xref: /linux/security/selinux/hooks.c (revision 66e72a01b60ae6950ddbb3585fdc1424d303e14b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Security-Enhanced Linux (SELinux) security module
4  *
5  *  This file contains the SELinux hook function implementations.
6  *
7  *  Authors:  Stephen Smalley, <stephen.smalley.work@gmail.com>
8  *	      Chris Vance, <cvance@nai.com>
9  *	      Wayne Salamon, <wsalamon@nai.com>
10  *	      James Morris <jmorris@redhat.com>
11  *
12  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14  *					   Eric Paris <eparis@redhat.com>
15  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  *			    <dgoeddel@trustedcs.com>
17  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18  *	Paul Moore <paul@paul-moore.com>
19  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
21  *  Copyright (C) 2016 Mellanox Technologies
22  */
23 
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/errno.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/task.h>
31 #include <linux/lsm_hooks.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/swap.h>
41 #include <linux/spinlock.h>
42 #include <linux/syscalls.h>
43 #include <linux/dcache.h>
44 #include <linux/file.h>
45 #include <linux/fdtable.h>
46 #include <linux/namei.h>
47 #include <linux/mount.h>
48 #include <linux/fs_context.h>
49 #include <linux/fs_parser.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>		/* for local_port_range[] */
55 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>	/* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/sctp.h>
70 #include <net/sctp/structs.h>
71 #include <linux/quota.h>
72 #include <linux/un.h>		/* for Unix socket types */
73 #include <net/af_unix.h>	/* for Unix socket types */
74 #include <linux/parser.h>
75 #include <linux/nfs_mount.h>
76 #include <net/ipv6.h>
77 #include <linux/hugetlb.h>
78 #include <linux/personality.h>
79 #include <linux/audit.h>
80 #include <linux/string.h>
81 #include <linux/mutex.h>
82 #include <linux/posix-timers.h>
83 #include <linux/syslog.h>
84 #include <linux/user_namespace.h>
85 #include <linux/export.h>
86 #include <linux/msg.h>
87 #include <linux/shm.h>
88 #include <uapi/linux/shm.h>
89 #include <linux/bpf.h>
90 #include <linux/kernfs.h>
91 #include <linux/stringhash.h>	/* for hashlen_string() */
92 #include <uapi/linux/mount.h>
93 #include <linux/fsnotify.h>
94 #include <linux/fanotify.h>
95 #include <linux/io_uring/cmd.h>
96 #include <uapi/linux/lsm.h>
97 
98 #include "avc.h"
99 #include "objsec.h"
100 #include "netif.h"
101 #include "netnode.h"
102 #include "netport.h"
103 #include "ibpkey.h"
104 #include "xfrm.h"
105 #include "netlabel.h"
106 #include "audit.h"
107 #include "avc_ss.h"
108 
109 #define SELINUX_INODE_INIT_XATTRS 1
110 
111 struct selinux_state selinux_state;
112 
113 /* SECMARK reference count */
114 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
115 
116 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
117 static int selinux_enforcing_boot __initdata;
118 
119 static int __init enforcing_setup(char *str)
120 {
121 	unsigned long enforcing;
122 	if (!kstrtoul(str, 0, &enforcing))
123 		selinux_enforcing_boot = enforcing ? 1 : 0;
124 	return 1;
125 }
126 __setup("enforcing=", enforcing_setup);
127 #else
128 #define selinux_enforcing_boot 1
129 #endif
130 
131 int selinux_enabled_boot __initdata = 1;
132 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
133 static int __init selinux_enabled_setup(char *str)
134 {
135 	unsigned long enabled;
136 	if (!kstrtoul(str, 0, &enabled))
137 		selinux_enabled_boot = enabled ? 1 : 0;
138 	return 1;
139 }
140 __setup("selinux=", selinux_enabled_setup);
141 #endif
142 
143 static int __init checkreqprot_setup(char *str)
144 {
145 	unsigned long checkreqprot;
146 
147 	if (!kstrtoul(str, 0, &checkreqprot)) {
148 		if (checkreqprot)
149 			pr_err("SELinux: checkreqprot set to 1 via kernel parameter.  This is no longer supported.\n");
150 	}
151 	return 1;
152 }
153 __setup("checkreqprot=", checkreqprot_setup);
154 
155 /**
156  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157  *
158  * Description:
159  * This function checks the SECMARK reference counter to see if any SECMARK
160  * targets are currently configured, if the reference counter is greater than
161  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
162  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
163  * policy capability is enabled, SECMARK is always considered enabled.
164  *
165  */
166 static int selinux_secmark_enabled(void)
167 {
168 	return (selinux_policycap_alwaysnetwork() ||
169 		atomic_read(&selinux_secmark_refcount));
170 }
171 
172 /**
173  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174  *
175  * Description:
176  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
177  * (1) if any are enabled or false (0) if neither are enabled.  If the
178  * always_check_network policy capability is enabled, peer labeling
179  * is always considered enabled.
180  *
181  */
182 static int selinux_peerlbl_enabled(void)
183 {
184 	return (selinux_policycap_alwaysnetwork() ||
185 		netlbl_enabled() || selinux_xfrm_enabled());
186 }
187 
188 static int selinux_netcache_avc_callback(u32 event)
189 {
190 	if (event == AVC_CALLBACK_RESET) {
191 		sel_netif_flush();
192 		sel_netnode_flush();
193 		sel_netport_flush();
194 		synchronize_net();
195 	}
196 	return 0;
197 }
198 
199 static int selinux_lsm_notifier_avc_callback(u32 event)
200 {
201 	if (event == AVC_CALLBACK_RESET) {
202 		sel_ib_pkey_flush();
203 		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 	}
205 
206 	return 0;
207 }
208 
209 /*
210  * initialise the security for the init task
211  */
212 static void cred_init_security(void)
213 {
214 	struct task_security_struct *tsec;
215 
216 	tsec = selinux_cred(unrcu_pointer(current->real_cred));
217 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
218 }
219 
220 /*
221  * get the security ID of a set of credentials
222  */
223 static inline u32 cred_sid(const struct cred *cred)
224 {
225 	const struct task_security_struct *tsec;
226 
227 	tsec = selinux_cred(cred);
228 	return tsec->sid;
229 }
230 
231 static void __ad_net_init(struct common_audit_data *ad,
232 			  struct lsm_network_audit *net,
233 			  int ifindex, struct sock *sk, u16 family)
234 {
235 	ad->type = LSM_AUDIT_DATA_NET;
236 	ad->u.net = net;
237 	net->netif = ifindex;
238 	net->sk = sk;
239 	net->family = family;
240 }
241 
242 static void ad_net_init_from_sk(struct common_audit_data *ad,
243 				struct lsm_network_audit *net,
244 				struct sock *sk)
245 {
246 	__ad_net_init(ad, net, 0, sk, 0);
247 }
248 
249 static void ad_net_init_from_iif(struct common_audit_data *ad,
250 				 struct lsm_network_audit *net,
251 				 int ifindex, u16 family)
252 {
253 	__ad_net_init(ad, net, ifindex, NULL, family);
254 }
255 
256 /*
257  * get the objective security ID of a task
258  */
259 static inline u32 task_sid_obj(const struct task_struct *task)
260 {
261 	u32 sid;
262 
263 	rcu_read_lock();
264 	sid = cred_sid(__task_cred(task));
265 	rcu_read_unlock();
266 	return sid;
267 }
268 
269 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
270 
271 /*
272  * Try reloading inode security labels that have been marked as invalid.  The
273  * @may_sleep parameter indicates when sleeping and thus reloading labels is
274  * allowed; when set to false, returns -ECHILD when the label is
275  * invalid.  The @dentry parameter should be set to a dentry of the inode.
276  */
277 static int __inode_security_revalidate(struct inode *inode,
278 				       struct dentry *dentry,
279 				       bool may_sleep)
280 {
281 	struct inode_security_struct *isec = selinux_inode(inode);
282 
283 	might_sleep_if(may_sleep);
284 
285 	if (selinux_initialized() &&
286 	    isec->initialized != LABEL_INITIALIZED) {
287 		if (!may_sleep)
288 			return -ECHILD;
289 
290 		/*
291 		 * Try reloading the inode security label.  This will fail if
292 		 * @opt_dentry is NULL and no dentry for this inode can be
293 		 * found; in that case, continue using the old label.
294 		 */
295 		inode_doinit_with_dentry(inode, dentry);
296 	}
297 	return 0;
298 }
299 
300 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
301 {
302 	return selinux_inode(inode);
303 }
304 
305 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
306 {
307 	int error;
308 
309 	error = __inode_security_revalidate(inode, NULL, !rcu);
310 	if (error)
311 		return ERR_PTR(error);
312 	return selinux_inode(inode);
313 }
314 
315 /*
316  * Get the security label of an inode.
317  */
318 static struct inode_security_struct *inode_security(struct inode *inode)
319 {
320 	__inode_security_revalidate(inode, NULL, true);
321 	return selinux_inode(inode);
322 }
323 
324 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
325 {
326 	struct inode *inode = d_backing_inode(dentry);
327 
328 	return selinux_inode(inode);
329 }
330 
331 /*
332  * Get the security label of a dentry's backing inode.
333  */
334 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
335 {
336 	struct inode *inode = d_backing_inode(dentry);
337 
338 	__inode_security_revalidate(inode, dentry, true);
339 	return selinux_inode(inode);
340 }
341 
342 static void inode_free_security(struct inode *inode)
343 {
344 	struct inode_security_struct *isec = selinux_inode(inode);
345 	struct superblock_security_struct *sbsec;
346 
347 	if (!isec)
348 		return;
349 	sbsec = selinux_superblock(inode->i_sb);
350 	/*
351 	 * As not all inode security structures are in a list, we check for
352 	 * empty list outside of the lock to make sure that we won't waste
353 	 * time taking a lock doing nothing.
354 	 *
355 	 * The list_del_init() function can be safely called more than once.
356 	 * It should not be possible for this function to be called with
357 	 * concurrent list_add(), but for better safety against future changes
358 	 * in the code, we use list_empty_careful() here.
359 	 */
360 	if (!list_empty_careful(&isec->list)) {
361 		spin_lock(&sbsec->isec_lock);
362 		list_del_init(&isec->list);
363 		spin_unlock(&sbsec->isec_lock);
364 	}
365 }
366 
367 struct selinux_mnt_opts {
368 	u32 fscontext_sid;
369 	u32 context_sid;
370 	u32 rootcontext_sid;
371 	u32 defcontext_sid;
372 };
373 
374 static void selinux_free_mnt_opts(void *mnt_opts)
375 {
376 	kfree(mnt_opts);
377 }
378 
379 enum {
380 	Opt_error = -1,
381 	Opt_context = 0,
382 	Opt_defcontext = 1,
383 	Opt_fscontext = 2,
384 	Opt_rootcontext = 3,
385 	Opt_seclabel = 4,
386 };
387 
388 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
389 static const struct {
390 	const char *name;
391 	int len;
392 	int opt;
393 	bool has_arg;
394 } tokens[] = {
395 	A(context, true),
396 	A(fscontext, true),
397 	A(defcontext, true),
398 	A(rootcontext, true),
399 	A(seclabel, false),
400 };
401 #undef A
402 
403 static int match_opt_prefix(char *s, int l, char **arg)
404 {
405 	int i;
406 
407 	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
408 		size_t len = tokens[i].len;
409 		if (len > l || memcmp(s, tokens[i].name, len))
410 			continue;
411 		if (tokens[i].has_arg) {
412 			if (len == l || s[len] != '=')
413 				continue;
414 			*arg = s + len + 1;
415 		} else if (len != l)
416 			continue;
417 		return tokens[i].opt;
418 	}
419 	return Opt_error;
420 }
421 
422 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
423 
424 static int may_context_mount_sb_relabel(u32 sid,
425 			struct superblock_security_struct *sbsec,
426 			const struct cred *cred)
427 {
428 	const struct task_security_struct *tsec = selinux_cred(cred);
429 	int rc;
430 
431 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
432 			  FILESYSTEM__RELABELFROM, NULL);
433 	if (rc)
434 		return rc;
435 
436 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
437 			  FILESYSTEM__RELABELTO, NULL);
438 	return rc;
439 }
440 
441 static int may_context_mount_inode_relabel(u32 sid,
442 			struct superblock_security_struct *sbsec,
443 			const struct cred *cred)
444 {
445 	const struct task_security_struct *tsec = selinux_cred(cred);
446 	int rc;
447 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
448 			  FILESYSTEM__RELABELFROM, NULL);
449 	if (rc)
450 		return rc;
451 
452 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
453 			  FILESYSTEM__ASSOCIATE, NULL);
454 	return rc;
455 }
456 
457 static int selinux_is_genfs_special_handling(struct super_block *sb)
458 {
459 	/* Special handling. Genfs but also in-core setxattr handler */
460 	return	!strcmp(sb->s_type->name, "sysfs") ||
461 		!strcmp(sb->s_type->name, "pstore") ||
462 		!strcmp(sb->s_type->name, "debugfs") ||
463 		!strcmp(sb->s_type->name, "tracefs") ||
464 		!strcmp(sb->s_type->name, "rootfs") ||
465 		(selinux_policycap_cgroupseclabel() &&
466 		 (!strcmp(sb->s_type->name, "cgroup") ||
467 		  !strcmp(sb->s_type->name, "cgroup2")));
468 }
469 
470 static int selinux_is_sblabel_mnt(struct super_block *sb)
471 {
472 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
473 
474 	/*
475 	 * IMPORTANT: Double-check logic in this function when adding a new
476 	 * SECURITY_FS_USE_* definition!
477 	 */
478 	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
479 
480 	switch (sbsec->behavior) {
481 	case SECURITY_FS_USE_XATTR:
482 	case SECURITY_FS_USE_TRANS:
483 	case SECURITY_FS_USE_TASK:
484 	case SECURITY_FS_USE_NATIVE:
485 		return 1;
486 
487 	case SECURITY_FS_USE_GENFS:
488 		return selinux_is_genfs_special_handling(sb);
489 
490 	/* Never allow relabeling on context mounts */
491 	case SECURITY_FS_USE_MNTPOINT:
492 	case SECURITY_FS_USE_NONE:
493 	default:
494 		return 0;
495 	}
496 }
497 
498 static int sb_check_xattr_support(struct super_block *sb)
499 {
500 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
501 	struct dentry *root = sb->s_root;
502 	struct inode *root_inode = d_backing_inode(root);
503 	u32 sid;
504 	int rc;
505 
506 	/*
507 	 * Make sure that the xattr handler exists and that no
508 	 * error other than -ENODATA is returned by getxattr on
509 	 * the root directory.  -ENODATA is ok, as this may be
510 	 * the first boot of the SELinux kernel before we have
511 	 * assigned xattr values to the filesystem.
512 	 */
513 	if (!(root_inode->i_opflags & IOP_XATTR)) {
514 		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
515 			sb->s_id, sb->s_type->name);
516 		goto fallback;
517 	}
518 
519 	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
520 	if (rc < 0 && rc != -ENODATA) {
521 		if (rc == -EOPNOTSUPP) {
522 			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
523 				sb->s_id, sb->s_type->name);
524 			goto fallback;
525 		} else {
526 			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
527 				sb->s_id, sb->s_type->name, -rc);
528 			return rc;
529 		}
530 	}
531 	return 0;
532 
533 fallback:
534 	/* No xattr support - try to fallback to genfs if possible. */
535 	rc = security_genfs_sid(sb->s_type->name, "/",
536 				SECCLASS_DIR, &sid);
537 	if (rc)
538 		return -EOPNOTSUPP;
539 
540 	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
541 		sb->s_id, sb->s_type->name);
542 	sbsec->behavior = SECURITY_FS_USE_GENFS;
543 	sbsec->sid = sid;
544 	return 0;
545 }
546 
547 static int sb_finish_set_opts(struct super_block *sb)
548 {
549 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
550 	struct dentry *root = sb->s_root;
551 	struct inode *root_inode = d_backing_inode(root);
552 	int rc = 0;
553 
554 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
555 		rc = sb_check_xattr_support(sb);
556 		if (rc)
557 			return rc;
558 	}
559 
560 	sbsec->flags |= SE_SBINITIALIZED;
561 
562 	/*
563 	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
564 	 * leave the flag untouched because sb_clone_mnt_opts might be handing
565 	 * us a superblock that needs the flag to be cleared.
566 	 */
567 	if (selinux_is_sblabel_mnt(sb))
568 		sbsec->flags |= SBLABEL_MNT;
569 	else
570 		sbsec->flags &= ~SBLABEL_MNT;
571 
572 	/* Initialize the root inode. */
573 	rc = inode_doinit_with_dentry(root_inode, root);
574 
575 	/* Initialize any other inodes associated with the superblock, e.g.
576 	   inodes created prior to initial policy load or inodes created
577 	   during get_sb by a pseudo filesystem that directly
578 	   populates itself. */
579 	spin_lock(&sbsec->isec_lock);
580 	while (!list_empty(&sbsec->isec_head)) {
581 		struct inode_security_struct *isec =
582 				list_first_entry(&sbsec->isec_head,
583 					   struct inode_security_struct, list);
584 		struct inode *inode = isec->inode;
585 		list_del_init(&isec->list);
586 		spin_unlock(&sbsec->isec_lock);
587 		inode = igrab(inode);
588 		if (inode) {
589 			if (!IS_PRIVATE(inode))
590 				inode_doinit_with_dentry(inode, NULL);
591 			iput(inode);
592 		}
593 		spin_lock(&sbsec->isec_lock);
594 	}
595 	spin_unlock(&sbsec->isec_lock);
596 	return rc;
597 }
598 
599 static int bad_option(struct superblock_security_struct *sbsec, char flag,
600 		      u32 old_sid, u32 new_sid)
601 {
602 	char mnt_flags = sbsec->flags & SE_MNTMASK;
603 
604 	/* check if the old mount command had the same options */
605 	if (sbsec->flags & SE_SBINITIALIZED)
606 		if (!(sbsec->flags & flag) ||
607 		    (old_sid != new_sid))
608 			return 1;
609 
610 	/* check if we were passed the same options twice,
611 	 * aka someone passed context=a,context=b
612 	 */
613 	if (!(sbsec->flags & SE_SBINITIALIZED))
614 		if (mnt_flags & flag)
615 			return 1;
616 	return 0;
617 }
618 
619 /*
620  * Allow filesystems with binary mount data to explicitly set mount point
621  * labeling information.
622  */
623 static int selinux_set_mnt_opts(struct super_block *sb,
624 				void *mnt_opts,
625 				unsigned long kern_flags,
626 				unsigned long *set_kern_flags)
627 {
628 	const struct cred *cred = current_cred();
629 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
630 	struct dentry *root = sb->s_root;
631 	struct selinux_mnt_opts *opts = mnt_opts;
632 	struct inode_security_struct *root_isec;
633 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
634 	u32 defcontext_sid = 0;
635 	int rc = 0;
636 
637 	/*
638 	 * Specifying internal flags without providing a place to
639 	 * place the results is not allowed
640 	 */
641 	if (kern_flags && !set_kern_flags)
642 		return -EINVAL;
643 
644 	mutex_lock(&sbsec->lock);
645 
646 	if (!selinux_initialized()) {
647 		if (!opts) {
648 			/* Defer initialization until selinux_complete_init,
649 			   after the initial policy is loaded and the security
650 			   server is ready to handle calls. */
651 			if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
652 				sbsec->flags |= SE_SBNATIVE;
653 				*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
654 			}
655 			goto out;
656 		}
657 		rc = -EINVAL;
658 		pr_warn("SELinux: Unable to set superblock options "
659 			"before the security server is initialized\n");
660 		goto out;
661 	}
662 
663 	/*
664 	 * Binary mount data FS will come through this function twice.  Once
665 	 * from an explicit call and once from the generic calls from the vfs.
666 	 * Since the generic VFS calls will not contain any security mount data
667 	 * we need to skip the double mount verification.
668 	 *
669 	 * This does open a hole in which we will not notice if the first
670 	 * mount using this sb set explicit options and a second mount using
671 	 * this sb does not set any security options.  (The first options
672 	 * will be used for both mounts)
673 	 */
674 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
675 	    && !opts)
676 		goto out;
677 
678 	root_isec = backing_inode_security_novalidate(root);
679 
680 	/*
681 	 * parse the mount options, check if they are valid sids.
682 	 * also check if someone is trying to mount the same sb more
683 	 * than once with different security options.
684 	 */
685 	if (opts) {
686 		if (opts->fscontext_sid) {
687 			fscontext_sid = opts->fscontext_sid;
688 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
689 					fscontext_sid))
690 				goto out_double_mount;
691 			sbsec->flags |= FSCONTEXT_MNT;
692 		}
693 		if (opts->context_sid) {
694 			context_sid = opts->context_sid;
695 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
696 					context_sid))
697 				goto out_double_mount;
698 			sbsec->flags |= CONTEXT_MNT;
699 		}
700 		if (opts->rootcontext_sid) {
701 			rootcontext_sid = opts->rootcontext_sid;
702 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
703 					rootcontext_sid))
704 				goto out_double_mount;
705 			sbsec->flags |= ROOTCONTEXT_MNT;
706 		}
707 		if (opts->defcontext_sid) {
708 			defcontext_sid = opts->defcontext_sid;
709 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
710 					defcontext_sid))
711 				goto out_double_mount;
712 			sbsec->flags |= DEFCONTEXT_MNT;
713 		}
714 	}
715 
716 	if (sbsec->flags & SE_SBINITIALIZED) {
717 		/* previously mounted with options, but not on this attempt? */
718 		if ((sbsec->flags & SE_MNTMASK) && !opts)
719 			goto out_double_mount;
720 		rc = 0;
721 		goto out;
722 	}
723 
724 	if (strcmp(sb->s_type->name, "proc") == 0)
725 		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
726 
727 	if (!strcmp(sb->s_type->name, "debugfs") ||
728 	    !strcmp(sb->s_type->name, "tracefs") ||
729 	    !strcmp(sb->s_type->name, "binder") ||
730 	    !strcmp(sb->s_type->name, "bpf") ||
731 	    !strcmp(sb->s_type->name, "pstore") ||
732 	    !strcmp(sb->s_type->name, "securityfs"))
733 		sbsec->flags |= SE_SBGENFS;
734 
735 	if (!strcmp(sb->s_type->name, "sysfs") ||
736 	    !strcmp(sb->s_type->name, "cgroup") ||
737 	    !strcmp(sb->s_type->name, "cgroup2"))
738 		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
739 
740 	if (!sbsec->behavior) {
741 		/*
742 		 * Determine the labeling behavior to use for this
743 		 * filesystem type.
744 		 */
745 		rc = security_fs_use(sb);
746 		if (rc) {
747 			pr_warn("%s: security_fs_use(%s) returned %d\n",
748 					__func__, sb->s_type->name, rc);
749 			goto out;
750 		}
751 	}
752 
753 	/*
754 	 * If this is a user namespace mount and the filesystem type is not
755 	 * explicitly whitelisted, then no contexts are allowed on the command
756 	 * line and security labels must be ignored.
757 	 */
758 	if (sb->s_user_ns != &init_user_ns &&
759 	    strcmp(sb->s_type->name, "tmpfs") &&
760 	    strcmp(sb->s_type->name, "ramfs") &&
761 	    strcmp(sb->s_type->name, "devpts") &&
762 	    strcmp(sb->s_type->name, "overlay")) {
763 		if (context_sid || fscontext_sid || rootcontext_sid ||
764 		    defcontext_sid) {
765 			rc = -EACCES;
766 			goto out;
767 		}
768 		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
769 			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
770 			rc = security_transition_sid(current_sid(),
771 						     current_sid(),
772 						     SECCLASS_FILE, NULL,
773 						     &sbsec->mntpoint_sid);
774 			if (rc)
775 				goto out;
776 		}
777 		goto out_set_opts;
778 	}
779 
780 	/* sets the context of the superblock for the fs being mounted. */
781 	if (fscontext_sid) {
782 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
783 		if (rc)
784 			goto out;
785 
786 		sbsec->sid = fscontext_sid;
787 	}
788 
789 	/*
790 	 * Switch to using mount point labeling behavior.
791 	 * sets the label used on all file below the mountpoint, and will set
792 	 * the superblock context if not already set.
793 	 */
794 	if (sbsec->flags & SE_SBNATIVE) {
795 		/*
796 		 * This means we are initializing a superblock that has been
797 		 * mounted before the SELinux was initialized and the
798 		 * filesystem requested native labeling. We had already
799 		 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags
800 		 * in the original mount attempt, so now we just need to set
801 		 * the SECURITY_FS_USE_NATIVE behavior.
802 		 */
803 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
804 	} else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
805 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
806 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
807 	}
808 
809 	if (context_sid) {
810 		if (!fscontext_sid) {
811 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
812 							  cred);
813 			if (rc)
814 				goto out;
815 			sbsec->sid = context_sid;
816 		} else {
817 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
818 							     cred);
819 			if (rc)
820 				goto out;
821 		}
822 		if (!rootcontext_sid)
823 			rootcontext_sid = context_sid;
824 
825 		sbsec->mntpoint_sid = context_sid;
826 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
827 	}
828 
829 	if (rootcontext_sid) {
830 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
831 						     cred);
832 		if (rc)
833 			goto out;
834 
835 		root_isec->sid = rootcontext_sid;
836 		root_isec->initialized = LABEL_INITIALIZED;
837 	}
838 
839 	if (defcontext_sid) {
840 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
841 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
842 			rc = -EINVAL;
843 			pr_warn("SELinux: defcontext option is "
844 			       "invalid for this filesystem type\n");
845 			goto out;
846 		}
847 
848 		if (defcontext_sid != sbsec->def_sid) {
849 			rc = may_context_mount_inode_relabel(defcontext_sid,
850 							     sbsec, cred);
851 			if (rc)
852 				goto out;
853 		}
854 
855 		sbsec->def_sid = defcontext_sid;
856 	}
857 
858 out_set_opts:
859 	rc = sb_finish_set_opts(sb);
860 out:
861 	mutex_unlock(&sbsec->lock);
862 	return rc;
863 out_double_mount:
864 	rc = -EINVAL;
865 	pr_warn("SELinux: mount invalid.  Same superblock, different "
866 	       "security settings for (dev %s, type %s)\n", sb->s_id,
867 	       sb->s_type->name);
868 	goto out;
869 }
870 
871 static int selinux_cmp_sb_context(const struct super_block *oldsb,
872 				    const struct super_block *newsb)
873 {
874 	struct superblock_security_struct *old = selinux_superblock(oldsb);
875 	struct superblock_security_struct *new = selinux_superblock(newsb);
876 	char oldflags = old->flags & SE_MNTMASK;
877 	char newflags = new->flags & SE_MNTMASK;
878 
879 	if (oldflags != newflags)
880 		goto mismatch;
881 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
882 		goto mismatch;
883 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
884 		goto mismatch;
885 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
886 		goto mismatch;
887 	if (oldflags & ROOTCONTEXT_MNT) {
888 		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
889 		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
890 		if (oldroot->sid != newroot->sid)
891 			goto mismatch;
892 	}
893 	return 0;
894 mismatch:
895 	pr_warn("SELinux: mount invalid.  Same superblock, "
896 			    "different security settings for (dev %s, "
897 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
898 	return -EBUSY;
899 }
900 
901 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
902 					struct super_block *newsb,
903 					unsigned long kern_flags,
904 					unsigned long *set_kern_flags)
905 {
906 	int rc = 0;
907 	const struct superblock_security_struct *oldsbsec =
908 						selinux_superblock(oldsb);
909 	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
910 
911 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
912 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
913 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
914 
915 	/*
916 	 * Specifying internal flags without providing a place to
917 	 * place the results is not allowed.
918 	 */
919 	if (kern_flags && !set_kern_flags)
920 		return -EINVAL;
921 
922 	mutex_lock(&newsbsec->lock);
923 
924 	/*
925 	 * if the parent was able to be mounted it clearly had no special lsm
926 	 * mount options.  thus we can safely deal with this superblock later
927 	 */
928 	if (!selinux_initialized()) {
929 		if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
930 			newsbsec->flags |= SE_SBNATIVE;
931 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
932 		}
933 		goto out;
934 	}
935 
936 	/* how can we clone if the old one wasn't set up?? */
937 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
938 
939 	/* if fs is reusing a sb, make sure that the contexts match */
940 	if (newsbsec->flags & SE_SBINITIALIZED) {
941 		mutex_unlock(&newsbsec->lock);
942 		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
943 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
944 		return selinux_cmp_sb_context(oldsb, newsb);
945 	}
946 
947 	newsbsec->flags = oldsbsec->flags;
948 
949 	newsbsec->sid = oldsbsec->sid;
950 	newsbsec->def_sid = oldsbsec->def_sid;
951 	newsbsec->behavior = oldsbsec->behavior;
952 
953 	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
954 		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
955 		rc = security_fs_use(newsb);
956 		if (rc)
957 			goto out;
958 	}
959 
960 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
961 		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
962 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
963 	}
964 
965 	if (set_context) {
966 		u32 sid = oldsbsec->mntpoint_sid;
967 
968 		if (!set_fscontext)
969 			newsbsec->sid = sid;
970 		if (!set_rootcontext) {
971 			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
972 			newisec->sid = sid;
973 		}
974 		newsbsec->mntpoint_sid = sid;
975 	}
976 	if (set_rootcontext) {
977 		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
978 		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
979 
980 		newisec->sid = oldisec->sid;
981 	}
982 
983 	sb_finish_set_opts(newsb);
984 out:
985 	mutex_unlock(&newsbsec->lock);
986 	return rc;
987 }
988 
989 /*
990  * NOTE: the caller is responsible for freeing the memory even if on error.
