229 struct ipc_security_struct *isec; 6230 struct common_audit_data ad; 6231 u32 sid = current_sid(); 6232 6233 isec = selinux_ipc(sma); 6234 ipc_init_security(isec, SECCLASS_SEM); 6235 6236 ad.type = LSM_AUDIT_DATA_IPC; 6237 ad.u.ipc_id = sma->key; 6238 6239 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 6240 SEM__CREATE, &ad); 6241 } 6242 6243 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg) 6244 { 6245 struct ipc_security_struct *isec; 6246 struct common_audit_data ad; 6247 u32 sid = current_sid(); 6248 6249 isec = selinux_ipc(sma); 6250 6251 ad.type = LSM_AUDIT_DATA_IPC; 6252 ad.u.ipc_id = sma->key; 6253 6254 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 6255 SEM__ASSOCIATE, &ad); 6256 } 6257 6258 /* Note, at this point, sma is locked down */ 6259 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd) 6260 { 6261 int err; 6262 u32 perms; 6263 6264 switch (cmd) { 6265 case IPC_INFO: 6266 case SEM_INFO: 6267 /* No specific object, just general system-wide information. */ 6268 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 6269 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6270 case GETPID: 6271 case GETNCNT: 6272 case GETZCNT: 6273 perms = SEM__GETATTR; 6274 break; 6275 case GETVAL: 6276 case GETALL: 6277 perms = SEM__READ; 6278 break; 6279 case SETVAL: 6280 case SETALL: 6281 perms = SEM__WRITE; 6282 break; 6283 case IPC_RMID: 6284 perms = SEM__DESTROY; 6285 break; 6286 case IPC_SET: 6287 perms = SEM__SETATTR; 6288 break; 6289 case IPC_STAT: 6290 case SEM_STAT: 6291 case SEM_STAT_ANY: 6292 perms = SEM__GETATTR | SEM__ASSOCIATE; 6293 break; 6294 default: 6295 return 0; 6296 } 6297 6298 err = ipc_has_perm(sma, perms); 6299 return err; 6300 } 6301 6302 static int selinux_sem_semop(struct kern_ipc_perm *sma, 6303 struct sembuf *sops, unsigned nsops, int alter) 6304 { 6305 u32 perms; 6306 6307 if (alter) 6308 perms = SEM__READ | SEM__WRITE; 6309 else 6310 perms = SEM__READ; 6311 6312 return ipc_has_perm(sma, perms); 6313 } 6314 6315 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 6316 { 6317 u32 av = 0; 6318 6319 av = 0; 6320 if (flag & S_IRUGO) 6321 av |= IPC__UNIX_READ; 6322 if (flag & S_IWUGO) 6323 av |= IPC__UNIX_WRITE; 6324 6325 if (av == 0) 6326 return 0; 6327 6328 return ipc_has_perm(ipcp, av); 6329 } 6330 6331 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 6332 { 6333 struct ipc_security_struct *isec = selinux_ipc(ipcp); 6334 *secid = isec->sid; 6335 } 6336 6337 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 6338 { 6339 if (inode) 6340 inode_doinit_with_dentry(inode, dentry); 6341 } 6342 6343 static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p, 6344 char **value) 6345 { 6346 const struct task_security_struct *tsec; 6347 int error; 6348 u32 sid; 6349 u32 len; 6350 6351 rcu_read_lock(); 6352 tsec = selinux_cred(__task_cred(p)); 6353 if (p != current) { 6354 error = avc_has_perm(current_sid(), tsec->sid, 6355 SECCLASS_PROCESS, PROCESS__GETATTR, NULL); 6356 if (error) 6357 goto err_unlock; 6358 } 6359 switch (attr) { 6360 case LSM_ATTR_CURRENT: 6361 sid = tsec->sid; 6362 break; 6363 case LSM_ATTR_PREV: 6364 sid = tsec->osid; 6365 break; 6366 case LSM_ATTR_EXEC: 6367 sid = tsec->exec_sid; 6368 break; 6369 case LSM_ATTR_FSCREATE: 6370 sid = tsec->create_sid; 6371 break; 6372 case LSM_ATTR_KEYCREATE: 6373 sid = tsec->keycreate_sid; 6374 break; 6375 case LSM_ATTR_SOCKCREATE: 6376 sid = tsec->sockcreate_sid; 6377 break; 6378 default: 6379 error = -EOPNOTSUPP; 6380 goto err_unlock; 6381 } 6382 rcu_read_unlock(); 6383 6384 if (sid == SECSID_NULL) { 6385 *value = NULL; 6386 return 0; 6387 } 6388 6389 error = security_sid_to_context(sid, value, &len); 6390 if (error) 6391 return error; 6392 return len; 6393 6394 err_unlock: 6395 rcu_read_unlock(); 6396 return error; 6397 } 6398 6399 static int selinux_lsm_setattr(u64 attr, void *value, size_t size) 6400 { 6401 struct task_security_struct *tsec; 6402 struct cred *new; 6403 u32 mysid = current_sid(), sid = 0, ptsid; 6404 int error; 6405 char *str = value; 6406 6407 /* 6408 * Basic control over ability to set these attributes at all. 6409 */ 6410 switch (attr) { 6411 case LSM_ATTR_EXEC: 6412 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6413 PROCESS__SETEXEC, NULL); 6414 break; 6415 case LSM_ATTR_FSCREATE: 6416 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6417 PROCESS__SETFSCREATE, NULL); 6418 break; 6419 case LSM_ATTR_KEYCREATE: 6420 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6421 PROCESS__SETKEYCREATE, NULL); 6422 break; 6423 case LSM_ATTR_SOCKCREATE: 6424 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6425 PROCESS__SETSOCKCREATE, NULL); 6426 break; 6427 case LSM_ATTR_CURRENT: 6428 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6429 PROCESS__SETCURRENT, NULL); 6430 break; 6431 default: 6432 error = -EOPNOTSUPP; 6433 break; 6434 } 6435 if (error) 6436 return error; 6437 6438 /* Obtain a SID for the context, if one was specified. */ 6439 if (size && str[0] && str[0] != '\n') { 6440 if (str[size-1] == '\n') { 6441 str[size-1] = 0; 6442 size--; 6443 } 6444 error = security_context_to_sid(value, size, 6445 &sid, GFP_KERNEL); 6446 if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) { 6447 if (!has_cap_mac_admin(true)) { 6448 struct audit_buffer *ab; 6449 size_t audit_size; 6450 6451 /* We strip a nul only if it is at the end, 6452 * otherwise the context contains a nul and 6453 * we should audit that */ 6454 if (str[size - 1] == '\0') 6455 audit_size = size - 1; 6456 else 6457 audit_size = size; 6458 ab = audit_log_start(audit_context(), 6459 GFP_ATOMIC, 6460 AUDIT_SELINUX_ERR); 6461 if (!ab) 6462 return error; 6463 audit_log_format(ab, "op=fscreate invalid_context="); 6464 audit_log_n_untrustedstring(ab, value, 6465 audit_size); 6466 audit_log_end(ab); 6467 6468 return error; 6469 } 6470 error = security_context_to_sid_force(value, size, 6471 &sid); 6472 } 6473 if (error) 6474 return error; 6475 } 6476 6477 new = prepare_creds(); 6478 if (!new) 6479 return -ENOMEM; 6480 6481 /* Permission checking based on the specified context is 6482 performed during the actual operation (execve, 6483 open/mkdir/...), when we know the full context of the 6484 operation. See selinux_bprm_creds_for_exec for the execve 6485 checks and may_create for the file creation checks. The 6486 operation will then fail if the context is not permitted. */ 6487 tsec = selinux_cred(new); 6488 if (attr == LSM_ATTR_EXEC) { 6489 tsec->exec_sid = sid; 6490 } else if (attr == LSM_ATTR_FSCREATE) { 6491 tsec->create_sid = sid; 6492 } else if (attr == LSM_ATTR_KEYCREATE) { 6493 if (sid) { 6494 error = avc_has_perm(mysid, sid, 6495 SECCLASS_KEY, KEY__CREATE, NULL); 6496 if (error) 6497 goto abort_change; 6498 } 6499 tsec->keycreate_sid = sid; 6500 } else if (attr == LSM_ATTR_SOCKCREATE) { 6501 tsec->sockcreate_sid = sid; 6502 } else if (attr == LSM_ATTR_CURRENT) { 6503 error = -EINVAL; 6504 if (sid == 0) 6505 goto abort_change; 6506 6507 if (!current_is_single_threaded()) { 6508 error = security_bounded_transition(tsec->sid, sid); 6509 if (error) 6510 goto abort_change; 6511 } 6512 6513 /* Check permissions for the transition. */ 6514 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 6515 PROCESS__DYNTRANSITION, NULL); 6516 if (error) 6517 goto abort_change; 6518 6519 /* Check for ptracing, and update the task SID if ok. 6520 Otherwise, leave SID unchanged and fail. */ 6521 ptsid = ptrace_parent_sid(); 6522 if (ptsid != 0) { 6523 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 6524 PROCESS__PTRACE, NULL); 6525 if (error) 6526 goto abort_change; 6527 } 6528 6529 tsec->sid = sid; 6530 } else { 6531 error = -EINVAL; 6532 goto abort_change; 6533 } 6534 6535 commit_creds(new); 6536 return size; 6537 6538 abort_change: 6539 abort_creds(new); 6540 return error; 6541 } 6542 6543 /** 6544 * selinux_getselfattr - Get SELinux current task attributes 6545 * @attr: the requested attribute 6546 * @ctx: buffer to receive the result 6547 * @size: buffer size (input), buffer size used (output) 6548 * @flags: unused 6549 * 6550 * Fill the passed user space @ctx with the details of the requested 6551 * attribute. 6552 * 6553 * Returns the number of attributes on success, an error code otherwise. 6554 * There will only ever be one attribute. 6555 */ 6556 static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx, 6557 u32 *size, u32 flags) 6558 { 6559 int rc; 6560 char *val = NULL; 6561 int val_len; 6562 6563 val_len = selinux_lsm_getattr(attr, current, &val); 6564 if (val_len < 0) 6565 return val_len; 6566 rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0); 6567 kfree(val); 6568 return (!rc ? 1 : rc); 6569 } 6570 6571 static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx, 6572 u32 size, u32 flags) 6573 { 6574 int rc; 6575 6576 rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len); 6577 if (rc > 0) 6578 return 0; 6579 return rc; 6580 } 6581 6582 static int selinux_getprocattr(struct task_struct *p, 6583 const char *name, char **value) 6584 { 6585 unsigned int attr = lsm_name_to_attr(name); 6586 int rc; 6587 6588 if (attr) { 6589 rc = selinux_lsm_getattr(attr, p, value); 6590 if (rc != -EOPNOTSUPP) 6591 return rc; 6592 } 6593 6594 return -EINVAL; 6595 } 6596 6597 static int selinux_setprocattr(const char *name, void *value, size_t size) 6598 { 6599 int attr = lsm_name_to_attr(name); 6600 6601 if (attr) 6602 return selinux_lsm_setattr(attr, value, size); 6603 return -EINVAL; 6604 } 6605 6606 static int selinux_ismaclabel(const char *name) 6607 { 6608 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); 6609 } 6610 6611 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 6612 { 6613 return security_sid_to_context(secid, 6614 secdata, seclen); 6615 } 6616 6617 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 6618 { 6619 return security_context_to_sid(secdata, seclen, 6620 secid, GFP_KERNEL); 6621 } 6622 6623 static void selinux_release_secctx(char *secdata, u32 seclen) 6624 { 6625 kfree(secdata); 6626 } 6627 6628 static void selinux_inode_invalidate_secctx(struct inode *inode) 6629 { 6630 struct inode_security_struct *isec = selinux_inode(inode); 6631 6632 spin_lock(&isec->lock); 6633 isec->initialized = LABEL_INVALID; 6634 spin_unlock(&isec->lock); 6635 } 6636 6637 /* 6638 * called with inode->i_mutex locked 6639 */ 6640 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 6641 { 6642 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, 6643 ctx, ctxlen, 0); 6644 /* Do not return error when suppressing label (SBLABEL_MNT not set). */ 6645 return rc == -EOPNOTSUPP ? 