991  */
992 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
993 {
994 	struct selinux_mnt_opts *opts = *mnt_opts;
995 	u32 *dst_sid;
996 	int rc;
997 
998 	if (token == Opt_seclabel)
999 		/* eaten and completely ignored */
1000 		return 0;
1001 	if (!s)
1002 		return -EINVAL;
1003 
1004 	if (!selinux_initialized()) {
1005 		pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
1006 		return -EINVAL;
1007 	}
1008 
1009 	if (!opts) {
1010 		opts = kzalloc(sizeof(*opts), GFP_KERNEL);
1011 		if (!opts)
1012 			return -ENOMEM;
1013 		*mnt_opts = opts;
1014 	}
1015 
1016 	switch (token) {
1017 	case Opt_context:
1018 		if (opts->context_sid || opts->defcontext_sid)
1019 			goto err;
1020 		dst_sid = &opts->context_sid;
1021 		break;
1022 	case Opt_fscontext:
1023 		if (opts->fscontext_sid)
1024 			goto err;
1025 		dst_sid = &opts->fscontext_sid;
1026 		break;
1027 	case Opt_rootcontext:
1028 		if (opts->rootcontext_sid)
1029 			goto err;
1030 		dst_sid = &opts->rootcontext_sid;
1031 		break;
1032 	case Opt_defcontext:
1033 		if (opts->context_sid || opts->defcontext_sid)
1034 			goto err;
1035 		dst_sid = &opts->defcontext_sid;
1036 		break;
1037 	default:
1038 		WARN_ON(1);
1039 		return -EINVAL;
1040 	}
1041 	rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL);
1042 	if (rc)
1043 		pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1044 			s, rc);
1045 	return rc;
1046 
1047 err:
1048 	pr_warn(SEL_MOUNT_FAIL_MSG);
1049 	return -EINVAL;
1050 }
1051 
1052 static int show_sid(struct seq_file *m, u32 sid)
1053 {
1054 	char *context = NULL;
1055 	u32 len;
1056 	int rc;
1057 
1058 	rc = security_sid_to_context(sid, &context, &len);
1059 	if (!rc) {
1060 		bool has_comma = strchr(context, ',');
1061 
1062 		seq_putc(m, '=');
1063 		if (has_comma)
1064 			seq_putc(m, '\"');
1065 		seq_escape(m, context, "\"\n\\");
1066 		if (has_comma)
1067 			seq_putc(m, '\"');
1068 	}
1069 	kfree(context);
1070 	return rc;
1071 }
1072 
1073 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1074 {
1075 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1076 	int rc;
1077 
1078 	if (!(sbsec->flags & SE_SBINITIALIZED))
1079 		return 0;
1080 
1081 	if (!selinux_initialized())
1082 		return 0;
1083 
1084 	if (sbsec->flags & FSCONTEXT_MNT) {
1085 		seq_putc(m, ',');
1086 		seq_puts(m, FSCONTEXT_STR);
1087 		rc = show_sid(m, sbsec->sid);
1088 		if (rc)
1089 			return rc;
1090 	}
1091 	if (sbsec->flags & CONTEXT_MNT) {
1092 		seq_putc(m, ',');
1093 		seq_puts(m, CONTEXT_STR);
1094 		rc = show_sid(m, sbsec->mntpoint_sid);
1095 		if (rc)
1096 			return rc;
1097 	}
1098 	if (sbsec->flags & DEFCONTEXT_MNT) {
1099 		seq_putc(m, ',');
1100 		seq_puts(m, DEFCONTEXT_STR);
1101 		rc = show_sid(m, sbsec->def_sid);
1102 		if (rc)
1103 			return rc;
1104 	}
1105 	if (sbsec->flags & ROOTCONTEXT_MNT) {
1106 		struct dentry *root = sb->s_root;
1107 		struct inode_security_struct *isec = backing_inode_security(root);
1108 		seq_putc(m, ',');
1109 		seq_puts(m, ROOTCONTEXT_STR);
1110 		rc = show_sid(m, isec->sid);
1111 		if (rc)
1112 			return rc;
1113 	}
1114 	if (sbsec->flags & SBLABEL_MNT) {
1115 		seq_putc(m, ',');
1116 		seq_puts(m, SECLABEL_STR);
1117 	}
1118 	return 0;
1119 }
1120 
1121 static inline u16 inode_mode_to_security_class(umode_t mode)
1122 {
1123 	switch (mode & S_IFMT) {
1124 	case S_IFSOCK:
1125 		return SECCLASS_SOCK_FILE;
1126 	case S_IFLNK:
1127 		return SECCLASS_LNK_FILE;
1128 	case S_IFREG:
1129 		return SECCLASS_FILE;
1130 	case S_IFBLK:
1131 		return SECCLASS_BLK_FILE;
1132 	case S_IFDIR:
1133 		return SECCLASS_DIR;
1134 	case S_IFCHR:
1135 		return SECCLASS_CHR_FILE;
1136 	case S_IFIFO:
1137 		return SECCLASS_FIFO_FILE;
1138 
1139 	}
1140 
1141 	return SECCLASS_FILE;
1142 }
1143 
1144 static inline int default_protocol_stream(int protocol)
1145 {
1146 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1147 		protocol == IPPROTO_MPTCP);
1148 }
1149 
1150 static inline int default_protocol_dgram(int protocol)
1151 {
1152 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1153 }
1154 
1155 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1156 {
1157 	bool extsockclass = selinux_policycap_extsockclass();
1158 
1159 	switch (family) {
1160 	case PF_UNIX:
1161 		switch (type) {
1162 		case SOCK_STREAM:
1163 		case SOCK_SEQPACKET:
1164 			return SECCLASS_UNIX_STREAM_SOCKET;
1165 		case SOCK_DGRAM:
1166 		case SOCK_RAW:
1167 			return SECCLASS_UNIX_DGRAM_SOCKET;
1168 		}
1169 		break;
1170 	case PF_INET:
1171 	case PF_INET6:
1172 		switch (type) {
1173 		case SOCK_STREAM:
1174 		case SOCK_SEQPACKET:
1175 			if (default_protocol_stream(protocol))
1176 				return SECCLASS_TCP_SOCKET;
1177 			else if (extsockclass && protocol == IPPROTO_SCTP)
1178 				return SECCLASS_SCTP_SOCKET;
1179 			else
1180 				return SECCLASS_RAWIP_SOCKET;
1181 		case SOCK_DGRAM:
1182 			if (default_protocol_dgram(protocol))
1183 				return SECCLASS_UDP_SOCKET;
1184 			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1185 						  protocol == IPPROTO_ICMPV6))
1186 				return SECCLASS_ICMP_SOCKET;
1187 			else
1188 				return SECCLASS_RAWIP_SOCKET;
1189 		case SOCK_DCCP:
1190 			return SECCLASS_DCCP_SOCKET;
1191 		default:
1192 			return SECCLASS_RAWIP_SOCKET;
1193 		}
1194 		break;
1195 	case PF_NETLINK:
1196 		switch (protocol) {
1197 		case NETLINK_ROUTE:
1198 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1199 		case NETLINK_SOCK_DIAG:
1200 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1201 		case NETLINK_NFLOG:
1202 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1203 		case NETLINK_XFRM:
1204 			return SECCLASS_NETLINK_XFRM_SOCKET;
1205 		case NETLINK_SELINUX:
1206 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1207 		case NETLINK_ISCSI:
1208 			return SECCLASS_NETLINK_ISCSI_SOCKET;
1209 		case NETLINK_AUDIT:
1210 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1211 		case NETLINK_FIB_LOOKUP:
1212 			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1213 		case NETLINK_CONNECTOR:
1214 			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1215 		case NETLINK_NETFILTER:
1216 			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1217 		case NETLINK_DNRTMSG:
1218 			return SECCLASS_NETLINK_DNRT_SOCKET;
1219 		case NETLINK_KOBJECT_UEVENT:
1220 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1221 		case NETLINK_GENERIC:
1222 			return SECCLASS_NETLINK_GENERIC_SOCKET;
1223 		case NETLINK_SCSITRANSPORT:
1224 			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1225 		case NETLINK_RDMA:
1226 			return SECCLASS_NETLINK_RDMA_SOCKET;
1227 		case NETLINK_CRYPTO:
1228 			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1229 		default:
1230 			return SECCLASS_NETLINK_SOCKET;
1231 		}
1232 	case PF_PACKET:
1233 		return SECCLASS_PACKET_SOCKET;
1234 	case PF_KEY:
1235 		return SECCLASS_KEY_SOCKET;
1236 	case PF_APPLETALK:
1237 		return SECCLASS_APPLETALK_SOCKET;
1238 	}
1239 
1240 	if (extsockclass) {
1241 		switch (family) {
1242 		case PF_AX25:
1243 			return SECCLASS_AX25_SOCKET;
1244 		case PF_IPX:
1245 			return SECCLASS_IPX_SOCKET;
1246 		case PF_NETROM:
1247 			return SECCLASS_NETROM_SOCKET;
1248 		case PF_ATMPVC:
1249 			return SECCLASS_ATMPVC_SOCKET;
1250 		case PF_X25:
1251 			return SECCLASS_X25_SOCKET;
1252 		case PF_ROSE:
1253 			return SECCLASS_ROSE_SOCKET;
1254 		case PF_DECnet:
1255 			return SECCLASS_DECNET_SOCKET;
1256 		case PF_ATMSVC:
1257 			return SECCLASS_ATMSVC_SOCKET;
1258 		case PF_RDS:
1259 			return SECCLASS_RDS_SOCKET;
1260 		case PF_IRDA:
1261 			return SECCLASS_IRDA_SOCKET;
1262 		case PF_PPPOX:
1263 			return SECCLASS_PPPOX_SOCKET;
1264 		case PF_LLC:
1265 			return SECCLASS_LLC_SOCKET;
1266 		case PF_CAN:
1267 			return SECCLASS_CAN_SOCKET;
1268 		case PF_TIPC:
1269 			return SECCLASS_TIPC_SOCKET;
1270 		case PF_BLUETOOTH:
1271 			return SECCLASS_BLUETOOTH_SOCKET;
1272 		case PF_IUCV:
1273 			return SECCLASS_IUCV_SOCKET;
1274 		case PF_RXRPC:
1275 			return SECCLASS_RXRPC_SOCKET;
1276 		case PF_ISDN:
1277 			return SECCLASS_ISDN_SOCKET;
1278 		case PF_PHONET:
1279 			return SECCLASS_PHONET_SOCKET;
1280 		case PF_IEEE802154:
1281 			return SECCLASS_IEEE802154_SOCKET;
1282 		case PF_CAIF:
1283 			return SECCLASS_CAIF_SOCKET;
1284 		case PF_ALG:
1285 			return SECCLASS_ALG_SOCKET;
1286 		case PF_NFC:
1287 			return SECCLASS_NFC_SOCKET;
1288 		case PF_VSOCK:
1289 			return SECCLASS_VSOCK_SOCKET;
1290 		case PF_KCM:
1291 			return SECCLASS_KCM_SOCKET;
1292 		case PF_QIPCRTR:
1293 			return SECCLASS_QIPCRTR_SOCKET;
1294 		case PF_SMC:
1295 			return SECCLASS_SMC_SOCKET;
1296 		case PF_XDP:
1297 			return SECCLASS_XDP_SOCKET;
1298 		case PF_MCTP:
1299 			return SECCLASS_MCTP_SOCKET;
1300 #if PF_MAX > 46
1301 #error New address family defined, please update this function.
1302 #endif
1303 		}
1304 	}
1305 
1306 	return SECCLASS_SOCKET;
1307 }
1308 
1309 static int selinux_genfs_get_sid(struct dentry *dentry,
1310 				 u16 tclass,
1311 				 u16 flags,
1312 				 u32 *sid)
1313 {
1314 	int rc;
1315 	struct super_block *sb = dentry->d_sb;
1316 	char *buffer, *path;
1317 
1318 	buffer = (char *)__get_free_page(GFP_KERNEL);
1319 	if (!buffer)
1320 		return -ENOMEM;
1321 
1322 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1323 	if (IS_ERR(path))
1324 		rc = PTR_ERR(path);
1325 	else {
1326 		if (flags & SE_SBPROC) {
1327 			/* each process gets a /proc/PID/ entry. Strip off the
1328 			 * PID part to get a valid selinux labeling.
1329 			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1330 			while (path[1] >= '0' && path[1] <= '9') {
1331 				path[1] = '/';
1332 				path++;
1333 			}
1334 		}
1335 		rc = security_genfs_sid(sb->s_type->name,
1336 					path, tclass, sid);
1337 		if (rc == -ENOENT) {
1338 			/* No match in policy, mark as unlabeled. */
1339 			*sid = SECINITSID_UNLABELED;
1340 			rc = 0;
1341 		}
1342 	}
1343 	free_page((unsigned long)buffer);
1344 	return rc;
1345 }
1346 
1347 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1348 				  u32 def_sid, u32 *sid)
1349 {
1350 #define INITCONTEXTLEN 255
1351 	char *context;
1352 	unsigned int len;
1353 	int rc;
1354 
1355 	len = INITCONTEXTLEN;
1356 	context = kmalloc(len + 1, GFP_NOFS);
1357 	if (!context)
1358 		return -ENOMEM;
1359 
1360 	context[len] = '\0';
1361 	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1362 	if (rc == -ERANGE) {
1363 		kfree(context);
1364 
1365 		/* Need a larger buffer.  Query for the right size. */
1366 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1367 		if (rc < 0)
1368 			return rc;
1369 
1370 		len = rc;
1371 		context = kmalloc(len + 1, GFP_NOFS);
1372 		if (!context)
1373 			return -ENOMEM;
1374 
1375 		context[len] = '\0';
1376 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1377 				    context, len);
1378 	}
1379 	if (rc < 0) {
1380 		kfree(context);
1381 		if (rc != -ENODATA) {
1382 			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1383 				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1384 			return rc;
1385 		}
1386 		*sid = def_sid;
1387 		return 0;
1388 	}
1389 
1390 	rc = security_context_to_sid_default(context, rc, sid,
1391 					     def_sid, GFP_NOFS);
1392 	if (rc) {
1393 		char *dev = inode->i_sb->s_id;
1394 		unsigned long ino = inode->i_ino;
1395 
1396 		if (rc == -EINVAL) {
1397 			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1398 					      ino, dev, context);
1399 		} else {
1400 			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1401 				__func__, context, -rc, dev, ino);
1402 		}
1403 	}
1404 	kfree(context);
1405 	return 0;
1406 }
1407 
1408 /* The inode's security attributes must be initialized before first use. */
1409 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1410 {
1411 	struct superblock_security_struct *sbsec = NULL;
1412 	struct inode_security_struct *isec = selinux_inode(inode);
1413 	u32 task_sid, sid = 0;
1414 	u16 sclass;
1415 	struct dentry *dentry;
1416 	int rc = 0;
1417 
1418 	if (isec->initialized == LABEL_INITIALIZED)
1419 		return 0;
1420 
1421 	spin_lock(&isec->lock);
1422 	if (isec->initialized == LABEL_INITIALIZED)
1423 		goto out_unlock;
1424 
1425 	if (isec->sclass == SECCLASS_FILE)
1426 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1427 
1428 	sbsec = selinux_superblock(inode->i_sb);
1429 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1430 		/* Defer initialization until selinux_complete_init,
1431 		   after the initial policy is loaded and the security
1432 		   server is ready to handle calls. */
1433 		spin_lock(&sbsec->isec_lock);
1434 		if (list_empty(&isec->list))
1435 			list_add(&isec->list, &sbsec->isec_head);
1436 		spin_unlock(&sbsec->isec_lock);
1437 		goto out_unlock;
1438 	}
1439 
1440 	sclass = isec->sclass;
1441 	task_sid = isec->task_sid;
1442 	sid = isec->sid;
1443 	isec->initialized = LABEL_PENDING;
1444 	spin_unlock(&isec->lock);
1445 
1446 	switch (sbsec->behavior) {
1447 	/*
1448 	 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels
1449 	 * via xattr when called from delayed_superblock_init().
1450 	 */
1451 	case SECURITY_FS_USE_NATIVE:
1452 	case SECURITY_FS_USE_XATTR:
1453 		if (!(inode->i_opflags & IOP_XATTR)) {
1454 			sid = sbsec->def_sid;
1455 			break;
1456 		}
1457 		/* Need a dentry, since the xattr API requires one.
1458 		   Life would be simpler if we could just pass the inode. */
1459 		if (opt_dentry) {
1460 			/* Called from d_instantiate or d_splice_alias. */
1461 			dentry = dget(opt_dentry);
1462 		} else {
1463 			/*
1464 			 * Called from selinux_complete_init, try to find a dentry.
1465 			 * Some filesystems really want a connected one, so try
1466 			 * that first.  We could split SECURITY_FS_USE_XATTR in
1467 			 * two, depending upon that...
1468 			 */
1469 			dentry = d_find_alias(inode);
1470 			if (!dentry)
1471 				dentry = d_find_any_alias(inode);
1472 		}
1473 		if (!dentry) {
1474 			/*
1475 			 * this is can be hit on boot when a file is accessed
1476 			 * before the policy is loaded.  When we load policy we
1477 			 * may find inodes that have no dentry on the
1478 			 * sbsec->isec_head list.  No reason to complain as these
1479 			 * will get fixed up the next time we go through
1480 			 * inode_doinit with a dentry, before these inodes could
1481 			 * be used again by userspace.
1482 			 */
1483 			goto out_invalid;
1484 		}
1485 
1486 		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1487 					    &sid);
1488 		dput(dentry);
1489 		if (rc)
1490 			goto out;
1491 		break;
1492 	case SECURITY_FS_USE_TASK:
1493 		sid = task_sid;
1494 		break;
1495 	case SECURITY_FS_USE_TRANS:
1496 		/* Default to the fs SID. */
1497 		sid = sbsec->sid;
1498 
1499 		/* Try to obtain a transition SID. */
1500 		rc = security_transition_sid(task_sid, sid,
1501 					     sclass, NULL, &sid);
1502 		if (rc)
1503 			goto out;
1504 		break;
1505 	case SECURITY_FS_USE_MNTPOINT:
1506 		sid = sbsec->mntpoint_sid;
1507 		break;
1508 	default:
1509 		/* Default to the fs superblock SID. */
1510 		sid = sbsec->sid;
1511 
1512 		if ((sbsec->flags & SE_SBGENFS) &&
1513 		     (!S_ISLNK(inode->i_mode) ||
1514 		      selinux_policycap_genfs_seclabel_symlinks())) {
1515 			/* We must have a dentry to determine the label on
1516 			 * procfs inodes */
1517 			if (opt_dentry) {
1518 				/* Called from d_instantiate or
1519 				 * d_splice_alias. */
1520 				dentry = dget(opt_dentry);
1521 			} else {
1522 				/* Called from selinux_complete_init, try to
1523 				 * find a dentry.  Some filesystems really want
1524 				 * a connected one, so try that first.
1525 				 */
1526 				dentry = d_find_alias(inode);
1527 				if (!dentry)
1528 					dentry = d_find_any_alias(inode);
1529 			}
1530 			/*
1531 			 * This can be hit on boot when a file is accessed
1532 			 * before the policy is loaded.  When we load policy we
1533 			 * may find inodes that have no dentry on the
1534 			 * sbsec->isec_head list.  No reason to complain as
1535 			 * these will get fixed up the next time we go through
1536 			 * inode_doinit() with a dentry, before these inodes
1537 			 * could be used again by userspace.
1538 			 */
1539 			if (!dentry)
1540 				goto out_invalid;
1541 			rc = selinux_genfs_get_sid(dentry, sclass,
1542 						   sbsec->flags, &sid);
1543 			if (rc) {
1544 				dput(dentry);
1545 				goto out;
1546 			}
1547 
1548 			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1549 			    (inode->i_opflags & IOP_XATTR)) {
1550 				rc = inode_doinit_use_xattr(inode, dentry,
1551 							    sid, &sid);
1552 				if (rc) {
1553 					dput(dentry);
1554 					goto out;
1555 				}
1556 			}
1557 			dput(dentry);
1558 		}
1559 		break;
1560 	}
1561 
1562 out:
1563 	spin_lock(&isec->lock);
1564 	if (isec->initialized == LABEL_PENDING) {
1565 		if (rc) {
1566 			isec->initialized = LABEL_INVALID;
1567 			goto out_unlock;
1568 		}
1569 		isec->initialized = LABEL_INITIALIZED;
1570 		isec->sid = sid;
1571 	}
1572 
1573 out_unlock:
1574 	spin_unlock(&isec->lock);
1575 	return rc;
1576 
1577 out_invalid:
1578 	spin_lock(&isec->lock);
1579 	if (isec->initialized == LABEL_PENDING) {
1580 		isec->initialized = LABEL_INVALID;
1581 		isec->sid = sid;
1582 	}
1583 	spin_unlock(&isec->lock);
1584 	return 0;
1585 }
1586 
1587 /* Convert a Linux signal to an access vector. */
1588 static inline u32 signal_to_av(int sig)
1589 {
1590 	u32 perm = 0;
1591 
1592 	switch (sig) {
1593 	case SIGCHLD:
1594 		/* Commonly granted from child to parent. */
1595 		perm = PROCESS__SIGCHLD;
1596 		break;
1597 	case SIGKILL:
1598 		/* Cannot be caught or ignored */
1599 		perm = PROCESS__SIGKILL;
1600 		break;
1601 	case SIGSTOP:
1602 		/* Cannot be caught or ignored */
1603 		perm = PROCESS__SIGSTOP;
1604 		break;
1605 	default:
1606 		/* All other signals. */
1607 		perm = PROCESS__SIGNAL;
1608 		break;
1609 	}
1610 
1611 	return perm;
1612 }
1613 
1614 #if CAP_LAST_CAP > 63
1615 #error Fix SELinux to handle capabilities > 63.
1616 #endif
1617 
1618 /* Check whether a task is allowed to use a capability. */
1619 static int cred_has_capability(const struct cred *cred,
1620 			       int cap, unsigned int opts, bool initns)
1621 {
1622 	struct common_audit_data ad;
1623 	struct av_decision avd;
1624 	u16 sclass;
1625 	u32 sid = cred_sid(cred);
1626 	u32 av = CAP_TO_MASK(cap);
1627 	int rc;
1628 
1629 	ad.type = LSM_AUDIT_DATA_CAP;
1630 	ad.u.cap = cap;
1631 
1632 	switch (CAP_TO_INDEX(cap)) {
1633 	case 0:
1634 		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1635 		break;
1636 	case 1:
1637 		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1638 		break;
1639 	default:
1640 		pr_err("SELinux:  out of range capability %d\n", cap);
1641 		BUG();
1642 		return -EINVAL;
1643 	}
1644 
1645 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1646 	if (!(opts & CAP_OPT_NOAUDIT)) {
1647 		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1648 		if (rc2)
1649 			return rc2;
1650 	}
1651 	return rc;
1652 }
1653 
1654 /* Check whether a task has a particular permission to an inode.
1655    The 'adp' parameter is optional and allows other audit
1656    data to be passed (e.g. the dentry). */
1657 static int inode_has_perm(const struct cred *cred,
1658 			  struct inode *inode,
1659 			  u32 perms,
1660 			  struct common_audit_data *adp)
1661 {
1662 	struct inode_security_struct *isec;
1663 	u32 sid;
1664 
1665 	if (unlikely(IS_PRIVATE(inode)))
1666 		return 0;
1667 
1668 	sid = cred_sid(cred);
1669 	isec = selinux_inode(inode);
1670 
1671 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1672 }
1673 
1674 /* Same as inode_has_perm, but pass explicit audit data containing
1675    the dentry to help the auditing code to more easily generate the
1676    pathname if needed. */
1677 static inline int dentry_has_perm(const struct cred *cred,
1678 				  struct dentry *dentry,
1679 				  u32 av)
1680 {
1681 	struct inode *inode = d_backing_inode(dentry);
1682 	struct common_audit_data ad;
1683 
1684 	ad.type = LSM_AUDIT_DATA_DENTRY;
1685 	ad.u.dentry = dentry;
1686 	__inode_security_revalidate(inode, dentry, true);
1687 	return inode_has_perm(cred, inode, av, &ad);
1688 }
1689 
1690 /* Same as inode_has_perm, but pass explicit audit data containing
1691    the path to help the auditing code to more easily generate the
1692    pathname if needed. */
1693 static inline int path_has_perm(const struct cred *cred,
1694 				const struct path *path,
1695 				u32 av)
1696 {
1697 	struct inode *inode = d_backing_inode(path->dentry);
1698 	struct common_audit_data ad;
1699 
1700 	ad.type = LSM_AUDIT_DATA_PATH;
1701 	ad.u.path = *path;
1702 	__inode_security_revalidate(inode, path->dentry, true);
1703 	return inode_has_perm(cred, inode, av, &ad);
1704 }
1705 
1706 /* Same as path_has_perm, but uses the inode from the file struct. */
1707 static inline int file_path_has_perm(const struct cred *cred,
1708 				     struct file *file,
1709 				     u32 av)
1710 {
1711 	struct common_audit_data ad;
1712 
1713 	ad.type = LSM_AUDIT_DATA_FILE;
1714 	ad.u.file = file;
1715 	return inode_has_perm(cred, file_inode(file), av, &ad);
1716 }
1717 
1718 #ifdef CONFIG_BPF_SYSCALL
1719 static int bpf_fd_pass(const struct file *file, u32 sid);
1720 #endif
1721 
1722 /* Check whether a task can use an open file descriptor to
1723    access an inode in a given way.  Check access to the
1724    descriptor itself, and then use dentry_has_perm to
1725    check a particular permission to the file.
1726    Access to the descriptor is implicitly granted if it
1727    has the same SID as the process.  If av is zero, then
1728    access to the file is not checked, e.g. for cases
1729    where only the descriptor is affected like seek. */
1730 static int file_has_perm(const struct cred *cred,
1731 			 struct file *file,
1732 			 u32 av)
1733 {
1734 	struct file_security_struct *fsec = selinux_file(file);
1735 	struct inode *inode = file_inode(file);
1736 	struct common_audit_data ad;
1737 	u32 sid = cred_sid(cred);
1738 	int rc;
1739 
1740 	ad.type = LSM_AUDIT_DATA_FILE;
1741 	ad.u.file = file;
1742 
1743 	if (sid != fsec->sid) {
1744 		rc = avc_has_perm(sid, fsec->sid,
1745 				  SECCLASS_FD,
1746 				  FD__USE,
1747 				  &ad);
1748 		if (rc)
1749 			goto out;
1750 	}
1751 
1752 #ifdef CONFIG_BPF_SYSCALL
1753 	rc = bpf_fd_pass(file, cred_sid(cred));
1754 	if (rc)
1755 		return rc;
1756 #endif
1757 
1758 	/* av is zero if only checking access to the descriptor. */
1759 	rc = 0;
1760 	if (av)
1761 		rc = inode_has_perm(cred, inode, av, &ad);
1762 
1763 out:
1764 	return rc;
1765 }
1766 
1767 /*
1768  * Determine the label for an inode that might be unioned.
1769  */
1770 static int
1771 selinux_determine_inode_label(const struct task_security_struct *tsec,
1772 				 struct inode *dir,
1773 				 const struct qstr *name, u16 tclass,
1774 				 u32 *_new_isid)
1775 {
1776 	const struct superblock_security_struct *sbsec =
1777 						selinux_superblock(dir->i_sb);
1778 
1779 	if ((sbsec->flags & SE_SBINITIALIZED) &&
1780 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1781 		*_new_isid = sbsec->mntpoint_sid;
1782 	} else if ((sbsec->flags & SBLABEL_MNT) &&
1783 		   tsec->create_sid) {
1784 		*_new_isid = tsec->create_sid;
1785 	} else {
1786 		const struct inode_security_struct *dsec = inode_security(dir);
1787 		return security_transition_sid(tsec->sid,
1788 					       dsec->sid, tclass,
1789 					       name, _new_isid);
1790 	}
1791 
1792 	return 0;
1793 }
1794 
1795 /* Check whether a task can create a file. */
1796 static int may_create(struct inode *dir,
1797 		      struct dentry *dentry,
1798 		      u16 tclass)
1799 {
1800 	const struct task_security_struct *tsec = selinux_cred(current_cred());
1801 	struct inode_security_struct *dsec;
1802 	struct superblock_security_struct *sbsec;
1803 	u32 sid, newsid;
1804 	struct common_audit_data ad;
1805 	int rc;
1806 
1807 	dsec = inode_security(dir);
1808 	sbsec = selinux_superblock(dir->i_sb);
1809 
1810 	sid = tsec->sid;
1811 
1812 	ad.type = LSM_AUDIT_DATA_DENTRY;
1813 	ad.u.dentry = dentry;
1814 
1815 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1816 			  DIR__ADD_NAME | DIR__SEARCH,
1817 			  &ad);
1818 	if (rc)
1819 		return rc;
1820 
1821 	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1822 					   &newsid);
1823 	if (rc)
1824 		return rc;
1825 
1826 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1827 	if (rc)
1828 		return rc;
1829 
1830 	return avc_has_perm(newsid, sbsec->sid,
1831 			    SECCLASS_FILESYSTEM,
1832 			    FILESYSTEM__ASSOCIATE, &ad);
1833 }
1834 
1835 #define MAY_LINK	0
1836 #define MAY_UNLINK	1
1837 #define MAY_RMDIR	2
1838 
1839 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1840 static int may_link(struct inode *dir,
1841 		    struct dentry *dentry,
1842 		    int kind)
1843 
1844 {
1845 	struct inode_security_struct *dsec, *isec;
1846 	struct common_audit_data ad;
1847 	u32 sid = current_sid();
1848 	u32 av;
1849 	int rc;
1850 
1851 	dsec = inode_security(dir);
1852 	isec = backing_inode_security(dentry);
1853 
1854 	ad.type = LSM_AUDIT_DATA_DENTRY;
1855 	ad.u.dentry = dentry;
1856 
1857 	av = DIR__SEARCH;
1858 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1859 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1860 	if (rc)
1861 		return rc;
1862 
1863 	switch (kind) {
1864 	case MAY_LINK:
1865 		av = FILE__LINK;
1866 		break;
1867 	case MAY_UNLINK:
1868 		av = FILE__UNLINK;
1869 		break;
1870 	case MAY_RMDIR:
1871 		av = DIR__RMDIR;
1872 		break;
1873 	default:
1874 		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1875 			__func__, kind);
1876 		return 0;
1877 	}
1878 
1879 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1880 	return rc;
1881 }
1882 
1883 static inline int may_rename(struct inode *old_dir,
1884 			     struct dentry *old_dentry,
1885 			     struct inode *new_dir,
1886 			     struct dentry *new_dentry)
1887 {
1888 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1889 	struct common_audit_data ad;
1890 	u32 sid = current_sid();
1891 	u32 av;
1892 	int old_is_dir, new_is_dir;
1893 	int rc;
1894 
1895 	old_dsec = inode_security(old_dir);
1896 	old_isec = backing_inode_security(old_dentry);
1897 	old_is_dir = d_is_dir(old_dentry);
1898 	new_dsec = inode_security(new_dir);
1899 
1900 	ad.type = LSM_AUDIT_DATA_DENTRY;
1901 
1902 	ad.u.dentry = old_dentry;
1903 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1904 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1905 	if (rc)
1906 		return rc;
1907 	rc = avc_has_perm(sid, old_isec->sid,
1908 			  old_isec->sclass, FILE__RENAME, &ad);
1909 	if (rc)
1910 		return rc;
1911 	if (old_is_dir && new_dir != old_dir) {
1912 		rc = avc_has_perm(sid, old_isec->sid,
1913 				  old_isec->sclass, DIR__REPARENT, &ad);
1914 		if (rc)
1915 			return rc;
1916 	}
1917 
1918 	ad.u.dentry = new_dentry;
1919 	av = DIR__ADD_NAME | DIR__SEARCH;
1920 	if (d_is_positive(new_dentry))
1921 		av |= DIR__REMOVE_NAME;
1922 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1923 	if (rc)
1924 		return rc;
1925 	if (d_is_positive(new_dentry)) {
1926 		new_isec = backing_inode_security(new_dentry);
1927 		new_is_dir = d_is_dir(new_dentry);
1928 		rc = avc_has_perm(sid, new_isec->sid,
1929 				  new_isec->sclass,
1930 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1931 		if (rc)
1932 			return rc;
1933 	}
1934 
1935 	return 0;
1936 }
1937 
1938 /* Check whether a task can perform a filesystem operation. */
1939 static int superblock_has_perm(const struct cred *cred,
1940 			       const struct super_block *sb,
1941 			       u32 perms,
1942 			       struct common_audit_data *ad)
1943 {
1944 	struct superblock_security_struct *sbsec;
1945 	u32 sid = cred_sid(cred);
1946 
1947 	sbsec = selinux_superblock(sb);
1948 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1949 }
1950 
1951 /* Convert a Linux mode and permission mask to an access vector. */
1952 static inline u32 file_mask_to_av(int mode, int mask)
1953 {
1954 	u32 av = 0;
1955 
1956 	if (!S_ISDIR(mode)) {
1957 		if (mask & MAY_EXEC)
1958 			av |= FILE__EXECUTE;
1959 		if (mask & MAY_READ)
1960 			av |= FILE__READ;
1961 
1962 		if (mask & MAY_APPEND)
1963 			av |= FILE__APPEND;
1964 		else if (mask & MAY_WRITE)
1965 			av |= FILE__WRITE;
1966 
1967 	} else {
1968 		if (mask & MAY_EXEC)
1969 			av |= DIR__SEARCH;
1970 		if (mask & MAY_WRITE)
1971 			av |= DIR__WRITE;
1972 		if (mask & MAY_READ)
1973 			av |= DIR__READ;
1974 	}
1975 
1976 	return av;
1977 }
1978 
1979 /* Convert a Linux file to an access vector. */
1980 static inline u32 file_to_av(const struct file *file)
1981 {
1982 	u32 av = 0;
1983 
1984 	if (file->f_mode & FMODE_READ)
1985 		av |= FILE__READ;
1986 	if (file->f_mode & FMODE_WRITE) {
1987 		if (file->f_flags & O_APPEND)
1988 			av |= FILE__APPEND;
1989 		else
1990 			av |= FILE__WRITE;
1991 	}
1992 	if (!av) {
1993 		/*
1994 		 * Special file opened with flags 3 for ioctl-only use.
1995 		 */
1996 		av = FILE__IOCTL;
1997 	}
1998 
1999 	return av;
2000 }
2001 
2002 /*
2003  * Convert a file to an access vector and include the correct
2004  * open permission.
2005  */
2006 static inline u32 open_file_to_av(struct file *file)
2007 {
2008 	u32 av = file_to_av(file);
2009 	struct inode *inode = file_inode(file);
2010 
2011 	if (selinux_policycap_openperm() &&
2012 	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2013 		av |= FILE__OPEN;
2014 
2015 	return av;
2016 }
2017 
2018 /* Hook functions begin here. */
2019 
2020 static int selinux_binder_set_context_mgr(const struct cred *mgr)
2021 {
2022 	return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER,
2023 			    BINDER__SET_CONTEXT_MGR, NULL);
2024 }
2025 
2026 static int selinux_binder_transaction(const struct cred *from,
2027 				      const struct cred *to)
2028 {
2029 	u32 mysid = current_sid();
2030 	u32 fromsid = cred_sid(from);
2031 	u32 tosid = cred_sid(to);
2032 	int rc;
2033 
2034 	if (mysid != fromsid) {
2035 		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2036 				  BINDER__IMPERSONATE, NULL);
2037 		if (rc)
2038 			return rc;
2039 	}
2040 
2041 	return avc_has_perm(fromsid, tosid,
2042 			    SECCLASS_BINDER, BINDER__CALL, NULL);
2043 }
2044 
2045 static int selinux_binder_transfer_binder(const struct cred *from,
2046 					  const struct cred *to)
2047 {
2048 	return avc_has_perm(cred_sid(from), cred_sid(to),
2049 			    SECCLASS_BINDER, BINDER__TRANSFER,
2050 			    NULL);
2051 }
2052 
2053 static int selinux_binder_transfer_file(const struct cred *from,
2054 					const struct cred *to,
2055 					const struct file *file)
2056 {
2057 	u32 sid = cred_sid(to);
2058 	struct file_security_struct *fsec = selinux_file(file);
2059 	struct dentry *dentry = file->f_path.dentry;
2060 	struct inode_security_struct *isec;
2061 	struct common_audit_data ad;
2062 	int rc;
2063 
2064 	ad.type = LSM_AUDIT_DATA_PATH;
2065 	ad.u.path = file->f_path;
2066 
2067 	if (sid != fsec->sid) {
2068 		rc = avc_has_perm(sid, fsec->sid,
2069 				  SECCLASS_FD,
2070 				  FD__USE,
2071 				  &ad);
2072 		if (rc)
2073 			return rc;
2074 	}
2075 
2076 #ifdef CONFIG_BPF_SYSCALL
2077 	rc = bpf_fd_pass(file, sid);
2078 	if (rc)
2079 		return rc;
2080 #endif
2081 
2082 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2083 		return 0;
2084 
2085 	isec = backing_inode_security(dentry);
2086 	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2087 			    &ad);
2088 }
2089 
2090 static int selinux_ptrace_access_check(struct task_struct *child,
2091 				       unsigned int mode)
2092 {
2093 	u32 sid = current_sid();
2094 	u32 csid = task_sid_obj(child);
2095 
2096 	if (mode & PTRACE_MODE_READ)
2097 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ,
2098 				NULL);
2099 
2100 	return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE,
2101 			NULL);
2102 }
2103 
2104 static int selinux_ptrace_traceme(struct task_struct *parent)
2105 {
2106 	return avc_has_perm(task_sid_obj(parent), task_sid_obj(current),
2107 			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2108 }
2109 
2110 static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective,
2111 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2112 {
2113 	return avc_has_perm(current_sid(), task_sid_obj(target),
2114 			SECCLASS_PROCESS, PROCESS__GETCAP, NULL);
2115 }
2116 
2117 static int selinux_capset(struct cred *new, const struct cred *old,
2118 			  const kernel_cap_t *effective,
2119 			  const kernel_cap_t *inheritable,
2120 			  const kernel_cap_t *permitted)
2121 {
2122 	return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2123 			    PROCESS__SETCAP, NULL);
2124 }
2125 
2126 /*
2127  * (This comment used to live with the selinux_task_setuid hook,
2128  * which was removed).
2129  *
2130  * Since setuid only affects the current process, and since the SELinux
2131  * controls are not based on the Linux identity attributes, SELinux does not
2132  * need to control this operation.  However, SELinux does control the use of
2133  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2134  */
2135 
2136 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2137 			   int cap, unsigned int opts)
2138 {
2139 	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2140 }
2141 
2142 static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb)
2143 {
2144 	const struct cred *cred = current_cred();
2145 	int rc = 0;
2146 
2147 	if (!sb)
2148 		return 0;
2149 
2150 	switch (cmds) {
2151 	case Q_SYNC:
2152 	case Q_QUOTAON:
2153 	case Q_QUOTAOFF:
2154 	case Q_SETINFO:
2155 	case Q_SETQUOTA:
2156 	case Q_XQUOTAOFF:
2157 	case Q_XQUOTAON:
2158 	case Q_XSETQLIM:
2159 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2160 		break;
2161 	case Q_GETFMT:
2162 	case Q_GETINFO:
2163 	case Q_GETQUOTA:
2164 	case Q_XGETQUOTA:
2165 	case Q_XGETQSTAT:
2166 	case Q_XGETQSTATV:
2167 	case Q_XGETNEXTQUOTA:
2168 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2169 		break;
2170 	default:
2171 		rc = 0;  /* let the kernel handle invalid cmds */
2172 		break;
2173 	}
2174 	return rc;
2175 }
2176 
2177 static int selinux_quota_on(struct dentry *dentry)
2178 {
2179 	const struct cred *cred = current_cred();
2180 
2181 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2182 }
2183 
2184 static int selinux_syslog(int type)
2185 {
2186 	switch (type) {
2187 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2188 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2189 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2190 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2191 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2192 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2193 	/* Set level of messages printed to console */
2194 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2195 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2196 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2197 				    NULL);
2198 	}
2199 	/* All other syslog types */
2200 	return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2201 			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2202 }
2203 
2204 /*
2205  * Check that a process has enough memory to allocate a new virtual
2206  * mapping. 0 means there is enough memory for the allocation to
2207  * succeed and -ENOMEM implies there is not.
2208  *
2209  * Do not audit the selinux permission check, as this is applied to all
2210  * processes that allocate mappings.
2211  */
2212 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2213 {
2214 	int rc, cap_sys_admin = 0;
2215 
2216 	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2217 				 CAP_OPT_NOAUDIT, true);
2218 	if (rc == 0)
2219 		cap_sys_admin = 1;
2220 
2221 	return cap_sys_admin;
2222 }
2223 
2224 /* binprm security operations */
2225 
2226 static u32 ptrace_parent_sid(void)
2227 {
2228 	u32 sid = 0;
2229 	struct task_struct *tracer;
2230 
2231 	rcu_read_lock();
2232 	tracer = ptrace_parent(current);
2233 	if (tracer)
2234 		sid = task_sid_obj(tracer);
2235 	rcu_read_unlock();
2236 
2237 	return sid;
2238 }
2239 
2240 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2241 			    const struct task_security_struct *old_tsec,
2242 			    const struct task_security_struct *new_tsec)
2243 {
2244 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2245 	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2246 	int rc;
2247 	u32 av;
2248 
2249 	if (!nnp && !nosuid)
2250 		return 0; /* neither NNP nor nosuid */
2251 
2252 	if (new_tsec->sid == old_tsec->sid)
2253 		return 0; /* No change in credentials */
2254 
2255 	/*
2256 	 * If the policy enables the nnp_nosuid_transition policy capability,
2257 	 * then we permit transitions under NNP or nosuid if the
2258 	 * policy allows the corresponding permission between
2259 	 * the old and new contexts.
2260 	 */
2261 	if (selinux_policycap_nnp_nosuid_transition()) {
2262 		av = 0;
2263 		if (nnp)
2264 			av |= PROCESS2__NNP_TRANSITION;
2265 		if (nosuid)
2266 			av |= PROCESS2__NOSUID_TRANSITION;
2267 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2268 				  SECCLASS_PROCESS2, av, NULL);
2269 		if (!rc)
2270 			return 0;
2271 	}
2272 
2273 	/*
2274 	 * We also permit NNP or nosuid transitions to bounded SIDs,
2275 	 * i.e. SIDs that are guaranteed to only be allowed a subset
2276 	 * of the permissions of the current SID.
2277 	 */
2278 	rc = security_bounded_transition(old_tsec->sid,
2279 					 new_tsec->sid);
2280 	if (!rc)
2281 		return 0;
2282 
2283 	/*
2284 	 * On failure, preserve the errno values for NNP vs nosuid.
2285 	 * NNP:  Operation not permitted for caller.
2286 	 * nosuid:  Permission denied to file.
2287 	 */
2288 	if (nnp)
2289 		return -EPERM;
2290 	return -EACCES;
2291 }
2292 
2293 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2294 {
2295 	const struct task_security_struct *old_tsec;
2296 	struct task_security_struct *new_tsec;
2297 	struct inode_security_struct *isec;
2298 	struct common_audit_data ad;
2299 	struct inode *inode = file_inode(bprm->file);
2300 	int rc;
2301 
2302 	/* SELinux context only depends on initial program or script and not
2303 	 * the script interpreter */
2304 
2305 	old_tsec = selinux_cred(current_cred());
2306 	new_tsec = selinux_cred(bprm->cred);
2307 	isec = inode_security(inode);
2308 
2309 	/* Default to the current task SID. */
2310 	new_tsec->sid = old_tsec->sid;
2311 	new_tsec->osid = old_tsec->sid;
2312 
2313 	/* Reset fs, key, and sock SIDs on execve. */
2314 	new_tsec->create_sid = 0;
2315 	new_tsec->keycreate_sid = 0;
2316 	new_tsec->sockcreate_sid = 0;
2317 
2318 	/*
2319 	 * Before policy is loaded, label any task outside kernel space
2320 	 * as SECINITSID_INIT, so that any userspace tasks surviving from
2321 	 * early boot end up with a label different from SECINITSID_KERNEL
2322 	 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL).
2323 	 */
2324 	if (!selinux_initialized()) {
2325 		new_tsec->sid = SECINITSID_INIT;
2326 		/* also clear the exec_sid just in case */
2327 		new_tsec->exec_sid = 0;
2328 		return 0;
2329 	}
2330 
2331 	if (old_tsec->exec_sid) {
2332 		new_tsec->sid = old_tsec->exec_sid;
2333 		/* Reset exec SID on execve. */
2334 		new_tsec->exec_sid = 0;
2335 
2336 		/* Fail on NNP or nosuid if not an allowed transition. */
2337 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2338 		if (rc)
2339 			return rc;
2340 	} else {
2341 		/* Check for a default transition on this program. */
2342 		rc = security_transition_sid(old_tsec->sid,
2343 					     isec->sid, SECCLASS_PROCESS, NULL,
2344 					     &new_tsec->sid);
2345 		if (rc)
2346 			return rc;
2347 
2348 		/*
2349 		 * Fallback to old SID on NNP or nosuid if not an allowed
2350 		 * transition.
2351 		 */
2352 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2353 		if (rc)
2354 			new_tsec->sid = old_tsec->sid;
2355 	}
2356 
2357 	ad.type = LSM_AUDIT_DATA_FILE;
2358 	ad.u.file = bprm->file;
2359 
2360 	if (new_tsec->sid == old_tsec->sid) {
2361 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2362 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2363 		if (rc)
2364 			return rc;
2365 	} else {
2366 		/* Check permissions for the transition. */
2367 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2368 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2369 		if (rc)
2370 			return rc;
2371 
2372 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2373 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2374 		if (rc)
2375 			return rc;
2376 
2377 		/* Check for shared state */
2378 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2379 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2380 					  SECCLASS_PROCESS, PROCESS__SHARE,
2381 					  NULL);
2382 			if (rc)
2383 				return -EPERM;
2384 		}
2385 
2386 		/* Make sure that anyone attempting to ptrace over a task that
2387 		 * changes its SID has the appropriate permit */
2388 		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2389 			u32 ptsid = ptrace_parent_sid();
2390 			if (ptsid != 0) {
2391 				rc = avc_has_perm(ptsid, new_tsec->sid,
2392 						  SECCLASS_PROCESS,
2393 						  PROCESS__PTRACE, NULL);
2394 				if (rc)
2395 					return -EPERM;
2396 			}
2397 		}
2398 
2399 		/* Clear any possibly unsafe personality bits on exec: */
2400 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2401 
2402 		/* Enable secure mode for SIDs transitions unless
2403 		   the noatsecure permission is granted between
2404 		   the two SIDs, i.e. ahp returns 0. */
2405 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2406 				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2407 				  NULL);
2408 		bprm->secureexec |= !!rc;
2409 	}
2410 
2411 	return 0;
2412 }
2413 
2414 static int match_file(const void *p, struct file *file, unsigned fd)
2415 {
2416 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2417 }
2418 
2419 /* Derived from fs/exec.c:flush_old_files. */
2420 static inline void flush_unauthorized_files(const struct cred *cred,
2421 					    struct files_struct *files)
2422 {
2423 	struct file *file, *devnull = NULL;
2424 	struct tty_struct *tty;
2425 	int drop_tty = 0;
2426 	unsigned n;
2427 
2428 	tty = get_current_tty();
2429 	if (tty) {
2430 		spin_lock(&tty->files_lock);
2431 		if (!list_empty(&tty->tty_files)) {
2432 			struct tty_file_private *file_priv;
2433 
2434 			/* Revalidate access to controlling tty.
2435 			   Use file_path_has_perm on the tty path directly
2436 			   rather than using file_has_perm, as this particular
2437 			   open file may belong to another process and we are
2438 			   only interested in the inode-based check here. */
2439 			file_priv = list_first_entry(&tty->tty_files,
2440 						struct tty_file_private, list);
2441 			file = file_priv->file;
2442 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2443 				drop_tty = 1;
2444 		}
2445 		spin_unlock(&tty->files_lock);
2446 		tty_kref_put(tty);
2447 	}
2448 	/* Reset controlling tty. */
2449 	if (drop_tty)
2450 		no_tty();
2451 
2452 	/* Revalidate access to inherited open files. */
2453 	n = iterate_fd(files, 0, match_file, cred);
2454 	if (!n) /* none found? */
2455 		return;
2456 
2457 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2458 	if (IS_ERR(devnull))
2459 		devnull = NULL;
2460 	/* replace all the matching ones with this */
2461 	do {
2462 		replace_fd(n - 1, devnull, 0);
2463 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2464 	if (devnull)
2465 		fput(devnull);
2466 }
2467 
2468 /*
2469  * Prepare a process for imminent new credential changes due to exec
2470  */
2471 static void selinux_bprm_committing_creds(const struct linux_binprm *bprm)
2472 {
2473 	struct task_security_struct *new_tsec;
2474 	struct rlimit *rlim, *initrlim;
2475 	int rc, i;
2476 
2477 	new_tsec = selinux_cred(bprm->cred);
2478 	if (new_tsec->sid == new_tsec->osid)
2479 		return;
2480 
2481 	/* Close files for which the new task SID is not authorized. */
2482 	flush_unauthorized_files(bprm->cred, current->files);
2483 
2484 	/* Always clear parent death signal on SID transitions. */
2485 	current->pdeath_signal = 0;
2486 
2487 	/* Check whether the new SID can inherit resource limits from the old
2488 	 * SID.  If not, reset all soft limits to the lower of the current
2489 	 * task's hard limit and the init task's soft limit.
2490 	 *
2491 	 * Note that the setting of hard limits (even to lower them) can be
2492 	 * controlled by the setrlimit check.  The inclusion of the init task's
2493 	 * soft limit into the computation is to avoid resetting soft limits
2494 	 * higher than the default soft limit for cases where the default is
2495 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2496 	 */
2497 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2498 			  PROCESS__RLIMITINH, NULL);
2499 	if (rc) {
2500 		/* protect against do_prlimit() */
2501 		task_lock(current);
2502 		for (i = 0; i < RLIM_NLIMITS; i++) {
2503 			rlim = current->signal->rlim + i;
2504 			initrlim = init_task.signal->rlim + i;
2505 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2506 		}
2507 		task_unlock(current);
2508 		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2509 			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2510 	}
2511 }
2512 
2513 /*
2514  * Clean up the process immediately after the installation of new credentials
2515  * due to exec
2516  */
2517 static void selinux_bprm_committed_creds(const struct linux_binprm *bprm)
2518 {
2519 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2520 	u32 osid, sid;
2521 	int rc;
2522 
2523 	osid = tsec->osid;
2524 	sid = tsec->sid;
2525 
2526 	if (sid == osid)
2527 		return;
2528 
2529 	/* Check whether the new SID can inherit signal state from the old SID.
2530 	 * If not, clear itimers to avoid subsequent signal generation and
2531 	 * flush and unblock signals.
2532 	 *
2533 	 * This must occur _after_ the task SID has been updated so that any
2534 	 * kill done after the flush will be checked against the new SID.
2535 	 */
2536 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2537 	if (rc) {
2538 		clear_itimer();
2539 
2540 		spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2541 		if (!fatal_signal_pending(current)) {
2542 			flush_sigqueue(&current->pending);
2543 			flush_sigqueue(&current->signal->shared_pending);
2544 			flush_signal_handlers(current, 1);
2545 			sigemptyset(&current->blocked);
2546 			recalc_sigpending();
2547 		}
2548 		spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2549 	}
2550 
2551 	/* Wake up the parent if it is waiting so that it can recheck
2552 	 * wait permission to the new task SID. */
2553 	read_lock(&tasklist_lock);
2554 	__wake_up_parent(current, unrcu_pointer(current->real_parent));
2555 	read_unlock(&tasklist_lock);
2556 }
2557 
2558 /* superblock security operations */
2559 
2560 static int selinux_sb_alloc_security(struct super_block *sb)
2561 {
2562 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2563 
2564 	mutex_init(&sbsec->lock);
2565 	INIT_LIST_HEAD(&sbsec->isec_head);
2566 	spin_lock_init(&sbsec->isec_lock);
2567 	sbsec->sid = SECINITSID_UNLABELED;
2568 	sbsec->def_sid = SECINITSID_FILE;
2569 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2570 
2571 	return 0;
2572 }
2573 
2574 static inline int opt_len(const char *s)
2575 {
2576 	bool open_quote = false;
2577 	int len;
2578 	char c;
2579 
2580 	for (len = 0; (c = s[len]) != '\0'; len++) {
2581 		if (c == '"')
2582 			open_quote = !open_quote;
2583 		if (c == ',' && !open_quote)
2584 			break;
2585 	}
2586 	return len;
2587 }
2588 
2589 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2590 {
2591 	char *from = options;
2592 	char *to = options;
2593 	bool first = true;
2594 	int rc;
2595 
2596 	while (1) {
2597 		int len = opt_len(from);
2598 		int token;
2599 		char *arg = NULL;
2600 
2601 		token = match_opt_prefix(from, len, &arg);
2602 
2603 		if (token != Opt_error) {
2604 			char *p, *q;
2605 
2606 			/* strip quotes */
2607 			if (arg) {
2608 				for (p = q = arg; p < from + len; p++) {
2609 					char c = *p;
2610 					if (c != '"')
2611 						*q++ = c;
2612 				}
2613 				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2614 				if (!arg) {
2615 					rc = -ENOMEM;
2616 					goto free_opt;
2617 				}
2618 			}
2619 			rc = selinux_add_opt(token, arg, mnt_opts);
2620 			kfree(arg);
2621 			arg = NULL;
2622 			if (unlikely(rc)) {
2623 				goto free_opt;
2624 			}
2625 		} else {
2626 			if (!first) {	// copy with preceding comma
2627 				from--;
2628 				len++;
2629 			}
2630 			if (to != from)
2631 				memmove(to, from, len);
2632 			to += len;
2633 			first = false;
2634 		}
2635 		if (!from[len])
2636 			break;
2637 		from += len + 1;
2638 	}
2639 	*to = '\0';
2640 	return 0;
2641 
2642 free_opt:
2643 	if (*mnt_opts) {
2644 		selinux_free_mnt_opts(*mnt_opts);
2645 		*mnt_opts = NULL;
2646 	}
2647 	return rc;
2648 }
2649 
2650 static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2651 {
2652 	struct selinux_mnt_opts *opts = mnt_opts;
2653 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2654 
2655 	/*
2656 	 * Superblock not initialized (i.e. no options) - reject if any
2657 	 * options specified, otherwise accept.
2658 	 */
2659 	if (!(sbsec->flags & SE_SBINITIALIZED))
2660 		return opts ? 1 : 0;
2661 
2662 	/*
2663 	 * Superblock initialized and no options specified - reject if
2664 	 * superblock has any options set, otherwise accept.
2665 	 */
2666 	if (!opts)
2667 		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2668 
2669 	if (opts->fscontext_sid) {
2670 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2671 			       opts->fscontext_sid))
2672 			return 1;
2673 	}
2674 	if (opts->context_sid) {
2675 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2676 			       opts->context_sid))
2677 			return 1;
2678 	}
2679 	if (opts->rootcontext_sid) {
2680 		struct inode_security_struct *root_isec;
2681 
2682 		root_isec = backing_inode_security(sb->s_root);
2683 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2684 			       opts->rootcontext_sid))
2685 			return 1;
2686 	}
2687 	if (opts->defcontext_sid) {
2688 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2689 			       opts->defcontext_sid))
2690 			return 1;
2691 	}
2692 	return 0;
2693 }
2694 
2695 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2696 {
2697 	struct selinux_mnt_opts *opts = mnt_opts;
2698 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2699 
2700 	if (!(sbsec->flags & SE_SBINITIALIZED))
2701 		return 0;
2702 
2703 	if (!opts)
2704 		return 0;
2705 
2706 	if (opts->fscontext_sid) {
2707 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2708 			       opts->fscontext_sid))
2709 			goto out_bad_option;
2710 	}
2711 	if (opts->context_sid) {
2712 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2713 			       opts->context_sid))
2714 			goto out_bad_option;
2715 	}
2716 	if (opts->rootcontext_sid) {
2717 		struct inode_security_struct *root_isec;
2718 		root_isec = backing_inode_security(sb->s_root);
2719 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2720 			       opts->rootcontext_sid))
2721 			goto out_bad_option;
2722 	}
2723 	if (opts->defcontext_sid) {
2724 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2725 			       opts->defcontext_sid))
2726 			goto out_bad_option;
2727 	}
2728 	return 0;
2729 
2730 out_bad_option:
2731 	pr_warn("SELinux: unable to change security options "
2732 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2733 	       sb->s_type->name);
2734 	return -EINVAL;
2735 }
2736 
2737 static int selinux_sb_kern_mount(const struct super_block *sb)
2738 {
2739 	const struct cred *cred = current_cred();
2740 	struct common_audit_data ad;
2741 
2742 	ad.type = LSM_AUDIT_DATA_DENTRY;
2743 	ad.u.dentry = sb->s_root;
2744 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2745 }
2746 
2747 static int selinux_sb_statfs(struct dentry *dentry)
2748 {
2749 	const struct cred *cred = current_cred();
2750 	struct common_audit_data ad;
2751 
2752 	ad.type = LSM_AUDIT_DATA_DENTRY;
2753 	ad.u.dentry = dentry->d_sb->s_root;
2754 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2755 }
2756 
2757 static int selinux_mount(const char *dev_name,
2758 			 const struct path *path,
2759 			 const char *type,
2760 			 unsigned long flags,
2761 			 void *data)
2762 {
2763 	const struct cred *cred = current_cred();
2764 
2765 	if (flags & MS_REMOUNT)
2766 		return superblock_has_perm(cred, path->dentry->d_sb,
2767 					   FILESYSTEM__REMOUNT, NULL);
2768 	else
2769 		return path_has_perm(cred, path, FILE__MOUNTON);
2770 }
2771 
2772 static int selinux_move_mount(const struct path *from_path,
2773 			      const struct path *to_path)
2774 {
2775 	const struct cred *cred = current_cred();
2776 
2777 	return path_has_perm(cred, to_path, FILE__MOUNTON);
2778 }
2779 
2780 static int selinux_umount(struct vfsmount *mnt, int flags)
2781 {
2782 	const struct cred *cred = current_cred();
2783 
2784 	return superblock_has_perm(cred, mnt->mnt_sb,
2785 				   FILESYSTEM__UNMOUNT, NULL);
2786 }
2787 
2788 static int selinux_fs_context_submount(struct fs_context *fc,
2789 				   struct super_block *reference)
2790 {
2791 	const struct superblock_security_struct *sbsec = selinux_superblock(reference);
2792 	struct selinux_mnt_opts *opts;
2793 
2794 	/*
2795 	 * Ensure that fc->security remains NULL when no options are set
2796 	 * as expected by selinux_set_mnt_opts().