0 : rc; 6646 } 6647 6648 /* 6649 * called with inode->i_mutex locked 6650 */ 6651 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 6652 { 6653 return __vfs_setxattr_noperm(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX, 6654 ctx, ctxlen, 0); 6655 } 6656 6657 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 6658 { 6659 int len = 0; 6660 len = selinux_inode_getsecurity(&nop_mnt_idmap, inode, 6661 XATTR_SELINUX_SUFFIX, ctx, true); 6662 if (len < 0) 6663 return len; 6664 *ctxlen = len; 6665 return 0; 6666 } 6667 #ifdef CONFIG_KEYS 6668 6669 static int selinux_key_alloc(struct key *k, const struct cred *cred, 6670 unsigned long flags) 6671 { 6672 const struct task_security_struct *tsec; 6673 struct key_security_struct *ksec; 6674 6675 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 6676 if (!ksec) 6677 return -ENOMEM; 6678 6679 tsec = selinux_cred(cred); 6680 if (tsec->keycreate_sid) 6681 ksec->sid = tsec->keycreate_sid; 6682 else 6683 ksec->sid = tsec->sid; 6684 6685 k->security = ksec; 6686 return 0; 6687 } 6688 6689 static void selinux_key_free(struct key *k) 6690 { 6691 struct key_security_struct *ksec = k->security; 6692 6693 k->security = NULL; 6694 kfree(ksec); 6695 } 6696 6697 static int selinux_key_permission(key_ref_t key_ref, 6698 const struct cred *cred, 6699 enum key_need_perm need_perm) 6700 { 6701 struct key *key; 6702 struct key_security_struct *ksec; 6703 u32 perm, sid; 6704 6705 switch (need_perm) { 6706 case KEY_NEED_VIEW: 6707 perm = KEY__VIEW; 6708 break; 6709 case KEY_NEED_READ: 6710 perm = KEY__READ; 6711 break; 6712 case KEY_NEED_WRITE: 6713 perm = KEY__WRITE; 6714 break; 6715 case KEY_NEED_SEARCH: 6716 perm = KEY__SEARCH; 6717 break; 6718 case KEY_NEED_LINK: 6719 perm = KEY__LINK; 6720 break; 6721 case KEY_NEED_SETATTR: 6722 perm = KEY__SETATTR; 6723 break; 6724 case KEY_NEED_UNLINK: 6725 case KEY_SYSADMIN_OVERRIDE: 6726 case KEY_AUTHTOKEN_OVERRIDE: 6727 case KEY_DEFER_PERM_CHECK: 6728 return 0; 6729 default: 6730 WARN_ON(1); 6731 return -EPERM; 6732 6733 } 6734 6735 sid = cred_sid(cred); 6736 key = key_ref_to_ptr(key_ref); 6737 ksec = key->security; 6738 6739 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 6740 } 6741 6742 static int selinux_key_getsecurity(struct key *key, char **_buffer) 6743 { 6744 struct key_security_struct *ksec = key->security; 6745 char *context = NULL; 6746 unsigned len; 6747 int rc; 6748 6749 rc = security_sid_to_context(ksec->sid, 6750 &context, &len); 6751 if (!rc) 6752 rc = len; 6753 *_buffer = context; 6754 return rc; 6755 } 6756 6757 #ifdef CONFIG_KEY_NOTIFICATIONS 6758 static int selinux_watch_key(struct key *key) 6759 { 6760 struct key_security_struct *ksec = key->security; 6761 u32 sid = current_sid(); 6762 6763 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL); 6764 } 6765 #endif 6766 #endif 6767 6768 #ifdef CONFIG_SECURITY_INFINIBAND 6769 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val) 6770 { 6771 struct common_audit_data ad; 6772 int err; 6773 u32 sid = 0; 6774 struct ib_security_struct *sec = ib_sec; 6775 struct lsm_ibpkey_audit ibpkey; 6776 6777 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid); 6778 if (err) 6779 return err; 6780 6781 ad.type = LSM_AUDIT_DATA_IBPKEY; 6782 ibpkey.subnet_prefix = subnet_prefix; 6783 ibpkey.pkey = pkey_val; 6784 ad.u.ibpkey = &ibpkey; 6785 return avc_has_perm(sec->sid, sid, 6786 SECCLASS_INFINIBAND_PKEY, 6787 INFINIBAND_PKEY__ACCESS, &ad); 6788 } 6789 6790 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name, 6791 u8 port_num) 6792 { 6793 struct common_audit_data ad; 6794 int err; 6795 u32 sid = 0; 6796 struct ib_security_struct *sec = ib_sec; 6797 struct lsm_ibendport_audit ibendport; 6798 6799 err = security_ib_endport_sid(dev_name, port_num, 6800 &sid); 6801 6802 if (err) 6803 return err; 6804 6805 ad.type = LSM_AUDIT_DATA_IBENDPORT; 6806 ibendport.dev_name = dev_name; 6807 ibendport.port = port_num; 6808 ad.u.ibendport = &ibendport; 6809 return avc_has_perm(sec->sid, sid, 6810 SECCLASS_INFINIBAND_ENDPORT, 6811 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad); 6812 } 6813 6814 static int selinux_ib_alloc_security(void **ib_sec) 6815 { 6816 struct ib_security_struct *sec; 6817 6818 sec = kzalloc(sizeof(*sec), GFP_KERNEL); 6819 if (!sec) 6820 return -ENOMEM; 6821 sec->sid = current_sid(); 6822 6823 *ib_sec = sec; 6824 return 0; 6825 } 6826 6827 static void selinux_ib_free_security(void *ib_sec) 6828 { 6829 kfree(ib_sec); 6830 } 6831 #endif 6832 6833 #ifdef CONFIG_BPF_SYSCALL 6834 static int selinux_bpf(int cmd, union bpf_attr *attr, 6835 unsigned int size) 6836 { 6837 u32 sid = current_sid(); 6838 int ret; 6839 6840 switch (cmd) { 6841 case BPF_MAP_CREATE: 6842 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE, 6843 NULL); 6844 break; 6845 case BPF_PROG_LOAD: 6846 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD, 6847 NULL); 6848 break; 6849 default: 6850 ret = 0; 6851 break; 6852 } 6853 6854 return ret; 6855 } 6856 6857 static u32 bpf_map_fmode_to_av(fmode_t fmode) 6858 { 6859 u32 av = 0; 6860 6861 if (fmode & FMODE_READ) 6862 av |= BPF__MAP_READ; 6863 if (fmode & FMODE_WRITE) 6864 av |= BPF__MAP_WRITE; 6865 return av; 6866 } 6867 6868 /* This function will check the file pass through unix socket or binder to see 6869 * if it is a bpf related object. And apply corresponding checks on the bpf 6870 * object based on the type. The bpf maps and programs, not like other files and 6871 * socket, are using a shared anonymous inode inside the kernel as their inode. 