2797 	 */
2798 	if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT)))
2799 		return 0;
2800 
2801 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
2802 	if (!opts)
2803 		return -ENOMEM;
2804 
2805 	if (sbsec->flags & FSCONTEXT_MNT)
2806 		opts->fscontext_sid = sbsec->sid;
2807 	if (sbsec->flags & CONTEXT_MNT)
2808 		opts->context_sid = sbsec->mntpoint_sid;
2809 	if (sbsec->flags & DEFCONTEXT_MNT)
2810 		opts->defcontext_sid = sbsec->def_sid;
2811 	fc->security = opts;
2812 	return 0;
2813 }
2814 
2815 static int selinux_fs_context_dup(struct fs_context *fc,
2816 				  struct fs_context *src_fc)
2817 {
2818 	const struct selinux_mnt_opts *src = src_fc->security;
2819 
2820 	if (!src)
2821 		return 0;
2822 
2823 	fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2824 	return fc->security ? 0 : -ENOMEM;
2825 }
2826 
2827 static const struct fs_parameter_spec selinux_fs_parameters[] = {
2828 	fsparam_string(CONTEXT_STR,	Opt_context),
2829 	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2830 	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2831 	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2832 	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2833 	{}
2834 };
2835 
2836 static int selinux_fs_context_parse_param(struct fs_context *fc,
2837 					  struct fs_parameter *param)
2838 {
2839 	struct fs_parse_result result;
2840 	int opt;
2841 
2842 	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2843 	if (opt < 0)
2844 		return opt;
2845 
2846 	return selinux_add_opt(opt, param->string, &fc->security);
2847 }
2848 
2849 /* inode security operations */
2850 
2851 static int selinux_inode_alloc_security(struct inode *inode)
2852 {
2853 	struct inode_security_struct *isec = selinux_inode(inode);
2854 	u32 sid = current_sid();
2855 
2856 	spin_lock_init(&isec->lock);
2857 	INIT_LIST_HEAD(&isec->list);
2858 	isec->inode = inode;
2859 	isec->sid = SECINITSID_UNLABELED;
2860 	isec->sclass = SECCLASS_FILE;
2861 	isec->task_sid = sid;
2862 	isec->initialized = LABEL_INVALID;
2863 
2864 	return 0;
2865 }
2866 
2867 static void selinux_inode_free_security(struct inode *inode)
2868 {
2869 	inode_free_security(inode);
2870 }
2871 
2872 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2873 					const struct qstr *name,
2874 					const char **xattr_name, void **ctx,
2875 					u32 *ctxlen)
2876 {
2877 	u32 newsid;
2878 	int rc;
2879 
2880 	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2881 					   d_inode(dentry->d_parent), name,
2882 					   inode_mode_to_security_class(mode),
2883 					   &newsid);
2884 	if (rc)
2885 		return rc;
2886 
2887 	if (xattr_name)
2888 		*xattr_name = XATTR_NAME_SELINUX;
2889 
2890 	return security_sid_to_context(newsid, (char **)ctx,
2891 				       ctxlen);
2892 }
2893 
2894 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2895 					  struct qstr *name,
2896 					  const struct cred *old,
2897 					  struct cred *new)
2898 {
2899 	u32 newsid;
2900 	int rc;
2901 	struct task_security_struct *tsec;
2902 
2903 	rc = selinux_determine_inode_label(selinux_cred(old),
2904 					   d_inode(dentry->d_parent), name,
2905 					   inode_mode_to_security_class(mode),
2906 					   &newsid);
2907 	if (rc)
2908 		return rc;
2909 
2910 	tsec = selinux_cred(new);
2911 	tsec->create_sid = newsid;
2912 	return 0;
2913 }
2914 
2915 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2916 				       const struct qstr *qstr,
2917 				       struct xattr *xattrs, int *xattr_count)
2918 {
2919 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2920 	struct superblock_security_struct *sbsec;
2921 	struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count);
2922 	u32 newsid, clen;
2923 	u16 newsclass;
2924 	int rc;
2925 	char *context;
2926 
2927 	sbsec = selinux_superblock(dir->i_sb);
2928 
2929 	newsid = tsec->create_sid;
2930 	newsclass = inode_mode_to_security_class(inode->i_mode);
2931 	rc = selinux_determine_inode_label(tsec, dir, qstr, newsclass, &newsid);
2932 	if (rc)
2933 		return rc;
2934 
2935 	/* Possibly defer initialization to selinux_complete_init. */
2936 	if (sbsec->flags & SE_SBINITIALIZED) {
2937 		struct inode_security_struct *isec = selinux_inode(inode);
2938 		isec->sclass = newsclass;
2939 		isec->sid = newsid;
2940 		isec->initialized = LABEL_INITIALIZED;
2941 	}
2942 
2943 	if (!selinux_initialized() ||
2944 	    !(sbsec->flags & SBLABEL_MNT))
2945 		return -EOPNOTSUPP;
2946 
2947 	if (xattr) {
2948 		rc = security_sid_to_context_force(newsid,
2949 						   &context, &clen);
2950 		if (rc)
2951 			return rc;
2952 		xattr->value = context;
2953 		xattr->value_len = clen;
2954 		xattr->name = XATTR_SELINUX_SUFFIX;
2955 	}
2956 
2957 	return 0;
2958 }
2959 
2960 static int selinux_inode_init_security_anon(struct inode *inode,
2961 					    const struct qstr *name,
2962 					    const struct inode *context_inode)
2963 {
2964 	u32 sid = current_sid();
2965 	struct common_audit_data ad;
2966 	struct inode_security_struct *isec;
2967 	int rc;
2968 
2969 	if (unlikely(!selinux_initialized()))
2970 		return 0;
2971 
2972 	isec = selinux_inode(inode);
2973 
2974 	/*
2975 	 * We only get here once per ephemeral inode.  The inode has
2976 	 * been initialized via inode_alloc_security but is otherwise
2977 	 * untouched.
2978 	 */
2979 
2980 	if (context_inode) {
2981 		struct inode_security_struct *context_isec =
2982 			selinux_inode(context_inode);
2983 		if (context_isec->initialized != LABEL_INITIALIZED) {
2984 			pr_err("SELinux:  context_inode is not initialized\n");
2985 			return -EACCES;
2986 		}
2987 
2988 		isec->sclass = context_isec->sclass;
2989 		isec->sid = context_isec->sid;
2990 	} else {
2991 		isec->sclass = SECCLASS_ANON_INODE;
2992 		rc = security_transition_sid(
2993 			sid, sid,
2994 			isec->sclass, name, &isec->sid);
2995 		if (rc)
2996 			return rc;
2997 	}
2998 
2999 	isec->initialized = LABEL_INITIALIZED;
3000 	/*
3001 	 * Now that we've initialized security, check whether we're
3002 	 * allowed to actually create this type of anonymous inode.
3003 	 */
3004 
3005 	ad.type = LSM_AUDIT_DATA_ANONINODE;
3006 	ad.u.anonclass = name ? (const char *)name->name : "?";
3007 
3008 	return avc_has_perm(sid,
3009 			    isec->sid,
3010 			    isec->sclass,
3011 			    FILE__CREATE,
3012 			    &ad);
3013 }
3014 
3015 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3016 {
3017 	return may_create(dir, dentry, SECCLASS_FILE);
3018 }
3019 
3020 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3021 {
3022 	return may_link(dir, old_dentry, MAY_LINK);
3023 }
3024 
3025 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3026 {
3027 	return may_link(dir, dentry, MAY_UNLINK);
3028 }
3029 
3030 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3031 {
3032 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3033 }
3034 
3035 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3036 {
3037 	return may_create(dir, dentry, SECCLASS_DIR);
3038 }
3039 
3040 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3041 {
3042 	return may_link(dir, dentry, MAY_RMDIR);
3043 }
3044 
3045 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3046 {
3047 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3048 }
3049 
3050 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3051 				struct inode *new_inode, struct dentry *new_dentry)
3052 {
3053 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3054 }
3055 
3056 static int selinux_inode_readlink(struct dentry *dentry)
3057 {
3058 	const struct cred *cred = current_cred();
3059 
3060 	return dentry_has_perm(cred, dentry, FILE__READ);
3061 }
3062 
3063 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3064 				     bool rcu)
3065 {
3066 	struct common_audit_data ad;
3067 	struct inode_security_struct *isec;
3068 	u32 sid = current_sid();
3069 
3070 	ad.type = LSM_AUDIT_DATA_DENTRY;
3071 	ad.u.dentry = dentry;
3072 	isec = inode_security_rcu(inode, rcu);
3073 	if (IS_ERR(isec))
3074 		return PTR_ERR(isec);
3075 
3076 	return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad);
3077 }
3078 
3079 static noinline int audit_inode_permission(struct inode *inode,
3080 					   u32 perms, u32 audited, u32 denied,
3081 					   int result)
3082 {
3083 	struct common_audit_data ad;
3084 	struct inode_security_struct *isec = selinux_inode(inode);
3085 
3086 	ad.type = LSM_AUDIT_DATA_INODE;
3087 	ad.u.inode = inode;
3088 
3089 	return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3090 			    audited, denied, result, &ad);
3091 }
3092 
3093 static int selinux_inode_permission(struct inode *inode, int mask)
3094 {
3095 	u32 perms;
3096 	bool from_access;
3097 	bool no_block = mask & MAY_NOT_BLOCK;
3098 	struct inode_security_struct *isec;
3099 	u32 sid = current_sid();
3100 	struct av_decision avd;
3101 	int rc, rc2;
3102 	u32 audited, denied;
3103 
3104 	from_access = mask & MAY_ACCESS;
3105 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3106 
3107 	/* No permission to check.  Existence test. */
3108 	if (!mask)
3109 		return 0;
3110 
3111 	if (unlikely(IS_PRIVATE(inode)))
3112 		return 0;
3113 
3114 	perms = file_mask_to_av(inode->i_mode, mask);
3115 
3116 	isec = inode_security_rcu(inode, no_block);
3117 	if (IS_ERR(isec))
3118 		return PTR_ERR(isec);
3119 
3120 	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0,
3121 				  &avd);
3122 	audited = avc_audit_required(perms, &avd, rc,
3123 				     from_access ? FILE__AUDIT_ACCESS : 0,
3124 				     &denied);
3125 	if (likely(!audited))
3126 		return rc;
3127 
3128 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3129 	if (rc2)
3130 		return rc2;
3131 	return rc;
3132 }
3133 
3134 static int selinux_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3135 				 struct iattr *iattr)
3136 {
3137 	const struct cred *cred = current_cred();
3138 	struct inode *inode = d_backing_inode(dentry);
3139 	unsigned int ia_valid = iattr->ia_valid;
3140 	__u32 av = FILE__WRITE;
3141 
3142 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3143 	if (ia_valid & ATTR_FORCE) {
3144 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3145 			      ATTR_FORCE);
3146 		if (!ia_valid)
3147 			return 0;
3148 	}
3149 
3150 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3151 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3152 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3153 
3154 	if (selinux_policycap_openperm() &&
3155 	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3156 	    (ia_valid & ATTR_SIZE) &&
3157 	    !(ia_valid & ATTR_FILE))
3158 		av |= FILE__OPEN;
3159 
3160 	return dentry_has_perm(cred, dentry, av);
3161 }
3162 
3163 static int selinux_inode_getattr(const struct path *path)
3164 {
3165 	return path_has_perm(current_cred(), path, FILE__GETATTR);
3166 }
3167 
3168 static bool has_cap_mac_admin(bool audit)
3169 {
3170 	const struct cred *cred = current_cred();
3171 	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3172 
3173 	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3174 		return false;
3175 	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3176 		return false;
3177 	return true;
3178 }
3179 
3180 /**
3181  * selinux_inode_xattr_skipcap - Skip the xattr capability checks?
3182  * @name: name of the xattr
3183  *
3184  * Returns 1 to indicate that SELinux "owns" the access control rights to xattrs
3185  * named @name; the LSM layer should avoid enforcing any traditional
3186  * capability based access controls on this xattr.  Returns 0 to indicate that
3187  * SELinux does not "own" the access control rights to xattrs named @name and is
3188  * deferring to the LSM layer for further access controls, including capability
3189  * based controls.
3190  */
3191 static int selinux_inode_xattr_skipcap(const char *name)
3192 {
3193 	/* require capability check if not a selinux xattr */
3194 	return !strcmp(name, XATTR_NAME_SELINUX);
3195 }
3196 
3197 static int selinux_inode_setxattr(struct mnt_idmap *idmap,
3198 				  struct dentry *dentry, const char *name,
3199 				  const void *value, size_t size, int flags)
3200 {
3201 	struct inode *inode = d_backing_inode(dentry);
3202 	struct inode_security_struct *isec;
3203 	struct superblock_security_struct *sbsec;
3204 	struct common_audit_data ad;
3205 	u32 newsid, sid = current_sid();
3206 	int rc = 0;
3207 
3208 	/* if not a selinux xattr, only check the ordinary setattr perm */
3209 	if (strcmp(name, XATTR_NAME_SELINUX))
3210 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3211 
3212 	if (!selinux_initialized())
3213 		return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM);
3214 
3215 	sbsec = selinux_superblock(inode->i_sb);
3216 	if (!(sbsec->flags & SBLABEL_MNT))
3217 		return -EOPNOTSUPP;
3218 
3219 	if (!inode_owner_or_capable(idmap, inode))
3220 		return -EPERM;
3221 
3222 	ad.type = LSM_AUDIT_DATA_DENTRY;
3223 	ad.u.dentry = dentry;
3224 
3225 	isec = backing_inode_security(dentry);
3226 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
3227 			  FILE__RELABELFROM, &ad);
3228 	if (rc)
3229 		return rc;
3230 
3231 	rc = security_context_to_sid(value, size, &newsid,
3232 				     GFP_KERNEL);
3233 	if (rc == -EINVAL) {
3234 		if (!has_cap_mac_admin(true)) {
3235 			struct audit_buffer *ab;
3236 			size_t audit_size;
3237 
3238 			/* We strip a nul only if it is at the end, otherwise the
3239 			 * context contains a nul and we should audit that */
3240 			if (value) {
3241 				const char *str = value;
3242 
3243 				if (str[size - 1] == '\0')
3244 					audit_size = size - 1;
3245 				else
3246 					audit_size = size;
3247 			} else {
3248 				audit_size = 0;
3249 			}
3250 			ab = audit_log_start(audit_context(),
3251 					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3252 			if (!ab)
3253 				return rc;
3254 			audit_log_format(ab, "op=setxattr invalid_context=");
3255 			audit_log_n_untrustedstring(ab, value, audit_size);
3256 			audit_log_end(ab);
3257 
3258 			return rc;
3259 		}
3260 		rc = security_context_to_sid_force(value,
3261 						   size, &newsid);
3262 	}
3263 	if (rc)
3264 		return rc;
3265 
3266 	rc = avc_has_perm(sid, newsid, isec->sclass,
3267 			  FILE__RELABELTO, &ad);
3268 	if (rc)
3269 		return rc;
3270 
3271 	rc = security_validate_transition(isec->sid, newsid,
3272 					  sid, isec->sclass);
3273 	if (rc)
3274 		return rc;
3275 
3276 	return avc_has_perm(newsid,
3277 			    sbsec->sid,
3278 			    SECCLASS_FILESYSTEM,
3279 			    FILESYSTEM__ASSOCIATE,
3280 			    &ad);
3281 }
3282 
3283 static int selinux_inode_set_acl(struct mnt_idmap *idmap,
3284 				 struct dentry *dentry, const char *acl_name,
3285 				 struct posix_acl *kacl)
3286 {
3287 	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3288 }
3289 
3290 static int selinux_inode_get_acl(struct mnt_idmap *idmap,
3291 				 struct dentry *dentry, const char *acl_name)
3292 {
3293 	return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3294 }
3295 
3296 static int selinux_inode_remove_acl(struct mnt_idmap *idmap,
3297 				    struct dentry *dentry, const char *acl_name)
3298 {
3299 	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3300 }
3301 
3302 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3303 					const void *value, size_t size,
3304 					int flags)
3305 {
3306 	struct inode *inode = d_backing_inode(dentry);
3307 	struct inode_security_struct *isec;
3308 	u32 newsid;
3309 	int rc;
3310 
3311 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3312 		/* Not an attribute we recognize, so nothing to do. */
3313 		return;
3314 	}
3315 
3316 	if (!selinux_initialized()) {
3317 		/* If we haven't even been initialized, then we can't validate
3318 		 * against a policy, so leave the label as invalid. It may
3319 		 * resolve to a valid label on the next revalidation try if
3320 		 * we've since initialized.
3321 		 */
3322 		return;
3323 	}
3324 
3325 	rc = security_context_to_sid_force(value, size,
3326 					   &newsid);
3327 	if (rc) {
3328 		pr_err("SELinux:  unable to map context to SID"
3329 		       "for (%s, %lu), rc=%d\n",
3330 		       inode->i_sb->s_id, inode->i_ino, -rc);
3331 		return;
3332 	}
3333 
3334 	isec = backing_inode_security(dentry);
3335 	spin_lock(&isec->lock);
3336 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3337 	isec->sid = newsid;
3338 	isec->initialized = LABEL_INITIALIZED;
3339 	spin_unlock(&isec->lock);
3340 }
3341 
3342 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3343 {
3344 	const struct cred *cred = current_cred();
3345 
3346 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3347 }
3348 
3349 static int selinux_inode_listxattr(struct dentry *dentry)
3350 {
3351 	const struct cred *cred = current_cred();
3352 
3353 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3354 }
3355 
3356 static int selinux_inode_removexattr(struct mnt_idmap *idmap,
3357 				     struct dentry *dentry, const char *name)
3358 {
3359 	/* if not a selinux xattr, only check the ordinary setattr perm */
3360 	if (strcmp(name, XATTR_NAME_SELINUX))
3361 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3362 
3363 	if (!selinux_initialized())
3364 		return 0;
3365 
3366 	/* No one is allowed to remove a SELinux security label.
3367 	   You can change the label, but all data must be labeled. */
3368 	return -EACCES;
3369 }
3370 
3371 static int selinux_path_notify(const struct path *path, u64 mask,
3372 						unsigned int obj_type)
3373 {
3374 	int ret;
3375 	u32 perm;
3376 
3377 	struct common_audit_data ad;
3378 
3379 	ad.type = LSM_AUDIT_DATA_PATH;
3380 	ad.u.path = *path;
3381 
3382 	/*
3383 	 * Set permission needed based on the type of mark being set.
3384 	 * Performs an additional check for sb watches.
3385 	 */
3386 	switch (obj_type) {
3387 	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3388 		perm = FILE__WATCH_MOUNT;
3389 		break;
3390 	case FSNOTIFY_OBJ_TYPE_SB:
3391 		perm = FILE__WATCH_SB;
3392 		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3393 						FILESYSTEM__WATCH, &ad);
3394 		if (ret)
3395 			return ret;
3396 		break;
3397 	case FSNOTIFY_OBJ_TYPE_INODE:
3398 		perm = FILE__WATCH;
3399 		break;
3400 	default:
3401 		return -EINVAL;
3402 	}
3403 
3404 	/* blocking watches require the file:watch_with_perm permission */
3405 	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3406 		perm |= FILE__WATCH_WITH_PERM;
3407 
3408 	/* watches on read-like events need the file:watch_reads permission */
3409 	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3410 		perm |= FILE__WATCH_READS;
3411 
3412 	return path_has_perm(current_cred(), path, perm);
3413 }
3414 
3415 /*
3416  * Copy the inode security context value to the user.
3417  *
3418  * Permission check is handled by selinux_inode_getxattr hook.
3419  */
3420 static int selinux_inode_getsecurity(struct mnt_idmap *idmap,
3421 				     struct inode *inode, const char *name,
3422 				     void **buffer, bool alloc)
3423 {
3424 	u32 size;
3425 	int error;
3426 	char *context = NULL;
3427 	struct inode_security_struct *isec;
3428 
3429 	/*
3430 	 * If we're not initialized yet, then we can't validate contexts, so
3431 	 * just let vfs_getxattr fall back to using the on-disk xattr.
3432 	 */
3433 	if (!selinux_initialized() ||
3434 	    strcmp(name, XATTR_SELINUX_SUFFIX))
3435 		return -EOPNOTSUPP;
3436 
3437 	/*
3438 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3439 	 * value even if it is not defined by current policy; otherwise,
3440 	 * use the in-core value under current policy.
3441 	 * Use the non-auditing forms of the permission checks since
3442 	 * getxattr may be called by unprivileged processes commonly
3443 	 * and lack of permission just means that we fall back to the
3444 	 * in-core context value, not a denial.
3445 	 */
3446 	isec = inode_security(inode);
3447 	if (has_cap_mac_admin(false))
3448 		error = security_sid_to_context_force(isec->sid, &context,
3449 						      &size);
3450 	else
3451 		error = security_sid_to_context(isec->sid,
3452 						&context, &size);
3453 	if (error)
3454 		return error;
3455 	error = size;
3456 	if (alloc) {
3457 		*buffer = context;
3458 		goto out_nofree;
3459 	}
3460 	kfree(context);
3461 out_nofree:
3462 	return error;
3463 }
3464 
3465 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3466 				     const void *value, size_t size, int flags)
3467 {
3468 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3469 	struct superblock_security_struct *sbsec;
3470 	u32 newsid;
3471 	int rc;
3472 
3473 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3474 		return -EOPNOTSUPP;
3475 
3476 	sbsec = selinux_superblock(inode->i_sb);
3477 	if (!(sbsec->flags & SBLABEL_MNT))
3478 		return -EOPNOTSUPP;
3479 
3480 	if (!value || !size)
3481 		return -EACCES;
3482 
3483 	rc = security_context_to_sid(value, size, &newsid,
3484 				     GFP_KERNEL);
3485 	if (rc)
3486 		return rc;
3487 
3488 	spin_lock(&isec->lock);
3489 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3490 	isec->sid = newsid;
3491 	isec->initialized = LABEL_INITIALIZED;
3492 	spin_unlock(&isec->lock);
3493 	return 0;
3494 }
3495 
3496 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3497 {
3498 	const int len = sizeof(XATTR_NAME_SELINUX);
3499 
3500 	if (!selinux_initialized())
3501 		return 0;
3502 
3503 	if (buffer && len <= buffer_size)
3504 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3505 	return len;
3506 }
3507 
3508 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3509 {
3510 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3511 	*secid = isec->sid;
3512 }
3513 
3514 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3515 {
3516 	u32 sid;
3517 	struct task_security_struct *tsec;
3518 	struct cred *new_creds = *new;
3519 
3520 	if (new_creds == NULL) {
3521 		new_creds = prepare_creds();
3522 		if (!new_creds)
3523 			return -ENOMEM;
3524 	}
3525 
3526 	tsec = selinux_cred(new_creds);
3527 	/* Get label from overlay inode and set it in create_sid */
3528 	selinux_inode_getsecid(d_inode(src), &sid);
3529 	tsec->create_sid = sid;
3530 	*new = new_creds;
3531 	return 0;
3532 }
3533 
3534 static int selinux_inode_copy_up_xattr(struct dentry *dentry, const char *name)
3535 {
3536 	/* The copy_up hook above sets the initial context on an inode, but we
3537 	 * don't then want to overwrite it by blindly copying all the lower
3538 	 * xattrs up.  Instead, filter out SELinux-related xattrs following
3539 	 * policy load.
3540 	 */
3541 	if (selinux_initialized() && strcmp(name, XATTR_NAME_SELINUX) == 0)
3542 		return 1; /* Discard */
3543 	/*
3544 	 * Any other attribute apart from SELINUX is not claimed, supported
3545 	 * by selinux.
3546 	 */
3547 	return -EOPNOTSUPP;
3548 }
3549 
3550 /* kernfs node operations */
3551 
3552 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3553 					struct kernfs_node *kn)
3554 {
3555 	const struct task_security_struct *tsec = selinux_cred(current_cred());
3556 	u32 parent_sid, newsid, clen;
3557 	int rc;
3558 	char *context;
3559 
3560 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3561 	if (rc == -ENODATA)
3562 		return 0;
3563 	else if (rc < 0)
3564 		return rc;
3565 
3566 	clen = (u32)rc;
3567 	context = kmalloc(clen, GFP_KERNEL);
3568 	if (!context)
3569 		return -ENOMEM;
3570 
3571 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3572 	if (rc < 0) {
3573 		kfree(context);
3574 		return rc;
3575 	}
3576 
3577 	rc = security_context_to_sid(context, clen, &parent_sid,
3578 				     GFP_KERNEL);
3579 	kfree(context);
3580 	if (rc)
3581 		return rc;
3582 
3583 	if (tsec->create_sid) {
3584 		newsid = tsec->create_sid;
3585 	} else {
3586 		u16 secclass = inode_mode_to_security_class(kn->mode);
3587 		struct qstr q;
3588 
3589 		q.name = kn->name;
3590 		q.hash_len = hashlen_string(kn_dir, kn->name);
3591 
3592 		rc = security_transition_sid(tsec->sid,
3593 					     parent_sid, secclass, &q,
3594 					     &newsid);
3595 		if (rc)
3596 			return rc;
3597 	}
3598 
3599 	rc = security_sid_to_context_force(newsid,
3600 					   &context, &clen);
3601 	if (rc)
3602 		return rc;
3603 
3604 	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3605 			      XATTR_CREATE);
3606 	kfree(context);
3607 	return rc;
3608 }
3609 
3610 
3611 /* file security operations */
3612 
3613 static int selinux_revalidate_file_permission(struct file *file, int mask)
3614 {
3615 	const struct cred *cred = current_cred();
3616 	struct inode *inode = file_inode(file);
3617 
3618 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3619 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3620 		mask |= MAY_APPEND;
3621 
3622 	return file_has_perm(cred, file,
3623 			     file_mask_to_av(inode->i_mode, mask));
3624 }
3625 
3626 static int selinux_file_permission(struct file *file, int mask)
3627 {
3628 	struct inode *inode = file_inode(file);
3629 	struct file_security_struct *fsec = selinux_file(file);
3630 	struct inode_security_struct *isec;
3631 	u32 sid = current_sid();
3632 
3633 	if (!mask)
3634 		/* No permission to check.  Existence test. */
3635 		return 0;
3636 
3637 	isec = inode_security(inode);
3638 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3639 	    fsec->pseqno == avc_policy_seqno())
3640 		/* No change since file_open check. */
3641 		return 0;
3642 
3643 	return selinux_revalidate_file_permission(file, mask);
3644 }
3645 
3646 static int selinux_file_alloc_security(struct file *file)
3647 {
3648 	struct file_security_struct *fsec = selinux_file(file);
3649 	u32 sid = current_sid();
3650 
3651 	fsec->sid = sid;
3652 	fsec->fown_sid = sid;
3653 
3654 	return 0;
3655 }
3656 
3657 /*
3658  * Check whether a task has the ioctl permission and cmd
3659  * operation to an inode.
3660  */
3661 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3662 		u32 requested, u16 cmd)
3663 {
3664 	struct common_audit_data ad;
3665 	struct file_security_struct *fsec = selinux_file(file);
3666 	struct inode *inode = file_inode(file);
3667 	struct inode_security_struct *isec;
3668 	struct lsm_ioctlop_audit ioctl;
3669 	u32 ssid = cred_sid(cred);
3670 	int rc;
3671 	u8 driver = cmd >> 8;
3672 	u8 xperm = cmd & 0xff;
3673 
3674 	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3675 	ad.u.op = &ioctl;
3676 	ad.u.op->cmd = cmd;
3677 	ad.u.op->path = file->f_path;
3678 
3679 	if (ssid != fsec->sid) {
3680 		rc = avc_has_perm(ssid, fsec->sid,
3681 				SECCLASS_FD,
3682 				FD__USE,
3683 				&ad);
3684 		if (rc)
3685 			goto out;
3686 	}
3687 
3688 	if (unlikely(IS_PRIVATE(inode)))
3689 		return 0;
3690 
3691 	isec = inode_security(inode);
3692 	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3693 				    requested, driver, xperm, &ad);
3694 out:
3695 	return rc;
3696 }
3697 
3698 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3699 			      unsigned long arg)
3700 {
3701 	const struct cred *cred = current_cred();
3702 	int error = 0;
3703 
3704 	switch (cmd) {
3705 	case FIONREAD:
3706 	case FIBMAP:
3707 	case FIGETBSZ:
3708 	case FS_IOC_GETFLAGS:
3709 	case FS_IOC_GETVERSION:
3710 		error = file_has_perm(cred, file, FILE__GETATTR);
3711 		break;
3712 
3713 	case FS_IOC_SETFLAGS:
3714 	case FS_IOC_SETVERSION:
3715 		error = file_has_perm(cred, file, FILE__SETATTR);
3716 		break;
3717 
3718 	/* sys_ioctl() checks */
3719 	case FIONBIO:
3720 	case FIOASYNC:
3721 		error = file_has_perm(cred, file, 0);
3722 		break;
3723 
3724 	case KDSKBENT:
3725 	case KDSKBSENT:
3726 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3727 					    CAP_OPT_NONE, true);
3728 		break;
3729 
3730 	case FIOCLEX:
3731 	case FIONCLEX:
3732 		if (!selinux_policycap_ioctl_skip_cloexec())
3733 			error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3734 		break;
3735 
3736 	/* default case assumes that the command will go
3737 	 * to the file's ioctl() function.
3738 	 */
3739 	default:
3740 		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3741 	}
3742 	return error;
3743 }
3744 
3745 static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd,
3746 			      unsigned long arg)
3747 {
3748 	/*
3749 	 * If we are in a 64-bit kernel running 32-bit userspace, we need to
3750 	 * make sure we don't compare 32-bit flags to 64-bit flags.
3751 	 */
3752 	switch (cmd) {
3753 	case FS_IOC32_GETFLAGS:
3754 		cmd = FS_IOC_GETFLAGS;
3755 		break;
3756 	case FS_IOC32_SETFLAGS:
3757 		cmd = FS_IOC_SETFLAGS;
3758 		break;
3759 	case FS_IOC32_GETVERSION:
3760 		cmd = FS_IOC_GETVERSION;
3761 		break;
3762 	case FS_IOC32_SETVERSION:
3763 		cmd = FS_IOC_SETVERSION;
3764 		break;
3765 	default:
3766 		break;
3767 	}
3768 
3769 	return selinux_file_ioctl(file, cmd, arg);
3770 }
3771 
3772 static int default_noexec __ro_after_init;
3773 
3774 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3775 {
3776 	const struct cred *cred = current_cred();
3777 	u32 sid = cred_sid(cred);
3778 	int rc = 0;
3779 
3780 	if (default_noexec &&
3781 	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3782 				   (!shared && (prot & PROT_WRITE)))) {
3783 		/*
3784 		 * We are making executable an anonymous mapping or a
3785 		 * private file mapping that will also be writable.
3786 		 * This has an additional check.
3787 		 */
3788 		rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3789 				  PROCESS__EXECMEM, NULL);
3790 		if (rc)
3791 			goto error;
3792 	}
3793 
3794 	if (file) {
3795 		/* read access is always possible with a mapping */
3796 		u32 av = FILE__READ;
3797 
3798 		/* write access only matters if the mapping is shared */
3799 		if (shared && (prot & PROT_WRITE))
3800 			av |= FILE__WRITE;
3801 
3802 		if (prot & PROT_EXEC)
3803 			av |= FILE__EXECUTE;
3804 
3805 		return file_has_perm(cred, file, av);
3806 	}
3807 
3808 error:
3809 	return rc;
3810 }
3811 
3812 static int selinux_mmap_addr(unsigned long addr)
3813 {
3814 	int rc = 0;
3815 
3816 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3817 		u32 sid = current_sid();
3818 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3819 				  MEMPROTECT__MMAP_ZERO, NULL);
3820 	}
3821 
3822 	return rc;
3823 }
3824 
3825 static int selinux_mmap_file(struct file *file,
3826 			     unsigned long reqprot __always_unused,
3827 			     unsigned long prot, unsigned long flags)
3828 {
3829 	struct common_audit_data ad;
3830 	int rc;
3831 
3832 	if (file) {
3833 		ad.type = LSM_AUDIT_DATA_FILE;
3834 		ad.u.file = file;
3835 		rc = inode_has_perm(current_cred(), file_inode(file),
3836 				    FILE__MAP, &ad);
3837 		if (rc)
3838 			return rc;
3839 	}
3840 
3841 	return file_map_prot_check(file, prot,
3842 				   (flags & MAP_TYPE) == MAP_SHARED);
3843 }
3844 
3845 static int selinux_file_mprotect(struct vm_area_struct *vma,
3846 				 unsigned long reqprot __always_unused,
3847 				 unsigned long prot)
3848 {
3849 	const struct cred *cred = current_cred();
3850 	u32 sid = cred_sid(cred);
3851 
3852 	if (default_noexec &&
3853 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3854 		int rc = 0;
3855 		if (vma_is_initial_heap(vma)) {
3856 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3857 					  PROCESS__EXECHEAP, NULL);
3858 		} else if (!vma->vm_file && (vma_is_initial_stack(vma) ||
3859 			    vma_is_stack_for_current(vma))) {
3860 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3861 					  PROCESS__EXECSTACK, NULL);
3862 		} else if (vma->vm_file && vma->anon_vma) {
3863 			/*
3864 			 * We are making executable a file mapping that has
3865 			 * had some COW done. Since pages might have been
3866 			 * written, check ability to execute the possibly
3867 			 * modified content.  This typically should only
3868 			 * occur for text relocations.
3869 			 */
3870 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3871 		}
3872 		if (rc)
3873 			return rc;
3874 	}
3875 
3876 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3877 }
3878 
3879 static int selinux_file_lock(struct file *file, unsigned int cmd)
3880 {
3881 	const struct cred *cred = current_cred();
3882 
3883 	return file_has_perm(cred, file, FILE__LOCK);
3884 }
3885 
3886 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3887 			      unsigned long arg)
3888 {
3889 	const struct cred *cred = current_cred();
3890 	int err = 0;
3891 
3892 	switch (cmd) {
3893 	case F_SETFL:
3894 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3895 			err = file_has_perm(cred, file, FILE__WRITE);
3896 			break;
3897 		}
3898 		fallthrough;
3899 	case F_SETOWN:
3900 	case F_SETSIG:
3901 	case F_GETFL:
3902 	case F_GETOWN:
3903 	case F_GETSIG:
3904 	case F_GETOWNER_UIDS:
3905 		/* Just check FD__USE permission */
3906 		err = file_has_perm(cred, file, 0);
3907 		break;
3908 	case F_GETLK:
3909 	case F_SETLK:
3910 	case F_SETLKW:
3911 	case F_OFD_GETLK:
3912 	case F_OFD_SETLK:
3913 	case F_OFD_SETLKW:
3914 #if BITS_PER_LONG == 32
3915 	case F_GETLK64:
3916 	case F_SETLK64:
3917 	case F_SETLKW64:
3918 #endif
3919 		err = file_has_perm(cred, file, FILE__LOCK);
3920 		break;
3921 	}
3922 
3923 	return err;
3924 }
3925 
3926 static void selinux_file_set_fowner(struct file *file)
3927 {
3928 	struct file_security_struct *fsec;
3929 
3930 	fsec = selinux_file(file);
3931 	fsec->fown_sid = current_sid();
3932 }
3933 
3934 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3935 				       struct fown_struct *fown, int signum)
3936 {
3937 	struct file *file;
3938 	u32 sid = task_sid_obj(tsk);
3939 	u32 perm;
3940 	struct file_security_struct *fsec;
3941 
3942 	/* struct fown_struct is never outside the context of a struct file */
3943 	file = container_of(fown, struct file, f_owner);
3944 
3945 	fsec = selinux_file(file);
3946 
3947 	if (!signum)
3948 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3949 	else
3950 		perm = signal_to_av(signum);
3951 
3952 	return avc_has_perm(fsec->fown_sid, sid,
3953 			    SECCLASS_PROCESS, perm, NULL);
3954 }
3955 
3956 static int selinux_file_receive(struct file *file)
3957 {
3958 	const struct cred *cred = current_cred();
3959 
3960 	return file_has_perm(cred, file, file_to_av(file));
3961 }
3962 
3963 static int selinux_file_open(struct file *file)
3964 {
3965 	struct file_security_struct *fsec;
3966 	struct inode_security_struct *isec;
3967 
3968 	fsec = selinux_file(file);
3969 	isec = inode_security(file_inode(file));
3970 	/*
3971 	 * Save inode label and policy sequence number
3972 	 * at open-time so that selinux_file_permission
3973 	 * can determine whether revalidation is necessary.
3974 	 * Task label is already saved in the file security
3975 	 * struct as its SID.
3976 	 */
3977 	fsec->isid = isec->sid;
3978 	fsec->pseqno = avc_policy_seqno();
3979 	/*
3980 	 * Since the inode label or policy seqno may have changed
3981 	 * between the selinux_inode_permission check and the saving
3982 	 * of state above, recheck that access is still permitted.
3983 	 * Otherwise, access might never be revalidated against the
3984 	 * new inode label or new policy.
3985 	 * This check is not redundant - do not remove.
3986 	 */
3987 	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3988 }
3989 
3990 /* task security operations */
3991 
3992 static int selinux_task_alloc(struct task_struct *task,
3993 			      unsigned long clone_flags)
3994 {
3995 	u32 sid = current_sid();
3996 
3997 	return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3998 }
3999 
4000 /*
4001  * prepare a new set of credentials for modification
4002  */
4003 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4004 				gfp_t gfp)
4005 {
4006 	const struct task_security_struct *old_tsec = selinux_cred(old);
4007 	struct task_security_struct *tsec = selinux_cred(new);
4008 
4009 	*tsec = *old_tsec;
4010 	return 0;
4011 }
4012 
4013 /*
4014  * transfer the SELinux data to a blank set of creds
4015  */
4016 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4017 {
4018 	const struct task_security_struct *old_tsec = selinux_cred(old);
4019 	struct task_security_struct *tsec = selinux_cred(new);
4020 
4021 	*tsec = *old_tsec;
4022 }
4023 
4024 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4025 {
4026 	*secid = cred_sid(c);
4027 }
4028 
4029 /*
4030  * set the security data for a kernel service
4031  * - all the creation contexts are set to unlabelled
4032  */
4033 static int selinux_kernel_act_as(struct cred *new, u32 secid)
4034 {
4035 	struct task_security_struct *tsec = selinux_cred(new);
4036 	u32 sid = current_sid();
4037 	int ret;
4038 
4039 	ret = avc_has_perm(sid, secid,
4040 			   SECCLASS_KERNEL_SERVICE,
4041 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
4042 			   NULL);
4043 	if (ret == 0) {
4044 		tsec->sid = secid;
4045 		tsec->create_sid = 0;
4046 		tsec->keycreate_sid = 0;
4047 		tsec->sockcreate_sid = 0;
4048 	}
4049 	return ret;
4050 }
4051 
4052 /*
4053  * set the file creation context in a security record to the same as the
4054  * objective context of the specified inode
4055  */
4056 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4057 {
4058 	struct inode_security_struct *isec = inode_security(inode);
4059 	struct task_security_struct *tsec = selinux_cred(new);
4060 	u32 sid = current_sid();
4061 	int ret;
4062 
4063 	ret = avc_has_perm(sid, isec->sid,
4064 			   SECCLASS_KERNEL_SERVICE,
4065 			   KERNEL_SERVICE__CREATE_FILES_AS,
4066 			   NULL);
4067 
4068 	if (ret == 0)
4069 		tsec->create_sid = isec->sid;
4070 	return ret;
4071 }
4072 
4073 static int selinux_kernel_module_request(char *kmod_name)
4074 {
4075 	struct common_audit_data ad;
4076 
4077 	ad.type = LSM_AUDIT_DATA_KMOD;
4078 	ad.u.kmod_name = kmod_name;
4079 
4080 	return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4081 			    SYSTEM__MODULE_REQUEST, &ad);
4082 }
4083 
4084 static int selinux_kernel_module_from_file(struct file *file)
4085 {
4086 	struct common_audit_data ad;
4087 	struct inode_security_struct *isec;
4088 	struct file_security_struct *fsec;
4089 	u32 sid = current_sid();
4090 	int rc;
4091 
4092 	/* init_module */
4093 	if (file == NULL)
4094 		return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
4095 					SYSTEM__MODULE_LOAD, NULL);
4096 
4097 	/* finit_module */
4098 
4099 	ad.type = LSM_AUDIT_DATA_FILE;
4100 	ad.u.file = file;
4101 
4102 	fsec = selinux_file(file);
4103 	if (sid != fsec->sid) {
4104 		rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4105 		if (rc)
4106 			return rc;
4107 	}
4108 
4109 	isec = inode_security(file_inode(file));
4110 	return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
4111 				SYSTEM__MODULE_LOAD, &ad);
4112 }
4113 
4114 static int selinux_kernel_read_file(struct file *file,
4115 				    enum kernel_read_file_id id,
4116 				    bool contents)
4117 {
4118 	int rc = 0;
4119 
4120 	switch (id) {
4121 	case READING_MODULE:
4122 		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4123 		break;
4124 	default:
4125 		break;
4126 	}
4127 
4128 	return rc;
4129 }
4130 
4131 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4132 {
4133 	int rc = 0;
4134 
4135 	switch (id) {
4136 	case LOADING_MODULE:
4137 		rc = selinux_kernel_module_from_file(NULL);
4138 		break;
4139 	default:
4140 		break;
4141 	}
4142 
4143 	return rc;
4144 }
4145 
4146 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4147 {
4148 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4149 			    PROCESS__SETPGID, NULL);
4150 }
4151 
4152 static int selinux_task_getpgid(struct task_struct *p)
4153 {
4154 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4155 			    PROCESS__GETPGID, NULL);
4156 }
4157 
4158 static int selinux_task_getsid(struct task_struct *p)
4159 {
4160 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4161 			    PROCESS__GETSESSION, NULL);
4162 }
4163 
4164 static void selinux_current_getsecid_subj(u32 *secid)
4165 {
4166 	*secid = current_sid();
4167 }
4168 
4169 static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4170 {
4171 	*secid = task_sid_obj(p);
4172 }
4173 
4174 static int selinux_task_setnice(struct task_struct *p, int nice)
4175 {
4176 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4177 			    PROCESS__SETSCHED, NULL);
4178 }
4179 
4180 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4181 {
4182 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4183 			    PROCESS__SETSCHED, NULL);
4184 }
4185 
4186 static int selinux_task_getioprio(struct task_struct *p)
4187 {
4188 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4189 			    PROCESS__GETSCHED, NULL);
4190 }
4191 
4192 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4193 				unsigned int flags)
4194 {
4195 	u32 av = 0;
4196 
4197 	if (!flags)
4198 		return 0;
4199 	if (flags & LSM_PRLIMIT_WRITE)
4200 		av |= PROCESS__SETRLIMIT;
4201 	if (flags & LSM_PRLIMIT_READ)
4202 		av |= PROCESS__GETRLIMIT;
4203 	return avc_has_perm(cred_sid(cred), cred_sid(tcred),
4204 			    SECCLASS_PROCESS, av, NULL);
4205 }
4206 
4207 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4208 		struct rlimit *new_rlim)
4209 {
4210 	struct rlimit *old_rlim = p->signal->rlim + resource;
4211 
4212 	/* Control the ability to change the hard limit (whether
4213 	   lowering or raising it), so that the hard limit can
4214 	   later be used as a safe reset point for the soft limit
4215 	   upon context transitions.  See selinux_bprm_committing_creds. */
4216 	if (old_rlim->rlim_max != new_rlim->rlim_max)
4217 		return avc_has_perm(current_sid(), task_sid_obj(p),
4218 				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4219 
4220 	return 0;
4221 }
4222 
4223 static int selinux_task_setscheduler(struct task_struct *p)
4224 {
4225 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4226 			    PROCESS__SETSCHED, NULL);
4227 }
4228 
4229 static int selinux_task_getscheduler(struct task_struct *p)
4230 {
4231 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4232 			    PROCESS__GETSCHED, NULL);
4233 }
4234 
4235 static int selinux_task_movememory(struct task_struct *p)
4236 {
4237 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4238 			    PROCESS__SETSCHED, NULL);
4239 }
4240 
4241 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4242 				int sig, const struct cred *cred)
4243 {
4244 	u32 secid;
4245 	u32 perm;
4246 
4247 	if (!sig)
4248 		perm = PROCESS__SIGNULL; /* null signal; existence test */
4249 	else
4250 		perm = signal_to_av(sig);
4251 	if (!cred)
4252 		secid = current_sid();
4253 	else
4254 		secid = cred_sid(cred);
4255 	return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4256 }
4257 
4258 static void selinux_task_to_inode(struct task_struct *p,
4259 				  struct inode *inode)
4260 {
4261 	struct inode_security_struct *isec = selinux_inode(inode);
4262 	u32 sid = task_sid_obj(p);
4263 
4264 	spin_lock(&isec->lock);
4265 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4266 	isec->sid = sid;
4267 	isec->initialized = LABEL_INITIALIZED;
4268 	spin_unlock(&isec->lock);
4269 }
4270 
4271 static int selinux_userns_create(const struct cred *cred)
4272 {
4273 	u32 sid = current_sid();
4274 
4275 	return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE,
4276 			USER_NAMESPACE__CREATE, NULL);
4277 }
4278 
4279 /* Returns error only if unable to parse addresses */
4280 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4281 			struct common_audit_data *ad, u8 *proto)
4282 {
4283 	int offset, ihlen, ret = -EINVAL;
4284 	struct iphdr _iph, *ih;
4285 
4286 	offset = skb_network_offset(skb);
4287 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4288 	if (ih == NULL)
4289 		goto out;
4290 
4291 	ihlen = ih->ihl * 4;
4292 	if (ihlen < sizeof(_iph))
4293 		goto out;
4294 
4295 	ad->u.net->v4info.saddr = ih->saddr;
4296 	ad->u.net->v4info.daddr = ih->daddr;
4297 	ret = 0;
4298 
4299 	if (proto)
4300 		*proto = ih->protocol;
4301 
4302 	switch (ih->protocol) {
4303 	case IPPROTO_TCP: {
4304 		struct tcphdr _tcph, *th;
4305 
4306 		if (ntohs(ih->frag_off) & IP_OFFSET)
4307 			break;
4308 
4309 		offset += ihlen;
4310 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4311 		if (th == NULL)
4312 			break;
4313 
4314 		ad->u.net->sport = th->source;
4315 		ad->u.net->dport = th->dest;
4316 		break;
4317 	}
4318 
4319 	case IPPROTO_UDP: {
4320 		struct udphdr _udph, *uh;
4321 
4322 		if (ntohs(ih->frag_off) & IP_OFFSET)
4323 			break;
4324 
4325 		offset += ihlen;
4326 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4327 		if (uh == NULL)
4328 			break;
4329 
4330 		ad->u.net->sport = uh->source;
4331 		ad->u.net->dport = uh->dest;
4332 		break;
4333 	}
4334 
4335 	case IPPROTO_DCCP: {
4336 		struct dccp_hdr _dccph, *dh;
4337 
4338 		if (ntohs(ih->frag_off) & IP_OFFSET)
4339 			break;
4340 
4341 		offset += ihlen;
4342 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4343 		if (dh == NULL)
4344 			break;
4345 
4346 		ad->u.net->sport = dh->dccph_sport;
4347 		ad->u.net->dport = dh->dccph_dport;
4348 		break;
4349 	}
4350 
4351 #if IS_ENABLED(CONFIG_IP_SCTP)
4352 	case IPPROTO_SCTP: {
4353 		struct sctphdr _sctph, *sh;
4354 
4355 		if (ntohs(ih->frag_off) & IP_OFFSET)
4356 			break;
4357 
4358 		offset += ihlen;
4359 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4360 		if (sh == NULL)
4361 			break;
4362 
4363 		ad->u.net->sport = sh->source;
4364 		ad->u.net->dport = sh->dest;
4365 		break;
4366 	}
4367 #endif
4368 	default:
4369 		break;
4370 	}
4371 out:
4372 	return ret;
4373 }
4374 
4375 #if IS_ENABLED(CONFIG_IPV6)
4376 
4377 /* Returns error only if unable to parse addresses */
4378 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4379 			struct common_audit_data *ad, u8 *proto)
4380 {
4381 	u8 nexthdr;
4382 	int ret = -EINVAL, offset;
4383 	struct ipv6hdr _ipv6h, *ip6;
4384 	__be16 frag_off;
4385 
4386 	offset = skb_network_offset(skb);
4387 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4388 	if (ip6 == NULL)
4389 		goto out;
4390 
4391 	ad->u.net->v6info.saddr = ip6->saddr;
4392 	ad->u.net->v6info.daddr = ip6->daddr;
4393 	ret = 0;
4394 
4395 	nexthdr = ip6->nexthdr;
4396 	offset += sizeof(_ipv6h);
4397 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4398 	if (offset < 0)
4399 		goto out;
4400 
4401 	if (proto)
4402 		*proto = nexthdr;
4403 
4404 	switch (nexthdr) {
4405 	case IPPROTO_TCP: {
4406 		struct tcphdr _tcph, *th;
4407 
4408 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4409 		if (th == NULL)
4410 			break;
4411 
4412 		ad->u.net->sport = th->source;
4413 		ad->u.net->dport = th->dest;
4414 		break;
4415 	}
4416 
4417 	case IPPROTO_UDP: {
4418 		struct udphdr _udph, *uh;
4419 
4420 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4421 		if (uh == NULL)
4422 			break;
4423 
4424 		ad->u.net->sport = uh->source;
4425 		ad->u.net->dport = uh->dest;
4426 		break;
4427 	}
4428 
4429 	case IPPROTO_DCCP: {
4430 		struct dccp_hdr _dccph, *dh;
4431 
4432 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4433 		if (dh == NULL)
4434 			break;
4435 
4436 		ad->u.net->sport = dh->dccph_sport;
4437 		ad->u.net->dport = dh->dccph_dport;
4438 		break;
4439 	}
4440 
4441 #if IS_ENABLED(CONFIG_IP_SCTP)
4442 	case IPPROTO_SCTP: {
4443 		struct sctphdr _sctph, *sh;
4444 
4445 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4446 		if (sh == NULL)
4447 			break;
4448 
4449 		ad->u.net->sport = sh->source;
4450 		ad->u.net->dport = sh->dest;
4451 		break;
4452 	}
4453 #endif
4454 	/* includes fragments */
4455 	default:
4456 		break;
4457 	}
4458 out:
4459 	return ret;
4460 }
4461 
4462 #endif /* IPV6 */
4463 
4464 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4465 			     char **_addrp, int src, u8 *proto)
4466 {
4467 	char *addrp;
4468 	int ret;
4469 
4470 	switch (ad->u.net->family) {
4471 	case PF_INET:
4472 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4473 		if (ret)
4474 			goto parse_error;
4475 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4476 				       &ad->u.net->v4info.daddr);
4477 		goto okay;
4478 
4479 #if IS_ENABLED(CONFIG_IPV6)
4480 	case PF_INET6:
4481 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4482 		if (ret)
4483 			goto parse_error;
4484 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4485 				       &ad->u.net->v6info.daddr);
4486 		goto okay;
4487 #endif	/* IPV6 */
4488 	default:
4489 		addrp = NULL;
4490 		goto okay;
4491 	}
4492 
4493 parse_error:
4494 	pr_warn(
4495 	       "SELinux: failure in selinux_parse_skb(),"
4496 	       " unable to parse packet\n");
4497 	return ret;
4498 
4499 okay:
4500 	if (_addrp)
4501 		*_addrp = addrp;
4502 	return 0;
4503 }
4504 
4505 /**
4506  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4507  * @skb: the packet
4508  * @family: protocol family
4509  * @sid: the packet's peer label SID
4510  *
4511  * Description:
4512  * Check the various different forms of network peer labeling and determine
4513  * the peer label/SID for the packet; most of the magic actually occurs in
4514  * the security server function security_net_peersid_cmp().  The function
4515  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4516  * or -EACCES if @sid is invalid due to inconsistencies with the different
4517  * peer labels.
4518  *
4519  */
4520 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4521 {
4522 	int err;
4523 	u32 xfrm_sid;
4524 	u32 nlbl_sid;
4525 	u32 nlbl_type;
4526 
4527 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4528 	if (unlikely(err))
4529 		return -EACCES;
4530 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4531 	if (unlikely(err))
4532 		return -EACCES;
4533 
4534 	err = security_net_peersid_resolve(nlbl_sid,
4535 					   nlbl_type, xfrm_sid, sid);
4536 	if (unlikely(err)) {
4537 		pr_warn(
4538 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4539 		       " unable to determine packet's peer label\n");
4540 		return -EACCES;
4541 	}
4542 
4543 	return 0;
4544 }
4545 
4546 /**
4547  * selinux_conn_sid - Determine the child socket label for a connection
4548  * @sk_sid: the parent socket's SID
4549  * @skb_sid: the packet's SID
4550  * @conn_sid: the resulting connection SID
4551  *
4552  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4553  * combined with the MLS information from @skb_sid in order to create
4554  * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4555  * of @sk_sid.  Returns zero on success, negative values on failure.
4556  *
4557  */
4558 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4559 {
4560 	int err = 0;
4561 
4562 	if (skb_sid != SECSID_NULL)
4563 		err = security_sid_mls_copy(sk_sid, skb_sid,
4564 					    conn_sid);
4565 	else
4566 		*conn_sid = sk_sid;
4567 
4568 	return err;
4569 }
4570 
4571 /* socket security operations */
4572 
4573 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4574 				 u16 secclass, u32 *socksid)
4575 {
4576 	if (tsec->sockcreate_sid > SECSID_NULL) {
4577 		*socksid = tsec->sockcreate_sid;
4578 		return 0;
4579 	}
4580 
4581 	return security_transition_sid(tsec->sid, tsec->sid,
4582 				       secclass, NULL, socksid);
4583 }
4584 
4585 static int sock_has_perm(struct sock *sk, u32 perms)
4586 {
4587 	struct sk_security_struct *sksec = sk->sk_security;
4588 	struct common_audit_data ad;
4589 	struct lsm_network_audit net;
4590 
4591 	if (sksec->sid == SECINITSID_KERNEL)
4592 		return 0;
4593 
4594 	/*
4595 	 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that
4596 	 * inherited the kernel context from early boot used to be skipped
4597 	 * here, so preserve that behavior unless the capability is set.
4598 	 *
4599 	 * By setting the capability the policy signals that it is ready
4600 	 * for this quirk to be fixed. Note that sockets created by a kernel
4601 	 * thread or a usermode helper executed without a transition will
4602 	 * still be skipped in this check regardless of the policycap
4603 	 * setting.
4604 	 */
4605 	if (!selinux_policycap_userspace_initial_context() &&
4606 	    sksec->sid == SECINITSID_INIT)
4607 		return 0;
4608 
4609 	ad_net_init_from_sk(&ad, &net, sk);
4610 
4611 	return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
4612 			    &ad);
4613 }
4614 
4615 static int selinux_socket_create(int family, int type,
4616 				 int protocol, int kern)
4617 {
4618 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4619 	u32 newsid;
4620 	u16 secclass;
4621 	int rc;
4622 
4623 	if (kern)
4624 		return 0;
4625 
4626 	secclass = socket_type_to_security_class(family, type, protocol);
4627 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4628 	if (rc)
4629 		return rc;
4630 
4631 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4632 }
4633 
4634 static int selinux_socket_post_create(struct socket *sock, int family,
4635 				      int type, int protocol, int kern)
4636 {
4637 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4638 	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4639 	struct sk_security_struct *sksec;
4640 	u16 sclass = socket_type_to_security_class(family, type, protocol);
4641 	u32 sid = SECINITSID_KERNEL;
4642 	int err = 0;
4643 
4644 	if (!kern) {
4645 		err = socket_sockcreate_sid(tsec, sclass, &sid);
4646 		if (err)
4647 			return err;
4648 	}
4649 
4650 	isec->sclass = sclass;
4651 	isec->sid = sid;
4652 	isec->initialized = LABEL_INITIALIZED;
4653 
4654 	if (sock->sk) {
4655 		sksec = sock->sk->sk_security;
4656 		sksec->sclass = sclass;
4657 		sksec->sid = sid;
4658 		/* Allows detection of the first association on this socket */
4659 		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4660 			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4661 
4662 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4663 	}
4664 
4665 	return err;
4666 }
4667 
4668 static int selinux_socket_socketpair(struct socket *socka,
4669 				     struct socket *sockb)
4670 {
4671 	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4672 	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4673 
4674 	sksec_a->peer_sid = sksec_b->sid;
4675 	sksec_b->peer_sid = sksec_a->sid;
4676 
4677 	return 0;
4678 }
4679 
4680 /* Range of port numbers used to automatically bind.