6872 * So checking that inode cannot identify if the process have privilege to 6873 * access the bpf object and that's why we have to add this additional check in 6874 * selinux_file_receive and selinux_binder_transfer_files. 6875 */ 6876 static int bpf_fd_pass(const struct file *file, u32 sid) 6877 { 6878 struct bpf_security_struct *bpfsec; 6879 struct bpf_prog *prog; 6880 struct bpf_map *map; 6881 int ret; 6882 6883 if (file->f_op == &bpf_map_fops) { 6884 map = file->private_data; 6885 bpfsec = map->security; 6886 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6887 bpf_map_fmode_to_av(file->f_mode), NULL); 6888 if (ret) 6889 return ret; 6890 } else if (file->f_op == &bpf_prog_fops) { 6891 prog = file->private_data; 6892 bpfsec = prog->aux->security; 6893 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6894 BPF__PROG_RUN, NULL); 6895 if (ret) 6896 return ret; 6897 } 6898 return 0; 6899 } 6900 6901 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode) 6902 { 6903 u32 sid = current_sid(); 6904 struct bpf_security_struct *bpfsec; 6905 6906 bpfsec = map->security; 6907 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6908 bpf_map_fmode_to_av(fmode), NULL); 6909 } 6910 6911 static int selinux_bpf_prog(struct bpf_prog *prog) 6912 { 6913 u32 sid = current_sid(); 6914 struct bpf_security_struct *bpfsec; 6915 6916 bpfsec = prog->aux->security; 6917 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6918 BPF__PROG_RUN, NULL); 6919 } 6920 6921 static int selinux_bpf_map_create(struct bpf_map *map, union bpf_attr *attr, 6922 struct bpf_token *token) 6923 { 6924 struct bpf_security_struct *bpfsec; 6925 6926 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6927 if (!bpfsec) 6928 return -ENOMEM; 6929 6930 bpfsec->sid = current_sid(); 6931 map->security = bpfsec; 6932 6933 return 0; 6934 } 6935 6936 static void selinux_bpf_map_free(struct bpf_map *map) 6937 { 6938 struct bpf_security_struct *bpfsec = map->security; 6939 6940 map->security = NULL; 6941 kfree(bpfsec); 6942 } 6943 6944 static int selinux_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr, 6945 struct bpf_token *token) 6946 { 6947 struct bpf_security_struct *bpfsec; 6948 6949 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6950 if (!bpfsec) 6951 return -ENOMEM; 6952 6953 bpfsec->sid = current_sid(); 6954 prog->aux->security = bpfsec; 6955 6956 return 0; 6957 } 6958 6959 static void selinux_bpf_prog_free(struct bpf_prog *prog) 6960 { 6961 struct bpf_security_struct *bpfsec = prog->aux->security; 6962 6963 prog->aux->security = NULL; 6964 kfree(bpfsec); 6965 } 6966 6967 static int selinux_bpf_token_create(struct bpf_token *token, union bpf_attr *attr, 6968 struct path *path) 6969 { 6970 struct bpf_security_struct *bpfsec; 6971 6972 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6973 if (!bpfsec) 6974 return -ENOMEM; 6975 6976 bpfsec->sid = current_sid(); 6977 token->security = bpfsec; 6978 6979 return 0; 6980 } 6981 6982 static void selinux_bpf_token_free(struct bpf_token *token) 6983 { 6984 struct bpf_security_struct *bpfsec = token->security; 6985 6986 token->security = NULL; 6987 kfree(bpfsec); 6988 } 6989 #endif 6990 6991 struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = { 6992 .lbs_cred = sizeof(struct task_security_struct), 6993 .lbs_file = sizeof(struct file_security_struct), 6994 .lbs_inode = sizeof(struct inode_security_struct), 6995 .lbs_ipc = sizeof(struct ipc_security_struct), 6996 .lbs_msg_msg = sizeof(struct msg_security_struct), 6997 .lbs_superblock = sizeof(struct superblock_security_struct), 6998 .lbs_xattr_count = SELINUX_INODE_INIT_XATTRS, 6999 }; 7000 7001 #ifdef CONFIG_PERF_EVENTS 7002 static int selinux_perf_event_open(struct perf_event_attr *attr, int type) 7003 { 7004 u32 requested, sid = current_sid(); 7005 7006 if (type == PERF_SECURITY_OPEN) 7007 requested = PERF_EVENT__OPEN; 7008 else if (type == PERF_SECURITY_CPU) 7009 requested = PERF_EVENT__CPU; 7010 else if (type == PERF_SECURITY_KERNEL) 7011 requested = PERF_EVENT__KERNEL; 7012 else if (type == PERF_SECURITY_TRACEPOINT) 7013 requested = PERF_EVENT__TRACEPOINT; 7014 else 7015 return -EINVAL; 7016 7017 return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT, 7018 requested, NULL); 7019 } 7020 7021 static int selinux_perf_event_alloc(struct perf_event *event) 7022 { 7023 struct perf_event_security_struct *perfsec; 7024 7025 perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL); 7026 if (!perfsec) 7027 return -ENOMEM; 7028 7029 perfsec->sid = current_sid(); 7030 event->security = perfsec; 7031 7032 return 0; 7033 } 7034 7035 static void selinux_perf_event_free(struct perf_event *event) 7036 { 7037 struct perf_event_security_struct *perfsec = event->security; 7038 7039 event->security = NULL; 7040 kfree(perfsec); 7041 } 7042 7043 static int selinux_perf_event_read(struct perf_event *event) 7044 { 7045 struct perf_event_security_struct *perfsec = event->security; 7046 u32 sid = current_sid(); 7047 7048 return avc_has_perm(sid, perfsec->sid, 7049 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL); 7050 } 7051 7052 static int selinux_perf_event_write(struct perf_event *event) 7053 { 7054 struct perf_event_security_struct *perfsec = event->security; 7055 u32 sid = current_sid(); 7056 7057 return avc_has_perm(sid, perfsec->sid, 7058 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL); 7059 } 7060 #endif 7061 7062 #ifdef CONFIG_IO_URING 7063 /** 7064 * selinux_uring_override_creds - check the requested cred override 7065 * @new: the target creds 7066 * 7067 * Check to see if the current task is allowed to override it's credentials 7068 * to service an io_uring operation. 