4681    Need to determine whether we should perform a name_bind
4682    permission check between the socket and the port number. */
4683 
4684 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4685 {
4686 	struct sock *sk = sock->sk;
4687 	struct sk_security_struct *sksec = sk->sk_security;
4688 	u16 family;
4689 	int err;
4690 
4691 	err = sock_has_perm(sk, SOCKET__BIND);
4692 	if (err)
4693 		goto out;
4694 
4695 	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4696 	family = sk->sk_family;
4697 	if (family == PF_INET || family == PF_INET6) {
4698 		char *addrp;
4699 		struct common_audit_data ad;
4700 		struct lsm_network_audit net = {0,};
4701 		struct sockaddr_in *addr4 = NULL;
4702 		struct sockaddr_in6 *addr6 = NULL;
4703 		u16 family_sa;
4704 		unsigned short snum;
4705 		u32 sid, node_perm;
4706 
4707 		/*
4708 		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4709 		 * that validates multiple binding addresses. Because of this
4710 		 * need to check address->sa_family as it is possible to have
4711 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4712 		 */
4713 		if (addrlen < offsetofend(struct sockaddr, sa_family))
4714 			return -EINVAL;
4715 		family_sa = address->sa_family;
4716 		switch (family_sa) {
4717 		case AF_UNSPEC:
4718 		case AF_INET:
4719 			if (addrlen < sizeof(struct sockaddr_in))
4720 				return -EINVAL;
4721 			addr4 = (struct sockaddr_in *)address;
4722 			if (family_sa == AF_UNSPEC) {
4723 				if (family == PF_INET6) {
4724 					/* Length check from inet6_bind_sk() */
4725 					if (addrlen < SIN6_LEN_RFC2133)
4726 						return -EINVAL;
4727 					/* Family check from __inet6_bind() */
4728 					goto err_af;
4729 				}
4730 				/* see __inet_bind(), we only want to allow
4731 				 * AF_UNSPEC if the address is INADDR_ANY
4732 				 */
4733 				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4734 					goto err_af;
4735 				family_sa = AF_INET;
4736 			}
4737 			snum = ntohs(addr4->sin_port);
4738 			addrp = (char *)&addr4->sin_addr.s_addr;
4739 			break;
4740 		case AF_INET6:
4741 			if (addrlen < SIN6_LEN_RFC2133)
4742 				return -EINVAL;
4743 			addr6 = (struct sockaddr_in6 *)address;
4744 			snum = ntohs(addr6->sin6_port);
4745 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4746 			break;
4747 		default:
4748 			goto err_af;
4749 		}
4750 
4751 		ad.type = LSM_AUDIT_DATA_NET;
4752 		ad.u.net = &net;
4753 		ad.u.net->sport = htons(snum);
4754 		ad.u.net->family = family_sa;
4755 
4756 		if (snum) {
4757 			int low, high;
4758 
4759 			inet_get_local_port_range(sock_net(sk), &low, &high);
4760 
4761 			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4762 			    snum < low || snum > high) {
4763 				err = sel_netport_sid(sk->sk_protocol,
4764 						      snum, &sid);
4765 				if (err)
4766 					goto out;
4767 				err = avc_has_perm(sksec->sid, sid,
4768 						   sksec->sclass,
4769 						   SOCKET__NAME_BIND, &ad);
4770 				if (err)
4771 					goto out;
4772 			}
4773 		}
4774 
4775 		switch (sksec->sclass) {
4776 		case SECCLASS_TCP_SOCKET:
4777 			node_perm = TCP_SOCKET__NODE_BIND;
4778 			break;
4779 
4780 		case SECCLASS_UDP_SOCKET:
4781 			node_perm = UDP_SOCKET__NODE_BIND;
4782 			break;
4783 
4784 		case SECCLASS_DCCP_SOCKET:
4785 			node_perm = DCCP_SOCKET__NODE_BIND;
4786 			break;
4787 
4788 		case SECCLASS_SCTP_SOCKET:
4789 			node_perm = SCTP_SOCKET__NODE_BIND;
4790 			break;
4791 
4792 		default:
4793 			node_perm = RAWIP_SOCKET__NODE_BIND;
4794 			break;
4795 		}
4796 
4797 		err = sel_netnode_sid(addrp, family_sa, &sid);
4798 		if (err)
4799 			goto out;
4800 
4801 		if (family_sa == AF_INET)
4802 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4803 		else
4804 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4805 
4806 		err = avc_has_perm(sksec->sid, sid,
4807 				   sksec->sclass, node_perm, &ad);
4808 		if (err)
4809 			goto out;
4810 	}
4811 out:
4812 	return err;
4813 err_af:
4814 	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4815 	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4816 		return -EINVAL;
4817 	return -EAFNOSUPPORT;
4818 }
4819 
4820 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4821  * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4822  */
4823 static int selinux_socket_connect_helper(struct socket *sock,
4824 					 struct sockaddr *address, int addrlen)
4825 {
4826 	struct sock *sk = sock->sk;
4827 	struct sk_security_struct *sksec = sk->sk_security;
4828 	int err;
4829 
4830 	err = sock_has_perm(sk, SOCKET__CONNECT);
4831 	if (err)
4832 		return err;
4833 	if (addrlen < offsetofend(struct sockaddr, sa_family))
4834 		return -EINVAL;
4835 
4836 	/* connect(AF_UNSPEC) has special handling, as it is a documented
4837 	 * way to disconnect the socket
4838 	 */
4839 	if (address->sa_family == AF_UNSPEC)
4840 		return 0;
4841 
4842 	/*
4843 	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4844 	 * for the port.
4845 	 */
4846 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4847 	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4848 	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4849 		struct common_audit_data ad;
4850 		struct lsm_network_audit net = {0,};
4851 		struct sockaddr_in *addr4 = NULL;
4852 		struct sockaddr_in6 *addr6 = NULL;
4853 		unsigned short snum;
4854 		u32 sid, perm;
4855 
4856 		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4857 		 * that validates multiple connect addresses. Because of this
4858 		 * need to check address->sa_family as it is possible to have
4859 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4860 		 */
4861 		switch (address->sa_family) {
4862 		case AF_INET:
4863 			addr4 = (struct sockaddr_in *)address;
4864 			if (addrlen < sizeof(struct sockaddr_in))
4865 				return -EINVAL;
4866 			snum = ntohs(addr4->sin_port);
4867 			break;
4868 		case AF_INET6:
4869 			addr6 = (struct sockaddr_in6 *)address;
4870 			if (addrlen < SIN6_LEN_RFC2133)
4871 				return -EINVAL;
4872 			snum = ntohs(addr6->sin6_port);
4873 			break;
4874 		default:
4875 			/* Note that SCTP services expect -EINVAL, whereas
4876 			 * others expect -EAFNOSUPPORT.
4877 			 */
4878 			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4879 				return -EINVAL;
4880 			else
4881 				return -EAFNOSUPPORT;
4882 		}
4883 
4884 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4885 		if (err)
4886 			return err;
4887 
4888 		switch (sksec->sclass) {
4889 		case SECCLASS_TCP_SOCKET:
4890 			perm = TCP_SOCKET__NAME_CONNECT;
4891 			break;
4892 		case SECCLASS_DCCP_SOCKET:
4893 			perm = DCCP_SOCKET__NAME_CONNECT;
4894 			break;
4895 		case SECCLASS_SCTP_SOCKET:
4896 			perm = SCTP_SOCKET__NAME_CONNECT;
4897 			break;
4898 		}
4899 
4900 		ad.type = LSM_AUDIT_DATA_NET;
4901 		ad.u.net = &net;
4902 		ad.u.net->dport = htons(snum);
4903 		ad.u.net->family = address->sa_family;
4904 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4905 		if (err)
4906 			return err;
4907 	}
4908 
4909 	return 0;
4910 }
4911 
4912 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4913 static int selinux_socket_connect(struct socket *sock,
4914 				  struct sockaddr *address, int addrlen)
4915 {
4916 	int err;
4917 	struct sock *sk = sock->sk;
4918 
4919 	err = selinux_socket_connect_helper(sock, address, addrlen);
4920 	if (err)
4921 		return err;
4922 
4923 	return selinux_netlbl_socket_connect(sk, address);
4924 }
4925 
4926 static int selinux_socket_listen(struct socket *sock, int backlog)
4927 {
4928 	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4929 }
4930 
4931 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4932 {
4933 	int err;
4934 	struct inode_security_struct *isec;
4935 	struct inode_security_struct *newisec;
4936 	u16 sclass;
4937 	u32 sid;
4938 
4939 	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4940 	if (err)
4941 		return err;
4942 
4943 	isec = inode_security_novalidate(SOCK_INODE(sock));
4944 	spin_lock(&isec->lock);
4945 	sclass = isec->sclass;
4946 	sid = isec->sid;
4947 	spin_unlock(&isec->lock);
4948 
4949 	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4950 	newisec->sclass = sclass;
4951 	newisec->sid = sid;
4952 	newisec->initialized = LABEL_INITIALIZED;
4953 
4954 	return 0;
4955 }
4956 
4957 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4958 				  int size)
4959 {
4960 	return sock_has_perm(sock->sk, SOCKET__WRITE);
4961 }
4962 
4963 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4964 				  int size, int flags)
4965 {
4966 	return sock_has_perm(sock->sk, SOCKET__READ);
4967 }
4968 
4969 static int selinux_socket_getsockname(struct socket *sock)
4970 {
4971 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4972 }
4973 
4974 static int selinux_socket_getpeername(struct socket *sock)
4975 {
4976 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4977 }
4978 
4979 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4980 {
4981 	int err;
4982 
4983 	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4984 	if (err)
4985 		return err;
4986 
4987 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4988 }
4989 
4990 static int selinux_socket_getsockopt(struct socket *sock, int level,
4991 				     int optname)
4992 {
4993 	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4994 }
4995 
4996 static int selinux_socket_shutdown(struct socket *sock, int how)
4997 {
4998 	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4999 }
5000 
5001 static int selinux_socket_unix_stream_connect(struct sock *sock,
5002 					      struct sock *other,
5003 					      struct sock *newsk)
5004 {
5005 	struct sk_security_struct *sksec_sock = sock->sk_security;
5006 	struct sk_security_struct *sksec_other = other->sk_security;
5007 	struct sk_security_struct *sksec_new = newsk->sk_security;
5008 	struct common_audit_data ad;
5009 	struct lsm_network_audit net;
5010 	int err;
5011 
5012 	ad_net_init_from_sk(&ad, &net, other);
5013 
5014 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
5015 			   sksec_other->sclass,
5016 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5017 	if (err)
5018 		return err;
5019 
5020 	/* server child socket */
5021 	sksec_new->peer_sid = sksec_sock->sid;
5022 	err = security_sid_mls_copy(sksec_other->sid,
5023 				    sksec_sock->sid, &sksec_new->sid);
5024 	if (err)
5025 		return err;
5026 
5027 	/* connecting socket */
5028 	sksec_sock->peer_sid = sksec_new->sid;
5029 
5030 	return 0;
5031 }
5032 
5033 static int selinux_socket_unix_may_send(struct socket *sock,
5034 					struct socket *other)
5035 {
5036 	struct sk_security_struct *ssec = sock->sk->sk_security;
5037 	struct sk_security_struct *osec = other->sk->sk_security;
5038 	struct common_audit_data ad;
5039 	struct lsm_network_audit net;
5040 
5041 	ad_net_init_from_sk(&ad, &net, other->sk);
5042 
5043 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5044 			    &ad);
5045 }
5046 
5047 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5048 				    char *addrp, u16 family, u32 peer_sid,
5049 				    struct common_audit_data *ad)
5050 {
5051 	int err;
5052 	u32 if_sid;
5053 	u32 node_sid;
5054 
5055 	err = sel_netif_sid(ns, ifindex, &if_sid);
5056 	if (err)
5057 		return err;
5058 	err = avc_has_perm(peer_sid, if_sid,
5059 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5060 	if (err)
5061 		return err;
5062 
5063 	err = sel_netnode_sid(addrp, family, &node_sid);
5064 	if (err)
5065 		return err;
5066 	return avc_has_perm(peer_sid, node_sid,
5067 			    SECCLASS_NODE, NODE__RECVFROM, ad);
5068 }
5069 
5070 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5071 				       u16 family)
5072 {
5073 	int err = 0;
5074 	struct sk_security_struct *sksec = sk->sk_security;
5075 	u32 sk_sid = sksec->sid;
5076 	struct common_audit_data ad;
5077 	struct lsm_network_audit net;
5078 	char *addrp;
5079 
5080 	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5081 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5082 	if (err)
5083 		return err;
5084 
5085 	if (selinux_secmark_enabled()) {
5086 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5087 				   PACKET__RECV, &ad);
5088 		if (err)
5089 			return err;
5090 	}
5091 
5092 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5093 	if (err)
5094 		return err;
5095 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5096 
5097 	return err;
5098 }
5099 
5100 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5101 {
5102 	int err, peerlbl_active, secmark_active;
5103 	struct sk_security_struct *sksec = sk->sk_security;
5104 	u16 family = sk->sk_family;
5105 	u32 sk_sid = sksec->sid;
5106 	struct common_audit_data ad;
5107 	struct lsm_network_audit net;
5108 	char *addrp;
5109 
5110 	if (family != PF_INET && family != PF_INET6)
5111 		return 0;
5112 
5113 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5114 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5115 		family = PF_INET;
5116 
5117 	/* If any sort of compatibility mode is enabled then handoff processing
5118 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5119 	 * special handling.  We do this in an attempt to keep this function
5120 	 * as fast and as clean as possible. */
5121 	if (!selinux_policycap_netpeer())
5122 		return selinux_sock_rcv_skb_compat(sk, skb, family);
5123 
5124 	secmark_active = selinux_secmark_enabled();
5125 	peerlbl_active = selinux_peerlbl_enabled();
5126 	if (!secmark_active && !peerlbl_active)
5127 		return 0;
5128 
5129 	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5130 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5131 	if (err)
5132 		return err;
5133 
5134 	if (peerlbl_active) {
5135 		u32 peer_sid;
5136 
5137 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5138 		if (err)
5139 			return err;
5140 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5141 					       addrp, family, peer_sid, &ad);
5142 		if (err) {
5143 			selinux_netlbl_err(skb, family, err, 0);
5144 			return err;
5145 		}
5146 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
5147 				   PEER__RECV, &ad);
5148 		if (err) {
5149 			selinux_netlbl_err(skb, family, err, 0);
5150 			return err;
5151 		}
5152 	}
5153 
5154 	if (secmark_active) {
5155 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5156 				   PACKET__RECV, &ad);
5157 		if (err)
5158 			return err;
5159 	}
5160 
5161 	return err;
5162 }
5163 
5164 static int selinux_socket_getpeersec_stream(struct socket *sock,
5165 					    sockptr_t optval, sockptr_t optlen,
5166 					    unsigned int len)
5167 {
5168 	int err = 0;
5169 	char *scontext = NULL;
5170 	u32 scontext_len;
5171 	struct sk_security_struct *sksec = sock->sk->sk_security;
5172 	u32 peer_sid = SECSID_NULL;
5173 
5174 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5175 	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5176 	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5177 		peer_sid = sksec->peer_sid;
5178 	if (peer_sid == SECSID_NULL)
5179 		return -ENOPROTOOPT;
5180 
5181 	err = security_sid_to_context(peer_sid, &scontext,
5182 				      &scontext_len);
5183 	if (err)
5184 		return err;
5185 	if (scontext_len > len) {
5186 		err = -ERANGE;
5187 		goto out_len;
5188 	}
5189 
5190 	if (copy_to_sockptr(optval, scontext, scontext_len))
5191 		err = -EFAULT;
5192 out_len:
5193 	if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5194 		err = -EFAULT;
5195 	kfree(scontext);
5196 	return err;
5197 }
5198 
5199 static int selinux_socket_getpeersec_dgram(struct socket *sock,
5200 					   struct sk_buff *skb, u32 *secid)
5201 {
5202 	u32 peer_secid = SECSID_NULL;
5203 	u16 family;
5204 
5205 	if (skb && skb->protocol == htons(ETH_P_IP))
5206 		family = PF_INET;
5207 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5208 		family = PF_INET6;
5209 	else if (sock)
5210 		family = sock->sk->sk_family;
5211 	else {
5212 		*secid = SECSID_NULL;
5213 		return -EINVAL;
5214 	}
5215 
5216 	if (sock && family == PF_UNIX) {
5217 		struct inode_security_struct *isec;
5218 		isec = inode_security_novalidate(SOCK_INODE(sock));
5219 		peer_secid = isec->sid;
5220 	} else if (skb)
5221 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5222 
5223 	*secid = peer_secid;
5224 	if (peer_secid == SECSID_NULL)
5225 		return -ENOPROTOOPT;
5226 	return 0;
5227 }
5228 
5229 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5230 {
5231 	struct sk_security_struct *sksec;
5232 
5233 	sksec = kzalloc(sizeof(*sksec), priority);
5234 	if (!sksec)
5235 		return -ENOMEM;
5236 
5237 	sksec->peer_sid = SECINITSID_UNLABELED;
5238 	sksec->sid = SECINITSID_UNLABELED;
5239 	sksec->sclass = SECCLASS_SOCKET;
5240 	selinux_netlbl_sk_security_reset(sksec);
5241 	sk->sk_security = sksec;
5242 
5243 	return 0;
5244 }
5245 
5246 static void selinux_sk_free_security(struct sock *sk)
5247 {
5248 	struct sk_security_struct *sksec = sk->sk_security;
5249 
5250 	sk->sk_security = NULL;
5251 	selinux_netlbl_sk_security_free(sksec);
5252 	kfree(sksec);
5253 }
5254 
5255 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5256 {
5257 	struct sk_security_struct *sksec = sk->sk_security;
5258 	struct sk_security_struct *newsksec = newsk->sk_security;
5259 
5260 	newsksec->sid = sksec->sid;
5261 	newsksec->peer_sid = sksec->peer_sid;
5262 	newsksec->sclass = sksec->sclass;
5263 
5264 	selinux_netlbl_sk_security_reset(newsksec);
5265 }
5266 
5267 static void selinux_sk_getsecid(const struct sock *sk, u32 *secid)
5268 {
5269 	if (!sk)
5270 		*secid = SECINITSID_ANY_SOCKET;
5271 	else {
5272 		const struct sk_security_struct *sksec = sk->sk_security;
5273 
5274 		*secid = sksec->sid;
5275 	}
5276 }
5277 
5278 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5279 {
5280 	struct inode_security_struct *isec =
5281 		inode_security_novalidate(SOCK_INODE(parent));
5282 	struct sk_security_struct *sksec = sk->sk_security;
5283 
5284 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5285 	    sk->sk_family == PF_UNIX)
5286 		isec->sid = sksec->sid;
5287 	sksec->sclass = isec->sclass;
5288 }
5289 
5290 /*
5291  * Determines peer_secid for the asoc and updates socket's peer label
5292  * if it's the first association on the socket.
5293  */
5294 static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5295 					  struct sk_buff *skb)
5296 {
5297 	struct sock *sk = asoc->base.sk;
5298 	u16 family = sk->sk_family;
5299 	struct sk_security_struct *sksec = sk->sk_security;
5300 	struct common_audit_data ad;
5301 	struct lsm_network_audit net;
5302 	int err;
5303 
5304 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5305 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5306 		family = PF_INET;
5307 
5308 	if (selinux_peerlbl_enabled()) {
5309 		asoc->peer_secid = SECSID_NULL;
5310 
5311 		/* This will return peer_sid = SECSID_NULL if there are
5312 		 * no peer labels, see security_net_peersid_resolve().
5313 		 */
5314 		err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5315 		if (err)
5316 			return err;
5317 
5318 		if (asoc->peer_secid == SECSID_NULL)
5319 			asoc->peer_secid = SECINITSID_UNLABELED;
5320 	} else {
5321 		asoc->peer_secid = SECINITSID_UNLABELED;
5322 	}
5323 
5324 	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5325 		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5326 
5327 		/* Here as first association on socket. As the peer SID
5328 		 * was allowed by peer recv (and the netif/node checks),
5329 		 * then it is approved by policy and used as the primary
5330 		 * peer SID for getpeercon(3).
5331 		 */
5332 		sksec->peer_sid = asoc->peer_secid;
5333 	} else if (sksec->peer_sid != asoc->peer_secid) {
5334 		/* Other association peer SIDs are checked to enforce
5335 		 * consistency among the peer SIDs.
5336 		 */
5337 		ad_net_init_from_sk(&ad, &net, asoc->base.sk);
5338 		err = avc_has_perm(sksec->peer_sid, asoc->peer_secid,
5339 				   sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5340 				   &ad);
5341 		if (err)
5342 			return err;
5343 	}
5344 	return 0;
5345 }
5346 
5347 /* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5348  * happens on an incoming connect(2), sctp_connectx(3) or
5349  * sctp_sendmsg(3) (with no association already present).
5350  */
5351 static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5352 				      struct sk_buff *skb)
5353 {
5354 	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5355 	u32 conn_sid;
5356 	int err;
5357 
5358 	if (!selinux_policycap_extsockclass())
5359 		return 0;
5360 
5361 	err = selinux_sctp_process_new_assoc(asoc, skb);
5362 	if (err)
5363 		return err;
5364 
5365 	/* Compute the MLS component for the connection and store
5366 	 * the information in asoc. This will be used by SCTP TCP type
5367 	 * sockets and peeled off connections as they cause a new
5368 	 * socket to be generated. selinux_sctp_sk_clone() will then
5369 	 * plug this into the new socket.
5370 	 */
5371 	err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5372 	if (err)
5373 		return err;
5374 
5375 	asoc->secid = conn_sid;
5376 
5377 	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5378 	return selinux_netlbl_sctp_assoc_request(asoc, skb);
5379 }
5380 
5381 /* Called when SCTP receives a COOKIE ACK chunk as the final
5382  * response to an association request (initited by us).
5383  */
5384 static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5385 					  struct sk_buff *skb)
5386 {
5387 	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5388 
5389 	if (!selinux_policycap_extsockclass())
5390 		return 0;
5391 
5392 	/* Inherit secid from the parent socket - this will be picked up
5393 	 * by selinux_sctp_sk_clone() if the association gets peeled off
5394 	 * into a new socket.
5395 	 */
5396 	asoc->secid = sksec->sid;
5397 
5398 	return selinux_sctp_process_new_assoc(asoc, skb);
5399 }
5400 
5401 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5402  * based on their @optname.
5403  */
5404 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5405 				     struct sockaddr *address,
5406 				     int addrlen)
5407 {
5408 	int len, err = 0, walk_size = 0;
5409 	void *addr_buf;
5410 	struct sockaddr *addr;
5411 	struct socket *sock;
5412 
5413 	if (!selinux_policycap_extsockclass())
5414 		return 0;
5415 
5416 	/* Process one or more addresses that may be IPv4 or IPv6 */
5417 	sock = sk->sk_socket;
5418 	addr_buf = address;
5419 
5420 	while (walk_size < addrlen) {
5421 		if (walk_size + sizeof(sa_family_t) > addrlen)
5422 			return -EINVAL;
5423 
5424 		addr = addr_buf;
5425 		switch (addr->sa_family) {
5426 		case AF_UNSPEC:
5427 		case AF_INET:
5428 			len = sizeof(struct sockaddr_in);
5429 			break;
5430 		case AF_INET6:
5431 			len = sizeof(struct sockaddr_in6);
5432 			break;
5433 		default:
5434 			return -EINVAL;
5435 		}
5436 
5437 		if (walk_size + len > addrlen)
5438 			return -EINVAL;
5439 
5440 		err = -EINVAL;
5441 		switch (optname) {
5442 		/* Bind checks */
5443 		case SCTP_PRIMARY_ADDR:
5444 		case SCTP_SET_PEER_PRIMARY_ADDR:
5445 		case SCTP_SOCKOPT_BINDX_ADD:
5446 			err = selinux_socket_bind(sock, addr, len);
5447 			break;
5448 		/* Connect checks */
5449 		case SCTP_SOCKOPT_CONNECTX:
5450 		case SCTP_PARAM_SET_PRIMARY:
5451 		case SCTP_PARAM_ADD_IP:
5452 		case SCTP_SENDMSG_CONNECT:
5453 			err = selinux_socket_connect_helper(sock, addr, len);
5454 			if (err)
5455 				return err;
5456 
5457 			/* As selinux_sctp_bind_connect() is called by the
5458 			 * SCTP protocol layer, the socket is already locked,
5459 			 * therefore selinux_netlbl_socket_connect_locked()
5460 			 * is called here. The situations handled are:
5461 			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5462 			 * whenever a new IP address is added or when a new
5463 			 * primary address is selected.
5464 			 * Note that an SCTP connect(2) call happens before
5465 			 * the SCTP protocol layer and is handled via
5466 			 * selinux_socket_connect().
5467 			 */
5468 			err = selinux_netlbl_socket_connect_locked(sk, addr);
5469 			break;
5470 		}
5471 
5472 		if (err)
5473 			return err;
5474 
5475 		addr_buf += len;
5476 		walk_size += len;
5477 	}
5478 
5479 	return 0;
5480 }
5481 
5482 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5483 static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5484 				  struct sock *newsk)
5485 {
5486 	struct sk_security_struct *sksec = sk->sk_security;
5487 	struct sk_security_struct *newsksec = newsk->sk_security;
5488 
5489 	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5490 	 * the non-sctp clone version.
5491 	 */
5492 	if (!selinux_policycap_extsockclass())
5493 		return selinux_sk_clone_security(sk, newsk);
5494 
5495 	newsksec->sid = asoc->secid;
5496 	newsksec->peer_sid = asoc->peer_secid;
5497 	newsksec->sclass = sksec->sclass;
5498 	selinux_netlbl_sctp_sk_clone(sk, newsk);
5499 }
5500 
5501 static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5502 {
5503 	struct sk_security_struct *ssksec = ssk->sk_security;
5504 	struct sk_security_struct *sksec = sk->sk_security;
5505 
5506 	ssksec->sclass = sksec->sclass;
5507 	ssksec->sid = sksec->sid;
5508 
5509 	/* replace the existing subflow label deleting the existing one
5510 	 * and re-recreating a new label using the updated context
5511 	 */
5512 	selinux_netlbl_sk_security_free(ssksec);
5513 	return selinux_netlbl_socket_post_create(ssk, ssk->sk_family);
5514 }
5515 
5516 static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5517 				     struct request_sock *req)
5518 {
5519 	struct sk_security_struct *sksec = sk->sk_security;
5520 	int err;
5521 	u16 family = req->rsk_ops->family;
5522 	u32 connsid;
5523 	u32 peersid;
5524 
5525 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5526 	if (err)
5527 		return err;
5528 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5529 	if (err)
5530 		return err;
5531 	req->secid = connsid;
5532 	req->peer_secid = peersid;
5533 
5534 	return selinux_netlbl_inet_conn_request(req, family);
5535 }
5536 
5537 static void selinux_inet_csk_clone(struct sock *newsk,
5538 				   const struct request_sock *req)
5539 {
5540 	struct sk_security_struct *newsksec = newsk->sk_security;
5541 
5542 	newsksec->sid = req->secid;
5543 	newsksec->peer_sid = req->peer_secid;
5544 	/* NOTE: Ideally, we should also get the isec->sid for the
5545 	   new socket in sync, but we don't have the isec available yet.