7069 */ 7070 static int selinux_uring_override_creds(const struct cred *new) 7071 { 7072 return avc_has_perm(current_sid(), cred_sid(new), 7073 SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL); 7074 } 7075 7076 /** 7077 * selinux_uring_sqpoll - check if a io_uring polling thread can be created 7078 * 7079 * Check to see if the current task is allowed to create a new io_uring 7080 * kernel polling thread. 7081 */ 7082 static int selinux_uring_sqpoll(void) 7083 { 7084 u32 sid = current_sid(); 7085 7086 return avc_has_perm(sid, sid, 7087 SECCLASS_IO_URING, IO_URING__SQPOLL, NULL); 7088 } 7089 7090 /** 7091 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed 7092 * @ioucmd: the io_uring command structure 7093 * 7094 * Check to see if the current domain is allowed to execute an 7095 * IORING_OP_URING_CMD against the device/file specified in @ioucmd. 7096 * 7097 */ 7098 static int selinux_uring_cmd(struct io_uring_cmd *ioucmd) 7099 { 7100 struct file *file = ioucmd->file; 7101 struct inode *inode = file_inode(file); 7102 struct inode_security_struct *isec = selinux_inode(inode); 7103 struct common_audit_data ad; 7104 7105 ad.type = LSM_AUDIT_DATA_FILE; 7106 ad.u.file = file; 7107 7108 return avc_has_perm(current_sid(), isec->sid, 7109 SECCLASS_IO_URING, IO_URING__CMD, &ad); 7110 } 7111 #endif /* CONFIG_IO_URING */ 7112 7113 static const struct lsm_id selinux_lsmid = { 7114 .name = "selinux", 7115 .id = LSM_ID_SELINUX, 7116 }; 7117 7118 /* 7119 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order: 7120 * 1. any hooks that don't belong to (2.) or (3.) below, 7121 * 2. hooks that both access structures allocated by other hooks, and allocate 7122 * structures that can be later accessed by other hooks (mostly "cloning" 7123 * hooks), 7124 * 3. hooks that only allocate structures that can be later accessed by other 7125 * hooks ("allocating" hooks). 7126 * 7127 * Please follow block comment delimiters in the list to keep this order. 7128 */ 7129 static struct security_hook_list selinux_hooks[] __ro_after_init = { 7130 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr), 7131 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction), 7132 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder), 7133 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file), 7134 7135 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check), 7136 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme), 7137 LSM_HOOK_INIT(capget, selinux_capget), 7138 LSM_HOOK_INIT(capset, selinux_capset), 7139 LSM_HOOK_INIT(capable, selinux_capable), 7140 LSM_HOOK_INIT(quotactl, selinux_quotactl), 7141 LSM_HOOK_INIT(quota_on, selinux_quota_on), 7142 LSM_HOOK_INIT(syslog, selinux_syslog), 7143 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory), 7144 7145 LSM_HOOK_INIT(netlink_send, selinux_netlink_send), 7146 7147 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec), 7148 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds), 7149 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds), 7150 7151 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts), 7152 LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat), 7153 LSM_HOOK_INIT(sb_remount, selinux_sb_remount), 7154 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount), 7155 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options), 7156 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs), 7157 LSM_HOOK_INIT(sb_mount, selinux_mount), 7158 LSM_HOOK_INIT(sb_umount, selinux_umount), 7159 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts), 7160 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts), 7161 7162 LSM_HOOK_INIT(move_mount, selinux_move_mount), 7163 7164 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security), 7165 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as), 7166 7167 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security), 7168 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security), 7169 LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon), 7170 LSM_HOOK_INIT(inode_create, selinux_inode_create), 7171 LSM_HOOK_INIT(inode_link, selinux_inode_link), 7172 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink), 7173 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink), 7174 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir), 7175 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir), 7176 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod), 7177 LSM_HOOK_INIT(inode_rename, selinux_inode_rename), 7178 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink), 7179 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link), 7180 LSM_HOOK_INIT(inode_permission, selinux_inode_permission), 7181 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr), 7182 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr), 7183 LSM_HOOK_INIT(inode_xattr_skipcap, selinux_inode_xattr_skipcap), 7184 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr), 7185 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr), 7186 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr), 7187 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr), 7188 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr), 7189 LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl), 7190 LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl), 7191 LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl), 7192 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity), 7193 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity), 7194 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity), 7195 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid), 7196 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up), 7197 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr), 7198 LSM_HOOK_INIT(path_notify, selinux_path_notify), 7199 7200 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security), 7201 7202 LSM_HOOK_INIT(file_permission, selinux_file_permission), 7203 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security), 7204 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl), 7205 LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat), 7206 LSM_HOOK_INIT(mmap_file, selinux_mmap_file), 7207 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr), 7208 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect), 7209 LSM_HOOK_INIT(file_lock, selinux_file_lock), 7210 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl), 7211 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner), 7212 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask), 7213 LSM_HOOK_INIT(file_receive, selinux_file_receive), 7214 7215 LSM_HOOK_INIT(file_open, selinux_file_open), 7216 7217 LSM_HOOK_INIT(task_alloc, selinux_task_alloc), 7218 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare), 7219 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer), 7220 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid), 7221 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as), 7222 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as), 7223 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request), 7224 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data), 7225 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file), 7226 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid), 7227 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid), 7228 LSM_HOOK_INIT(task_getsid, selinux_task_getsid), 7229 LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj), 7230 LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj), 7231 LSM_HOOK_INIT(task_setnice, selinux_task_setnice), 7232 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio), 7233 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio), 7234 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit), 7235 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit), 7236 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler), 7237 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler), 7238 LSM_HOOK_INIT(task_movememory, selinux_task_movememory), 7239 LSM_HOOK_INIT(task_kill, selinux_task_kill), 7240 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode), 7241 LSM_HOOK_INIT(userns_create, selinux_userns_create), 7242 7243 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission), 7244 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid), 7245 7246 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate), 7247 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl), 7248 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd), 7249 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv), 7250 7251 LSM_HOOK_INIT(shm_associate, selinux_shm_associate), 7252 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl), 7253 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat), 7254 7255 LSM_HOOK_INIT(sem_associate, selinux_sem_associate), 7256 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl), 7257 LSM_HOOK_INIT(sem_semop, selinux_sem_semop), 7258 7259 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate), 7260 7261 LSM_HOOK_INIT(getselfattr, selinux_getselfattr), 7262 LSM_HOOK_INIT(setselfattr, selinux_setselfattr), 7263 LSM_HOOK_INIT(getprocattr, selinux_getprocattr), 7264 LSM_HOOK_INIT(setprocattr, selinux_setprocattr), 7265 7266 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel), 7267 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid), 7268 LSM_HOOK_INIT(release_secctx, selinux_release_secctx), 7269 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx), 7270 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx), 7271 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx), 7272 7273 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect), 7274 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send), 7275 7276 LSM_HOOK_INIT(socket_create, selinux_socket_create), 7277 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create), 7278 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair), 7279 LSM_HOOK_INIT(socket_bind, selinux_socket_bind), 7280 LSM_HOOK_INIT(socket_connect, selinux_socket_connect), 7281 