5546 	   So we will wait until sock_graft to do it, by which
5547 	   time it will have been created and available. */
5548 
5549 	/* We don't need to take any sort of lock here as we are the only
5550 	 * thread with access to newsksec */
5551 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5552 }
5553 
5554 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5555 {
5556 	u16 family = sk->sk_family;
5557 	struct sk_security_struct *sksec = sk->sk_security;
5558 
5559 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5560 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5561 		family = PF_INET;
5562 
5563 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5564 }
5565 
5566 static int selinux_secmark_relabel_packet(u32 sid)
5567 {
5568 	return avc_has_perm(current_sid(), sid, SECCLASS_PACKET, PACKET__RELABELTO,
5569 			    NULL);
5570 }
5571 
5572 static void selinux_secmark_refcount_inc(void)
5573 {
5574 	atomic_inc(&selinux_secmark_refcount);
5575 }
5576 
5577 static void selinux_secmark_refcount_dec(void)
5578 {
5579 	atomic_dec(&selinux_secmark_refcount);
5580 }
5581 
5582 static void selinux_req_classify_flow(const struct request_sock *req,
5583 				      struct flowi_common *flic)
5584 {
5585 	flic->flowic_secid = req->secid;
5586 }
5587 
5588 static int selinux_tun_dev_alloc_security(void **security)
5589 {
5590 	struct tun_security_struct *tunsec;
5591 
5592 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5593 	if (!tunsec)
5594 		return -ENOMEM;
5595 	tunsec->sid = current_sid();
5596 
5597 	*security = tunsec;
5598 	return 0;
5599 }
5600 
5601 static void selinux_tun_dev_free_security(void *security)
5602 {
5603 	kfree(security);
5604 }
5605 
5606 static int selinux_tun_dev_create(void)
5607 {
5608 	u32 sid = current_sid();
5609 
5610 	/* we aren't taking into account the "sockcreate" SID since the socket
5611 	 * that is being created here is not a socket in the traditional sense,
5612 	 * instead it is a private sock, accessible only to the kernel, and
5613 	 * representing a wide range of network traffic spanning multiple
5614 	 * connections unlike traditional sockets - check the TUN driver to
5615 	 * get a better understanding of why this socket is special */
5616 
5617 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5618 			    NULL);
5619 }
5620 
5621 static int selinux_tun_dev_attach_queue(void *security)
5622 {
5623 	struct tun_security_struct *tunsec = security;
5624 
5625 	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5626 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5627 }
5628 
5629 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5630 {
5631 	struct tun_security_struct *tunsec = security;
5632 	struct sk_security_struct *sksec = sk->sk_security;
5633 
5634 	/* we don't currently perform any NetLabel based labeling here and it
5635 	 * isn't clear that we would want to do so anyway; while we could apply
5636 	 * labeling without the support of the TUN user the resulting labeled
5637 	 * traffic from the other end of the connection would almost certainly
5638 	 * cause confusion to the TUN user that had no idea network labeling
5639 	 * protocols were being used */
5640 
5641 	sksec->sid = tunsec->sid;
5642 	sksec->sclass = SECCLASS_TUN_SOCKET;
5643 
5644 	return 0;
5645 }
5646 
5647 static int selinux_tun_dev_open(void *security)
5648 {
5649 	struct tun_security_struct *tunsec = security;
5650 	u32 sid = current_sid();
5651 	int err;
5652 
5653 	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5654 			   TUN_SOCKET__RELABELFROM, NULL);
5655 	if (err)
5656 		return err;
5657 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5658 			   TUN_SOCKET__RELABELTO, NULL);
5659 	if (err)
5660 		return err;
5661 	tunsec->sid = sid;
5662 
5663 	return 0;
5664 }
5665 
5666 #ifdef CONFIG_NETFILTER
5667 
5668 static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5669 				       const struct nf_hook_state *state)
5670 {
5671 	int ifindex;
5672 	u16 family;
5673 	char *addrp;
5674 	u32 peer_sid;
5675 	struct common_audit_data ad;
5676 	struct lsm_network_audit net;
5677 	int secmark_active, peerlbl_active;
5678 
5679 	if (!selinux_policycap_netpeer())
5680 		return NF_ACCEPT;
5681 
5682 	secmark_active = selinux_secmark_enabled();
5683 	peerlbl_active = selinux_peerlbl_enabled();
5684 	if (!secmark_active && !peerlbl_active)
5685 		return NF_ACCEPT;
5686 
5687 	family = state->pf;
5688 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5689 		return NF_DROP;
5690 
5691 	ifindex = state->in->ifindex;
5692 	ad_net_init_from_iif(&ad, &net, ifindex, family);
5693 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5694 		return NF_DROP;
5695 
5696 	if (peerlbl_active) {
5697 		int err;
5698 
5699 		err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5700 					       addrp, family, peer_sid, &ad);
5701 		if (err) {
5702 			selinux_netlbl_err(skb, family, err, 1);
5703 			return NF_DROP;
5704 		}
5705 	}
5706 
5707 	if (secmark_active)
5708 		if (avc_has_perm(peer_sid, skb->secmark,
5709 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5710 			return NF_DROP;
5711 
5712 	if (netlbl_enabled())
5713 		/* we do this in the FORWARD path and not the POST_ROUTING
5714 		 * path because we want to make sure we apply the necessary
5715 		 * labeling before IPsec is applied so we can leverage AH
5716 		 * protection */
5717 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5718 			return NF_DROP;
5719 
5720 	return NF_ACCEPT;
5721 }
5722 
5723 static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5724 				      const struct nf_hook_state *state)
5725 {
5726 	struct sock *sk;
5727 	u32 sid;
5728 
5729 	if (!netlbl_enabled())
5730 		return NF_ACCEPT;
5731 
5732 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5733 	 * because we want to make sure we apply the necessary labeling
5734 	 * before IPsec is applied so we can leverage AH protection */
5735 	sk = skb->sk;
5736 	if (sk) {
5737 		struct sk_security_struct *sksec;
5738 
5739 		if (sk_listener(sk))
5740 			/* if the socket is the listening state then this
5741 			 * packet is a SYN-ACK packet which means it needs to
5742 			 * be labeled based on the connection/request_sock and
5743 			 * not the parent socket.  unfortunately, we can't
5744 			 * lookup the request_sock yet as it isn't queued on
5745 			 * the parent socket until after the SYN-ACK is sent.
5746 			 * the "solution" is to simply pass the packet as-is
5747 			 * as any IP option based labeling should be copied
5748 			 * from the initial connection request (in the IP
5749 			 * layer).  it is far from ideal, but until we get a
5750 			 * security label in the packet itself this is the
5751 			 * best we can do. */
5752 			return NF_ACCEPT;
5753 
5754 		/* standard practice, label using the parent socket */
5755 		sksec = sk->sk_security;
5756 		sid = sksec->sid;
5757 	} else
5758 		sid = SECINITSID_KERNEL;
5759 	if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5760 		return NF_DROP;
5761 
5762 	return NF_ACCEPT;
5763 }
5764 
5765 
5766 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5767 					const struct nf_hook_state *state)
5768 {
5769 	struct sock *sk;
5770 	struct sk_security_struct *sksec;
5771 	struct common_audit_data ad;
5772 	struct lsm_network_audit net;
5773 	u8 proto = 0;
5774 
5775 	sk = skb_to_full_sk(skb);
5776 	if (sk == NULL)
5777 		return NF_ACCEPT;
5778 	sksec = sk->sk_security;
5779 
5780 	ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf);
5781 	if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5782 		return NF_DROP;
5783 
5784 	if (selinux_secmark_enabled())
5785 		if (avc_has_perm(sksec->sid, skb->secmark,
5786 				 SECCLASS_PACKET, PACKET__SEND, &ad))
5787 			return NF_DROP_ERR(-ECONNREFUSED);
5788 
5789 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5790 		return NF_DROP_ERR(-ECONNREFUSED);
5791 
5792 	return NF_ACCEPT;
5793 }
5794 
5795 static unsigned int selinux_ip_postroute(void *priv,
5796 					 struct sk_buff *skb,
5797 					 const struct nf_hook_state *state)
5798 {
5799 	u16 family;
5800 	u32 secmark_perm;
5801 	u32 peer_sid;
5802 	int ifindex;
5803 	struct sock *sk;
5804 	struct common_audit_data ad;
5805 	struct lsm_network_audit net;
5806 	char *addrp;
5807 	int secmark_active, peerlbl_active;
5808 
5809 	/* If any sort of compatibility mode is enabled then handoff processing
5810 	 * to the selinux_ip_postroute_compat() function to deal with the
5811 	 * special handling.  We do this in an attempt to keep this function
5812 	 * as fast and as clean as possible. */
5813 	if (!selinux_policycap_netpeer())
5814 		return selinux_ip_postroute_compat(skb, state);
5815 
5816 	secmark_active = selinux_secmark_enabled();
5817 	peerlbl_active = selinux_peerlbl_enabled();
5818 	if (!secmark_active && !peerlbl_active)
5819 		return NF_ACCEPT;
5820 
5821 	sk = skb_to_full_sk(skb);
5822 
5823 #ifdef CONFIG_XFRM
5824 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5825 	 * packet transformation so allow the packet to pass without any checks
5826 	 * since we'll have another chance to perform access control checks
5827 	 * when the packet is on it's final way out.
5828 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5829 	 *       is NULL, in this case go ahead and apply access control.
5830 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5831 	 *       TCP listening state we cannot wait until the XFRM processing
5832 	 *       is done as we will miss out on the SA label if we do;
5833 	 *       unfortunately, this means more work, but it is only once per
5834 	 *       connection. */
5835 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5836 	    !(sk && sk_listener(sk)))
5837 		return NF_ACCEPT;
5838 #endif
5839 
5840 	family = state->pf;
5841 	if (sk == NULL) {
5842 		/* Without an associated socket the packet is either coming
5843 		 * from the kernel or it is being forwarded; check the packet
5844 		 * to determine which and if the packet is being forwarded
5845 		 * query the packet directly to determine the security label. */
5846 		if (skb->skb_iif) {
5847 			secmark_perm = PACKET__FORWARD_OUT;
5848 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5849 				return NF_DROP;
5850 		} else {
5851 			secmark_perm = PACKET__SEND;
5852 			peer_sid = SECINITSID_KERNEL;
5853 		}
5854 	} else if (sk_listener(sk)) {
5855 		/* Locally generated packet but the associated socket is in the
5856 		 * listening state which means this is a SYN-ACK packet.  In
5857 		 * this particular case the correct security label is assigned
5858 		 * to the connection/request_sock but unfortunately we can't
5859 		 * query the request_sock as it isn't queued on the parent
5860 		 * socket until after the SYN-ACK packet is sent; the only
5861 		 * viable choice is to regenerate the label like we do in
5862 		 * selinux_inet_conn_request().  See also selinux_ip_output()
5863 		 * for similar problems. */
5864 		u32 skb_sid;
5865 		struct sk_security_struct *sksec;
5866 
5867 		sksec = sk->sk_security;
5868 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5869 			return NF_DROP;
5870 		/* At this point, if the returned skb peerlbl is SECSID_NULL
5871 		 * and the packet has been through at least one XFRM
5872 		 * transformation then we must be dealing with the "final"
5873 		 * form of labeled IPsec packet; since we've already applied
5874 		 * all of our access controls on this packet we can safely
5875 		 * pass the packet. */
5876 		if (skb_sid == SECSID_NULL) {
5877 			switch (family) {
5878 			case PF_INET:
5879 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5880 					return NF_ACCEPT;
5881 				break;
5882 			case PF_INET6:
5883 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5884 					return NF_ACCEPT;
5885 				break;
5886 			default:
5887 				return NF_DROP_ERR(-ECONNREFUSED);
5888 			}
5889 		}
5890 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5891 			return NF_DROP;
5892 		secmark_perm = PACKET__SEND;
5893 	} else {
5894 		/* Locally generated packet, fetch the security label from the
5895 		 * associated socket. */
5896 		struct sk_security_struct *sksec = sk->sk_security;
5897 		peer_sid = sksec->sid;
5898 		secmark_perm = PACKET__SEND;
5899 	}
5900 
5901 	ifindex = state->out->ifindex;
5902 	ad_net_init_from_iif(&ad, &net, ifindex, family);
5903 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5904 		return NF_DROP;
5905 
5906 	if (secmark_active)
5907 		if (avc_has_perm(peer_sid, skb->secmark,
5908 				 SECCLASS_PACKET, secmark_perm, &ad))
5909 			return NF_DROP_ERR(-ECONNREFUSED);
5910 
5911 	if (peerlbl_active) {
5912 		u32 if_sid;
5913 		u32 node_sid;
5914 
5915 		if (sel_netif_sid(state->net, ifindex, &if_sid))
5916 			return NF_DROP;
5917 		if (avc_has_perm(peer_sid, if_sid,
5918 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5919 			return NF_DROP_ERR(-ECONNREFUSED);
5920 
5921 		if (sel_netnode_sid(addrp, family, &node_sid))
5922 			return NF_DROP;
5923 		if (avc_has_perm(peer_sid, node_sid,
5924 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5925 			return NF_DROP_ERR(-ECONNREFUSED);
5926 	}
5927 
5928 	return NF_ACCEPT;
5929 }
5930 #endif	/* CONFIG_NETFILTER */
5931 
5932 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5933 {
5934 	int rc = 0;
5935 	unsigned int msg_len;
5936 	unsigned int data_len = skb->len;
5937 	unsigned char *data = skb->data;
5938 	struct nlmsghdr *nlh;
5939 	struct sk_security_struct *sksec = sk->sk_security;
5940 	u16 sclass = sksec->sclass;
5941 	u32 perm;
5942 
5943 	while (data_len >= nlmsg_total_size(0)) {
5944 		nlh = (struct nlmsghdr *)data;
5945 
5946 		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5947 		 *       users which means we can't reject skb's with bogus
5948 		 *       length fields; our solution is to follow what
5949 		 *       netlink_rcv_skb() does and simply skip processing at
5950 		 *       messages with length fields that are clearly junk
5951 		 */
5952 		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5953 			return 0;
5954 
5955 		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5956 		if (rc == 0) {
5957 			rc = sock_has_perm(sk, perm);
5958 			if (rc)
5959 				return rc;
5960 		} else if (rc == -EINVAL) {
5961 			/* -EINVAL is a missing msg/perm mapping */
5962 			pr_warn_ratelimited("SELinux: unrecognized netlink"
5963 				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5964 				" pid=%d comm=%s\n",
5965 				sk->sk_protocol, nlh->nlmsg_type,
5966 				secclass_map[sclass - 1].name,
5967 				task_pid_nr(current), current->comm);
5968 			if (enforcing_enabled() &&
5969 			    !security_get_allow_unknown())
5970 				return rc;
5971 			rc = 0;
5972 		} else if (rc == -ENOENT) {
5973 			/* -ENOENT is a missing socket/class mapping, ignore */
5974 			rc = 0;
5975 		} else {
5976 			return rc;
5977 		}
5978 
5979 		/* move to the next message after applying netlink padding */
5980 		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5981 		if (msg_len >= data_len)
5982 			return 0;
5983 		data_len -= msg_len;
5984 		data += msg_len;
5985 	}
5986 
5987 	return rc;
5988 }
5989 
5990 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5991 {
5992 	isec->sclass = sclass;
5993 	isec->sid = current_sid();
5994 }
5995 
5996 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5997 			u32 perms)
5998 {
5999 	struct ipc_security_struct *isec;
6000 	struct common_audit_data ad;
6001 	u32 sid = current_sid();
6002 
6003 	isec = selinux_ipc(ipc_perms);
6004 
6005 	ad.type = LSM_AUDIT_DATA_IPC;
6006 	ad.u.ipc_id = ipc_perms->key;
6007 
6008 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
6009 }
6010 
6011 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6012 {
6013 	struct msg_security_struct *msec;
6014 
6015 	msec = selinux_msg_msg(msg);
6016 	msec->sid = SECINITSID_UNLABELED;
6017 
6018 	return 0;
6019 }
6020 
6021 /* message queue security operations */
6022 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6023 {
6024 	struct ipc_security_struct *isec;
6025 	struct common_audit_data ad;
6026 	u32 sid = current_sid();
6027 
6028 	isec = selinux_ipc(msq);
6029 	ipc_init_security(isec, SECCLASS_MSGQ);
6030 
6031 	ad.type = LSM_AUDIT_DATA_IPC;
6032 	ad.u.ipc_id = msq->key;
6033 
6034 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6035 			    MSGQ__CREATE, &ad);
6036 }
6037 
6038 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6039 {
6040 	struct ipc_security_struct *isec;
6041 	struct common_audit_data ad;
6042 	u32 sid = current_sid();
6043 
6044 	isec = selinux_ipc(msq);
6045 
6046 	ad.type = LSM_AUDIT_DATA_IPC;
6047 	ad.u.ipc_id = msq->key;
6048 
6049 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6050 			    MSGQ__ASSOCIATE, &ad);
6051 }
6052 
6053 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6054 {
6055 	u32 perms;
6056 
6057 	switch (cmd) {
6058 	case IPC_INFO:
6059 	case MSG_INFO:
6060 		/* No specific object, just general system-wide information. */
6061 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6062 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6063 	case IPC_STAT:
6064 	case MSG_STAT:
6065 	case MSG_STAT_ANY:
6066 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6067 		break;
6068 	case IPC_SET:
6069 		perms = MSGQ__SETATTR;
6070 		break;
6071 	case IPC_RMID:
6072 		perms = MSGQ__DESTROY;
6073 		break;
6074 	default:
6075 		return 0;
6076 	}
6077 
6078 	return ipc_has_perm(msq, perms);
6079 }
6080 
6081 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6082 {
6083 	struct ipc_security_struct *isec;
6084 	struct msg_security_struct *msec;
6085 	struct common_audit_data ad;
6086 	u32 sid = current_sid();
6087 	int rc;
6088 
6089 	isec = selinux_ipc(msq);
6090 	msec = selinux_msg_msg(msg);
6091 
6092 	/*
6093 	 * First time through, need to assign label to the message
6094 	 */
6095 	if (msec->sid == SECINITSID_UNLABELED) {
6096 		/*
6097 		 * Compute new sid based on current process and
6098 		 * message queue this message will be stored in
6099 		 */
6100 		rc = security_transition_sid(sid, isec->sid,
6101 					     SECCLASS_MSG, NULL, &msec->sid);
6102 		if (rc)
6103 			return rc;
6104 	}
6105 
6106 	ad.type = LSM_AUDIT_DATA_IPC;
6107 	ad.u.ipc_id = msq->key;
6108 
6109 	/* Can this process write to the queue? */
6110 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6111 			  MSGQ__WRITE, &ad);
6112 	if (!rc)
6113 		/* Can this process send the message */
6114 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
6115 				  MSG__SEND, &ad);
6116 	if (!rc)
6117 		/* Can the message be put in the queue? */
6118 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
6119 				  MSGQ__ENQUEUE, &ad);
6120 
6121 	return rc;
6122 }
6123 
6124 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6125 				    struct task_struct *target,
6126 				    long type, int mode)
6127 {
6128 	struct ipc_security_struct *isec;
6129 	struct msg_security_struct *msec;
6130 	struct common_audit_data ad;
6131 	u32 sid = task_sid_obj(target);
6132 	int rc;
6133 
6134 	isec = selinux_ipc(msq);
6135 	msec = selinux_msg_msg(msg);
6136 
6137 	ad.type = LSM_AUDIT_DATA_IPC;
6138 	ad.u.ipc_id = msq->key;
6139 
6140 	rc = avc_has_perm(sid, isec->sid,
6141 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6142 	if (!rc)
6143 		rc = avc_has_perm(sid, msec->sid,
6144 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6145 	return rc;
6146 }
6147 
6148 /* Shared Memory security operations */
6149 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6150 {
6151 	struct ipc_security_struct *isec;
6152 	struct common_audit_data ad;
6153 	u32 sid = current_sid();
6154 
6155 	isec = selinux_ipc(shp);
6156 	ipc_init_security(isec, SECCLASS_SHM);
6157 
6158 	ad.type = LSM_AUDIT_DATA_IPC;
6159 	ad.u.ipc_id = shp->key;
6160 
6161 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6162 			    SHM__CREATE, &ad);
6163 }
6164 
6165 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6166 {
6167 	struct ipc_security_struct *isec;
6168 	struct common_audit_data ad;
6169 	u32 sid = current_sid();
6170 
6171 	isec = selinux_ipc(shp);
6172 
6173 	ad.type = LSM_AUDIT_DATA_IPC;
6174 	ad.u.ipc_id = shp->key;
6175 
6176 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6177 			    SHM__ASSOCIATE, &ad);
6178 }
6179 
6180 /* Note, at this point, shp is locked down */
6181 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6182 {
6183 	u32 perms;
6184 
6185 	switch (cmd) {
6186 	case IPC_INFO:
6187 	case SHM_INFO:
6188 		/* No specific object, just general system-wide information. */
6189 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6190 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6191 	case IPC_STAT:
6192 	case SHM_STAT:
6193 	case SHM_STAT_ANY:
6194 		perms = SHM__GETATTR | SHM__ASSOCIATE;
6195 		break;
6196 	case IPC_SET:
6197 		perms = SHM__SETATTR;
6198 		break;
6199 	case SHM_LOCK:
6200 	case SHM_UNLOCK:
6201 		perms = SHM__LOCK;
6202 		break;
6203 	case IPC_RMID:
6204 		perms = SHM__DESTROY;
6205 		break;
6206 	default:
6207 		return 0;
6208 	}
6209 
6210 	return ipc_has_perm(shp, perms);
6211 }
6212 
6213 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6214 			     char __user *shmaddr, int shmflg)
6215 {
6216 	u32 perms;
6217 
6218 	if (shmflg & SHM_RDONLY)
6219 		perms = SHM__READ;
6220 	else
6221 		perms = SHM__READ | SHM__WRITE;
6222 
6223 	return ipc_has_perm(shp, perms);
6224 }
6225 
6226 /* Semaphore security operations */
6227 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6228 {
6229 	struct ipc_security_struct *isec;
6230 	struct common_audit_data ad;
6231 	u32 sid = current_sid();
6232 
6233 	isec = selinux_ipc(sma);
6234 	ipc_init_security(isec, SECCLASS_SEM);
6235 
6236 	ad.type = LSM_AUDIT_DATA_IPC;
6237 	ad.u.ipc_id = sma->key;
6238 
6239 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6240 			    SEM__CREATE, &ad);
6241 }
6242 
6243 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6244 {
6245 	struct ipc_security_struct *isec;
6246 	struct common_audit_data ad;
6247 	u32 sid = current_sid();
6248 
6249 	isec = selinux_ipc(sma);
6250 
6251 	ad.type = LSM_AUDIT_DATA_IPC;
6252 	ad.u.ipc_id = sma->key;
6253 
6254 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6255 			    SEM__ASSOCIATE, &ad);
6256 }
6257 
6258 /* Note, at this point, sma is locked down */
6259 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6260 {
6261 	int err;
6262 	u32 perms;
6263 
6264 	switch (cmd) {
6265 	case IPC_INFO:
6266 	case SEM_INFO:
6267 		/* No specific object, just general system-wide information. */
6268 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6269 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6270 	case GETPID:
6271 	case GETNCNT:
6272 	case GETZCNT:
6273 		perms = SEM__GETATTR;
6274 		break;
6275 	case GETVAL:
6276 	case GETALL:
6277 		perms = SEM__READ;
6278 		break;
6279 	case SETVAL:
6280 	case SETALL:
6281 		perms = SEM__WRITE;
6282 		break;
6283 	case IPC_RMID:
6284 		perms = SEM__DESTROY;
6285 		break;
6286 	case IPC_SET:
6287 		perms = SEM__SETATTR;
6288 		break;
6289 	case IPC_STAT:
6290 	case SEM_STAT:
6291 	case SEM_STAT_ANY:
6292 		perms = SEM__GETATTR | SEM__ASSOCIATE;
6293 		break;
6294 	default:
6295 		return 0;
6296 	}
6297 
6298 	err = ipc_has_perm(sma, perms);
6299 	return err;
6300 }
6301 
6302 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6303 			     struct sembuf *sops, unsigned nsops, int alter)
6304 {
6305 	u32 perms;
6306 
6307 	if (alter)
6308 		perms = SEM__READ | SEM__WRITE;
6309 	else
6310 		perms = SEM__READ;
6311 
6312 	return ipc_has_perm(sma, perms);
6313 }
6314 
6315 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6316 {
6317 	u32 av = 0;
6318 
6319 	av = 0;
6320 	if (flag & S_IRUGO)
6321 		av |= IPC__UNIX_READ;
6322 	if (flag & S_IWUGO)
6323 		av |= IPC__UNIX_WRITE;
6324 
6325 	if (av == 0)
6326 		return 0;
6327 
6328 	return ipc_has_perm(ipcp, av);
6329 }
6330 
6331 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6332 {
6333 	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6334 	*secid = isec->sid;
6335 }
6336 
6337 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6338 {
6339 	if (inode)
6340 		inode_doinit_with_dentry(inode, dentry);
6341 }
6342 
6343 static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p,
6344 			       char **value)
6345 {
6346 	const struct task_security_struct *tsec;
6347 	int error;
6348 	u32 sid;
6349 	u32 len;
6350 
6351 	rcu_read_lock();
6352 	tsec = selinux_cred(__task_cred(p));
6353 	if (p != current) {
6354 		error = avc_has_perm(current_sid(), tsec->sid,
6355 				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6356 		if (error)
6357 			goto err_unlock;
6358 	}
6359 	switch (attr) {
6360 	case LSM_ATTR_CURRENT:
6361 		sid = tsec->sid;
6362 		break;
6363 	case LSM_ATTR_PREV:
6364 		sid = tsec->osid;
6365 		break;
6366 	case LSM_ATTR_EXEC:
6367 		sid = tsec->exec_sid;
6368 		break;
6369 	case LSM_ATTR_FSCREATE:
6370 		sid = tsec->create_sid;
6371 		break;
6372 	case LSM_ATTR_KEYCREATE:
6373 		sid = tsec->keycreate_sid;
6374 		break;
6375 	case LSM_ATTR_SOCKCREATE:
6376 		sid = tsec->sockcreate_sid;
6377 		break;
6378 	default:
6379 		error = -EOPNOTSUPP;
6380 		goto err_unlock;
6381 	}
6382 	rcu_read_unlock();
6383 
6384 	if (sid == SECSID_NULL) {
6385 		*value = NULL;
6386 		return 0;
6387 	}
6388 
6389 	error = security_sid_to_context(sid, value, &len);
6390 	if (error)
6391 		return error;
6392 	return len;
6393 
6394 err_unlock:
6395 	rcu_read_unlock();
6396 	return error;
6397 }
6398 
6399 static int selinux_lsm_setattr(u64 attr, void *value, size_t size)
6400 {
6401 	struct task_security_struct *tsec;
6402 	struct cred *new;
6403 	u32 mysid = current_sid(), sid = 0, ptsid;
6404 	int error;
6405 	char *str = value;
6406 
6407 	/*
6408 	 * Basic control over ability to set these attributes at all.
6409 	 */
6410 	switch (attr) {
6411 	case LSM_ATTR_EXEC:
6412 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6413 				     PROCESS__SETEXEC, NULL);
6414 		break;
6415 	case LSM_ATTR_FSCREATE:
6416 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6417 				     PROCESS__SETFSCREATE, NULL);
6418 		break;
6419 	case LSM_ATTR_KEYCREATE:
6420 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6421 				     PROCESS__SETKEYCREATE, NULL);
6422 		break;
6423 	case LSM_ATTR_SOCKCREATE:
6424 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6425 				     PROCESS__SETSOCKCREATE, NULL);
6426 		break;
6427 	case LSM_ATTR_CURRENT:
6428 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6429 				     PROCESS__SETCURRENT, NULL);
6430 		break;
6431 	default:
6432 		error = -EOPNOTSUPP;
6433 		break;
6434 	}
6435 	if (error)
6436 		return error;
6437 
6438 	/* Obtain a SID for the context, if one was specified. */
6439 	if (size && str[0] && str[0] != '\n') {
6440 		if (str[size-1] == '\n') {
6441 			str[size-1] = 0;
6442 			size--;
6443 		}
6444 		error = security_context_to_sid(value, size,
6445 						&sid, GFP_KERNEL);
6446 		if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) {
6447 			if (!has_cap_mac_admin(true)) {
6448 				struct audit_buffer *ab;
6449 				size_t audit_size;
6450 
6451 				/* We strip a nul only if it is at the end,
6452 				 * otherwise the context contains a nul and
6453 				 * we should audit that */
6454 				if (str[size - 1] == '\0')
6455 					audit_size = size - 1;
6456 				else
6457 					audit_size = size;
6458 				ab = audit_log_start(audit_context(),
6459 						     GFP_ATOMIC,
6460 						     AUDIT_SELINUX_ERR);
6461 				if (!ab)
6462 					return error;
6463 				audit_log_format(ab, "op=fscreate invalid_context=");
6464 				audit_log_n_untrustedstring(ab, value,
6465 							    audit_size);
6466 				audit_log_end(ab);
6467 
6468 				return error;
6469 			}
6470 			error = security_context_to_sid_force(value, size,
6471 							&sid);
6472 		}
6473 		if (error)
6474 			return error;
6475 	}
6476 
6477 	new = prepare_creds();
6478 	if (!new)
6479 		return -ENOMEM;
6480 
6481 	/* Permission checking based on the specified context is
6482 	   performed during the actual operation (execve,
6483 	   open/mkdir/...), when we know the full context of the
6484 	   operation.  See selinux_bprm_creds_for_exec for the execve
6485 	   checks and may_create for the file creation checks. The
6486 	   operation will then fail if the context is not permitted. */
6487 	tsec = selinux_cred(new);
6488 	if (attr == LSM_ATTR_EXEC) {
6489 		tsec->exec_sid = sid;
6490 	} else if (attr == LSM_ATTR_FSCREATE) {
6491 		tsec->create_sid = sid;
6492 	} else if (attr == LSM_ATTR_KEYCREATE) {
6493 		if (sid) {
6494 			error = avc_has_perm(mysid, sid,
6495 					     SECCLASS_KEY, KEY__CREATE, NULL);
6496 			if (error)
6497 				goto abort_change;
6498 		}
6499 		tsec->keycreate_sid = sid;
6500 	} else if (attr == LSM_ATTR_SOCKCREATE) {
6501 		tsec->sockcreate_sid = sid;
6502 	} else if (attr == LSM_ATTR_CURRENT) {
6503 		error = -EINVAL;
6504 		if (sid == 0)
6505 			goto abort_change;
6506 
6507 		if (!current_is_single_threaded()) {
6508 			error = security_bounded_transition(tsec->sid, sid);
6509 			if (error)
6510 				goto abort_change;
6511 		}
6512 
6513 		/* Check permissions for the transition. */
6514 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
6515 				     PROCESS__DYNTRANSITION, NULL);
6516 		if (error)
6517 			goto abort_change;
6518 
6519 		/* Check for ptracing, and update the task SID if ok.