LSM_HOOK_INIT(socket_listen, selinux_socket_listen), 7282 LSM_HOOK_INIT(socket_accept, selinux_socket_accept), 7283 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg), 7284 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg), 7285 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname), 7286 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername), 7287 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt), 7288 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt), 7289 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown), 7290 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb), 7291 LSM_HOOK_INIT(socket_getpeersec_stream, 7292 selinux_socket_getpeersec_stream), 7293 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram), 7294 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security), 7295 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security), 7296 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid), 7297 LSM_HOOK_INIT(sock_graft, selinux_sock_graft), 7298 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request), 7299 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone), 7300 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect), 7301 LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established), 7302 LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow), 7303 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request), 7304 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone), 7305 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established), 7306 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet), 7307 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc), 7308 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec), 7309 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow), 7310 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security), 7311 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create), 7312 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue), 7313 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach), 7314 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open), 7315 #ifdef CONFIG_SECURITY_INFINIBAND 7316 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access), 7317 LSM_HOOK_INIT(ib_endport_manage_subnet, 7318 selinux_ib_endport_manage_subnet), 7319 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security), 7320 #endif 7321 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7322 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free), 7323 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete), 7324 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free), 7325 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete), 7326 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup), 7327 LSM_HOOK_INIT(xfrm_state_pol_flow_match, 7328 selinux_xfrm_state_pol_flow_match), 7329 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session), 7330 #endif 7331 7332 #ifdef CONFIG_KEYS 7333 LSM_HOOK_INIT(key_free, selinux_key_free), 7334 LSM_HOOK_INIT(key_permission, selinux_key_permission), 7335 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity), 7336 #ifdef CONFIG_KEY_NOTIFICATIONS 7337 LSM_HOOK_INIT(watch_key, selinux_watch_key), 7338 #endif 7339 #endif 7340 7341 #ifdef CONFIG_AUDIT 7342 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known), 7343 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match), 7344 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free), 7345 #endif 7346 7347 #ifdef CONFIG_BPF_SYSCALL 7348 LSM_HOOK_INIT(bpf, selinux_bpf), 7349 LSM_HOOK_INIT(bpf_map, selinux_bpf_map), 7350 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog), 7351 LSM_HOOK_INIT(bpf_map_free, selinux_bpf_map_free), 7352 LSM_HOOK_INIT(bpf_prog_free, selinux_bpf_prog_free), 7353 LSM_HOOK_INIT(bpf_token_free, selinux_bpf_token_free), 7354 #endif 7355 7356 #ifdef CONFIG_PERF_EVENTS 7357 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open), 7358 LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free), 7359 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read), 7360 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write), 7361 #endif 7362 7363 #ifdef CONFIG_IO_URING 7364 LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds), 7365 LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll), 7366 LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd), 7367 #endif 7368 7369 /* 7370 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE 7371 */ 7372 LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount), 7373 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup), 7374 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param), 7375 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts), 7376 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7377 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone), 7378 #endif 7379 7380 /* 7381 * PUT "ALLOCATING" HOOKS HERE 7382 */ 7383 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security), 7384 LSM_HOOK_INIT(msg_queue_alloc_security, 7385 selinux_msg_queue_alloc_security), 7386 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security), 7387 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security), 7388 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security), 7389 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security), 7390 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx), 7391 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx), 7392 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security), 7393 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security), 7394 #ifdef CONFIG_SECURITY_INFINIBAND 7395 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security), 7396 #endif 7397 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7398 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc), 7399 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc), 7400 LSM_HOOK_INIT(xfrm_state_alloc_acquire, 7401 selinux_xfrm_state_alloc_acquire), 7402 #endif 7403 #ifdef CONFIG_KEYS 7404 LSM_HOOK_INIT(key_alloc, selinux_key_alloc), 7405 #endif 7406 #ifdef CONFIG_AUDIT 7407 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init), 7408 #endif 7409 #ifdef CONFIG_BPF_SYSCALL 7410 LSM_HOOK_INIT(bpf_map_create, selinux_bpf_map_create), 7411 LSM_HOOK_INIT(bpf_prog_load, selinux_bpf_prog_load), 7412 LSM_HOOK_INIT(bpf_token_create, selinux_bpf_token_create), 7413 #endif 7414 #ifdef CONFIG_PERF_EVENTS 7415 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc), 7416 #endif 7417 }; 7418 7419 static __init int selinux_init(void) 7420 { 7421 pr_info("SELinux: Initializing.\n"); 7422 7423 memset(&selinux_state, 0, sizeof(selinux_state)); 7424 enforcing_set(selinux_enforcing_boot); 7425 selinux_avc_init(); 7426 mutex_init(&selinux_state.status_lock); 7427 mutex_init(&selinux_state.policy_mutex); 7428 7429 /* Set the security state for the initial task. */ 7430 cred_init_security(); 7431 7432 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 7433 if (!default_noexec) 7434 pr_notice("SELinux: virtual memory is executable by default\n"); 7435 7436 avc_init(); 7437 7438 avtab_cache_init(); 7439 7440 ebitmap_cache_init(); 7441 7442 hashtab_cache_init(); 7443 7444 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), 7445 &selinux_lsmid); 7446 7447 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) 7448 panic("SELinux: Unable to register AVC netcache callback\n"); 7449 7450 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET)) 7451 panic("SELinux: Unable to register AVC LSM notifier callback\n"); 7452 7453 if (selinux_enforcing_boot) 7454 pr_debug("SELinux: Starting in enforcing mode\n"); 7455 else 7456 pr_debug("SELinux: Starting in permissive mode\n"); 7457 7458 fs_validate_description("selinux", selinux_fs_parameters); 7459 7460 return 0; 7461 } 7462 7463 static void delayed_superblock_init(struct super_block *sb, void *unused) 7464 { 7465 selinux_set_mnt_opts(sb, NULL, 0, NULL); 7466 } 7467 7468 void selinux_complete_init(void) 7469 { 7470 pr_debug("SELinux: Completing initialization.\n"); 7471 7472 /* Set up any superblocks initialized prior to the policy load. */ 7473 pr_debug("SELinux: Setting up existing superblocks.\n"); 7474 iterate_supers(delayed_superblock_init, NULL); 7475 } 7476 7477 /* SELinux requires early initialization in order to label 7478 all processes and objects when they are created. */ 7479 DEFINE_LSM(selinux) = { 7480 .name = "selinux", 7481 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE, 7482 .enabled = &selinux_enabled_boot, 7483 .blobs = &selinux_blob_sizes, 7484 .init = selinux_init, 7485 }; 7486 7487 #if defined(CONFIG_NETFILTER) 7488 static const struct nf_hook_ops selinux_nf_ops[] = { 7489 { 7490 .hook = selinux_ip_postroute, 7491 .pf = NFPROTO_IPV4, 7492 .hooknum = NF_INET_POST_ROUTING, 7493 .priority = NF_IP_PRI_SELINUX_LAST, 7494 }, 7495 { 7496 .hook = selinux_ip_forward, 7497 .pf = NFPROTO_IPV4, 7498 .hooknum = NF_INET_FORWARD, 7499 .priority = NF_IP_PRI_SELINUX_FIRST, 7500 }, 7501 { 7502 .hook = selinux_ip_output, 7503 .pf = NFPROTO_IPV4, 7504 .hooknum = NF_INET_LOCAL_OUT, 7505 .priority = NF_IP_PRI_SELINUX_FIRST, 7506 }, 7507 #if IS_ENABLED(CONFIG_IPV6) 7508 { 7509 .hook = selinux_ip_postroute, 7510 .pf = NFPROTO_IPV6, 7511 .hooknum = NF_INET_POST_ROUTING, 7512 .priority = NF_IP6_PRI_SELINUX_LAST, 7513 }, 7514 { 7515 .hook = selinux_ip_forward, 7516 .pf = NFPROTO_IPV6, 7517 .hooknum = NF_INET_FORWARD, 7518 .priority = NF_IP6_PRI_SELINUX_FIRST, 7519 }, 7520 { 7521 .hook = selinux_ip_output, 7522 .pf = NFPROTO_IPV6, 7523 .hooknum = NF_INET_LOCAL_OUT, 7524 .priority = NF_IP6_PRI_SELINUX_FIRST, 7525 }, 7526 #endif /* IPV6 */ 7527 }; 7528 7529 static int __net_init selinux_nf_register(struct net *net) 7530 { 7531 return nf_register_net_hooks(net, selinux_nf_ops, 7532 ARRAY_SIZE(selinux_nf_ops)); 7533 } 7534 7535 static void __net_exit selinux_nf_unregister(struct net *net) 7536 { 7537 nf_unregister_net_hooks(net, selinux_nf_ops, 7538 ARRAY_SIZE(selinux_nf_ops)); 7539 } 7540 7541 static struct pernet_operations selinux_net_ops = { 7542 .init = selinux_nf_register, 7543 .exit = selinux_nf_unregister, 7544 }; 7545 7546 static int __init selinux_nf_ip_init(void) 7547 { 7548 int err; 7549 7550 if (!selinux_enabled_boot) 7551 return 0; 7552 7553 pr_debug("SELinux: Registering netfilter hooks\n"); 7554 7555 err = register_pernet_subsys(&selinux_net_ops); 7556 if (err) 7557 panic("SELinux: register_pernet_subsys: error %d\n", err); 7558 7559 return 0; 7560 } 7561 __initcall(selinux_nf_ip_init); 7562 #endif /* CONFIG_NETFILTER */ 7563