6520 		   Otherwise, leave SID unchanged and fail. */
6521 		ptsid = ptrace_parent_sid();
6522 		if (ptsid != 0) {
6523 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
6524 					     PROCESS__PTRACE, NULL);
6525 			if (error)
6526 				goto abort_change;
6527 		}
6528 
6529 		tsec->sid = sid;
6530 	} else {
6531 		error = -EINVAL;
6532 		goto abort_change;
6533 	}
6534 
6535 	commit_creds(new);
6536 	return size;
6537 
6538 abort_change:
6539 	abort_creds(new);
6540 	return error;
6541 }
6542 
6543 /**
6544  * selinux_getselfattr - Get SELinux current task attributes
6545  * @attr: the requested attribute
6546  * @ctx: buffer to receive the result
6547  * @size: buffer size (input), buffer size used (output)
6548  * @flags: unused
6549  *
6550  * Fill the passed user space @ctx with the details of the requested
6551  * attribute.
6552  *
6553  * Returns the number of attributes on success, an error code otherwise.
6554  * There will only ever be one attribute.
6555  */
6556 static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx,
6557 			       u32 *size, u32 flags)
6558 {
6559 	int rc;
6560 	char *val = NULL;
6561 	int val_len;
6562 
6563 	val_len = selinux_lsm_getattr(attr, current, &val);
6564 	if (val_len < 0)
6565 		return val_len;
6566 	rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0);
6567 	kfree(val);
6568 	return (!rc ? 1 : rc);
6569 }
6570 
6571 static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx,
6572 			       u32 size, u32 flags)
6573 {
6574 	int rc;
6575 
6576 	rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len);
6577 	if (rc > 0)
6578 		return 0;
6579 	return rc;
6580 }
6581 
6582 static int selinux_getprocattr(struct task_struct *p,
6583 			       const char *name, char **value)
6584 {
6585 	unsigned int attr = lsm_name_to_attr(name);
6586 	int rc;
6587 
6588 	if (attr) {
6589 		rc = selinux_lsm_getattr(attr, p, value);
6590 		if (rc != -EOPNOTSUPP)
6591 			return rc;
6592 	}
6593 
6594 	return -EINVAL;
6595 }
6596 
6597 static int selinux_setprocattr(const char *name, void *value, size_t size)
6598 {
6599 	int attr = lsm_name_to_attr(name);
6600 
6601 	if (attr)
6602 		return selinux_lsm_setattr(attr, value, size);
6603 	return -EINVAL;
6604 }
6605 
6606 static int selinux_ismaclabel(const char *name)
6607 {
6608 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6609 }
6610 
6611 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6612 {
6613 	return security_sid_to_context(secid,
6614 				       secdata, seclen);
6615 }
6616 
6617 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6618 {
6619 	return security_context_to_sid(secdata, seclen,
6620 				       secid, GFP_KERNEL);
6621 }
6622 
6623 static void selinux_release_secctx(char *secdata, u32 seclen)
6624 {
6625 	kfree(secdata);
6626 }
6627 
6628 static void selinux_inode_invalidate_secctx(struct inode *inode)
6629 {
6630 	struct inode_security_struct *isec = selinux_inode(inode);
6631 
6632 	spin_lock(&isec->lock);
6633 	isec->initialized = LABEL_INVALID;
6634 	spin_unlock(&isec->lock);
6635 }
6636 
6637 /*
6638  *	called with inode->i_mutex locked
6639  */
6640 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6641 {
6642 	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6643 					   ctx, ctxlen, 0);
6644 	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6645 	return rc == -EOPNOTSUPP ? 0 : rc;
6646 }
6647 
6648 /*
6649  *	called with inode->i_mutex locked
6650  */
6651 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6652 {
6653 	return __vfs_setxattr_noperm(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX,
6654 				     ctx, ctxlen, 0);
6655 }
6656 
6657 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6658 {
6659 	int len = 0;
6660 	len = selinux_inode_getsecurity(&nop_mnt_idmap, inode,
6661 					XATTR_SELINUX_SUFFIX, ctx, true);
6662 	if (len < 0)
6663 		return len;
6664 	*ctxlen = len;
6665 	return 0;
6666 }
6667 #ifdef CONFIG_KEYS
6668 
6669 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6670 			     unsigned long flags)
6671 {
6672 	const struct task_security_struct *tsec;
6673 	struct key_security_struct *ksec;
6674 
6675 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6676 	if (!ksec)
6677 		return -ENOMEM;
6678 
6679 	tsec = selinux_cred(cred);
6680 	if (tsec->keycreate_sid)
6681 		ksec->sid = tsec->keycreate_sid;
6682 	else
6683 		ksec->sid = tsec->sid;
6684 
6685 	k->security = ksec;
6686 	return 0;
6687 }
6688 
6689 static void selinux_key_free(struct key *k)
6690 {
6691 	struct key_security_struct *ksec = k->security;
6692 
6693 	k->security = NULL;
6694 	kfree(ksec);
6695 }
6696 
6697 static int selinux_key_permission(key_ref_t key_ref,
6698 				  const struct cred *cred,
6699 				  enum key_need_perm need_perm)
6700 {
6701 	struct key *key;
6702 	struct key_security_struct *ksec;
6703 	u32 perm, sid;
6704 
6705 	switch (need_perm) {
6706 	case KEY_NEED_VIEW:
6707 		perm = KEY__VIEW;
6708 		break;
6709 	case KEY_NEED_READ:
6710 		perm = KEY__READ;
6711 		break;
6712 	case KEY_NEED_WRITE:
6713 		perm = KEY__WRITE;
6714 		break;
6715 	case KEY_NEED_SEARCH:
6716 		perm = KEY__SEARCH;
6717 		break;
6718 	case KEY_NEED_LINK:
6719 		perm = KEY__LINK;
6720 		break;
6721 	case KEY_NEED_SETATTR:
6722 		perm = KEY__SETATTR;
6723 		break;
6724 	case KEY_NEED_UNLINK:
6725 	case KEY_SYSADMIN_OVERRIDE:
6726 	case KEY_AUTHTOKEN_OVERRIDE:
6727 	case KEY_DEFER_PERM_CHECK:
6728 		return 0;
6729 	default:
6730 		WARN_ON(1);
6731 		return -EPERM;
6732 
6733 	}
6734 
6735 	sid = cred_sid(cred);
6736 	key = key_ref_to_ptr(key_ref);
6737 	ksec = key->security;
6738 
6739 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6740 }
6741 
6742 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6743 {
6744 	struct key_security_struct *ksec = key->security;
6745 	char *context = NULL;
6746 	unsigned len;
6747 	int rc;
6748 
6749 	rc = security_sid_to_context(ksec->sid,
6750 				     &context, &len);
6751 	if (!rc)
6752 		rc = len;
6753 	*_buffer = context;
6754 	return rc;
6755 }
6756 
6757 #ifdef CONFIG_KEY_NOTIFICATIONS
6758 static int selinux_watch_key(struct key *key)
6759 {
6760 	struct key_security_struct *ksec = key->security;
6761 	u32 sid = current_sid();
6762 
6763 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6764 }
6765 #endif
6766 #endif
6767 
6768 #ifdef CONFIG_SECURITY_INFINIBAND
6769 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6770 {
6771 	struct common_audit_data ad;
6772 	int err;
6773 	u32 sid = 0;
6774 	struct ib_security_struct *sec = ib_sec;
6775 	struct lsm_ibpkey_audit ibpkey;
6776 
6777 	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6778 	if (err)
6779 		return err;
6780 
6781 	ad.type = LSM_AUDIT_DATA_IBPKEY;
6782 	ibpkey.subnet_prefix = subnet_prefix;
6783 	ibpkey.pkey = pkey_val;
6784 	ad.u.ibpkey = &ibpkey;
6785 	return avc_has_perm(sec->sid, sid,
6786 			    SECCLASS_INFINIBAND_PKEY,
6787 			    INFINIBAND_PKEY__ACCESS, &ad);
6788 }
6789 
6790 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6791 					    u8 port_num)
6792 {
6793 	struct common_audit_data ad;
6794 	int err;
6795 	u32 sid = 0;
6796 	struct ib_security_struct *sec = ib_sec;
6797 	struct lsm_ibendport_audit ibendport;
6798 
6799 	err = security_ib_endport_sid(dev_name, port_num,
6800 				      &sid);
6801 
6802 	if (err)
6803 		return err;
6804 
6805 	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6806 	ibendport.dev_name = dev_name;
6807 	ibendport.port = port_num;
6808 	ad.u.ibendport = &ibendport;
6809 	return avc_has_perm(sec->sid, sid,
6810 			    SECCLASS_INFINIBAND_ENDPORT,
6811 			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6812 }
6813 
6814 static int selinux_ib_alloc_security(void **ib_sec)
6815 {
6816 	struct ib_security_struct *sec;
6817 
6818 	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6819 	if (!sec)
6820 		return -ENOMEM;
6821 	sec->sid = current_sid();
6822 
6823 	*ib_sec = sec;
6824 	return 0;
6825 }
6826 
6827 static void selinux_ib_free_security(void *ib_sec)
6828 {
6829 	kfree(ib_sec);
6830 }
6831 #endif
6832 
6833 #ifdef CONFIG_BPF_SYSCALL
6834 static int selinux_bpf(int cmd, union bpf_attr *attr,
6835 				     unsigned int size)
6836 {
6837 	u32 sid = current_sid();
6838 	int ret;
6839 
6840 	switch (cmd) {
6841 	case BPF_MAP_CREATE:
6842 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6843 				   NULL);
6844 		break;
6845 	case BPF_PROG_LOAD:
6846 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6847 				   NULL);
6848 		break;
6849 	default:
6850 		ret = 0;
6851 		break;
6852 	}
6853 
6854 	return ret;
6855 }
6856 
6857 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6858 {
6859 	u32 av = 0;
6860 
6861 	if (fmode & FMODE_READ)
6862 		av |= BPF__MAP_READ;
6863 	if (fmode & FMODE_WRITE)
6864 		av |= BPF__MAP_WRITE;
6865 	return av;
6866 }
6867 
6868 /* This function will check the file pass through unix socket or binder to see
6869  * if it is a bpf related object. And apply corresponding checks on the bpf
6870  * object based on the type. The bpf maps and programs, not like other files and
6871  * socket, are using a shared anonymous inode inside the kernel as their inode.
6872  * So checking that inode cannot identify if the process have privilege to
6873  * access the bpf object and that's why we have to add this additional check in
6874  * selinux_file_receive and selinux_binder_transfer_files.
6875  */
6876 static int bpf_fd_pass(const struct file *file, u32 sid)
6877 {
6878 	struct bpf_security_struct *bpfsec;
6879 	struct bpf_prog *prog;
6880 	struct bpf_map *map;
6881 	int ret;
6882 
6883 	if (file->f_op == &bpf_map_fops) {
6884 		map = file->private_data;
6885 		bpfsec = map->security;
6886 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6887 				   bpf_map_fmode_to_av(file->f_mode), NULL);
6888 		if (ret)
6889 			return ret;
6890 	} else if (file->f_op == &bpf_prog_fops) {
6891 		prog = file->private_data;
6892 		bpfsec = prog->aux->security;
6893 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6894 				   BPF__PROG_RUN, NULL);
6895 		if (ret)
6896 			return ret;
6897 	}
6898 	return 0;
6899 }
6900 
6901 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6902 {
6903 	u32 sid = current_sid();
6904 	struct bpf_security_struct *bpfsec;
6905 
6906 	bpfsec = map->security;
6907 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6908 			    bpf_map_fmode_to_av(fmode), NULL);
6909 }
6910 
6911 static int selinux_bpf_prog(struct bpf_prog *prog)
6912 {
6913 	u32 sid = current_sid();
6914 	struct bpf_security_struct *bpfsec;
6915 
6916 	bpfsec = prog->aux->security;
6917 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6918 			    BPF__PROG_RUN, NULL);
6919 }
6920 
6921 static int selinux_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
6922 				  struct bpf_token *token)
6923 {
6924 	struct bpf_security_struct *bpfsec;
6925 
6926 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6927 	if (!bpfsec)
6928 		return -ENOMEM;
6929 
6930 	bpfsec->sid = current_sid();
6931 	map->security = bpfsec;
6932 
6933 	return 0;
6934 }
6935 
6936 static void selinux_bpf_map_free(struct bpf_map *map)
6937 {
6938 	struct bpf_security_struct *bpfsec = map->security;
6939 
6940 	map->security = NULL;
6941 	kfree(bpfsec);
6942 }
6943 
6944 static int selinux_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
6945 				 struct bpf_token *token)
6946 {
6947 	struct bpf_security_struct *bpfsec;
6948 
6949 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6950 	if (!bpfsec)
6951 		return -ENOMEM;
6952 
6953 	bpfsec->sid = current_sid();
6954 	prog->aux->security = bpfsec;
6955 
6956 	return 0;
6957 }
6958 
6959 static void selinux_bpf_prog_free(struct bpf_prog *prog)
6960 {
6961 	struct bpf_security_struct *bpfsec = prog->aux->security;
6962 
6963 	prog->aux->security = NULL;
6964 	kfree(bpfsec);
6965 }
6966 
6967 static int selinux_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
6968 				    struct path *path)
6969 {
6970 	struct bpf_security_struct *bpfsec;
6971 
6972 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6973 	if (!bpfsec)
6974 		return -ENOMEM;
6975 
6976 	bpfsec->sid = current_sid();
6977 	token->security = bpfsec;
6978 
6979 	return 0;
6980 }
6981 
6982 static void selinux_bpf_token_free(struct bpf_token *token)
6983 {
6984 	struct bpf_security_struct *bpfsec = token->security;
6985 
6986 	token->security = NULL;
6987 	kfree(bpfsec);
6988 }
6989 #endif
6990 
6991 struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = {
6992 	.lbs_cred = sizeof(struct task_security_struct),
6993 	.lbs_file = sizeof(struct file_security_struct),
6994 	.lbs_inode = sizeof(struct inode_security_struct),
6995 	.lbs_ipc = sizeof(struct ipc_security_struct),
6996 	.lbs_msg_msg = sizeof(struct msg_security_struct),
6997 	.lbs_superblock = sizeof(struct superblock_security_struct),
6998 	.lbs_xattr_count = SELINUX_INODE_INIT_XATTRS,
6999 };
7000 
7001 #ifdef CONFIG_PERF_EVENTS
7002 static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7003 {
7004 	u32 requested, sid = current_sid();
7005 
7006 	if (type == PERF_SECURITY_OPEN)
7007 		requested = PERF_EVENT__OPEN;
7008 	else if (type == PERF_SECURITY_CPU)
7009 		requested = PERF_EVENT__CPU;
7010 	else if (type == PERF_SECURITY_KERNEL)
7011 		requested = PERF_EVENT__KERNEL;
7012 	else if (type == PERF_SECURITY_TRACEPOINT)
7013 		requested = PERF_EVENT__TRACEPOINT;
7014 	else
7015 		return -EINVAL;
7016 
7017 	return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT,
7018 			    requested, NULL);
7019 }
7020 
7021 static int selinux_perf_event_alloc(struct perf_event *event)
7022 {
7023 	struct perf_event_security_struct *perfsec;
7024 
7025 	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
7026 	if (!perfsec)
7027 		return -ENOMEM;
7028 
7029 	perfsec->sid = current_sid();
7030 	event->security = perfsec;
7031 
7032 	return 0;
7033 }
7034 
7035 static void selinux_perf_event_free(struct perf_event *event)
7036 {
7037 	struct perf_event_security_struct *perfsec = event->security;
7038 
7039 	event->security = NULL;
7040 	kfree(perfsec);
7041 }
7042 
7043 static int selinux_perf_event_read(struct perf_event *event)
7044 {
7045 	struct perf_event_security_struct *perfsec = event->security;
7046 	u32 sid = current_sid();
7047 
7048 	return avc_has_perm(sid, perfsec->sid,
7049 			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7050 }
7051 
7052 static int selinux_perf_event_write(struct perf_event *event)
7053 {
7054 	struct perf_event_security_struct *perfsec = event->security;
7055 	u32 sid = current_sid();
7056 
7057 	return avc_has_perm(sid, perfsec->sid,
7058 			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7059 }
7060 #endif
7061 
7062 #ifdef CONFIG_IO_URING
7063 /**
7064  * selinux_uring_override_creds - check the requested cred override
7065  * @new: the target creds
7066  *
7067  * Check to see if the current task is allowed to override it's credentials
7068  * to service an io_uring operation.
7069  */
7070 static int selinux_uring_override_creds(const struct cred *new)
7071 {
7072 	return avc_has_perm(current_sid(), cred_sid(new),
7073 			    SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
7074 }
7075 
7076 /**
7077  * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7078  *
7079  * Check to see if the current task is allowed to create a new io_uring
7080  * kernel polling thread.
7081  */
7082 static int selinux_uring_sqpoll(void)
7083 {
7084 	u32 sid = current_sid();
7085 
7086 	return avc_has_perm(sid, sid,
7087 			    SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7088 }
7089 
7090 /**
7091  * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7092  * @ioucmd: the io_uring command structure
7093  *
7094  * Check to see if the current domain is allowed to execute an
7095  * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7096  *
7097  */
7098 static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7099 {
7100 	struct file *file = ioucmd->file;
7101 	struct inode *inode = file_inode(file);
7102 	struct inode_security_struct *isec = selinux_inode(inode);
7103 	struct common_audit_data ad;
7104 
7105 	ad.type = LSM_AUDIT_DATA_FILE;
7106 	ad.u.file = file;
7107 
7108 	return avc_has_perm(current_sid(), isec->sid,
7109 			    SECCLASS_IO_URING, IO_URING__CMD, &ad);
7110 }
7111 #endif /* CONFIG_IO_URING */
7112 
7113 static const struct lsm_id selinux_lsmid = {
7114 	.name = "selinux",
7115 	.id = LSM_ID_SELINUX,
7116 };
7117 
7118 /*
7119  * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7120  * 1. any hooks that don't belong to (2.) or (3.) below,
7121  * 2. hooks that both access structures allocated by other hooks, and allocate
7122  *    structures that can be later accessed by other hooks (mostly "cloning"
7123  *    hooks),
7124  * 3. hooks that only allocate structures that can be later accessed by other
7125  *    hooks ("allocating" hooks).
7126  *
7127  * Please follow block comment delimiters in the list to keep this order.
7128  */
7129 static struct security_hook_list selinux_hooks[] __ro_after_init = {
7130 	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7131 	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7132 	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7133 	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7134 
7135 	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7136 	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7137 	LSM_HOOK_INIT(capget, selinux_capget),
7138 	LSM_HOOK_INIT(capset, selinux_capset),
7139 	LSM_HOOK_INIT(capable, selinux_capable),
7140 	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7141 	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7142 	LSM_HOOK_INIT(syslog, selinux_syslog),
7143 	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7144 
7145 	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7146 
7147 	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7148 	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7149 	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7150 
7151 	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7152 	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7153 	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7154 	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7155 	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7156 	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7157 	LSM_HOOK_INIT(sb_mount, selinux_mount),
7158 	LSM_HOOK_INIT(sb_umount, selinux_umount),
7159 	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7160 	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7161 
7162 	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7163 
7164 	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7165 	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7166 
7167 	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7168 	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7169 	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7170 	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7171 	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7172 	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7173 	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7174 	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7175 	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7176 	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7177 	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7178 	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7179 	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7180 	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7181 	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7182 	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7183 	LSM_HOOK_INIT(inode_xattr_skipcap, selinux_inode_xattr_skipcap),
7184 	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7185 	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7186 	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7187 	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7188 	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7189 	LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7190 	LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7191 	LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7192 	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7193 	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7194 	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7195 	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7196 	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7197 	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7198 	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7199 
7200 	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7201 
7202 	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7203 	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7204 	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7205 	LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat),
7206 	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7207 	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7208 	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7209 	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7210 	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7211 	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7212 	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7213 	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7214 
7215 	LSM_HOOK_INIT(file_open, selinux_file_open),
7216 
7217 	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7218 	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7219 	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7220 	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7221 	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7222 	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7223 	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7224 	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7225 	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7226 	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7227 	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7228 	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7229 	LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7230 	LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7231 	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7232 	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7233 	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7234 	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7235 	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7236 	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7237 	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7238 	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7239 	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7240 	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7241 	LSM_HOOK_INIT(userns_create, selinux_userns_create),
7242 
7243 	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7244 	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7245 
7246 	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7247 	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7248 	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7249 	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7250 
7251 	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7252 	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7253 	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7254 
7255 	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7256 	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7257 	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7258 
7259 	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7260 
7261 	LSM_HOOK_INIT(getselfattr, selinux_getselfattr),
7262 	LSM_HOOK_INIT(setselfattr, selinux_setselfattr),
7263 	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7264 	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7265 
7266 	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7267 	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7268 	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7269 	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7270 	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7271 	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7272 
7273 	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7274 	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7275 
7276 	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7277 	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7278 	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7279 	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7280 	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7281 	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7282 	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7283 	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7284 	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7285 	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7286 	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7287 	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7288 	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7289 	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7290 	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7291 	LSM_HOOK_INIT(socket_getpeersec_stream,
7292 			selinux_socket_getpeersec_stream),
7293 	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7294 	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7295 	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7296 	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7297 	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7298 	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7299 	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7300 	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7301 	LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7302 	LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow),
7303 	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7304 	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7305 	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7306 	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7307 	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7308 	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7309 	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7310 	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7311 	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7312 	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7313 	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7314 	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7315 #ifdef CONFIG_SECURITY_INFINIBAND
7316 	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7317 	LSM_HOOK_INIT(ib_endport_manage_subnet,
7318 		      selinux_ib_endport_manage_subnet),
7319 	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7320 #endif
7321 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7322 	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7323 	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7324 	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7325 	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7326 	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7327 	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7328 			selinux_xfrm_state_pol_flow_match),
7329 	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7330 #endif
7331 
7332 #ifdef CONFIG_KEYS
7333 	LSM_HOOK_INIT(key_free, selinux_key_free),
7334 	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7335 	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7336 #ifdef CONFIG_KEY_NOTIFICATIONS
7337 	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7338 #endif
7339 #endif
7340 
7341 #ifdef CONFIG_AUDIT
7342 	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7343 	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7344 	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7345 #endif
7346 
7347 #ifdef CONFIG_BPF_SYSCALL
7348 	LSM_HOOK_INIT(bpf, selinux_bpf),
7349 	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7350 	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7351 	LSM_HOOK_INIT(bpf_map_free, selinux_bpf_map_free),
7352 	LSM_HOOK_INIT(bpf_prog_free, selinux_bpf_prog_free),
7353 	LSM_HOOK_INIT(bpf_token_free, selinux_bpf_token_free),
7354 #endif
7355 
7356 #ifdef CONFIG_PERF_EVENTS
7357 	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7358 	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7359 	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7360 	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7361 #endif
7362 
7363 #ifdef CONFIG_IO_URING
7364 	LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7365 	LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7366 	LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7367 #endif
7368 
7369 	/*
7370 	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7371 	 */
7372 	LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount),
7373 	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7374 	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7375 	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7376 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7377 	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7378 #endif
7379 
7380 	/*
7381 	 * PUT "ALLOCATING" HOOKS HERE
7382 	 */
7383 	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7384 	LSM_HOOK_INIT(msg_queue_alloc_security,
7385 		      selinux_msg_queue_alloc_security),
7386 	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7387 	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7388 	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7389 	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7390 	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7391 	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7392 	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7393 	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7394 #ifdef CONFIG_SECURITY_INFINIBAND
7395 	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7396 #endif
7397 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7398 	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7399 	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7400 	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7401 		      selinux_xfrm_state_alloc_acquire),
7402 #endif
7403 #ifdef CONFIG_KEYS
7404 	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7405 #endif
7406 #ifdef CONFIG_AUDIT
7407 	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7408 #endif
7409 #ifdef CONFIG_BPF_SYSCALL
7410 	LSM_HOOK_INIT(bpf_map_create, selinux_bpf_map_create),
7411 	LSM_HOOK_INIT(bpf_prog_load, selinux_bpf_prog_load),
7412 	LSM_HOOK_INIT(bpf_token_create, selinux_bpf_token_create),
7413 #endif
7414 #ifdef CONFIG_PERF_EVENTS
7415 	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7416 #endif
7417 };
7418 
7419 static __init int selinux_init(void)
7420 {
7421 	pr_info("SELinux:  Initializing.\n");
7422 
7423 	memset(&selinux_state, 0, sizeof(selinux_state));
7424 	enforcing_set(selinux_enforcing_boot);
7425 	selinux_avc_init();
7426 	mutex_init(&selinux_state.status_lock);
7427 	mutex_init(&selinux_state.policy_mutex);
7428 
7429 	/* Set the security state for the initial task. */
7430 	cred_init_security();
7431 
7432 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7433 	if (!default_noexec)
7434 		pr_notice("SELinux:  virtual memory is executable by default\n");
7435 
7436 	avc_init();
7437 
7438 	avtab_cache_init();
7439 
7440 	ebitmap_cache_init();
7441 
7442 	hashtab_cache_init();
7443 
7444 	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks),
7445 			   &selinux_lsmid);
7446 
7447 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7448 		panic("SELinux: Unable to register AVC netcache callback\n");
7449 
7450 	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7451 		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7452 
7453 	if (selinux_enforcing_boot)
7454 		pr_debug("SELinux:  Starting in enforcing mode\n");
7455 	else
7456 		pr_debug("SELinux:  Starting in permissive mode\n");
7457 
7458 	fs_validate_description("selinux", selinux_fs_parameters);
7459 
7460 	return 0;
7461 }
7462 
7463 static void delayed_superblock_init(struct super_block *sb, void *unused)
7464 {
7465 	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7466 }
7467 
7468 void selinux_complete_init(void)
7469 {
7470 	pr_debug("SELinux:  Completing initialization.\n");
7471 
7472 	/* Set up any superblocks initialized prior to the policy load. */
7473 	pr_debug("SELinux:  Setting up existing superblocks.\n");
7474 	iterate_supers(delayed_superblock_init, NULL);
7475 }
7476 
7477 /* SELinux requires early initialization in order to label
7478    all processes and objects when they are created. */
7479 DEFINE_LSM(selinux) = {
7480 	.name = "selinux",
7481 	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7482 	.enabled = &selinux_enabled_boot,
7483 	.blobs = &selinux_blob_sizes,
7484 	.init = selinux_init,
7485 };
7486 
7487 #if defined(CONFIG_NETFILTER)
7488 static const struct nf_hook_ops selinux_nf_ops[] = {
7489 	{
7490 		.hook =		selinux_ip_postroute,
7491 		.pf =		NFPROTO_IPV4,
7492 		.hooknum =	NF_INET_POST_ROUTING,
7493 		.priority =	NF_IP_PRI_SELINUX_LAST,
7494 	},
7495 	{
7496 		.hook =		selinux_ip_forward,
7497 		.pf =		NFPROTO_IPV4,
7498 		.hooknum =	NF_INET_FORWARD,
7499 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7500 	},
7501 	{
7502 		.hook =		selinux_ip_output,
7503 		.pf =		NFPROTO_IPV4,
7504 		.hooknum =	NF_INET_LOCAL_OUT,
7505 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7506 	},
7507 #if IS_ENABLED(CONFIG_IPV6)
7508 	{
7509 		.hook =		selinux_ip_postroute,
7510 		.pf =		NFPROTO_IPV6,
7511 		.hooknum =	NF_INET_POST_ROUTING,
7512 		.priority =	NF_IP6_PRI_SELINUX_LAST,
7513 	},
7514 	{
7515 		.hook =		selinux_ip_forward,
7516 		.pf =		NFPROTO_IPV6,
7517 		.hooknum =	NF_INET_FORWARD,
7518 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7519 	},
7520 	{
7521 		.hook =		selinux_ip_output,
7522 		.pf =		NFPROTO_IPV6,
7523 		.hooknum =	NF_INET_LOCAL_OUT,
7524 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7525 	},
7526 #endif	/* IPV6 */
7527 };
7528 
7529 static int __net_init selinux_nf_register(struct net *net)
7530 {
7531 	return nf_register_net_hooks(net, selinux_nf_ops,
7532 				     ARRAY_SIZE(selinux_nf_ops));
7533 }
7534 
7535 static void __net_exit selinux_nf_unregister(struct net *net)
7536 {
7537 	nf_unregister_net_hooks(net, selinux_nf_ops,
7538 				ARRAY_SIZE(selinux_nf_ops));
7539 }
7540 
7541 static struct pernet_operations selinux_net_ops = {
7542 	.init = selinux_nf_register,
7543 	.exit = selinux_nf_unregister,
7544 };
7545 
7546 static int __init selinux_nf_ip_init(void)
7547 {
7548 	int err;
7549 
7550 	if (!selinux_enabled_boot)
7551 		return 0;
7552 
7553 	pr_debug("SELinux:  Registering netfilter hooks\n");
7554 
7555 	err = register_pernet_subsys(&selinux_net_ops);
7556 	if (err)
7557 		panic("SELinux: register_pernet_subsys: error %d\n", err);
7558 
7559 	return 0;
7560 }
7561 __initcall(selinux_nf_ip_init);
7562 #endif /* CONFIG_NETFILTER */
7563